O, Spatial
User Manual

Release 5.0 - April 1998




Information in this document is subject to change without
notice and should not be construed as a commitment by
O, Technology.

The software described in this document is delivered under a
license or nondisclosure agreement.

The software can only be used or copied in accordance with the
terms of the agreement. It is against the law to copy this
software to magnetic tape, disk, or any other medium for any
purpose other than the purchaser’s own use.

Copyright 1992-1998 O, Technology.

All rights reserved. No part of this publication can be
reproduced, stored in a retrieval system or transmitted in any
form or by any means, electronic, mechanical, photocopy
without prior written permission of O, Technology.

02, O2Engine API, O,C, O,DBAccess, OzEngine, O,Graph,
O2Kit, OoLook, O,Store, O>Tools, and OoWeb are registered
trademarks of O Technology.

SQL and AIX are registered trademarks of International
Business Machines Corporation.

Sun, SunOS, and SOLARIS are registered trademarks of Sun
Microsystems, Inc.

X Window System is a registered trademark of the
Massachusetts Institute of Technology.

Unix is a registered trademark of Unix System Laboratories, Inc.
HPUX is a registered trademark of Hewlett-Packard Company.
BOSX is a registered trademark of Bull S.A.

IRIX is aregistered trademark of Siemens Nixdorf, A.G.
NeXTStep is a registered trademark of the NeXT Computer, Inc.

Purify, Quantify are registered trademarks of Rational Software
Inc.

Search’97 is a registered trademark of Verity Inc.
Windows is a registered trademark of Microsoft Corporation.

All other company or product names quoted are trademarks or
registered trademarks of their respective trademark holders.



Who should read this manual

This manual presents the O, spatial indexing module. This module allows you to
develop efficient applications managing geographical information. The manual
describes how to create, delete, update and query a spatial index associated
with a collection of persistent objects. The O, spatial index module provides
both high-level C++ and low-level O,Engine API programming tools for spatial
indexing. This manual contains a comprehensive list of O,Spatial methods and
commands.

Other documents available are outlined, click below.

See 02 Documentation set






TABLE OF CONTENTS

This manual is divided into the following chapters:

1 - Introduction

2 - Setting up OsSpatial

3 - Using O2Spatial

4 - O2Spatial C++ API reference

5 - Spatial Indexing with O2Engine API

O,Spatial User Manual



QQ TABLE OF CONTENTS

Introduction 9
1.1 SYSLEM OVEIVIEW ...ttt aea e e e e e eete e et 10
1.2 02 : Efficient support for Geographical Info Systems.......... 12
1.3 The O2Spatial module..........ccccoovviiiiiiiiii e 13
1.4 Object storage and retrieval.............ccceeeiviiiiiieiiineiiieeeeiiiees 14
Setting Up O2Spatial 17
O2HOME FllES .ttt e e e e e e e e aeaenees 18
Schema initialiZatioN..........coeeeieeiie e e 18
Using O2Spatial 21
3.1 Spatial index creation and deletion.............cccoeceeeiiiiiniiinnnnnn.. 23
The creation and deletion commands..........cccccceeeieeiinininiiiiniinns 23
Spatial INdeX OPLIONS ... 23
3.2 C++ Interface to a spatial indeX ..........ccoooviiiiiiiiiiiie 25
3.3 Spatial INdex CONSIIUCION..........uuuuuiiiiieeeee e 27
3.4 Spatial INdex Update ...........ccooiriiiiiiiiiiii e 27
Insertion and removal methods ..., 27
Update Method ..........coouiiiiiiiiii e 29
3.5 Spatial INdexX tuNING ..........cooiiiiiiiiiii s 29
The O2 spatial iINdeX OPtioNS .......cevvieiiiiiiiieiiii e 29
I I @ 10 T=T V1 o R 30
TYPES OF QUETIES ...ttt 30
O2 SpAtial KEYS ...ccovieiiiieieee e 31
Spatial query eXamples ... 31
Spatial predicate parameters ..........ooooveviriiiiiiiiiei e 34
How to query spatially ..........ceuviiiiiiiiiiiiee e 34
Using object MethodsS. .......c.ovviiiiiiii e 34
USING OQL PrediCates. ......ouviie ittt 35
EXAMPIES ... 36

O,Spatial User Manual



TABLE OF CONTENTS

O2Spatial C++ API Reference 39
4.1 Class defiNitiONS ........uiiiiieeeiee e 40
4.2 Member functions descCriptions .............eeeveiiiiiiieeeeeeeeeeeeeeeee, 44
(03 [0 11 (1 45
(o] 0] = 1] o 1 46
d_GeoCollection (CONSIIUCION) ......coeereriiiiiiiiiee e a7
d_GeoCollection (CONSIIUCION) .....ccoeeveriiiiiiiiiiee e 48
INSEIT_EleMENT.... oo 49
INSEIT_ElEMENTS ..o e e e 50
57 o = 51
(=] 657 X S 52
(0] 0T = 1] PP 53
FEMOVE_EIEMENT ... e 54
FEMOVE_EIEMENTS .. .uii it e e e e e e e e e aenenes 55
UPdate_EleMENT.......oeiiiiiie e 56
ClONE ..o 57
d_SpatialKey2D (CONSIIUCTON)........uurrririiieiiieeieieeeee e 58
d_SpatialKey2D (CONSIIUCTON)........uuurririiiiiiieeieieee e erer e 59
d_SpatialKey3D (CONSIIUCTON)........uuurrrriiiiiiieeieieeeeeeree s 60
d_SpatialKey3D (CONSIIUCTON)........uuueririiiiiiieeieieeeeeer e 61
(0T g 1T 1S3 [0 o 62
BINIAIGE <.t 63
getINtErNAIKEY ... 64
OOTSIZE e 65
(£ A o] | S 66
(012 1<) A 1 1= U = TP 67
(07T = 1] PP 68
(0] 01T = 10 ] USSP 69
Spatial Indexing with O2Engine API 71
5.1 INtrOAUCTION ettt eeeenaeees 72
5.2 02 Engine API : Spatial INdeX...........coovvrieiiiiiiiiiiiinieeeeeeeeeeee 72
INDEX 95

O,Spatial User Manual 7



TABLE OF CONTENTS

O,Spatial User Manual



Introduction

The O,Spatial module provides spatial indexing and search capabilities for any
collection of persistent objects in your O, database.

This chapter presents an overview of the O, system, an introduction to spatial
indexing technology, and a brief overview of O,Spatial.

To effectively use this manual, you should have some knowledge of O, its C++
ODMG binding interface and of OQL.

O,Spatial User Manual 9



1 Introduction

1.1 System overview

The system architecture of Oz isillustrated in Figure 1.1.

Development Tools External
Interfaces
O, Dev. Tools gf‘f’d% % s
oQL I
C C++ 0,C Java
I I O,Corba
Database Engine 0, Spatial 0,05
. Access
OyEngine
O,Store I O Web

Figure 1.1: Oy System Architecture
The O, system can be viewed as consisting of three components. The
Database Engine provides all the features of a Database system and an
object-oriented system. This engine is accessed with Development Tools,
such as various programming languages, O, development tools and any
standard development tool. Numerous External Interfaces are provided.
All encompassing, O» is a versatile, portable, distributed, high-
performance dynamic object-oriented database system.

Database Engine:

* O»,Store

* OzEngine

The database management system provides low level
facilities, through O,Store API, to access and manage a
database: disk volumes, files, records, indices and
transactions.

The object database engine provides direct control of
schemas, classes, objects and transactions, through
O2Engine API. It provides full text indexing and search
capabilities with O,Search and spatial indexing and
retrieval capabilities with OoSpatial. It includes a
Notification manager for informing other clients
connected to the same O» server that an event has
occurred, a Version manager for handling multiple
object versions and a Replication API for synchronizing
multiple copies of an O2 system.

10

O,Spatial User Manual



System overview

Programming Languages:

O2 objects may be created and managed using the following
programming languages, utilizing all the features available with O»
(persistence, collection management, transaction management, OQL

gueries, etc.)
* C

e C++

* Java

* 0,C

« OQL

O, functions can be invoked by C programs.
ODMG compliant C++ binding.
ODMG compliant Java binding.

A powerful and elegant object-oriented fourth
generation language specialized for easy development
of object database applications.

ODMG standard, easy-to-use SQL-like object query
language with special features for dealing with complex
O» objects and methods.

O, Development Tools:

* OoGraph
* OsLook

* OoKit

* OsTools

Create, modify and edit any type of object graph.

Design and develop graphical user interfaces, provides
interactive manipulation of complex and multimedia
objects.

Library of predefined classes and methods for faster
development of user applications.

Complete graphical programming environment to
design and develop O, database applications.

Standard Development Tools:

All standard programming languages can be used with standard
environments (e.g. Visual C++, Sun Sparcworks).

External Interfaces:

* O»Corba

* OoDBAccess

« 0,0DBC

* Oo,Web

Create an O2/ Orbix server to access an O database
with CORBA.

Connect O applications to relational databases on
remote hosts and invoke SQL statements.

Connect remote ODBC client applications to O,
databases.

Create an O, World Wide Web server to access an Oj
database through the internet network.

O,Spatial User Manual 11



2

Introduction

1.2 O, : Efficient support for Geographical Info

Systems

The growth of computational power and memory capacities with the proliferation
of personal computers has brought about the development of complex
information systems.

Different forms and types of information can be represented as spatial data,
such as medical images, satellite images, geographical information, etc.

Geographical entities require a high level model to be represented in a
computational form. A geographical entity is by nature likely to be very complex.
For instance a town map is made up of many different items such as streets,
houses, parks, which can be themselves divided up into smaller parts. Each
item has coordinates, scales and properties on a map.

The object model is very appropriate to capture this complexity, because of the
natural and efficient way in which it describes each part as an object as well as
the combination of items as composite objects. Thus O, is the perfect system to
store and organize geographical information.

In order to be useful, such a repository should enable you to retrieve as fast as
possible the information which you are interested in. Because of the
geographical nature of the queries, they are linked to the topological properties
of the objects. Some examples of queries are : which cities are near Paris?
Which objects does New York City include ? What rivers cross this town? etc.
All these geographical operators work using graphical coordinates, which may
be of a planar, a three-dimensional nature, or higher dimension as is the case of
a hyper model. To efficiently answer such types of queries you need data
structures and quick-access paths, which can deal with the coordinates of such
items.

This is precisely the reason why you use a spatial index. The spatial index plays
the same role regarding “geo-referenced” objects (i.e. objects referenced to by
their coordinates) as a standard O, index regarding the simple properties of
some objects (objects referenced to by the value of a simple attribute).

Similar to standard indexes (see chapter 5 in the System Administration Guide),
a spatial index maps a key to a set of objects. The only difference lies in the
nature of the key used. For a standard index, a key is an atomic data (e.g.
integer, string...), whereas for a spatial index a key is a multi-dimensional data
(e.g. a pair of reals : x, y; or a triple of reals : x, y, z; or more). Such
multidimensional keys are called spatial keys .

12

O,Spatial User Manual



The O2Spatial module

1.3

The O,Spatial module

This document presents the O, spatial indexing module. This module enables
you to develop efficient applications managing geographical information
(utilizing spatial indexing). The module uses the O, ODMG C++ binding and the
OQL query language.

The spatial indexing module enables a programmer to create, delete, update
and query a spatial index associated with a collection of persistent geographical
objects.

This module provides the C++ programmer with an access to the spatial
indexing capabilities of the O, system.

This document describes how to use spatial indexing, including creating and
deleting using the O,Shell, updating using C++, and querying using OQL and
C++.

The O, spatial index module can also be used through a lower level
programming interface. Low-level programming tools are provided by the O,
Spatial Index Engine API as well and described in Chapter 5, Spatial indexing
with O,Engine API.

O,Spatial User Manual 13



Introduction

1.4 Object storage and retrieval

The proliferation of personal computers and distributed servers, together with
the distribution of different forms and types of information across the World Wide
Web, has increased the demand for powerful information storage and retrieval
tools.

Spatial indexing enable users to search a large number of geo-referenced
objects using specific selection criteria. Early spatial indexing systems allowed
only 2-D objects. Today, spatial indexing systems are capable of efficiently
processing multidimensional objects and supporting user queries that address
specific object structures.

O,Spatial

O,Spatial enables application programmers to add spatial indexing and search
capabilities to any collection of persistent objects stored in an O, database.

An O, application using O,Spatial can perform three functions:

* Index collections of persistent geo-referenced objects to make them efficiently
searchable

* Search and retrieve objects that satisfy users’ queries
* Maintain and optimize spatial indexes

O,Spatial applications can use the following search techniques:

* Searching for objects that intersect with a particular spatial point.

* Searching for objects that intersect with a certain window.

* Searching for objects that are inside a certain window.

* Searching for objects that are within a certain distance from a particular spa-
tial point.

An application program interface (API) enables you to integrate spatial index
capabilities within your O, applications.

Users’ perspective

From the user’s perspective, the primary interface to a spatial index is the query
language, which is used to search a collection of geo-referenced objects. To
offer the best flexibility and ease of use, ODMG OQL has been enhanced with
specific operators for spatial searches (spatial predicates like “intersect " and
“contain ). The result of a query is a set of objects or rectangular regions that

O,Spatial User Manual



Object storage and retrieval

satisfy the search criteria. The user can choose an object from the resulting list
and view it with an appropriate tool.

A C++ interface is provided which enables the user to manage the index as a
collection of (key, object) pairs. This indexing interface is used whenever you
want to add, update or delete an object from the spatial index.

R-Quad Tree

O,Spatial is a spatial indexing system capable of efficient storing and retrieval of
geo-referenced objects. This system is based on a Rectangle-Quadrant (R-
Quad) tree. The spatial index is maintained by the O,Spatial engine while the
objects are maintained in an O, collection.

R-Quad tree based indexing and retrieval employs R-tree representation to
store and organize information, and Quad-tree representation to accelerate
spatial-based searching.

The main features of a spatial index based on a R-Quad tree architecture
include the following:

* powerful query language that supports point, window and proximity searches.
» fast maintenance when objects are added and deleted.

 efficient retrieval even for very large collections and very large query results.

Spatial representation

When using the O,Spatial engine, the spatial index stores a geo-referenced
object as a minimum rectangle (called bounding box) that encompasses the
object for identifying the spatial location of the object. To index an object, you
simply provide the object and its bounding box.

O,Spatial C++ API

Two C++ classes make up the O,Spatial API: d_GeoCollection and
d_SpatialKey

O,Spatial indexes and searches instances of d_Spatialkey , which represent
indexed object keys.

An application can use methods in the d_GeoCollection class to search and
retrieve objects stored in a spatially indexed collections. These methods
produce lists of pointers to objects that satisfy the search criterion.

O,Spatial User Manual 15



Introduction

16

O,Spatial User Manual



Setting Up QSpatial

Various O, Spatial related files are needed to use the Spatial index. This
chapter presents how to set up your O, system in order to use O, Spatial.

This chapter presents how to set up your O, system to use O, Spatial.

The chapter is composed of the following sections :
O2HOME Files

Schema initialization

O,Spatial User Manual

17



2]

Setting Up O2Spatial

O2HOME Files

When you purchase O,, O, Spatial is available upon request. After installing O,
you can find the following O, Spatial-related files in your O, home directory.
These files are needed to build an O, Spatial application:

Include File /

o2spatial_CC.hxx - file you must include to use

the O , Spatial C++ interface
02_spatialindex.h - file which must be included

to use the spatial index

interface of the O > Engine API.
02_spatial.oql - file you need to initialize

O, schemas where spatial
queries will be performed
through OQL.

Libraries /
libo2si.so -0 > Spatial interface
libo2si_engine.so - standard O > Spatial indexing

engine
You must add both libraries at link time when building a C++ application. This is
achieved automatically by O,Makegen. You just have to indicate in the
configuration file :

+UseSpatiallndex

Refer to the ODMG C++ Binding Guide and the O, Makegen User Manual which
describe how to write and build a C++ application with O,.

When using the standard O, Spatial indexing engine with the spatial index
interface of the O, Engine API, you also need the following include files :

02_SiArgList.hxx SiEllipse.hxx
SiBoundingBox.hxx SiPolygon.hxx
Si3DPoint.hxx SiPolyline.hxx

18

O,Spatial User Manual



Schema initialization

Schema initialization

If you want to use spatial operators embedded in OQL queries, you must
initialize the O, schema in which you are developing your application. To do so
run o2dsa_shell  with your system and server name. Then use the set
schema command and include the OQL source file as follows :

$ 02dsa_shell -system your_system  -server your_server
Type your command and end with "D.

set schema  your_schema ;

#’02HOME/include/o2_spatial.ogl”

D

O,Spatial User Manual 19



Setting Up O2Spatial

20

O,Spatial User Manual



Using O,Spatial

This chapter presents an example of a simple O,Spatial application. The
example introduces the main components of the O,Spatial architecture and
shows how the O,Spatial API can be used to build O, applications that make
use of spatial indexing (SI) and retrieval capabilities. This example shows how
to manage a collection of geographical objects, create a spatial index for this
collection and carry out geographical queries. The geographical objects are
ellipses whose definition is given by the class appearing on the next page.

The complete description of the API is in chapter 4.

O,Spatial User Manual 21



3 Using O2Spatial

The geographical object class GeoEllipse is defined as follows :

class GeoEllipse

{
public:

// Constructor
GeokEllipse (
int center_x, int center_y, int radius_x, int radius_y);

// Specific methods
void moveCenter (int newXCenter, int newYCenter);

void stretch

// Spatial key of this ellipse
d_SpatialKey2D* getSpatialKey () const;

// Private attributes.

private:

int xCenter;
int yCenter;

int xRadius
int yRadius

(int newXRadius, int newYRadius);

’

’

Note that a GeoEllipse object is defined by its center and lengths of its two
extremum axes. Such representation is not possible for the O, Spatial index, as
this sort of index can deal only with rectangles. Thus the class also needs the
getSpatialKey method, which returns the coordinates of the minimum
rectangle encompassing an ellipse. In the spatial index only such data (of
SpatialKey2D type) will be inserted.

22

O,Spatial User Manual



Spatial index creation and deletion : The creation

3.1 Spatial index creation and deletion

The creation and deletion commands

An O, spatial index is created and deleted through the O, database
administration shell, like any other O, index (see the O, System Administration
Guide). The O,DBA shell commands are the following:

create spatial index < collection-name>
[options " options-file-name"];
delete spatial index < collection-name>;
The create spatial index command creates a default spatial index

structure associated with a named collection of persistent objects. The user
then populates this index with the appropriate keys. The spatial index uses
various option parameters, which are detailed below.

The delete spatial index command deletes the spatial index associated
to a named collection of persistent objects.

The current spatial indexing system only allows a single spatial index for a given
collection. Other types of indexes are of course allowed with no limitations.

The following example defines a collection of ellipses, each of which being
represented by an instance of the C++ Class GeoEllipse . A spatial index is
created for this collection. Note that both GeoEllipse and
d_Set<d_Ref<GeoEllipse>> have been previously imported (see C++
Binding Guide).

constant name TheEllipses : 02_set_GeoEllipse;
create spatial index TheEllipses;

Spatial index options

The O, spatial index module uses a generic indexing algorithm based on
R-Quadtrees. Each O, spatial index is initialized with default parameter values
which may be customized as needed. For example, the dimensions of the keys
and indexing space boundaries may be set for each spatial index.

There are two ways to set parameters for a spatial index :

O,Spatial User Manual 23



Using O2Spatial

* Either using a configuration file, which is specified when the index is created with
o2dba_shell  (in the options argument of the create spatial index com-
mand). This configuration file specifies a value for each option you want to cus-
tomize, by providing a list of option=value (each on a separate line), where
option is the option name and value is its value for the parameter;

* Orusing a low-level interface described in Chapter 5, Spatial Indexing with
O2Engine API .

The following options can be specified for the O, spatial index (the configuration
file is not case-sensitive):

Option Type Description Default value

IndexType string Name of the spatial index algorithm.  RQuadTree
Must be “RQuadTree” to use the
O,Spatial indexing algorithm.

Dimension integer Number of dimensions in the indexed 2
space.

KeyCoordType string  Type used for spatial key coordinates, Integer32
either "Integer16" or "Integer32".

For each dimension d (i.e. for each axis of the indexed space), the following
options can be specified:

Option Type Description Default value
Dd_Min  KeyCoord- Minimum coordinate value for the KeyCoordType
Type value given dimensior. minimum value.

Dd_Max KeyCoordType Maximum coordinate value for the KeyCoordType
value given dimensiord. maximum value.

Other options are available for optimization of the spatial index (see section 3.3
Spatial Index tuning).

O,Spatial User Manual



C++ Interface to a spatial index : Spatial index

Example :
Dimension =2
KeyCoordType = Integer32
D1 Min =0
D1 Max =10000
D2_Min =-100
D2_Max =1000

3.2 C++ Interface to a spatial index

Contrary to a standard index O, does not automatically manage the spatial
index, but it provides a programmative interface to populate the index.

Although in a future O, version, spatial indexes might be automatically
maintained whenever possible, this process is still not possible sometimes, as a
clear definition of a valid spatial key for a particular geographical object lacks.

Most of the time the application only knows how to approximate a geographical
object by a rectangle. For instance, in our example, the getSpatialKey
method only is able to compute the rectangle encompassing an ellipse.

It is thus generally impossible to determine when a spatial key has been
changed, and on performance grounds we prefer not to systematically call a
method, but rather rely on spatial keys directly passed by the programmer to
access the spatial index.

The O, system enables the C++ programmer to manipulate a spatial index as a
collection of (key, value) pairs, such as the standard d_Dictionary ODMG
class. Like this standard class the O, system uses the ODMG d_Association
structure to associate a key and its value.

O,Spatial User Manual 25



2]

Using O2Spatial

template <class K, class V>
class d_Association

{

public:

K key;
V value;

d_Association();
d_Association(const K& K, const V& V);

3
The spatial index module introduces the d_GeoCollection |, which is the C++
interface for accessing the O, spatial indexes.
Like the standard d_Collection class, the d_GeoCollection class expects
only one template parameter, which is the indexed object class. The indexing
key class is assumed to be a subclass of the new abstract d_SpatialKey
class.
For convenience, two concrete subclasses d_Spatialkey2D  and
d_Spatialkey3D , which inherit from the abstract d_SpatialKey class are
also defined.

d_SpatialKey
d_SpatialKey2D d_SpatialKey3D

26

O,Spatial User Manual



Spatial Index Constructor : Insertion and removal

3.3

Spatial Index Constructor

To access the spatial index created in section 3.1 in C++, you have to use the
constructor in combination with a name. By convention, this name is the same
as that of the indexed collection.

d_GeoCollection<d_Ref<GeoEllipse> > Sindex(“TheEllipses™);

3.4

You can now populate the index with spatial key/GeoEllipse couples. At that
point it is up to the application to populate or not the collection itself (the
02_set_GeoEllipse of the example). This is actually not compulsory, since
no automatic maintenance is carried out. The index may be enough, as it
represents a collection of the same objects.

Spatial Index update

Insertion and removal methods

The following methods are used to insert and remove spatial key/object couples
to/from the spatial index :

void d_GeoCollection<T>:insert_element

void d_GeoCollection<T>::remove_element

(const d_Association <d_SpatialKey*, T>& pair);

(const d_Association <d_SpatialKey*, T>& pair);

Indexing or deleting an array of pairs is more efficient than indexing or deleting
them individually, therefore two additional methods which manipulate arrays of
pairs are provided:

O,Spatial User Manual 27



3 Using O2Spatial

void d_GeoCollection<T>::insert_elements

(const d_Array <d_Association <d_SpatialKey*, T>>& pairs);
void d_GeoCollection<T>::remove_elements

(const d_Array <d_Association <d_SpatialKey*, T>>& pairs);

The following example shows how a geo-referenced object can be added to the

index.

d_Set<d_Ref<GeoEllipse> > Ellipses(“TheEllipses”);
d_GeoCollection<d_Ref<GeoEllipse> > Sindex(“TheEllipses”);
d_Association <d_SpatialKey*, d_Ref <GeoEllipse> > pair;
d_Transaction transaction;

transaction.begin ();

// Set parameters for a new ellipse object
int center_x, center_y;
int radius_x, radius_y;

cout << "Center:" << endl;
center_x = enter_number ("x=", 0, 32767);
center_y = enter_number ("y=", 0, 32767);
cout << "Radius:" << endl;
radius_x = enter_number ("x=", 0, 32767);
radius_y = enter_number ("y=", 0, 32767);

pair.value = new (database) GeoEllipse (
center_x, center_y, radius_x, radius_y);

pair.key = pair.value->getSpatialKey ();
// Insert the new object into the bag and the geo-collection.
Sindex.insert_element (pair);

Ellipses.insert_element (pair.value);

transaction.validate ();

28

O,Spatial User Manual




Spatial Index tuning : Update method

Update method

If a spatialKey/Object association is modified you must update the O, system by
calling the following method:

void d_GeoCollection<T>::update_element
(const d_Association <d_SpatialKey*, T>& old_pair,
const d_Association <d_SpatialKey*, T>& new_pair);

Note that you must call the update method for each modified object of the
collection, by giving the values before update as well as the new values.

The complete C++ definition of the d_GeoCollection class and other

classes, which are specific to the spatial index C++ interface, is given in
Chapter 4.

3.5 Spatial Index tunin g

The O, spatial index options

O, spatial indexes are maintained as R-QuadTrees. Several options enable
these trees to be adapted and optimized to the user needs, for instance by
allowing an R-QuadTree to be more balanced than the usual fixed QuadTree.

Firstly the number of dimensions used to describe a point in the indexed space
is by default two. For a larger number, it must be declared in the option
Dimension (up to O, page size/KeyCoordType size).

With the key coordinate type option KeyCoordType, you can reduce the size of
the spatial index, by using a smaller key size (Integerl6 ). Such a coarse-grid
representation may be sufficient for certain applications. For a fine-grid use the
default Integer32  format.

Specific coordinate boundaries can be defined with the “Dd_Min” and “Dd_Max”
options.

O,Spatial User Manual 29



3 Using O2Spatial

The full list of the O, spatial index tuning options are the following:

Option Type
IndexType string
Dimension integer
OnlyPoints boolean

KeyCoordType string

Dd_Min KeyCoordType
value
Dd_Max KeyCoordType
value
Dd_Min integer
RegionSize
3.6 Querying

Description Default value

Name of the spatial index algorithm.  RQuadTree
Must be “RQuadTree” to use the
O,Spatial indexing algorithm.

Number of coordinates of the indexed 2
space.

True if indexed objects are always points. False

Type used for spatial key coordinates. Integer32
Must be "Integerl6" or "Integer32".

Minimum coordinate value for the given KeyCoordType
dimensiond (used for internal coordi- minimum value
nates scaling optimization).

Maximum coordinate value for the given KeyCoordType
dimensiond (used for internal coordi- maximum value
nates scaling optimization).

Minimum size of an indexed region (in 2
KeyCoordType-based coordinates) for
dimensiond. Such a region will not be
segmented more

Types of queries

A spatial index allows a user to run queries on geo-referenced data, and defines
spatial predicates to do so. Four types of queries are supported :

* The pointing predicate (called contain), where all the objects that include a
given point are retrieved,

* The windowing predicate (called intersect), where all the objects that
touch a given area are retrieved (they can project beyond the area bound-

aries),

* The strict windowing predicate (called inside), where all the objects that
are strictly within a given area are retrieved (i.e. none may project beyond
the area boundaries),

30

O,Spatial User Manual



Querying : O2 Spatial keys

* The closeness predicate (called close_to), where all the objects that are at
a given distance from a given point or a given area are retrieved (they can
project beyond the given distance).

Graphical examples for each of these predicates are given in a following
section.

Each spatial predicate is applied to bounding boxes (see figure below).

O, Spatial keys
The geographical position of each object is stored in the index. The key type
used by the O, spatial indexing module is the minimum rectangle containing the

indexed geographical objects, called the bounding box.

The bounding box principle is illustrated in the figure below:

YA |

YUMo 5

xmin xmax

Here a geo-referenced object (the triangle) is drawn in black, and its bounding
box is drawn in thin gray. When a bounding box has a surface area equal to zero
(i.e. where xmin = xmax and ymin = ymax), it is considered to be a point and
xmax and ymax may be omitted.

Spatial query examples

The following examples present some simple geometric queries.

O,Spatial User Manual 31



3 Using O2Spatial

* To retrieve all objects, which contain the point (x,y), from the spatial index
MyGeoObjects collection, the appropriate query is:

contain (MyGeoObijects, SpatialKey2D (X, y))

For this figure, the contain  query returns the triangle and ellipse.

* Retrieve all the objects, which intersect with a specific window. This predicate
can be used to zoom in or zoom out in accordance with the definition of the spe-
cific window, for example:

intersect (MyGeoObijects,
SpatialKey2D (xmin, ymin, xmax, ymax))

A
S

xmin Xmax
For this figure, the intersect query returns the triangle, ellipse and trapezoid.

* Retrieve all the objects which are inside a specific window:

32 O,Spatial User Manual



Querying : Spatial query examples

inside (MyGeoObjects,
SpatialKey2D (xmin, ymin, xmax, ymax))

ymax: |-

ymin-|--
Xmin xmax

For this figure, the inside  query returns the ellipse and pentagon, but neither
the triangle nor the trapezoid, since they project beyond the window limits.

* Retrieve all the objects which are within a given distance of a point:

close_to (MyGeoObjects, Spatialkey2D (x, y), dist)

dist

For this figure, the close_to  query returns the triangle, trapezoid and

pentagon.

33

O,Spatial User Manual



Using O2Spatial

Spatial predicate parameters

In the previous section, we presented how to use spatial predicates (in terms of
points, rectangles and distances). This section describes the way these spatial
predicates are used in the C++/OQL interface with spatial indexes.

The O, spatial index uses keys which are rectangles. Therefore such spatial
keys can map directly onto objects which are rectangles or represented as
rectangles. By extension, a point is considered as a zero-surface rectangle,
hence a zero-surface spatial key can map an object which is a spatial point or
represented as a point.

The notion of distance in multidimensional space makes sense only when the
units of the considered axes are the same. In that case, the distance unit is in
the given axis unit (remember that a distance is always a scalar and not a
vector). If the axes do not use the same units, the closeness predicate will return
incorrect results, and hence should not be used. Note that the closeness
predicate does not verify whether the spatial units are equivalent or not.

How to query spatially

There are two ways of querying a spatial index :
* By calling a C++ method of the d_GeoCollection class

* By using OQL

Using object methods

For each spatial predicate, a d_GeoCollection method is defined. Each of
these methods returns a d_Bag, which contains the found objects.

The following methods are defined in the d_GeoCollection class:

34

O,Spatial User Manual



Querying : Using OQL predicates

d_Bag<T> contain (const d_SpatialKey& point);
d_Bag<T> intersect (const d_SpatialKey& window);
d_Bag<T>inside (const d_SpatialKkey& window);

d_Bag<T> close_to (const d_SpatialKey& window,
d_Distance distance);

This object method querying approach offers a complete C++ solution to query
a spatial index. Moreover, since these methods return a bag of objects, they can

be applied in more complex queries, where both spatial and semantic
predicates are used.

The following example uses the C++ querying approach:

{
d_Bag <d_Ref <GeoEllipse> > bagResult;

int X, Y;
cout << "Query point:" << endl;
X = enter_number ("x=", 0, 32767);

y = enter_number ("y=", 0, 32767);

bagResult = Sindex.contain (d_SpatialKey2D (X, y));

Using OQL predicates

For each spatial query type, a function callable by OQL is defined, as shown in

the following :

geo_contain (coll : Object, point : SpatialKey): 02_bag;

geo_intersect (coll Object, window : d_SpatialKey): 02_bag;

geo_inside (coll : Object, window : d_SpatialKey): 02_bag;

geo_close_to (coll : Object, window : d_SpatialKey,
distance : Distance): 02_bag;

O,Spatial User Manual

35



Using O2Spatial

These functions should be explicitly included (see Chapter 2) in each schema
where these operators are to be used. Here, the Distance type is a named
type for double .

The above functions are similar to the d_GeoCollection query methods.
They return a bag of indexed objects, like the d_GeoCollection query
methods.

Like the d_GeoCollection query methods, these functions can be applied in
more complex queries, where both spatial and semantic predicates are used.

The following example uses the OQL querying approach :

d_Query query (“geo_intersect (TheEllipses, $1)")
d_Bag <d_Ref <GeoEllipse> > bagResult;
int X, Y
cout <<"Query point:” << endl;

X = enter_number (“x=", 0, 32767);

y = enter_number (“y=", 0, 32767);

d_SpatialKey key (x, y);

query << &key;

d_oql_execute (bagResult, query);

Examples

Get all the hotels at a distance less than 5 kilometres from Colorado Falls:

O,Spatial User Manual



Querying : Examples

query << ColoradoFalls->get position();
query << 5; // Distance in kilometers

d_Query query (“geo_close_to (TheHotelsOfUSA, $1, $2)");

Search a window (e.g. to zoom in) of coordinates (xmin, ymin, xmax, ymax) :

query << &keyWindow;

d_SpatialKey keyWindow (xmin, ymin, xmax, ymax);
d_Query query (“geo_intersect (MyGeoObijects, $1)");

Get all the Sequoia forests which belong to the Yellowstone National Park and

whose surface is greater than 1,000 square kilometers :

d_Query query (“select forest”

“from forest in (02_bag_Forest) geo_intersect (SequoiaForests, $1)”

“where forest.surface >= $2");

The two parameters are :

query << 1000;

query << YellowstonePark->getSpatialKey(); // a bag of forests

/I a surface.

If the intersect predicate is very selective this query runs fast. Otherwise if the

surface is very selective this query cannot use the standard index on the

attribute surface.

O,Spatial User Manual

37



Using O2Spatial

If you want to use both indexes?! then you must rewrite the query as an
intersection of the two result sets :

(02_bag_Forest(select forest from forest in SequoiaForests
where forest.surface >= $2))

intersect

((02_bag_Forest) geo_intersect (SequoiaForests, $1))

1. Note : in a future version of OQL, the OQL optimizer will rewrite this automatically

38

O,Spatial User Manual




O,Spatial C++
4 APl Reference

The O,Spatial C++ API enables users to use O,Spatial indexing and searching
facilities for a collection of persistent objects.

When an error is detected, O,Spatial throws a ODMG C++ exception containing
an error code and description (see the class d_Error in the ODMG C++
Reference Manual).

This chapter describes the public interface of the C++ classes that make up the
O,Spatial API. The following classes are included:

* d_Spatialkey

* d_Spatialkey2D

* d_Spatialkey3D

* d_GeoCollection

O,Spatial User Manual 39



4 O2Spatial C++ API Reference

4.1 Class definitions

The public interface of the class is defined as follows:

typedef double d_Distance;

class d_SpatialKey : public d_Object
{
public:
d_SpatialKey ();
d_SpatialKey (const d_SpatialKey& key);
virtual ~d_SpatialKey ();
virtual d_SpatialKey* clone () const = 0;

// Dimension of the indexed space.

virtual int dimension () const = 0;

// O2 key class name.

virtual const char* 02_get_name () const = 0;

// Internal spatial key.

virtual const void* getinternalKey () const = 0O;

// Internal spatial key size.

virtual int getSize () const = 0;

// Checks whether the key is a point.

virtual int isAPoint () const = O;

// Enlarges the key.

virtual void enlarge (d_Distance distance) = 0;

// Assignment operator.

virtual const d_SpatialKey& operator= (const d_SpatialKey&);
// Key union operator.

virtual const d_SpatialKey& operator+= (const d_SpatialKey&);

40

O,Spatial User Manual



Class definitions

class d_SpatialKey2D : public d_SpatialKey

{

public:
d_SpatialKey2D (long x, long y);
d_SpatialKey2D (long xmin, long ymin,

long xmax, long ymax);

d_SpatialKey2D (const d_SpatialKey2D& key);
virtual ~d_SpatialKey2D ();
virtual d_SpatialKey* clone () const;

// Return 2.

virtual int dimension () const;

virtual const char* 02_get_name () const;

virtual const void* getinternalKey () const;

virtual int getSize () const;

virtual int isAPoint () const;

virtual void enlarge (d_Distance distance);

virtual const d_SpatialKey& operator= (const d_SpatialKey&);
virtual const d_SpatialKey& operator+= (const d_SpatialKey&);

// Return the key coordinates.
long xmin () const;
long xmax () const;
long ymin () const;
long ymax () const;

O,Spatial User Manual

41



4 O2Spatial C++ API Reference

class d_SpatialKey3D : public d_SpatialKey

{

public:
d_SpatialKey3D (long x, long vy, long z);

d_SpatialKey3D (long xmin, long ymin, long zmin, long xmax, long ymax,
long zmax);

d_SpatialKey3D (const d_SpatialKey3D& key);
virtual ~d_SpatialKey3D ();
virtual d_SpatialKey* clone () const;

// Return 3.

virtual int dimension () const;

virtual const char* 02_get_name () const;

virtual const void* getinternalKey () const;

virtual int getSize () const;

virtual int isAPoint () const;

virtual void enlarge (d_Distance distance);

virtual const d_SpatialKey& operator= (const d_SpatialKey&);
virtual const d_SpatialKey& operator+= (const d_SpatialKey&);

// Return the key coordinates.
long xmin () const;
long xmax () const;
long ymin () const;
long ymax () const;
long zmin () const;
long zmax () const;

O,Spatial User Manual




Class definitions

template <class T>

class d_GeoCollection

{

public:
d_GeoCollection ();
d_GeoCollection (const char* collection_name);
d_GeoCollection (Handle hdCollection);
d_GeoCollection (const d_GeoCollection<T>& coll);
~d_GeoCollection ();
d_GeoCollection& operator= (const d_geoCollection<T>& coll);

void insert_element (const d_Association <d_SpatialKey*, T>& pair);
void remove_element (const d_Association <d_SpatialKey*, T>& pair);
void update_element (const d_Association <d_SpatialKey*, T>& old_pair,
const d_Association <d_SpatialKey*, T>& new_pair);
void insert_elements (const d_Array <d_Association <d_SpatialKey*,
T>>& pairs);
void remove_elements (const d_Array <d_Association <d_SpatialKey*,
T>>& pairs);

d_Bag<T> contain (const d_SpatialKey& point);
d_Bag<T> intersect (const d_SpatialKey& window);
d_Bag<T>inside (const d_SpatialKey& window);
d_Bag<T> close_to (const d_SpatialKey& window,
const d_Distance distance);

3

O,Spatial User Manual

43



O2Spatial C++ API Reference

Member functions descriptions

This section gives the full description of the following C++ member
functions for spatial index management:

For d_GeoCollection :

* close_to

* contain

* d_GeoCollection (constructor)
* d_GeoCollection (constructor)
* insert_element

* insert_elements

* inside

* intersect

* operator=

* remove_element

* remove_elements

* update_element

For d_SpatialKey :

* clone

* d_SpatialKey2D (constructor)
* d_SpatialKey2D (constructor)
* d_SpatialKey3D (constructor)
* d_SpatialKey3D (constructor)
* dimension

* enlarge

* getinternalKey

* getSize

* isAPoint

* 02_get_name

* operator=

* operator+=

O,Spatial User Manual



Member functions descriptions

close_to

Summary Gets the objects, whose minimum rectangle is within the distance of the
rectangle window (if the window size is equal to zero, it is considered as a
point).

Syntax d_Bag<T> d_GeoCollection<T>::close_to
(const d_SpatialKey& window, const d_Distance distance);

Arguments window Window (rectangle) to be searched.
distance Distance added to the window which defines the search

space.
Returns Returns a bag containing the objects found.
Error Throws a d_Error object (see the ODMG C++ Reference Guide) if the following

error occurs :

spatial key out of bounds (d_Error::InvalidSpatialKey ).

O,Spatial User Manual

45



4

O2Spatial C++ API Reference

contain
Summary Gets the objects, whose minimum rectangle contains the point.
Syntax d_Bag<T> d_GeoCollection::contain
(const d_SpatialKey& point);
Arguments point Zero-surface key to be tested.
Returns Returns a bag containing the objects found.
Error None.

46

O,Spatial User Manual



Member functions descriptions

d_GeoCollection (constructor)

Summary
Syntax
Arguments
Returns

Error

Opens a collection indexed with a spatial index.
d_GeoCollection<T>::d_GeoCollection (Handle hdCollection);
hdCollection Handle to the collection to be opened.
None.

Throws a d_Error object (see the ODMG C++ Reference Guide) if one of the
following errors occur :

no database has been opened (d_Error::NoOpenedDatabase ),

no such named collection exists in the current database
(d_Error::NoSuchNamedCaollection ),

the collection is not indexed with a spatial index (d_Error::Unknownlndex ).

O,Spatial User Manual 47



O2Spatial C++ API Reference

d_GeoCollection (constructor)

Summary

Syntax

Arguments
Returns

Error

Opens a named collection indexed with a spatial index.

d_GeoCollection<T>::d_GeoCollection
(const char* CollectionName);

CollectionName Database name of the collection to be opened.

None.

Throws a d_Error object if one of the following errors occurs:
* no database has been opened (d_Error::NoOpenedDatabase ).

* no such named collection exists in the current database.
(d_Error::NoSuchNamedCaollection )

* the collection is not indexed with a spatial index. (d_Error::Unknownindex

48

O,Spatial User Manual



Member functions descriptions

insert_element

Summary

Syntax

Arguments
Returns

Error

Inserts an element into the spatial index.

void d_GeoCollection<T>::insert_elements
(const d_Association <d_SpatialKey*, T>& pair);

pair Pair to be inserted within the spatial index.

None.

None.

O,Spatial User Manual

49



4

O2Spatial C++ API Reference

insert_elements

Summary

Syntax

Arguments
Returns

Error

Inserts several elements into the spatial index.

void d_GeoCollection<T>::insert_elements
(const d_Array <d_Association <d_SpatialKey*, T>>& pair);

pair Array pairs to be inserted within the spatial index.
None.

None.

50

O,Spatial User Manual



Member functions descriptions

inside
Summary Gets the objects, whose minimum rectangle is strictly included in the rectangle
window.
Syntax d_Bag <T> d_GeoCollection<T>::inside
(const d_SpatialKey& window);
Arguments window Window space to be searched.
Returns Returns a bag containing the objects found.
Error None.

O,Spatial User Manual 51



4

O2Spatial C++ API Reference

intersect
Summary Gets the objects, whose minimum rectangle has a non-empty intersection with
the rectangle window.
Syntax d_Bag <T> d_GeoCollection<T>::intersect
(const d_SpatialKey& window);
Arguments window Window space to be searched.
Returns Returns a bag containing the objects found.
Error None.

52

O,Spatial User Manual



Member functions descriptions

operator:
Summary Assigns a d_GeoCollection object to another.
Syntax d_GeoCollection& d_GeoCollection<T>::operator=
(const d_GeoCollection& coll);
Arguments Collection to be opened.
Returns None.
Error None.

O,Spatial User Manual

53



4

O2Spatial C++ API Reference

remove_element

Summary

Syntax

Arguments
Returns

Error

Removes an element from the spatial index.

void d_GeoCollection<T>::remove_elements
(const d_Association <d_SpatialKey*, T>& pair);

pair Pair to be removed from the spatial index.
None.

None.

54

O,Spatial User Manual



Member functions descriptions

remove_elements

Summary

Syntax

Arguments
Returns

Error

Removes several elements from the spatial index.

void d_GeoCollection<T>::remove_elements
(const d_Array <d_Association <d_SpatialKey*, T>>& pair);

pair Array pairs to be removed from the spatial index.

None.

None.

O,Spatial User Manual

55



4

O2Spatial C++ API Reference

update_element

Summary

Syntax

Arguments

Returns

Error

Updates an element of the spatial index.

void d_GeoCollection<T>::update_element
(const d_Association <d_SpatialKey*, T>& old_pair
const d_Association <d_SpatialKey*, T>& new_pair);

old_pair Pair to be updated within the spatial index
new_pair New value of the pair to be updated.
None.

None.

56

O,Spatial User Manual



Member functions descriptions

clone
Summary Gets a copy of a spatial key, whatever its dimension.
Syntax d_SpatialKey* d_SpatialKey::clone () const :
Arguments None.
Returns A pointer to the key copy of a nil pointer if any error occurred.
Error If any copy error occurred, returns a nil pointer.

O,Spatial User Manual

57



4

O2Spatial C++ API Reference

d_SpatialKey2D (constructor)

Summary
Syntax
Arguments
Returns

Error

Builds a zero-surface 2-D spatial key from the corresponding point coordinates.
d_SpatialKey2D::d_Spatialkey2D (long x, long y);

X,y New spatial key coordinates.

None.

None.

58

O,Spatial User Manual



Member functions descriptions

d_SpatialKey2D (constructor)

Summary

Syntax

Arguments
Returns

Error

Builds a 2-D spatial key from the corresponding rectangle coordinates.

d_SpatialKey2D::d_SpatialKey2D (long xmin, long ymin,
long xmax, long ymax);

Xxmin , ymin , xmax , ymax  New spatial key coordinates.
None.

None.

O,Spatial User Manual

59



4

O2Spatial C++ API Reference

d_SpatialKey3D (constructor)

Summary
Syntax
Arguments
Returns

Error

Builds a zero-surface 3-D spatial key from the corresponding point coordinates .
d_SpatialKey3D::d_Spatialkey3D (long x, long y, long z);

X,Y, Z New spatial key coordinates.

None.

None.

60

O,Spatial User Manual



Member functions descriptions

d_SpatialKey3D (constructor)

Summary

Syntax

Arguments
Returns

Error

Builds a 3-D spatial key from the corresponding rectangle coordinates.

d_SpatialKey3D::d_SpatialKey3D (long xmin, long ymin,
long zmin, long xmax, long ymax, long zmax);

Xmin , ymin , zmin , xmax , ymax . zmax New spatial key coordinates.

None.

None.

O,Spatial User Manual

61



4

O2Spatial C++ API Reference

dimension

Summary

Syntax
Arguments
Returns

Error

Gets the indexed space dimension (two if two coordinates are required to
describe a point, three if three coordinates are needed, and so on).

virtual int d_SpatialKey::dimension () const
None.
Returns the dimension as an integer.

None.

62

O,Spatial User Manual



Member functions descriptions

enlarge
Summary Resizes the spatial key.
Syntax void d_SpatialKey::enlarge (d_Distance distance);
Arguments The distance.
Returns Returns an enlarged key as shown in the following 2-D drawing :
Distance { T
|- — — | Oldkey area
@« — | Newkey area
|
[
L
!
Distance
Error None.

O,Spatial User Manual

63



4

O2Spatial C++ API Reference

getinternalKey

Summary
Syntax
Arguments
Returns

Error

Gets the internal spatial key structure.

const void* d_SpatialKey::getinternalKey () const;
None.

Returns a pointer to the internal spatial key structure.

None.

64

O,Spatial User Manual



Member functions descriptions

getSize
Summary Gets the internal spatial key structure size.
Syntax int d_SpatialKey::getSize () const;
Arguments None.
Returns Returns the size in bytes.
Error None.

O,Spatial User Manual

65



4 O2Spatial C++ API Reference

isAPoint
Summary Checks whether the spatial key is a point.
Syntax int d_SpatialKey::isAPoint () const;
Arguments None.
Returns Returns TRUE if the spatial key is a zero-surface rectangle, and FALSE
otherwise.
Error None.

O,Spatial User Manual



Member functions descriptions

02_get_name

Summary Gets the key class name used by O, for its own type verification.
Syntax const char* d_SpatialKey::02_get_name () const;

Arguments None.

Returns Returns a string which contains the key class name.

Error None.

O,Spatial User Manual



4

O2Spatial C++ API Reference

operator=
Summary Assigns a key to another.
Syntax d_SpatialKey& d_SpatialKey::operator=
(const d_SpatialKey& key) const;
Arguments The key to be assigned.
Returns None.
Error None.

68

O,Spatial User Manual



Member functions descriptions

operator+=
Summary Enlarges a key with the area covered by another key.
Syntax virtual const d_SpatialKey& d_SpatialKey::operator+=

(const d_SpatialKey&) const;

Arguments The key to be included.

Returns Returns an enlarged key as shown in the following 2-D drawing :
""""" r-—— "7
| 1
Keytobe | g | |
included I I
I I
| I
L -

New key Old key

Error None.

O,Spatial User Manual 69



O2Spatial C++ API Reference

70

O,Spatial User Manual



5 Spatial Indexing with
O,Engine API

This chapter describes the use of spatial indexing with the
O2Engine API.

It contains the following sections:

* Introduction

* O2 Engine API : Spatial Index

O,Spatial User Manual

71



=]

Spatial Indexing with O2Engine API

5.1

5.2

Introduction

The OzEngine API Spatial Index interface is made up of a set of
functions that allow you to maintain and access a spatial index of an O
database.

The library of spatial index functions allows to create, remove, update
and query the spatial index associated with a collection of O, objects.

O, Engine API : Spatial Index

The spatial index interface of the O2Engine API defines a collection of
operations available to the developer of O2Engine applications for
managing a spatial index.

The commands are divided into three categories of operations:

1. The operations on the spatial index :
* 02x_spatial_index_create

* 02x_spatial_indexed

* 02x_spatial_index_delete

* 02x_spatial_index_reorganize

* 02x_spatial_index_get_info

* 02x_spatial_index_free_descriptor

* 02x_spatial_index_get_collection

2. The operations on the elements of the spatial index :
* 02x_spatial_index_insert_key

* 02x_spatial_index_group_insert_key

* 02x_spatial_index_delete_key

* 02x_spatial_index_group_delete_key

* 02x_spatial_index_replace_key

3. The search operations on the spatial index :
* 02x_spatial_index_scan_open
* 02x_spatial_index_scan_close

* 02x_spatial_index_scan_read

72

O,Spatial User Manual



02 Engine API : Spatial Index

02x_spatial_index_create

Summary

Syntax

Description

Create a spatial index associated with a collection of persistent objects.

#include <02.h>

#include <o2_error.h>

#include <o02_spatialindex.h>

int 02x_spatial_index_create( Handle colHd,
char * volumeName,
void *opaque);

Verifies in the spatial index catalogue that the collection indicated by

the parameter colHd has not been previously associated with a spatial

index.

Creates the O, Store file for the spatial index treein the volume declar
by the parameter volumeName or in the same volume of the collection
volumeName is set to zero.

Initializes the spatial index as a function of the parameter opaque .
When using the O, Spatial indexing engine, the parameter opaque is

ed

, if

expected to be of type 02_SiArgList  *. This class enables the user to set

all the spatial index parameters as (option, value) couples.

The following example shows how to build such an object :

02_SiArgList argList;
argList.addArgument("IndexType", "RQuadTree");
argList.addArgument("KeyCoordType", "Integer32");
argList.addArgument("Dimension”, 2);

The arguments, which must be set by using an 02_SiArgList object,

include those described in section 3.5. The arguments are described
below :

O,Spatial User Manual

73



Spatial Indexing with O2Engine API

Returns

Errors

Option

IndexType

Dimension

OnlyPoints
KeyCoordType

Dd_Min

Dd_Max

Dd_Min
RegionSize

MaxChildren

Threshold

Type

string

integer

boolean

string

KeyCoordType
value

KeyCoordType
value

integer

integer

integer

Description Recom-
mended value

Name of the spatial index algorithm.  RQuadTree
Must be “RQuadTree” to use the
O,Spatial indexing algorithm.

Number of coordinates of the indexed 2
space.

True if indexed objects are always points. False

Type used for spatial key coordinates. Integer32
Must be "Integerl6" or "Integer32".

Minimum coordinate value for the given KeyCoordType
dimensiond (used for internal coordi- minimum value
nates scaling optimization).

Maximum coordinate value for the given KeyCoordType
dimensiond (used for internal coordi- maximum value
nates scaling optimization).

Minimum size of an indexed region (in 2
KeyCoordType-based coordinates) for
dimensiond. Such a region will not be
segmented more

Maximum number of subspaces gener-pDimension
ated each time a given indexed space
needs to be segmented (used when a
R-QuadTree node is saturated)

Number of (key, values) couples in eachlighest possi-
R-QuadTree node. Must be greater or ble value (see
equal to 2, and less or equal than : description)

- 167 if KeyCoordType= integer 32
Dimension = 2

- 126 if KeyCoordType=Integer 32
Dimension=3

At this level of programming no default value is provided for these
parameters. An appropriate value must then be set up for all of them.

0O2_OKif successful, error code otherwise.

O2E_NOTSUPPORTED
The function is not implemented.

O2E_SIMALGO
Error in Spatial Index Module algorithm.

74

O,Spatial User Manual



02 Engine API : Spatial Index

Sample

O2E_PARAMETER
The parameter opaque is incorrect.

O2E_INVALIDCOLLECTION
The handle colHd is invalid or is not a handle to a
persistent collection.

O2E_IS INDEXED
There is no spatial index for this collection.

O2E_NOSPACEONDISK
No more space on disk.

O2E_PERMISSIONDENIED
The handle colHd is valid, but no spatial index can be
created on a collection of versionned objects.

O2E_ERROR
Internal error.

int create_spidx (Handle  hdCollection,
02_Boolean indexOnlyContainsPoints)

{
02_SiArgList SIOptions;

SIOptions.addArgument ("IndexType"”, "RQuadTree");
SIOptions.addArgument ("KeyCoordType", "Integer32");

SIOptions.addArgument ("Dimension”, 2);
SIOptions.addArgument ("D1_Min", 0);
SIOptions.addArgument ("D2_Min", 0);
SIOptions.addArgument ("D1_Max", 40000);
SIOptions.addArgument ("D2_Max", 40000);

SIOptions.addArgument ("D1_MinRegionSize", 2);

SIOptions.addArgument ("D2_MinRegionSize", 2);

SIOptions.addArgument ("MaxChildren", 4);

SIOptions.addArgument (“Threshold", 167);

SIOptions.addArgument ("OnlyPoints",
indexOnlyContainsPoints);

returno2x_spatial_index_create (hdCollection, 0, (void*)
&SI10ptions);
}

O,Spatial User Manual

75



Spatial Indexing with O2Engine API

02x_spatial_indexed

Summary

Syntax

Description

Returns

Errors

Returns a handle to the spatial index associated with a collection of
persistent objects.

#include <02.h>
#include <o02_error.h>
#include <o02_spatialindex.h>
int 02x_spatial_indexed( Handle colHd,
02x_SpatiallndexDesc **idxDesc);

Searches for the spatial index associated with a collection identified by
colHd in the spatial index catalogue.

If the corresponding entry exists, a handle for the spatial index is
created and its value is assigned to the parameter idxDesc .

Otherwise the value NULL is assigned to the parameter idxDesc

The spatial index descriptor created by the 02x_spatial_indexed
function should always be deleted using the
02x_spatial_index_free_descriptor function.

0O2_OKif successful, error code otherwise.

O2E_PARAMETER
The parameter colHd or idxDesc is incorrect.

O2E_NOTINDEXED
There is no spatial index for this collection.

O2E_INVALID_COLLECTION
The handle colHd is invalid or is not a handle to a
persistent collection.

76

O,Spatial User Manual



02 Engine API : Spatial Index

02x_spatial_index_delete

Summary

Syntax

Description

Returns

Errors

Remove a spatial index associated with a collection of persistent objects.

#include <o02_error.h>
#include <o02_spatialindex.h>
int 02x_spatial_index_delete(
02x_SpatiallndexDesc *idxDesc);

Deletes the spatial index identified by the parameter idxDesc , and
removes the corresponding entry in the spatial index catalogue.

The operation is not executed if there exists a scan operation running
at the time of the call.

0O2_OKif successful, error code otherwise.

O2E_SIMALGO
Error in Spatial Index Module algorithm.

O2E_PARAMETER
The parameter idxDesc is incorrect

O2E_ILLEGALCALL
Function was called during a scan.

O,Spatial User Manual 77



5 Spatial Indexing with O2Engine API

02x_spatial_index_reorganize

Summary Reorganize the distribution of index nodes on a disk page.

Syntax #include <o02_error.h>
#include <o02_spatialindex.h>
int 02x_spatial_index_reorganize(
02x_SpatiallndexDesc *idxDesc);

Description The function 02x_spatial_index_reorganize gathers the spatial
index nodes on a disk page so as to reduce the access time during a
search of the index tree.

This function fails if a scan operation is active on the spatial index.
Returns 0O2_OKif successful, error code otherwise.

Errors O2E_NOTSUPPORTED
The function is not implemented.

O2E_SIMALGO
Error in Spatial Index Module algorithm.

O2E_PARAMETER
The parameter idxDesc is incorrect.

O2E_ILLEGALCALL
Function was called during a scan.

O2E_NOSPACEONDISK
No more space on disk.

O,Spatial User Manual



02 Engine API : Spatial Index

02x_spatial_index_get_info

Summary

Syntax

Description

Collects information on the spatial index.

#include <o02_error.h>

#include <o02_spatialindex.h>

int 02x_spatial_index_get_info(
02x_SpatiallndexDesc *idxDesc,
02x_SpatiallndexInfo *idxInfo);

Provides the requested information for the structure idxinfo

This function returns statistical information on the spatial index,
according to the bit mask provided in the structure idxInfo

The type 02x_Spatiallndexinfo is defined as follows:
typedef struct {
unsigned int mask;
int dimension;
int depth;
int entryCount;
int allNodeCount;
int nodeCount;
double nodeMeanFillFactor;
int leafCount;
int emptyLeafCount;
double leafMeanFillFactor;

} 02x_SpatiallndexInfo;
The values which can be used to set the bit mask mask are as follows :

02X_SI_DIMENSION,
02X_S|_DEPTH,
02X_SI_ENTRYCNT,

02X_SI_ALLNODECNT,
02X_SI_NODEMFF,
02X_SI_LEAFCNT,
02X_SI_EMPTYLEAFCNT,
02X_SI_LEAFMFF

If mask & O2X_SI_DIMENSION is TRUE, dimension contains the dimen-
sion of the spatial index.

If mask & O2X_SI_DEPTH is TRUE, depth contains the depth of the spa-
tial index tree.

O,Spatial User Manual 79



Spatial Indexing with O2Engine API

Returns

Errors

If mask & O2X_SI_ENTRYCNT is TRUE, entryCount contains the number
of entries (key, element )in the spatial index tree. Note that the number
of spatial index entries may be greater than the number of objects really
inserted in the index, since some objects may belong to several quad-
rants.

If mask & O2X_SI_ALLNODECNT is TRUE, allNodeCount contains the
total number of nodes in the spatial index tree.

If mask & O2X_SI_NODECNT is TRUE, nodeCount contains the number of
intermediary nodes in the spatial index tree including the root node.

If mask & O2X_SI_NODEMFF is TRUE, nodeMeanFillFactor contains the
percentage of occupied intermediary nodes in the spatial index tree.

If mask & O2X_SI LEAFCNT is TRUE, leafCount contains the number of
leaf nodes in the spatial index tree.

If mask & O2X_SI_EMPTYLEAFCNT is TRUE, emptyLeafCount contains
the number of empty leaf nodes in the spatial index tree.

If mask & O2X_SI_LEAFMFF is TRUE, leafMeanFillFactor contains the
percentage of occupied leaf nodes in the spatial index tree.

The percentage of occupied leaves is distinguished from the percentage
of occupied intermediary nodes in that leaves and nodes can contain
different maximum numbers of keys. Moreover, the notion of an empty
leaf may not be significant for certain spatial index algorithms.

0O2_OK:if successful, error code otherwise.

O2E_NOTSUPPORTED
The function is not implemented.

O2E_SIMALGO
Error in Spatial Index Module algorithm.

O2E_ILLEGALOP
The parameter idxDesc or idxInfo is incorrect.

O,Spatial User Manual



02 Engine API : Spatial Index

02x_spatial_index_free_descriptor

Summary

Syntax

Description

Returns

Errors

Free the memory used by a spatial index descriptor.

#include <o02_error.h>

#include <o02_spatialindex.h>

int 02x_spatial_index_free_descriptor(
02x_SpatiallndexDesc** idxDesc);

Freethe memory associated with the spatial index descriptor created by
02x_spatial_indexed . Every spatial index descriptor should be freed
by 02x_spatial_index_free_descriptor.

After a call to 02x_spatial_index_free_descriptor a spatial
descriptor is always NULL.

0O2_OKif successful, error code otherwise.

O2E_PARAMETER
The spatial index descriptor idxDesc is incorrect.

O,Spatial User Manual 81



=]

Spatial Indexing with O2Engine API

02x_spatial_index_get_collection

Summary

Syntax

Description

Returns

Return the handle of the indexed collection.

#include <02.h>

#include <o02_error.h>

#include <o02_spatialindex.h>

Handle 02x_spatial_index_get_collection(
02x_SpatiallndexDesc* idxDesc);

Return the handle of the collection of persistent objects associated with
the spatial index identified by idxDesc.

A valid collection handle if successful, a NULL handle otherwise.

82

O,Spatial User Manual



02 Engine API : Spatial Index

02x_spatial_index_insert_key

Summary

Syntax

Description

Returns

Errors

Insert a new entry in the spatial index.

#include <02.h>

#include <o02_error.h>

#include <o02_spatialindex.h>

int 02x_spatial_index_insert_key(
02x_SpatiallndexDesc *idxDesc,
int keyLength, void *key,
Handle element);

Inserts an entry (key, element )into the spatial index.

The spatial key is passed by the parameter key which provides thevalue
and the parameter keyLength which provides the length. The type of
key is not defined at the level of the OsEngine and OsStore. The spatial
indexing module provides the structure of the key when needed at the
level of the application.

When using the standard OsSpatial indexing engine, the key is expected
to be a pointer to a SiBoundingBox object, and keyLength should be
equal to zero.

The parameter element is a handle of the O2 object to be indexed.
This function fails if a scan operation is active on the spatial index.
O2_OKif successful, error code otherwise.

O2E_NOTSUPPORTED
The function is not implemented.

O2E_SIMALGO
Error in Spatial Index Module algorithm.

O2E_ILLEGALCALL
Function was called during a scan.

O2E_PARAMETER
The parameter idxDesc or key or element isincorrect.

O2E_KEYALREADYEXISTS
The couple (key, element ) already exists in the index.

O2E_NOSPACEONDISK
No more space on disk.

O,Spatial User Manual 83



Spatial Indexing with O2Engine API

See Also

02x_spatial_index_group_insert_key 0
02x_spatial_index_delete_key 0
02x_spatial_index_group_delete_key 0
02x_spatial_index_replace_key 0

84

O,Spatial User Manual



02 Engine API : Spatial Index

02x_spatial_index_group_insert_key

Summary

Syntax

Description

Returns

Errors

See Also

Insert multiple new entries in the spatial index.

#include <02.h>

#include <o02_error.h>

#include <o02_spatialindex.h>

int 02x_spatial_index_group_insert_key(
02x_SpatiallndexDesc *idxDesc,
int card, int keyLength,
void **keyArray, Handle *eltArray);

Inserts multiple entries (key[i] , eltArray[i] with i varying between
[0, card-1 ])into the spatial index, with minimization of the traversal of
the spatial index tree.

The parameter keyLength gives the length of a single key. There is no
definition of the key type in the O2Engine and O»Store. The spatial
indexing module provides the structure of the key for the application
when needed.

When using the standard OsSpatial indexing engine, keyArray is
expected to be an array of pointers to SiBoundingBox objects, and
keyLength should be equal to zero.

This function fails if a scan operation is active on the spatial index.
O2_OKif successful, error code otherwise.

O2E_NOTSUPPORTED
The function is not implemented.

O2E_SIMALGO
Error in Spatial Index Module algorithm.

O2E_ILLEGALCALL
Function was called during a scan.

O2E_PARAMETER
The parameter idxDesc or keyArray or eltArray s
incorrect.

O2E_NOSPACEONDISK
No more space on disk.

02x_spatial_index_insert_key 0
02x_spatial_index_delete_key 0
02x_spatial_index_group_delete_key 0
02x_spatial_index_replace_key 0

O,Spatial User Manual 85



=]

Spatial Indexing with O2Engine API

02x_spatial_index_delete key

Summary

Syntax

Description

Returns

Errors

See Also

Remove an entry from the spatial index.

#include <02.h>

#include <o02_error.h>

#include <o02_spatialindex.h>

int 02x_spatial_index_delete_key(
02x_SpatiallndexDesc *idxDesc,
int keyLength, void *key,
Handle *element);

Removes the couple (key, element ) from the spatial index.

The spatial key is passed by the parameter key which provides the value
and the parameter keyLength which provides the length. The type of
key is not defined at the level of the OsEngine and OsStore. The spatial
indexing module provides the structure of the key when needed at an
application level.

When using the standard O,Spatial indexing engine, the key is expected
to be a pointer to a SiBoundingBox object, and keyLength should be
equal to zero.

The parameter element is a handle for the O, indexed object.
This function fails if a scan operation is active on the spatial index.
O2_OKif successful, error code otherwise.

O2E_NOTSUPPORTED
The function is not implemented.

O2E_SIMALGO
Error in Spatial Index Module algorithm.

O2E_ILLEGALCALL
Function was called during a scan.

O2E_PARAMETER
The parameter idxDesc or key or element isincorrect.

O2E_KEYNOTFOUND
The couple (key, element ) already exists in the index.

02x_spatial_index_insert_key 0
02x_spatial_index_group_insert_key 0
02x_spatial_index_delete_key 0
02x_spatial_index_replace_key 0

86

O,Spatial User Manual



02 Engine API : Spatial Index

02x_spatial_index_group_delete_key

Summary

Syntax

Description

Returns

Errors

See Also

Remove multiple entries from the spatial index.

#include <02.h>

#include <o02_error.h>

#include <o02_spatialindex.h>

int 02x_spatial_index_goupr_delete_key(
02x_SpatiallndexDesc *idxDesc,
int card, int keyLength,
void **key, Handle *eltArray);

Removes multiple entries (key[i] , eltArray[i] with i varying between
[0, card-1 ])from the spatial index, with minimization of the traversal of
the spatial index tree.

The parameter keyLength gives the length of a single key. There is no
definition of the key type in the O2Engine and O»Store. The spatial
indexing module provides the structure of the key for the application
when needed.

When using the standard OsSpatial indexing engine, keyArray is
expected to be an array of pointers to SiBoundingBox objects, and
keyLength should be equal to zero.

This function fails if a scan operation is active on the spatial index.
O2_OKif successful, error code otherwise.

O2E_NOTSUPPORTED
The function is not implemented.

O2E_SIMALGO
Error in Spatial Index Module algorithm.

O2E_ILLEGALCALL
Function was called during a scan.

O2E_PARAMETER
The parameter idxDesc or keyArray or eltArray s
incorrect

O2E_NOSPACEONDISK
No more space on disk.

02x_spatial_index_insert_key 0
02x_spatial_index_group_insert_key 0
02x_spatial_index_delete_key 0
02x_spatial_index_replace_key 0

O,Spatial User Manual 87



=]

Spatial Indexing with O2Engine API

02x_spatial_index_replace_key

Summary

Syntax

Description

Returns

Errors

Substitute one entry with another entry in the spatial index.

#include <02.h>
#include <o02_error.h>
#include <o02_spatialindex.h>
int 02x_spatial_index_replace_key(
02x_SpatiallndexDesc *idxDesc,
int keyLength, void *key,
Handle oldEItHd, Handle newEItHd);

Substitutes the couple (key, oldEItHd )by the couple (key, newEItHd )in
the spatial index.

The spatial key is passed by the parameter key which provides the
value and the parameter keyLength which provides the length. The
type of key is not defined at the level of the O2Engine and O,Store. The
spatial indexing module provides the structure of the key when needed
at an application level.

When using the standard O,Spatial indexing engine, the key is expected
to be a pointer to a SiBoundingBox object, and keyLength should be
equal to zero.

The parameters oldEltHd and newEltHd are handles for O, objects.

This function can execute if a scan operation is active on the spatial
index.

0O2_OKif successful, error code otherwise.

O2E_NOTSUPPORTED
The function is not implemented.

O2E_SIMALGO
Error in Spatial Index Module algorithm.

O2E_PARAMETER
The parameter idxDesc or key or oldEltHd  or newEIltHd
is incorrect.

O2E_KEYNOTFOUND
The couple (key, oldEltHd ) does not exist in the index.

O2E_KEYALREADYEXISTS
The couple (key, newEItHd ) already exists in the index.

88

O,Spatial User Manual



02 Engine API : Spatial Index

O2E_NOSPACEONDISK
No more space on disk.

O,Spatial User Manual

89



Spatial Indexing with O2Engine API

02x_spatial_index_scan_open

Summary

Syntax

Description

Start a search operation on the spatial index.

#include <o02_error.h>

#include <o02_spatialindex.h>

int 02x_spatial_index_scan_open(
02x_SpatiallndexDesc *idxDesc,
int operation, int areaLength,
void *areaValue,
02x_SpatiallndexScan **idxScan);

Initializes a scan on the spatial index identified by idxDesc and returns
an external identifier for it as the variable idxScan .

The parameters operation , areaLength and areaValue  definethe
spatial predicate which is applied to filter the entries returned by the
function 02x_spatial_index_scan_read

The available spatial operations are defined by a code at the application
level. This code is transferred by the parameter operation

When using the O,Spatial indexing engine, the possible values for the
parameters operation and areaValue are as follows :

Operation parameter  Meaning areaValue parameter

O2X_CONTAIN

O2X_INTERSECT

02X_IS_CONTAINED

O2X_ELLIPSE

02X_ELLIPSE_
STRICT

Retrieve all the
objects which con-
tain a given point.

Retrieve all the
objects which inter-
sect a given rectan-
gle

Retrieve all the
objects which are
inside a given rect-
angle

Retrieve all the
objects which inter-
sect a given ellipse

Retrieve all the
objects which are
inside a given ellipse

A pointer to a
SiBoundingBox object
which contains the
requested point.

A pointer to a
SiBoundingBox object
which contains the
requested rectangle

A pointer to a SiEl-
lipse object which
contains the requested
ellipse.

90

O,Spatial User Manual



02 Engine API : Spatial Index

Operation parameter  Meaning areaValue parameter

02X_POLYGON Retrieve all the A pointer to a SiPoly-
objects which inter- gon object which con-
sect a given polygon. tainsthelist of the

02X_POLYGON _ Retrieve all the requested polygon verti-
STRICT objects, which are ces.

inside a given poly-

gon
0O2X_POLYLINE Retrieve all the A pointer to a

objects which inter- SiPolyline object

sect a given polyline  which contains the list
of the requested
polyline vertices.

Returns 02_OK
if successful, error code otherwise.

Errors O2E_SIMALGO
Error in Spatial Index Module algorithm.

O2E_PARAMETER
The parameter idxDesc , operation or areaValue is
incorrect.

Samples

SiBoundingBox requestedPoint(x, y, x+1, y+1);
if (02x_spatial_index_scan_open (
idxDesc,
(int) O2X_CONTAIN,
sizeof (SiBoundingBox *),
&requestedPoint,
&idxScan) '=02_OK) {
return-1; /[Error;

}

O,Spatial User Manual 91



S Spatial Indexing with O2Engine API

Si3DPoint center(X, y);
SiEllipse requestedEllipse(center, xRadius, yRadius);
if (02x_spatial_index_scan_open (
(idxDesc,
(int) O2X_ELLIPSE,
sizeof (SiEllipse*)
&requestedEllipse,
&idxScan) !'=02_0OK)
return -1,

}

Si3DPoint* pointArray=...;
SiPolyline requestedPolyline(numPoints, pointArray);
if (02x_spatial_index_scan_open (
idxDesc,
(int) O2X_POLYLINE,
sizeof (SiPolyline*)
&requestedPolyline,
&idxScan) '=02_OK) {

return -1;
}
See Also 02x_spatial_index_scan_close 0
02x_spatial_index_scan_read 0

92

O,Spatial User Manual



02 Engine API : Spatial Index

02x_spatial_index_scan_close

Summary

Syntax

Description
Returns

Errors

See Also

Close a search operation on the spatial index.

#include <o02_error.h>
#include <o02_spatialindex.h>
int 02x_spatial_index_scan_close(
02x_SpatiallndexScan **idxScan);

Liberates the cursor of the scan idxScan
02_OKif successful, error code otherwise.

O2E_SIMALGO
Error in Spatial Index Module algorithm.

O2E_PARAMETER
The parameter idxScan is incorrect.

O2E_BADSCANID
The parameter idxScan does not exist.

02x_spatial_index_scan_open 0
02x_spatial_index_scan_read 0

O,Spatial User Manual

93



Spatial Indexing with O2Engine API

02x_spatial_index_scan_read

Summary

Syntax

Description

Returns

Errors

See Also

Return the next element of the spatial index which satisfies the
operation of the current spatial scan.

#include <o02_error.h>

#include <o02_spatialindex.h>

int 02x_spatial_index_scan_read(
02x_SpatiallndexScan *idxScan,
02x_ScanDirection direction,
Handle *hd);

Moves the scan cursor forward if the parameter direction is set to
O2X_NEXTor backward if direction is set to O2X_PREVIOUS and
returnsin the parameter hd a handle to an indexed object pointed to by
the scan cursor.

Any other value for the parameter direction is incorrect.

0O2_OKif successful, otherwise an error code; notably O2E_KEYNOTFOUND
which signifies that there are no more entries to recover.

O2E_NOTSUPPORTED
The function is not implemented.

O2E_SIMALGO
Error in Spatial Index Module algorithm.

O2E_PARAMETER
The parameter idxScan or direction or hd isincorrect

O2E_BADSCANID
The parameter idxScan does not exist.

O2E_KEYNOTFOUND
No more accessible entries.

02x_spatial_index_scan_open 0
02x_spatial_index_scan_close 0

94

O,Spatial User Manual



INDEX

O,Spatial User Manual

95



INDEX

axis 34

Bounding box 15,31

C

C1u

C++ Interface 11

class
d_GeoCaollection 43
d_Spatialkey 40
d_Spatialkey2D 41
d_Spatialkey3D 42

close_to 31

close_to 333535

contain 30

contain 32 35,35

create spatial index
options 23

create spatial index 23

D

d_Association 25,26

d_Database
set_default_vol 57,62
d_Dictionary 25
d_GeoCollection
close_to 45
constructor 47,48

contain 46
insert_element 27
insert_elements 49,50
inside 51

intersect 52
remove_element 27
remove_elements 54,55
update_element 56
d_GeoCaollection 15, 26
d_SpatialKey 26
clone 57
dimension 62
enlarge 63
getinternalKey 64
getSize 65
isAPoint 66
02_get_name 67
operator+= 69
operator= 68
d_Spatialkey 15
d_SpatialKey2D
constructor 58, 59
d_Spatialkey2D 26
d_Spatialkey3D
constructor 60, 61
d_Spatialkey3D 26
Dd_MinRegionSize 30,74
delete spatial index 23
distance 34

F

full text index (FTI) 14

96

O,Spatial User Manual



INDEX

G

getSpatialKey 25
graphical coordinates 12

include file 18
initialization of schema 18
inside 30

inside  33,35,35

intersect 30

intersect 32, 35,35

Java 11

Library 18

O

Oz Architecture 10

02_set_GeokEllipse 27

0,C 11

O,Corba 11

O,DBAccess 11

OzEngine 10

0O,Graph 11

OoKit 11

OsLook 11

0,0DBC 11

O,Store 10

O,Tools 11

O,Web 11

Option
Dd_Max 24,30, 74
Dd_Min 24,30,74
Dimension 24,30, 74
IndexType 24,30, 73
KeyCoordType 24,29, 30, 74
OnlyPoints 30,74

options
create spatial index 23

options 23

OoQL 11

R

rectangle 34
R-Quadtree 15,23 29

O,Spatial User Manual 97



INDEX

S

Spatial keys 12
SpatiallndexiInfo 79
System Architecture 10

98

O,Spatial User Manual



	MAIN MENU TO O2 DOCUMENTATION
	O2 Spatial User Manual
	Who should read this manual
	TABLE OF CONTENTS
	1 Introduction 9
	2 Setting Up O2Spatial 17
	3 Using O2Spatial 21
	4 O2Spatial C++ API Reference 39
	5 Spatial Indexing with O2Engine API 71
	INDEX 95

	1 Introduction
	1.1 System overview
	Figure 1.1: O2 System Architecture

	1.2 O2 : Efficient support for Geographical Info Systems
	1.3 The O2Spatial module
	1.4 Object storage and retrieval

	2 Setting Up O2Spatial
	O2HOME Files
	Schema initialization

	3 Using O2Spatial
	3.1 Spatial index creation and deletion
	The creation and deletion commands
	Spatial index options

	3.2 C++ Interface to a spatial index
	3.3 Spatial Index Constructor
	3.4 Spatial Index update
	Insertion and removal methods
	Update method

	3.5 Spatial Index tuning
	The O2 spatial index options

	3.6 Querying
	Types of queries
	O2 Spatial keys
	Spatial query examples
	Spatial predicate parameters
	How to query spatially
	Using object methods
	Using OQL predicates
	Examples


	4 O2Spatial C++ API Reference
	4.1 Class definitions
	4.2 Member functions descriptions
	close_to
	contain
	d_GeoCollection (constructor)
	d_GeoCollection (constructor)
	insert_element
	insert_elements
	inside
	intersect
	operator=
	remove_element
	remove_elements
	update_element
	clone
	d_SpatialKey2D (constructor)
	d_SpatialKey2D (constructor)
	d_SpatialKey3D (constructor)
	d_SpatialKey3D (constructor)
	dimension
	enlarge
	getInternalKey
	getSize
	isAPoint
	o2_get_name
	operator=
	operator+=


	5 Spatial Indexing with O2Engine API
	5.1 Introduction
	5.2 O2 Engine API : Spatial Index

	INDEX
	A
	axis�34

	B
	Bounding box�15, 31

	C
	C�11
	C++ Interface�11
	class
	d_GeoCollection�43
	d_SpatialKey�40
	d_SpatialKey2D�41
	d_SpatialKey3D�42

	close_to�31
	close_to�33, 35, 35
	contain�30
	contain�32, 35, 35
	create spatial index
	options�23

	create spatial index�23

	D
	d_Association�25, 26
	d_Database
	set_default_vol�57, 62

	d_Dictionary�25
	d_GeoCollection
	close_to�45
	constructor�47, 48
	contain�46
	insert_element�27
	insert_elements�49, 50
	inside�51
	intersect�52
	remove_element�27
	remove_elements�54, 55
	update_element�56

	d_GeoCollection�15, 26
	d_SpatialKey�26
	clone�57
	dimension�62
	enlarge�63
	getInternalKey�64
	getSize�65
	isAPoint�66
	o2_get_name�67
	operator+=�69
	operator=�68

	d_SpatialKey�15
	d_SpatialKey2D
	constructor�58, 59

	d_SpatialKey2D�26
	d_SpatialKey3D
	constructor�60, 61

	d_SpatialKey3D�26
	Dd_MinRegionSize�30, 74
	delete spatial index�23
	distance�34

	F
	full text index (FTI)�14

	G
	getSpatialKey�25
	graphical coordinates�12

	I
	include file�18
	initialization of schema�18
	inside�30
	inside�33, 35, 35
	intersect�30
	intersect�32, 35, 35

	J
	Java�11

	L
	Library�18

	O
	O2 Architecture�10
	o2_set_GeoEllipse�27
	O2C�11
	O2Corba�11
	O2DBAccess�11
	O2Engine�10
	O2Graph�11
	O2Kit�11
	O2Look�11
	O2ODBC�11
	O2Store�10
	O2Tools�11
	O2Web�11
	Option
	Dd_Max�24, 30, 74
	Dd_Min�24, 30, 74
	Dimension�24, 30, 74
	IndexType�24, 30, 73
	KeyCoordType�24, 29, 30, 74
	OnlyPoints�30, 74

	options
	create spatial index�23

	options�23
	OQL�11

	R
	rectangle�34
	R-Quadtree�15, 23, 29

	S
	Spatial keys�12
	SpatialIndexInfo�79
	System Architecture�10




