O, Makegen
User Manual

Release 5.0 - April 1998

Information in this document is subject to change without notice
and should not be construed as a commitment by
O, Technology.

The software described in this document is delivered under a
license or nondisclosure agreement.

The software can only be used or copied in accordance with the
terms of the agreement. It is against the law to copy this software
to magnetic tape, disk, or any other medium for any purpose
other than the purchaser’'s own use.

Copyright 1992-1998 O, Technology.

All rights reserved. No part of this publication can be
reproduced, stored in a retrieval system or transmitted in any
form or by any means, electronic, mechanical, photocopy without
prior written permission of O, Technology.

0,, O,Engine API, O,C, O,DBAccess, O,Engine, O,Graph,
O,Kit, O,Lo0k, O,Store, O,Tools, and O,Web are registered
trademarks of O, Technology.

SQL and AIX are registered trademarks of International
Business Machines Corporation.

Sun, SunOS, and SOLARIS are registered trademarks of Sun
Microsystems, Inc.

X Window System is a registered trademark of the
Massachusetts Institute of Technology.

Unix is a registered trademark of Unix System Laboratories, Inc.
HPUX is a registered trademark of Hewlett-Packard Company.
BOSX is a registered trademark of Bull S.A.

IRIX is a registered trademark of Siemens Nixdorf, A.G.
NeXTStep is a registered trademark of the NeXT Computer, Inc.
Purify, Quantify are registered trademarks of Pure Software Inc.
Windows is a registered trademark of Microsoft Corporation.

All other company or product names quoted are trademarks or
registered trademarks of their respective trademark holders.

Who should read this manual

This manual describes how to build O, applications by creating
makefiles which invoke O, and system tools. O,Makegen generates a
platform dependent makefile from platform independent information
stored in a configuration file. O,Makegen may be utilized for building
applications using C++, O,C, C and O,Engine API.

Other documents available are outlined, click below.

See 02 Documentation set .

TABLE OF CONTENTS

This manual is divided into the following chapters:
* 1 - Introduction

* 2 - Runtime Library
* 3 - Example C application

O, Makegen User Manual

(22 || TABLE OF CONTENTS

The Build Process 9
1.1 SYStemM OVEIVIEW.....ccceieeiieeiieeeeee s 10
1.2 The O2Makegen tO0lcccceiviiiiiiiiiiiiee e e e e e ee e 12
1.3 USING O2MAKEGEN ...ceeveeeeeiiiiieei e a e e e 14
1.4 INVOKING O2MaKEQENcciiieeeeeeeieeeeeeeee e e e e e e eea e 16
O2Makegen Configuration File 19
P22 I [01 o o 18 [ox 1 o] o W PPPPPRPPRPPPRRR 20
2.2 The configuration file SyntaxXcoeevvviviiiiiiiiiiieee e, 20
ARG TN = 7= TS (ol o] o] 1] o 1< USSR 21
2.4 O2 SPECIfIC OPLIONS ..uviiie e 28
2.5 Building a C++ applicationvieiieiiiniieeeeeeeeeeeeeeeeeeiiiinns 29
2.6 Building a C applicationoouvviiiiiiiiiiiiiee e eeeeeeeeeeeeeeeiinaens 34
2.7 Building an O2C applicationcccceeeeeeiiiiivieeiiee e 35
2.8 Building an O2Engine API application...........ccccccevveeeeeeeennn... 36
2.9 Adding your own makefile............ccoeeeiiiiiiiii e, 37
Customizing O2Makegen 39
3.1 Template fileS.....ccccoi i 40
3.2 Syntax of atemplate filecooovrviiiiiiii 40
3.3 List of modifiable Macros.........ccccceviiiiiiiiiiii 42
Troubleshooting Guidelines 47
Reference Guide 49
5.1 Options of the O2Makegen toolccoeeeeeiiiiiiiiiiiiiin, 50
5.2 Options of configuration fileccccovvriiiiiicciiii e 51

O, Makegen User Manual

TABLE OF CONTENTS

INDEX

55

0O, Makegen User Manual

TABLE OF CONTENTS

O, Makegen User Manual

1 The Build Process

GENERAL OVERVIEW OF THE O,MAKEGEN TOOL

Congratulations! You are now a user of the O,Makegen tool!

This chapter gives an overview of the O, system and describes the
different steps in binding together the layers of an O, application to build
an executable.

The chapter is divided into the following sections:
e System Overview

e The O2Makegen tool

* Using O2Makegen

* Invoking O2Makegen

O, Makegen User Manual 9

1 The Build Process

1.1 System Overview

The system architecture of O, is illustrated in Figure 1.1.

External

Development Tools
Interfaces

I O, Dev. Tools Standard
Dev. Tools
l O, Makegen ooL

C C++ o,C Java
I I I ? I O,Corba

Database Engine

O,DB
Access

I O,Engine

02W6b

[o0ec
[oe
[22
[

I O,Store

Figure 1.1: Oy System Architecture
The O, system can be viewed as consisting of three components. The
Database Engine provides all the features of a Database system and an
object-oriented system. This engine is accessed with Development
Tools, such as various programming languages, O, development tools
and any standard development tool. Numerous External Interfaces are
provided. All encompassing, O, is a versatile, portable, distributed,
high-performance dynamic object-oriented database system.

Database Engine:

* O,Store The database management system provides low level
facilities, through O,Store API, to access and manage a
database: disk volumes, files, records, indices and
transactions.

* O,Engine The object database engine provides direct control of
schemas, classes, objects and transactions, through
O,Engine API. It provides full text indexing and search
capabilities with O,Search and spatial indexing and
retrieval capabilities with O,Spatial. It includes a
Notification manager for informing other clients
connected to the same O, server that an event has
occurred, a Version manager for handling multiple
object versions and a Replication API for synchronizing
multiple copies of an O, system.

O, Makegen User Manual

System Overview

Programming Languages:

O, objects may be created and managed using the following
programming languages, utilizing all the features available with O,
(persistence, collection management, transaction management, OQL

queries, etc.)
« C

o CH++

» Java

« 02C

. OQL

O, functions can be invoked by C programs.
ODMG compliant C++ binding.
ODMG compliant Java binding.

A powerful and elegant object-oriented fourth
generation language specialized for easy development
of object database applications.

ODMG standard, easy-to-use SQL-like object query
language with special features for dealing with complex
O, objects and methods.

O, Development Tools:

» O,Graph
. 02L00k

° OzKlt

» O,Tools

Create, modify and edit any type of object graph.

Design and develop graphical user interfaces, provides
interactive manipulation of complex and multimedia
objects.

Library of predefined classes and methods for faster
development of user applications.

Complete graphical programming environment to
design and develop O, database applications.

Standard Development Tools:

All standard programming languages can be used with standard
environments (e.g. Visual C++, Sun Sparcworks).

External Interfaces:

e O,Corba
» O,DBAccess
hd OzoDBC

. Ozweb

Create an O,/Orbix server to access an O, database
with CORBA.

Connect O, applications to relational databases on
remote hosts and invoke SQL statements.

Connect remote ODBC client applications to O,
databases.

Create an O, World Wide Web server to access an O,
database through the internet network.

O, Makegen User Manual 11

1]

The Build Process

1.2 The O,Makegen tool

Most software are built using the same underlying procedures:
obtain user source code files

create automatically generated source code files (if any)

use compiler to convert source code to machine code

supply any additional compiled objects and libraries

use a linker to create an executable

install executable and other files needed at run-time.

There are many ways of building an application. Software development
environments vary widely. Tools that support the build process, such as
O,Makegen, must therefore be highly flexible to allow for the largest
range of situations.

On UNIX and MS-Windows systems, application building is supported by
the "make" utility, which uses input file known as "makefile" to invoke
system utilities like compiler and linker to build application. The "make"
utility contains logic to minimize the steps needed to build applications by
avoiding unnecessary steps.

Makefiles contain entries known as "targets”, which in turn have "rules"
which are lists of commands to execute to construct the target. Each
target has one or more "dependencies”, which can be other targets that
must be executed first. By recursively executing dependencies, the
"make" tool avoids unnecessary actions or compilations. Makefiles may
contain macros, which are text symbols expanded when targets are
executed. These macros allow for more compact and readable makefiles.

The O,Makegen tool assists in building O, applications by creating
makefiles that invoke O, and system tools to perform the build.
O,Makegen reduces the time spent creating makefiles by reducing the
information you provide to control what "make" does.

A powerful feature of O,Makegen is the capability to generate a platform-
dependent makefile from platform-independent information stored in a
configuration file. All information you supply is independent of the
platform and O,Makegen generates all platform-dependent stuff.

12

O, Makegen User Manual

The O2Makegen tool

You do not have to worry about platform dependencies. O,Makegen can
be used to build applications using O, ODMG C++ binding, O,C, C
Interface to O,, O,Engine API runtime from O, Technology.

configuration file

CPP template files:

. . default,

command line options —}p platform,
Makefile
P—
C, C++, include [Executable, library,
file, etc
etc
(e

PaName [Descipon

configuration file provides application-dependent information such [as
the name of source files, header files which must be
imported, libraries to link, ...

command line options gives information about platforms, makefile name,...

cpp (C preprocessor) preprocesses the configuration file.

default template file gives the default for tools and commands used in the
makefile (located in O2HOME/config)

platform template file gives the tools and commands used in the maketfile
when different from the default (located in
O2HOME/config)

user template file gives the tools and commands used in the makefile

for a particular installation when different from the
default- and from the platform-specific ones.

0O2Makegen tool generates a makefile based on all input provided,

make tool builds the targets specified in the generated makefile.

O, Makegen User Manual 13

1 The Build Process

1.3 Using O ,Makegen

The model enforced by O,Makegen is that within a directory, only one
program, library or re-locatable object can be created. If you have
multiple directories, you can define one makefile per directory, and a
master makefile in the root directory which triggers the other
sub-makefiles in the sub-directories.

When you run "make”, you usually must tell it what to build. The
generated makefile allows you to invoke several targets:

» Building And Installing An Application :

These entry points are created in the makefile to build and install an

application:
all Creates the executable or the library
install Installs the executable or the library and the include
files necessary when using the library

Whenever you run "make", all products of the build process are placed in
the directory in which "make" is run.

* Removing Generated Files :

These entry points are created in the makefile to remove generated files:

clean removes all the temporary files (e.g. object files) and
the executable or library

clobber performs clean, and removes the files generated by O
tools

O, Makegen User Manual

Using O2Makegen

» Generating Dependencies :

The following entry point is created in the makefile to generate
dependencies:

depend adds dependency rules to the makefile

The default target (i.e. the one chosen when you run "make" without
indicating a target) is "all".

Not all entry points are created in the makefile:
- "all", "clean", " clobber " are always created
« "install " is created only if the destination is given in the configuration file
» "depend " is created only if all sources are given in the configuration file.

Depending on the type of executable, some targets are added to the
generated makefile. For example, when you build a O, C++ ODMG
application, "import" and "unimport" targets are created to import and
unimport C++ classes definitions in the O, database.

You may wish to have additional actions performed by the generated
makefile. This can be done by adding a user makefile which is invoked
by the generated makefile.

The makefile generated by O,Makegen contains definitions related to
the machine type, the operating system and its version. These
definitions allow portions of your source code to be machine-dependent.
They are passed to the compiler by means of -D flags.

These definitions are described below:
HP machines :

DHP800
DHPUX
DHPUX_9x
DHPUX_10x

O, Makegen User Manual 15

The Build Process

1.4

IBM or Bull machines
DIBMRS600

DAIX

DAIX_32

DAIX_42

Sun machines
DSPARC
DSOLARIS
DSOLARIS_2x
DSUNOS
DSUNOS 41

Silicon Graphic machines
DSGI

DIRIX

DIRIX_5.x

Digital Alpha Machines
DALPHA
DOSF1

Intel machines
DX86

DSCO
DSCO_32
DSOLARIS
DSOLARIS 2x
DWIN32

X is the release number.

Invoking O ,Makegen

The syntax is the following:
o02makegen [options] configuration_file
where "options" are :

16

O, Makegen User Manual

Invoking O2Makegen

-help displays a help facility and exits
-version prints version number of 02makegen and exits
-verbose enables verbose mode

file by default)

-outputmakefile_name | specifies the name of the generated makefile (Mal

-archmachine specifies the target architecture name

-0S0S specifies the target operating system name

-deffile file_name specifies the name of a private template file

-pushbacksizint-size sets pushback and argument collection size (defau
4096)

The default values for "arch" and "o0s" options are the architecture and
the operating system on which 02makegen is running.

The "arch" option recognizes the following machine type:
SPARC

HP800

SGI

IBMRS6000

DECALPHA

RM

X86

The "o0s" option recognizes the values:
SUNOS_41

SOLARIS_2x

HPUX_9x

HPUX_10x

IRIX_5x

AIX_32

AIX_42

OSF1

SINIX_54

O, Makegen User Manual

17

e_

t

1 The Build Process

SCO_32
WINDOWS

(x is the release number).

1.4.1. External influences

You can use the TMPDIR environment variable to set the directory in
which O,Makegen creates temporary files.

On Sparc with SUNOS_41 O,Makegen uses the Sun executable
/usr/5bin/m4 available with the system V software installation option.

1.4.2. Return value

O,Makegen exits with one of the following values:

0 if makefile generation is successful.

>0 if aborted due to processing errors.

<0 if makefile generation carried out but with warning
messages.

The following chapter describes the configuration file contents in more
details.

18 O, Makegen User Manual

. O,Makegen

Configuration File

This chapter is divided into the following sections:

Introduction

The configuration file syntax

Basic options

02 specific options

Building a C++ application

Building a C application

Building an O2C application

Building an O2Engine API application
Adding your own makefile

O, Makegen User Manual

19

O2Makegen Configuration File

2.1 Introduction

To build an application, you need to provide a configuration file to supply
information to O,Makegen to create a makefile. The configuration file
contains all the necessary information to build your application.

This information includes the names of source files and precompiled
objects, executables names,...

The configuration file can have any name, but generally the extension
".cf" is used.

The configuration file is used by O,Makegen and specifies :
Application source files (.C, .cc and .h)

Application library/object files (archive library, shared library and .0)
The library environment

Macro definitions and include directories

The C preprocessor "cpp" is run on the configuration file to maximize
flexibility. You can use "cpp" macros to customize your configuration file.

2.2 The configuration file syntax
A configuration file contains comment lines, blank lines and directives. A
comment line is introduced by a semicolon (;) going to the end of the line.
C comment syntax is also accepted.
A directive line contains one of a predefined set of options as the first
word, followed by user supplied information as in:
ExpClasses= Person City
If the user-supplied information is a list of items, each item must be
separated by one or more spaces.

Warning !

If the same label (first word of a directive) appears multiple times in the
same file, only the last appearance is relevant. All other directives with
the same label are ignored.

O, Makegen User Manual

Basic options :

2.3

If the user-supplied information is an option, preceding the label with the
plus sign (+) indicates that the option is active. The minus sign (-)
indicates that the option is inactive. For example,

+Debug
indicates that the debug mode is active.

All options are disabled by default, except "O2C++Target"

As the C preprocessor is run on your configuration file before it is used,
you can place "cpp" directives anywhere in the configuration file to
achieve effects such as conditional building.

Spaces and tabs can be inserted freely between elements without
altering semantics. Since the configuration file is line-oriented, line feeds
cannot be inserted freely. A\’ followed by a new line is treated as a
continuation line and permits to break a long line into many shorter lines.

Unprotected $ characters cause a search in the environment for the
following name. In this way, $SHOME is expanded to the string in the
process environment. If $ characters are to be literal, protect the $
character using a back slash as in \$HOME.

Basic o ptions

This section is divided up as follows :

» 2.3.1. Building an application

» 2.3.2. Building a library

» 2.3.3. Building a relocatable

» 2.3.4. Compiling sources

» 2.3.5. Debugging

» 2.3.6. Computing dependencies

» 2.3.7. Installing an application

» 2.3.8. Triggering makefiles in sub directories

» 2.3.9. Example

O, Makegen User Manual 21

O2Makegen Configuration File

2]

2.3.1. Building an application

If you want to obtain an executable, you must use the following options:

executable_name

name. (no default).

ProgramName = specifies the generation of the program called execut!able—

name list

ProgramObjs = object fileg

specifies the object files needed to build the executab
(no default).

libraries name list

ProgramLib = application

specifies the application specific libraries that should b
linked with the application (none by default). For a librg
libx.a or libx.so (sl), you must give in the name list only
the part x (without the "lib" prefix and the suffix)

e
ry

the link editor

UserLdFlags = flags for

specifies flags added to the link command

directories list

ProgramLibDir = library

specifies the directories containing the application spe
libraries (none by default).

cific

These options generate a target whose name is executable_name. This
target is added as dependency to the "all" target which is the default

target.

The action associated with this target is the link edition of all object files
and libraries for obtaining the executable.

If the options Debug, Profile, Purify or Quantify are set, the name of the

executable is changed and is postfixed by " _d", "_p", " _pure" and

"_quant”.

Warning !

O, runtime libraries must not appear in the "ProgramLib" list.

The following option is specific to AlX:
ExportLibFile = file name list

Export files are ASCII files identifying external symbols that are made
available for another object executable to import.

See the AIX documentation set for more information.

22 O, Makegen User Manual

Basic options : 2.3.2. Building a library

2.3.2. Buildin g a librar y

If you want to construct an archive library, you must use the following
options:

LibName = library name specifies library to build (no default).

UserLdFlags = flags for the | specifies flags added to the link commands

link editor

Objs = LibObjs specifies object files needed to build the library (np
default). The object files generated from the source
files by an 02cpp_import or 02cpp_export command
must not be in this list.

+- CreateArchiveLib specifies the type of library to be built. +CreateArch-
iveLib permits to build an archive library. Archive
library is the default.

+-CreateSharedLib specifies the type of library to be built. +Create-
SharedLib permits to build a shared library. Indicating
-CreateSharedLib builds an archive lib.

These options generate a target whose name is library_name. This
target is added as dependency to the "all" target which is the default
target.

Using +CreateSharedLib and +CreateArchiveLib constructs a shared
library (and not a shared library and an archive library within one
makefile). If none is used, an archive library is built by default.

The action associated with this target is the archival of all object files in a
library.

2.3.3. Buildin g a relocatable

If you want to construct a relocatable object, you must use the following
options:

RelocatableName = generation of a relocatable called relocatable_name
relocatable_name (no default).

O, Makegen User Manual 23

2 O2Makegen Configuration File

UserLdFlags = flags for the | flags added to the link commands

link editor

RelocatableObjs = Object files needed to build the relocatable object.
object _files

These options generate a target whose name is relocatable_name. This
target is added as dependency to the "all" target which is the default

target.

The action associated with this target is the construction of one object

from all object files.

2.3.4. Compiling sources

To compile your source files, you can supply the following information:

Define=string_list

adds or renames macro definitions to the compilation
or link phase.None by default.

Undefine =string_list

removes macro definitions to the compilation or link
phase. None by default.

Include=directory_list

adds directory containing files to be included at com-
pilation or link phase. None by default.

Repositories=directory _list

list of directories used as a C++ template repository-
during compilation or link phase. None by default.

2.3.5. Debugging

If you want to obtain an executable with the debug information, you must

set:
+Debug

in the configuration file. The default value is false. The generated
executable is postfixed by "_d". You can use your favorite debugger to run

your application.

Using the following keyword

+Profile

24

O, Makegen User Manual

Basic options : 2.3.6. Computing dependencies

permits to generate an executable or library which contains code for
profiling (using the OS supplied profiler). The name of the executable or
of the library is postfixed by "_p". The default value is false.

Warning !

If Debug and Profile are set, only Debug is relevant, Profile is ignored.
The generated executable is postfixed by *_d".

Purify TM, a product of Pure Software, is a tool that you can use to track
down memory leaks and errors in your application. When you build your
application, set :

+Purify

+Debug
in the configuration file. The generated executable is postfixed by
"_pure". When you run your executable, memory leakage and access

errors are tracked down. For more information on Purify, see the Purify
documentation set. The default value is false.

You can also use Quantify TM, another product of Pure Software. Itis a
tool that identifies the portions of your application that dominate its
execution time. When you build your application, set :

+Quantify

+Debug

in the configuration file. The generated executable is postfixed by
" _quant”. After running your application, the profile of execution is
displayed. For more information on Quantify, see the Quantify
documentation set. The default value is false.

2.3.6. Computin g dependencies

If you set the following in your configuration file:

Sources=source_files source files making up the application or library

a "depend" target is generated. Launching "make depend" modifies the
makefile and adds all dependencies between source and include files.

O, Makegen User Manual 25

O2Makegen Configuration File

2]

2.3.7. Installing an application

The following installation information can be set in the configuration file to
install the generated program, or generated library elsewhere than in the
current directory :

ProgramDestDir=directory directory in which the generated program must be
installed (none by default).

LibDestDir=directory directory where the generated library must be installed
(default none).

LibHeaders=file_name file to be treated as the include file of the generated
library (default none).

HeadersDestDir=directory directory where all include files needed to use the gen-
erated library must be installed (none by default).

If this information is given, an "install" target is generated in the makefile.

2.3.8. Triggering makefiles in sub directories

The model enforced by 02makegen is that within a directory, only one
program, library or re-locatable object can be created. If you have
multiple directories, you can define one makefile per directory, and a
master makefile in the root directory which triggers the other sub-
makefiles.

This master makefile can be generated by giving the following
information in the configuration file :

SubDirs=directory _list list of directories in which a make must be triggered.

The generated makefile contains four targets :

26

O, Makegen User Manual

Basic options : 2.3.9. Example

all triggers "all" targets of all makefiles found in the sub-
directories
clean triggers "clean" targets of all makefiles found in the

subdirectories

clobber triggers "“clobber" targets of all makefiles found in the
subdirectories

install triggers "install" targets of all makefiles found in the
subdirectories

Choosing one of these targets generates a call to each makefile found in
each listed directory with the chosen target. All submakefiles are
executed once in the order listed.

2.3.9. Example

In a first directory named "Lib", this first configuration file will generate a
makefile to construct the archive library "my_lib" from the object files
"pragma.o” and "collection.o". These object files are created from C++
files "pragma.cc” and "collection.cc" by the C++ compiler.

LibName= my_lib
LibObjs= pragma.o \
collection.o

Sources= pragma.cc \
collection.cc

In a second directory named "Prog", this second configuration file will
generate a Makefile to construct the executable "my_prog" from the
object files "main.o", "o2connect.0" and "foo.0" and from the archive
library "my_lib". These object files are created from C++ file "main..cc”
by the C++ compiler and C files "o2connect.c" and "foo.c" by the C
compiler.

ProgramName= my_prog
ProgramObjs= main.o o2connect.o foo.o
ProgramLib= my_lib

ProgramLibDir= ../Lib

O, Makegen User Manual 27

O2Makegen Configuration File

2.4

Sources= main.cc o2connect.c foo.c

You can create a master makefile for these two directories in the parent
directory :

SubDirs= Lib Prog

The generated makefile triggers first the makefile in the "Lib" directory to
construct the "my_lib" library, and then the makefile in the "Prog"
directory to construct the executable "my_prog" which uses the library
"my_lib".

O, specific options

These options specify information about O, environment used to
generate the makefile. These options must be valued if you want to use
tools and/or libraries from the O, environment.

This includes the following items:

O2Home=directory Qinstallation directory. Default can be positioned jn
a .site.cf file (see Customizing&akegen section).

By default, O, applications are built using shared version of the libraries
from O, runtime. For debugging or delivery purposes, you can use the
archive versions of the O, runtime libraries by setting the following
option:

+-Use ArchiveLib specifies which archive versions gfr@ntime
libraries must be used in place of the shared librafies
(default is false)

28

O, Makegen User Manual

Building a C++ application : 2.3.9. Example

2.5

The following options indicate which runtime libraries should be used to
build your application:

or not (default is false)

+-UseOq|l indicates whether OQL is used oro2sq|
not (default is false)
+-UseLook indicates whethenOpok is used | o02look, Xm, Xt, X11

+-UseLkBrowser

indicates whethesl@ok browser
editor is used or not (default is
false)

02look, o2look_browser,
Xm, Xt, X11

+-UselkDialog

indicates whether,0Opok dialog
box editor is used or not (default
false)

o2look, 02look_dialog,
sXm, Xt, X11

+-UselLkGraph

indicates whethepl@ok graph
editor is used or not (default is
false)

o2look, o02look_graph,
Xm, Xt, X11

mechanism is used or not (defau
is false)

+-UselLkPict indicates whetherOpok picture | o02look, o2look_pict, Xm,
editor is used or not (defaultis | Xt, X11
false)

+-UseLkText indicates whether,Opok Text 02look, 02look_text, Xm,
editor is used or not (defaultis | Xt, X11
false)

+-UseO2xt indicates whethepXt is used or | 02xt
not (default is false)

+-UseVersion indicates whethep\®rsion o2vm

It

+-UseMeta

indicates whethep @eta service
is used or not (default is false)

o2compiler, 02syntax,
o2cruntime.

Refer to the O,Look documentation set for more information about
specific editors and o2xts.

Buildin g a C++ application

If you use the ODMG C++ binding, you can use o2makegen to create a
makefile which allows you to invoke new targets:

O, Makegen User Manual

29

O2Makegen Configuration File

import
unimport
export
unexport

These targets invoke the o2cpp_import, o2cpp_unimport, o2cpp_export
and o2cpp_unexport tools.

These new targets are added to the dependency list of the target "all". So

when you build your executable by calling make, these new targets are
triggered if necessary.

All necessary O, runtime libraries are automatically added to your
executable.

To create this type of makefile, you must set the following option in the
configuration file :
+0O2C++Target

To use the import and/or export tools from O,, the makefile must know
the following information :

0O2Schema = schema name| , $B8hema where classes will be imported (no
default)

02System = system name > §ystem in which the schema resides (no default)

O2Server = server name > 8erver which must be used by import and export
tools (no default)

To import C++ classes in O,, you can use the following options in
addition to the one described in the above sections :

ImpFiles = file_name(s) C++ files where imported classes are defined (no
default).

ImpList = type_name(s) list of classes or atomic types to be imported.

ImpBag = type_name (S) bag of classes or atomic types to be imported.

ImpSet = type_name(s) set of classes or atomic types to be imported

ImpVarray = type_name(s) varray of classes or atomic types to be imported.

30

O, Makegen User Manual

Building a C++ application : 2.3.9. Example

For each file given in the "ImpFiles" options, you must give the following

information :

[FileName]lmpClasses= class_name(s),

list of classes to be imported. The dgfini-
tion of this class is found in FileName (no
default).

[FileName]lImpOutputDir= directory

path and directory in which C++ files dre
generated for the classes in FileName (¢ur-
rent directory by default).

[FileName]ImpForwardClasses=
class_name(s)

All classes forwarded during the pro-
cessing of FileName (none by default).

[FileName][ClassName]ImpAsClass=
class_name

Import class_name as ClassName (see
C++ Binding Guidg.

[FileName][ClassName]ImpForward-
File= file_name

Specifies the file where the forwarded
class is defined (none by default).

[FileName][ClassName]ImpMember-
Func= function_member(s)

Member function(s) to be imported
(none by default)

H[FileName][ClassName]ImpAllPub-
licMemberFunc

Imports all public member functions of
the class (false by default).

+-[FileName][ClassName]impAccessPr
vateMember

- Automatically generates access meth
ods for private members (false by
default)

[FileName]lmpUseFiles= file_name(s

Files which are required to parse Rile-
Name. For example, an include file not
explicitly included in the FileName file
(none by default).

[FileName]lmpUseDir=
directory_name(s)

Directory path used to find files specit
fied in [FileName]lImpUseFiles option
(none by default).

t[FileName]lImpNoModification

Pointers to objects of an imported class
are not modified inside FileName (by
default they are transformed to persig
tent pointers).

[FileName]IimpLibClasses=
class_name(s)

Classes belonging to an external C++
library and used as a superclass of a
imported class (none by default).

=

+UseConfirmClasses

Indicates whether classes are automati-
cally confirmed or not after importation
in O,. (Default is false).

O, Makegen User Manual

31

O2Makegen Configuration File

To export O, classes, you must provide the following information:

ExpOutputDir=directory Directory path in which C++ files are generated
(current directory by default).

ExpClasses= class_name(g) , €lasses to be exported (no default)

*[ExpClassName]ExpType| Type structure of the ExpClassName is also made
available to C++ (False by default).

+[ExpClassName]Exp- Specify that the exported methods are not virtual
NoVirtual (false by default)
[ExpClassName]Exp- 0O,C methods of class ExpClassName to be

Methods= method_name(s) exported (none by default).

For more information, refer to the ODMG C++ Binding documentation
set.

When building an ODMG C++ application, you can use the following
options:

* UseMeta

» UseVersion

« UseOQL

» UselLook and all specific editors

Warning !

The object files generated from the source files created by an
02cpp_import or o2export command must not be in the ProgramObjs list
nor in the LibObjs list.

The generated makefile contains 8 targets :

32

O, Makegen User Manual

Building a C++ application : 2.3.9. Example

all triggers export, import and finally creation of the
executable or of the library

clean removes all object, core, ...

clobber triggers clean, unexport and unimport

install installs executable or library with include files

export exports all indicatedfZlasses

import imports all indicated C++ classes

unexport destroys code generated by export

unimport destroys ©classes, generated code and removes
patch of the C++ classes

Example:

+02C++Target

ProgramName= odmg
ProgramObjs= main.o o2connect.o pragma.o \
bag.o list.o set.o array.o \

collection.o collection_int.o
collection_real.o\

collection_string.o

Sources= main.cc o2connect.c pragma.cc \
bag.cc list.cc set.cc array.cc \
collection.cc collection_int.cc collection_real.cc

collection_string.cc

O2Home= $02MK_HOME
02System= $O02MK_SYSTEM
02Server= $02MK_HOST
02Schema= odmg_s

+UseOq|

ImpFiles= schema.hxx
[schema.hxx]ImpClasses= A B node subnode

O, Makegen User Manual 33

O2Makegen Configuration File

2.6

ImpSet= A B node int char double "char*" d_String short
float

ImpList= A B node int char double "char*" d_String short
float
ImpBag= A B node int char double "char*" d_String short
float

ImpVarray= A B node int char double "char*" d_String short
float

To build the "odmg" executable, we must import the C++ classes A, B,
node, subnode defined in the file schema.hxx. We also import collection
(Set, List, Bag and Varray) for the type :

A, B, node, int, char, double, "char *", d_String, short, float

All are imported in the schema "odmg_s" in the system
"$O2MK_SYSTEM" using the server "$O02MK_HOST". You can note that
$O2MK_HOME, $02MK_SYSTEM, and $O02MK_HOST are
environment variables and are evaluated during the makefile creation.
Because the "Sources" options have a value, a "depend" target is
created. When you type "make depend" all dependencies of all files
given in "Sources" are added at the end of the makefile.

The program name is odmg and is composed of all objects found in the
"ProgramObijs" option list.

The program uses the "ogl_execute" service. So we set the option
"+UseOql".

The '\’ character is used to break a directive in multiple lines.

Building a C application

If you use the C interface to O, in your application, you can use
o2makegen to generate a makefile to build your application. You must set
the following option:

34

O, Makegen User Manual

Building an O2C application

+02LinkCTarget

For more information, refer to the C Interface to O, documentation set.

When building a C application, you can use the following options:

* UseMeta

» UseVersion

e UseOQL

» Uselook and all specific editors

all constructs the application
clean removes all objects, core,...
install installs the application

2.7 Building an O ,C application

If you want to build an executable from an O,C application, you must
write a C++ file containing the main procedure of your application. This
main procedure must make a connection to an O, server, trigger the
O,C application using the "02_run_application" service, and at the end
disconnect from the server.

To build your application, you can generate a makefile using the following
option:
+02CTarget

Do not forget to supply the name of the main object in the ProgramODbj
option.

For more information, refer to the O,C documentation set.

When building an O,C application, you can use the following options:

O, Makegen User Manual 35

O2Makegen Configuration File

* UseMeta
e UseOQL
» UseLook and all specific editors

UseVersion is not allowed. In O,C, you must use the schema O,Version
and not a library.

all constructs the application
clean removes all objects, core, ...
install installs the application

2.8 Building an O >Engine API application

If you use the O2Engine API interface, you can also use O,Makegen. If
you set the option:

+0O2APITarget

The generated makefile contains the necessary libraries to your
executable.

For more information, refer to the O,Engine API documentation set.

When building an O,Engine API application, you can use the following
options:

» UseVersion

* UseOQL

» UselLook and all specific editors

UseMeta is not allowed.

all constructs the application
clean removes all objects, core,...
install installs the application

36

O, Makegen User Manual

Adding your own makefile : 2.3.9. Example

2.9

Addin g your own makefile

This option permits to add additional targets or actions which will be
performed by the generated makefile. This can be done by writing your
own makefile and having up to two targets executed when the generated
makefile runs.

PreTarget= string | Specifies the targets in the user-written makefile
list that will be executed before any rules of the gen-
erated makefile. All targets are executed once |n
the order listed.

PostTarget= string | Specifies the targets in the user-written makefile
list that will be executed after linking rules and befgre
install rules of the generated makefile. All targets
are executed once in the order listed.

UserMakefile= file | Specifies the user-written makefile. This makefile
name must contain all targets that are named in the Rre-
Target and PostTarget options. It can also contain
the targets "all", "clean" and "install". In this case,
the actions defined for these targets are executed
after the corresponding actions defined in the gen-
erated makefile.

In your makefile, you can use any of the Makefile macros defined in the
generated makefile.

If you modify your makefile, you must rerun O,Makegen to regenerate
the makefile.

For example:
UserMakefile= mymakefile
PreTarget= serverlaunch
PostTarget= servershut

The user-written makefile, named "mymakefile", is specified by the
option UserMakefile. "mymakefile" contains the targets "serverlaunch"
and "servershut". The target "serverlaunch" will be executed before
anything. The target "servershut" will be executed after the construction
of the executable.

O, Makegen User Manual 37

O2Makegen Configuration File

38

O, Makegen User Manual

2 Customizing GMakegen

This chapter is divided into the following sections :

* Template files
* Syntax of a template file
* List of modifiable macros

O, Makegen User Manual 39

Customizing O2Makegen

2]

3.1

3.2

Template files

When O,Makegen is used, it obtains definitions for the target system
from template files. Template files are supplied with O,Makegen in the
directory $O2HOME/config.

A template file defines symbols which can be names of tools, operating
system commands, options, etc.

Default template files contain all default definitions. These files have the
extension ".mak". They must not be modified.

Platform template files override default definition found in the default
template files. The platform template file is named using the machine
and operating system name (for example: sparc_solaris_24.cf is the
template file for Sparc machines with Solaris 2.4). The extension of these
files is ".cf". Normally this file will not be modified.

But you can modify the site template files. The content of this file
overrides the content of the platform template file. The file is named after
the machine and operating system name with the ".site.cf" extension (for
example: sparc_solaris_24.site.cf is the site template file for Sparc
machine with Solaris 2.4). This file can be modified to adapt 02makegen
to your site configuration.

A last template file is used to override definitions: the user template file.
This file is introduced by the "deffile" option of the O,Makegen
command. This template file permits to have particular definitions for one
user or for one project.

Syntax of a template file

A template file consists of a set of "m4" macros. "m4" is a standard UNIX
macro processor. All symbols used in the generated makefile are defined
in template files as m4 macros.

The primary function of m4 used in template file is "define". This is used
to define and redefine macros. The following input:

define(hame, stuff)
causes the string "name" to be defined as "stuff".

The left parenthesis must immediately follow the word "define" to signal
that "define" has arguments.

40

O, Makegen User Manual

Syntax of a template file

To redefine N, the evaluation must be delayed by quoting :
define(N, 100)

define(‘N’, 200)

The N in the second definition is replaced by 100. The result is
equivalent to the following statement:

define(100,200)

This statement causes an error since only things that look like names
can be defined.

In m4, it is often wise to quote the first argument of a macro. The
following example will not redefine N:

define(N, 100)

define(N, 200)

Each occurrence of $n in the replacement text, where n is a digit, is
replaced by the n-th argument. Argument O is the name of the macro;
missing arguments are replaced by the null string; $# is replaced by the
number of arguments; $* is replaced by a list of all the arguments
separated by commas; $@ is equivalent to $*, but each argument is
quoted.

Comments and examples are enclosed between " # " and new-line
characters. If you want to discard characters up to and including the next
new-line use the macro dnl (...).

For more information consult the m4 documentation.

For example, we put here the contents of a ".site.cf" file:
define('CCCmd’, /usr/bin/CC)

define(‘InstallCmd’, [etc/install -i)

define(‘PurifyCmd’, purify)

O, Makegen User Manual 41

Customizing O2Makegen

3.3

Warning !

define(‘StandardDefines’, -DHP800 -DHPUX -DHPUX_90)

define(‘OptimizedCFlag’, +01)
define(‘PicCFlag’, +Z)

define(‘OptimizedCCFlag’, +01)
define(‘PicCCFlag’, +Z)
define(*StdCClincludes’, -I/usr/‘include’/CC’)
define(‘DefaultCCOptions’, -z +al -pta -ptn -ptb)

define(‘StaticLDFlag’, ‘-WI,-a,archive’)
define(‘RelocLDFlag’, -r -E)
define(‘DefaultLDOptions’, ‘+al -WI,-E’)
define(*SpecialLDOptions’,'$(PTREPOSITORIES)’)

define("XDir’, /usr/lib/X11R5)
define(‘MotifDir’, /usr/lib/Motif1.2)

In this template file, we redefine the macro CCCmd which gives the

location of the C++ compiler. Note that all macro names are quoted, as
explained above.

In the following section we describe each macro used in the template
files.

List of modifiable macros

You can redefine macros in the "*.site.cf" template file. You can also
redefine macros in the file introduced by the "deffile" option of the
O,Makegen command.

Modifying these macros can lead to unexpected behavior of O,Makegen.

42

O, Makegen User Manual

List of modifiable macros

3.3.1. Default Command Definitions

ArCmd /bin/ar clq to create libraries
CcCmd /bin/cc to run C compiler
CcCCmd CcC to run C++ compiler
ChmodCmd /bin/chmod to change mode of file
InstallCmd /bin/install to install files
LdCmd /bin/ld to run loader
MakeCmd /bin/make to run make
MkdirCmd /bin/mkdir to make directory
MvCmd /bin/mv -f to move files
CpCmd /bin/cp to copy files
RanlibCmd /bin/true to clean up libraries
RmCmd /bin/rm -f to delete files
TouchCmd /bin/touch to touch files
PurifyCmd none to purify files
QuantifyCmd none to quantify files

3.3.2. Default cc com piler fla gs

OptimizedCFlag -0 cc compiler flags to turn on optimizg-
tion

DebuggableCFlag -g cc compiler flags to turn on debug info

ProfilingCFlag -G cc compiler flags to turn on profiling
info

PicCFlag none cc compiler flags to turn on pic code
generation

DefaultCOptions none default special cc compiler options

SpecialCOptions none specific cc compiler options

O, Makegen User Manual 43

2]

Customizing O2Makegen

3.3.3. Default C++ compiler flags

er-

OptimizedCCFlag -0 CC compiler flags to turn on optimiza-
tion

DebuggableCCFlag -g CC compiler to turn on debug info

ProfilingCCFlag -G CC compiler to turn on profiling info

PicCCFlag none CC compiler to turn on pic code ger
ation

DefaultCCOptions none default special CC compiler options

SpecialCCOptions none specific CC compiler options

CCExtension cc extension of CC source files

3.3.4. Miscellaneous flags

StdCClincludes none location of specific C++ includes
StandardIncludes none -I's for compiler

StandardDefines none -D’s for compiler

Xdir none directory containing the X Libraries
MotifDir none

directory containing the Motif Librar-
ies

3.3.5. Linker flags

RelocLDFlag -r Linker flag to create a object from a list
of object

StaticLDFlag none Linker flag to use the static version g
library

DefaultLDOptions none Linker default options

44

O, Makegen User Manual

List of modifiable macros

3.3.6. Install fla gs

InstBinFlag 0755 File mode of installed binary
InstLibFlag 0664 File mode of installed library
InstincFlag 0444 File mode of installed include

3.3.7. Files used in clean tar get

FilesToClean

*.0 core *~ *.bak

Files to be deleted

O, Makegen User Manual

45

Customizing O2Makegen

46

O, Makegen User Manual

Troubleshooting Guidelines

This chapter gives advice to correct problems you may encounter when
using O,Makegen. Here is the list of error messages with their
explanations.

O, Makegen User Manual 47

Troubleshooting Guidelines

27512 Configuration file| You have not given a configuration file to
is mandatory O,Makegen. Retry with a configuration file

name.

27522 Unknown argu- | One or more options given to,Makegen are
ments not recognized. Consult the list opkdakegen

options.

27532 Cannot create O,Makegen cannot create its temporary file
temporary file Maybe the file system where temporary files

are created is full, or you do not have sufficient
access rights to the directory where temporary
files are created. By default, this directory i
/usr/tmp (on UNIX, there is no default value
on windows). You can modify it by using the|
environment variable TMPDIR.

27542 Error during con-| O,Makegen has not recognized one or more
figuration file options found in the configuration file.
analysis Another message gives you the unrecognized

options and the line number in the configura-
tion file. Verify the spelling of the options in
the configuration file.

27552 Error during O,Makegen cannot create the makefile.
make file creation| Maybe one template file used is wrong. If you

have created or modified a template file,
maybe you have forgotten to quote the macro
name. You can also retry to launch
O,Makegen using the pushbacksize option.
This option permits to resize structures used
by the analyzer of gMakegen. The default
value is 4096. Try 8192.

27572 Cannot find O,Makegen does not know the machine type
machine or os or the operating system. Verify the spelling of
type the values of the options.

27582 Cannot find tem-| O,Makegen cannot retrieve the
plate installation | O2HOME/config directory or you do not have
directory read access to it. Verify your installation of ©

27592 Cannot access | O,Makegen cannot retrieve the template file.
template files Verify the content of the HOME/config

directory. Verify if you have read access to the
template files and to the directory. Verify your
installation of Q.

27602 Cannot find O,Makegen uses other programs and cannot

(name) executablg

find one or more of these programs. Verify tk
existence of the program and the execution

ne

right.

O, Makegen User Manual

5 Reference Guide

This chapter is divided into the following sections:
» Options of the O2Makegen tool
» Options of configuration file

O, Makegen User Manual

49

5 Reference Guide

5.1 Options of the O ,Makegen tool

-help Displays a help facility and exit
-version Prints version number of 02makegen and exit
-verbose Enables verbose mode

-outputmakefile_name

Specifies the name of the generated makefile (Ma|
file by default)

-archmachine

Specifies the target architecture name

-0S0s

Specifies the target operating system name

-deffile file_name

Specifies the name of a private template file

-pushbacksizint_size

Changes pushback and argument collection size f

fom

the default size 4096.

50

O, Makegen User Manual

Options of configuration file

5.2 Options of confi guration file

method_name(s)

+[ExpClassName]Exp- | Specifies that the exported methods are not virtua
NoVirtual (false by default)

[ExpClassName]Exp- 0O,C methods of class ExpClassName are to be
Methods= exported (none by default).

[FileName][Class-
Name]lmpAsClass=
class_name

Imports C++ class_name as ClassName (see C+
Binding Guide)

[FileName][Class-
Name]lmpForward-
File=file_name

Specifies the file where the forwarded class is defir
(none by default).

ned

[FileName][Class-
Name]lmpMember-
Func=
function_member(s)

Member function(s) to be imported (none by defad

—

)

[FileName]ImpClasses=
class_name(s)

Classes to be imported. The definition of this class
found in FileName (no default).

S

[FileName]ImpForward-
Classes= class_name(s

All classes forwarded during the processing of Filg
Name (none by default).

[FileName]impLib-
Classes=class_name(s)

Classes belonging to an external C++ library and u
as a superclass of an imported class (none by def

sed
ault).

[FileName]ImpOutput-
Dir= directory

Path and directory in which C++ files are generate
for the classes in FileName. (current directory by
default).

[FileName]ImpUseDi-
rectory=
directory_name(s)

Directory path used to find files specified in [File-
Name]lmpUseFiles option (none by default).

[FileName]impUse-
Files= file_name(s)

Files which are required to parse FileName. For
example, an include file not explicitly included in th
FileName file (none by default).

+[ExpClassName]Exp-
Type

Type structure of the ExpClassName is also made
available to C++ (False by default).

t[FileName][Class-
Name]lmpAccessPri-
vateMember

Automatically generates access methods for priva
members (false by default).

e

t[FileName][Class-
Name]impAllPublic-
MemberFunc

Imports all public member functions of the class (false
default)

by

t[FileName]impNo-
Modification

Pointers to objects of an imported class are not m
fied inside FileName (by default they are transform

0di-
ed

to persistent pointers).

O, Makegen User Manual

51

Reference Guide

add

+Debug Permits generation of debuggable executable and
_d to the executable name
+02C++Target Used to find whichQuntime libraries are necessa

to build a ODMG C++ application (true by default)

+O2APITarget

Used to find whichQuntime libraries are necessa
to build a C application using thg,Engine API
interface (false by default)

Xe-

the

tto

+02CTarget Use to find which£Luntime libraries are necessal
to build an executable from an,© program (false by
default)

+02LinkCTarget Use to find which £runtime libraries are necessar
to build a C application using the C interface to O
(false by default)

+Profile Generates profiled executable and add _p to the ¢
cutable name

+Purify Applies Purify on the executable and add _pure to
executable name

+Quantify Applies Quantify on the executable and add _quar
the executable name

zUseArchiveLib Specifies that the archive version of 02 runtime

library must be used instead of the shared libraries$

(default is false).

+UseConfirmClasses

Indicates whether classes are automatically conf
or not after importation in 02 (default is false).

rmed

*UselLkBrowser Indicates whethep®ok browser editor is used or
not (default is false).

*UselkDialog Indicates whether,Qook dialog box editor is used
or not (default is false).

+UselLkGraph Indicates whethepok graph editor is used or ng
(default is false).

*UseLkPict Indicates whether,0ook picture editor is used or
not (default is false)

*UselLkText Indicates whether,Qook Text editor is used or not
(default is false).

*Uselook Indicates whether,0o0k is used or not (default is
false).

tUseMeta Indicates whether,@eta service is used or not
(default is false).

*UseO2xt Indicates whether,®t is used or not (default is
false).

+UseOq| Indicates whether OQL is used or not (default is

false).

52

O, Makegen User Manual

Options of configuration file

+UseVersion

Indicates whethep@rsion mechanism is used or
not (default is false).

Define= string_list

Adds or renames macro definitions to the compil
tion or link phase. None by default.

ExpClasses=
class_name(s)

O, classes to be exported (no default)

ExportLibFile= file
name list

For AIX only. Specifies export files for shared libra
ies

ExpOutputDir= directory

Directory path in which C++ files are generated (
rent directory by default).

HeadersDestDir= direc-
tory

Directory where all include files needed to use the
generated library must be installed (none by defay

b

cur-

ImpBag= type_name(s)

Bag of classes or atomic types are imported.

ImpFiles= file_name(s)

The C++ files where imported classes are define
default).

d (no

ImpList= type_name(s)

List of classes or atomic type are imported.

ImpSet= type_name(s)

Set of classes or atomic type are imported.

ImpVarray=
type_name(s)

Varray of classes or atomic type are imported.

Include= directory_list

Adds directories containing files to be included a
compilation or link. None by default.

LibDestDir= directory

Directory where the generated library must be
installed (default none).

LibHeaders= file_name

Files to be treated as the include file of the gene|
library (default none).

rated

LibName= library name

Library to build (none by default).

LibObjs= object files

Object files needed to build the library (no default

~

O2Home= directory

Qinstallation directory. Default can be positioned
a .site.cf file (see CUSTOMIZING o2makegen sec
tion).

=}

02Schema= schema
name

O, schema where classes will be imported (no
default).

O2Server= server name

>®erver which must be used by import and expo
tools (no default).

rt

0O2System= system nan

e ,8ystem in which the schema resides(no default

).

PostTarget= string list

Specifies the targets in the user-written makefile

will be executed after linking rules and before install

rules of the generated makefile are executed. All t
gets are executed once in the order listed.

that

ar-

O, Makegen User Manual

53

Reference Guide

PreTarget= string list

Specifies the targets in the user-written makefile
will be executed before any rules of the generated
makefile are executed. All targets are executed on
in the order listed.

ProgramDestDir= direc-
tory

Directory in which the generated program must be
installed (none by default).

ProgramLib= applica-
tion libraries name list

Specifies the application specific libraries that sho

that

d

be linked with the application (none by default). Fof a

library libx.a or libx.so(sl), you must give in the name

list only the part x (without lib and extension).

ProgramLibDir= library
directories list

Specifies the directories containing the application
specific libraries (none by default).

ProgramName= execut-
able name

Specifies the generation of the program called
executable_name. (no default).

ProgramObjs= object
files name list

Specifies the object files needed to build the execut-

able (no default).

RelocatableName=
relocatable_name

Generates a relocatable called relocatable_name
default).

(no

RelocatableObjs=
object_files

Object files needed to build the relocatable object.
The obiject files generated from the source files by
02cpp_import or o2cpp_export command must not
in this list.

an
be

Repositories=
directory _list

List of directories used as a C++ template repositq
during compilation or link phase. None by default.

=

y

Sources= source_files

Source files making up the application or library

SubDirs=directory_list

List of directories in which a make must be trigge

red

Undefine= string_list

Removes macro definitions to the compilation or
phase. None by default.

nk

UserLdFlags= flags for
the link editor

Flags added to the link commands

UserMakefile= file name

Specifies the user-written makefile. This makefilg
must contain all targets that are named in the Pre]
get and PostTarget options. It can also contains th
targets "all", "clean" and "install". In this case, the
actions defined for these targets are executed afte
corresponding actions defined in the generated m

file.

[ar-
e

r the
ake-

54

O, Makegen User Manual

INDEX

O, Makegen User Manual

55

INDEX

A

Application building 22
C application 34
+-O2LinkCTarget 35
UselLook 35
UseMeta 35
UseOQL 35
UseVersion 35
C++ application 29
0O2Schema 30
O2Server 30
0O2System 30
executable_name 22
O,C application 35
all 36
clean 36
install 36
O2CTarget 35
UselLook 36
UseMeta 36
UseOQL 36

O,Engine API application 36

all 36

clean 36
install 36
UselLook 36
UseMeta 36
UseOQL 36
UseVersion 36
ProgramLib 22
ProgramLibDir 22
ProgramName 22
ProgramObjs 22
UserLdFlags 22

Application installing 26
HeadersDestDir 26

Install 26
LibDestDir 26
LibHeaders 26
ProgramDestDir 26

Architecture
0, 10

C

c1u

C++
Interface 11

Configuration file 13 20
building application 22
building library 23
building relocatable 23
C application 34
compiling sources 24

computing dependencies 25

debugging 24
installing application 26
O,C application 35

O5Engine API application 36

syntax 20
triggering makefiles 26
user makefile 37

O, Makegen User Manual

INDEX

Configuration file options
Debug 52
Define 53
ExpClasses 53
ExpMethods 51
ExpNoVirtual 51
ExportLibFile 53
ExpOutputDir 53
ExpType 51
HeadersDestDir 53
ImpAccessPrivateMember
ImpAllPublicMemberFunc
ImpAsClass 51
ImpBag 53
ImpClasses 51
ImpFiles 53
ImpForwardClasses 51
ImpForwardFile 51
ImpLibClasses 51
ImpList 53
ImpMemberFunc 51
ImpNoModification 51
ImpOutputDir 51
ImpSet 53
ImpUseDirectory 51
ImpUseFiles 51
ImpVarray 53
Include 53
LibDestDir 53
LibHeaders 53
LibName 53
LibObjs 53
O2APITarget 52
O2C++Target 52
O2CTarget 52
O2Home53
O2LinkCTarget 52
02Schema 53
O2Server 53
O2System 53
PostTarget 53
PreTarget 54
Profile 52
ProgramDestDir 54
ProgramLib 54
ProgramLibDir 54
ProgramName 54
ProgramObjs 54
Purify 52

51
51

Quantify 52
RelocatableName 54
RelocatableObjs 54
Repositories 54
Sources 54

SubDirs 54
Undefine 54
UseArchiveLib 52
UseConfirmClasses 52
UselLkBrowser 52
UselLkDialog 52
UseLkGraph 52
UselLkPict 52
UselLkText 52
UselLook 52

UseMeta 52

UseO2xt 52

UseOql 52
UserLdFlags 54
UserMakefile 54
UseVersion 53

cpp 13

directives 21

Debugging 24

debug 22,24
profile 22,24
purify 22,25

quantify 22,25

Default template file 13
Dependencies computing 25

depend 25
Sources 25

O, Makegen User Manual 57

INDEX

F

Flags 15 Library building 23
default C++ compiler flags 44 +-CreateArchiveLib
default CC compiler flags 43 +-CreateSharedLib

install flags 45
linker flags 44

LibName 23
library_name 23

miscellaneous flags 44 Objs 23

Import/ export tools
ExpClasses 32

ExpMethods 32
ExpNoVirtual 32
ExpOutputDir 32
ExpType 32
ImpBag 30
ImpFiles 30
ImpList 30
ImpSet 30
ImpVarray 30

Java 11

UserLdFlags 23

M

make 13
Makefile 12
generated makefile

all 33
clean 33
clobber 33
export 33
import 33
install 33

unexport 33
unimport 33
makefile triggering 26

all 27
clean 27
clobber 27
install 27
SubDirs 26
master 14

sub-makefile 14

user makefile
PostTarget 37
PreTarget 37
serverlaunch 37
servershut 37
UserMakefile 37

23
23

O, Makegen User Manual

INDEX

all 14
clean 14
O clobber 14
install 14
OzODBC 11
O,Store 10
Oz o 0,Tools 11
+-UseArchivelib 28
+-UseOgl 29 OzWeb 11
Advantages 12 OQL 11
Architecture 10 Interface 28
O2Home?28
UseLkBrowser 29
UselLkDialog 29
UseLkGraph 29 P
UseLkPict 29
UseLkText 29
UselLook 29
UseMeta 29 .
UseO2xt 29 Platform template file 13
UseVersion 29
0,C 11
O,Corba 11 R
O,DBAccess 11
O5Engine 10
O,Graph 11
O2HOME/ config directory 26,48 Relocatable building 23
O.Kit 11 RelocatableName 23
O,Look 11 RelocatableObjs 24
O,Makegen 12 13 UserLdFlags 24
dependencies Rules 12
depend 15 Runtime libraries 28,29, 30,52
error messages 48
invoking 16
options
-arch 50
deffile 50 S
-help 50
-0s 50
-output 50
pushbacksize 48,50 Site template file 40
-verbose 50 Source files 20
-version 50 compiling 24
TMPDIR 48 Define 24
troubleshooting 47 Include 24
lusr/tmp 48 Repositories 24

use 14

O, Makegen User Manual

% INDEX

Undefine 24

System
Architecture 10
Features 12

Template files 40

default 40

macros
clean target filesis
default C++ compiler flagg4
default CC compiler flagg3
default command definitions3
install flags4s
linker flags 44
miscellaneous flags4

platform 40

site 40

syntax 40

user 40

U

User template file 13

60 O, Makegen User Manual

	MAIN MENU TO O2 DOCUMENTATION
	O2 Makegen User Manual
	Who should read this manual
	TABLE OF CONTENTS
	1 The Build Process 9
	2 O2Makegen Configuration File 19
	3 Customizing O2Makegen 39
	4 Troubleshooting Guidelines 47
	5 Reference Guide 49
	INDEX 55

	1 The Build Process
	1.1 System Overview
	Figure 1.1: O2 System Architecture

	1.2 The O2Makegen tool
	1.3 Using O2Makegen
	1.4 Invoking O2Makegen
	1.4.1. External influences
	1.4.2. Return value

	2 O2Makegen Configuration File
	2.1 Introduction
	2.2 The configuration file syntax
	2.3 Basic options
	2.3.1. Building an application
	2.3.2. Building a library
	2.3.3. Building a relocatable
	2.3.4. Compiling sources
	2.3.5. Debugging
	2.3.6. Computing dependencies
	2.3.7. Installing an application
	2.3.8. Triggering makefiles in sub directories
	2.3.9. Example

	2.4 O2 specific options
	2.5 Building a C++ application
	2.6 Building a C application
	2.7 Building an O2C application
	2.8 Building an O2Engine API application
	2.9 Adding your own makefile

	3 Customizing O2Makegen
	3.1 Template files
	3.2 Syntax of a template file
	3.3 List of modifiable macros
	3.3.1. Default Command Definitions
	3.3.2. Default cc compiler flags
	3.3.3. Default C++ compiler flags
	3.3.4. Miscellaneous flags
	3.3.5. Linker flags
	3.3.6. Install flags
	3.3.7. Files used in clean target

	4 Troubleshooting Guidelines
	5 Reference Guide
	5.1 Options of the O2Makegen tool
	5.2 Options of configuration file

	INDEX
	A
	Application building�22
	C application�34
	C++ application�29
	executable_name�22
	O2C application�35
	O2Engine API application�36
	ProgramLib�22
	ProgramLibDir�22
	ProgramName�22
	ProgramObjs�22
	UserLdFlags�22

	Application installing�26
	HeadersDestDir�26
	Install�26
	LibDestDir�26
	LibHeaders�26
	ProgramDestDir�26

	Architecture
	O2�10

	C
	C�11
	C++
	Interface�11

	Configuration file�13, 20
	building application�22
	building library�23
	building relocatable�23
	C application�34
	compiling sources�24
	computing dependencies�25
	debugging�24
	installing application�26
	O2C application�35
	O2Engine API application�36
	syntax�20
	triggering makefiles�26
	user makefile�37

	Configuration file options
	Debug�52
	Define�53
	ExpClasses�53
	ExpMethods�51
	ExpNoVirtual�51
	ExportLibFile�53
	ExpOutputDir�53
	ExpType�51
	HeadersDestDir�53
	ImpAccessPrivateMember�51
	ImpAllPublicMemberFunc�51
	ImpAsClass�51
	ImpBag�53
	ImpClasses�51
	ImpFiles�53
	ImpForwardClasses�51
	ImpForwardFile�51
	ImpLibClasses�51
	ImpList�53
	ImpMemberFunc�51
	ImpNoModification�51
	ImpOutputDir�51
	ImpSet�53
	ImpUseDirectory�51
	ImpUseFiles�51
	ImpVarray�53
	Include�53
	LibDestDir�53
	LibHeaders�53
	LibName�53
	LibObjs�53
	O2APITarget�52
	O2C++Target�52
	O2CTarget�52
	O2Home�53
	O2LinkCTarget�52
	O2Schema�53
	O2Server�53
	O2System�53
	PostTarget�53
	PreTarget�54
	Profile�52
	ProgramDestDir�54
	ProgramLib�54
	ProgramLibDir�54
	ProgramName�54
	ProgramObjs�54
	Purify�52
	Quantify�52
	RelocatableName�54
	RelocatableObjs�54
	Repositories�54
	Sources�54
	SubDirs�54
	Undefine�54
	UseArchiveLib�52
	UseConfirmClasses�52
	UseLkBrowser�52
	UseLkDialog�52
	UseLkGraph�52
	UseLkPict�52
	UseLkText�52
	UseLook�52
	UseMeta�52
	UseO2xt�52
	UseOql�52
	UserLdFlags�54
	UserMakefile�54
	UseVersion�53

	cpp�13
	directives�21

	D
	Debugging�24
	debug�22, 24
	profile�22, 24
	purify�22, 25
	quantify�22, 25

	Default template file�13
	Dependencies computing�25
	depend�25
	Sources�25

	F
	Flags�15
	default C++ compiler flags�44
	default CC compiler flags�43
	install flags�45
	linker flags�44
	miscellaneous flags�44

	I
	Import/export tools
	ExpClasses�32
	ExpMethods�32
	ExpNoVirtual�32
	ExpOutputDir�32
	ExpType�32
	ImpBag�30
	ImpFiles�30
	ImpList�30
	ImpSet�30
	ImpVarray�30

	J
	Java�11

	L
	Library building�23
	+-CreateArchiveLib�23
	+-CreateSharedLib�23
	LibName�23
	library_name�23
	Objs�23
	UserLdFlags�23

	M
	make�13
	Makefile�12
	generated makefile
	makefile triggering�26
	master�14
	sub-makefile�14
	user makefile

	O
	O2
	+-UseArchiveLib�28
	+-UseOql�29
	Advantages�12
	Architecture�10
	O2Home�28
	UseLkBrowser�29
	UseLkDialog�29
	UseLkGraph�29
	UseLkPict�29
	UseLkText�29
	UseLook�29
	UseMeta�29
	UseO2xt�29
	UseVersion�29

	O2C�11
	O2Corba�11
	O2DBAccess�11
	O2Engine�10
	O2Graph�11
	O2HOME/config directory�26, 48
	O2Kit�11
	O2Look�11
	O2Makegen�12, 13
	dependencies
	error messages�48
	invoking�16
	options
	TMPDIR�48
	troubleshooting�47
	use�14

	O2ODBC�11
	O2Store�10
	O2Tools�11
	O2Web�11
	OQL�11
	Interface�28

	P
	Platform template file�13

	R
	Relocatable building�23
	RelocatableName�23
	RelocatableObjs�24
	UserLdFlags�24

	Rules�12
	Runtime libraries�28, 29, 30, 52

	S
	Site template file�40
	Source files�20
	compiling�24

	System
	Architecture�10
	Features�12

	T
	Template files�40
	default�40
	macros
	platform�40
	site�40
	syntax�40
	user�40

	U
	User template file�13

