
O2 Makegen
 User Manual

Release 5.0 - April 1998

Information in this document is subject to change without notice
and should not be construed as a commitment by
O2 Technology.

The software described in this document is delivered under a
license or nondisclosure agreement.

The software can only be used or copied in accordance with the
terms of the agreement. It is against the law to copy this software
to magnetic tape, disk, or any other medium for any purpose
other than the purchaser’s own use.

Copyright 1992-1998 O2 Technology.

All rights reserved. No part of this publication can be
reproduced, stored in a retrieval system or transmitted in any
form or by any means, electronic, mechanical, photocopy without
prior written permission of O2 Technology.

O2, O2Engine API, O2C, O2DBAccess, O2Engine, O2Graph,
O2Kit, O2Look, O2Store, O2Tools, and O2Web are registered
trademarks of O2 Technology.

SQL and AIX are registered trademarks of International
Business Machines Corporation.

Sun, SunOS, and SOLARIS are registered trademarks of Sun
Microsystems, Inc.

X Window System is a registered trademark of the
Massachusetts Institute of Technology.

Unix is a registered trademark of Unix System Laboratories, Inc.

HPUX is a registered trademark of Hewlett-Packard Company.

BOSX is a registered trademark of Bull S.A.

IRIX is a registered trademark of Siemens Nixdorf, A.G.

NeXTStep is a registered trademark of the NeXT Computer, Inc.

Purify, Quantify are registered trademarks of Pure Software Inc.

Windows is a registered trademark of Microsoft Corporation.

All other company or product names quoted are trademarks or
registered trademarks of their respective trademark holders.

Who should read this manual

This manual describes how to build O2 applications by creating
makefiles which invoke O2 and system tools. O2Makegen generates a
platform dependent makefile from platform independent information
stored in a configuration file. O2Makegen may be utilized for building
applications using C++, O2C, C and O2Engine API.

Other documents available are outlined, click below.

See O2 Documentation set .

TABLE OF CONTENTS
This manual is divided in to the following chapters:

• 1 - In t roduct ion

• 2 - Runtime Library

• 3 - Example C applicat ion
 O2 Makegen User Manual 5

TABLE OF CONTENTS
1 The Build Process 9

1.1 System Overview..10

1.2 The O2Makegen tool ..12

1.3 Using O2Makegen ..14

1.4 Invoking O2Makegen ...16

2 O2Makegen Configuration File 19

2.1 Introduction ..20

2.2 The configuration file syntax ..20

2.3 Basic options..21

2.4 O2 specific options ..28

2.5 Building a C++ application ..29

2.6 Building a C application ..34

2.7 Building an O2C application ...35

2.8 Building an O2Engine API application36

2.9 Adding your own makefile...37

3 Customizing O2Makegen 39

3.1 Template files..40

3.2 Syntax of a template file ..40

3.3 List of modifiable macros..42

4 Troubleshooting Guidelines 47

5 Reference Guide 49

5.1 Options of the O2Makegen tool ..50

5.2 Options of configuration file ...51
6 O2 Makegen User Manual

TABLE OF CONTENTS
INDEX 55
O2 Makegen User Manual 7

TABLE OF CONTENTS
8 O2 Makegen User Manual

1 The Bui ld Process

GENERAL OVERVIEW OF THE O2MAKEGEN TOOL

1

Congratulations! You are now a user of the O2Makegen tool!

This chapter gives an overview of the O2 system and describes the
different steps in binding together the layers of an O2 application to build
an executable.

The chapter is divided into the following sections:

• System Overview

• The O2Makegen tool

• Using O2Makegen

• Invok ing O2Makegen
 O2 Makegen User Manual 9

The Build Process1
1.1 System Overview

The system architecture of O2 is illustrated in Figure 1.1.

Fi gu r e 1 .1 : O2 Syst em Ar ch i t ect u r e

The O2 system can be viewed as consisting of three components. The
Database Engine provides all the features of a Database system and an
object-oriented system. This engine is accessed with Development
Tools, such as various programming languages, O2 development tools
and any standard development tool. Numerous External Interfaces are
provided. All encompassing, O2 is a versatile, portable, distributed,
high-performance dynamic object-oriented database system.

Database Engine:

• O2Store The database management system provides low level
facilities, through O2Store API, to access and manage a
database: disk volumes, files, records, indices and
transactions.

• O2Engine The object database engine provides direct control of
schemas, classes, objects and transactions, through
O2Engine API. It provides full text indexing and search
capabilities with O2Search and spatial indexing and
retrieval capabilities with O2Spatial. It includes a
Notification manager for informing other clients
connected to the same O2 server that an event has
occurred, a Version manager for handling multiple
object versions and a Replication API for synchronizing
multiple copies of an O2 system.

O2CC++ Java

O2 Dev. Tools

O2DB
Access

OQL

Standard
Dev. Tools

O2Web

O2Corba

Development Tools

C

Database Engine

O2Engine

O2Store

External
Interfaces

O2ODBCO2 Makegen
10 O2 Makegen User Manual

System Overview
Programming Languages:

O2 objects may be created and managed using the following
programming languages, utilizing all the features available with O2
(persistence, collection management, transaction management, OQL
queries, etc.)

• C O2 functions can be invoked by C programs.

• C++ ODMG compliant C++ binding.

• Java ODMG compliant Java binding.

• O2C A powerful and elegant object-oriented fourth
generation language specialized for easy development
of object database applications.

• OQL ODMG standard, easy-to-use SQL-like object query
language with special features for dealing with complex
O2 objects and methods.

O2 Development Tools:

• O2Graph Create, modify and edit any type of object graph.

• O2Look Design and develop graphical user interfaces, provides
interactive manipulation of complex and multimedia
objects.

• O2Kit Library of predefined classes and methods for faster
development of user applications.

• O2Tools Complete graphical programming environment to
design and develop O2 database applications.

Standard Development Tools:

All standard programming languages can be used with standard
environments (e.g. Visual C++, Sun Sparcworks).

External Interfaces:

• O2Corba Create an O2/Orbix server to access an O2 database
with CORBA.

• O2DBAccess Connect O2 applications to relational databases on
remote hosts and invoke SQL statements.

• O2ODBC Connect remote ODBC client applications to O2
databases.

• O2Web Create an O2 World Wide Web server to access an O2
database through the internet network.
 O2 Makegen User Manual 11

The Build Process1
1.2 The O2Makegen tool

Most software are built using the same underlying procedures:

• obtain user source code files

• create automatically generated source code files (if any)

• use compiler to convert source code to machine code

• supply any additional compiled objects and libraries

• use a linker to create an executable

• install executable and other files needed at run-time.

There are many ways of building an application. Software development
environments vary widely. Tools that support the build process, such as
O2Makegen, must therefore be highly flexible to allow for the largest
range of situations.

On UNIX and MS-Windows systems, application building is supported by
the "make" utility, which uses input file known as "makefile" to invoke
system utilities like compiler and linker to build application. The "make"
utility contains logic to minimize the steps needed to build applications by
avoiding unnecessary steps.

Makefiles contain entries known as "targets", which in turn have "rules"
which are lists of commands to execute to construct the target. Each
target has one or more "dependencies", which can be other targets that
must be executed first. By recursively executing dependencies, the
"make" tool avoids unnecessary actions or compilations. Makefiles may
contain macros, which are text symbols expanded when targets are
executed. These macros allow for more compact and readable makefiles.

The O2Makegen tool assists in building O2 applications by creating
makefiles that invoke O2 and system tools to perform the build.
O2Makegen reduces the time spent creating makefiles by reducing the
information you provide to control what "make" does.

A powerful feature of O2Makegen is the capability to generate a platform-
dependent makefile from platform-independent information stored in a
configuration file. All information you supply is independent of the
platform and O2Makegen generates all platform-dependent stuff.
12 O2 Makegen User Manual

The O2Makegen tool

.

e

.

You do not have to worry about platform dependencies. O2Makegen can
be used to build applications using O2 ODMG C++ binding, O2C, C
Interface to O2, O2Engine API runtime from O2 Technology.

Part Name Description

configuration file provides application-dependent information such as
the name of source files, header files which must be
imported, libraries to link, ...

command line options gives information about platforms, makefile name,..

cpp (C preprocessor) preprocesses the configuration file.

default template file gives the default for tools and commands used in th
makefile (located in O2HOME/config)

platform template file gives the tools and commands used in the makefile
when different from the default (located in
O2HOME/config)

user template file gives the tools and commands used in the makefile
for a particular installation when different from the
default- and from the platform-specific ones.

O2Makegen tool generates a makefile based on all input provided.

make tool builds the targets specified in the generated makefile

CPP

o2makegen

Executable, library,
etc

template files:
default,

platform,
user

C, C++, include
file,
etc

make

command line options

Makefile

configuration file
 O2 Makegen User Manual 13

The Build Process1

1.3 Using O 2Makegen

The model enforced by O2Makegen is that within a directory, only one
program, library or re-locatable object can be created. If you have
multiple directories, you can define one makefile per directory, and a
master makefile in the root directory which triggers the other
sub-makefiles in the sub-directories.

When you run "make", you usually must tell it what to build. The
generated makefile allows you to invoke several targets:

• Building And Installing An Application :

These entry points are created in the makefile to build and install an
application:

Whenever you run "make", all products of the build process are placed in
the directory in which "make" is run.

• Removing Generated Files :

These entry points are created in the makefile to remove generated files:

Targets Description

all Creates the executable or the library

install Installs the executable or the library and the include
files necessary when using the library

Targets Description

clean removes all the temporary files (e.g. object files) and
the executable or library

clobber performs clean, and removes the files generated by O2
tools
14 O2 Makegen User Manual

Using O2Makegen
• Generating Dependencies :

The following entry point is created in the makefile to generate
dependencies:

The default target (i.e. the one chosen when you run "make" without
indicating a target) is "all".

Not all entry points are created in the makefile:

• " all ", " clean ", " clobber " are always created

• " install " is created only if the destination is given in the configuration file

• " depend " is created only if all sources are given in the configuration file.

Depending on the type of executable, some targets are added to the
generated makefile. For example, when you build a O2 C++ ODMG
application, "import" and "unimport" targets are created to import and
unimport C++ classes definitions in the O2 database.

You may wish to have additional actions performed by the generated
makefile. This can be done by adding a user makefile which is invoked
by the generated makefile.

The makefile generated by O2Makegen contains definitions related to
the machine type, the operating system and its version. These
definitions allow portions of your source code to be machine-dependent.
They are passed to the compiler by means of -D flags.

These definitions are described below:

HP machines :

• DHP800

• DHPUX

• DHPUX_9x

• DHPUX_10x

Targets Description

depend adds dependency rules to the makefile
 O2 Makegen User Manual 15

The Build Process1
IBM or Bull machines

• DIBMRS600

• DAIX

• DAIX_32

• DAIX_42

Sun machines

• DSPARC

• DSOLARIS

• DSOLARIS_2x

• DSUNOS

• DSUNOS_41

Silicon Graphic machines

• DSGI

• DIRIX

• DIRIX_5.x

 Digital Alpha Machines

• DALPHA

• DOSF1

Intel machines

• DX86

• DSCO

• DSCO_32

• DSOLARIS

• DSOLARIS_2x

• DWIN32

x is the release number.

1.4 Invoking O 2Makegen

The syntax is the following:
o2makegen [options] configuration_file

where "options" are :
16 O2 Makegen User Manual

Invoking O2Makegen :
The default values for "arch" and "os" options are the architecture and
the operating system on which o2makegen is running.

The "arch" option recognizes the following machine type:

SPARC

HP800

SGI

IBMRS6000

DECALPHA

RM

X86

The "os" option recognizes the values:

SUNOS_41

SOLARIS_2x

HPUX_9x

HPUX_10x

IRIX_5x

AIX_32

AIX_42

OSF1

SINIX_54

Name Description

-help displays a help facility and exits

-version prints version number of o2makegen and exits

-verbose enables verbose mode

-output makefile_name specifies the name of the generated makefile (Make-
file by default)

-arch machine specifies the target architecture name

-os os specifies the target operating system name

-deffile file_name specifies the name of a private template file

-pushbacksize int-size sets pushback and argument collection size (default
4096)
 O2 Makegen User Manual 17

The Build Process1
SCO_32

WINDOWS

(x is the release number).

1.4.1. External influences

You can use the TMPDIR environment variable to set the directory in
which O2Makegen creates temporary files.

On Sparc with SUNOS_41 O2Makegen uses the Sun executable
/usr/5bin/m4 available with the system V software installation option.

1.4.2. Return value

O2Makegen exits with one of the following values:

0 if makefile generation is successful.

>0 if aborted due to processing errors.

<0 if makefile generation carried out but with warning
messages.

The following chapter describes the configuration file contents in more
details.
18 O2 Makegen User Manual

2 O2Makegen
Configuration File2
This chapter is divided into the following sections:

• Introduction

• The configuration file syntax

• Basic options

• O2 specific options

• Building a C++ application

• Building a C application

• Building an O2C application

• Building an O2Engine API application

• Adding your own makefile
 O2 Makegen User Manual 19

O2Makegen Configuration File2
2.1 Introduction

To build an application, you need to provide a configuration file to supply
information to O2Makegen to create a makefile. The configuration file
contains all the necessary information to build your application.

This information includes the names of source files and precompiled
objects, executables names,...

The configuration file can have any name, but generally the extension
".cf" is used.

The configuration file is used by O2Makegen and specifies :

• Application source files (.C, .cc and .h)
• Application library/object files (archive library, shared library and .o)
• The library environment
• Macro definitions and include directories

The C preprocessor "cpp" is run on the configuration file to maximize
flexibility. You can use "cpp" macros to customize your configuration file.

2.2 The configuration file syntax

A configuration file contains comment lines, blank lines and directives. A
comment line is introduced by a semicolon (;) going to the end of the line.
C comment syntax is also accepted.

A directive line contains one of a predefined set of options as the first
word, followed by user supplied information as in:

ExpClasses= Person City

If the user-supplied information is a list of items, each item must be
separated by one or more spaces.

Warnin g !
If the same label (first word of a directive) appears multiple times in the
same file, only the last appearance is relevant. All other directives with
the same label are ignored.
20 O2 Makegen User Manual

Basic options :
If the user-supplied information is an option, preceding the label with the
plus sign (+) indicates that the option is active. The minus sign (-)
indicates that the option is inactive. For example,

+Debug

indicates that the debug mode is active.

All options are disabled by default, except "O2C++Target"

As the C preprocessor is run on your configuration file before it is used,
you can place "cpp" directives anywhere in the configuration file to
achieve effects such as conditional building.

Spaces and tabs can be inserted freely between elements without
altering semantics. Since the configuration file is line-oriented, line feeds
cannot be inserted freely. A ’\’ followed by a new line is treated as a
continuation line and permits to break a long line into many shorter lines.

Unprotected $ characters cause a search in the environment for the
following name. In this way, $HOME is expanded to the string in the
process environment. If $ characters are to be literal, protect the $
character using a back slash as in \$HOME.

2.3 Basic o ptions

This section is divided up as follows :

• 2.3.1. Building an application

• 2.3.2. Building a library

• 2.3.3. Building a relocatable

• 2.3.4. Compiling sources

• 2.3.5. Debugging

• 2.3.6. Computing dependencies

• 2.3.7. Installing an application

• 2.3.8. Triggering makefiles in sub directories

• 2.3.9. Example
 O2 Makegen User Manual 21

O2Makegen Configuration File2

-

2.3.1. Building an application

If you want to obtain an executable, you must use the following options:

These options generate a target whose name is executable_name. This
target is added as dependency to the "all" target which is the default
target.

The action associated with this target is the link edition of all object files
and libraries for obtaining the executable.

If the options Debug, Profile, Purify or Quantify are set, the name of the
executable is changed and is postfixed by "_d", "_p", "_pure" and
"_quant".

Warning !
O2 runtime libraries must not appear in the "ProgramLib" list.

The following option is specific to AIX:

ExportLibFile = file name list

Export files are ASCII files identifying external symbols that are made
available for another object executable to import.

See the AIX documentation set for more information.

Options Description

ProgramName =
executable_name

specifies the generation of the program called executable
name. (no default).

ProgramObjs = object files
name list

specifies the object files needed to build the executable
(no default).

ProgramLib = application
libraries name list

specifies the application specific libraries that should be
linked with the application (none by default). For a library
libx.a or libx.so (sl), you must give in the name list only
the part x (without the "lib" prefix and the suffix)

UserLdFlags = flags for
the link editor

specifies flags added to the link command

ProgramLibDir = library
directories list

specifies the directories containing the application specific
libraries (none by default).
22 O2 Makegen User Manual

Basic options : 2.3.2. Building a library
2.3.2. Buildin g a librar y

If you want to construct an archive library, you must use the following
options:

These options generate a target whose name is library_name. This
target is added as dependency to the "all" target which is the default
target.

Using +CreateSharedLib and +CreateArchiveLib constructs a shared
library (and not a shared library and an archive library within one
makefile). If none is used, an archive library is built by default.

The action associated with this target is the archival of all object files in a
library.

2.3.3. Buildin g a relocatable

If you want to construct a relocatable object, you must use the following
options:

Options Description

LibName = library name specifies library to build (no default).

UserLdFlags = flags for the
link editor

specifies flags added to the link commands

Objs = LibObjs specifies object files needed to build the library (no
default). The object files generated from the source
files by an o2cpp_import or o2cpp_export command
must not be in this list.

+- CreateArchiveLib specifies the type of library to be built. +CreateArch-
iveLib permits to build an archive library. Archive
library is the default.

+-CreateSharedLib specifies the type of library to be built. +Create-
SharedLib permits to build a shared library. Indicating

 -CreateSharedLib builds an archive lib.

Options Description

RelocatableName =
relocatable_name

generation of a relocatable called relocatable_name
(no default).
 O2 Makegen User Manual 23

O2Makegen Configuration File2

These options generate a target whose name is relocatable_name. This
target is added as dependency to the "all" target which is the default
target.

The action associated with this target is the construction of one object
from all object files.

2.3.4. Compiling sources

To compile your source files, you can supply the following information:

2.3.5. Debugging

If you want to obtain an executable with the debug information, you must
set:

+Debug

in the configuration file. The default value is false. The generated
executable is postfixed by "_d". You can use your favorite debugger to run
your application.

Using the following keyword

+Profile

UserLdFlags = flags for the
link editor

flags added to the link commands

RelocatableObjs =
object_files

Object files needed to build the relocatable object.

Options Description

Define=string_list adds or renames macro definitions to the compilation
or link phase.None by default.

Undefine =string_list removes macro definitions to the compilation or link
phase. None by default.

Include=directory_list adds directory containing files to be included at com-
pilation or link phase. None by default.

Repositories=directory_list list of directories used as a C++ template repository-
during compilation or link phase. None by default.

Options Description
24 O2 Makegen User Manual

Basic options : 2.3.6. Computing dependencies
permits to generate an executable or library which contains code for
profiling (using the OS supplied profiler). The name of the executable or
of the library is postfixed by "_p". The default value is false.

Warning !
If Debug and Profile are set, only Debug is relevant, Profile is ignored.
The generated executable is postfixed by "_d".

Purify TM, a product of Pure Software, is a tool that you can use to track
down memory leaks and errors in your application. When you build your
application, set :

+Purify

+Debug

in the configuration file. The generated executable is postfixed by
"_pure". When you run your executable, memory leakage and access
errors are tracked down. For more information on Purify, see the Purify
documentation set. The default value is false.

You can also use Quantify TM, another product of Pure Software. It is a
tool that identifies the portions of your application that dominate its
execution time. When you build your application, set :

+Quantify

+Debug

in the configuration file. The generated executable is postfixed by
"_quant". After running your application, the profile of execution is
displayed. For more information on Quantify, see the Quantify
documentation set. The default value is false.

2.3.6. Computin g dependencies

If you set the following in your configuration file:

a "depend" target is generated. Launching "make depend" modifies the
makefile and adds all dependencies between source and include files.

Options Description

Sources=source_files source files making up the application or library
 O2 Makegen User Manual 25

O2Makegen Configuration File2

n-
2.3.7. Installing an application

The following installation information can be set in the configuration file to
install the generated program, or generated library elsewhere than in the
current directory :

If this information is given, an "install" target is generated in the makefile.

2.3.8. Triggering makefiles in sub directories

The model enforced by o2makegen is that within a directory, only one
program, library or re-locatable object can be created. If you have
multiple directories, you can define one makefile per directory, and a
master makefile in the root directory which triggers the other sub-
makefiles.

This master makefile can be generated by giving the following
information in the configuration file :

The generated makefile contains four targets :

Options Description

ProgramDestDir=directory directory in which the generated program must be
installed (none by default).

LibDestDir=directory directory where the generated library must be installed
(default none).

LibHeaders=file_name file to be treated as the include file of the generated
library (default none).

HeadersDestDir=directory directory where all include files needed to use the ge
erated library must be installed (none by default).

Options Description

SubDirs=directory_list list of directories in which a make must be triggered.
26 O2 Makegen User Manual

Basic options : 2.3.9. Example
Choosing one of these targets generates a call to each makefile found in
each listed directory with the chosen target. All submakefiles are
executed once in the order listed.

2.3.9. Example

In a first directory named "Lib", this first configuration file will generate a
makefile to construct the archive library "my_lib" from the object files
"pragma.o" and "collection.o". These object files are created from C++
files "pragma.cc" and "collection.cc" by the C++ compiler.

LibName= my_lib

LibObjs= pragma.o \

 collection.o

Sources= pragma.cc \

 collection.cc

In a second directory named "Prog", this second configuration file will
generate a Makefile to construct the executable "my_prog" from the
object files "main.o", "o2connect.o" and "foo.o" and from the archive
library "my_lib". These object files are created from C++ file "main..cc"
by the C++ compiler and C files "o2connect.c" and "foo.c" by the C
compiler.

ProgramName= my_prog

ProgramObjs= main.o o2connect.o foo.o

ProgramLib= my_lib

ProgramLibDir= ../Lib

Targets Description

all triggers "all" targets of all makefiles found in the sub-
directories

clean triggers "clean" targets of all makefiles found in the
subdirectories

clobber triggers "clobber" targets of all makefiles found in the
subdirectories

install triggers "install" targets of all makefiles found in the
subdirectories
 O2 Makegen User Manual 27

O2Makegen Configuration File2
Sources= main.cc o2connect.c foo.c

You can create a master makefile for these two directories in the parent
directory :

SubDirs= Lib Prog

The generated makefile triggers first the makefile in the "Lib" directory to
construct the "my_lib" library, and then the makefile in the "Prog"
directory to construct the executable "my_prog" which uses the library
"my_lib".

2.4 O2 specific options

These options specify information about O2 environment used to
generate the makefile. These options must be valued if you want to use
tools and/or libraries from the O2 environment.

This includes the following items:

By default, O2 applications are built using shared version of the libraries
from O2 runtime. For debugging or delivery purposes, you can use the
archive versions of the O2 runtime libraries by setting the following
option:

Options Description

O2Home=directory O2 installation directory. Default can be positioned in
a .site.cf file (see Customizing O2Makegen section).

Options Description

+-Use ArchiveLib specifies which archive versions of O2 runtime
 libraries must be used in place of the shared libraries
(default is false)
28 O2 Makegen User Manual

Building a C++ application : 2.3.9. Example
The following options indicate which runtime libraries should be used to
build your application:

Refer to the O2Look documentation set for more information about
specific editors and o2xts.

2.5 Buildin g a C++ application

If you use the ODMG C++ binding, you can use o2makegen to create a
makefile which allows you to invoke new targets:

Options Description Runtime libraries

+-UseOql indicates whether OQL is used or
not (default is false)

o2sql

+-UseLook indicates whether O2Look is used
or not (default is false)

o2look, Xm, Xt, X11

+-UseLkBrowser indicates whether O2Look browser
editor is used or not (default is
false)

o2look, o2look_browser,
Xm, Xt, X11

+-UselkDialog indicates whether O2Look dialog
box editor is used or not (default is
false)

o2look, o2look_dialog,
Xm, Xt, X11

+-UseLkGraph indicates whether O2Look graph
editor is used or not (default is
false)

o2look, o2look_graph,
Xm, Xt, X11

+-UseLkPict indicates whether O2Look picture
editor is used or not (default is
false)

o2look, o2look_pict, Xm,
Xt, X11

+-UseLkText indicates whether O2Look Text
editor is used or not (default is
false)

o2look, o2look_text, Xm,
Xt, X11

+-UseO2xt indicates whether O2Xt is used or
not (default is false)

o2xt

+-UseVersion indicates whether O2Version
mechanism is used or not (default
is false)

o2vm

+-UseMeta indicates whether O2 meta service
is used or not (default is false)

o2compiler, o2syntax,
o2cruntime.
 O2 Makegen User Manual 29

O2Makegen Configuration File2
• import

• unimport

• export

• unexport

These targets invoke the o2cpp_import, o2cpp_unimport, o2cpp_export
and o2cpp_unexport tools.

These new targets are added to the dependency list of the target "all". So
when you build your executable by calling make, these new targets are
triggered if necessary.

All necessary O2 runtime libraries are automatically added to your
executable.

To create this type of makefile, you must set the following option in the
configuration file :

±O2C++Target

To use the import and/or export tools from O2, the makefile must know
the following information :

To import C++ classes in O2, you can use the following options in
addition to the one described in the above sections :

Options Description

O2Schema = schema name O2 schema where classes will be imported (no
default)

O2System = system name O2 system in which the schema resides (no default)

O2Server = server name O2 server which must be used by import and export
tools (no default)

Options Description

ImpFiles = file_name(s) C++ files where imported classes are defined (no
default).

ImpList = type_name(s) list of classes or atomic types to be imported.

ImpBag = type_name (s) bag of classes or atomic types to be imported.

ImpSet = type_name(s) set of classes or atomic types to be imported

ImpVarray = type_name(s) varray of classes or atomic types to be imported.
30 O2 Makegen User Manual

Building a C++ application : 2.3.9. Example

i-

ti-
For each file given in the "ImpFiles" options, you must give the following
information :

Options Description

[FileName]ImpClasses= class_name(s) list of classes to be imported. The defin
tion of this class is found in FileName (no
default).

[FileName]ImpOutputDir= directory path and directory in which C++ files are
generated for the classes in FileName (cur-
rent directory by default).

[FileName]ImpForwardClasses=
class_name(s)

All classes forwarded during the pro-
cessing of FileName (none by default).

[FileName][ClassName]ImpAsClass=
class_name

Import class_name as ClassName (see
C++ Binding Guide).

 [FileName][ClassName]ImpForward-
File= file_name

Specifies the file where the forwarded
class is defined (none by default).

[FileName][ClassName]ImpMember-
Func= function_member(s)

Member function(s) to be imported
(none by default)

 ±[FileName][ClassName]ImpAllPub-
licMemberFunc

Imports all public member functions of
the class (false by default).

+-[FileName][ClassName]ImpAccessPri-
vateMember

Automatically generates access meth-
ods for private members (false by
default)

[FileName]ImpUseFiles= file_name(s) Files which are required to parse File-
Name. For example, an include file not
explicitly included in the FileName file
(none by default).

[FileName]ImpUseDir=
directory_name(s)

Directory path used to find files speci-
fied in [FileName]ImpUseFiles option
(none by default).

±[FileName]ImpNoModification Pointers to objects of an imported class
are not modified inside FileName (by
default they are transformed to persis-
tent pointers).

[FileName]ImpLibClasses=
class_name(s)

Classes belonging to an external C++
library and used as a superclass of an
imported class (none by default).

±UseConfirmClasses Indicates whether classes are automa
cally confirmed or not after importation
in O2. (Default is false).
 O2 Makegen User Manual 31

O2Makegen Configuration File2

e
To export O2 classes, you must provide the following information:

For more information, refer to the ODMG C++ Binding documentation
set.

When building an ODMG C++ application, you can use the following
options:

• UseMeta

• UseVersion

• UseOQL

• UseLook and all specific editors

Warning !
The object files generated from the source files created by an
o2cpp_import or o2export command must not be in the ProgramObjs list
nor in the LibObjs list.

The generated makefile contains 8 targets :

Options Description

ExpOutputDir=directory Directory path in which C++ files are generated
(current directory by default).

ExpClasses= class_name(s) O2 classes to be exported (no default)

±[ExpClassName]ExpType Type structure of the ExpClassName is also mad
available to C++ (False by default).

 ±[ExpClassName]Exp-
NoVirtual

Specify that the exported methods are not virtual
(false by default)

[ExpClassName]Exp-
Methods= method_name(s)

O2C methods of class ExpClassName to be
exported (none by default).
32 O2 Makegen User Manual

Building a C++ application : 2.3.9. Example
Example:

+O2C++Target

ProgramName= odmg

ProgramObjs= main.o o2connect.o pragma.o \

 bag.o list.o set.o array.o \

 collection.o collection_int.o
collection_real.o \

 collection_string.o

Sources= main.cc o2connect.c pragma.cc \

 bag.cc list.cc set.cc array.cc \

 collection.cc collection_int.cc collection_real.cc
\

 collection_string.cc

O2Home= $O2MK_HOME

O2System= $O2MK_SYSTEM

O2Server= $O2MK_HOST

O2Schema= odmg_s

+UseOql

ImpFiles= schema.hxx

[schema.hxx]ImpClasses= A B node subnode

Options Description

all triggers export, import and finally creation of the
executable or of the library

clean removes all object, core, ...

clobber triggers clean, unexport and unimport

install installs executable or library with include files

export exports all indicated O2 classes

import imports all indicated C++ classes

unexport destroys code generated by export

unimport destroys O2 classes, generated code and removes
patch of the C++ classes
 O2 Makegen User Manual 33

O2Makegen Configuration File2
ImpSet= A B node int char double "char*" d_String short
float

ImpList= A B node int char double "char*" d_String short
float

ImpBag= A B node int char double "char*" d_String short
float

ImpVarray= A B node int char double "char*" d_String short
float

To build the "odmg" executable, we must import the C++ classes A, B,
node, subnode defined in the file schema.hxx. We also import collection
(Set, List, Bag and Varray) for the type :

A, B, node, int, char, double, "char *", d_String, short, float

All are imported in the schema "odmg_s" in the system
"$O2MK_SYSTEM" using the server "$O2MK_HOST". You can note that
$O2MK_HOME, $O2MK_SYSTEM, and $O2MK_HOST are
environment variables and are evaluated during the makefile creation.

Because the "Sources" options have a value, a "depend" target is
created. When you type "make depend" all dependencies of all files
given in "Sources" are added at the end of the makefile.

The program name is odmg and is composed of all objects found in the
"ProgramObjs" option list.

The program uses the "oql_execute" service. So we set the option
"+UseOql".

The ’\’ character is used to break a directive in multiple lines.

2.6 Building a C application

If you use the C interface to O2 in your application, you can use
o2makegen to generate a makefile to build your application. You must set
the following option:
34 O2 Makegen User Manual

Building an O2C application
±O2LinkCTarget

For more information, refer to the C Interface to O2 documentation set.

When building a C application, you can use the following options:

• UseMeta

• UseVersion

• UseOQL

• UseLook and all specific editors

2.7 Building an O 2C application

If you want to build an executable from an O2C application, you must
write a C++ file containing the main procedure of your application. This
main procedure must make a connection to an O2 server, trigger the
O2C application using the "o2_run_application" service, and at the end
disconnect from the server.

To build your application, you can generate a makefile using the following
option:

±O2CTarget

Do not forget to supply the name of the main object in the ProgramObj
option.

For more information, refer to the O2C documentation set.

When building an O2C application, you can use the following options:

Options Description

all constructs the application

clean removes all objects, core,...

install installs the application
 O2 Makegen User Manual 35

O2Makegen Configuration File2
• UseMeta

• UseOQL

• UseLook and all specific editors

UseVersion is not allowed. In O2C, you must use the schema O2Version
and not a library.

2.8 Building an O 2Engine API application

If you use the O2Engine API interface, you can also use O2Makegen. If
you set the option:

±O2APITarget

The generated makefile contains the necessary libraries to your
executable.

For more information, refer to the O2Engine API documentation set.

When building an O2Engine API application, you can use the following
options:

• UseVersion

• UseOQL

• UseLook and all specific editors

UseMeta is not allowed.

Targets Description

all constructs the application

clean removes all objects, core, ...

install installs the application

Targets Description

all constructs the application

clean removes all objects, core,...

install installs the application
36 O2 Makegen User Manual

Adding your own makefile : 2.3.9. Example
2.9 Addin g your own makefile

This option permits to add additional targets or actions which will be
performed by the generated makefile. This can be done by writing your
own makefile and having up to two targets executed when the generated
makefile runs.

In your makefile, you can use any of the Makefile macros defined in the
generated makefile.

If you modify your makefile, you must rerun O2Makegen to regenerate
the makefile.

For example:

UserMakefile= mymakefile

PreTarget= serverlaunch

PostTarget= servershut

The user-written makefile, named "mymakefile", is specified by the
option UserMakefile. "mymakefile" contains the targets "serverlaunch"
and "servershut". The target "serverlaunch" will be executed before
anything. The target "servershut" will be executed after the construction
of the executable.

Options Description

PreTarget= string
list

Specifies the targets in the user-written makefile
that will be executed before any rules of the gen-
erated makefile. All targets are executed once in
the order listed.

PostTarget= string
list

Specifies the targets in the user-written makefile
that will be executed after linking rules and before
install rules of the generated makefile. All targets
are executed once in the order listed.

UserMakefile= file
name

Specifies the user-written makefile. This makefile
must contain all targets that are named in the Pre-
Target and PostTarget options. It can also contain
the targets "all", "clean" and "install". In this case,
the actions defined for these targets are executed
after the corresponding actions defined in the gen-
erated makefile.
 O2 Makegen User Manual 37

O2Makegen Configuration File2
38 O2 Makegen User Manual

3 Customizing O2Makegen
3

This chapter is divided in to the following sect ions :

• Template fi les

• Syntax of a template fi le

• List of modifiable macros
 O2 Makegen User Manual 39

Customizing O2Makegen3
3.1 Template files

When O2Makegen is used, it obtains definitions for the target system
from template files. Template files are supplied with O2Makegen in the
directory $O2HOME/config.

A template file defines symbols which can be names of tools, operating
system commands, options, etc.

Default template files contain all default definitions. These files have the
extension ".mak". They must not be modified.

Platform template files override default definition found in the default
template files. The platform template file is named using the machine
and operating system name (for example: sparc_solaris_24.cf is the
template file for Sparc machines with Solaris 2.4). The extension of these
files is ".cf". Normally this file will not be modified.

But you can modify the site template files. The content of this file
overrides the content of the platform template file. The file is named after
the machine and operating system name with the ".site.cf" extension (for
example: sparc_solaris_24.site.cf is the site template file for Sparc
machine with Solaris 2.4). This file can be modified to adapt o2makegen
to your site configuration.

A last template file is used to override definitions: the user template file.
This file is introduced by the "deffile" option of the O2Makegen
command. This template file permits to have particular definitions for one
user or for one project.

3.2 Syntax of a template file

A template file consists of a set of "m4" macros. "m4" is a standard UNIX
macro processor. All symbols used in the generated makefile are defined
in template files as m4 macros.

The primary function of m4 used in template file is "define". This is used
to define and redefine macros. The following input:

define(name, stuff)

causes the string "name" to be defined as "stuff".

The left parenthesis must immediately follow the word "define" to signal
that "define" has arguments.
40 O2 Makegen User Manual

Syntax of a template file
To redefine N, the evaluation must be delayed by quoting :

define(N, 100)

 ...

define(‘N’, 200)

The N in the second definition is replaced by 100. The result is
equivalent to the following statement:

 define(100,200)

This statement causes an error since only things that look like names
can be defined.

In m4, it is often wise to quote the first argument of a macro. The
following example will not redefine N:

define(N, 100)

...

define(N, 200)

Each occurrence of $n in the replacement text, where n is a digit, is
replaced by the n-th argument. Argument 0 is the name of the macro;
missing arguments are replaced by the null string; $# is replaced by the
number of arguments; $* is replaced by a list of all the arguments
separated by commas; $@ is equivalent to $*, but each argument is
quoted.

Comments and examples are enclosed between " # " and new-line
characters. If you want to discard characters up to and including the next
new-line use the macro dnl (...).

For more information consult the m4 documentation.

For example, we put here the contents of a ".site.cf" file:
define(‘CCCmd’, /usr/bin/CC)

define(‘InstallCmd’, /etc/install -i)

define(‘PurifyCmd’, purify)
 O2 Makegen User Manual 41

Customizing O2Makegen3
define(‘StandardDefines’, -DHP800 -DHPUX -DHPUX_90)

define(‘OptimizedCFlag’, +O1)

define(‘PicCFlag’, +Z)

define(‘OptimizedCCFlag’, +O1)

define(‘PicCCFlag’, +Z)

define(‘StdCCIncludes’, -I‘/usr/‘include’/CC’)

define(‘DefaultCCOptions’, -z +a1 -pta -ptn -ptb)

define(‘StaticLDFlag’, ‘-Wl,-a,archive’)

define(‘RelocLDFlag’, -r -E)

define(‘DefaultLDOptions’, ‘+a1 -Wl,-E’)

define(‘SpecialLDOptions’,‘$(PTREPOSITORIES)’)

define(‘XDir’, /usr/lib/X11R5)

define(‘MotifDir’, /usr/lib/Motif1.2)

In this template file, we redefine the macro CCCmd which gives the
location of the C++ compiler. Note that all macro names are quoted, as
explained above.

In the following section we describe each macro used in the template
files.

3.3 List of modifiable macros

You can redefine macros in the "*.site.cf" template file. You can also
redefine macros in the file introduced by the "deffile" option of the
O2Makegen command.

Warning !
Modifying these macros can lead to unexpected behavior of O2Makegen.
42 O2 Makegen User Manual

List of modifiable macros
3.3.1. Default Command Definitions

3.3.2. Default cc com piler fla gs

Name Default Value Contents

ArCmd /bin/ar clq to create libraries

CcCmd /bin/cc to run C compiler

CCCmd CC to run C++ compiler

ChmodCmd /bin/chmod to change mode of file

InstallCmd /bin/install to install files

LdCmd /bin/ld to run loader

MakeCmd /bin/make to run make

MkdirCmd /bin/mkdir to make directory

MvCmd /bin/mv -f to move files

CpCmd /bin/cp to copy files

RanlibCmd /bin/true to clean up libraries

RmCmd /bin/rm -f to delete files

TouchCmd /bin/touch to touch files

PurifyCmd none to purify files

QuantifyCmd none to quantify files

Name
Default
Value Contents

OptimizedCFlag -O cc compiler flags to turn on optimiza-
tion

DebuggableCFlag -g cc compiler flags to turn on debug info

ProfilingCFlag -G cc compiler flags to turn on profiling
info

PicCFlag none cc compiler flags to turn on pic code
generation

DefaultCOptions none default special cc compiler options

SpecialCOptions none specific cc compiler options
 O2 Makegen User Manual 43

Customizing O2Makegen3

3.3.3. Default C++ compiler flags

3.3.4. Miscellaneous flags

3.3.5. Linker flags

Name
Default
Value Contents

OptimizedCCFlag -O CC compiler flags to turn on optimiza-
tion

DebuggableCCFlag -g CC compiler to turn on debug info

ProfilingCCFlag -G CC compiler to turn on profiling info

PicCCFlag none CC compiler to turn on pic code gener-
ation

DefaultCCOptions none default special CC compiler options

SpecialCCOptions none specific CC compiler options

CCExtension cc extension of CC source files

Name
Default
Value Contents

StdCCIncludes none location of specific C++ includes

StandardIncludes none -I’s for compiler

StandardDefines none -D’s for compiler

Xdir none directory containing the X Libraries

MotifDir none directory containing the Motif Librar-
ies

Name
Default
Value Contents

RelocLDFlag -r Linker flag to create a object from a list
of object

StaticLDFlag none Linker flag to use the static version of a
library

DefaultLDOptions none Linker default options
44 O2 Makegen User Manual

List of modifiable macros
3.3.6. Install fla gs

3.3.7. Files used in clean tar get

Name
Default
Value Contents

InstBinFlag 0755 File mode of installed binary

InstLibFlag 0664 File mode of installed library

InstIncFlag 0444 File mode of installed include

Name Default Value Contents

FilesToClean *.o core *~ *.bak Files to be deleted
 O2 Makegen User Manual 45

Customizing O2Makegen3
46 O2 Makegen User Manual

4 Troubleshooting Guidelines
4

This chapter gives advice to correct problems you may encounter when
using O2Makegen. Here is the list of error messages with their
explanations.
 O2 Makegen User Manual 47

Troubleshooting Guidelines4
Code Message Explanation

27512 Configuration file
is mandatory

You have not given a configuration file to
O2Makegen. Retry with a configuration file
name.

27522 Unknown argu-
ments

One or more options given to O2Makegen are
not recognized. Consult the list of O2Makegen
options.

27532 Cannot create
temporary file

O2Makegen cannot create its temporary file.
Maybe the file system where temporary files
are created is full, or you do not have sufficient
access rights to the directory where temporary
files are created. By default, this directory is
/usr/tmp (on UNIX, there is no default value
on windows). You can modify it by using the
environment variable TMPDIR.

27542 Error during con-
figuration file
analysis

O2Makegen has not recognized one or more
options found in the configuration file.
Another message gives you the unrecognized
options and the line number in the configura-
tion file. Verify the spelling of the options in
the configuration file.

27552 Error during
make file creation

O2Makegen cannot create the makefile.
Maybe one template file used is wrong. If you
have created or modified a template file,
maybe you have forgotten to quote the macro
name. You can also retry to launch
O2Makegen using the pushbacksize option.
This option permits to resize structures used
by the analyzer of O2Makegen. The default
value is 4096. Try 8192.

27572 Cannot find
machine or os
type

O2Makegen does not know the machine type
or the operating system. Verify the spelling of
the values of the options.

27582 Cannot find tem-
plate installation
directory

O2Makegen cannot retrieve the
O2HOME/config directory or you do not have
read access to it. Verify your installation of O2

27592 Cannot access
template files

O2Makegen cannot retrieve the template file.
Verify the content of the O2HOME/config
directory. Verify if you have read access to the
template files and to the directory. Verify your
installation of O2.

27602 Cannot find
(name) executable

O2Makegen uses other programs and cannot
find one or more of these programs. Verify the
existence of the program and the execution
right.
48 O2 Makegen User Manual

5 Reference Guide
5

This chapter is divided into the following sections:

• Options of the O2Makegen tool

• Options of configuration file
 O2 Makegen User Manual 49

Reference Guide5

5.1 Options of the O 2Makegen tool

Name Description

-help Displays a help facility and exit

-version Prints version number of o2makegen and exit

-verbose Enables verbose mode

-output makefile_name Specifies the name of the generated makefile (Make-
file by default)

-arch machine Specifies the target architecture name

-os os Specifies the target operating system name

-deffile file_name Specifies the name of a private template file

-pushbacksize int_size Changes pushback and argument collection size from
the default size 4096.
50 O2 Makegen User Manual

Options of configuration file

).

-

5.2 Options of confi guration file

Options Description

±[ExpClassName]Exp-
NoVirtual

Specifies that the exported methods are not virtual
(false by default)

[ExpClassName]Exp-
Methods=
method_name(s)

O2C methods of class ExpClassName are to be
exported (none by default).

[FileName][Class-
Name]ImpAsClass=
class_name

Imports C++ class_name as ClassName (see C++
Binding Guide)

[FileName][Class-
Name]ImpForward-
File=file_name

Specifies the file where the forwarded class is defined
(none by default).

[FileName][Class-
Name]ImpMember-
Func=
function_member(s)

Member function(s) to be imported (none by default)

[FileName]ImpClasses=
class_name(s)

Classes to be imported. The definition of this class is
found in FileName (no default).

[FileName]ImpForward-
Classes= class_name(s)

All classes forwarded during the processing of File-
Name (none by default).

[FileName]ImpLib-
Classes=class_name(s)

Classes belonging to an external C++ library and used
as a superclass of an imported class (none by default

[FileName]ImpOutput-
Dir= directory

Path and directory in which C++ files are generated
for the classes in FileName. (current directory by
default).

[FileName]ImpUseDi-
rectory=
directory_name(s)

Directory path used to find files specified in [File-
Name]ImpUseFiles option (none by default).

[FileName]ImpUse-
Files= file_name(s)

Files which are required to parse FileName. For
example, an include file not explicitly included in the
FileName file (none by default).

±[ExpClassName]Exp-
Type

Type structure of the ExpClassName is also made
available to C++ (False by default).

±[FileName][Class-
Name]ImpAccessPri-
vateMember

Automatically generates access methods for private
members (false by default).

±[FileName][Class-
Name]ImpAllPublic-
MemberFunc

Imports all public member functions of the class (false by
default)

±[FileName]ImpNo-
Modification

Pointers to objects of an imported class are not modi
fied inside FileName (by default they are transformed
to persistent pointers).
 O2 Makegen User Manual 51

Reference Guide5

d

ed
±Debug Permits generation of debuggable executable and ad
_d to the executable name

±O2C++Target Used to find which O2 runtime libraries are necessary
to build a ODMG C++ application (true by default)

±O2APITarget Used to find which O2 runtime libraries are necessary
to build a C application using the O2Engine API
interface (false by default)

±O2CTarget Use to find which O2 runtime libraries are necessary
to build an executable from an O2C program (false by
default)

±O2LinkCTarget Use to find which O2 runtime libraries are necessary
to build a C application using the C interface to O2
(false by default)

±Profile Generates profiled executable and add _p to the exe-
cutable name

±Purify Applies Purify on the executable and add _pure to the
executable name

±Quantify Applies Quantify on the executable and add _quant to
the executable name

±UseArchiveLib Specifies that the archive version of o2 runtime
library must be used instead of the shared libraries
(default is false).

±UseConfirmClasses Indicates whether classes are automatically confirm
or not after importation in o2 (default is false).

±UseLkBrowser Indicates whether O2Look browser editor is used or
not (default is false).

±UseLkDialog Indicates whether O2Look dialog box editor is used
or not (default is false).

±UseLkGraph Indicates whether O2Look graph editor is used or not
(default is false).

±UseLkPict Indicates whether O2Look picture editor is used or
not (default is false)

±UseLkText Indicates whether O2Look Text editor is used or not
(default is false).

±UseLook Indicates whether O2Look is used or not (default is
false).

±UseMeta Indicates whether O2 meta service is used or not
(default is false).

±UseO2xt Indicates whether O2Xt is used or not (default is
false).

±UseOql Indicates whether OQL is used or not (default is
false).

Options Description
52 O2 Makegen User Manual

Options of configuration file

-

o

ed

t
±UseVersion Indicates whether O2Version mechanism is used or
not (default is false).

Define= string_list Adds or renames macro definitions to the compila-
tion or link phase. None by default.

ExpClasses=
class_name(s)

O2 classes to be exported (no default)

ExportLibFile= file
name list

For AIX only. Specifies export files for shared librar-
ies

ExpOutputDir= directory Directory path in which C++ files are generated (cur
rent directory by default).

HeadersDestDir= direc-
tory

Directory where all include files needed to use the
generated library must be installed (none by default).

ImpBag= type_name(s) Bag of classes or atomic types are imported.

ImpFiles= file_name(s) The C++ files where imported classes are defined (n
default).

ImpList= type_name(s) List of classes or atomic type are imported.

ImpSet= type_name(s) Set of classes or atomic type are imported.

ImpVarray=
type_name(s)

Varray of classes or atomic type are imported.

Include= directory_list Adds directories containing files to be included at
compilation or link. None by default.

LibDestDir= directory Directory where the generated library must be
installed (default none).

LibHeaders= file_name Files to be treated as the include file of the generat
library (default none).

LibName= library name Library to build (none by default).

LibObjs= object files Object files needed to build the library (no default).

O2Home= directory O2 installation directory. Default can be positioned in
a .site.cf file (see CUSTOMIZING o2makegen sec-
tion).

O2Schema= schema
name

O2 schema where classes will be imported (no
default).

O2Server= server name O2 server which must be used by import and export
tools (no default).

O2System= system name O2 system in which the schema resides(no default).

PostTarget= string list Specifies the targets in the user-written makefile tha
will be executed after linking rules and before install
rules of the generated makefile are executed. All tar-
gets are executed once in the order listed.

Options Description
 O2 Makegen User Manual 53

Reference Guide5

t

e
-

PreTarget= string list Specifies the targets in the user-written makefile tha
will be executed before any rules of the generated
makefile are executed. All targets are executed once
in the order listed.

ProgramDestDir= direc-
tory

Directory in which the generated program must be
installed (none by default).

ProgramLib= applica-
tion libraries name list

Specifies the application specific libraries that should
be linked with the application (none by default). For a
library libx.a or libx.so(sl), you must give in the name
list only the part x (without lib and extension).

ProgramLibDir= library
directories list

Specifies the directories containing the application
specific libraries (none by default).

ProgramName= execut-
able name

Specifies the generation of the program called
executable_name. (no default).

ProgramObjs= object
files name list

Specifies the object files needed to build the execut-
able (no default).

RelocatableName=
relocatable_name

Generates a relocatable called relocatable_name (no
default).

RelocatableObjs=
object_files

Object files needed to build the relocatable object.
The object files generated from the source files by an
o2cpp_import or o2cpp_export command must not be
in this list.

Repositories=
directory_list

List of directories used as a C++ template repository
during compilation or link phase. None by default.

Sources= source_files Source files making up the application or library.

SubDirs=directory_list List of directories in which a make must be triggered

Undefine= string_list Removes macro definitions to the compilation or link
phase. None by default.

UserLdFlags= flags for
the link editor

 Flags added to the link commands

UserMakefile= file name Specifies the user-written makefile. This makefile
must contain all targets that are named in the PreTar-
get and PostTarget options. It can also contains the
targets "all", "clean" and "install". In this case, the
actions defined for these targets are executed after th
corresponding actions defined in the generated make
file.

Options Description
54 O2 Makegen User Manual

 O2 Makegen User Manual 55

INDEX

INDEX

56
A

Applicat ion bu ilding 22
C applicat ion 34

+-O2LinkCTarget 35
UseLook 35
UseMeta 35
UseOQL 35
UseVersion 35

C++ applicat ion 29

O2Schema 30
O2Server 30
O2System 30

executable_name 22
O2C applicat ion 35

all 36
clean 36
install 36
O2CTarget 35
UseLook 36
UseMeta 36
UseOQL 36

O2Engine API applicat ion 36

all 36
clean 36
install 36
UseLook 36
UseMeta 36
UseOQL 36
UseVersion 36

ProgramLib 22
ProgramLibDir 22
ProgramName 22
ProgramObjs 22
UserLdFlags 22

Applicat ion install ing 26
HeadersDestDir 26
Install 26
LibDestDir 26
LibHeaders 26
ProgramDestDir 26

Architectu re
O2 10
 O2 Makegen User
C

C 11

C++
Interface 11

Configu rat ion fi le 13, 20
bu ilding applicat ion 22
bu ilding library 23
bu ilding relocatable 23
C applicat ion 34
compiling sources 24
compu t ing dependencies 25
debugging 24
install ing applicat ion 26
O2C applicat ion 35
O2Engine API applicat ion 36
syntax 20
t r igger ing makefiles 26
user makefile 37
 Manual

INDEX
Configurat ion fi le opt ions
Debug 52
Define 53
ExpClasses 53
ExpMethods 51
ExpNoVirtual 51
ExportLibFile 53
ExpOutputDir 53
ExpType 51
HeadersDestDir 53
ImpAccessPrivateMember 51
ImpAllPublicMemberFunc 51
ImpAsClass 51
ImpBag 53
ImpClasses 51
ImpFiles 53
ImpForwardClasses 51
ImpForwardFile 51
ImpLibClasses 51
ImpList 53
ImpMemberFunc 51
ImpNoModification 51
ImpOutputDir 51
ImpSet 53
ImpUseDirectory 51
ImpUseFiles 51
ImpVarray 53
Include 53
LibDestDir 53
LibHeaders 53
LibName 53
LibObjs 53
O2APITarget 52
O2C++Target 52
O2CTarget 52
O2Home53
O2LinkCTarget 52
O2Schema 53
O2Server 53
O2System 53
PostTarget 53
PreTarget 54
Profile 52
ProgramDestDir 54
ProgramLib 54
ProgramLibDir 54
ProgramName 54
ProgramObjs 54
Purify 52
 O2 Makegen Use
Quantify 52
RelocatableName 54
RelocatableObjs 54
Repositories 54
Sources 54
SubDirs 54
Undefine 54
UseArchiveLib 52
UseConfirmClasses 52
UseLkBrowser 52
UseLkDialog 52
UseLkGraph 52
UseLkPict 52
UseLkText 52
UseLook 52
UseMeta 52
UseO2xt 52
UseOql 52
UserLdFlags 54
UserMakefile 54
UseVersion 53

cpp 13
direct ives 21

D

Debugging 24
debug 22, 24
profile 22, 24
purify 22, 25
quantify 22, 25

Defau lt template fi le 13

Dependencies comput ing 25
depend 25
Sources 25
r Manual 57

INDEX

58
F

Flags 15
defau lt C++ compiler flags 44
defau lt CC compiler flags 43
install flags 45
l inker flags 44
miscellaneous flags 44

I

Import / expor t tools
ExpClasses 32
ExpMethods 32
ExpNoVirtual 32
ExpOutputDir 32
ExpType 32
ImpBag 30
ImpFiles 30
ImpList 30
ImpSet 30
ImpVarray 30

J

Java 11
 O2 Makegen User
L

Library bu ilding 23
+-CreateArchiveLib 23
+-CreateSharedLib 23
LibName 23
library_name 23
Objs 23
UserLdFlags 23

M

make 13

Makefile 12
generated makefile

all 33
clean 33
clobber 33
export 33
import 33
install 33
unexport 33
unimport 33

makefile t r igger ing 26

all 27
clean 27
clobber 27
install 27
SubDirs 26

master 14
sub-makefile 14
user makefile

PostTarget 37
PreTarget 37
serverlaunch 37
servershut 37
UserMakefile 37
 Manual

INDEX

59
O

O2
+-UseArchiveLib 28
+-UseOql 29
Advantages 12
Architectu re 10
O2Home28
UseLkBrowser 29
UseLkDialog 29
UseLkGraph 29
UseLkPict 29
UseLkText 29
UseLook 29
UseMeta 29
UseO2xt 29
UseVersion 29

O2C 11

O2Corba 11

O2DBAccess 11

O2Engine 10

O2Graph 11

O2HOME/ config directory 26, 48

O2Kit 11

O2Look 11

O2Makegen 12, 13
dependencies

depend 15
error messages 48
invok ing 16
options

-arch 50
deffile 50
-help 50
-os 50
-output 50
pushbacksize 48, 50
-verbose 50
-version 50

TMPDIR 48
t roubleshooting 47

/usr/tmp 48
use 14
 O2 Makegen User
all 14
clean 14
clobber 14
install 14

O2ODBC 11

O2Store 10

O2Tools 11

O2Web 11

OQL 11
In ter face 28

P

Platform template fi le 13

R

Relocatable bu ilding 23
RelocatableName 23
RelocatableObjs 24
UserLdFlags 24

Rules 12

Runt ime librar ies 28, 29, 30, 52

S

Site template fi le 40

Source fi les 20
compiling 24

Define 24
Include 24
Repositories 24
 Manual

INDEX

60
Undefine 24

System
Architectu re 10
Featu res 12

T

Template fi les 40
defau lt 40
macros

clean target files45
default C++ compiler flags44
default CC compiler flags43
default command definitions43
install flags45
linker flags 44
miscellaneous flags44

plat form 40
site 40
syntax 40
user 40

U

User template fi le 13
 O2 Makegen User
 Manual

	MAIN MENU TO O2 DOCUMENTATION
	O2 Makegen User Manual
	Who should read this manual
	TABLE OF CONTENTS
	1 The Build Process 9
	2 O2Makegen Configuration File 19
	3 Customizing O2Makegen 39
	4 Troubleshooting Guidelines 47
	5 Reference Guide 49
	INDEX 55

	1 The Build Process
	1.1 System Overview
	Figure 1.1: O2 System Architecture

	1.2 The O2Makegen tool
	1.3 Using O2Makegen
	1.4 Invoking O2Makegen
	1.4.1. External influences
	1.4.2. Return value

	2 O2Makegen Configuration File
	2.1 Introduction
	2.2 The configuration file syntax
	2.3 Basic options
	2.3.1. Building an application
	2.3.2. Building a library
	2.3.3. Building a relocatable
	2.3.4. Compiling sources
	2.3.5. Debugging
	2.3.6. Computing dependencies
	2.3.7. Installing an application
	2.3.8. Triggering makefiles in sub directories
	2.3.9. Example

	2.4 O2 specific options
	2.5 Building a C++ application
	2.6 Building a C application
	2.7 Building an O2C application
	2.8 Building an O2Engine API application
	2.9 Adding your own makefile

	3 Customizing O2Makegen
	3.1 Template files
	3.2 Syntax of a template file
	3.3 List of modifiable macros
	3.3.1. Default Command Definitions
	3.3.2. Default cc compiler flags
	3.3.3. Default C++ compiler flags
	3.3.4. Miscellaneous flags
	3.3.5. Linker flags
	3.3.6. Install flags
	3.3.7. Files used in clean target

	4 Troubleshooting Guidelines
	5 Reference Guide
	5.1 Options of the O2Makegen tool
	5.2 Options of configuration file

	INDEX
	A
	Application building�22
	C application�34
	C++ application�29
	executable_name�22
	O2C application�35
	O2Engine API application�36
	ProgramLib�22
	ProgramLibDir�22
	ProgramName�22
	ProgramObjs�22
	UserLdFlags�22

	Application installing�26
	HeadersDestDir�26
	Install�26
	LibDestDir�26
	LibHeaders�26
	ProgramDestDir�26

	Architecture
	O2�10

	C
	C�11
	C++
	Interface�11

	Configuration file�13, 20
	building application�22
	building library�23
	building relocatable�23
	C application�34
	compiling sources�24
	computing dependencies�25
	debugging�24
	installing application�26
	O2C application�35
	O2Engine API application�36
	syntax�20
	triggering makefiles�26
	user makefile�37

	Configuration file options
	Debug�52
	Define�53
	ExpClasses�53
	ExpMethods�51
	ExpNoVirtual�51
	ExportLibFile�53
	ExpOutputDir�53
	ExpType�51
	HeadersDestDir�53
	ImpAccessPrivateMember�51
	ImpAllPublicMemberFunc�51
	ImpAsClass�51
	ImpBag�53
	ImpClasses�51
	ImpFiles�53
	ImpForwardClasses�51
	ImpForwardFile�51
	ImpLibClasses�51
	ImpList�53
	ImpMemberFunc�51
	ImpNoModification�51
	ImpOutputDir�51
	ImpSet�53
	ImpUseDirectory�51
	ImpUseFiles�51
	ImpVarray�53
	Include�53
	LibDestDir�53
	LibHeaders�53
	LibName�53
	LibObjs�53
	O2APITarget�52
	O2C++Target�52
	O2CTarget�52
	O2Home�53
	O2LinkCTarget�52
	O2Schema�53
	O2Server�53
	O2System�53
	PostTarget�53
	PreTarget�54
	Profile�52
	ProgramDestDir�54
	ProgramLib�54
	ProgramLibDir�54
	ProgramName�54
	ProgramObjs�54
	Purify�52
	Quantify�52
	RelocatableName�54
	RelocatableObjs�54
	Repositories�54
	Sources�54
	SubDirs�54
	Undefine�54
	UseArchiveLib�52
	UseConfirmClasses�52
	UseLkBrowser�52
	UseLkDialog�52
	UseLkGraph�52
	UseLkPict�52
	UseLkText�52
	UseLook�52
	UseMeta�52
	UseO2xt�52
	UseOql�52
	UserLdFlags�54
	UserMakefile�54
	UseVersion�53

	cpp�13
	directives�21

	D
	Debugging�24
	debug�22, 24
	profile�22, 24
	purify�22, 25
	quantify�22, 25

	Default template file�13
	Dependencies computing�25
	depend�25
	Sources�25

	F
	Flags�15
	default C++ compiler flags�44
	default CC compiler flags�43
	install flags�45
	linker flags�44
	miscellaneous flags�44

	I
	Import/export tools
	ExpClasses�32
	ExpMethods�32
	ExpNoVirtual�32
	ExpOutputDir�32
	ExpType�32
	ImpBag�30
	ImpFiles�30
	ImpList�30
	ImpSet�30
	ImpVarray�30

	J
	Java�11

	L
	Library building�23
	+-CreateArchiveLib�23
	+-CreateSharedLib�23
	LibName�23
	library_name�23
	Objs�23
	UserLdFlags�23

	M
	make�13
	Makefile�12
	generated makefile
	makefile triggering�26
	master�14
	sub-makefile�14
	user makefile

	O
	O2
	+-UseArchiveLib�28
	+-UseOql�29
	Advantages�12
	Architecture�10
	O2Home�28
	UseLkBrowser�29
	UseLkDialog�29
	UseLkGraph�29
	UseLkPict�29
	UseLkText�29
	UseLook�29
	UseMeta�29
	UseO2xt�29
	UseVersion�29

	O2C�11
	O2Corba�11
	O2DBAccess�11
	O2Engine�10
	O2Graph�11
	O2HOME/config directory�26, 48
	O2Kit�11
	O2Look�11
	O2Makegen�12, 13
	dependencies
	error messages�48
	invoking�16
	options
	TMPDIR�48
	troubleshooting�47
	use�14

	O2ODBC�11
	O2Store�10
	O2Tools�11
	O2Web�11
	OQL�11
	Interface�28

	P
	Platform template file�13

	R
	Relocatable building�23
	RelocatableName�23
	RelocatableObjs�24
	UserLdFlags�24

	Rules�12
	Runtime libraries�28, 29, 30, 52

	S
	Site template file�40
	Source files�20
	compiling�24

	System
	Architecture�10
	Features�12

	T
	Template files�40
	default�40
	macros
	platform�40
	site�40
	syntax�40
	user�40

	U
	User template file�13

