
PSE Pro for Java User Guide

Release 7.1

PSE Pro for Java User Guide

PSE Pro for Java Release 7.1 for all platforms, August 2008

© 2008 Progress Software Corporation. All rights reserved.

Progress® software products are copyrighted and all rights are reserved by Progress Software Corporation. This
manual is also copyrighted and all rights are reserved. This manual may not, in whole or in part, be copied,
photocopied, translated, or reduced to any electronic medium or machine-readable form without prior consent, in
writing, from Progress Software Corporation.

The information in this manual is subject to change without notice, and Progress Software Corporation assumes
no responsibility for any errors that may appear in this document.

The references in this manual to specific platforms supported are subject to change.

A (and design), Actional, Actional (and design), Allegrix, Allegrix (and design), Apama, Apama (and Design),
Business Empowerment, DataDirect (and design), DataDirect Connect, DataDirect Connect64, DataDirect
Technologies, DataDirect XQuery, DataXtend, Dynamic Routing Architecture, EasyAsk, EdgeXtend,
Empowerment Center, Fathom, IntelliStream, Mindreef, Neon, Neon New Era of Networks, O (and design),
ObjectStore, OpenEdge, PeerDirect, Persistence, POSSENET, Powered by Progress, PowerTier, Progress, Progress
DataXtend, Progress Dynamics, Progress Business Empowerment, Progress Empowerment Center, Progress
Empowerment Program, Progress OpenEdge, Progress Profiles, Progress Results, Progress Software Developers
Network, Progress Sonic, ProVision, PS Select, SequeLink, Shadow, ShadowDirect, Shadow Interface, Shadow
Web Interface, SOAPscope, SOAPStation, Sonic, Sonic ESB, SonicMQ, Sonic Orchestration Server, Sonic Software
(and design), SonicSynergy, SpeedScript, Stylus Studio, Technical Empowerment, WebSpeed, and Your Software,
Our Technology–Experience the Connection are registered trademarks of Progress Software Corporation or one of
its subsidiaries or affiliates in the U.S. and/or other countries. AccelEvent, Apama Dashboard Studio, Apama
Event Manager, Apama Event Modeler, Apama Event Store, AppsAlive, AppServer, ASPen, ASP-in-a-Box,
BusinessEdge, Cache-Forward, DataDirect Spy, DataDirect SupportLink, DataDirect XML Converters, Future
Proof, Ghost Agents, GVAC, Looking Glass, ObjectCache, ObjectStore Inspector, ObjectStore Performance Expert,
Pantero, POSSE, ProDataSet, Progress ESP Event Manager, Progress ESP Event Modeler, Progress Event Engine,
Progress RFID, PSE Pro, SectorAlliance, SmartBrowser, SmartComponent, SmartDataBrowser, SmartDataObjects,
SmartDataView, SmartDialog, SmartFolder, SmartFrame, SmartObjects, SmartPanel, SmartQuery, SmartViewer,
SmartWindow, Sonic Business Integration Suite, Sonic Process Manager, Sonic Collaboration Server, Sonic
Continuous Availability Architecture, Sonic Database Service, Sonic Workbench, Sonic XML Server, The Brains
Behind BAM, WebClient, Who Makes Progress, and Your World. Your SOA. are trademarks or service marks of
Progress Software Corporation or one of its subsidiaries or affiliates in the U.S. and other countries.

Java and all Java-based marks are trademarks or registered trademarks of Sun Microsystems, Inc. in the U.S. and
other countries.

Any other trademarks or trade names contained herein are the property of their respective owners.

ObjectStore includes software developed by the Apache Software Foundation (http://www.apache.org/).
Copyright ? 2000-2003 The Apache Software Foundation. All rights reserved. The names “Ant,” “Xerces,” and
“Apache Software Foundation” must not be used to endorse or promote products derived from the Products
without prior written permission. Any product derived from the Products may not be called “Apache”, nor may
“Apache” appear in their name, without prior written permission. For written permission, please contact
apache@apache.org.

ObjectStore includes the RSA Data Security, Inc. MD5 Message-Digest Algorithm. Copyright © 1991-2, RSA Data
Security, Inc. Created 1991. All rights reserved.

ObjectStore includes Yahoo! User Interface Library - V 0.12.1. Copyright © 2006 Yahoo! Inc. All rights reserved.
The name Yahoo! Inc. nor the names of its contributors may be used to endorse or promote products derived from
this Software and products derived from this software without specific prior written permission of Yahoo! Inc.

Copyright Updated: June 2008

Contents

Preface .15

Chapter 1 Introducing PSE Pro .21
What Is PSE Pro?. 21
What PSE Pro Does . 22
Benefits of Using PSE Pro . 23
Description of PSE Pro Architecture . 23
 Definitions of PSE Pro Terms . 24

Session . 24

Persistence Capable . 24

Persistent Object . 25

Persistence Aware. 27

Transient Object . 27

Transitive Persistence . 28

Annotations . 28

Database Roots . 28

Prerequisites for Using PSE Pro . 29

Chapter 2 Example of Using PSE Pro .31
Overview of Required Components . 32
Sample Code. 33
Before You Run the Program . 35

Adding an Entry to CLASSPATH . 35

Compiling the Program . 36

Running the Postprocessor. 36

Running the Program . 36

Chapter 3 Using Sessions to Manage Threads 37
How Sessions Keep Threads Organized. 37

What Is a Session? . 38

How Are Threads Related to Sessions? . 38

What Is the Benefit of a Session? . 38

What Kinds of Sessions Are There? . 39
Release 7.1 3

Contents
4

Creating Sessions .40
Creating Global Sessions .40

Creating Nonglobal Sessions .41

 Working with Sessions .42
Sessions and Transactions. .42

Shutting Down Sessions .43

Obtaining a Session .44

Determining Whether a Session Is Active .44

Associating Threads with Sessions .44
Joining Threads to a Session Automatically .44

Associating a Persistent Object with a Session .45

Rules for Joining a Thread to a Session Automatically45

Examples of Calls That Imply Sessions .46

Examples of Calls That Do Not Imply Sessions .46

Explicitly Associating Threads with a Session .46

Working with Threads .47
Cooperating Threads. .47

Noncooperating Threads .48

Synchronizing Threads .48

Removing Threads from Sessions .48

Threads That Create a Session. .49

Other Threads .49

Threads and Applets .49

Determining Whether PSE Pro Is Initialized for the Current Thread.49

Threads and Persistent Objects .50
Multiple Representations of the Same Object .50

Example of Multiple Sessions .50

Application Responsibility .51

Effects of Committing a Transaction .51

Description of Allowable Simultaneous Actions .51

API Objects and Sessions .52

Description of PSE Pro Properties .52
About Property Lists Relevant to PSE Pro .52

Description of com.odi.disableCrossTransactionCaching. 53

Description of com.odi.disableWeakReferences 54

 Description of com.odi.queryDebugLevel . 54

Description of com.odi.stringPoolSize .54

Description of com.odi.trapUnregisteredType. .55

Description of com.odi.useDatabaseLocking. 57

Description of com.odi.useFsync. 57
4 PSE Pro for Java User Guide

Contents
Description of com.odi.useImmediateStrings . 57

Chapter 4 Managing Databases .59
Creating a Database. 59

Method Signature for Creating a Database. 60

Example of Creating a Database. 60

Result of Creating a Database . 60

Specifying a Database Name in Creation Method 61

When the Database Already Exists . 61

Segments . 61

Determining Whether a Database, Segment, or Cluster Is Transient 62
Opening and Closing a Database . 63

Opening a Database . 63

Possible Open Modes. 63

Threads, Sessions, and Open Databases . 64

Opening the Same Database Multiple Times. 65

Closing a Database . 65

 When Closing a Database Is Required . 66

Shutting Down PSE Pro Closes Open Databases 66

Objects in Closed Databases . 67

Moving or Copying a Database . 67
Performing Garbage Collection in a Database 67

Background About the Persistent Garbage Collector 68

API for Collecting Garbage in a Database. 68

API for Collecting Garbage in a Segment . 69

Command-Line Utility for Collecting Garbage . 69

Schema Evolution: Modifying Class Definitions of Objects in a Database69
When Is Schema Evolution Required? . 69

 Considerations for Using Serialization to Perform Schema Evolution. . . . 70

Steps for Using Sample Schema Evolution Serialization Code. 71

Sample Code for Using Serialization to Perform Schema Evolution 72

Destroying a Database . 74
Obtaining Information About a Database 75

Is a Database Open?. 75

What Kind of Access Is Allowed?. 75

What Is the Pathname of a Database?. 75

What Is the Size of a Database? . 76

With Which Session Is the Database or Segment Associated? 76

Which Objects Are in the Database? . 76

Are There Invalid References in the Database?. 76

Database Operations and Transactions . 76
Release 7.1 5

Contents
6

Restrictions on Databases .77
Controlling Database Size .78

Chapter 5 Working with Transactions .79
Starting a Transaction .79

Calling the begin() Method .80

Description of Transaction Types .80

Allowing Objects to Be Modified in a Transaction 81

Difference Between Update and Read-Only Transactions81

Working Inside a Transaction .81
PSE Pro and Transactions .81

Obtaining the Session Associated with the Current Transaction82

Is a Transaction in Progress for the Current Session?82

Transaction Already in Progress .82

Obtaining Transaction Objects .82

 Ending a Transaction .83
Committing Transactions. .83

What Can Cause a Transaction Commit to Fail?84

When an Application Terminates During a Commit Operation.84

Aborting Transactions .84

Has This Transaction Been Aborted? .85

Is This Transaction Active? .86

 Determining Transaction Boundaries .86
Inconsistent Database State .86

Multiple Cooperating Threads. .87

Performance Considerations .87

Description of Concurrency Rules .87
Definition of One Writer and Multiple Readers .88

Description of Database Locks .88

When PSE Pro Grants Database Locks. .88

Determining If a Lock Is Available .89

Effects of Concurrency Rules .89

Preventing More Than One Process from Accessing a Database90

Chapter 6 Storing, Retrieving, and Updating Objects.93
Storing Objects. .94

How Objects Become Persistent .94

 What Is Reachability? .94

Storing Java-Supplied Objects .95

Retrieving Persistent Objects .95
Steps for Retrieving Persistent Objects .95
6 PSE Pro for Java User Guide

Contents
Determining the Database That Contains an Object 95

Determining Whether an Object Has Been Stored 96

Working with Database Roots . 96
Creating Database Roots . 96

Retrieving Root Objects . 97

Roots with Null Values. 98

Using Primitive Values as Roots . 98

Changing the Object Referred to by a Database Root 98

Destroying a Database Root. 98

Destroying the Object Referred to by a Database Root 98

How Many Roots Are Needed in a Database? . 99

How Many Objects Can You Store in a Database? 99
Iterating Through the Objects in a Cluster, Segment, or Database. 100
Using External References to Stored Objects. 101

Creating External References .102

Obtaining Objects from External References. .103

Encoding External References as Strings .103

Using the ExternalReference Field Accessor Methods.104

External Reference Equality .105

 Reusing External Reference Objects .105

External Reference Examples .106

 Updating Objects in the Database . 107
Background for Specifying Object State. .107

About Object Identity .107

About the Object Table .110

Committing Transactions to Save Modifications 111
Setting a Default Commit Retain State for a Session.112

Setting Persistent Objects to a Default State .113

Making Persistent Objects Stale .113

Making Persistent Objects Hollow .114

Retaining Persistent Objects as Readable. .114

Retaining Persistent Objects as Writable .116

Retaining Persistent Objects as Transient .117

The Way Transient Fields Are Handled. .117

Evicting Objects to Save Modifications . 118
Description of Eviction Operation .118

Setting the Evicted Object to Be Stale .119

Setting the Evicted Object to Be Hollow. .119

Setting the Evicted Object to Be Read-Only .120

Summary of Eviction Results for Various Object States120
Release 7.1 7

Contents
8

Evicting All Persistent Objects . 121

Evicting Objects When There Are Cooperating Threads 121

Committing Transactions After Evicting Objects 122

Evicting Objects Outside a Transaction . 122

Aborting Transactions to Cancel Changes. 122
Setting a Default Abort Retain State for a Session 123

Setting Persistent Objects to a Default State . 124

Specifying a Particular State for Persistent Objects. 124

Destroying Objects in the Database . 125
Calling ObjectStore.destroy(). 126

Destroying Objects That Refer to Other Objects 126

Destroying Objects That Are Referred to by Other Objects 129

Effects of Destroying an Object . 129

Default Effects of Various Methods on Object State. 130
Transient Fields in Persistence-Capable Classes 130

Behavior of Transient Fields. 131

Preventing fetch() and dirty() Calls on Transient Fields 131

Avoiding finalize() Methods . 131
Troubleshooting Access to Persistent Objects 132
Handling Unregistered Types . 133

How Can There Be Unregistered Types? . 133

Can Applications Work When There Are Types Not Registered? 133

What Does PSE Pro Do About Unregistered Types?. 134

When Does PSE Pro Create UnregisteredType Objects? 134

Can Your Application Run with UnregisteredType Objects? 135

Troubleshooting ClassCastExceptions Caused by Unregistered Types . . . 136

Troubleshooting the Most Common Problem . 137

Using Enums in Persistent Objects . 137
Using Generic Types . 138

Chapter 7 Working with Collections. .139
Description of PSE Pro Utility Collections 139

Introduction to java.util Interfaces and Classes 140

Description of OSHashBag . 141

Description of OSHashMap . 141

Description of OSHashSet . 142

Description of OSHashtable . 142

Description of OSTreeMapxxx . 142

 Description of OSTreeSet . 143

Description of OSVector . 145

Description of OSVectorList . 145
8 PSE Pro for Java User Guide

Contents
Advantages of Using PSE Pro Utility Collections 146

Querying Collection Views of Map Entries. .146

Background About Utility Collections and Java Collections146

The Way to Choose a Collection. 148
Comparing Collection Classes .149

Performance-Based Recommendations for Collections149

Using PSE Pro Utility Collections . 150
Creating Collections .150

Navigating Collections with Iterators .150

Performing Collection Updates During Iteration 150

Querying PSE Pro Utility Collections . 151
Creating Queries. .152

Description of Query Syntax. .155

Sample Program That Uses Queries .156

Matching Patterns in Query Strings .156

Using Free Variables in Queries .158

Executing Queries. .159

Limitations on Queries. .160

Enhancing Query Performance with Indexes 161
How Indexes Work .161

Adding Indexes to Collections. .162

Dropping Indexes from Collections .162

Using Multistep Indexes in Queries .163

Sample Program That Uses Indexes .164

Sample Program That Queries User-Defined Fields164

Modifying Index Values .164

Managing Indexes and Index Values .166

Optimizing Queries for Indexes .167

Manipulating Indexes Outside the Query Facility.168

Storing Objects as Keys in Persistent Hash Tables 168
Requirements for Hash Code Methods .168

Providing an Appropriate Persistent Hash Code Method169

Storing Built-In Types as Keys in Persistent Hash Tables169

Using Third-Party Collections Libraries . 170

Chapter 8 Generating Persistence-Capable Classes Automatically . 171
Overview of the Class File Postprocessor 172

Description of the Annotations .172

Description of the Process .173

Postprocessing a Batch of Files Is Important .173

Postprocessor API .174
Release 7.1 9

Contents
10

Manual Annotation . 174

Running the Postprocessor. 175
Preparing to Run the Postprocessor . 175

Requirements for Running the Postprocessor . 176

Example of Running the Postprocessor . 176

About the Postprocessor Destination Directory. 177

How the Postprocessor Interprets File Names 178

Order of Processing . 178

How the Postprocessor Handles Duplicate File Specifications 180

How the Postprocessor Handles Files Not Found. 180

.Zip and .Jar Files as Input to the Postprocessor 180

How the Postprocessor Handles Previously Annotated Classes 180

Troubleshooting OutOfMemory Error. 180

How the Postprocessor Handles Inner Classes 181

When ClassInfo.java Files Are Generated . 181

Managing Annotated Class Files . 182
Ensuring That the Compiler Finds Unannotated Class Files 182

Ensuring That PSE Pro Finds Annotated Class Files 183

Using the Right Class Files in Complex Applications 184

Alternatives for Finding the Right Files . 184

How the Postprocessor Determines Whether to Generate an Annotated Class File
185

Creating Persistence-Aware Classes . 186
Specifying the Postprocessor Command Line . 186

No Changes to Superclasses . 186

How the Postprocessor Works . 187
Ensuring Consistent Class Files . 187

Modifications to Superclasses. 187

Effects on Inheritance . 187

Location of Annotated Class Files . 188

Postprocessor Errors and Warnings. 188

Handling of final Fields . 189

Handling of Static Fields . 189

Which Java Executable to Use . 190

Line-Number and Local-Variable Information . 190

Using a Debugger. 190

Handling of finalize() Methods . 191

Description of Postprocessor Optimizations . 191

Including Transient and Already Annotated Classes. 192
Copying Classes to the Destination Directory . 192

Specifying Classes to Be Copied and Classes to Be Persistence Capable . 192
10 PSE Pro for Java User Guide

Contents
When Can a Class Be Transient?. .192

Putting Processed Classes in a New Package 193
Using the -translatepackage Option .193

How the Postprocessor Applies the Option .194

Updating References to New Package Name. .194

References to Transient and Persistent Versions of a Class 195

References to Transient Instances of a Persistence-Capable Class 195

Creating Persistence-Capable Classes with Transient Fields. 196
Transient Fields and Serialization .196

Initialization of Some Transient Fields .196

Customizing Updated Classes . 197
Implementing Customized Methods and Hook Methods197

Creating a Hollow Object Constructor .200

Optimizing Operations That Retrieve Persistent Objects 201
Procedure for Optimizing Operations .201

Inlining Code .201

Preventing Fetch of Transient Fields .202

Performing a Test Run of the Postprocessor 202
Using an Input File. 203
Annotations You Must Add . 204

Interfacing with Nonpersistent Methods. .204

Interfacing with Native Classes. .204

Annotating Subclasses. .205

Passing Arrays .205

Implementing the Hollow Object Constructor for Some Instance Fields . .205

Using the Java Reflection API with Persistence-Capable Objects205

Class File Postprocessor Limitations . 206

Chapter 9 Generating Persistence-Capable Classes Manually 207
Explicitly Defining Persistence-Capable Classes 208

Implementing the IPersistent Interface .208

Defining the Required Fields. .208

Defining Required Methods in the Class Definition.209

Implementing the IPersistentHooks Interface.210

Making Object Contents Accessible .211

Defining a ClassInfo Subclass. .212

Example of a Manually Annotated Persistence-Capable Class212

Additional Information About Manual Annotation 215
Defining a hashCode() Method .215

Defining a clone() Method .216

Working with Transient-Only and Persistent-Only Fields 216
Release 7.1 11

Contents
12

Defining Persistence-Aware Classes . 219

Following Postprocessor Conventions . 219

Annotating Abstract Classes . 220

Creating and Accessing Fields in Annotations 220
Making Persistent Objects Accessible . 221

Creating Fields . 221

Getting and Setting Generic Object Field Values. 222

Methods for Creating Fields and Accessing Them in Generic Objects 223

Chapter 10 Using the Java Dynamic Data (JDD) Classes225
An Overview of JDD . 225

Types . 226

Attributes . 226

Entities . 227

Basic JDD Tasks . 227
Defining Types and Their Attributes . 227

Creating Entities of a Type . 228

Querying a Type. 229

A Simple JDD Application . 230

Relationships . 232
One-to-One Relationships . 232

One-to-Many Relationships . 232

Many-to-Many Relationships . 234

Linked Objects and Many-to-Many Relationships 234

Relationship Example . 235

Improving Query Performance with Superindexes. 237
Queries and Default Indexing. 237

Superindexing . 238

Mixing Java Objects with JDD. 238
When You Must Use the PSE Pro API. 239

Pros and Cons of Mixing the PSE Pro API with JDD 239

Using Extended JDD Classes . 239

Chapter 11 Using Java Data Objects (JDO) with PSE Pro241
Overview of JDO with PSE Pro . 241

What does PSEJDO do? . 242

Description of PSEJDO Architecture . 243

Creating JDO Applications . 245
Developing Applications . 246

PSEJDO Feature Set . 252

PSE Pro Features . 253
12 PSE Pro for Java User Guide

Contents
Example Application. 255
Example Code .255

Example Persistence Descriptor .258

Example Properties File .258

Before You Run the Program .259

Running the Program .260

Chapter 12 Miscellaneous Information . 261
Java-Supplied Persistence-Capable Classes. 261

Description of Java-Supplied Persistence-Capable Classes261

Can Other Java-Supplied Classes Be Persistence Capable?.263

Description of Special Behavior of String Literals 265
Example of String Behavior .266

Destroying Strings .266

Serializing Persistent Objects . 267
Using Persistence-Capable Classes in a Transient Manner 268
Environment Variables . 269

Chapter 13 Tools Reference . 271
osjcfp: Running the Postprocessor . 272

Postprocessor API .279

osjcheckdb: Checking References in a Database 280
osjgcdb: Collecting Garbage in Databases. 281
osjshowdb: Displaying Information About a Database 282
osjup70: Upgrading Databases to 7.0 Format 283
osjversion: Obtaining PSE Pro Version Information 284

Appendix Packaging Your Application for End Users 285

Glossary . 287
Release 7.1 13

Contents
14
14 PSE Pro for Java User Guide

Preface

The PSE Pro for Java User Guide provides information and instructions for using PSE
Pro for Java. A companion book, the PSE Pro for Java Reference Guide is available on
line. It provides detailed information about the classes provided with PSE Pro. PSE
Pro for Java allows you to write Java applications that create and access persistent
data.

Audience
This book is for experienced Java programmers who want to write applications that
use PSE Pro for Java.

Scope
This book supports Release 7.1 of PSE Pro for Java.

The Way This Book Is Organized
This book is organized as follows:

• Chapter 1, Introducing PSE Pro, on page 21, describes what PSE Pro does, shows
the application architecture, and defines some important terms.

• Chapter 2, Example of Using PSE Pro, on page 31, describes the components your
application must include to use PSE Pro.

• Chapter 3, Using Sessions to Manage Threads, on page 37, discusses how to
initialize threads to use PSE Pro and how to use threads with PSE Pro sessions.

• Chapter 4, Managing Databases, on page 59, provides instructions for creating,
opening, closing, and upgrading databases.

• Chapter 5, Working with Transactions, on page 79, describes how to start and end
transactions.

• Chapter 6, Storing, Retrieving, and Updating Objects, on page 93, discusses the
steps for storing, retrieving, and updating data.

• Chapter 7, Working with Collections, on page 139, provides information about
PSE Pro utility collections. It also includes instructions for using the PSE Pro query
facility.

• Chapter 8, Generating Persistence-Capable Classes Automatically, on page 171,
describes how to use the class file postprocessor to create persistence-capable
classes.
Release 7.1 15

Preface
• Chapter 9, Generating Persistence-Capable Classes Manually, on page 207,
describes how to manually annotate classes you define so they are persistence
capable.

• Chapter 10, Using the Java Dynamic Data (JDD) Classes, on page 225, describes
how to use the JDD classes to model and store dynamic data without having to
run the postprocessor or perform schema evolution.

• Chapter 11, Using Java Data Objects (JDO) with PSE Pro, on page 241 describes
how to use the PSE Pro for Java implementation of the JDO specification. Storing
persistent data with JDO is an alternative to storing persistent data in PSE Pro for
Java databases.

• Chapter 12, Miscellaneous Information, on page 261, discusses serialization,
String literals, building Java applets, and Java-supplied persistence-capable
classes.

• Chapter 13, Tools Reference, on page 271, provides reference information for the
PSE Pro utilities: osjcfp, osjcheckdb, osjgcdb, osjshowdb, and osjversion.

• Appendix, Packaging Your Application for End Users, on page 285, provides
instructions for the files that you must include when you distribute your
application.

Notation Conventions
This document uses the following notation conventions

Progress Software on the World Wide Web

Convention Meaning

Courier Courier font indicates code, syntax, file names, API names,
system output, and the like.

Bold Courier Bold Courier font is used to emphasize particular code.

Italic Courier Italic Courier font indicates the name of an argument or
variable for which you must supply a value.

Sans serif Sans serif typeface indicates the names of user interface
elements such as dialog boxes, buttons, and fields.

Italic serif In text, italic serif typeface indicates the first use of an
important term.

[] Brackets enclose optional arguments.

{ a | b | c } Braces enclose two or more items. You can specify only one of
the enclosed items. Vertical bars represent OR separators. For
example, you can specify a or b or c.

... Three consecutive periods indicate that you can repeat the
immediately previous item. In examples, they also indicate
omissions.
16 PSE Pro for Java User Guide

Preface
The Progress Software Web site (www.progress.com) provides a variety of useful
information about products, news and events, special programs, support, and
training opportunities.

Technical
Support

To obtain information about purchasing technical support, contact your local sales
office listed at www.progress.com/about_us/worldwide_offices, or in North
America call 1-781-280-4833. When you purchase technical support, the following
services are available to you:

• You can send questions to ostore-support@progress.com. Remember to
include your serial number in the subject of the electronic mail message.

• You can call the Technical Support organization to get help resolving problems. If
you are in North America, call 1-781-280-4005. If you are outside North America,
refer to the Technical Support Web site at

www.progress.com/support_main.

• You can file a report or question with Technical Support by going to
www.progress.com/contact-customer-service.

• You can access the Technical Support Web site, which includes

- A template for submitting a support request. This helps you provide the
necessary details, which speeds response time.

- Solution Knowledge Base that you can browse and query.

- Online documentation for all products.

- White papers and short articles about using Progress products.

- The latest versions of products, service packs, and publicly available patches
that you can download.

- Access to a support matrix that lists platform configurations supported by this
release.

- Support policies.

- Local phone numbers and hours when support personnel can be reached.

Education
Services

To learn about standard course offerings and custom workshops, use the Progress
education services site (www.progress.com/objectstore/services).

To register for classes, call 1-800-477-6473 x4452. For information on current course
offerings or pricing, send e-mail to classes@progress.com.

Searchable
Documents

In addition to the online documentation that is included with your software
distribution, the full set of product documentation is available on the Progress
Software Developers Network (PSDN) Web site at
http://www.psdn.com/library/kbcategory.jspa?categoryID=1308. The site
provides documentation for the most recent release and the previous supported
release. Service Pack README files are also included to provide historical context
for specific issues. Be sure to check this site for new information or documentation
clarifications posted between releases.

Your Comments
Release 7.1 17

Preface
Progress product development welcomes your comments about its documentation.
Send any product feedback to ostore-support@progress.com. To expedite your
documentation feedback, begin the subject with Technical Support Issue; Doc:.
For example:

Subject: Technical Support Issue; Doc: Incorrect message on page 76
of reference manual

Third-Party Acknowledgments
This software makes use of the following third party products:

• Ant v1.6, Mortbay Jetty v6.1 and JXPath v 1.2. See the Apache License v2.0 in the
installation directory in the docs/ThirdPartyLicenses folder for license
information.

• Expat v9.5.1. Copyright © 1998, 1999, 2000 Thai Open Source Software Center Ltd
and Clark Cooper. Permission is hereby granted, free of charge, to any person
obtaining a copy of this software and associated documentation files the
"Software"), to deal in the Software without restriction, including without
limitation the rights to use, copy, modify, merge, publish, distribute, sublicense,
and/or sell copies of the Software, and to permit persons to whom the Software
is furnished to do so, subject to the following conditions: The above copyright
notice and this permission notice shall be included in all copies or substantial
portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT
WARRANTY OF ANY KIND, EXPRESS OR IMPLIED,INCLUDING BUT NOT
LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A
PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM,
DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF
CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
IN THE SOFTWARE.

• The Java SE Runtime Environment (JRE) Version 6, developed by and copyright
Sun Microsystems. See the Sun Microsystems, Inc. Binary Code License for the
Java SE Runtime Environment (JRE) Version 6 and
THIRDPARTYLICENSEREADME.txt in the installation directory in the
docs/ThirdPartyLicenses folder for license information.

• Jchart2d v2.2.0. The contents of these files are subject to the GNU Lesser General
Public License v.2.1 (the ìlicenseî). You may not use these files except in
compliance with the license. You may obtain a copy of the license in the
installation directory in the docs/ThirdPartyLicenses folder and a copy of the
license and source code of these files can be obtained through www.psdn.com by
following the instructions set forth therein.

• JSON. Copyright © 2002 JSON.org. Permission is hereby granted, free of charge,
to any person obtaining a copy of this software and associated documentation
files (the "Software"), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish, distribute,
sublicense, and/or sell copies of the Software, and to permit persons to whom the
Software is furnished to do so, subject to the following conditions: The above
18 PSE Pro for Java User Guide

Preface
copyright notice and this permission notice shall be included in all copies or
substantial portions of the Software. The Software shall be used for Good, not
Evil. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY
KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS
OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR
OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

• OpenDMK v 1.0-b2 and Restlet v 1.1m2. The contents of these files are subject to
the Common Development and Distribution License (CDDL) Version 1.0 (the
"License"). You may not use these files except in compliance with the License. You
may obtain a copy of the License in the installation directory in the
docs/ThirdPartyLicenses folder and a copy of the license and source code of these
files can be obtained through www.psdn.com by following the instructions set
forth therein.

• RSA Data Security, Inc. MD5 Copyright © 1991-2 RSA Data Security, Inc. Created
1991. All rights reserved. License to copy and use this software is granted
provided that it is identified as the "RSA Data Security, Inc. MD5 Message-Digest
Algorithm" in all material mentioning or referencing this software or this
function. License is also granted to make and use derivative works provided that
such works are identified as "derived from the RSA Data Security, Inc. MD5
Message-Digest Algorithm" in all material mentioning or referencing the derived
work. RSA Data Security, Inc. makes no representations concerning either the
merchantability of this software or the suitability of this software for any
particular purpose. It is provided "as is" without express or implied warranty of
any kind. These notices must be retained in any copies of any part of this
documentation and/or software.

• Sun RPC v3.9 - Sun RPC is a product of Sun Microsystems, Inc. and is provided
for unrestricted use provided that this legend is included on all tape media and as
a part of the software program in whole or part. Users may copy or modify Sun
RPC without charge, but are not authorized to license or distribute it to anyone
else except as part of a product or program developed by the user. SUN RPC IS
PROVIDED AS IS WITH NO WARRANTIES OF ANY KIND INCLUDING THE
WARRANTIES OF DESIGN, MERCHANTIBILITY AND FITNESS FOR A
PARTICULAR PURPOSE, OR ARISING FROM A COURSE OF DEALING,
USAGE OR TRADE PRACTICE. Sun RPC is provided with no support and
without any obligation on the part of Sun Microsystems, Inc. to assist in its use,
correction, modification or enhancement. SUN MICROSYSTEMS, INC. SHALL
HAVE NO LIABILITY WITH RESPECT TO THE INFRINGEMENT OF
COPYRIGHTS, TRADE SECRETS OR ANY PATENTS BY SUN RPC OR ANY
PART THEREOF. In no event will Sun Microsystems, Inc. be liable for any lost
revenue or profits or other special, indirect and consequential damages, even if
Sun has been advised of the possibility of such damages. Sun Microsystems, Inc.,
2550 Garcia Avenue, Mountain View, California 94043.
Release 7.1 19

Preface
• Tanuki Software Java Service Wrapper. See the Tanuki Software, Inc.
Development Software License Agreement, Version 1.0 in the installation
directory in the docs/ThirdPartyLicenses folder for license information. This
product includes software and documentation components developed in part by
Silver Egg Technology, Inc.("SET") prior to 2001. All SET components were
released under the following license. Copyright © 2001 Silver Egg Technology.
Permission is hereby granted, free of charge, to any person obtaining a copy of this
software and associated documentation files (the "Software"), to deal in the
Software without restriction, including without limitation the rights to use, copy,
modify, merge, publish, distribute, sub- license, and/or sell copies of the
Software, and to permit persons to whom the Software is furnished to do so,
subject to the following conditions: The above copyright notice and this
permission notice shall be included in all copies or substantial portions of the
Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF
ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM,
DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF
CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
IN THE SOFTWARE.

• Yahoo! User Interface Library - V 0.12.1. Copyright © 2006 Yahoo! Inc. All rights
reserved. The name Yahoo! Inc. nor the names of its contributors may be used to
endorse or promote products derived from this Software and products derived
from this software without specific prior written permission of Yahoo! Inc. See the
Yahoo! User Interface Library license V 0.12.1 in the installation directory in the
docs/ThirdPartyLicenses folder for license information.
20 PSE Pro for Java User Guide

Chapter 1
Introducing PSE Pro

PSE Pro provides an application programming interface (API) that allows you to
store Java objects persistently.

Contents This chapter discusses the following topics:

What Is PSE Pro? 21

What PSE Pro Does 22

Benefits of Using PSE Pro 23

Description of PSE Pro Architecture 23

Definitions of PSE Pro Terms 24

Prerequisites for Using PSE Pro 29

What Is PSE Pro?
ObjectStore support for Java includes two products:

• PSE Pro

• Java interface to ObjectStore Development Client

PSE Pro is a personal storage editions for Java. Designed for single-user applications,
it provides persistent storage for Java objects. Persistent data is available to
programmers in such a way that it appears as familiar, normal Java objects.
Persistent Java objects and regular Java objects are manipulated in the same way and
behave in the same way.

PSE Pro is designed for applications that require persistent Java support for as much
as 50 MB of data accessed by one user. The PSE Pro run-time library is written
entirely in Java, uses less than 600 KB of disk space, and runs entirely within the
application process. It supports transactions and provides access to objects without
reading the entire database.

PSE Pro

• Supports hundreds of thousands of objects in a database and hundreds of
megabytes of data in a database

• Provides better concurrency

• Allows multiple sessions (see page 24)
Release 7.1 21

What PSE Pro Does
• Collects garbage in databases

• Provides collections interfaces and classes that are compatible with Java collection
classes

• Supports queries and indexes

• Includes full database recovery from system failure

• Includes utilities for displaying information about the objects in a database and
checking references in a database

The query facility is a separate software package. If you do not install the query
facility, PSE Pro uses about 300 KB of disk space.

The Java interface to ObjectStore Development Client (referred to as ObjectStore) is
for Java and C++ applications that require multiuser high-performance persistent
storage for large databases with enterprise database features such as failover, on-line
backup, fine-grained concurrency, and security.

ObjectStore can work well for distributed databases of virtually unlimited sizes and
unlimited numbers of objects. The ObjectStore API is a superset of the PSE Pro APIs.
In addition to providing all features provided by PSE Pro, ObjectStore supports the
following:

• Applications that interface with databases and servers on local or remote
machines

• Java applications and C++ applications that can access the same data

• Multiple concurrent sessions

• Multiple concurrent users

• Operating on multiple databases in a transaction

• Cross-database references

• On-line backup, failover, and archive logging

PSE Pro includes the com.odi.odmg package, which provides an Object Data
Management Group (ODMG) binding. This binding includes classes for Database
and Transaction that closely follow the ODMG specification. The package also
includes the com.odi.odmg.Collection interface, persistence-capable classes that
implement the Collection interface, and ODMG exception classes. See the
com.odi.odmg package in the Java A P I Reference.

What PSE Pro Does
PSE Pro provides an API that allows a program to

• Start and end sessions to allow threads to use the PSE Pro API

• Create, open, close, and destroy databases

• Start, commit, and abort transactions to access data in the database

• Read and write database roots, which provide starting points for navigating to
persistent objects
22 PSE Pro for Java User Guide

Chapter 1: Introducing PSE Pro
• Store objects in a database and retrieve and update those objects

PSE Pro can recover from an application failure or system crash. If a failure prevents
some of the changes in a transaction from being saved to disk, PSE Pro ensures that
none of that transaction’s changes are saved in the database. When you restart the
application, the database is consistent with the way it was before the transaction
started.

PSE Pro does not have facilities for protection against media failure.

Benefits of Using PSE Pro
PSE Pro provides a convenient and complete API for storing and sharing Java objects
among users, hosts, and programs. After you define persistence-capable classes
(classes whose instances can be stored in a database), writing a PSE Pro application
is like writing any other Java application.

PSE Pro allows you to quickly read or modify portions of your persistent data. You
are not required to read in all persistent data when you just want to look at a subset.
This reduces start-up and transaction commit times and allows you to run much
larger Java applications without increasing the amount of memory or swap space on
the system.

When you access persistent data inside a transaction, PSE Pro ensures that your
results are not compromised by other users sharing the data. If something goes
wrong, or if you determine that you do not want to keep changes, you can abort the
transaction. In that case, PSE Pro restores the database to the state it was in before the
transaction started. This makes recovering from exceptions or failures
straightforward.

Description of PSE Pro Architecture
PSE Pro is a Java library that runs entirely within your Java virtual machine process.
A PSE Pro database consists of three files. PSE Pro uses the standard Java class
java.io.RandomAccessFile to access a database. There is no client/server
distinction.

There is no PSE Pro server. PSE Pro is just accessing a file on the file system. PSE Pro
has no special privileges. If PSE Pro can read or write a file, so can any other user
using ordinary file I/O.

PSE Pro does not maintain a cache. Instead, PSE Pro uses weak references to objects
in memory. If your application does not maintain a reference to an object in memory,
the Java garbage collector is free to collect that object. PSE Pro does provide retain
options that allow restricted use of objects outside transactions. See Committing
Transactions to Save Modifications on page 111.
Release 7.1 23

Definitions of PSE Pro Terms
 Definitions of PSE Pro Terms
This section describes the following terms, which you must be familiar with to use
PSE Pro:

• Session

• Persistence Capable

• Persistent Object

- Hollow persistent objects

- Active persistent objects

- Stale persistent objects

• Persistence Aware

• Transient Object

• Transitive Persistence

• Annotations

• Database Roots

Session
A session allows the use of the PSE Pro API. PSE Pro uses the abstract
com.odi.Session class to represent sessions.

Your application must create a session before it can use any of the PSE Pro API. After
a session is created, it is an active session. A session remains active until your
application or PSE Pro terminates it. After a session is terminated, it is never used
again. You can, however, create a new session.

A session creates a context in which you can create a transaction, access a database,
and manipulate persistent objects. A session consists of a set of persistent objects and
a set of PSE Pro API objects such as a Database and a Transaction. In a single Java
VM process, PSE Pro and ObjectStore allow multiple concurrent sessions.

Separate Java virtual machines can each run their own sessions at the same time. In
addition, if you are using PSE Pro or ObjectStore, separate Java virtual machines can
each run multiple sessions at the same time. See How Sessions Keep Threads
Organized on page 37.

Persistence Capable
The term persistence capable refers to the capacity of an object to be stored in a
database. If you can store the instances of a class in a database, the class is a
persistence-capable class and the instances are persistence-capable objects.

The definition of a persistence-capable class includes specific annotations required
by PSE Pro. After you compile class definitions, you run the PSE Pro class file
postprocessor on the compiled classes to add the annotations that make the classes
persistence capable. For more information, see Chapter 8, Generating Persistence-
Capable Classes Automatically, on page 171. In unusual circumstances, you might
24 PSE Pro for Java User Guide

Chapter 1: Introducing PSE Pro
choose to add the annotations to the Java source file manually. For more information,
see Chapter 9, Generating Persistence-Capable Classes Manually, on page 207.

You must explicitly postprocess or manually annotate each class that you want to be
persistence capable. The capacity for an object to be stored in a database is not
inherited when you subclass a persistence-capable class.

Some Java-supplied classes are persistence capable. Other classes are not and cannot
be made persistence capable. A third category of classes can be made persistence
capable, but there are important issues to consider when you do so. Be sure to read
Java-Supplied Persistence-Capable Classes on page 261.

Persistent Object
A persistent object is a representation of an object that is stored in a database. After an
application retrieves an object from the database, the application works with the
persistent object in the Java environment.

A persistent object always exists in one of three states:

• Hollow

• Active

• Stale

Methods you call can change the state of a persistent object.

Hollow
persistent
objects

A hollow persistent object has the same structure as the object in the database that it
represents. A hollow object contains the same fields as the object in the database that
the persistent object represents, but the fields of the hollow object usually do not
contain values corresponding to those values stored in the database. The values for
the fields in a hollow object might be null or the values from a previous transaction.

When your application acquires a reference to an object that has not yet been read in
from the database, PSE Pro generates a hollow object as a placeholder for that object.
PSE Pro does not actually read in the contents of the object until your application
tries to read, write, or invoke a method on the object.

When your application accesses a hollow object, PSE Pro turns it into an active
persistent object. PSE Pro retrieves the contents of the object from the database and
stores them in the fields of the hollow object, which makes it an active persistent
object. This process is referred to as initialization. In most applications, this happens
automatically, because the postprocessor inserts the required calls.

Obtaining an object from a database root always results in a hollow object. If you get
the same root three times, the object it identifies is still hollow. You must access the
object to make it active.

After an application accesses the contents of persistent objects, the objects that the
persistent object references are hollow objects unless their contents were accessed
previously. For example, suppose that you have the following class:

class A {
 B b;
}

Release 7.1 25

Definitions of PSE Pro Terms
When you obtain a reference to an instance of A, PSE Pro creates a hollow A object to
represent that instance. When you read or update the instance of A, PSE Pro turns it
into an active object and creates a hollow B object to represent the referred-to instance
of B. If you then read or update the instance of B, PSE Pro makes that hollow object
into an active object and creates hollow objects for any objects referred to by B.

Active
persistent
objects

A persistent object must be active before an application can read or update it. An
active persistent object starts as an exact copy of the object that it represents in the
database. The contents of an active object are available to be read by the application
and might be available to be modified. If an active object is updated by the
application, it is no longer identical to the object in the database that it represents.

When a persistent object is active, PSE Pro internally flags it as either clean or dirty.
An active object is marked initially as clean when its contents are read into memory.
At this point, PSE Pro recognizes that the contents of the persistent object match the
contents of the object in the database. An active object is dirty when it is a modified
version of the stored object that the active object represents. When you modify an
object, PSE Pro automatically changes the flag from clean to dirty. The class file
postprocessor inserts the code that makes a persistent object clean or dirty.

For example, suppose that you have an instance of a Person object in which the age
field has the value 30. When you read this object, it is in the clean state. If you modify
the value of age, even if the new value you assign is 30, the object is then in the dirty
state.

Stale persistent
objects

A stale persistent object is no longer valid. Its fields have default values or values left
over from previous transactions and should not be used. An object becomes stale
when an application calls

• Transaction.commit() on the transaction in which the object could be read or
modified, and the call

- Does not specify a retain argument, or it specifies ObjectStore.RETAIN_
STALE

- And Transaction.setDefaultCommitRetain() has not been set or it specifies
ObjectStore.RETAIN_STALE

- And Transaction.setDefaultRetain() has not been set or it specifies
ObjectStore.RETAIN_STALE

(There is not an API that sets a default retain value for the evict() or the
destroy() methods. You can only set a default retain value for the abort(),
checkpoint(), and commit() methods.)

• Transaction.abort() on the transaction in which the persistent object could be
read or modified, and the call

- Does not specify a retain argument or it specifies ObjectStore.RETAIN_
STALE

- And Transaction.setDefaultAbortRetain() has not been set or it specifies
ObjectStore.RETAIN_STALE

- And Transaction.setDefaultRetain() has not been set or it specifies
ObjectStore.RETAIN_STALE
26 PSE Pro for Java User Guide

Chapter 1: Introducing PSE Pro
• Transaction.checkpoint() on the transaction in which the persistent object
could be read or modified, and the call

- Does not specify a retain argument or it specifies ObjectStore.RETAIN_
STALE

- And Transaction.setDefaultCommitRetain() has not been set or it specifies
ObjectStore.RETAIN_STALE

- And Transaction.setDefaultRetain() has not been set or it specifies
ObjectStore.RETAIN_STALE

• ObjectStore.evict() on the object and the call does not specify a retain
argument, or it specifies ObjectStore.RETAIN_STALE

• ObjectStore.destroy() on the object

If an application tries to read or update a stale object, PSE Pro signals
ObjectException. An application must not invoke any instance method on a stale
object.

Persistence Aware
If the methods of a class can operate on fields of persistent objects, but instances of
the class itself are not persistence capable, the class is persistence aware.

Typically, if you want a class to be persistence aware, you run the postprocessor on
it to put in the required annotations. See Chapter 8, Generating Persistence-Capable
Classes Automatically, on page 171. Occasionally, you might choose to annotate the
class manually to make it persistence aware. See Chapter 9, Generating Persistence-
Capable Classes Manually, on page 207.

When a method accesses fields in a persistent object, PSE Pro checks to ensure that
the data has been read from the database. This checking is done by calls that the
postprocessor inserts in your code. These are the annotations mentioned in the
previous paragraph. The annotations are calls to the ObjectStore.fetch() or
ObjectStore.dirty() method.

Every persistence-capable and persistence-aware class must have these annotations.
Persistence-capable classes also include many other annotations.

A class must be persistence aware only if it directly accesses the fields of a
persistence-capable object. This includes access of elements of a persistent array. If
your persistence-capable classes have only private fields and do not return arrays
that might be persistent, other classes can call methods on the persistence-capable
object without being persistence aware.

Transient Object
A transient object is an object that is not already in a database.
Release 7.1 27

Definitions of PSE Pro Terms
Transitive Persistence
When an application commits a transaction, PSE Pro stores in the database any
transient objects that can be reached transitively from any persistent object. This is
the process of transitive persistence. Transient objects that are referenced by persistent
objects become persistent when the transaction commits. For this to work, the
transient objects must be persistence capable.

Annotations
The class file postprocessor annotates classes you define so that they are persistence
capable. This means that the postprocessor makes a copy of your class files,
overwrites your original class files or places them in a directory that you specify, and
adds byte code instructions (annotations) that are required for persistence. Complete
information about annotations is in Chapter 8, Generating Persistence-Capable
Classes Automatically, on page 171.

Occasionally, you might want to annotate your code manually. Information you
need to do this is in Chapter 9, Generating Persistence-Capable Classes Manually, on
page 207.

Database Roots
A database root provides a way to associate a name with an object in a database.
Applications use database roots to locate one or more persistent objects for
performing queries or navigating to other persistent objects. When you make an
object the value of a persistent database root, doing so establishes the object as
persistent and makes the objects it refers to available for transitive persistence.

At any given time, a database root is either associated with one database or it is null.
You can change the database with which a root is associated. Information about
database roots is in Working with Database Roots on page 96.
28 PSE Pro for Java User Guide

Chapter 1: Introducing PSE Pro
Prerequisites for Using PSE Pro
To use PSE Pro, you must

• Be an experienced programmer familiar with the Java language.

• Have a supported platform as defined in the support matrix on the Technical
Support web site (www.objectstore.net/support/matrix). This Web page
contains an up-to-date list of all supported and maintained platforms. Refer to the
support matrix if you are in any doubt whether your compiler or operating system
are supported.

• Have available a supported Java platform. The compiler must conform to JavaSoft
specifications. The Java VM must be among those supported by PSE Pro. You
cannot use a supported compiler with an unsupported VM.

• Have a valid license file.

To run PSE Pro for Java, the PSE Pro for Java runtime must be able to access a valid
PSE Pro for Java license file. The name of this file must be license.txt. During
installation, the installation script copies the license file you specify to the
etc/license.txt file in the PSE Pro for Java installation directory. At runtime,
PSE Pro for Java looks for a license file as follows:

a If you set the com.odi.OStoreLicenseFile Java property, then the
installation script uses that property value as the absolute path to the PSE Pro
for Java license file.

b If you do not set the com.odi.OStoreLicenseFile property, the installation
script determines the location of the pro.jar file (pro_g.jar for debug builds)
and looks for the license file in the ../etc directory.

If the license file is missing, invalid, or expired, then a fatal license exception
occurs and the installation script terminates.
Release 7.1 29

Definitions of PSE Pro Terms
30 PSE Pro for Java User Guide

Chapter 2
Example of Using PSE Pro

This chapter provides a simple example of a complete PSE Pro program. The code
for this example is in the com\odi\demo\people directory provided with PSE Pro.

Contents This chapter discusses the following topics:

Overview of Required Components 32

Sample Code 33

Before You Run the Program 35

Running the Program 36
Release 7.1 31

Overview of Required Components
The sample program stores information about a few people, then retrieves some of
the information from the database and displays it. The program shows the
components you must include in your application so that it can use PSE Pro. These
components are

• Create a session.The example calls the Session.create() method to start a
nonglobal session. See page 41.

• Join a thread to a session. The example calls the Session.join() method to
associate this thread with the session. See page 46.

• Create or open a database. The example creates the person.odb database and uses
the db variable to refer to it. See page 59.

• Start and commit transactions as needed. The example uses one transaction to
store the objects in the database. It then uses a second transaction to retrieve the
stored objects. See page 79.

• Create a database root, which provides a starting point for accessing objects in the
database. The example creates a root with the name "Tim" and associates it with
the tim instance of the Person class. See page 96.

• Store objects referenced by a root in the database. The example stores sophie and
joseph in the database when the transaction is committed. See page 94.

• Use a database root to retrieve objects from a database and do something with
them. The example starts a new transaction, retrieves tim, and displays a line of
information. See Retrieving Persistent Objects on page 95.

• End the session. The example calls the Session.terminate() method. This closes
the open database and shuts down PSE Pro. See page 43.

When you write a PSE Pro program, you write it as though classes are persistence
capable. However, a program cannot store objects persistently until you run the PSE
Pro-provided class file postprocessor. The postprocessor generates annotated
versions of the class files. The annotated version of the class definition is persistence
capable. You run the postprocessor after you compile the program and before you
run the program.
32 PSE Pro for Java User Guide

Chapter 2: Example of Using PSE Pro
Sample Code
package com.odi.demo.people;
// Import the com.odi package, which contains the API:
import com.odi.*;
public
class Person {

 // Fields in the Person class:

 String name;
 int age;
 Person children[];

 // Main:
 public static void main(String argv[]) {

 try {
 String dbName = argv[0];

 // The following line starts a nonglobal session and
 // joins this thread to the new session. This allows the
 // thread to use PSE Pro.
 Session.create(null, null).join();

 Database db = createDatabase(dbName);
 readDatabase(db);
 db.close();
 }

 // The following shuts down PSE Pro.
 finally {
 Session.getCurrent().terminate();
 }
 }

 static Database createDatabase(String dbName) {

 // Attempt to open and destroy the database specified on the
 // command line. This ensures that the program creates a
 // new database each time the application is called.

 try {
 Database.open(dbName, ObjectStore.UPDATE).destroy();
 } catch (DatabaseNotFoundException e) {
 }

 // Call the Database.create() method to create a new database.

 Database db = Database.create(dbName,
 ObjectStore.ALL_READ | ObjectStore.ALL_WRITE);
 // Start an update transaction:

 Transaction tr = Transaction.begin(ObjectStore.UPDATE);
 // Create instances of Person:

 Person sophie = new Person("Sophie", 5, null);
 Person joseph = new Person("Joseph", 1, null);
Release 7.1 33

 Person children[] = {sophie, joseph};
 Person tim = new Person("Tim", 35, children);

 // Create a database root and associate it with
 // tim, which is a persistence-capable object.
 // PSE Pro uses a database root as an entry
 // point into a database.

 db.createRoot("Tim", tim);

 // End the transaction. This stores the three person
 // objects, along with the String objects representing
 // their names, and the array of children, in the database.
 tr.commit();

 return db;

 }

 static void readDatabase(Database db) {

 // Start a read-only transaction:

 Transaction tr = Transaction.begin(ObjectStore.READONLY);

 // Use the "Tim" database root to access objects in the
 // database. Because tim references sophie and joseph,
 // obtaining the "Tim" database root allows the program
 // also to reach sophie and joseph.
 Person tim = (Person)db.getRoot("Tim");
 Person children[] = tim.getChildren();
 System.out.print("Tim is " + tim.getAge() + " and has " +
 children.length + " children named: ");
 for (int i=0; i < children.length; i++) {
 String name = children[i].getName();
 System.out.print(name + " ");
 }
 System.out.println("");
 // End the read-only transaction.
 // This form of the commit method ends the accessibility
 // of the persistent objects and makes the objects stale.
 tr.commit();
 }

 // Constructor:

 public Person(String name, int age, Person children[]) {
 this.name = name; this.age = age; this.children = children;
 }

 public String getName() {return name;}
 public void setName(String name) {this.name = name;}
 public int getAge() {return age;}
 public void setAge(int age) {this.age = age;}
 public Person[] getChildren() {return children;}
 public void setChildren(Person children[]) {
 this.children = children;
 }

 // This class is never used as a persistent hash key, so
34 PSE Pro for Java User Guide

Chapter 2: Example of Using PSE Pro
 // include the following definition. If you do not, then
 // when you run the postprocessor it is unclear whether or
 // not you intend to use the class as a hash code.
 // Consequently, the postprocessor inserts a hashCode
 // function for you. The following definition avoids this.
 public int hashCode() {
 return super.hashCode();
 }

}

Before You Run the Program
Before you can run the sample program, you must

• Add an entry to your CLASSPATH environment variable

• Compile the source file

• Run the postprocessor on the .class file

Adding an Entry to CLASSPATH
In your CLASSPATH environment variable, you already have two entries related to
PSE Pro:

• One entry for the pro.jar file to use PSE Pro

• One entry for the tools.jar file to use the class file postprocessor and other
database tools

Ensure that these .jar files are explicitly in your class path. An entry for the
directory that contains them is not sufficient.

Another entry is required for you to be able to build and run the program. This entry
names the PSE Pro installation directory and allows PSE Pro to locate the annotated
class files when you run the program.

For example, on Windows, if you place the PSE Pro distribution in the
c:\ODI\PSEProJ default directory, you need the following entries:

c:\ODI\PSEProJ\lib\pro.jar;
 c:\ODI\PSEProJ\lib\tools.jar;
 c:\ODI\PSEProJ

On UNIX, if you place the PSE Pro distribution in /usr/local/odi/pseproj (the
default), you need:

/usr/local/odi/pseproj/lib/pro.jar:
 /usr/local/odi/pseproj/lib/tools.jar:
 /usr/local/odi/pseproj
Release 7.1 35

Running the Program
Compiling the Program
To compile the program, change to the com\odi\demo\people directory and enter

javac *.java

As output, the javac compiler produces the byte code class file Person.class.

Running the Postprocessor
You must run the class file postprocessor to make the Person class persistence
capable. The postprocessor generates new annotated class files. After you run the
postprocessor, your program uses the annotated class files rather than the original
class files.

Ensure that the bin directory that contains the osjcfp executable is in your path, as
noted in the README file in the installation directory and the postprocessor
documentation. See Preparing to Run the Postprocessor on page 175.

To run the postprocessor, enter

osjcfp -dest . -inplace Person.class

The -dest option specifies a destination directory for the annotated files. It is a
required option. The -inplace option specifies that the postprocessor should
overwrite the original class files. When you specify the -inplace option, the
postprocessor ignores the -dest option.

The result from the osjcfp command shown above is the annotated class file
com\odi\demo\people\Person.class.

The -inplace option is the best choice for this example. However, when you are in
an iterative development cycle, it is best not to specify -inplace. During
development, putting the postprocessed files in a different directory avoids errors.

Running the Program
Run the program as a Java application. Following is a typical command line:

java com.odi.demo.people.Person person.odb

The argument is the pathname of the database’s .odb file, namely person.odb. The
application also creates person.odt, and person.odf, and these files form the
database. You can specify any pathname you want, as long as the file name ends with
.odb. This example uses a relative pathname, so PSE Pro creates the files in the
current working directory.

The expected output is

Tim is 35 and has 2 children named: Sophie Joseph

Also, the example application creates or replaces the person.odb database in the
current directory.
36 PSE Pro for Java User Guide

Chapter 3
Using Sessions to Manage
Threads

This chapter provides information about how to manage the threads in your
application. Sample code that uses threads is in com\odi\demo\threads.

Contents This chapter discusses the following topics:

How Sessions Keep Threads Organized 37

Creating Sessions 40

Working with Sessions 42

Associating Threads with Sessions 44

Working with Threads 47

Threads and Persistent Objects 50

Description of PSE Pro Properties 52

How Sessions Keep Threads Organized
For a thread to use PSE Pro, it must be associated with a session. To use threads with
PSE Pro, you must create at least one session and you must understand how to work
with sessions.

If you try to use the PSE Pro API and you have not created a session, PSE Pro signals
NoSessionException.

This section discusses the following:

• What Is a Session?

• How Are Threads Related to Sessions?

• What Is the Benefit of a Session?

• What Kinds of Sessions Are There?
Release 7.1 37

How Sessions Keep Threads Organized
What Is a Session?
A session allows the use of the PSE Pro API. PSE Pro uses the abstract
com.odi.Session class to represent sessions.

Your application must create a session before it can use any of the PSE Pro API. After
a session is created, it is an active session. A session remains active until your
application or PSE Pro terminates it. After a session is terminated, it is never used
again. You can, however, create a new session.

A session creates a context in which you can create a transaction, access a database,
and manipulate persistent objects.

Concurrent
sessions

In a single Java VM, PSE Pro and ObjectStore allow multiple concurrent sessions.

If you are using ObjectStore or PSE Pro, separate Java virtual machines can each run
multiple sessions at the same time.

The default behavior for PSE Pro is that at any one time only one Java VM process
can access a database. See Description of Concurrency Rules on page 87.

How Are Threads Related to Sessions?
At any given time, an active session has zero or more associated threads. Any number
of threads can join a session. Each thread can belong to only one session at a time.

At any given time, each thread is either joined to a single session or not joined (not
associated) to a session. A thread that is not associated with a session can join a
session. A thread that is associated with a session can leave the session to end its
association with that session. It can rejoin the session at a later time or it can join
another session.

For a thread to use the PSE Pro API, it must automatically or explicitly be associated
with a session. All threads that join the same session cooperate with each other. PSE
Pro does not prevent cooperating threads from accessing the same object.
Consequently, it is your responsibility to identify code segments that must be
synchronized. To successfully call the Session.join() method to join a session, a
thread must not already be associated with any session.

The current thread is the thread that you are making a call from. The current session is
the session that the current thread belongs to.

What Is the Benefit of a Session?
The benefit of a session is apparent when you want to have more than one session.
Two sessions in the same Java process allow you to perform two distinct activities
that involve PSE Pro. Each session has a clean, isolated view of the database. If you
want to have two or more independent transactions going on at the same time, you
can use two or more sessions. Concurrent sessions can be accessing the same
database or different databases.

When two sessions are accessing the same object in the database, there are two
distinct persistent objects. Each session has its own persistent object, which is a copy
38 PSE Pro for Java User Guide

Chapter 3: Using Sessions to Manage Threads
of the object in the database. At least initially, these two persistent objects have the
same content.

Each session has its own set of persistent objects and API objects. In most
circumstances, the threads of session A are not allowed to operate on the persistent
objects of session B. An exception to this rule is described in Multiple
Representations of the Same Object on page 50.

Independent
threads

A need for many different independent transactions normally arises because you
have many Java threads with different things occurring in each one. Typically, this
happens with a multithreaded application server, in which there are many threads.
Each thread serves a different client, so you might want to have many threads. Each
thread runs a separate transaction, and each thread is separate from each other
thread.

Cooperating
threads

On the other hand, there are times when you have multiple threads that are
cooperating on some database task and must operate on the same objects at the same
time. In this case, you might want two different Java threads to participate in the
same transaction.

Controlling the
threads that
cooperate

Sessions allow you to control the threads that cooperate in a transaction and work in
independent transactions. A session groups together a set of cooperating threads.
Each session has a sequence (in time) of transactions and a set of associated threads
that participate in these transactions.

There is a many-to-one relationship between threads and sessions. That is, any
number of threads can belong to one session.

Example of
cooperating
threads

A common case of cooperating threads arises when you are writing a Java applet. In
an applet, there are calls to different parts of your program in different threads. You
have to specify for PSE Pro that all these threads are part of the same session. This
allows them to operate on the same objects and in the same transactions. A similar
situation exists when you use RMI and CORBA servers; that is, there is a control
mechanism that calls your methods in different threads.

What Kinds of Sessions Are There?
An active session can be a global session or a nonglobal session. PSE Pro provides
two kinds of sessions because when you need only one session, PSE Pro can do many
things for you automatically.

Joining threads
to sessions

As mentioned earlier, before you can use PSE Pro, you must create a session. For a
thread to use PSE Pro, it must join a session. In a global session, an unassociated
thread that makes a call to the PSE Pro API joins the session automatically. In a
nonglobal session, this happens only when the call implies the session. See Rules for
Joining a Thread to a Session Automatically on page 45. Otherwise, you must
explicitly add the thread to a session.

Number of
sessions

An active global session is the only session in the Java VM. With PSE Pro and
ObjectStore, you can have multiple nonglobal sessions or one global session in a Java
VM.
Release 7.1 39

Creating Sessions
Global sessions Global sessions make programming easier because you need not know the PSE Pro
APIs for associating threads with sessions. All threads that make PSE Pro API calls
join the one global session automatically.

The drawback is that you can have only one session. If you change your program in
the future to use multiple sessions, you might have to go back and put in API calls
to associate threads with the appropriate session. If you think you might use
multiple sessions in the future, it would probably be a good idea to prepare for that
by using a nonglobal session and explicitly joining the session in each thread.

Creating Sessions
When you create a session, you initialize PSE Pro for use by the threads that become
associated with that session. You can create a session in the following ways:

• Call the Session.createGlobal() method to create a global session.

• Call the Session.create() method to create a nonglobal session.

Regardless of how you create a session, you can specify a number of PSE Pro
properties when you create the session. These properties determine how PSE Pro
behaves in a variety of situations.

Creating Global Sessions
When the session is a global one and a thread that is not associated with the session
calls a PSE Pro API, PSE Pro automatically joins the thread to the session. After you
create a global session, you need not be concerned about joining threads to the
session.

To create a global session, call the Session.createGlobal() method. The method
signature is

public static Session createGlobal(String host,
 java.util.Properties properties)

This method creates and returns a new session and designates the session as a global
session. No threads are joined to this session yet. Any thread, including the thread
that creates the session, automatically joins the session the first time the thread uses
PSE Pro.

PSE Pro ignores the first parameter; you can specify null. The second parameter
specifies null or a property list. See Description of PSE Pro Properties on page 52.

If you try to create a global session when there is already an active session, PSE Pro
signals ObjectStoreException.

To obtain a global session, call Session.getGlobal(). The method signature is

public static Session getGlobal()

If the global session is active, PSE Pro returns it. Otherwise, PSE Pro returns null.
40 PSE Pro for Java User Guide

Chapter 3: Using Sessions to Manage Threads
Creating Nonglobal Sessions
You can create a nonglobal session. The difference between a global and nonglobal
session is that in a nonglobal session

• PSE Pro does not join all unassociated threads to the session automatically.

• Multiple nonglobal sessions can exist in the same Java VM for ObjectStore and
PSE Pro.

Joining threads
to sessions

For PSE Pro to join an unassociated thread to a nonglobal session automatically, the
thread must be making a PSE Pro API call that implies a session. See Rules for Joining
a Thread to a Session Automatically on page 45.

You must explicitly join a thread to a session before that thread can call a PSE Pro
API that does not imply a session. See Explicitly Associating Threads with a Session
on page 46.

Method
signature

The method signature for creating a nonglobal session is

public static Session create(String host,
 java.util.Properties properties)

This method creates and returns a new session. PSE Pro ignores the host argument;
specify null. The second argument specifies null or a property list. See Description of
PSE Pro Properties on page 52.

PSE Pro does not join the calling thread to the session. If you are using ObjectStore
or PSE Pro, a thread can belong to a nonglobal session and call a method that creates
another nonglobal session.

Session name PSE Pro generates a name for the session and never reuses that name for the lifetime
of the process in which the session was created. If you want to specify a particular
name, use the following overloading to specify a unique session name:

public static Session create(String host,
 java.util.Properties properties,
 String name)

PSE Pro uses the session name in debugging messages. The Session.getName()
method returns the name of the session.

Exception
conditions

If you call Session.create() when there is an active global session, PSE Pro signals
ObjectStoreException.
Release 7.1 41

Creating Sessions
 Working with Sessions
After you create a session, you need to know how the session functions with regard
to transactions. You also need to know about the operations you can perform on the
session. This section discusses

• Sessions and Transactions

• Shutting Down Sessions

• Obtaining a Session

• Determining Whether a Session Is Active

Sessions and Transactions
At any given time, a session has one associated transaction in progress or it does not
have any associated transaction. Each transaction is associated with exactly one
active session.

When a session is created, there is no associated transaction. While a session is active,
an application can start, then commit or abort, one transaction at a time per session.
Over time, a session is associated with a sequence of transactions.

If a transaction is in progress when an application or PSE Pro shuts down the session,
PSE Pro aborts the transaction as part of the shutdown process.

Within a session, one database at a time can be open. If you need to have multiple
databases open at the same time, you must have a session for each database that
needs to be open.

In PSE Pro, multiple sessions within a Java VM can have simultaneous independent
transactions. These transactions can be doing any one of the following:

• Each transaction can access a different database. In this case, all sessions can have
read-only transactions, or all sessions can have update transactions, or there can
be any combination of read-only and update transactions.

• Some transactions can access the same database, while other transactions access a
different database or several different databases. In this case, any number of
sessions can have read-only transactions against the same database at the same
time. If at least one session has a read-only transaction against a database, no
session can have an update transaction against that database.

Only one session at a time can have an update transaction against a database. When
a session has an update transaction against a database, no other session can have a
read-only transaction against that database.

See also Description of Concurrency Rules on page 87 and Preventing More Than
One Process from Accessing a Database on page 90.

Transaction in
progress?

To determine whether there is a transaction in progress, call the
Session.inTransaction() method. The method signature is

public boolean inTransaction()
42 PSE Pro for Java User Guide

Chapter 3: Using Sessions to Manage Threads
If there is a transaction associated with the session, this method returns true. If there
is no transaction associated with the session, this method returns false. If the
session has been terminated, PSE Pro signals NoSessionException.

Obtaining the
associated
transaction

To obtain the transaction associated with a session, call the
Session.currentTransaction() method. The method signature is

public Transaction currentTransaction()

If the session has been terminated, PSE Pro signals NoSessionException. If no
transaction is associated with the session, PSE Pro signals
NoTransactionInProgressException.

Obtaining the
transaction’s
session

To obtain the session associated with a transaction, call the
Transaction.getSession() method. The method signature is

public Session getSession()

Shutting Down Sessions
When your application opens a database, PSE Pro creates a directory that functions
as a lock against other Java VM processes. The name of the directory is database_
name.odx

PSE Pro maintains this directory in the same directory as your database. When your
application closes the database or terminates the session (this closes the database)
that opened the database, PSE Pro deletes the .odx directory, which releases the lock.
Consequently, you must close a database to make that database available to other
processes.

To do this, ObjectStore recommends that you call the Database.close() or
Session.terminate() method in the finally clause of your program. If you do
not close a database, the database remains locked and other VM processes cannot
access it. For an example, see Preventing More Than One Process from Accessing a
Database on page 90.

Another reason to shut down a session is to release the Java objects associated with
the session.To shut down a session, call the Session.terminate() method. The
method signature is

public void terminate()

It does not matter whether the session is a global session or a nonglobal session; PSE
Pro shuts down the session. If there are no other sessions, no thread can use the PSE
Pro API until there is a new active session. The terminated session is never reused.

Transaction in
progress

If the session you shut down has an associated transaction, PSE Pro aborts the
transaction. If the session has already been terminated, PSE Pro does nothing. If the
session has any associated threads, PSE Pro causes them to leave the session. If the
session has an open database, PSE Pro closes it.

If PSE Pro signals FatalException, this shuts down the session.
Release 7.1 43

Associating Threads with Sessions
Obtaining a Session
You can obtain a session with a call to any of the methods in the following list:

• Placement.getSession()
• Session.getCurrent()
• Session.getGlobal()
• Session.of(object)
• Session.ofThread(thread)
• Transaction.getSession(thread)

Determining Whether a Session Is Active
To determine whether a session is active, call the Session.isActive() method. The
method signature is

public boolean isActive()

If the session is active, this method returns true. If the session has been terminated,
this method returns false.

Associating Threads with Sessions
To help you associate threads with sessions, this section discusses

• Joining Threads to a Session Automatically

• Associating a Persistent Object with a Session

• Rules for Joining a Thread to a Session Automatically

• Examples of Calls That Imply Sessions

• Examples of Calls That Do Not Imply Sessions

• Explicitly Associating Threads with a Session

There is a bug in the software that prevents threads from being joined to sessions
automatically. As a work around, you must explicitly join each thread to a session.
See the ObjectStore Release Notes for details. This bug will be fixed in a future release.

Joining Threads to a Session Automatically
Whether a thread can join a session automatically depends on

• Whether the session is global or nonglobal

• Whether the API call that the thread is making implies a session

Global sessions When there is a global session, an unassociated thread that makes a call to the PSE
Pro API joins the global session automatically, if necessary. In the following
situations, it might not be necessary to join the thread to the session:

• An unassociated thread calls a method on a transient object and the method
requires a persistent object. Because the object is not persistent, the method cannot
do anything, so it need not be joined to the session.
44 PSE Pro for Java User Guide

Chapter 3: Using Sessions to Manage Threads
• An unassociated thread calls a method that does not operate on persistent objects,
for example, calls to ObjectStore.getAutoOpenMode() and
ObjectStore.setLazyWriteLocking.

• An unassociated thread calls a method that has already been executed. The thread
might join the session automatically if it executes the method anyway. For
example, when an unassociated thread tries to open a database that is already
open, PSE Pro joins the thread to the session that the database belongs to, even
though the thread does not actually do anything.

Nonglobal
sessions

In a nonglobal session, PSE Pro automatically joins threads to the session when the
call from the thread implies that session. This means that the call specifies an
argument that is already associated with that session. This includes the object on
which the method is invoked.

After PSE Pro automatically joins a thread to a session,

• The thread is associated with the session until you remove it from the session or
the session terminates.

• PSE Pro performs the called method.

Associating a Persistent Object with a Session
How does an object become associated with a session? It happens implicitly. Assume
that a thread is already associated with a session. This associated thread successfully
calls a PSE Pro API. If there are any objects that result from that call, PSE Pro
associates them with the session that the calling thread belongs to.

As a result of explicit and implicit association, a session provides a context for a set
of persistent objects and a set of PSE Pro API objects, such as a Database object and
a Transaction object.

The session defines a namespace. The namespace defines unique names (and,
consequently, identities) for databases, segments, clusters, transactions, and
persistent objects. While it is possible for threads in different sessions to share
objects, doing so is incorrect and usually results in exceptions.

If the thread in which an object was materialized leaves the session, the object
remains associated with the session.

Rules for Joining a Thread to a Session Automatically
Because of the associations between objects and a particular session, some API calls
imply a session. If there is no global session,

• A call that implies a session allows the calling thread to be joined to the implied
session automatically.

• A call that does not imply a session does not allow the calling thread to be joined
to a nonglobal session automatically.

If a thread associated with one session makes a call that implies another session, PSE
Pro signals WrongSessionException.
Release 7.1 45

Associating Threads with Sessions
Examples of Calls That Imply Sessions
A call that implies a session is a call that specifies an argument that is already
associated with a session. It can also be a call in which the object on which the
method is called is associated with a session. When these calls are in a thread that is
not associated with a session, PSE Pro automatically joins the thread to the session
with which the argument is already associated. It does not matter whether it is a
global or nonglobal session. Some examples of API calls that imply a session follow:

• Database.close() — The Database argument was associated with a session
when it was created.

• ObjectStore.migrate(object, placement, export) — The placement
argument specifies a segment or database, which was associated with a session
when it was initialized.

• ObjectStore.destroy(object) — The object argument designates a
persistent object. It was associated with a session the first time it was accessed.

Examples of Calls That Do Not Imply Sessions
A call that does not imply a session is a call that does not specify an argument that is
associated with a session. When these calls are in a thread that is not associated with
a session, PSE Pro cannot join the thread to a session automatically if it is a nonglobal
session. Examples of API calls that do not imply a session follow:

• Database.open(name, openType) — A static method. The Database object
does not exist yet so the name argument is not associated with a session.

• Transaction.begin(type) — Another static method, and the Transaction
object does not exist yet.

• ObjectStore.majorRelease() — Also a static method.

• A call that accesses a transient object.

• A call that never accesses a persistent object, for example,
ObjectStore.getAutoOpenType() and
ObjectStore.setLazyWriteLocking().

Explicitly Associating Threads with a Session
To join a thread to a session explicitly, you call the Session.join() method.

Session.join() To associate a thread with a session explicitly, call the Session.join() method. The
method signature is

public void join()

This associates the current thread (the thread that contains the call to join()) with
the session on which the join() method is called.

PSE Pro signals exceptions when joining threads to sessions in the following cases:

• When you try to join a thread to a session that has been terminated, PSE Pro
signals NoSessionException.
46 PSE Pro for Java User Guide

Chapter 3: Using Sessions to Manage Threads
• When you try to join a thread that already is in a session to another session, PSE
Pro signals WrongSessionException.

However, if you try to join a thread to a session to which the thread already belongs,
PSE Pro does nothing.

To join a thread to a session for a bounded duration of time, try something like the
following:

Session session;
try {
 session.join();
 ...;
 ...;
 ...;
} finally {
 session.leave();
}

Working with Threads
After you associate a thread with a session, it is important that you understand how
to use the thread within the framework of a session. To that end, this section
discusses

• Cooperating Threads

• Noncooperating Threads

• Synchronizing Threads

• Removing Threads from Sessions

• Threads That Create a Session

• Other Threads

• Threads and Applets on page 49

• Determining Whether PSE Pro Is Initialized for the Current Thread

Cooperating Threads
All threads associated with a particular session cooperate with each other. That is,
they

• Share transactions, persistent objects, and locks on PSE Pro data

• View the same state of any databases they access

For example, suppose thread A and thread B are cooperating threads (that is, they
belong to the same session). A and B are running asynchronously. Each thread is
issuing a sequence of operations and these sequences are interleaved in an
unpredictable manner.

For PSE Pro, it is as if these operations are all coming from the same thread. It does
not matter which operation comes from A and which operation comes from B. PSE
Release 7.1 47

Working with Threads
Pro views the operations as being in a single sequence because they are issued from
cooperating threads.

If A or B starts a transaction, it does not matter which thread issues the call. The
transaction begins for both threads, regardless of the thread that actually starts the
transaction. Any changes performed by A or B during the transaction are visible to
both threads and can be acted on by either thread. Similarly, if A commits the
transaction, it is just as if B commits the transaction. So B must be in a state in which
it is all right to commit the transaction. A and B must cooperate.

Noncooperating Threads
Threads that do not belong to the same session cannot share transactions, persistent
objects, or locks on data, and cannot view the same state of the database. Threads that
belong to different sessions are noncooperating threads. With ObjectStore or PSE
Pro, a different session can belong to the same process or a different process.

Two or more noncooperating threads can open the same database at the same time
and access the same root object. If two or more noncooperating threads access the
same object in the database, an equivalent number of distinct instances of the
persistent object exist — one for each thread. The identity test, ==, does not show
them to be identical.

Synchronizing Threads
Your application is responsible for synchronizing activity among cooperating
threads when the transaction is committed or aborted. In general, your application
must avoid accessing the database while a thread is committing the transaction and
until a cooperating thread starts a new transaction. If a transaction is aborted,
cooperating threads might need to retry database operations.

Additional information about synchronizing threads is in Multiple Cooperating
Threads on page 87.

Removing Threads from Sessions
A thread can leave a session at any time, including while a transaction is in progress.
This does not affect the transaction, nor any threads that are still joined to that
session. With or without a transaction in progress, it is all right if no threads are
associated with a session. The session does not terminate. A thread can join a session
later to finish the transaction. If no thread does that, PSE Pro aborts the transaction
when the session terminates.

To end the association of a thread with a session, call the Session.leave() method.
The method signature is

public static void leave()

After you execute this method, the current thread is no longer joined to the session.
If the current thread is already not associated with the session on which the method
is called, PSE Pro signals NoSessionException.
48 PSE Pro for Java User Guide

Chapter 3: Using Sessions to Manage Threads
If your application or PSE Pro shuts down a session, PSE Pro causes any associated
threads to leave the session before it performs the shutdown.

If a thread is associated with a session and the thread terminates, it leaves the session
automatically.

Threads That Create a Session
There is nothing special about the thread that creates a session. This thread can leave
the session and any threads associated with that session can continue operating.

When your application calls the Session.createGlobal() or Session.create()
method, PSE Pro does not associate the thread that calls the method with the newly
created session. For that thread to join the new session, it must call the
Session.join() method.

Other Threads
A thread that does not belong to a session cannot use the PSE Pro API. However, a
thread need not be associated with a session to call Session.isActive()
successfully.

If a session has a transaction in progress, a thread that is not associated with that
session must not use persistent objects that belong to that session. See Threads and
Persistent Objects on page 50.

If a session does not have a transaction in progress, any thread, including threads
that do not belong to that session, can access persistent objects to the degree they
were left visible when the application committed or aborted the transaction. See
Ending a Transaction on page 83.

Threads and Applets
If you want to use PSE Pro with applets, it is likely that you will use cooperating
threads. Typically, one thread performs initialization and another thread runs the
applet’s body.

Determining Whether PSE Pro Is Initialized for the Current Thread
You can use the Session.getCurrent() method to determine whether PSE Pro is
initialized for the current thread. The method signature is

public static Session getCurrent()

This method returns the session with which the current thread is associated. If the
current thread is not associated with a session, this method returns null.
Release 7.1 49

Threads and Persistent Objects
Threads and Persistent Objects
Each persistent object is associated with exactly one session. Any modification to the
state of a persistent object must be done by a thread that cooperates in the session to
which the persistent object belongs.

After you terminate a session, the persistent objects and API objects that were
associated with it when it was terminated continue to be associated with the
terminated session. One exception to this is when you call the Database.close()
method with a true argument. This causes the persistent objects to be retained as
transient objects, which are not associated with any session.

The information in this section is provided to help you ensure that threads access the
correct objects. This section discusses these topics:

• Multiple Representations of the Same Object

• Example of Multiple Sessions

• Application Responsibility

• Effects of Committing a Transaction

• Description of Allowable Simultaneous Actions on page 51

• API Objects and Sessions

Multiple Representations of the Same Object
When you have multiple sessions, it is possible to have multiple persistent objects
that represent the same object in the database. For example, a thread belonging to
session A accesses object X. Then a thread belonging to session B accesses object X.
There are two persistent objects that represent X. Each is a representation of the same
object in the database. If you use the == operator on session A’s X and session B’s X,
the result is that they are not identical; they are not the same object. Within a session,
PSE Pro preserves object identity.

Example of Multiple Sessions
The following example shows actions you can and cannot perform when you have
multiple sessions. In this example, suppose you have sessionA and sessionB and

• threadA is associated with sessionA.

• threadB is associated with sessionB.

In threadA, you start a transaction and read the contents of a persistent object called
objectA. Because threadA is associated with sessionA, objectA belongs to
sessionA. You commit the transaction with ObjectStore.RETAIN_UPDATE.

At this point, in threadB, you can read or modify objectA unless a transaction is in
progress in sessionB. However, any modifications are discarded when sessionA
starts a transaction.
50 PSE Pro for Java User Guide

Chapter 3: Using Sessions to Manage Threads
Application Responsibility
It is the responsibility of the application to ensure that noncooperating threads act on
persistent objects only in the ways allowed when a transaction is not in progress.

If you have a Java static variable that contains a persistent object and there are two
separate sessions, you must decide the session that owns the static variable. In other
words, if there is a Java static variable whose value is a persistent object, that
persistent object is associated with one session.

Effects of Committing a Transaction
When a thread commits a transaction, it affects only those persistent objects that
belong to the same session that the thread belongs to.

Caution You must ensure that an object never refers to an object that belongs to a different
session. This is crucial because transitive persistence (performed when committing a
transaction) must never reach an object that belongs to another session. If it does, PSE
Pro signals WrongSessionException.

Array objects When a thread commits a transaction, if PSE Pro reaches an object whose class does
not implement IPersistent, PSE Pro treats the object as a transient object and
migrates it to a database. This works correctly for immutable classes such as Integer
and String. For array objects, this can cause unpredictable results because one
session might modify the object while another session is using the old contents.

Description of Allowable Simultaneous Actions
Noncooperating threads can simultaneously have the same database open for read-
only. So, in a sense, noncooperating threads can share a database even though they
are not cooperating.

Also, noncooperating threads can simultaneously open different databases for
update. However, noncooperating threads cannot simultaneously open the same
database for update. It is as if they are distinct processes; if one thread has a database
open for update and a noncooperating thread tries to open that database, either the
second thread waits or PSE Pro throws com.odi.DatabaseLockedException. What
happens depends on the type of the transaction.

See also Description of Concurrency Rules on page 87.
Release 7.1 51

Description of PSE Pro Properties
API Objects and Sessions
Each PSE Pro API object is related to one session. These metaobjects are

• Cluster

• Database

• DatabaseRootEnumeration

• DatabaseSegmentEnumeration

• Segment

• Transaction

If you open the same database from two noncooperating transactions, each session
has its own Database object to represent the database. These Database objects are
not identical; that is, == returns false.

If you try to use a database in the wrong session, PSE Pro signals
WrongSessionException.

Description of PSE Pro Properties
When you create a session, you can specify a properties argument. This section
provides the following information about this argument:

• About Property Lists Relevant to PSE Pro

• Description of com.odi.queryDebugLevel on page 54

• Description of com.odi.stringPoolSize

• Description of com.odi.trapUnregisteredType

• Description of com.odi.useDatabaseLocking on page 57

• Description of com.odi.useFsync on page 57

• Description of com.odi.useFsync

About Property Lists Relevant to PSE Pro
When you create a session, there are the following two relevant property lists:

• The java.util.Properties object that is the second argument to the method
that creates the session

• The system property list

Finding the
value of a
property

To find the value of a property, PSE Pro checks the java.util.Properties object.
If it provides a value, PSE Pro uses it. If it does not provide a value, PSE Pro checks
the system property list.
52 PSE Pro for Java User Guide

Chapter 3: Using Sessions to Manage Threads
Passing a
property value

When you want to pass a property value to the method that creates a session, you
typically put it in the java.util.Properties object that is an argument to the
method that creates the session.

There is only one system property list for each Java VM. Multiple sessions in the
same Java VM all use the same system property list. For more information about
system properties, see System.getProperty, in section 21.6 of the Java Language
Specification.

Defining a
system property

All PSE Pro property names start with com.odi. You can pass in property
information by defining it as a system property. For example:

Properties props = System.getProperties();
props.put("com.odi.useDatabaseLocking", "true");
Session session = Session.create(null,props);

There is also a System.setProperties() method that resets the System property
list.

The JDK allows you to specify a system property by including

-Dparameter=value

on the java command line before the class name. Each such specification defines one
system property. Not all Java virtual machines run this way.

Defining a
Properties
object

If you want to construct your own property list, the type of the property list
argument is java.util.Properties. For example:

Properties props = new Properties();
props.put("com.odi.useDatabaseLocking", "true");
Session session = Session.create(null,props);

Description of com.odi.disableCrossTransactionCaching
The com.odi.disableCrossTransactionCaching property defaults to true. This
means that PSE Pro makes retained objects hollow at the start of a new transaction.
This is the same way that ObjectStore functions.

When this property is set to false, at the beginning of a new transaction, PSE Pro
does not hollow objects whose contents were retained after a committed transaction.
This means that after you commit a transaction with ObjectStore.RETAIN_
READONLY or ObjectStore.RETAIN_UPDATE, you have access to all objects that you
read or updated during the previous transaction. If you then start a new transaction,
the contents of objects that were retained are not hollowed out. If you always retain
object contents when you commit a transaction, you have access to all objects you
read or updated in the current session.

A disadvantage of setting this property to false is that there is no comparable
property in ObjectStore. If your application depends on the behavior allowed when
disableCrossTransactionCaching is set to false, it will not work with
ObjectStore.

This property will be deprecated in a future release when an API that performs a
similar function is available.
Release 7.1 53

Description of PSE Pro Properties
Description of com.odi.disableWeakReferences
The com.odi.disableWeakReferences property defaults to false. This means that
PSE Pro uses the weak reference facility of the JDK. If you set this property to true,
it disables the weak reference facility and PSE Pro does not use it.

When you start the first session in a Java process, the setting of the
com.odi.disableWeakReferences property is in effect for the duration of the Java
process. If you terminate the session and start another session with a different value
for the com.odi.disableWeakReferences property, the new value is ignored.

A weak reference to an object is a reference that does not prevent the object from
being garbage collected by the Java VM’s garbage collector. PSE Pro uses weak
references in its internal object table to hold references to unmodified persistent
objects. If your program does not have any references to persistent objects and the
reference in the object table is the only reference, the object can be garbage collected.
If the persistent object has been modified and the changes have not yet been saved,
PSE Pro uses a strong reference, which does not allow the object to be garbage
collected.

 Description of com.odi.queryDebugLevel
The com.odi.queryDebugLevel property allows you to control debugging output
when you are using the query facility defined in the com.odi.util.query.Query
class. The default level is 0, which does not output any information. Set the property
to a value greater than 0 to print debugging output to System.err. As the value of
this property increases, the query facility outputs more information as follows:

• 0 — No debugging information.

• 1 — Indexes that are required and that would be useful; statistics about indexed
and nonindexed lookups.

• 5 — Query parser tree and query evaluation tree.

• 10 — Information about generated classes.

Description of com.odi.stringPoolSize
The com.odi.stringPoolSize property allows you to specify the number of newly
created strings PSE Pro maintains in the string pool for the current session. In PSE
Pro, the default is "100".
54 PSE Pro for Java User Guide

Chapter 3: Using Sessions to Manage Threads
When PSE Pro is about to migrate a string into a segment, it first checks the string
pool for an identical string in the same segment. If it finds one, ObjectStore uses the
string that is already stored in the segment instead of adding a new identical string
to the segment. The information about the strings that are available to be shared is
maintained only for the current transaction. The strings that are available to be
shared are maintained in a string pool. PSE Pro resets the string pool to empty at the
start of each transaction.

For example, suppose you create two instances of a Person object in a transaction. In
each instance, the value of the name field is Lee. If you store both instances in the
database in the same transaction, and in the same segment, PSE Pro adds only one
instance of the string "Lee" to the database. This is true even though the Java VM
might contain two instances of the string "Lee". When PSE Pro writes the first "Lee"
string in the segment, ObjectStore notes it in the string pool. Before PSE Pro stores
the next instance of "Lee" in the segment, it checks the string pool to see if an
identical instance is already in the segment. However, if the two Person objects were
stored in different segments, the two instances of the string "Lee" would be
migrated to the database and stored separately in each segment.

Continuing the example, suppose you use two transactions and you store one
instance of Person in each transaction. The result is that there are two identical "Lee"
strings in the segment. This is because PSE Pro resets the string pool to be empty at
the start of each transaction. Consequently, PSE Pro cannot reuse the "Lee" string
from the previous transaction.

Caution If you use ObjectStore.destroy() to destroy strings explicitly, you might want to
turn off string pooling so you do not inadvertently destroy a string that is shared by
different objects. Alternatively, you can use the persistent GC to reclaim strings
when they are no longer referenced. Using the GC is usually preferable to explicitly
calling destroy(), because it is safer to let the persistent GC collect unreachable
strings. Also, this approach is often more efficient and results in less database
fragmentation.

Description of com.odi.trapUnregisteredType
The com.odi.trapUnregisteredType property is useful for troubleshooting
ClassCastExceptions. The default is that this property is not set and it is usually
best to use the default.

When PSE Pro encounters an object of a type for which it does not have information
(that is, the type is unregistered), it checks the setting of the
com.odi.trapUnregisteredType property.

If the property is not set, PSE Pro creates an instance of the UnregisteredType class
to represent the object of the unknown type. Your application continues to run as
long as it does not try to use the UnregisteredType object. Often, this can work well
because your application has no need for that particular field. However, if you do try
to use the object of the unregistered type, PSE Pro signals ClassCastException.

If com.odi.trapUnregisteredType is set, PSE Pro does not create an
UnregisteredType object. Instead, it signals FatalApplicationException and
Release 7.1 55

Description of PSE Pro Properties
provides a message that indicates the name of the unregistered class. For additional
information, see Handling Unregistered Types on page 133.
56 PSE Pro for Java User Guide

Chapter 3: Using Sessions to Manage Threads
Description of com.odi.useDatabaseLocking
The com.odi.useDatabaseLocking property allows you to turn cross-process
locking off. By default, cross-process locking is turned on. This means that if a
session has a database open, a session in another Java VM process cannot open that
database. If a session tries to open a database that is already open in another process,
PSE Pro throws com.odi.DatabaseLockedException.

The com.odi.useDatabaseLocking property is a PSE Pro feature; it is not a Java
interface to ObjectStore feature. If you are also using the Java interface to ObjectStore,
beware of confusing this property with the ObjectStore java interface
Database.acquireLock() API. This method allows a session to explicitly lock a
particular database for exclusive use.

Description of com.odi.useFsync
Set the com.odi.useFsync property to false if you do not want PSE Pro to flush
(write) data to disk from the operating system’s buffers prior to committing the
transaction. The default value for this property is true.

This means that PSE Pro flushes all modified data to disk before a
Transaction.commit() call returns. This does not interfere with the ability to roll
back changes if a transaction aborts. When this property is set to false, there are
fewer disk writes so performance can be faster. However, there is the risk of
corrupted data if the machine is not shut down cleanly. Even if the Java VM is shut
down cleanly, the operating system must flush its buffers cleanly as well.

Description of com.odi.useImmediateStrings
When you set the com.odi.useImmediateStrings property to true, Strings that
are eight characters (bytes) or less are stored as immediate values when a session is
created. This means that these Strings are not stored as independent objects in the
database, resulting in a smaller database and avoiding the run-time overhead for
tracking the Strings in the object table.

When com.odi.useImmediateStrings is enabled, Strings that are stored as values
of fields in persistent objects are not persistent, unless you explicitly call
ObjectStore.migrate on the Strings to make them persistent.

By default, the com.odi.useImmediateStrings property is enabled (set to true).
Release 7.1 57

Description of PSE Pro Properties
58 PSE Pro for Java User Guide

Chapter 4
Managing Databases

You create databases to store your objects. The Database class provides the API for
creating and managing databases.

Contents This chapter discusses the following topics:

Creating a Database 59

Determining Whether a Database, Segment, or Cluster Is Transient 62

Opening and Closing a Database 63

Moving or Copying a Database 67

Performing Garbage Collection in a Database 67

Schema Evolution: Modifying Class Definitions of Objects in a Database 69

Destroying a Database 74

Obtaining Information About a Database 75

Database Operations and Transactions 76

Restrictions on Databases 77

Controlling Database Size 78

Note Release 7.0 changes the database format. If you have Release 6.x databases and you
want to use them with Release 7.0, you must upgrade those databases with the
osjup70 utility. See osjup70: Upgrading Databases to 7.0 Format on page 283. After
you upgrade databases to Release 7.0, you cannot use them with Release 6.x
applications.

Creating a Database
The Database class is an abstract class that represents a database. When you create
a database,

• There must be an active session, or PSE Pro signals NoSessionException.

• A transaction must not be in progress, or PSE Pro signals
TransactionInProgressException.

Databases are cross-platform compatible. You can create databases on any
supported platform and access them from any supported platform.

This section discusses the following topics:
Release 7.1 59

Creating a Database
• Method Signature for Creating a Database

• Example of Creating a Database

• Result of Creating a Database

• Specifying a Database Name in Creation Method

• When the Database Already Exists

• Segments on page 61

Method Signature for Creating a Database
To create a database, call the static create method on the Database class and specify
the database name and an access mode. The method signature is

public static Database create(String name, int fileMode)

PSE Pro signals AccessViolationException if the access mode does not provide
owner write access. If the access mode provides owner write access, PSE Pro ignores
any other specified permissions. This is due to a limitation in the Java
implementation.

Example of Creating a Database
For example:

import com.odi.*;
class DbTest {
 void test() {
 Database db = Database.create("objectsrus.odb",
 ObjectStore.OWNER_WRITE);
 ...
 }
}

This example creates an instance of Database and stores a reference to the instance
in the variable named db. The Database.create method is called with two
parameters.

The first parameter specifies the pathname of a file.When you are using PSE Pro, you
must end this name with .odb.

The second parameter specifies the access mode for the database.

Terminology
note

Database is an abstract class, so PSE Pro actually creates an instance of a subclass
that extends Database. From your point of view, it does not matter whether PSE Pro
creates an instance of Database or an instance of a Database subclass.

Result of Creating a Database
The result is a database named "objectsrus.odb" with an access mode that allows
the owner to modify the database. The example stores the reference to the Database
object in the db variable. This means that db represents, or is a handle for, the
objectsrus.odb database.

For each database you create, PSE Pro creates an instance of Database to represent
your database. Each database is associated with one instance of Database.
60 PSE Pro for Java User Guide

Chapter 4: Managing Databases
Specifying a Database Name in Creation Method
When you create or open a database you must specify or pass in a name of the form

database_name.odb

PSE Pro performs standard I/O to the host system to create or open the database in
the location you specify. The operating system interprets the database name in the
context of the local file system. Before you specify a directory that is physically
remote, you must make the directory appear to be local by using NFS, or some other
network file system.

For each database you create, PSE Pro creates three files.

• The first file has the pathname you specify or pass when you create the database.
The pathname must be unique and must end with .odb.

• The second file has the same name except that PSE Pro replaces the .odb extension
with an .odt extension.

• The third file also has the same name and PSE Pro replaces the .odb extension
with an .odf extension.

The .odb, .odt, and .odf files together make up the database.

The PSE Pro API uses the path.odb name. Your application should never specify the
path.odt or path.odf name. But you must be aware of the .odt and .odf files so
that you can correctly move or copy a database.

When the Database Already Exists
If you try to create a database that already exists, PSE Pro signals
DatabaseAlreadyExistsException. Before you create a database, you might want
to check to see whether it exists and destroy it if it does. For example, you can insert
the following before you create a database:

try {
 Database.open(dbName, ObjectStore.UPDATE).destroy();
} catch(DatabaseNotFoundException e) {
}

Warning Do this only if you want to destroy and recreate your database. Otherwise, invoke
Database.open().

Segments
PSE Pro creates each database with one segment that contains one cluster, which is a
variable-sized region of disk space.

The segment is the smallest unit of storage that can be garbage collected, because
objects in the same segment can freely reference each other. However, objects in
different segments, and even in different databases, can also refer to each other. Such
cross-segment references are explicitly tracked in the exported object table. As a
result, a single segment can be garbage collected without inspecting the other
segments it might refer to or the other segments that might refer to it.
Release 7.1 61

Determining Whether a Database, Segment, or Cluster Is Transient
Initially, the size of the segment is about 3 KB, and it consists of a single cluster. As
you store additional objects in the segment, PSE Pro increases the size of the segment
automatically.

 You cannot create additional segments.

 Note For 32-bit platforms, all transient C++ peer objects reside on the same transient
cluster. However, for 64-bit platforms, transient C++ peer objects might reside on
different transient clusters. Therefore, on 64-bit platforms, when you call
Cluster.of() on two different transient C++ peer objects, different clusters might
be returned because a different Cluster object is returned for each 232 byte range of
transient pointers.

 After you create an iterator for the objects in a cluster, other sessions are blocked
from destroying that cluster until you end your transaction.

If you create the iterator and then destroy the cluster, the next call to next() or
hasNext() causes PSE Pro to signal ClusterNotFoundException.

There is a bug that makes the iterator work incorrectly if you call
Transaction.checkpoint(RETAIN_STALE). Doing so causes the next use of the
iterator to signal ObjectException because of stale objects. This will be fixed in a
future release.

Determining Whether a Database, Segment,
or Cluster Is Transient

Sometimes there are Java peer objects that identify C++ objects that have been
transiently allocated. PSE Pro stores these C++ objects in the transient database,
transient segment, and transient cluster. To determine whether a database or
segment is transient, you can do the following:

CPlusPlus.getTransientCluster() == cluster

CPlusPlus.getTransientSegment() == segment

CPlusPlus.getTransientDatabase() == database

Only Java peer objects are stored in the transient database, segment, or cluster. Java
primary objects are never stored in the transient database, transient segment, or
transient cluster, even if they are transient.

If you try to retrieve the cluster, segment, or database of a transient primary object,
PSE Pro signals ObjectNotPersistentException.
62 PSE Pro for Java User Guide

Chapter 4: Managing Databases
Opening and Closing a Database
A database can be either open or closed. You must open a database before you can
store or access objects in that database. When an application opens a database, it does
not matter whether

• A transaction is in progress.

• The database is already open.

When an application closes a database, a transaction cannot be in progress and the
database must be open.

This section discusses the following topics:

• Opening a Database

• Possible Open Modes

• Threads, Sessions, and Open Databases on page 64

• Opening the Same Database Multiple Times

• Closing a Database

• When Closing a Database Is Required on page 66

• Shutting Down PSE Pro Closes Open Databases on page 66

• Objects in Closed Databases

Opening a Database
When you open a database, it does not matter whether a transaction is in progress,
nor does it matter whether the database is already open.

When you create a database, PSE Pro creates and opens the database. To open an
existing database, call the static Database.open() method. The method signature is

public static Database open(String name, int openMode)

For example:

Database db = Database.open("myDb.odb", ObjectStore.READONLY);

The first parameter specifies the pathname of your database. The second parameter
indicates the open mode of the database.

Possible Open Modes
PSE Pro provides constants that you can specify for the openMode parameter to
Database.open(). The constants you can specify for openMode are

• ObjectStore.UPDATE to read and modify a database.

• ObjectStore.READONLY to read but not modify a database.

•

Note Using Database.open(name, openMode) might block the first time you open a
database in a session. You can avoid this blocking by opening the database the first
Release 7.1 63

Determining Whether a Database, Segment, or Cluster Is Transient
time using the MVCC mode, closing the database, then using the Database object to
reopen the database in the mode you want.

Incorrect
attempts to
modify

If you open a database with ObjectStore.READONLYand attempt to modify an
object, PSE Pro signals UpdateReadOnlyException when you try to commit the
transaction.

Concurrency PSE Pro grants read and update locks when you start a transaction (if there is an open
database) or when you open a database in a transaction. Consequently, multiple
sessions can have the same database open for read and update at the same time. They
cannot, however, actually read and update the same database at the same time. For
detailed information about concurrency control see Description of Concurrency
Rules on page 87.

Example Suppose you previously created and closed a database that is represented by an
instance of a Database subclass stored in the db variable. You can call the instance
open() method to open your database in the following way:

db.open(ObjectStore.READONLY);

You can use the static class open() method in the following way:

db = Database.open("myDb.odb", ObjectStore.READONLY);

Typically, both lines cause the same result. However, they might cause different
results if a database has been destroyed and recreated.

Database
recovery

If you try to open a database with read-only access and the database needs to be
recovered, PSE Pro throws com.odi.DatabaseNeedsRecoveryException and the
open operation fails.

To recover a database that is in an inconsistent state due to a system crash, open it
for update. This automatically recovers the database, if necessary. Alternatively, you
can run the osjcheckdb utility with the -openUpdateForRecovery option.

Threads, Sessions, and Open Databases
A PSE Pro application that uses one thread or one group of cooperating threads uses
only one session. Such an application can have only one database open at a time. The
application must close the database before it can open another one.

In PSE Pro, multiple sessions can open the same database. Each session has its own
PSE Pro object table, which includes a copy of each object that is associated with the
session. This means that using multiple sessions can consume more transient
memory than if threads cooperate in the same session. Concurrency rules determine
whether or not two sessions can actually access the same database at the same time.

A PSE Pro application that uses multiple threads that do not cooperate with each
other has one session for each noncooperating thread. If your application uses
multiple groups of cooperating threads in which the groups do not cooperate with
each other, it has one session for each separate group of cooperating threads. An
application can use the different sessions to open the same database or different
databases. Each session must close its database before it can open another one.
64 PSE Pro for Java User Guide

Chapter 4: Managing Databases
A single PSE Pro application can have more than one database open when it uses
multiple sessions. A single session cannot have more than one database open.

Opening the Same Database Multiple Times
After a database is initially opened, if threads in the same session subsequently open
the database again, the same database object is returned. For example:

db1 = Database.open("foo", ObjectStore.UPDATE);
db2 = Database.open("foo", ObjectStore.UPDATE);

The expression db1 == db2 returns true. They refer to the same database object.
Consequently, a call to db1.close() or db2.close() closes the same database. No
matter how many times you open a database, a single call to the close() method
closes the database.

Closing a Database
To close a database, call the close() method on the instance of the Database
subclass that represents the database, for example:

db.close();

The database must be open and there must not be a transaction in progress when
Database.close() is called; otherwise, an exception is thrown.

Object state
after close

When you close a database, all persistent objects that belong to that database become
stale or transient. If the last committed transaction that operated on the database
retained persistent objects, you can use an overloading of close() that allows you
to specify what should happen to the retained objects. (For information about
retained objects, see Committing Transactions to Save Modifications on page 111.)
The method signature is

public void close(boolean retainAsTransient)

Specify true to make retained objects transient. If you specify false, it is the same
as calling the close() method without an argument. All access to retained objects
ends.

Suppose you close a database and make retained objects transient. In the next
transaction, if you reread an object from the database that you retained as a transient
object, you then have two separate copies of the same object: One is transient and one
is persistent. You do not have two references to a single object. When you close a
database, all object identity is gone. After you close a database, the database is still
associated with the session in which it was closed.

If you do not
close

If you do not close a database, PSE Pro closes it when you shut down PSE Pro.

If you are using PSE Pro, the open() and close() operations are very efficient.
Multiple opens and closes should not be a performance drain.

Releasing
process lock

When your application opens a database, PSE Pro creates a directory that functions
as a lock against other Java VM processes. The name of the directory is

database_name.odx
Release 7.1 65

Determining Whether a Database, Segment, or Cluster Is Transient
PSE Pro maintains this directory in the same directory as your database. When your
application closes the database or terminates the session that opened the database,
PSE Pro deletes the .odx directory, which releases the lock.

Your application must close the database or terminate the session to allow PSE Pro
to release the lock. Consequently, ObjectStore Technical Support recommends that
you call the Database.close() or Session.terminate() method in the finally
clause of your program. If you do not close the database, it remains locked and other
VM processes cannot access it. For an example see Preventing More Than One
Process from Accessing a Database on page 90.

Database
identity

Within a session, PSE Pro maintains database identity even after you close a
database. For example, consider the following code:

import com.odi.*;
public class Goo {
 public static void main(String[] args) {
 Session session = Session.create(null, null);
 session.join();
 try {
 try {
 Database db = Database.create("my.odb", 0664);
 db.close();
 } catch (DatabaseAlreadyExistsException e) {
 }
 Database db1 = Database.open("my.odb",
 ObjectStore.READONLY);
 db1.close();
 Database db2 = Database.open("my.odb",
 ObjectStore.READONLY);
 System.out.println(db1 == db2);
 } finally {
 session.terminate();
 }
 }
}

If you run a program with the previous code, the system displays true.

 When Closing a Database Is Required
An application must close a database

• Before it can open some other database in the same session.

• To permit another application or another session to modify the database.

• To delete the .odx directory so that another process can access the database. See
Preventing More Than One Process from Accessing a Database on page 90.

Shutting Down PSE Pro Closes Open Databases
You can call the close() method on the database, or you can ensure that your
application calls Session.terminate() or ObjectStore.shutdown(), which
automatically closes an open database. Use try/finally in the main entrypoint to
make sure the shutdown occurs if there is an unexpected exception. See Importance
of closing the database on page 90.
66 PSE Pro for Java User Guide

Chapter 4: Managing Databases
Objects in Closed Databases
Objects in a closed database are not accessible. However, if you close a database with
an argument of true, PSE Pro retains the persistent objects as transient objects.

Moving or Copying a Database
You can move or copy a database provided that

• You keep the .odb, .odt, and .odf files together in the same directory.

• The pathname is the same for the .odb, .odt, and .odf files.

• The database is not open for update.

When you copy or move a database, you do not need to copy or move the odx
directory, if it exists.

You can move or copy databases among different supported platforms.

If you want to copy the objects in a database to another database, you can follow
these steps:

1 Open the source database.

2 Start a transaction.

3 Call ObjectStore.deepFetch() to obtain the objects you want to copy.

4 Commit the transaction with ObjectStore.RETAIN_READONLY.

5 Close the database with ObjectStore.RETAIN_TRANSIENT.

6 Open the target database.

7 Begin an update transaction.

8 Save the transient data some place in the target database.

Performing Garbage Collection in a Database
The PSE Pro persistent garbage collector (GC) collects unreferenced Java objects in a
PSE Pro database. Persistent garbage collection frees storage associated with objects
that are unreachable. It does not move remaining objects to make the free space
contiguous.

Restrictions You cannot use the PSE Pro for Java persistent GC on old C++ PSE databases.

Contents This section discusses the following topics:

• Background About the Persistent Garbage Collector

• API for Collecting Garbage in a Database

• API for Collecting Garbage in a Segment

• Command-Line Utility for Collecting Garbage on page 69
Release 7.1 67

Performing Garbage Collection in a Database
Background About the Persistent Garbage Collector
The PSE Pro persistent GC is independent of the Java VM GC. The Java VM GC is
strictly a transient object garbage collector. It never operates on objects in the
database.

When the persistent GC runs, it starts a transaction and locks the database for
update. When the database is locked for update, PSE Pro performs database locking
differently depending on whether other concurrent sessions are running in the same
Java VM or in different Java VMs.

If the sessions are running concurrently in the same Java VM, then any of the sessions
can have the PSE Pro database open as long as there are no transactions running in
the sessions, when the persistent GC has locked the database for update. By running
multiple sessions in the same Java VM, you can interleave transactions with
persistent garbage collection.

If the sessions are running concurrently in different Java VMs, then none of the
sessions can have the PSE Pro database open when the persistent GC has locked the
database for update.

The GC performs its job in two major phases. In the mark phase, the GC identifies
the unreachable objects. In the sweep phase, the GC frees the storage used by the
unreachable objects.

You can specify a segment or a database to be garbage collected. Since each PSE Pro
database contains only one segment, there is no difference between using the
segment GC API and the database GC API.

It is usually best to avoid destroying strings (or objects) altogether and let the
persistent GC take care of destroying such unreachable objects. The persistent GC
typically can destroy and reclaim such objects very efficiently, because it can batch
such operations and cluster them effectively. If you set up the GC to run when the
system is lightly loaded, you can effectively defer the overhead of the destroy
operations to a time when your system would otherwise be idle, thus getting greater
real throughput from your application when you really need it.

API for Collecting Garbage in a Database
To perform garbage collection on a database, call the Database.GC() method. This
method invokes the Segment.GC() method on each segment in the database. The
method signature is

public java.util.Properties GC(java.util.Properties GCproperties)

For the GCproperties parameter, specify null or a Properties object for the
garbage collection operation. The properties are described in the next section, as they
are the same for Segment.GC(). If the GCproperties parameter is null, ObjectStore
uses the default properties as defined in the documentation for Segment.GC(). The
properties you can specify are the same as the properties for Segment.GC().
68 PSE Pro for Java User Guide

Chapter 4: Managing Databases
API for Collecting Garbage in a Segment
To perform garbage collection on a segment, call the Segment.GC() method. The
signature is

public java.util.Properties GC(
)

A transaction must not be in progress for the current session. The database that
contains the segment you want to garbage collect must not be open for the current
session. However, you must open it to create a Database object to represent it. After
you close the database you want to garbage collect, you can call Database.GC() on
the Database object that represents your closed database.

The GC() method returns a Properties object that contains information about the
results of the garbage collection. The properties in this object are as follows:

• com.odi.gc.reclaimedObjects is the number of objects that were collected by
the GC operation.

• com.odi.gc.reachableObjects is the number of objects that the GC found to be
reachable. This property is always null for PSE Pro. It is meaningful only for
ObjectStore.

Command-Line Utility for Collecting Garbage
The command-line utility for collecting garbage in a database is osjgcdb.

.

Schema Evolution: Modifying Class
Definitions of Objects in a Database

You can modify the class definitions for objects already stored in a database. This
process is called schema evolution, because a database schema is a description of the
classes whose instances are stored in a database.

The technique for performing schema evolution is to use serialization with a
dump/load utility. This section provides an example of how to do this.

The topics discussed in this section are

• When is schema evolution required?
• Considerations for using serialization to evolve schema
• Steps for using sample code that uses serialization with a dump/load utility
• Sample code

When Is Schema Evolution Required?
If you change your class in one of the following ways, you must evolve the schema:

• Add or remove a persistent instance field
Release 7.1 69

Schema Evolution: Modifying Class Definitions of Objects in a Database
• Change the type of a persistent instance field

• Change the order of persistent instance fields

hashCode() Also, you might need to perform schema evolution if you add or remove the
hashCode() method. If you use the postprocessor, it determines whether to add a
hashCode() method. If it previously added a hashCode() method and now it does
not, or if it previously did not add a hashCode() method and now it does, schema
evolution is required.

Inheritance You cannot use schema evolution to change the inheritance hierarchy of a class by
adding, removing, or changing a superclass.

Allowed
changes

You can make the following changes to your class and you are not required to evolve
the schema:

• Add or remove class or instance methods

• Add or remove class fields

• Add or remove transient instance fields

• Add or remove an implementation of an interface

It is always advisable to make a copy of your database before you evolve its schema.
This allows you to restore the database if there are errors.

 Considerations for Using Serialization to Perform Schema
Evolution

To evolve a schema using serialization, use the following steps:

1 Use serialization to dump the contents of a database.

2 Modify your class definitions.

3 Reload the data.

The next two sections provide instructions for using a sample program that evolves
a schema using serialization. Before you use this sample program, you should be
aware of the issues described in this section.

Serialize
objects

To serialize objects into the database, the classes of all the objects stored in the
database must implement java.io.Serializable. If you have a database that
contains objects that do not implement Serializable, you can modify the class
definitions just to implement Serializable, recompile them, and still access the
database. This allows you to dump the database to a file before you make the real
class modifications.

readObject() When you modify a class after doing the dump, you must ensure that the
readObject() method considers the old and new versions of the class to be
compatible. The most straightforward way to do this is to create a static final
long field called serialVersionUID in the modified class. This field must have the
same value as the serial version UID for the original class. You can obtain the value
for the original class with the serialver utility, for example:

serialver DumpReload$LinkedList
DumpReload$LinkedList: static final long serialVersionUID =
70 PSE Pro for Java User Guide

Chapter 4: Managing Databases
-5286408624542393371L;

Database size The database whose schema you want to evolve must be small enough to fit into
heap space. If it is not, you must customize the code that dumps and loads the
database. You would have to organize your data so that you do not have to serialize
all the data in the database at one time.

Large numbers
of connected
objects

The use of ObjectStore.deepFetch() is a performance concern for very large
object graphs. The current implementation of deepFetch() is not careful about
bounding stack space. A consequence of this is that it is sometimes impossible to
successfully perform the deepFetch() operation for very large object graphs.

Steps for Using Sample Schema Evolution Serialization Code
The sample program that is provided in the next section takes an argument that
causes it to perform one of the following three actions:

• Create a database with some data in it, such as instances of OSHashtable,
OSVector, or linked lists

• Use object serialization to dump data in the database to a file

• Use object serialization to reload the data from the file

For example, you can use the sample program to add a new field to the LinkedList
class. To do so, follow these steps:

1 Place the code in a file called DumpReload.java.

2 Set your CLASSPATH environment variable to include the directory that contains
the osjcfpout file and the DumpReload.java file.

3 Compile the program with the command

 javac DumpReload.java

4 Run the postprocessor to annotate the DumpReload and LinkedList classes:

 osjcfp -dest osjcfpout DumpReload.class \
 DumpReload$LinkedList.class

5 Create the database:

 java DumpReload create data.odb

6 Use serialization to dump the data:

 java DumpReload dump data.odb data.out

7 Change the LinkedList class. Do this by removing the comment flag from the
newField field in LinkedList.

8 Recompile the class:

 javac DumpReload.java

9 Rerun the postprocessor to annotate the DumpReload and LinkedList classes:

 osjcfp -dest osjcfpout DumpReload.class \
 DumpReload$LinkedList.class

10 Use serialization to reload the data:

 java DumpReload reload data.odb data.out
Release 7.1 71

Schema Evolution: Modifying Class Definitions of Objects in a Database
Sample Code for Using Serialization to Perform Schema Evolution
Following is the sample program that uses serialization to perform schema
evolution:

import com.odi.*;
import com.odi.util.OSHashtable;
import com.odi.util.OSVector;

import java.io.FileInputStream;
import java.io.FileOutputStream;
import java.io.IOException;
import java.io.ObjectInputStream;
import java.io.ObjectOutputStream;

import java.util.Enumeration;

public class DumpReload {
 static public void main(String argv[]) throws Exception {
 if (argv.length >= 2) {
 if (argv[0].equalsIgnoreCase("create")) {
 createDatabase(argv[1]);
 } else if (argv[0].equalsIgnoreCase("dump")) {
 dumpDatabase(argv[1], argv[2]);
 } else if (argv[0].equalsIgnoreCase("reload")) {
 reloadDatabase(argv[1], argv[2]);
 } else {
 usage();
 }
 } else {
 usage();
 }
 }

 static void usage() {
 System.err.println(
 "Usage: java DumpReload OPERATION ARGS...\n" +
 "Operations:\n" +
 " create DB\n" +
 " dump FROMDB TOFILE\n" +
 " reload TODB FROMFILE\n");
 System.exit(1);
 }

 /* Create a database with 3 roots. Each root contains an
 OSHashtable of OSVectors that contain some Strings. */

 static void createDatabase(String dbName) throws Exception {
 ObjectStore.initialize(null, null);

 try {
 Database.open(dbName, ObjectStore.UPDATE).destroy();
 } catch (DatabaseNotFoundException DNFE) {
 }
 Database db = Database.create(dbName, 0644);

 Transaction t = Transaction.begin(ObjectStore.UPDATE);
 for (int i = 0; i < 3; i++) {
 OSHashtable ht = new OSHashtable();
72 PSE Pro for Java User Guide

Chapter 4: Managing Databases
 for (int j = 0; j < 5; j++) {
 OSVector vec = new OSVector(5);
 for (int k = 0; k < 5; k++)
 vec.addElement(new LinkedList(i));
 ht.put(new Integer(j), vec);
 }
 db.createRoot("Root" + Integer.toString(i), ht);
 }
 t.commit();
 db.close();
 }

 static void dumpDatabase(String dbName, String dumpName)
 throws Exception {
 ObjectStore.initialize(null, null);

 Database db = Database.open(
 dbName, ObjectStore.READONLY);

 FileOutputStream fos = new FileOutputStream(dumpName);
 ObjectOutputStream out = new ObjectOutputStream(fos);

 Transaction t = Transaction.begin(ObjectStore.READONLY);

 /* Count the roots and write out the count. */
 Enumeration roots = db.getRoots();
 int nRoots = 0;
 while (roots.hasMoreElements()) {
 String rootName= (String) roots.nextElement();
 /* Skip internal OSJI header */
 if (!rootName.equals("_DMA_Database_header")) nRoots++;
 }
 out.writeObject(new Integer(nRoots));

 /* Rescan and write out the data.
 The deepFetch() call is necessary because it obtains the
 contents of all objects that are reachable from root,
 and makes them available for serialization. */
 roots = db.getRoots();
 while (roots.hasMoreElements()) {
 String rootName = (String) roots.nextElement();
 if (!rootName.equals("_DMA_Database_header")) {
 out.writeObject(rootName);
 Object root = db.getRoot(rootName);
 ObjectStore.deepFetch(root);
 out.writeObject(root);
 }

 t.commit();

 out.close();
 }

 static void reloadDatabase(String dbName, String dumpName)
 throws Exception {
 ObjectStore.initialize(null, null);

 try {
 Database.open(
 dbName, ObjectStore.UPDATE).destroy();
Release 7.1 73

Destroying a Database
 } catch (DatabaseNotFoundException DNFE) {
 }
 Database db = Database.create(dbName, 0644);

 FileInputStream fis = new FileInputStream(dumpName);
 ObjectInputStream in = new ObjectInputStream(fis);

 Transaction t = Transaction.begin(ObjectStore.UPDATE);

 int nRoots = ((Integer) in.readObject()).intValue();
 while (nRoots-- > 0) {
 String rootName = (String) in.readObject();
 Object rootValue = in.readObject();
 System.out.println("Creating "+rootName+" "+ rootValue);
 db.createRoot(rootName, rootValue);
 }

 t.commit();
 db.close();
 }

 static
 class LinkedList implements java.io.Serializable {
 private int value;
 private LinkedList next;
 private LinkedList prev;
 //private Object newField;
 static final long serialVersionUID= -5286408624542393371L;

 LinkedList(int value) {
 this.value = value;
 this.next = null;
 this.prev = null;
 }
 }
}

Destroying a Database
When you destroy a database, PSE Pro makes all objects in the database permanently
inaccessible and deletes the .odb, .odt, and .odf files.

You cannot recover a destroyed database except from backups.

To destroy a database, call the destroy() method on the Database subclass
instance, for example:

db.destroy();

The database must be open for update and a transaction cannot be in progress.

When you destroy a database, all persistent objects that belong to that database
become stale.
74 PSE Pro for Java User Guide

Chapter 4: Managing Databases
Obtaining Information About a Database
You can call methods on a database to answer the following questions:

• Is a Database Open?

• What Kind of Access Is Allowed?

• What Is the Pathname of a Database?

• What Is the Size of a Database?

• With Which Session Is the Database or Segment Associated?

• Which Objects Are in the Database?

• Are There Invalid References in the Database?

Is a Database Open?
To determine whether a database is open, call the isOpen() method on the database,
for example:

db.isOpen();

This expression returns true if the database is open. It returns false if the database
is closed or if it was destroyed. To determine whether false indicates a closed or
destroyed database, try to open the database.

What Kind of Access Is Allowed?
To check what kind of access is allowed for an open database, call the
getOpenMode() method on the database. The database must be open or PSE Pro
signals DatabaseNotOpenException. The method signature is

public int getOpenMode()

This method returns one of the following constants:

• ObjectStore.READONLY

• ObjectStore.UPDATE

Following is an example of how you can use this method:

void checkUpdate(Database db) {
 if (db.getOpenMode() != ObjectStore.UPDATE)
 throw new Error("The database must be open for update.");
}

What Is the Pathname of a Database?
To find out the pathname of a database, call the getPath() method on the database,
for example:

String myString = db.getPath();
Release 7.1 75

Database Operations and Transactions
What Is the Size of a Database?
To obtain the size of a database, call the getSizeInBytes() method on the database.
The database must be open and a transaction must be in progress, for example:

db = Database.open("myDb.odb", ObjectStore.READONLY);
Transaction tr = Transaction.begin(ObjectStore.READONLY);
long dbSize = db.getSizeInBytes();

This method does not necessarily return the exact number of bytes that the database
uses. The value returned might be the result of your operating system’s rounding up
to a block size. You should be aware of how your operating system handles
operations such as these.

With Which Session Is the Database or Segment Associated?
To obtain the session with which a database or segment is associated, call the
Placement.getSession() method. The method signature is

public Session Placement.getSession()

Which Objects Are in the Database?
The osjshowdb utility displays information about one or more databases. This utility
is useful when you want to know how many and what types of objects are in a
database. You can use this utility to verify the general contents of the database.

Information about the osjshowdb utility is in osjshowdb: Displaying Information
About a Database on page 282.

Are There Invalid References in the Database?
The osjcheckdb utility or the Database.check() method checks the references in a
database. This tool scans a database and checks that there are no references to
destroyed objects. The most likely cause of dangling references is an incorrectly
written program. You can fix dangling references by finding the objects that contain
them and overwriting the invalid references with something else, such as a null
value. In addition to finding references to destroyed objects, the tool performs
various consistency checks on the database.

Information about the osjcheckdb utility is in osjcheckdb: Checking References in a
Database on page 280.

 Exported objects are not retained on a commit, checkpoint, or abort when the
ObjectStore.RETAIN_STALE argument is specified. Instead, use external references
or the ObjectStore.RETAIN_HOLLOW argument value.

Database Operations and Transactions
For each database operation, there are rules about whether it can be performed

• Inside a transaction
76 PSE Pro for Java User Guide

Chapter 4: Managing Databases
• Outside a transaction

• Both inside and outside a transaction

The following table shows the rules that apply to certain operations. If your
application tries to perform a database operation that breaks a rule, you receive a
run-time exception.

Restrictions on Databases
The fileMode argument to com.odi.Database.create() does not work because
Java does not allow you to specify the access mode. However, the file mode must still
specify that the owner can modify the file.

PSE Pro does not allow cross-database references.

Database Operation Can Be Performed
Inside/Outside Transaction?

Database Open?

acquireLock() Inside Open

check() Inside Open

close() Outside Open

create() Outside Not applicable

createRoot() Inside Open

destroy() Outside Open

destroyRoot() Inside Open

GC() Outside Closed

getDefaultSegment() Inside Open

getOpenMode() Both Open

getPath() Both Open

getRoot() Inside Open

getRoots() Inside Open

getSegment() Inside Open

getSegments() Inside Open

getSizeInBytes() Inside Open

isOpen() Both Open or closed

of() Inside Open

open() Both Open or closed

setDefaultSegment() Inside Open

setRoot() Inside Open

show() Inside Open
Release 7.1 77

Controlling Database Size
Controlling Database Size
You might notice that the .odt file associated with your database is much larger than
it should be for the number of stored objects. In this situation, run the osjshowdb
utility to find out the number of destroyed objects.

When you destroy an object in a database, doing so frees the space. However, the
database file does not shrink in size. One strategy for reducing the actual file size of
your database is to use object serialization:

1 Stream out all database roots.

2 Create a new database.

3 Stream in the database roots from the old database.

4 Destroy the old database.

You can also use this strategy to evolve your classes.
78 PSE Pro for Java User Guide

Chapter 5
Working with Transactions

A transaction is a logical unit of work that runs in a session. Only one transaction can
be running in a session at a time. A transaction is a consistent and reliable portion of
the execution of a program.

In your code, you place calls to the PSE Pro API to mark the beginnings and ends of
transactions. Initial access to a persistent object must always take place inside a
transaction. Depending on how the transaction is committed, additional access to
persistent objects might be possible.

Either the database is updated with all of a transaction’s changes to persistent objects
or the database is not updated at all. If a failure occurs in the middle of a transaction,
or you decide to abort the transaction, the contents of the database remain
unchanged.

A transaction can obtain a write lock or a read-only lock on the database opened by
the session. A write lock prevents other sessions in the Java VM from writing to the
database. A read-only lock allows other sessions to access the database by using
read-only transactions.

Contents This chapter discusses the following topics:

Starting a Transaction 79
Working Inside a Transaction 81
Ending a Transaction 83
Determining Transaction Boundaries 86
Description of Concurrency Rules 87

Starting a Transaction
PSE Pro provides the com.odi.Transaction class to represent a transaction. You
should not make subclasses of this class.

This section discusses the following topics:

• Calling the begin() Method

• Description of Transaction Types on page 80

• Allowing Objects to Be Modified in a Transaction

• Difference Between Update and Read-Only Transactions
Release 7.1 79

Starting a Transaction
Calling the begin() Method
To start a transaction, call the begin() method on the Transaction class. This
returns an instance of Transaction and you can assign it to a variable. The method
signature is

Method
signature

public static Transaction begin(int type)

The transaction type determines whether PSE Pro waits for a write lock on
adatabase. There can be only one write lock on a database, but there can be multiple
read-only locks on a database. The type of the transaction can be
ObjectStore.UPDATE or ObjectStore.READONLY.

If there is no open database when you start the current transaction, PSE Pro tries to
obtain a read-only lock or a write lock as soon as the session tries to open a database,
depending on the type of transaction.

Example Transaction tr = Transaction.begin(ObjectStore.UPDATE);

This example returns a Transaction object that represents the transaction just
started. The result is stored in tr. This is an update transaction, which means that the
application can modify database contents.

Description of Transaction Types
The type of the transaction can be one of the following:

Update • ObjectStore.UPDATE allows the application to modify data in the open database
in the current transaction. PSE Pro immediately obtains a write lock for the open
database if an exclusive write lock is available. If the database is locked by another
session for either read or write, PSE Pro waits indefinitely until the database is no
longer locked, and grants the write lock when the database is available.

Read-only • ObjectStore.READONLY lets the application read but not modify data in the open
database in the current transaction. PSE Pro immediately obtains a shared read
lock on the open database if a read lock is available. If the open database is locked
by another session for read access and there are no sessions waiting for an update
lock, PSE Pro grants a read lock. If the database is locked or being waited for by
another session for update, PSE Pro waits until the database is no longer locked
for write, and grants the read lock when the database becomes available.

Nonblocking
update

• ObjectStore.UPDATE_NON_BLOCKING allows the application to modify data in
the open database in the current transaction. PSE Pro immediately obtains a write
lock on the open database if the write lock is available. If the open database is
locked by another session, PSE Pro throws com.odi.DatabaseLockedException,
and the transaction begin operation fails.

Nonblocking
read-only

• ObjectStore.READONLY_NON_BLOCKING allows the application to read but not
modify data in the open database in the current transaction. PSE Pro immediately
obtains a read lock on the open database if a read lock is available. If the database
is locked by another session for read access and there are no sessions waiting for
a write lock, PSE Pro grants a read lock. If the database is locked for write or being
waited for by another session for update, PSE Pro throws
com.odi.DatabaseLockedException and the transaction begin operation fails.
80 PSE Pro for Java User Guide

Chapter 5: Working with Transactions
Allowing Objects to Be Modified in a Transaction
To modify persistent objects, you must specify the transaction type to be
ObjectStore.UPDATE. Also, any database you modify must have been opened for
update. Note that even if you open a database for read-only, PSE Pro allows you to
start an update transaction. An application does not receive an exception until it tries
to modify persistent objects inside the read-only database.

If you try to modify persistent data in a read-only transaction, PSE Pro signals
UpdateReadOnlyException.

Difference Between Update and Read-Only Transactions
You can start a transaction for READONLY or for UPDATE. The major difference between
the two transaction types is that when you start a transaction for READONLY, PSE Pro
performs additional checks during the transaction and when you commit the
transaction. These checks ensure that changes are not saved in the database if they
were made in a read-only transaction. There is no difference in performance between
a read-only transaction and an update transaction.

Working Inside a Transaction
A transaction is associated with the session that is associated with the thread that
starts the transaction. A transaction remains active until you explicitly commit it or
until it aborts. A session can have only one active transaction. Concurrent
transactions must be in separate sessions.

This section discusses the following topics:

• on page 81

• PSE Pro and Transactions on page 81

• Obtaining the Session Associated with the Current Transaction

• Is a Transaction in Progress for the Current Session? on page 82

• Transaction Already in Progress

• Obtaining Transaction Objects

•

PSE Pro and Transactions
PSE Pro allows multiple sessions. Noncooperating threads (separate sessions) in the
same Java VM process can simultaneously have separate read-only transactions
against the same database. Also, noncooperating threads (sessions) in the same Java
VM can simultaneously have separate update transactions against different
databases; each noncooperating thread (session) must update a different database.
Only one session at a time can open an update transaction against a particular
database. Cooperating threads can update the same database. See Cooperating
Threads on page 47. Also see Noncooperating Threads on page 48.
Release 7.1 81

Working Inside a Transaction
Obtaining the Session Associated with the Current Transaction
The current session is the session that a thread most recently joined. To obtain the
session that is associated with the current transaction, call the
Transaction.getSession() method. The method signature is

public Session Transaction.getSession()

To obtain the transaction that is associated with the current session, call the
Session.currentTransaction() method. The method signature is

public Transaction Session.currentTransaction()

Is a Transaction in Progress for the Current Session?
To determine whether there is a transaction in progress for the current session, call
the Transaction.inTransaction() method on Transaction. The method
signature is

public static boolean inTransaction()

This method returns true if there is a transaction in progress for the current session.
Otherwise, it returns false. It is worth noting that inTransaction() returns false
if the calling thread is not joined to the current session. This can be important if you
use an unassociated thread to check whether there is a transaction, and then try to
close the database based on a false response. The previously unassociated thread
would automatically be joined to the session to close the database. If a transaction is
actually in progress, PSE Pro signals TransactionInProgressException, which is,
of course, unexpected because inTransaction() returned false.

Transaction Already in Progress
Nested transactions are not allowed. If you try to start a transaction when a
transaction for the current session is already in progress, PSE Pro signals
TransactionInProgressException.

Obtaining Transaction Objects
An application can obtain the transaction object for the current thread by calling the
static current() method on the Transaction class. The method signature is

public static Transaction current()

This method returns the transaction object associated with the current session, for
example:

Transaction.current().commit()

This example commits the current transaction. If no transaction is in progress,
current() signals NoTransactionInProgressException.
82 PSE Pro for Java User Guide

Chapter 5: Working with Transactions
 Ending a Transaction
When transactions terminate successfully, they commit and their changes to
persistent objects are saved in the database. When transactions terminate
unsuccessfully, they abort and their changes to persistent objects are discarded.

For read-only transactions, there are no advantages to committing them rather than
aborting them, nor to aborting them rather than committing them.

This section discusses the following topics:

• Committing Transactions

• What Can Cause a Transaction Commit to Fail?

• When an Application Terminates During a Commit Operation on page 84

• Aborting Transactions

• Has This Transaction Been Aborted? on page 85

• Is This Transaction Active? on page 86

Committing Transactions
PSE Pro provides the Transaction.commit() method for ending a transaction
successfully. When an application commits a transaction, PSE Pro

• Saves and commits any changes in the database

• Performs transitive persistence if applicable (see page 28)

• Sets the state of persistent objects that were accessed or referenced in the
transaction

• Releases the lock it held on the database being accessed

Transitive
persistence

When PSE Pro commits a transaction, it checks to see if there are any transient objects
that are referred to by persistent objects. If there are, and if all referred-to objects are
persistence-capable objects, PSE Pro stores the referred-to objects in the database.
This is the process of transitive persistence. If any referred-to object is not persistence
capable, PSE Pro signals ObjectNotPersistenceCapableException.

Caution You must ensure that an object never refers to an object that belongs to a different
session. This is crucial because transitive persistence must never reach an object that
belongs to another session.

Making objects
stale

To commit a transaction and make the state of persistent objects stale, call the
commit() method with no argument. For example:

tr.commit();

The method signature is

public void commit()
Release 7.1 83

Ending a Transaction
Setting object
state

To commit a transaction and be flexible about the state of persistent objects after the
transaction, call the commit(retain) method on the transaction. The values you can
specify for retain are described in Committing Transactions to Save Modifications
on page 111. The method signature is

public void commit(int retain)

The following example commits the transaction and specifies that the contents of the
active persistent objects should remain available to be read.

tr.commit(ObjectStore.RETAIN_READONLY);

What Can Cause a Transaction Commit to Fail?
When PSE Pro tries to commit a transaction, if PSE Pro encounters any of the
situations in the following list, it causes the transaction commit to fail. When PSE Pro
aborts a transaction commit, it signals AbortException.

• A persistent object references an object that is not persistence capable.

• A persistent object was updated to reference a stale object.

When an Application Terminates During a Commit Operation
If an application terminates at any time other than during a Transaction.commit()
operation, PSE Pro returns the database to the state it was in before the transaction
started.

If an application terminates during a call to Transaction.commit()

• If PSE Pro has the com.odi.useFsync system property set to true, which is the
default, it is always able to recover the database, even if the operating system
crashes during a commit.

• If the com.odi.useFsync property is set to false, PSE Pro is able to recover the
database if the operating system flushed the database to disk prior to the crash.

A Control-C or a system crash can cause an application to terminate during a call to
Transaction.commit().

Aborting Transactions
PSE Pro provides the Transaction.abort() method for ending a transaction
unsuccessfully. An abort can happen explicitly through the Transaction.abort()
method or implicitly because a session is terminated or there is a system exception.
When an application aborts a transaction, PSE Pro

• Ensures that the objects in the database are as they were just before the aborted
transaction started

• Sets the state of persistent objects from the transaction

• Returns any transient objects that were made persistent during the transaction to
their transient state

• Releases the lock on the database
84 PSE Pro for Java User Guide

Chapter 5: Working with Transactions
Transient
objects

Only the state of the database is rolled back. The state of transient objects is not
undone automatically. For example, if you created new transient objects during the
transaction, they still exist after the transaction aborts. Applications are responsible
for undoing the states of transient objects. Any form of output that occurred before
the abort cannot be undone.

Open
databases

If you opened a database during the transaction, PSE Pro keeps it open. If a database
was open before the aborted transaction was started, it remains open after the abort
operation.

Application
failure

If an application fails during a transaction, when you restart the application the
database is as it was before the transaction started. If an application fails during a
transaction commit, when you restart the application, either the database is as it was
before the transaction that was being committed or the database reflects all the
transaction’s changes. This depends on how far along in the commit process the
application was when it terminated. Either all or none of the transaction’s changes
are in the database.

abort() To abort a transaction and set the state of persistent objects to the state specified by
Transaction.setDefaultAbortRetain(), call the abort(). method. The default
state is stale. The method signature is

public void abort()

For example:

tr.abort();

abort(retain) To abort a transaction and specify a particular state for persistent objects after the
transaction, call the abort(retain) method on the transaction. The values you can
specify for retain are described in Specifying a Particular State for Persistent
Objects on page 124. The method signature is

public void abort(int retain)

The following example aborts the transaction and specifies that the contents of the
active persistent objects should remain available to be read.

tr.abort(ObjectStore.RETAIN_READONLY);

Has This Transaction Been Aborted?
To determine whether or not a transaction has been aborted, call the
Transaction.isAborted() method on the transaction. The method signature is

public boolean isAborted()

This method returns true if the transaction has been aborted. It returns false for any
other status. PSE Pro does not require that the calling thread belong to a session.
Also, the session in which the transaction was started is not required to be active.
Release 7.1 85

Determining Transaction Boundaries
Is This Transaction Active?
To determine whether or not a transaction is active, call the
Transaction.isActive() method on the transaction. The method signature is

public boolean isActive()

This method returns true if the transaction has not been aborted or committed. It
returns false if it has been aborted or committed. PSE Pro does not require that the
calling thread belong to a session. Also, the session in which the transaction was
started is not required to be active.

 Determining Transaction Boundaries
When determining whether to commit a transaction, consider database state, and
interdependencies among cooperating threads.

Inconsistent Database State
You should not commit a transaction if the database is in a logically inconsistent
state. A database is considered to be in an inconsistent state if at that moment a just-
started transaction would encounter problems on viewing the current state of the
data.

Consider your database to be something that moves from one consistent state to
another. You should commit a transaction only when the state is consistent. When is
a database consistent? If you start your application at this very moment, is the
database completely usable exactly the way it is now?

For example, suppose your database contains information about married couples.
Couples refer to one another through a spouse field. At a particular moment,
suppose a person in the database refers to another person in the database through its
spouse field, but that spouse does not refer to the first person. At that moment, the
database is in an inconsistent state.

Another inconsistency you should avoid is migrating objects into a database that are
not reachable from any root. Such objects become unreachable if the application fails
between transactions or they are removed inappropriately from the database when
the garbage collector runs.

When the database state is consistent, you might decide not to commit the
transaction. However, if you do not commit, you risk losing changes if PSE Pro
aborts the transaction. You should always commit changes before you inform a user
or another interface that a particular task was accomplished.
86 PSE Pro for Java User Guide

Chapter 5: Working with Transactions
Multiple Cooperating Threads
If your application uses cooperating threads, you must take this into account when
determining when to commit transactions. For example, you do not want to create a
situation in which one thread commits a transaction while a cooperating thread is
updating persistent objects. The commit() method might make all persistent objects
stale for all cooperating threads. If the commit() method retains persistent objects,
PSE Pro discards any modifications to retained persistent objects at the start of the
next transaction. You must coordinate the Transaction.begin() and
Transaction.commit() operations among cooperating threads.

Synchronizing threads is like having a joint checking account. Suppose the amount
in the checking account is $100.00. Your partner writes a check for $50.00. Then you
try to cash a check for $75.00. This does not work. It does not matter that it was your
partner and not you who wrote the check for $50.00. You and your partner have to
cooperate.

Performance Considerations
Committing a transaction, even a read-only transaction, has a certain amount of
overhead associated with it. If you have a lot of small transactions, you might want
to combine some of them into larger transactions.

Description of Concurrency Rules
PSE Pro controls concurrent access to a database between sessions within the same
Java VM. At any given time, there can be multiple reader sessions or one writer
session for a database. An application must obtain a lock on a database before it can
access the database. For each database, PSE Pro provides multiple read-only locks or
one write lock. PSE Pro provides concurrency control between processes (Java VMs)
by preventing multiple processes from opening the same database at the same time.

PSE Pro grants and releases database locks at transaction boundaries. Each session
can have at most exactly one active transaction and one open database at a time.
Typically, your application acquires a lock when it calls Transaction.begin() and
releases a lock when it calls Transaction.commit() or Transaction.abort(). The
result is that a database is either single-session or read-only. The following topics
provide more details on the concurrency rules:

• Definition of One Writer and Multiple Readers on page 88

• Description of Database Locks on page 88

• When PSE Pro Grants Database Locks on page 88

• Determining If a Lock Is Available on page 89

• Effects of Concurrency Rules on page 89

• Preventing More Than One Process from Accessing a Database on page 90
Release 7.1 87

Description of Concurrency Rules
Definition of One Writer and Multiple Readers
One writer means that within a process, only one session can have an update
transaction in progress for a particular database. Two cooperating threads
(remember that cooperating threads are always in the same session) that are both
updating a database count as one writer. Two noncooperating threads in the same
process (in other words, two threads from two different sessions in the same process)
cannot both have an update transaction in progress against the same database at the
same time.

Multiple readers means that multiple sessions in the same Java VM can have active
read-only transactions against the same database at the same time. If one or more
sessions in a Java VM has a read-only transaction in progress for a database, no other
session can have an update transaction in progress for the same database.

Description of Database Locks
A read-only lock allows the session that holds it to read, but not modify, the
database. A write lock allows the session that holds it to modify the database.

For a particular database at a given point in time, PSE Pro grants either multiple
read-only locks or one write lock. If a session has a read-only lock, other sessions in
the same Java VM can also have read-only locks, but no session can have a write lock.
If a session has a write lock, no other session can have a lock on that database.

When PSE Pro Grants Database Locks
PSE Pro grants a lock on a database when it starts a transaction or when it opens a
database inside a transaction. Your application can open a database inside or outside
a transaction.

If you open a database inside a transaction, and if the lock you want is available, PSE
Pro immediately grants the lock. PSE Pro releases the lock when you end the
transaction in which you acquired the lock.

If you open a database outside a transaction, PSE Pro does not grant a lock on the
database until you start a transaction in the same session. This means that multiple
sessions can have the database open at the same time. Some can have it open for
read-only and others for update. However, not one of these sessions can access the
objects in the opened database. To access objects, a session must start a transaction
and obtain a lock on the opened database.
88 PSE Pro for Java User Guide

Chapter 5: Working with Transactions
Determining If a Lock Is Available
For a session to access a database, PSE Pro must grant the session a read-only or
update lock on the database. If there are no locks on a database, multiple read-only
locks are available or one update lock is available.

Read locks If one or more sessions have a read-only lock on a database, other sessions in the
same Java VM can obtain read-only locks on that database. However, suppose a
session is waiting for a write lock on the same database. In this situation, PSE Pro
does not grant any new read-only locks. Instead, PSE Pro does one of the following:

• Allows the session that wants the read-only lock to wait for all read-locks to be
released, and then wait for the update lock to be released

• Throws com.odi.DatabaseLockedException because the lock that is wanted is
not available

What PSE Pro does depends on the transaction type you specify when you start the
transaction in which the lock is wanted. If you specify ObjectStore.READONLY or
ObjectStore.UPDATE, PSE Pro allows the session to wait. If you specify
ObjectStore.READONLY_NON_BLOCKING or ObjectStore.UPDATE_NON_BLOCKING,
PSE Pro throws com.odi.DatabaseLockedException.

Update lock If a session has a write lock on a database, and another session tries to obtain a lock
on the same database, no lock is available. Again, depending on the transaction type,
PSE Pro allows the session to wait or throws com.odi.DatabaseLockedException.

Lock queue PSE Pro maintains a queue of sessions that want locks for a particular database.
There is no limit to the number of entries in the queue. PSE Pro handles the lock
requests in the order in which they arrive.

Effects of Concurrency Rules
With PSE Pro, concurrency within a single Java VM process is allowed as follows:

• PSE Pro permits multiple threads within a Java VM to cooperate in the same
session and transaction, and read or write a single database.

• PSE Pro permits multiple sessions within a Java VM to have independent active
read-only transactions against the same database at the same time.

• PSE Pro permits threads that belong to different sessions in the same Java VM to
start their own independent transactions and use them to read the same database
or read or write different databases.

• PSE Pro does not permit different sessions to have independent transactions that
read and write to the same database at the same time.

It is possible for multiple sessions in the same Java VM to have the same database
open for update at the same time. This can happen when none or one of the sessions
has an update transaction in progress. Also, multiple sessions can open the database
for update and then start read-only transactions.

A session can never have more than one database open at a time. If you need
multiple databases open at the same time, you must use a session for each database
that needs to be simultaneously open.
Release 7.1 89

Description of Concurrency Rules
Preventing More Than One Process from Accessing a Database
The default behavior of PSE Pro is that concurrent access from different Java VM
processes to the same PSE Pro database is not allowed. When your application opens
a database, PSE Pro creates a .odx directory in the same directory as your database
and uses the .odx directory to lock out other processes.

If your application opens a database from one process, and another process tries to
open the same database, PSE Pro throws the com.odi.DatabaseLockedException.
It does not matter whether the first process opened the database for read-only or
update. Nor does it matter whether the second process tries to open the database for
read-only or update.

This means that two sessions in two different Java VM processes cannot access the
same database at the same time.

The .odx
directory

When your application opens a database, PSE Pro creates a directory that functions
as a lock against other Java VM processes. The name of the directory is

database_name.odx

PSE Pro maintains this directory in the same directory as your database. When your
application closes the database or terminates the session that opened the database,
PSE Pro deletes the .odx directory, which releases the lock. The .odx directory does
not contain any files. This directory acts as a lock to the other Java VMs.

Importance of
closing the
database

Your application must close the database or terminate the session to allow PSE Pro
to release the lock. Consequently, ObjectStore recommends that you call the
Session.terminate() method in a finally clause of a try statement.
(Terminating a session closes any open databases.) If you do not close the database,
it remains locked and other VM processes cannot access it. Here is an example of
terminating the session:

Session session = Session.create(null,null);
session.join();
try {

Database db = Database.open("foo.odb", ObjectStore.UPDATE);
// ... do something ...

} finally {
 session.terminate();
}

If a database open fails, then the variable representing the database is null. If you call
Database.close() on a null object, PSE Pro throws NullPointerException.

If a process exits without closing a database or without terminating the session that
opened the database, PSE Pro does not delete the .odx directory. This can happen,
for example, if an application does not call Database.close() or
Session.terminate(), or if there is a crash, System.exit() call, or Control-C exit.
In such situations, the .odx directory continues to exist and incorrectly blocks the
database from being opened.
90 PSE Pro for Java User Guide

Chapter 5: Working with Transactions
DatabaseLocke
d
Exception

If a process tries to open a database and PSE Pro throws
com.odi.DatabaseLockedException because of the presence of the .odx directory,
it can mean either of these things:

• Another Java VM process has the database open. Consequently, no other process
can open the database. You must wait until the process closes the database.

• The .odx directory is left over from a session that was not correctly terminated,
and no Java VM process is using the database. Verify that no process is actually
using the database. Then you can delete the .odx directory and try again to open
the database.

The text of the com.odi.DatabaseLockedException is something like this:

com.odi.DatabaseLockedException:
Unable to obtain the lock for the database named
"/tmp/mumble.odb". The database might be in use by another
process, or some other error might
have occurred during the attempt to create the "/tmp/mumble.odx"
directory. Check for other processes on any hosts that have access
to the file system that contains this database. If some other process
is using the database, wait for it to complete before trying to access
it again. If no other process is accessing the database, you can clear the lock by
removing the directory named "/tmp/mumble.odx".
at com.odi.imp.pro.RandomAccessFile.<init>(RandomAccessFile.java:89)
at
com.odi.imp.pro.ObjectTable$SharedCachedRandomAccessFile.<init>(ObjectTable.java:278)
at com.odi.imp.pro.ObjectTable$CachedRandomAccessFile.<init>(ObjectTable.java:3312)
at com.odi.imp.pro.ObjectTable$CachedObjectTable.<init>(ObjectTable.java:3563)
at com.odi.imp.pro.ObjectTable.openDatabase(ObjectTable.java:1637)
at com.odi.imp.pro.Database.serverOpenDatabaseByName(Database.java)
at com.odi.imp.pro.Server.serverOpenDatabase(Server.java:145)
at com.odi.imp.Server.openDatabase(Server.java:198)
at com.odi.imp.Database.open(Database.java)
at com.odi.tools.ShowDB.main(ShowDB.java)

Changing
default behavior

If you do not want your application to have the default behavior, you can set the
com.odi.useDatabaseLocking system property to false. By default, this property
is set to true. You can set the property to false by calling the Session.create(), or
Session.createGlobal() method. However, ObjectStore Technical Support does
not recommend that you do this.

If you turn off cross-process database locking, PSE Pro cannot prevent multiple
processes from accessing the same database at the same time. Concurrent
modifications could corrupt your user and system data.

Without default database locking turned on, you must set up your own cross-process
concurrency control mechanism. In your application, you must lock databases
against concurrent updates from multiple processes.
Release 7.1 91

Description of Concurrency Rules
92 PSE Pro for Java User Guide

Chapter 6
Storing, Retrieving, and
Updating Objects

This chapter provides information about how to store data in a database and how to
read it back and update it. An application can access persistent data only inside a
transaction and only when the database is open.

Contents This chapter discusses the following topics:

Storing Objects 94

Retrieving Persistent Objects 95

Working with Database Roots 96

Iterating Through the Objects in a Cluster, Segment, or Database 100

Using External References to Stored Objects 101

Updating Objects in the Database 107

Committing Transactions to Save Modifications 111

Evicting Objects to Save Modifications 118

Aborting Transactions to Cancel Changes 122

Destroying Objects in the Database 125

Default Effects of Various Methods on Object State 130

Transient Fields in Persistence-Capable Classes 130

Avoiding finalize() Methods 131

Troubleshooting Access to Persistent Objects 132

Handling Unregistered Types 133

Using Enums in Persistent Objects 137

Using Generic Types 138
Release 7.1 93

Storing Objects
PSE Pro's Java API preserves the automatic storage management semantics of Java.
Objects become persistent when they are referenced by other persistent objects. This
is called persistence by reachability or transitive persistence. The application defines
persistent roots and, when it commits a transaction, PSE Pro finds all objects
reachable from persistent roots and stores them in the database.

To store objects in a database, do the following:

1 Open the database or create the database in which you want to store the objects.
Be sure the database is opened for update. See Creating a Database on page 59.

2 Start an update transaction. See Starting a Transaction on page 79.

3 Create a database root or access an existing database root and specify that it refers
directly or indirectly to one of the objects you want to store. See Working with
Database Roots on page 96.

4 Commit the transaction. This stores the object that the database root refers to and
any objects that object references. See Committing Transactions on page 83.

In general, you should not create a root for each object you want to store in a
database. You must create at least one root to store an object in a database by which
all other objects can ultimately be reached.

How Objects Become Persistent
Objects can become persistent in several ways:

• An application assigns a transient object to a database root. PSE Pro immediately
migrates the object to the default cluster of the default segment in the database.
When the transaction commits, any transient objects that are reachable from the
object assigned to the root are also stored in the default segment and cluster.

• A transient object is reachable from a persistent object. When the transaction
commits, PSE Pro stores the reachable object in the same segment and cluster as
the persistent object.

• An application invokes the ObjectStore.migrate() method on a transient
object and specifies a particular database, segment, or cluster. With PSE Pro, there
is only one cluster and one segment in each database in which you can store
objects. (ObjectStore allows multiple clusters and segments.)

 What Is Reachability?
An object B is considered to be reachable from object A when A contains a reference
to B, except when the reference is from a variable marked with Java’s transient
keyword. B is also reachable from A when A contains a reference to some object and
that object contains a reference to B. There are no limits to levels of reachability.
94 PSE Pro for Java User Guide

Chapter 6: Storing, Retrieving, and Updating Objects
Storing Java-Supplied Objects
Some Java-supplied classes are persistence capable, while others are not persistence
capable and cannot be made persistence capable. A third category of classes can be
made persistence capable, but there are important issues to consider when you do
so. Be sure to read Java-Supplied Persistence-Capable Classes on page 261.

Retrieving Persistent Objects
To read the contents of an object in a database, you must first obtain a reference to an
object. There are several ways you can do this:

• Use a database root.

• Get the one database cluster and iterate over its objects

• Use external references.

The following sections describe these alternatives.

This section discusses the following topics:

• Steps for Retrieving Persistent Objects

• Determining the Database That Contains an Object

• Determining Whether an Object Has Been Stored

Steps for Retrieving Persistent Objects
Follow these steps to retrieve a persistent object from a database:

1 Open the database.

2 Start a transaction. If you want to modify the object, start an update transaction.

3 Obtain a persistent by object using a database root, an external reference, or by
iterating over the objects in a segment or cluster of the database.

4 Access the object just as you would access a transient object.

If you do not plan to run the postprocessor, see Making Object Contents
Accessible on page 211.

Determining the Database That Contains an Object
You can use the Database.of() method to determine the database in which an
object is stored. The method signature is

public static Database of(Object object)

If the specified object has been stored in a database, PSE Pro returns the database in
which it is stored.
Release 7.1 95

Working with Database Roots
Determining Whether an Object Has Been Stored
To determine whether an object has already been stored in a database, call the
ObjectStore.isPersistent() method. The method signature is

public static boolean isPersistent(Object object)

If the specified object has been stored in a database, PSE Pro returns true. The
specified object must not be a stale persistent object. If it is, PSE Pro signals
ObjectException.

Working with Database Roots
A root is a reference to an individual object. You always need at least one root in a
database. You can get by with a single root, but you might find it convenient to have
more. In general, you do not want every object in the database to be associated with
a root. This is bad for performance. Each root refers to exactly one object. More than
one root can refer to the same object. You cannot navigate backward from the
referenced object to the database root.

This section discusses the following topics:

• Creating Database Roots

• Retrieving Root Objects

• Roots with Null Values

• Using Primitive Values as Roots

• Changing the Object Referred to by a Database Root

• Destroying a Database Root

• Destroying the Object Referred to by a Database Root

• How Many Roots Are Needed in a Database?

Creating Database Roots
When you create a database root, you give it a name and you assign an object to it.
The database root refers to that object, and your application can use the root name to
access that object. In other words, the object that you assign to a root is the value of
that root. The database root and the object assigned to the root are two distinct
objects.

You must create a database root inside a transaction. Call the
Database.createRoot() method on the database in which you want to create the
root. The method signature for this instance method on Database is

public void createRoot(String name, Object object)

The name you specify for the root must be unique in the database. If it is not unique,
DatabaseRootAlreadyExistsException is signaled. The object that you specify to
be referred to by the root can be either transient and persistence capable, or
persistent (including null). If it is not yet persistent, PSE Pro immediately makes it
persistent.
96 PSE Pro for Java User Guide

Chapter 6: Storing, Retrieving, and Updating Objects
Example Suppose you create the variable db to be a handle to a database opened for update,
and an object called anObject, and you start an update transaction. The following
line creates a database root:

db.createRoot("My Root Name", anObject);

Results In the database referred to by db, this creates a database root named "MyRootName"
and specifies that it refers to anObject. PSE Pro immediately stores anObject in the
database referred to by db. When the transaction commits, PSE Pro stores in the
database referred to by db any objects that are reachable from anObject, if they are
not already in the database. If anObject or any object it references refers to any
transient objects that are not persistence capable and you try to commit the
transaction, PSE Pro signals ObjectNotPersistenceCapableException.

Multiple roots
for one object

More than one root can reference the same object; an object can be associated with
more than one root. For example:

db.createRoot("Root1", anObject);
db.createRoot("Root2", anObject);

Retrieving Root Objects
When you retrieve a root object, you obtain a reference to the object that is the value
for the root. For example, suppose you assign an OSVector object, myOSVector, to a
root named myOSVectorRoot. When you get the value of myOSVectorRoot by using
the Database.getRoot() method, you receive a reference to the OSVector as
follows:

OSVector myOSVector = (OSVector)db.getRoot("myOSVectorRoot");

Note that PSE Pro does not fetch the entire contents of the OSVector until you
actually need it. You can obtain a reference to any object in a vector. For example, to
obtain a reference to the fifth element in the vector myOSVector, use an assignment
statement like the following:

Object fifth = myOSVector.elementAt(5);

PSE Pro fetches only enough contents from myOSVector so that it can return the
reference to the fifth element. This means that PSE Pro has not yet fetched the
contents of the elements in the vector. PSE Pro fetches the data for an element in a
vector only when you try to access its contents.

If you develop your application by using the ObjectStore class file postprocessor, this
delayed fetching is usually automatic. For more information on using the
postprocessor, see Chapter 8, Generating Persistence-Capable Classes
Automatically, on page 171.

In some cases, you might want to force PSE Pro to prefetch an entire graph of
connected objects even though the application does not explicitly refer to each object
in the graph. Use the ObjectStore.deepFetch() method to do this.

List of all roots To obtain a list of the roots in a database, call the getRoots() method on the
database. The signature of this method is

public DatabaseRootEnumeration getRoots()
Release 7.1 97

Working with Database Roots
Roots with Null Values
It is possible to create a root with a null value. This is useful for creating roots in
preparation for assigning objects to them later. If you create a root with null or later
set a root to null, the getRoot() method returns a null value, which indicates that
there is no object associated with the root. It does not mean that the root does not
exist. If the root does not exist, PSE Pro signals DatabaseRootNotFoundException.

Using Primitive Values as Roots
If you want to store a primitive value as an independent persistent object, such as the
value of a root, use an instance of a wrapper class, such as an Integer. For example:

db.createRoot("foo", new Integer(5));

This assigns the value 5 to the root named foo. You cannot directly store primitive
values in a database. You can define a primitive value as a field in a persistence-
capable object.

Changing the Object Referred to by a Database Root
After you create a database root, you can change the object that it refers to. Inside an
update transaction, call the Database.setRoot() method on the database that
contains the root. You must specify an existing root and you can specify either a
transient (but persistence-capable) or a persistent object. The method signature for
changing the object associated with a root is as follows. If PSE Pro cannot find the
specified root, DatabaseRootNotFoundException is signaled.

public void setRoot (String name, Object object)

Destroying a Database Root
To destroy a database root, call the destroyRoot() method on the database that
contains the root that you want to destroy. An update transaction must be in
progress. Specify the name of the root. If PSE Pro cannot find the specified root, it
signals DatabaseRootNotFoundException. The method signature is

public void destroyRoot (String name)

This has no effect on the referenced object except that it is no longer accessible from
that root. It might still be the value of another root, or it might be pointed to by some
other persistent object. If a value of a root is no longer referenced after the root is
destroyed, the object becomes unreachable. You should invoke
ObjectStore.destroy() on it while you still have a reference to it. See Performing
Garbage Collection in a Database on page 67.

Destroying the Object Referred to by a Database Root
If you want to destroy the object that a database root refers to and you want to
continue to use that database root, you also must set the root to refer to null or to
another object. If you do not do this, you can retrieve the root, but if you try to use it
PSE Pro throws ObjectNotFoundException. For example, the correct sequence is
similar to the following:
98 PSE Pro for Java User Guide

Chapter 6: Storing, Retrieving, and Updating Objects
Object object = db.getRoot("username");
db.setRoot("username", null);
ObjectStore.destroy(object);

How Many Roots Are Needed in a Database?
It is important to realize that you need not create a root for most objects that you
want to store in a database. You need to create roots only for top-level objects that
you want to look up by name. You must have at least one root to be able to navigate
through a database. Without a root, you have no way of accessing the objects in the
database.

Think of a database root as the root of a tree. From the root, you can climb the tree.
For many applications, a root is some kind of container, such as an instance of
OSTreeMapString or OSVector, or an array. After you create one or more database
roots, you create other objects that are referred to by fields of the objects that the roots
refer to. These objects become persistent when you commit the transaction in which
you create them. In a subsequent transaction, you can look up the root objects by
name and navigate from them to any other reachable persistent objects.

Too many roots can cause performance problems. The maximum practical number
of roots within a database is between 1000 and 10,000. Databases store roots in an
instance of OSHashtable.

How Many Objects Can You Store in a
Database?

Each object you store in a database has the following overhead:

• Sixteen bytes disk space in the .odt file

• Four bytes disk space in the .odb file

When you are counting objects, primitive types do not count as objects. The Long and
Double wrapper objects do count as objects. But, Integer, Float, and Byte do not
count as objects. When you want to determine how many objects are in a database,
be sure to account for any objects that are created by objects of classes that you
define. For example, if you create an instance of com.odi.util.OSVector, you
create more than one object because an OSVector has internal objects.

The overhead for the .odf file is approximately 4 KB for each 256 KB in the .odb
file. Two gigabytes is the maximum size of a .odb file, which means that the
maximum amount of data that a database can contain is two gigabytes.

PSE Pro has been designed to scale well for hundreds of thousands of objects and
thousands of megabytes of data. Practical limits on database size and numbers of
persistent objects vary according to your application and system. PSE Pro has
delivered good performance when tested with loads of one million objects and one
gigabyte of data. After PSE Pro opens a database, it fetches data as needed. It does
not read the whole .odt file into memory as PSE Pro does.
Release 7.1 99

Iterating Through the Objects in a Cluster, Segment, or Database
Iterating Through the Objects in a Cluster,
Segment, or Database

To obtain an iterator for the objects in a segment, call the Segment.getObjects()
method. To obtain an iterator for the objects in a cluster, call the
Cluster.getObjects() method. With PSE Pro these methods are equivalent,
because there is only one segment containing one cluster in each database.

These methods give you access to any objects that are unreachable but that have not
yet been garbage collected. The methods also provide an application-independent
means of processing all objects within a segment or cluster. The method signature for
both methods is

public Iterator getObjects()

This method returns an iterator object. After you have this object, you can use the
following methods to iterate through the objects:

• Iterator.next()

• Iterator.hasNext()

The Segment.getObjects() and Cluster.getObjects() methods have an
overloading that takes a java.lang.Class object as an argument and returns an
iterator over all objects of that type in the database. The type can be an interface, a
class, or an array type.

If your session or another session adds an object to a segment or cluster after you
create an iterator, the iterator might or might not include the new object. If it is
important for the iterator to include all objects accurately, you should create the
iterator again.

After you create an iterator by using Segment.getObjects() and
Cluster.getObjects(), objects in the segment or cluster might be destroyed.
When you use an iterator to iterate through the objects, PSE Pro skips any destroyed
objects. Note that this means that the hasNext() method might change the state of
the iterator to skip destroyed objects.

You can use an iterator returned by the getObjects() method across transactions.
If a transaction in which you use the iterator aborts, the iterator becomes stale and
can no longer be used.

After you create an iterator for the objects in a segment or cluster, other sessions are
blocked from destroying that segment or cluster until you end your transaction. If
you create the iterator and then destroy the segment or cluster, the next call to
next() or hasNext() causes PSE Pro to signal SegmentNotFoundException or
ClusterNotFoundException respectively.
100 PSE Pro for Java User Guide

Chapter 6: Storing, Retrieving, and Updating Objects
Using External References to Stored Objects
Typically, if you want to access a persistent object stored in an PSE Pro database, you
must open the database and have a session and a transaction in progress, unless you
committed (or aborted) your previous transaction using ObjectStore.RETAIN_
READONLY or ObjectStore.RETAIN_UPDATE.

An external reference is an ExternalReference object that represents a reference to
a persistent object stored in a PSE Pro database.

External references allow you to refer to a persistent object outside a transaction or a
session, without opening the database. Even if you cannot access the contents of
objects, it is often useful to refer to persistent objects and to pass references to those
persistent objects.

For example, you must use a string representation of an external reference when
your application

• Passes a reference to an object from one session to another

• Stores a reference in an ASCII file

• Transmits a reference over a serial network connection

For information on the way to create string representations for external references,
see Encoding External References as Strings on page 103.

External references can be especially useful when you write a distributed application
server that processes requests for many clients. This includes client/server
applications that are based on Java RMI (Remote Method Invocation), ObjectStore
ObjectForms, or the Object Management Group's Common Object Request Broker
Architecture (CORBA).

Be careful of creating external references to objects that might be destroyed or
garbage collected before the external reference is used. The garbage collector has no
knowledge of an external reference to an object. So when the object being referenced
is garbage collected, a tombstone is not left as a placeholder for the object. Therefore,
any subsequent dereferencing of the external reference can have unpredictable
results. To avoid this situation, Technical Support recommends that you export the
referenced object by using ObjectStore.export().

PSE Pro provides the ExternalReference class to represent external references. To
help you use external references, this section discusses

• Creating External References

• Obtaining Objects from External References

• Encoding External References as Strings

• Using the ExternalReference Field Accessor Methods

• External Reference Equality

• Reusing External Reference Objects

• External Reference Examples
Release 7.1 101

Using External References to Stored Objects
Creating External References
When you create an external reference, you are creating an ExternalReference
object that represents a reference to a persistent object stored in an PSE Pro database.
You cannot create an external reference to a transient object except for an external
reference to the Java null object.

An external reference identifies a referenced object by storing information about the
referenced object’s database, segment, cluster, and its location in the cluster.

You can create an external reference by using one of the three ExternalReference
constructors or by parsing a string representation of an external reference.

Using the no-
argument
constructor

The no-argument constructor creates an ExternalReference object that refers to the
null object. Creating an external reference using this constructor is equivalent to
using the one-argument constructor and passing null as the argument.

The constructor signature is

public ExternalReference()

To use the no-argument constructor, it is not necessary to open a database or to have
a session or transaction in progress.

Using the one-
argument
constructor

The one-argument constructor creates an ExternalReference object that identifies
the object in the argument. The specified object must be persistent or null. The
constructor signature is

public ExternalReference(Object obj)

If the specified object is not null, the database that contains the object must be open
and a session and transaction must be in progress when the one-argument
constructor is called.

Using the four-
argument
constructor

The four-argument constructor creates an ExternalReference object that identifies
an object in a specific database, segment, cluster, or specific location in the cluster.
You usually obtain the arguments for this constructor by extracting the
corresponding fields from a previously created ExternalReference object.

The constructor signature is

public ExternalReference(Database db, int SegID, int ClusID,
 int loc)

A session must be in progress, although it is not necessary for the database to be open
or for a transaction to be in progress when the four-argument constructor is called.

Creating an
external
reference from a
string

The ExternalReference.fromString() method creates an external reference by
parsing and then reconstructing the string it receives from the
ExternalReference.toString() method.

The method signature is

public static ExternalReference fromString(String string)

A session must be in progress, although it is not necessary for the database
containing the object to be open or for a transaction to be in progress when the
fromString() method is called.
102 PSE Pro for Java User Guide

Chapter 6: Storing, Retrieving, and Updating Objects
Obtaining Objects from External References
To obtain the object to which an external reference refers, use the
ExternalReference.getObject() method.

The method signature is

public Object getObject()

The database containing the ExternalReference object must be open and there
must be a session and a transaction in progress when this method is called. The
session must be the same session in which the external reference was created.

Note An external reference is valid only during the session in which it was created. To
refer to a persistent object outside a session, you must encode the contents of the
external reference in a format that is session neutral, such as a string, or explicitly
extract the database name, segment number, cluster number, and location fields
from the ExternalReference object.

Encoding External References as Strings
Using the ExternalReference.toString() and
ExternalReference.fromString() methods, you can create an external reference
that can be used outside the session in which it was created. When the methods are
used together, they act as a printer and parser, respectively. They allow you to
encode an external reference as a String, then parse the string to rebuild an
equivalent external reference.

The method signature for encoding an ExternalReference object as a String is

public String toString()

The database referred to by the ExternalReference object need not be open and a
session or a transaction need not be in progress when the toString() method is
called.

You can pass a string encoding of an external reference to another session or process
or store it in an ASCII file.

To reconstruct an ExternalReference object from an encoded String, call the
fromString() method. The method signature is

public static ExternalReference fromString(String ref)

A session must be in progress, although the database referred to by the external
reference need not be open and a transaction need not be in progress when the
fromString() method is called.

The toString() and fromString() methods are convenient to use, but they create
strings that are relatively long because the strings contain the entire pathname of the
database. Sometimes you can create a more compact string using accessor methods
to extract and then reconstruct an equivalent external reference using the values
from the fields in an ExternalReference object.
Release 7.1 103

Using External References to Stored Objects
Using the ExternalReference Field Accessor Methods
By extracting the necessary fields from an ExternalReference object, you can create
a more compact string representation of an external reference that you can use
outside a database, process, or session.

Get-accessor
methods

To extract the fields of an ExternalReference object, you can use the following get-
accessor methods:

• public Database getDatabase()

• public int getSegmentId()

• public int getClusterId()

• public int getLocation()

You can store the values of these fields and use them later to reconstruct the external
reference.

Note that the Database object returned by the getDatabase() method is valid only
during the session that created the external reference. To encode the Database object
so that you can use it outside a session, you must translate the database into another
form such as a pathname by calling the Database.getPath() method. This is exactly
what the ExternalReference.toString() method does.

Large numbers
of external
references

If you have a large number of external references for which the database is always
the same (or for which the database is known), you might be able to represent the
external reference more compactly than you can using the
ExternalReference.toString() method.

For example, in the case when the database is known, you might be able to represent
the external reference by storing just three integers representing the segment
identifier, cluster identifier, and the location in the cluster. After you have extracted
the database, segment, cluster, and location information, you can use it to reconstruct
an external reference.

To reconstruct an external reference, you can use the four-argument constructor or
call the set-accessor methods for the corresponding fields:

Set-Accessor
methods

• public void setDatabase(Database d);

• public void setSegmentId(int segId);

• public void setClusterId(int clustId));

• public void setLocation(int loc);

For example, you can create an external reference that refers to the null object using
the no-argument constructor, then use the set methods to make the reconstructed
external reference refer to a specific object. You can use the set methods repeatedly
to update an ExternalReference object so that it refers to a variety of objects.
104 PSE Pro for Java User Guide

Chapter 6: Storing, Retrieving, and Updating Objects
External Reference Equality
Two external references are considered to be equal if they both refer to the same
object. In other words, if you call the ExternalReference.getObject() method on
each external reference, both calls return identical objects.

You call the ExternalReference.equals() method to determine whether two
external references refer to the same object.

The method signature is

public boolean equals(Object obj)

 Reusing External Reference Objects
After you create an ExternalReference object, you can reuse it any number of
times. By reusing ExternalReference objects, you avoid the overhead of storage
allocation and garbage collection when you use large numbers of external references.

You can modify an external reference so that it refers to a different object by using
the set-accessor methods or the setObject() method.

The method signature is

public void setObject(Object obj)
Release 7.1 105

Using External References to Stored Objects
External Reference Examples
In the following code fragments, an external reference to myObj is created three ways:

• As an external reference

• As an encoded String

• By extracting the field values from an external reference, then reconstructing it

First, an external reference (ref) is created to myObj using the one-argument
constructor. This external reference remains valid across transaction boundaries
even if the database is closed and reopened. However, the external reference can be
used only during the same session in which it was created.

Next, the external reference (ref) is encoded as a String so that it can be used across
session boundaries, then field values are extracted from the external reference to
create a more compact representation of the external reference.

Finally, the external reference is resolved to obtain myObj using the getObject()
method for the three types of external references.

// Creating an ExternalReference
ExternalReference ref = new ExternalReference(myObj);

// Encoding the ExternalReference as a string
String encodedStr = ref.toString();

// Extracting the fields from the ExternalReference object
Database refDb = ref.getDatabase();
String dbPath = refDb.getPath();
int segId = ref.getSegmentId();
int clustId = ref.getClusterId();
int loc = ref.getLocation();

//...other code...

// If the same session is still active, you can obtain the
// object from the original ExternalReference object:
Object obj1 = ref.getObject();

// If the session is no longer active, you can use the
// encoded string to obtain the object:
ExternalReference ref2 =
 ExternalReference.fromString(encodedStr);
Object obj2 = ref2.getObject();

// Or, you can use the field accessors methods
// to obtain the object:
ExternalReference ref3 = new ExternalReference();
ref3.setDatabase(Database.open(dbPath,
 ObjectStore.READONLY));
ref3.setSegmentId(segId);
ref3.setClusterId(clustId);
ref3.setLocation(loc);
Object obj3 = ref3.getObject();
106 PSE Pro for Java User Guide

Chapter 6: Storing, Retrieving, and Updating Objects
 Updating Objects in the Database
To update objects in the database, start at a database root and traverse objects to
locate the objects you want to modify. Make your modifications by updating fields
or invoking methods on the object, just as you would operate on a transient object.
Finally, save your changes by committing the transaction (which ends the
transaction), or by evicting the modified objects (which allows the transaction to
remain active so the changes can be rolled back by aborting the transaction).

Whether you commit a transaction or evict an object, you can specify the state of
objects after the operation. To specify the state that makes the most sense for your
application, an understanding of the following background information is
important:

• Background for Specifying Object State

• About Object Identity

• About the Object Table

Instructions for invoking commit(), and evict() follow this background
information.

Background for Specifying Object State
When a Java program accesses an object in a PSE Pro database, there are two copies
of the object:

• The copy of the object in the database. This is the copy on the disk. It can be
anything that is not a primitive. It can be a wrapper object.

• The copy of the object in your Java program. This is the copy that is referred to as
a persistent object.

Normally, you need not be aware of the fact that there are two copies. Your
application operates on the object in the Java program as if that is the only copy. This
is the reason the documentation refers to this copy as a persistent object. However,
the fact that there are two copies becomes apparent if a transaction aborts. In this
case, the contents of the object in the database revert to the last committed copy. The
effect of abort on the copy that is in your Java program depends on the retain mode
you used for the abort.

About Object Identity
In a session, persistent objects maintain identity. Suppose there is an object in the
database that is referred to by two different objects. You can reach the object in the
database through two navigation paths. Regardless of the path you use, the resulting
persistent object is the same object in the Java VM. In other words, if you have two
unrelated objects (a and b), that refer to a third object (c), a.c == b.c is true.

In a single session, the Java VM never creates two distinct objects that both represent
the same object in the database.
Release 7.1 107

Updating Objects in the Database
Sample class
definitions

For example, suppose you have the following classes:

public class City {
 String name;
 int population;
}

public class State {
 City capital;
 String name;
 int population;
}

Creating objects Suppose you also have the following code, which creates instances of these classes
and stores them:

City boston = new City("Boston", 1000000);
State massachusetts = new State(
 boston, "Massachusetts", 20000000);
OSHashtable cities = new OSHashtable();
cities.put("Boston", boston);
OSHashtable states = new OSHashtable();
states.put("Massachusetts", massachusetts);
db.createRoot("cities", cities);
db.createRoot("states", states);

This creates

• A City instance (Boston)

• A State instance (Massachusetts) with the Boston City instance as its capital

• Two instances of OSHashtable — one to hold City objects and one to hold State
objects

• Two database roots — one to refer to each instance of OSHashtable

Accessing
stored objects

Now you execute the following code to access the stored objects:

OSHashtable cities = (OSHashtable) db.getRoot("cities");
OSHashtable states = (OSHashtable) db.getRoot("states");
City boston1 = (City)cities.get("Boston");
State massachusetts = (State)states.get("Massachusetts");
City boston2 = massachusetts.capital;
if (boston1 == boston2)
 System.out.println("same");
else
 System.out.println("not the same");

Results This code prints "same". This is because boston1 and boston2, even though they are
located through different paths in the database, are still represented by the same
object in the Java VM and, therefore, they are ==.

If you use cities to reach boston1 and you modify boston1, you can then use
states to access the updated version as boston2.

Strings and
primitive
wrappers

There are additional considerations for Strings and primitive wrapper classes.

String pooling causes some strings to be the same object even when you create them
separately. If you call new multiple times to create multiple String objects, these
separately created objects might actually refer to the same object when they are
108 PSE Pro for Java User Guide

Chapter 6: Storing, Retrieving, and Updating Objects
retrieved later in another transaction. See Description of com.odi.stringPoolSize on
page 54. If you explicitly migrate the string to the database, it prevents PSE Pro from
using string pooling.

A String or primitive wrapper object that you create with a single call to new might
be represented by more than one persistent object when you access it through
different paths in subsequent transactions. This happens because a String or
primitive wrapper object might be stored in the database without the overhead of a
regular object. Usually, this does not matter for Strings and primitive wrapper
objects because it is their value and not their identity that matters. If identity does
matter, you can explicitly migrate wrapper objects into the database.

Identity across
transactions

PSE Pro maintains the identity of referenced objects across transactions within the
same session. The following code fragment, displaying "same", provides an example
of this:

public
class Person {
 // Fields in the Person class:
 String name;
 int age;
 Person children[];
 Person father;
 // Constructor:
 public Person(String name, int age,
 Person children[], Person father) {
 this.name = name;
 this.age = age;
 this.children = children;
 this.father = father;
 }
 static void testIdentity() {
 // Omit open database calls

 Transaction tr = Transaction.begin(ObjectStore.UPDATE);
 Person children[] = { null, null };
 Person tim = new Person("Tim", 35, children, null);
 Person sophie = new Person("Sophie", 5, null, tim);
 children[0] = sophie;
 db.createRoot("Tim", tim);
 tr.commit();

 tr = Transaction.begin(ObjectStore.UPDATE);
 tim = (Person)db.getRoot("Tim");
 Person joseph = new Person("Joseph", 1, null, tim);
 tim.children[1] = joseph;
 tr.commit();

 tr = Transaction.begin(ObjectStore.READONLY);
 tim = (Person)db.getRoot("Tim");
 sophie = tim.children[0];
 joseph = tim.children[1];
 if (sophie.father == joseph.father)
 System.out.println("same");
 else
 System.out.println("not the same");
 tr.commit();
 }
Release 7.1 109

Updating Objects in the Database
About the Object Table
PSE Pro keeps a table of all objects referenced in a transaction. If you refer to the same
object in the database twice (perhaps accessing the object through different paths),
PSE Pro guarantees that there is only one copy of the object in your Java program. If
you retrieve the same object through different paths, == returns true because PSE
Pro preserves object identity.

If the system property com.odi.disableWeakReferences is set to false (the
default), the references in the object table are weak references, which means that they
do not interfere with the Java GC. If a Java program does not have any references to
a persistent object (the copy in your Java program), other than through the PSE Pro
object table, the object can be garbage collected. (The object in the database, of course,
is not garbage collected.)
110 PSE Pro for Java User Guide

Chapter 6: Storing, Retrieving, and Updating Objects
Committing Transactions to Save
Modifications

When you commit a transaction, PSE Pro

• Saves and commits any modifications in the database

• Checks for transient objects that are referred to by persistent objects

If there are such objects, PSE Pro stores them in the database if they are persistence
capable. This is called transitive persistence. All reachable persistence-capable
objects become persistent through transitive persistence.

If the modifications contain references to objects that are not persistence capable,
PSE Pro signals AbortException. The
AbortException.getOriginalException() method returns the object that
causes the exception.

• Sets the state of persistent objects after the transaction.

If objects were stored in the database for the first time during this transaction, the
copies of these objects in your Java program are included in the group of
persistent objects.

By default, persistent objects are stale after the transaction. If you do not want to
make them stale, there are three ways to specify a default retain state for persistent
objects after a commit operation:

• Call Transaction.commit() to specify a retain state that applies only to the
transaction in which it is called.

• Call Transaction.setDefaultCommitRetain() to specify a default retain state
that applies to the session in which it is called.

• Call Transaction.setDefaultRetain() to specify a default retain state that
applies to the session in which it is called.

Method
signatures

The commit() method has two overloadings. The first overloading takes no
argument. The method signature is

public void commit()

The second overloading has an argument that specifies the state of persistent objects
after the commit operation. The method signature is

public void commit(int retain)

The retain state only applies to the transaction in which the commit was called. You
can specify the following retain states after a commit:

• ObjectStore.RETAIN_HOLLOW

• ObjectStore.RETAIN_READONLY

• ObjectStore.RETAIN_STALE

• ObjectStore.RETAIN_TRANSIENT
• ObjectStore.RETAIN_UPDATE

The values for the retain argument are described in the sections that follow.
Release 7.1 111

Updating Objects in the Database
Contents The following topics in this section describe the different retain states for persistent
objects after a commit operation:

• Setting a Default Commit Retain State for a Session

• Setting Persistent Objects to a Default State

• Making Persistent Objects Stale

• Making Persistent Objects Hollow

• Retaining Persistent Objects as Readable

• Retaining Persistent Objects as Writable

• Retaining Persistent Objects as Transient

• The Way Transient Fields Are Handled

Synchroni-
zation

If your application needs to synchronize on a persistent object, you might want to
retain a reference to that object after a transaction ends by using one of the following
ObjectStore constants: RETAIN_UPDATE, RETAIN_HOLLOW, or RETAIN_READONLY.
When persistent objects become stale, PSE Pro does not maintain their transient
identity. Their synchronized states are not saved persistently.

Setting a Default Commit Retain State for a Session
You can use the following two methods to set the default retain state for persistent
objects after a transaction is committed:

• Transaction.setDefaultCommitRetain()

• Transaction.setDefaultRetain()

The default retain state set by these methods is in effect for the duration of the session
in which they are called.

Use setDefaultCommitRetain() to specify a default retain state for persistent
objects when Transaction.commit() is called without a retain argument. The
setDefaultCommitRetain() method also sets the default retain state for persistent
objects when Transaction.checkpoint() is called without a retain argument.
The method signature is

public void setDefaultCommitRetain(int retain)

The values you can specify for retain are the same values you can specify when you
call commit() with a retain argument. These values are described in the sections
that follow.

Use setDefaultRetain() to specify a default commit retain state for persistent
objects when Transaction.commit() is called without a retain argument. This
method also sets the default retain states for persistent objects when
Transaction.abort() and Transaction.checkpoint() are called without a
retain argument. The method signature is

public void setDefaultRetain(int retain)

Note When you are using either method to set a default retain state, the method that was
last called overrides any default retain state that was set previously. For example, if
an application calls setDefaultCommitRetain() first and then calls
112 PSE Pro for Java User Guide

Chapter 6: Storing, Retrieving, and Updating Objects
setDefaultRetain(), the retain state for checkpoint() and commit() is specified
by the second call.

Setting Persistent Objects to a Default State
To commit a transaction and to set the state of persistent objects to the state specified
by Transaction.setDefaultCommitRetain() or by
Transaction.setDefaultRetain(), call the commit() method without any
arguments. For example:

tr.commit();

Making Persistent Objects Stale
When you call the commit() method with no argument, PSE Pro makes all persistent
objects stale unless a default retain state has been specified previously by either the
setDefaultCommitRetain() or setDefaultRetain() method. Stale persistent
objects are not accessible and their contents are set to default values. PSE Pro
reclaims the entry in the Object Table for the stale object and the object loses its
persistent identity.

If your Java program still has references to stale objects, any attempt to use those
references, such as by accessing a field or calling a method on the object, causes PSE
Pro to signal ObjectException. Therefore, your application must discard any
references to persistent objects when it calls this overloading of commit().

Objects
available for
garbage
collection

This overloading of commit() also discards any internal PSE Pro references to the
copies of the objects in your Java program. When your application makes an object
stale, PSE Pro makes any references from the stale object to other objects null. This
makes the referenced objects, which can be persistent or transient, available for
garbage collection if there are no other references to them from other objects.

Stale persistent objects are not available for Java garbage collection if your Java
application has transient references to them.

Accessing
objects again

You can reaccess the same objects in the database in subsequent transactions. To do
so, look up a database root and traverse to objects from there, or reference them
through hollow objects. PSE Pro refetches the contents of the object and creates a new
active persistent object. The new object has a new transient identity and the same
persistent identity as the object that became stale.

For example:

Foo foo = myDB.getRoot("A_FOO");
ExternalReference fooRef = new ExternalReference(foo);
ObjectStore.evict(foo, ObjectStore.RETAIN_STALE);
Foo fooTwo = myDB.getRoot("A_FOO"); // refetch from database
ExternalReference fooRefTwo = new ExternalReference(fooTwo);
// At this point (foo == fooTwo) returns false,
// but (fooRef.equals(fooTwoRef)) returns true.

Advantage The advantage of using commit() with no argument when a default retain type is not
specified, is that it wipes your database cache clean and typically makes all transient
copies of persistent data available for Java garbage collection.
Release 7.1 113

Updating Objects in the Database
Disadvantage The disadvantage of using commit() is that any references to these objects that your
Java program holds become unusable unless a default retain state was previously
specified.

Alternative
method

Invoking commit(ObjectStore.RETAIN_STALE) is the same as calling commit()
with no argument unless a default retain state was previously specified.

Making Persistent Objects Hollow
Call commit(ObjectStore.RETAIN_HOLLOW) to make persistent objects (the copies
of the objects in your Java program) hollow. PSE Pro resets the contents of persistent
objects to default values.

References to these objects remain valid; the application can use them in a
subsequent transaction. If a hollow object is accessed in a subsequent transaction,
PSE Pro refreshes the contents of the object in your Java program with the contents
of the corresponding object in the database.

Outside
transaction

An application cannot access hollow objects outside a transaction. An attempt to do
so causes PSE Pro to signal NoTransactionInProgressException.

Advantage The advantage of invoking commit(ObjectStore.RETAIN_HOLLOW) is that any
references to persistent objects that the Java application holds remain valid in
subsequent transactions. This means that it is not necessary to renavigate to these
objects from a database root.

Disadvantage The disadvantage of retaining persistent objects as hollow objects is that in Java VM
implementations for which PSE Pro does not have weak reference support, hollow
persistent objects are not available for Java garbage collection. This is true regardless
of whether or not your Java program has references to these objects.

Garbage
collection

Sometimes an application might retain a reference to an object and prevent Java
garbage collection that would otherwise occur. It is good practice to avoid retaining
references to objects unnecessarily.

Scope If you commit a transaction with ObjectStore.RETAIN_HOLLOW, then commit a
subsequent transaction with no retain argument or ObjectStore.RETAIN_STALE,
this cancels the previous ObjectStore.RETAIN_HOLLOW specification. No object
references are available in the next transaction. This is true regardless of whether
they were previously retained.

Retaining Persistent Objects as Readable
Call commit(ObjectStore.RETAIN_READONLY) to retain the copies of the objects in
your Java program as readable persistent objects. PSE Pro maintains the contents of
the persistent objects that the application read in the transaction just committed. The
contents of these persistent objects are as they were the last time the objects were
read or modified in the transaction just committed.

If any hollow objects exist when you commit the transaction, PSE Pro retains these
objects as hollow objects that you can use during the next transaction.
114 PSE Pro for Java User Guide

Chapter 6: Storing, Retrieving, and Updating Objects
After this transaction and before the next transaction, your application can read the
contents of any retained objects whose contents were also retained. The actual
contents of the object in the database might be different because another process
modified it. Your application cannot modify these objects. An attempt to do so
causes PSE Pro to signal NoTransactionInProgressException. Your application
cannot access the contents of hollow retained objects. An attempt to do so causes PSE
Pro to signal NoTransactionInProgressException.

Scope If you commit a transaction with ObjectStore.RETAIN_READONLY, the contents of
only those persistent objects whose contents were accessed in the transaction just
committed are available to you after the transaction. This is because PSE Pro makes
all retained objects hollow at the start of the next transaction. Any cached references
to persistent objects remain valid. In the new transaction, PSE Pro fetches the
contents of a persistent object when your application requires it.

In previous releases, PSE Pro did not make retained objects hollow at the start of a
new transaction. If your application needs the old behavior, there is a system
property you can set. See Description of com.odi.disableCrossTransactionCaching
on page 53.

Advantage The advantage of using commit(ObjectStore.RETAIN_READONLY) is that the copies
of the persistent objects in your Java program remain accessible after the transaction
is over. In the next transaction, any cached references to persistent objects remain
valid. PSE Pro copies the object’s contents from the database when you access the
object.

Disadvantage The disadvantage of using commit(ObjectStore.RETAIN_READONLY) is that it
makes more work for the Java GC, because the contents of the copies of the objects
in your Java program are not cleared.

Your program might return results that are inconsistent with the current state of the
database.

PSE Pro cannot fetch any objects outside a transaction. This makes it difficult to
ensure that methods can execute without signaling an exception. However, you can
call ObjectStore.deepFetch() in the transaction to obtain the contents of all objects
you might need. Of course, this increases the risk of the Java VM’s running out of
memory.

Serialization If you are using Java Remote Method Invocation (RMI) or serialization, you can call
the ObjectStore.deepFetch() method followed by
commit(ObjectStore.RETAIN_READONLY). This allows you to perform object
serialization outside a transaction.

Between transactions, you might try to read an object that you thought you retained,
and receive NoTransactionInProgressException. Often, the cause of this is that
you retained a reference to the object but not the contents of the object.
Release 7.1 115

Updating Objects in the Database
Trouble-
shooting

In a transaction, you might read the contents of an object but not the contents of
objects the first object refers to. For example, during a transaction, suppose you
access a vector but not any of the elements in the vector. When you commit the
transaction, the contents of vector elements are not available in the transaction and
they are not retained. In other words, to be able to read the contents of an object
between transactions, you must read that particular object during the previous
transaction.

To be able to read objects between transactions, you might want to call
ObjectStore.deepFetch() on an object. This method fetches the contents of the
specified object, the contents of any objects that object refers to, the contents of any
objects those objects refer to, and so on for all reachable objects.

Inside a transaction, PSE Pro fetches the contents of objects automatically as you read
the objects. Outside a transaction, if a reference to an object, but not the contents of
the object, was retained, PSE Pro signals NoTransactionInProgressException.

Following is another situation in which you would receive the
NoTransactionInProgressException:

1 In a transaction, you read object A.

2 You commit the transaction with ObjectStore.RETAIN_READONLY.

3 You start a new transaction. It does not matter whether you access object A in this
transaction.

4 You commit this transaction with ObjectStore.RETAIN_STALE or without a
retain argument.

5 Outside a transaction, you try to access object A and you receive the
NoTransactionInProgressException.

You might think that because you retained A after a previous transaction, its contents
are still available. This is not the case. Because nothing was retained after the second
transaction, the contents of A are no longer available.

Retaining Persistent Objects as Writable
Call commit(ObjectStore.RETAIN_UPDATE) to retain the copies of the objects in
your Java program as readable and writable. PSE Pro maintains the contents of the
persistent objects as they are at the end of the transaction.

Sometimes, the contents of an object are not available in a transaction when you
expect that they are available, such as when you receive a
NoTransactionInProgressException. For more information about what causes
this exception, see Retaining Persistent Objects as Readable on page 114.

Specifying ObjectStore.RETAIN_UPDATE is exactly like specifying
ObjectStore.RETAIN_READONLY, except that if your application accesses the objects
after the transaction and before the next transaction, your application can modify as
well as read the objects. At the beginning of the next transaction, PSE Pro discards
any updates made to the persistent objects between transactions.
116 PSE Pro for Java User Guide

Chapter 6: Storing, Retrieving, and Updating Objects
Retaining Persistent Objects as Transient
Call commit(ObjectStore.RETAIN_TRANSIENT) to convert all persistent objects
associated with a session into transient objects at the end of a transaction. Because
these transient objects are copies of persistent objects, they no longer represent
persistent objects in a database. As a result, these transient objects can be read or
modified outside transactions because they are no longer associated with a database.

Unlike objects retained at the end of transactions by using the RETAIN_READONLY or
RETAIN_UPDATE arguments, objects retained by using the RETAIN_TRANSIENT
argument no longer represent persistent objects in a database. To reacquire the
corresponding persistent object that the transient object (copy) once represented, the
persistent object must be fetched again from the database. As a result of refetching
the persistent object, you now have two Java objects in the Java VM. One Java object
is the copy of the persistent object that is no longer associated with the database; the
other Java object (the one just fetched) represents the persistent object in the
database. If you perform an object identity test on these two transient objects (O1 ==
O2), the test returns false because they are not the same object.

You should be aware that after committing a transaction by using the RETAIN_
TRANSIENT argument, PSE Pro does not prevent your application from accessing a
hollow object that is referenced from a Java object that was retained as transient. The
fields of this hollow object will contain values such as 0 and null.

Garbage
collection

Just like other Java objects, objects that are retained at the end of a transaction by
using the RETAIN_TRANSIENT argument are candidates for garbage collection when
they are no longer referenced by other objects.

Advantage The RETAIN_TRANSIENT argument is a faster alternative to
Database.close(retainAsTransient) because the RETAIN_TRANSIENT argument
does not require the database to be opened and closed, which involves deallocating
and reallocating all the resources associated with the database.

Using the RETAIN_TRANSIENT argument is a way to copy data from a database into
the Java VM. Once the data is in the Java VM, you can manipulate the data without
throwing database exceptions.

Disadvantage You must code your program carefully so that it does not inadvertently manipulate
a copy of a persistent object instead of the actual transient object representing the
persistent object stored in the database.

The Way Transient Fields Are Handled
PSE Pro does not modify the contents of any transient-only fields unless you have
explicitly defined one of the following methods to modify transient-only fields:

• IPersistent.clearContents()

• IPersistent.preClearContents()

• IPersistent.initializeContents()

• IPersistent.postInitializeContents()

The clearContents() and initializeContents() methods that are generated by
the postprocessor do not modify transient-only fields.
Release 7.1 117

Evicting Objects to Save Modifications
Advantage The advantage of using commit(ObjectStore.RETAIN_UPDATE) is that the copies of
the objects in your Java program become scratch space between transactions. You
can use them to determine the possible results for a particular scenario.

Disadvantage The disadvantage is that updates are discarded automatically at the beginning of the
next transaction. This can make it difficult to debug applications that use this option
indiscriminately.

Evicting Objects to Save Modifications
You might want to save modifications to an object or change the state of an object
without committing a transaction. The evict() method allows you to do this.

Method
signatures

The evict() method has two overloadings. The first overloading takes an object as
an argument. The method signature is

public static void evict(Object object)

The second overloading has an additional argument that specifies the state of the
evicted object after the eviction. The method signature is

public static void evict(Object object, int retain)

This section provides the following information about evicting objects:

• Description of Eviction Operation

• Setting the Evicted Object to Be Stale

• Setting the Evicted Object to Be Hollow

• Setting the Evicted Object to Be Read-Only

• Summary of Eviction Results for Various Object States

• Evicting All Persistent Objects

• Evicting Objects When There Are Cooperating Threads

• Committing Transactions After Evicting Objects

• Evicting Objects Outside a Transaction

Description of Eviction Operation
When you evict an object, PSE Pro

• Saves any modifications to the object in the database but does not commit the
changes. If the transaction commits, any changes are committed. If the transaction
aborts, the contents of the object in the database revert to the contents following
the last committed transaction in which the object was modified.

• Sets the state of the evicted object after the eviction. This affects the copy of the
object that is in your Java program. The default is that the evicted object is stale
after the eviction. If you do not want it to be stale, you can specify another state
when you invoke evict().
118 PSE Pro for Java User Guide

Chapter 6: Storing, Retrieving, and Updating Objects
References to
other objects

When you evict an object, PSE Pro does not evict objects that the evicted object
references.

You might evict an object that has instance variables that are transient strings. PSE
Pro migrates such strings to the database and stores them in the same segment as the
evicted object. As part of the eviction process, PSE Pro evicts the just-stored string
with a specification of ObjectStore.RETAIN_READONLY. Consequently, after the
eviction, the migrated string remains readable.

Caution You must ensure that a persistent object never refers to a persistent object that
belongs to a different session. PSE Pro throws an exception if it reaches a persistent
object belonging to one session while it is performing transitive persistence for
another session.

Setting the Evicted Object to Be Stale
When you invoke evict(Object), PSE Pro makes the evicted object stale. PSE Pro
resets the contents of the copy of the object in your Java program to default values
and makes the object inaccessible. Any references to the evicted object are stale and
your application should discard them. The copy of the object in your Java program
becomes available for Java garbage collection.

Advantage The advantage of using the evict(Object) method is that the evicted object and all
objects it refers to become available for Java garbage collection (if they are not
referenced by other objects in the Java program).

Disadvantage The disadvantage is that any references to the evicted object become stale. If you try
to use the stale references, PSE Pro signals ObjectException.

The effect on accessibility to the copy of the object in your Java program is therefore
similar to the effect of commit() and commit(ObjectStore.RETAIN_STALE).
However, if the transaction aborts, any changes to the evicted object are discarded.

Alternative
method

A call to evict(Object, ObjectStore.RETAIN_STALE) is identical to a call to
evict(Object).

Setting the Evicted Object to Be Hollow
When you invoke evict(Object, ObjectStore.RETAIN_HOLLOW), PSE Pro makes
the evicted object hollow. PSE Pro resets the contents of the copy of the object in your
Java program to default values. References to the evicted object continue to be valid.

If the application accesses the evicted object in the same transaction, PSE Pro copies
the contents of the object from the database to the copy in your Java program. If your
application modified the object before evicting it, these modifications are included in
the new copy in your Java program.

Advantage The reason to use the evict(Object, ObjectStore.RETAIN_HOLLOW) method is
that the object and all objects it refers to become available for Java garbage collection
(if they are not referenced by other objects in the Java program).
Release 7.1 119

Evicting Objects to Save Modifications
Disadvantage The reason not to use this method is that in Java VM implementations for which PSE
Pro does not have weak reference support, hollow persistent objects are not available
for Java garbage collection.

Sometimes an application might retain references to an object and prevent Java
garbage collection that would otherwise occur. It is good practice to avoid retaining
references to objects unnecessarily.

Setting the Evicted Object to Be Read-Only
When you invoke evict(Object, ObjectStore.RETAIN_READONLY), PSE Pro

• Retains references to the evicted object.

• Retains the contents of the evicted object.

• Saves any changes to the evicted object.

• Internally flags the object as read but not modified. This is because any changes
are already saved. If the application later modifies the evicted object in the same
transaction, PSE Pro modifies this flag accordingly.

Garbage
collection

Any changes that were made before the object was evicted are saved in the database.
(Of course, if the transaction aborts, the changes are rolled back.) Therefore, if the
evicted object is not referenced by other objects in the Java program, it becomes
available for Java garbage collection.

Additional
changes

Your application can read or modify the evicted object in the same transaction. If it
does, PSE Pro does not have to recopy the contents of the object from the database to
your program. When the application commits the transaction or evicts the object
again, PSE Pro saves in the database any new changes to the evicted object.

It might seem strange to evict an object with ObjectStore.RETAIN_READONLY and
yet be able to modify the object after the eviction. The specification of READONLY in
this context means that as of this point in time, the evicted object has been read but
not modified. The changes have already been saved but not committed. The contents
are still available and can be read or updated.

Advantage The advantage of using evict(Object, ObjectStore.RETAIN_READONLY) is that
the updated object becomes available for Java garbage collection on platforms that
support weak references.

Summary of Eviction Results for Various Object States
The following table shows the results of an eviction according to the value specified
for the retain argument.

Results of Eviction RETAIN_STALE RETAIN_HOLLOW RETAIN_READONLY

Object state Stale Hollow Active

References to
evicted object

Stale Remain valid Remain valid

Candidate for Java
garbage collection

Candidate Can be candidate Can be candidate
120 PSE Pro for Java User Guide

Chapter 6: Storing, Retrieving, and Updating Objects
Evicting All Persistent Objects
You can evict all persistent objects associated with the current session with one call
to evictAll(). The method signature is

public static void evictAll(int retain)

For the retain argument, you can specify

• ObjectStore.RETAIN_HOLLOW

• ObjectStore.RETAIN_READONLY

• ObjectStore.RETAIN_STALE

• ObjectStore.RETAIN_TRANSIENT

When you specify any of the retain arguments, PSE Pro applies it to all persistent
objects that belong to the same session as the active thread. PSE Pro does this in the
same way that it applies a retain argument to one object for the evict(object,
retain) method. Note that evict(object, retain) does not have RETAIN_
TRANSIENT as a value for the retain argument.

ObjectStore.RETAIN_TRANSIENT converts all persistent objects associated with a
session into transient objects after evicting all objects from the transaction. Because
these transient objects are copies of persistent objects, they no longer represent
persistent objects in a database. You can read or modify the objects outside
transactions.

Evicting Objects When There Are Cooperating Threads
Before an application evicts an object, it must ensure that no other thread requires
that object to be accessible. For example, suppose you have code like the following:

class C {
 String x;
 String y;

 void function() {
 System.out.println(x);
 ObjectStore.evict(this);
 System.out.println(y);
 }
}

Before the first call to println(), the object is accessible. After the call to evict(),
the y field is null and the second println() call fails. There are more complicated
scenarios for this problem that involve subroutines that call evict() and cause
problems in the calling functions. This problem can occur in a single thread. If there
are multiple cooperating threads, each thread must recognize what the other thread
is doing. See Cooperating Threads on page 47.

It is the responsibility of the application to ensure that the object being evicted is not
the this argument of any method that is currently executing.
Release 7.1 121

Aborting Transactions to Cancel Changes
Committing Transactions After Evicting Objects
In a transaction, you might evict certain objects and specify their states to be hollow
or active. If you then commit the transaction and cause the state of persistent objects
to be stale, this overrides the hollow or active state set by the eviction. If you commit
the transaction and cause the state of persistent objects to be hollow, this overrides
an active state set by eviction. For example:

Transaction tr = Transaction.begin(ObjectStore.UPDATE);
Trail trail = (Trail) db.getRoot("greenleaf");
GuideBook guideBook = trail.getDescription();
ObjectStore.evict(guideBook, ObjectStore.RETAIN_READONLY);
tr.commit();

After the transaction commits, the application cannot use guideBook. Committing
the transaction without specifying a retain argument makes all persistent objects
stale (unless a retain value other than RETAIN_STALE was specified by
Transaction.setDefaultCommitRetain() or
Transaction.setDefaultRetain()). This overrides the RETAIN_READONLY
specification when guideBook was evicted.

Evicting Objects Outside a Transaction
Outside a transaction, eviction of an object has meaning only if you retained objects
when you committed the previous transaction. In other words, if you invoke the
commit(retain) method and specify a value for the retain argument other than
RETAIN_STALE, you can evict retained objects outside a transaction.

If you specified commit(ObjectStore.RETAIN_STALE), there are no objects to evict
after the transaction commits. If you invoked commit() with any other retain value,
you can call evict() or evictAll() with the value of the retain argument as
RETAIN_STALE or RETAIN_HOLLOW. If you specify RETAIN_READONLY, PSE Pro does
nothing.

Outside a transaction, if you make any changes to the objects you evict, PSE Pro
discards these changes at the start of the next transaction. They are not saved in the
database.

Aborting Transactions to Cancel Changes
If you modify some objects, then decide that you do not want to keep the changes,
you can abort the transaction. Aborting a transaction

• Ensures that the objects in the database are as they were just before the aborted
transaction started

• Sets the state of persistent objects from the transaction

Only the state of the database is rolled back. The state of transient objects is not
undone automatically. Applications are responsible for undoing the state of
transient objects. Any form of output that occurred before the abort cannot be
undone.
122 PSE Pro for Java User Guide

Chapter 6: Storing, Retrieving, and Updating Objects
Method
signatures

The abort() method has two overloadings. The first overloading takes no
argument. The method signature is

public void abort()

The second overloading has an argument that specifies the state of persistent objects
after the abort operation. The method signature is

public void abort(int retain)

The retain state only applies to the transaction in which the abort was called. You can
specify the following retain states after a abort:

• ObjectStore.RETAIN_HOLLOW

• ObjectStore.RETAIN_READONLY

• ObjectStore.RETAIN_STALE

• ObjectStore.RETAIN_UPDATE

• ObjectStore.RETAIN_TRANSIENT

The values for the retain argument are described in the sections that follow.

Contents This section discusses the following topics:

• Setting a Default Abort Retain State for a Session

• Setting Persistent Objects to a Default State

• Specifying a Particular State for Persistent Objects

Setting a Default Abort Retain State for a Session
You can use the following two methods to set the default retain state for persistent
objects after a transaction is aborted:

• Transaction.setDefaultAbortRetain()

• Transaction.setDefaultRetain()

The default retain state set by these methods is in effect for the duration of the session
in which they are called.

Call the setDefaultAbortRetain() method to set the default state for persistent
objects after a transaction is aborted. The default retain state is in effect for the
duration of the session in which it is called. The method signature is

public void setDefaultAbortRetain(int newRetain)

The values you can specify for newRetain are the same values you can specify when
you call abort() with a retain argument. These values are described in the next
section. Another way to set the default state for persistent objects after a transaction
is aborted is to call the setDefaultRetain() method. The method signature is

public void setDefaultRetain(int retain)

The setDefaultRetain() method also sets the default retain states for
Transaction.commit() and Transaction.checkpoint() when these methods are
called without a retain argument. The default retain state for persistent objects is in
effect for the duration of the session in which it is called.
Release 7.1 123

Aborting Transactions to Cancel Changes
Note When you are using either method to set a default retain state, the method that was
last called overrides any default retain state that was set previously. For example, if
an application calls setDefaultAbortRetain(int retain) first and then calls
setDefaultRetain(int retain), the retain state for abort() is specified by the
second call.

Setting Persistent Objects to a Default State
To abort a transaction and to set the state of persistent objects to the state specified
by Transaction.setDefaultAbortRetain() or by
Transaction.setDefaultRetain(), call the abort() method without any
arguments. The default state is stale if a default retain state is not specified.

The method signature is

public void abort()

For example:

tr.abort();

Specifying a Particular State for Persistent Objects
To abort a transaction and to specify a particular state for persistent objects after the
transaction, call the abort(retain) method on the transaction. The method
signature is

public void abort(int retain)

The retain value you specify affects the retain state of the persistent objects for the
transaction in which it is called.

The following example aborts a transaction and specifies that the contents of the
active persistent objects should remain available to be read:

tr.abort(ObjectStore.RETAIN_READONLY);

The values you can specify for retain are described next.

The rules for Java garbage collection of objects retained from aborted transactions are
the same as for objects retained from committed transactions. See Committing
Transactions to Save Modifications on page 111.

RETAIN_
STALE

ObjectStore.RETAIN_STALE resets the contents of all persistent objects to their
default values and makes them stale. This is the same as calling abort() when
Transaction.setDefaultAbortRetain() or
Transaction.setDefaultRetain() have not been called or one has been called
with ObjectStore.RETAIN_STALE as its argument.

RETAIN_
HOLLOW

ObjectStore.RETAIN_HOLLOW resets the contents of all persistent objects to their
default values and makes them hollow. In the next transaction, you can use
references to persistent objects from this transaction.
124 PSE Pro for Java User Guide

Chapter 6: Storing, Retrieving, and Updating Objects
RETAIN_
READONLY

ObjectStore.RETAIN_READONLY retains the contents of unmodified persistent
objects that were read during the aborted transaction. Any objects that were
modified become hollow objects, as if ObjectStore.RETAIN_HOLLOW had been
specified. Objects whose contents were read but not modified in the aborted
transaction can be read after the aborted transaction.

If you try to modify a persistent object before the next transaction, PSE Pro signals
NoTransactionInProgressException. If you modified any persistent objects
during the aborted transaction, PSE Pro discards these modifications and makes
these objects hollow as part of the abort operation.

During the next transaction, the contents of persistent objects that were not modified
during the aborted transaction are still available.

RETAIN_
UPDATE

ObjectStore.RETAIN_UPDATE retains the contents of persistent objects that were
read or modified during the aborted transaction. The values that are retained are the
last values that the objects contained before the transaction was aborted. Even
though the changes to the modified objects are undone with regard to the database,
the changes are not undone in the objects in the Java VM.

While you are between transactions, the changes that were aborted are still visible in
the Java objects. At the start of the next transaction, PSE Pro discards the
modifications and reads in the contents from the database. Objects that were read or
modified in the aborted transaction can be modified between the aborted transaction
and the next transaction. If you modify any persistent objects during or after the
aborted transaction, PSE Pro discards these modifications and makes these object
hollow at the start of the next transaction.

During the next transaction, the contents of persistent objects that were not modified
during or after the aborted transaction are still available.

RETAIN_
TRANSIENT

ObjectStore.RETAIN_TRANSIENT converts all persistent objects associated with a
session into transient objects after aborting a transaction. Because these transient
objects are copies of persistent objects, they no longer represent persistent objects in
a database. They can be read or modified outside transactions.

Destroying Objects in the Database
You can explicitly destroy any object that you want to be deleted from persistent
storage. The discussion of the destroy operation covers the following topics:

• Calling ObjectStore.destroy()

• Destroying Objects That Refer to Other Objects

• Destroying Objects That Are Referred to by Other Objects

• Effects of Destroying an Object on page 129
Release 7.1 125

Destroying Objects in the Database
Calling ObjectStore.destroy()
To destroy an object, call ObjectStore.destroy(). This method has two
overloadings:

public static void destroy(Object object)

public static void destroy(Object object, DestroyOptions option)

The object you specify must be persistent or the call has no effect. The database that
contains the object must be open for update and an update transaction must be in
progress.

If you use the overloading that does not specify the second argument, it is as if you
had specified the second argument with a value of DETECT_DANGLING_REFERENCES.
If you try to access the destroyed object, the tombstone causes PSE Pro to signal
ObjectNotFoundException.

If you specify the option argument, the value must be one of the values for the
DestroyOptions enum:

• ASSERT_NO_DANGLING_REFERENCES — When PSE Pro destroys the object, it does
not leave a tombstone at the location occupied by the destroyed object.

CAUTION: Specify this option only if the application is certain that there are no
references to the object being destroyed. Database corruption can occur if you
specify this option when there are references to the destroyed object in the
database.

• DETECT_DANGLING_REFERENCES — When PSE Pro destroys the object, it leaves a
tombstone at the location of the destroyed object. If there is a reference to the
destroyed object and the application tries to navigate through that reference, PSE
Pro signals an exception.

When the com.odi.forceTombstones property is set to true, the destroy() method
always leaves a tombstone even if you specify ASSERT_NO_DANGLING_REFERENCES
when you call the destroy() method.

If the destroyed object either implements the IPersistent interface or is an array,
you cannot access any of its fields after you destroy it.

Destroying Objects That Refer to Other Objects
By default, when you destroy an object, PSE Pro does not destroy objects that the
destroyed object references.

There is a hook method, IPersistentHooks.preDestroyPersistent(), that you
can define. PSE Pro calls this method before actually destroying the specified object.
This method is useful when an object has underlying structures that you want to
destroy along with the object. The default implementation of this method does
nothing.

You can use preDestroyPersistent() to propagate the destroy operation to child
objects that are referenced by the one being destroyed. If you do this, be careful that
the child objects themselves are not referenced by other objects in the database. If an
object attempts to use a reference to an explicitly destroyed object, PSE Pro signals
126 PSE Pro for Java User Guide

Chapter 6: Storing, Retrieving, and Updating Objects
ObjectNotFoundException. If you are not certain whether a specific object might be
referenced elsewhere, it is better to avoid explicitly destroying the object. Let the
persistent GC do the job instead.

OSHashtable
and OSVector

When you delete a com.odi.util.OSHashtable or com.odi.util.OSVector object,
PSE Pro deletes the hash table or vector and its own internal data structures. PSE Pro
does not delete the keys or elements that were inserted into the hash table or vector.
Doing so might cause problems because other Java objects might refer to those
objects.

However, sometimes you want to destroy the objects in a hash table or vector as well
as the hash table or vector itself. Suppose you have a class in which one of the
instance variables is a com.odi.util.OSVector. You might want to ensure that
whenever an instance of this class is destroyed, the OSVector and its contents are
also destroyed. To do this, you can define a preDestroyPersistent() method on
your class. Define this method to iterate over the elements in the vector, destroy each
one, then destroy the com.odi.util.OSVector.

Types not
destroyed

When you call the ObjectStore.destroy() method on an object, it does not
destroy fields in the object that are

• String types

• Instances of wrapper classes that have been explicitly migrated with the
ObjectStore.migrate() method

• Long and Double types
Release 7.1 127

Destroying Objects in the Database
For additional information about PSE Pro treatment of String instances, see
Description of Special Behavior of String Literals on page 265. For example, if you
define a class such as the one following, when you destroy an instance of this class,
you should also explicitly destroy s and d.

class C {
 int i;
 String s;
 Double d;
}

Advantages of
explicit destroy

You should always consider whether or not to have preDestroyPersistent() call
ObjectStore.destroy() on fields that contain String types, instance of wrapper
classes that have been explicitly migrated, or types that you define. The advantage
of explicitly destroying objects is that PSE Pro replaces large objects or arrays with a
4-byte tombstone.

Disadvan-tages
of explicit
destroy

The disadvantages of explicitly destroying such objects are

• You must write additional code.

• There is the risk of a dangling reference if you are not careful. For example, an
unanticipated ObjectException might prevent an object from being destroyed.

• PSE Pro replaces a destroyed object with a tombstone that uses 4 bytes. This can
cause fragmentation. The tombstone can also cause PSE Pro to signal
ObjectNotFoundException. For example, suppose you unintentionally destroy
an object that is referenced by another object. When you try to dereference the
reference to the destroyed object, the tombstone causes PSE Pro to signal
ObjectNotFoundException.

You need not have preDestroyPersistent() call ObjectStore.destroy() on
fields that contain primitive types.

Example For example, suppose you have a persistence-capable class called MyVector that has
a private field called contents. When an instance of MyVector is persistent, the
contents field is also persistent, but a user would not have access to it because it is
private. If a user calls ObjectStore.destroy() on an instance of MyVector, the
operation destroys the instance but not the contents object.

If you are the programmer implementing the MyVector class, you have two choices:

• Provide a MyVector.destroy() method to call
ObjectStore.destroy(contents). If you do this, you must ensure that users of
MyVector understand that they should not call ObjectStore.destroy() on an
instance of MyVector because doing so leaves garbage in the database.

• Provide a preDestroyPersistent() method that calls
ObjectStore.destroy(contents). This choice ensures that if a user calls
ObjectStore.destroy() on an instance of MyVector, the operation cleans up the
private contents field.
128 PSE Pro for Java User Guide

Chapter 6: Storing, Retrieving, and Updating Objects
Following is code that shows the second alternative:

public class MyVector {
 private Object[] contents;

 public addElement(Object o) {
 contents[nextElement++] = o;
 }

 public void preDestroyPersistent(DestroyOptions option) {
 if (contents != null)
 ObjectStore.destroy(contents, option);
 }
}

Destroying Objects That Are Referred to by Other Objects
The usual practice is to remove references to a persistent object before you destroy
that persistent object. PSE Pro signals ObjectNotFoundException when you try to
access a destroyed object. It is up to you to clean up any references to destroyed
objects.

If an object retains a reference to a destroyed object, PSE Pro signals
ObjectNotFoundException when you try to use that reference. This might occur
long after the referenced object was destroyed. To clean up this situation, set the
reference in the referring object to null.

String class and
wrapper objects

A call to destroy on a String object or wrapper object behaves differently. When
you dereference a reference to such a destroyed object, PSE Pro does not signal
ObjectNotFoundException. Instead, references to the destroyed object from objects
modified in the same transaction as the destroy operation continue to have the value
of the destroyed object. References to the destroyed object from objects not modified
in the same transaction appear as null values when an object containing such a
reference is fetched.

Hash tables You should avoid having a hash table refer to a destroyed object. It is difficult to
remove a reference from a hash table after you destroy the object that it refers to. This
is because the search through the hash table for the referring object might cause PSE
Pro to try to access the destroyed object. In fact, a search for another object in the hash
table might cause PSE Pro to access the destroyed object. The result is that the hash
table look-up procedure signals ObjectNotFoundException and the hash table
becomes useless. Consequently, you should always remove objects from hash tables
before you destroy them.

Effects of Destroying an Object
When an application destroys an object, PSE Pro makes the space occupied by that
object in the .odb and .odt files available for reuse by other objects in future
transactions. Your application can use the space in the .odb file in the next
transaction. You can use the space in the .odt file in a later transaction. For both files,
the free space is reused, but the files do not shrink.
Release 7.1 129

Transient Fields in Persistence-Capable Classes
Default Effects of Various Methods on Object
State

The following table summarizes the default effects of various methods on the state
of hollow or active persistent objects. You should never try to invoke a method on a
stale object. If you do, PSE Pro tries to detect it and signal ObjectException. PSE Pro
can signal ObjectException for objects that are instances of classes that implement
the IPersistent interface.

Unless you manually annotate your classes to make them persistence capable, you
do not write ObjectStore.fetch() or ObjectStore.dirty() calls in your
application. The postprocessor inserts these calls automatically as needed.

The information in the following table assumes that you are not specifying a retain
argument with any of the methods that accept a retain argument.

Transient Fields in Persistence-Capable
Classes

This section discusses

• Behavior of Transient Fields

• Preventing fetch() and dirty() Calls on Transient Fields

See also Creating Persistence-Capable Classes with Transient Fields on page 196.

Method the Application Calls Result When Invoked on Hollow or Active Objects

ObjectStore.fetch() Active persistent object

ObjectStore.dirty() Active persistent object

ObjectStore.evict() Hollow persistent object

ObjectStore.destroy() Stale persistent object

Method the Application Calls Result

Transaction.commit() Persistent objects become stale.

Transaction.abort() Persistent objects become stale.
130 PSE Pro for Java User Guide

Chapter 6: Storing, Retrieving, and Updating Objects
Behavior of Transient Fields
In a persistence-capable class, a field designated with the transient keyword
behaves as follows:

• A transient field is never stored in a database.

• A transient field can be initialized in a constructor just like any other field.

• When an object is materialized from a database, a transient field has the value that
the constructor gives it.

• By overriding the postInitializeContents() method, you can synchronize a
transient field for an object when its contents are refreshed from the database.

• When an object becomes hollow or stale, a transient field is not cleared.

• If you assign the value of a persistent object to a transient field, all memory of the
reference is lost when the enclosing object is garbage collected.

• If you try to access a transient field outside a transaction, PSE Pro signals
NoTransactionInProgressException if the containing object is hollow or
ObjectException if the containing object is stale.

• Committing or aborting a transaction has no effect on a transient field.

Preventing fetch() and dirty() Calls on Transient Fields
When you run the postprocessor on a class that has transient fields, you might want
to specify the -noannotatefield option for the transient fields. This option
prevents access to the specified field from causing fetch() and dirty() calls on the
containing object. This is useful for transient fields when you access them outside a
transaction. Normally, access to a transient field causes fetch() or dirty() to be
called to allow the postInitializeContents() and preFlushContents()
methods to convert between persistent and transient states.

When you specify the -noannotatefield option, follow it with a qualified field
name.

Avoiding finalize() Methods
 strongly recommends that you do not define java.lang.Object.finalize()
methods in application classes that are persistence capable. If your persistence-
capable class must define a finalize() method, you must ensure that the
finalize() method does not access any persistent objects. This is because the Java
GC might call the finalize() method outside a transaction or from a thread that
does not belong to the session of the object being finalized. Such a situation causes
PSE Pro to signal NoSessionException and prevents execution of the finalize()
method.

If your class defines a finalize() method, the class file postprocessor inserts
annotations at the beginning of the finalize() method that change the persistent
object to a transient object. This makes it safe to access fields of the finalized object.
However, if the object has not been fetched, the fields are in an uninitialized state.
Release 7.1 131

Avoiding finalize() Methods
Troubleshooting Access to Persistent Objects
Incorrect program behavior can happen when your program does one of the
following while an annotated method is executing:

• Aborts or commits a transaction

• Evicts one or all objects

The general result is that your program might incorrectly access additional
persistent objects after the abort, commit, or eviction. The specific results vary
according to the retain setting PSE Pro uses for the operation, as follows:

• ObjectStore.RETAIN_STALE should cause PSE Pro to signal ObjectException if
your program tries to access a stale object. With the optimizations, your program
might be able to access stale objects, which should not happen.

• ObjectStore.RETAIN_HOLLOW
ObjectStore.RETAIN_READONLY
ObjectStore.RETAIN_TRANSIENT
ObjectStore.RETAIN_UPDATE

These settings might cause your program to retrieve null or 0 values in place of
correct values. Also, PSE Pro might fail to save some modifications in the
database.

The class file postprocessor (osjcfp) uses three optimizations that can allow
incorrect access to persistent objects. You can disable these optimizations by using
the following osjcfp options:

• -noarrayopt disables optimization of fetch() and dirty() calls for array
objects in looping constructs. This causes osjcfp to make the calls to fetch() or
dirty() in every iteration rather than only in the first loop iteration.

• -nothisopt disables optimization of fetch() and dirty() calls for access to
fields relative to this in nonstatic member methods. This causes osjcfp to insert
a fetch() or dirty() call for each access to a field in this.

• -noinitializeropt disables optimization of fetch() and dirty() calls in
constructors. Specify this option when you want the postprocessor to perform full
annotation on constructors. When you specify this option, it applies to all classes
that the postprocessor makes persistence capable.
132 PSE Pro for Java User Guide

Chapter 6: Storing, Retrieving, and Updating Objects
Handling Unregistered Types
PSE Pro creates objects of type UnregisteredType when it must create a persistent
object and it cannot find a class file for that object. The class might not be found
because of a problem with the CLASSPATH or because the class is not available for a
particular database.

If your application receives error messages that indicate unregistered types, the
information here can help you determine what is happening and what to do about
it. This section discusses

• How Can There Be Unregistered Types?

• Can Applications Work When There Are Types Not Registered?

• What Does PSE Pro Do About Unregistered Types?

• When Does PSE Pro Create UnregisteredType Objects?

• Can Your Application Run with UnregisteredType Objects?

• Troubleshooting ClassCastExceptions Caused by Unregistered Types

• Troubleshooting the Most Common Problem

How Can There Be Unregistered Types?
How can there be a type in the database with no corresponding ClassInfo subclass?
This can happen when

• The CLASSPATH environment variable has been changed since the object was
stored in the database and the class is no longer in the CLASSPATH.

• The CLASSPATH might include the directory or .zip or .jar file that contains the
original class files, but not the directory or .zip or .jar file that contains the
postprocessed class.

• The database includes an instance of a private class and there is not a
corresponding ClassInfo subclass that describes that class. PSE Pro uses the
reflection API to analyze persistence-capable public classes, but it is not available
for private classes. Therefore, the osjcfp preprocessor creates a special subclass
of ClassInfo for private classes that must be found whenever a private class is
found in a database.

Can Applications Work When There Are Types Not Registered?
In some situations, it might not matter to your application that there is an object
whose type is unregistered. For example, suppose you are looking up an element in
a hash table. One of the elements in the hash table is of an unregistered type, but it is
not the element you are looking for. Because PSE Pro creates an UnregisteredType
object instead of signaling an exception, your application can keep running.
Release 7.1 133

Avoiding finalize() Methods
What Does PSE Pro Do About Unregistered Types?
PSE Pro provides the abstract class UnregisteredType to represent objects whose
types are unregistered. When PSE Pro cannot find the ClassInfo subclass for a type
that is referenced in your application, it

• Creates an UnregisteredType object to represent the type

• Uses the UnregisteredType object in place of the hollow object it would have
created

You can never read or modify an UnregisteredType object. Because of this, it is
important for you to understand

• When PSE Pro creates UnregisteredType objects

• Whether PSE Pro can use UnregisteredType objects in a particular situation

With this information, you can determine whether your application can run with
objects of unregistered types. Your application can continue to run as long as you do
not try to read or modify an UnregisteredType object.

When Does PSE Pro Create UnregisteredType Objects?
PSE Pro creates an UnregisteredType object when it encounters an object in a
database and it determines that the type of that object is not registered.

PSE Pro encounters an object in a database when it

• Obtains the value of a database root

• Initializes an object and the value of one of the fields is a class, interface, or an
array

• Initializes an array and the element type of the array is a class, an interface, or
array

• Iterates over all objects in a segment

In the above list, initialize means to read the contents of the object out of the database
and into the persistent Java object. This happens when PSE Pro calls
IPersistent.initializeContents() and
IPersistent.postInitializeContents().

When PSE Pro encounters an object in a database, it determines whether there is
already a Java object for the object in the database. If there is, PSE Pro uses that object.
If there is not, PSE Pro checks to see whether the type of the object is registered.

If the type is not registered, PSE Pro tries to load the ClassInfo subclass for the type
and register it. PSE Pro uses the regular Java class loading mechanism. Usually, this
means that PSE Pro searches your CLASSPATH. Depending on the Java
implementation you are using, Java class loading can also involve Java ClassLoader
objects, as described in the Java Language Specification.

If PSE Pro cannot load the ClassInfo subclass, it cannot register the type and
therefore it cannot create a hollow object for the type. In this case, PSE Pro creates a
new Java object of type UnregisteredType and uses it in place of the hollow object.
134 PSE Pro for Java User Guide

Chapter 6: Storing, Retrieving, and Updating Objects
Can Your Application Run with UnregisteredType Objects?
PSE Pro can use the UnregisteredType object if java.lang.Object is the type of
the field in which the reference is being stored. For example, suppose you have the
following class:

class Person {
 Pet mypet;
 Object mytrash;
}

You also have a database that contains one Person object. The value of the
Person.mypet instance variable is an instance of the Pet class. The value of the
Person.mytrash instance variable is an instance of the Shoe class.

Now suppose that the Pet class is an unregistered class. Your application opens the
database and tries to read the Person object. This means that PSE Pro must initialize
the Person object. When PSE Pro recognizes that the Pet class is unregistered, it
creates an UnregisteredType object. PSE Pro then tries to assign the mypet instance
variable to the UnregisteredType object. The code to do this is something such as
the following:

mypet = (Pet)(handle.getClassField(1, XXX));

Typically, the postprocessor generates this code but you can specify it yourself in the
IPersistent.initializeContents() method. In any case, the call to
handle.getClassField() returns an UnregisteredType object. The cast to Pet is
required because Pet is the type of the mypet instance variable. However, this cast
does not work. You cannot cast an UnregisteredType to Pet because
UnregisteredType is not Pet and is not a subclass of Pet. The Java VM signals a
ClassCastException in the middle of the initialization. The Person object is never
initialized.

Now suppose that the Pet class is registered and that the Shoe class, which is the
type of the Person.mytrash instance variable, is not registered. PSE Pro creates an
UnregisteredType object and the handle.getClassField() method returns it:

mytrash = (Object)(handle.getClassField(1, XXX));

This time, the cast works correctly because UnregisteredType is a subclass of
Object. The initialization succeeds and the application continues to run.
Release 7.1 135

Avoiding finalize() Methods
Troubleshooting ClassCastExceptions Caused by Unregistered
Types

If PSE Pro creates an UnregisteredType object and you do not try to do anything
with it, your application should work well. Now suppose you try to do something
with it. Because it exists, it must be in a variable of type java.lang.Object. (If it
were not, you would have had trouble with it earlier, as in the Pet example in the
previous section.)

You cannot do very much with objects of type Object, so it is likely that the first
thing you would do is try to cast the UnregisteredType object to some specific type
that you expect it to be. However, this does not work. If you try to cast an
UnregisteredType object to a type other than java.lang.Object or
UnregisteredType, the Java VM signals ClassCastException.

Unfortunately, the ClassCastException does not identify the type that is
unregistered. There are two ways that you can determine the name of the type that
is not registered:

• Change your program.

• Set the com.odi.trapUnregisteredType property.

Somewhere in your program, you have a variable of type Object whose value is an
object of the UnregisteredType class. Modify your program to cast this variable to
type UnregisteredType, then invoke the getTypeName() method on the
UnregisteredType object. This returns the name of the type that is unregistered.

The disadvantage of this approach is that you must edit and recompile your code.

PSE Pro provides the com.odi.trapUnregisteredType property to help you
determine the class that is unregistered. The default is that this property is not set,
and it is usually best to use the default.

When PSE Pro determines that a type is not registered, it checks the setting of the
com.odi.trapUnregisteredType property. If the property is not set (the default),
PSE Pro creates an UnregisteredType object to represent the unregistered type. If
com.odi.trapUnregisteredType is set, PSE Pro signals
FatalApplicationException and provides a message indicating the name of the
class that is unregistered.

The advantage of the com.odi.trapUnregisteredType property is that it provides
the name of the class that is unregistered.

The disadvantage of the com.odi.trapUnregisteredType is that as soon as PSE Pro
encounters the first object whose type is unregistered, your application stops
running. If the object you want information about is the second object of an
unregistered type that PSE Pro would encounter, PSE Pro never reaches that second
object. When you set com.odi.trapUnregisteredType, PSE Pro signals
FatalApplicationException as soon as it encounters the first object whose type is
unregistered.
136 PSE Pro for Java User Guide

Chapter 6: Storing, Retrieving, and Updating Objects
Troubleshooting the Most Common Problem
A common situation in which an UnregisteredType object signals
ClassCastException occurs when you try to obtain a database root
(Database.getRoot()) and the value of the root is an UnregisteredType object. For
example:

Foo foo = (Foo) db.getRoot("foo");

If the Foo class is unregistered, the Java VM signals a ClassCastException when it
comes to the (Foo) cast operation. See the previous section for two ways to
determine the class that is unregistered in this situation.

However, when the value of a root is an unregistered type, it can mean that none of
your persistence-capable types is registered. This is often true when an
UnregisteredType object signals a ClassCastException very early in your
program. Your best course of action is likely to be to ensure that your persistence-
capable classes are in your CLASSPATH rather than trying to determine the class that
is not registered.

Using Enums in Persistent Objects
In a PSE Pro database, an Enum can be a field in a persistent object or a field in a
persistent array.

You cannot store an Enum as a top-level persistent object. In other words, an Enum
cannot be a database root value, and it is not possible to explicitly migrate Enums.

You cannot store an Enum directly in a com.odi.util.OSTree* collection object. If
you try to, PSE Pro signals an IllegalArgumentException. However, you can store
an object that contains an Enum in an OSTree* object.

An Enum constant must use the ASCII character set. If you need to store Enum
constants that use characters outside the ASCII character set, contact Progress
technical support.

While an Enum can implement an interface, your PSE Pro application must not try to
store an Enum in a field that you declare to be an interface. Trying to do so might
corrupt your database.

In your application, you can change the definition of an Enum without upgrading or
evolving a database that contains instances of that Enum. This is because PSE Pro does
not validate the schema of an Enum. The schema of an Enum is the list of constants and
their declared order. Consequently, an application can change the definition of an
Enum without incurring a PSE Pro schema validation exception. If an application tries
to read an Enum constant that you removed from the Enum’s definition, PSE Pro
signals an EnumConstantNotPresentException.

You can create a query optimization index based on an Enum field. PSE Pro orders
such an index in the order in which you declared the possible values for the Enum,
which is the value returned by the java.lang.Enum.ordinal() method. If you
Release 7.1 137

Using Generic Types
modify the schema of an Enum after you use it to create an index, it is your
responsibility to update the index.

You do not need to postprocess Enums for persistence. However, if a method in an
Enum accesses a persistent field of a persistent class, you must postprocess the Enum
to make it persistence-aware.

Using Generic Types
You can define a class that contains one or more fields of a generic type and then
store an instance of that class in a PSE Pro database. You can also store a generic class
in a PSE Pro database.

Because of the way that Java implements generic types, the schema information that
PSE Pro maintains does not include generic type information. For example, PSE Pro
considers the following class definitions to be identical:

public class Department {
 OSVector employees;
}

public class Department {
 OSVector<Employee> employees;
}

Consequently, PSE Pro schema validation does not validate information supplied by
the generic types. This means, for example, that PSE Pro cannot prevent you from
accidentally storing a non-Employee object in the employees collection.

138 PSE Pro for Java User Guide

Chapter 7
Working with Collections

PSE Pro provides a set of persistence-capable utility collections classes in the
com.odi.util package. These classes rely on the interfaces defined in the
java.util package.

This chapter discusses the following topics:

Description of PSE Pro Utility Collections 139

The Way to Choose a Collection 148

Using PSE Pro Utility Collections 150

Querying PSE Pro Utility Collections 151

Enhancing Query Performance with Indexes 161

Storing Objects as Keys in Persistent Hash Tables 168

Using Third-Party Collections Libraries 170

Description of PSE Pro Utility Collections
PSE Pro provides a number of utility collections interfaces and classes in the
com.odi.util package. In addition, PSE Pro provides a query facility in the
com.odi.util.query package. PSE does not include the query facility.

A collection is an object that groups together other objects. It provides an effective
means of storing and manipulating groups of objects and supports operations for
inserting, removing, and retrieving elements.

Collections form the basis of the PSE Pro query facility, which allows you to select
those elements of a collection that satisfy a specified condition. However, some
collections can be queried and others cannot. Therefore, before you create a
collection and store it in a database, you should consider how you plan to use a
collection. When you know what you need, you can select the best persistent
collection representation for your application.

To introduce you to the PSE Pro utility collections facility, this section discusses the
following topics:

• Introduction to java.util Interfaces and Classes

• Description of OSHashBag

• Description of OSHashMap
Release 7.1 139

Description of PSE Pro Utility Collections
• Description of OSHashSet

• Description of OSHashtable

• Description of OSTreeMapxxx

• Description of OSTreeSet

• Description of OSVector

• Description of OSVectorList

• Advantages of Using PSE Pro Utility Collections

• Background About Utility Collections and Java Collections

Introduction to java.util Interfaces and Classes
The java.util.Collection and java.util.Map interfaces provide methods for
operating on PSE Pro collections.

• Collection provides methods for operating on groups of objects in which the
objects might be ordered, might be duplicated, and can be queried. The internal
representation of a class that implements Collection might be a hash table, a
binary tree, or another data structure.

- The java.util.List interface extends java.util.Collection. In collections
that implement List, the elements are ordered and duplicates are allowed.

- The java.util.Set interface extends java.util.Collection. In collections
that implement Set, the elements are not ordered and duplicates are not
allowed.

• Map provides methods for operating on groups of key/value entries. Each key can
map to at most one value. You cannot query collections that implement Map.

The PSE Pro utility collections facility provides the persistence-capable java.util
classes shown in the following table. Most of these classes implement a java.util
interface (many implement other interfaces as well).

Class Implements

OSHashBag Collection

OSHashMap Map

OSHashSet Set

OSHashtable None

OSTreeMapByteArray Map

OSTreeMapDouble Map

OSTreeMapFloat Map

OSTreeMapInteger Map

OSTreeMapLong Map

OSTreeMapString Map

OSTreeSet Set

OSVector Collection

OSVectorList List
140 PSE Pro for Java User Guide

Chapter 7: Working with Collections
Not necessary
to postprocess
classes

You need not postprocess the classes in the utility collections facility. They are
already persistence capable. If you define a subclass that extends any of these classes
and you want the subclass to be persistence capable, you must either run the
postprocessor on the subclass or manually annotate the subclass.

Example

The query demo provides an example of using PSE Pro with utility collections. See
the README file in the com/odi/demo/query directory.

Hash code The Java collections interfaces specify the behavior of the hashCode() method on
instances of the Set, Map, and List types. This hashCode() specification is based
on the contents of the collection; the hashCode of a collection changes depending on
the elements that are added or removed. This means that it is not advisable to store
an instance of a set, map, or list class in a hash table unless the set or list is immutable
and will never change.

Description of OSHashBag
An OSHashBag is an unordered collection that allows duplicates. OSHashBags not
only keep track of what their elements are but also of the number of occurrences of
each element. As the name implies, a hash table is the internal representation for an
OSHashBag. OSHashBag directly implements the java.util.Collection interface,
so you can query instances of OSHashBag.

Description of OSHashMap
An OSHashMap is a map that allows duplicate values but not duplicate keys. Unlike
OSHashBag, OSHashMap associates a key with each value in the map. When you insert
a value into an OSHashMap, you specify the key along with the value. You can retrieve
a value with a given key. The internal representation of an OSHashMap is a hash table.
OSHashMaps do not allow null keys or null values.

Because OSHashMap implements the Map interface rather than the Collection
interface, you cannot query OSHashMaps. However, you can query the collection
views of a map: Map.keySet(), Map.values(), and Map.entrySet(). See Querying
Collection Views of Map Entries on page 146.

The OSHashMap.equals() method performs value (contents) comparisons, as
described by Map.equals(), to determine whether two Maps are equal. This is the
only difference between OSHashMap and OSHashtable. The OSHashtable.equals()
method compares the identities of the two objects to determine equality. The
OSHashtable.hashcode() method generates a hash code based on object identity; it
is not based on the contents of the OSHashtable. For information about content
comparisons and identity comparisons, see “OSHashtable and OSVector” on
page 147.
Release 7.1 141

Description of PSE Pro Utility Collections
Description of OSHashSet
An OSHashSet is an unordered collection that does not allow duplicates. If you try
to insert a value into an OSHashSet and the set already contains that value, the set
remains unchanged. OSHashSet implements the java.util.Set interface. As its
name implies, a hash table is the internal representation of an OSHashSet. Because
OSHashSet indirectly implements java.util.Collection, you can query
OSHashSets.

OSTreeSets are capable of storing much larger persistent collections than
OSHashSets. However, OSTreeSets must be persistent; it is not possible to create a
transient instance of an OSTreeSet. If your collection is small, an OSHashSet is the
better choice. If your collection is large, an OSTreeSet performs better.OSTreeSet is
only available in PSE Pro.

Description of OSHashtable
An OSHashtable is also an unordered collection that allows duplicates. This class
has the same APIs as java.util.Hashtable.

OSHashtable associates a key with each element. When you insert an element into
an OSHashtable, you specify the key along with the element. You can retrieve an
element with a given key. While the internal representation of an OSHashtable is a
hash table, it is a map-like structure.

Because OSHashtable does not implement the java.util.Collection interface,
you cannot query OSHashtables. However, you can query the collection views of an
OSHashtable. See Querying Collection Views of Map Entries on page 146.

The OSHashtable.equals() and OSHashtable.hashCode() methods perform
reference (identity) comparisons and not value (contents) comparisons. This is the
only difference between OSHashtable and OSHashMap. The OSHashMap methods
perform content comparisons. For information about content comparisons and
identity comparisons, see “OSHashtable and OSVector” on page 147.

By default, an OSHashtable allocates room for 50 elements. You can presize an
OSHashtable to better match what your application needs. In addition, you can
delay allocation of OSHashtable substructure, which PSE Pro uses to represent the
OSHashtable until elements are actually added to the OSHashtable. To do this,
specify the lazy argument to the OSHashtable constructor, as follows:

OSHashtable(int initialBufferSize, int capacityIncrement,
 boolean lazy)

Description of OSTreeMapxxx
OSTreeMap is only available in PSE Pro. It is based on a B-tree representation that is
tuned for large persistent collections. OSTreeMap is an abstract class with several
142 PSE Pro for Java User Guide

Chapter 7: Working with Collections
concrete subclasses. In all OSTreeMapxxx instances, the values are objects. Each
subclass uses a different type for keys, as shown in the following table:

An OSTreeMapxxx is a map that allows duplicate values but not duplicate keys. Each
OSTreeMapxxx associates a key with a value in the map. When you insert a value into
an OSTreeMapxxx, you specify the key along with the value. You can retrieve a value
with a given key. OSTreeMapxxxs do not allow null keys or null values.

The OSTreeMapxxx classes extend OSTreeMap, which implements java.util.Map.
Consequently, you cannot query OSTreeMapxxxs. However, you can query the
collection views of a map: Map.keySet(), Map.values(), and Map.entrySet(). See
Querying Collection Views of Map Entries on page 146.

The OSTreeMapxxx classes are designed for large persistent aggregations. These
classes allow you to iterate over the collection or query the collection without
fetching any objects from the database except those that are explicitly returned to
you. PSE Pro does not create hollow objects to represent the elements until they are
fetched, thus reducing Java heap overhead when a subset of OSTreeMap is accessed.
OSTreeMap collections can only be persistent.

 Description of OSTreeSet
An OSTreeSet is an unordered collection that does not allow duplicates. If you try
to insert a value into an OSTreeSet and the set already contains that value, the set
remains unchanged. OSTreeSet implements the java.util.Set interface. As its
name implies, a balanced tree is the internal representation of an OSTreeSet. Because
OSTreeSet indirectly implements com.odi.util.IndexedCollection, which
extends java.util.Collection, you can query OSTreeSets.

The OSTreeSet class is designed for very large persistent aggregations. This class
allows you to iterate over the collection or query the collection without fetching any
objects from the database except those that are explicitly returned to you. PSE Pro
does not even create hollow objects to represent the elements. OSTreeSet collections
can only be persistent.

 recommends that if you are going to query a collection that contains a particularly
large number of objects, you should define the collection as an OSTreeSet or a
subclass of OSTreeSet. OSTreeSet is the only collections class for which PSE Pro
provides the ability to add indexes. Indexes can speed up queries on very large

Class Key Type

OSTreeMapByteArray ByteArray

OSTreeMapDouble Double

OSTreeMapFloat Float

OSTreeMapInteger Integer

OSTreeMapLong Long

OSTreeMapString String
Release 7.1 143

Description of PSE Pro Utility Collections
collections. For more information, see Enhancing Query Performance with Indexes
on page 161.

Primary index OSTreeSet has a constructor that allows you to create an empty OSTreeSet that has
a primary index. The method signature is

public OSTreeSet(Placement place,
 Class primaryIndexElementType,
 String primaryIndexPath)

A primary index is used for queries and for looking up objects in the OSTreeSet. The
primary index must contain no duplicate keys and must contain all elements in the
OSTreeSet. The benefits of a primary index include

• Faster look-up times for objects in some cases

• Faster insertion and removal of objects from the set

• An iterator that returns objects in their primary key order

• Less storage space used when compared to an OSTreeSet with a nonprimary
index.

A primary index saves storage space only if an existing index is designated as a
primary index. If you need to create an additional index in order to designate a
primary index, then no storage space is saved unless you wanted the index
anyway.

Storage space is saved when an index is designated as a primary index because
the hashed-based map used to locate objects is removed from the OSTreeSet.

Primary index
maintenance

If you decide to use a primary index, you must ensure that your application performs
index maintenance when modifying fields of objects that affect the primary index.
Otherwise, the contents of the OSTreeSet are not maintained and methods such as
OSTreeSet.add(), OSTreeSet.contains(), and OSTreeSet.remove() will not
work correctly. For more information on index maintenance, see Managing Indexes
and Index Values on page 166.

Adding a
primary index

To designate that an existing OSTreeSet index be used as a primary index, call the
following method:

public void setPrimaryIndex(Class elementType, String path)

PSE Pro signals IndexException if the specified index is not found or allows
duplicate key values, or if the OSTreeSet contains elements that are not instances of
the elementType.

Obtaining a
primary index

To obtain a primary index from an OSTreeSet, call the following method:

public IndexMap getPrimaryIndex()

The primary index is returned if one exists; otherwise, null is returned.

Specifying no
primary index

To specify that none of the existing indexes of an OSTreeSet be used as a primary
index, call the following method:

public void noPrimaryIndex()
144 PSE Pro for Java User Guide

Chapter 7: Working with Collections
When you specify no primary index, you are not removing the index itself. The index
is still available for queries. It just means that PSE Pro will use a map of object hash
codes to find objects in the set instead of using the primary index. This method does
nothing if there is no primary index on the set.

Comparing
OSTreeSet and
OSHashSet

The primary difference between OSTreeSet and OSHashSet is the internal
representation. Also OSTreeSet supports indexes, whereas OSHashSet does not.
OSTreeSets can only be persistently allocated. It is not possible to create a transient
OSTreeSet. OSTreeSet is available in PSE Pro, but not in PSE. For more information
on which collection to use, see The Way to Choose a Collection on page 148.

 Exported
objects

The OSTreeSet class has a constructor for creating exported objects.

Description of OSVector
An OSVector is a persistent expandable array that implements
java.util.Collection. You can query OSVectors.

An OSVector associates each element with a numerical position based on insertion
order. By default, OSVectors allow duplicates. In addition to simple insert (insert
into the beginning or end of the collection) and simple remove (remove the first
occurrence of a specified element), you can insert, remove, and retrieve elements
based on a specified numerical position or based on a specified iterator position. An
OSVector does not have quick look-up by object or key. Therefore, the overhead for
an OSVector is lower than for utility collections that have quick look-up.

The OSVector.equals() and OSVector.hashCode() methods perform reference
(identity) comparisons and not value (contents) comparisons. This is one difference
between OSVector and OSVectorList. The OSVectorList methods perform content
comparisons. For information about content comparisons and identity comparisons,
see “OSHashtable and OSVector” on page 147.

By default, an OSVector allocates room for 32 elements. You can presize an
OSVector to better match what your application needs. In addition, you can delay
allocation of OSVector substructure, which PSE Pro uses to represent the OSVector
until elements are actually added to the OSVector. To do this, specify the lazy
argument to the OSVector constructor, as follows:

OSVector(int initialBufferSize, int capacityIncrement, boolean lazy)

Description of OSVectorList
An OSVectorList is a collection that implements a persistent expandable array. It
implements the java.util.List interface and functions exactly like an OSVector,
except in the following way.

The OSVectorList.equals() and OSVectorList.hashCode() methods perform
value (contents) comparisons and not reference (identity) comparisons. This makes
OSVectorList unsuitable for storage in a persistent hash table or any other hash-
table-based collection representation. The OSVector methods perform identity
comparisons. For information about content comparisons and identity comparisons,
see “OSHashtable and OSVector” on page 147.
Release 7.1 145

Description of PSE Pro Utility Collections
Advantages of Using PSE Pro Utility Collections
The advantages of using com.odi.util interfaces and classes are as follows:

• The interfaces and classes in com.odi.util rely on and extend the interfaces
defined in Java.

• The classes are persistence capable.

• There are collection representations that support queries.

• Some of the classes — OSTreeMapxxx and OSTreeSet — support very large
aggregations.

Querying Collection Views of Map Entries
The OSHashMap and OSTreeMapxxx classes extend java.util.Map and not
java.util.Collection and, therefore, you cannot use the PSE Pro query facility on
them. However, each of the classes that implements Map defines the following
methods:

• keySet() returns a java.util.Set view of the keys contained in the map.

• values() returns a java.util.Collection view of the values contained in the
map.

• entries() returns a java.util.Set view of the key/value mappings contained
in the map.

The OSHashtable class, although it does not implement Map, also defines these
methods.

You can use the PSE Pro query facility to query the Collection and Set views
returned by the keySet(), values(), and entries() methods.

Transient views While OSHashtable, OSHashMap, and the OSTreeMapxxx subclasses are persistence
capable, the views returned by the entries(), keySet(), and values() methods
are not. These are transient views of persistence-capable classes.

Background About Utility Collections and Java Collections
Following is background information about how the PSE Pro utility collections fit
with the Java collections. This discussion assumes that you are familiar with the Java
collections API.

PSE Pro provides a collections package that relies on and extends the java.util
collections. In addition, PSE Pro includes querying and indexing facilities. The new
collections implementations are in the com.odi.util package.

The core collections interfaces defined in the java.util package are

• java.util.Collection

• java.util.Set

• java.util.List

• java.util.Map
146 PSE Pro for Java User Guide

Chapter 7: Working with Collections
In the Java collections, classes and behaviors are based on these interfaces.
Consequently, you can usually use any representation that is parallel to a particular
interface. The java.util implementations and their corresponding PSE Pro
implementations are shown in the following table:

OSHashtable
and OSVector

com.odi.util.OSHashtable and com.odi.util.OSVector have been updated to
be parallel to most of the Java specifications. They do not quite meet the description
of the Java behavior for equals() and hashCode(). The JDK 1.2 changed this
behavior in an incompatible way for these two classes.

The Java List, Set, and Map interfaces mandate an equals() method that does value
comparison and not reference comparison. That is, two Sets are equal if they have
the same elements, two Lists are equal if they have the same elements in the same
order, and two Maps are equal if they have the same key/value pairs.

This places corresponding constraints on the hashCode() method because
(a.equals(b)) => (a.hashCode()==b.hashCode()). The PSE Pro OSHashtable
and OSVector classes, however, implement persistent (unchanging) hashCodes and
rely on Object.equals(). The JDK definition for hashCode means that classes that
meet the Java specification should not be stored in hash tables because their
hashCodes change when elements are added or removed. For these two classes, PSE
Pro retains the old identity-based definitions rather than moving to the new content-
based definitions of equals() and hashCode().

Collection
interface

There are no concrete implementations of the Collection interface in Java.
Collection is essentially a Bag, that is, a Set that might contain duplicates. PSE Pro
includes the com.odi.util.OSHashBag and com.odi.util.OSVector classes to
implement Collection.

Interface java.util Class PSE Pro Class

Collection None com.odi.util.OSHashBag

Set java.util.HashSet com.odi.util.OSHashSet

Set java.util.ArraySet com.odi.util.OSTreeSet

List java.util.Vector com.odi.util.OSVector

List java.util.ArrayList com.odi.util.OSVectorList

List java.util.LinkedList None

Map java.util.Hashtable com.odi.util.OSHashtable

Map java.util.HashMap com.odi.util.OSHashMap

Map java.util.ArrayMap None

Map java.util.TreeMap com.odi.util.OSTreeMapxxx
Release 7.1 147

Description of PSE Pro Utility Collections
The Way to Choose a Collection
Your choice of how to implement a collection depends on

• The amount of data to be stored in the collection

The following numbers can help you determine the type of collection to use. The
efficiency of a collection is based on its performance and storage size.

- Java arrays are efficient for up to 1000 elements.

- OSHashtables are efficient for small collections that have fewer than 1000
elements.

- OSVectors are efficient for medium collections that have as many as 1,000,000
elements.

- OSTreeMaps and OSTreeSets are efficient for medium and large collections that
have between 200 and several million elements.

The recommended size for OSVector overlaps with the sizes for other collection
types. When sizes overlap, you should use OSVector when the keys are
contiguous integers.

The recommended size for OSHashtable overlaps with the size for OSTreeMap.
When the sizes overlap, use an OSHashtable only if the same element is accessed
multiple times within a transaction.

• Whether the queries you use can benefit from using an index

Indexes are useful when you are querying a collection that is larger than a few
hundred elements and when you know in advance what fields will be queried.

OSTreeSet is the only collection that can have indexes, one of which you can
designate as a primary index. If an OSTreeSet has a primary index, that index is
used for determining set membership. With a primary index, inserting and
removing elements is faster when compared to a set with a nonprimary index, less
storage space is used, and the iterator can return elements in their primary key
order.

• Your familiarity with a third-party library

You might want to use a particular library because you already know how to use
it.

• Features required by your application

• Importance of compatibility with the Java collection interfaces

The OSHashtable class is not compatible with the Java Map interface because its
.equals operator is identity based and its hash code is not based on contents. All
other collections in com.odi.util are compatible with the Java API.

• Importance of compatibility between OSJI and PSE Pro

PSE Pro does not have the com.odi.coll collections.
148 PSE Pro for Java User Guide

Chapter 7: Working with Collections
Comparing Collection Classes
To help you choose the right persistent collection representation for your
application, the following table compares the behavior of the different collection
classes in com.odi.util.

Table note In the following table

• The key in an OSVector and OSVectorList is the offset.

• Elements in an OSTreeSet are in key value order only when there is a primary
index.

Performance-Based Recommendations for Collections
This section lists additional performance recommendations that you might want to
consider when choosing which collection type to use.

OSHashtable The OSHashtable becomes very inefficient when the collection grows larger than a
few thousand elements. The OSHashtable is faster than an OSTreeSet only when the
same set of elements is accessed many times within the same transaction.

OSTreeMapxxx
and OSTreeSet

The OSTreeMapxxx and OSTreeSet implementations use an approach that requires
the fewest object materializations for accessing their elements. As a result,
OSTreeMapxxx and OSTreeSet implementations have the fastest initial access to
elements, but they are not as fast as the other types of collection classes when you are
accessing the elements for the second time in a transaction.

OSTreeSet Designating one of the indexes of an OSTreeSet to be a primary index makes
inserting and removing elements faster.

com.odi.coll
package

The collections in the com.odi.coll package are approximately the same as the
com.odi.util collections in their look-up speed for an object, but the
com.odi.coll collections are much slower when you are inserting and iterating
through elements.You should use the com.odi.coll collections only if your Java
applications will access C++ code.

Class Elements
in Key
Value
Order?

Duplicate
Keys
Allowed?

Duplicate
Values
Allowed?

.contains
(Object)
Slow?

.equals()
Compares
By

Queries
Allowed?

Size

OSHashBag No Yes Yes Yes Identity Yes Small

OSHashMap No No Yes Yes Content No Small

OSHashSet No N/A No No Content Yes Small

OSHashtable No No Yes Yes Identity No Small

OSTreeMapxxx Yes No Yes Yes Content No Medium/Large

OSTreeSet No/Yes N/A No No Content Yes Medium/Large

OSVector Yes No Yes Yes Identity Yes Medium

OSVectorList Yes No Yes Yes Content Yes Medium
Release 7.1 149

Using PSE Pro Utility Collections
Using PSE Pro Utility Collections
To help you use PSE Pro utility collections, this section discusses the following
topics:

• Creating Collections

• Navigating Collections with Iterators

• Performing Collection Updates During Iteration

Creating Collections
Each collection representation has one or more constructors that you can use to
create collections. For example:

Database db = Database.create(args[1], ALL_READ | ALL_WRITE);
Transaction.begin(UPDATE);
db.createRoot("collection", new OSTreeSet(db));
Transaction.current().commit();

For details about each class’s constructors, see the ObjectStore Java Interface A P I
Reference.

Navigating Collections with Iterators
The Iterator and ListIterator interfaces help you navigate within a utility
collection. An iterator is an instance of the java.util.Iterator or
java.util.ListIterator interface. It designates a position in a collection. You can
use iterators to traverse collections as well as to remove elements from collections.

With the JDK 1.2, Iterator took the place of Enumeration. Iterator provides the
same capabilities as Enumeration (though method names are different), and it
allows you to remove elements from the underlying collection.

The ListIterator interface extends the Iterator interface. A class that supports
traversal by ListIterator must also implement List. The additional methods that
ListIterator provides allow you to

• Insert objects relative to the current position of the iterator

• Traverse the list in reverse as well as forward

• Replace an element in the underlying list

• Retrieve the index of an element

The IndexIterator interface in com.odi.util extends java.util.Iterator and
allows you to traverse an index or map structure. You can use the IndexIterator
interface to obtain the key and value for elements in the underlying collection.

Performing Collection Updates During Iteration
While you are iterating through a collection, you can use the Iterator and
ListIterator interface methods to modify that collection. This assumes that the
implementation of the Iterator or ListIterator interface supports the methods
that modify underlying collections. (Java defines some of these methods as optional.
150 PSE Pro for Java User Guide

Chapter 7: Working with Collections
You should check the API reference information for the particular class you are using
to determine exactly the behaviors that are supported.)

When a thread is iterating over a collection, that thread and cooperating threads can
modify the object returned by the iteration. If you are using an Iterator, your
application cannot add elements to the collection or change the order of the
collection. If you are using a ListIterator, your application can only use
ListIterator methods to modify the collection.

Suppose you do add an element in the middle of an iteration, and then try to use the
same iterator. PSE Pro recognizes that the collection has been modified and signals
ConcurrentModificationException. At this point, if you create a new iterator, it
recognizes the updated collection and does not signal an exception.

Querying PSE Pro Utility Collections
The com.odi.util.query.Query class provides a mechanism for querying
collections objects that implement the java.util.Collection interface. A query
applies a predicate expression (an expression that evaluates to a boolean result) to
all elements in a collection. The query returns a subset collection of all elements for
which the expression is true. You can query the following classes that implement the
Collection interface:

• OSHashBag

• OSHashSet

• OSTreeSet

• OSVector

• OSVectorList

To accelerate the processing of queries on particularly large collections, you can
build indexes on the collection. For information about indexes, see the next section,
Enhancing Query Performance with Indexes on page 161.

This section provides the following information about queries on PSE Pro utility
collections:

• Creating Queries

• Description of Query Syntax

• Sample Program That Uses Queries

• Matching Patterns in Query Strings

• Using Free Variables in Queries

• Executing Queries

• Limitations on Queries

prolite.jar If you are using PSE Pro, you must have pro.jar and not prolite.jar in your
CLASSPATH if you want to use queries and indexes. The prolite.jar file does not
include the PSE Pro query facility.
Release 7.1 151

Querying PSE Pro Utility Collections
Creating Queries
To create a query, run the com.odi.util.query.Query constructor and pass in a
Class object and a query string. Following is the constructor:

public Query(Class elementType, String queryExpression)

There is also a constructor that allows you to specify a FreeVariables map.

The elementType class or interface provides the context in which the query facility
interprets queryExpression. This must be a publicly accessible class or interface.
When your application calls the Query.select() or Query.pick() method to
execute the query against a particular collection, every element of that collection
must be an instance of (in the sense of instanceof) the elementType that was
specified when the query was created. Any element of the collection that is not an
instance of elementType is not returned in the query result, even if it evaluates to
true for the predicate.

The queryExpression is a predicate (that is, an expression with a boolean result)
that the query facility evaluates on each element of the collection. The
queryExpression operands can be literals and names.

Literals can be of any of the Java primitive types, including the special values true,
false, and null. Because the query expression is a String, you must enclose any
embedded strings in escaped quotation marks, like \"this\".

Names can consist of a single identifier or they can consist of a sequence of identifiers
separated by periods. Names can be either free variables or member names (field or
method names). You must explicitly specify free variables in the freeVariables
argument of the three-argument Query constructor. Any name that is not a free
variable is interpreted as a member name.

Member accesses are interpreted as accessing public members, including static
members of an object of class/interface elementType, if possible. This interpretation
works as though there were an implicit this argument of elementType at the root
of the name expression. Any member access that cannot be interpreted as a member
access on elementType is interpreted as a static access. Static accesses are resolved
as if the package containing elementType were imported.

Queries can contain methods that take arguments. The arguments can be literals or
bound variables.

Example For example, to define a simple query:

Query q = new Query(Employee.class, "salary < 50000");

The query expression can refer to classes without specifying a package name. PSE
Pro treats the query expression as if it were defined in a file in another package that
has imported the package of the Class object that was passed to the Query
constructor. This default package matters only for class names, though, not for
member access. Only public classes and members are accessible within the query.

An application can run the example query on a specific collection with a call to the
Query.select() method that specifies the collection to be queried as the argument.
For example:
152 PSE Pro for Java User Guide

Chapter 7: Working with Collections
Query q = new Query(Employee.class, "salary < 50000");
Collection employees = (Collection)db.getRoot("employees");
Set result = q.select(employees);

When you create a query, you do not bind it to a particular collection. You can create
a query, run it once, and throw it away. Alternatively, you can reuse a query multiple
times against the same collection, perhaps with different bindings for free variables,
or against different collections.

If the syntax of your query is wrong, QueryException is thrown at the point at which
you create the query. You need not wait for the application to optimize or to execute
the query. However, the query facility cannot detect incorrect free variable bindings
until you specify them when you execute the query on a collection.

Sample
program

The following sample program uses a query that takes a method as an argument. To
run this program, you need to

1 Compile it.

 javac QueryMethodWithArgs.java

2 Use the postprocessor to make the class persistence capable.

 osjcfp -dest . -inplace QueryMethodWithArgs.class

3 Run it as an application with no arguments.

 java QueryMethodWithArgs

import com.odi.*;
import com.odi.util.*;
import com.odi.util.query.*;

/**
 * An example of performing queries that use methods as
 * arguments. Instances of this class have first name and last
 * name fields. The getName(useFirst) method returns the first
 * or last name, depending on the value of the useFirst
 * argument.
 * You can use an index on the getName() method with an
 * appropriate value when evaluating the query, because its
 * argument is a constant value. */

public class QueryMethodWithArgs implements ObjectStoreConstants {

 /* Fields */

 String first;
 String last;

 /**
 * Constructor.
 */

 QueryMethodWithArgs(String first, String last) {
 this.first = first;
 this.last = last;
 }

 /**
 * Returns the first name if useFirst is true, otherwise the
Release 7.1 153

Querying PSE Pro Utility Collections
 last name.
 */

 public String getName(boolean useFirst) {
 return useFirst ? first :last;
 }

 /**
 * Include the field values in the print string.
 */
 public String toString() {
 return "QueryMethodWithArgs{ first = " + first + ", last =
 " + last + " "}" ;

 /**
 * Main routine to run application.
 */
 public static void main(String[] args) {
 Session session = Session.create(null, null);
 try {
 session.join();

 Database db = Database.create("foo.odb", 0664);

 Transaction.begin(UPDATE);

 /* Create an OSTreeSet. */
 OSTreeSet set = new OSTreeSet(db);
 db.createRoot("set", set);

 /* Add two objects to it. */
 set.add(new QueryMethodWithArgs("John", "Doe"));
 set.add(new QueryMethodWithArgs("Jane", "Doe"));

 /* Add an index on getName(false), which is an index on the
 last names of the objects. */
 set.addIndex(QueryMethodWithArgs.class, "getName(false)");

 Transaction.current().commit();

 Transaction.begin(READONLY);

 set = (OSTreeSet)db.getRoot("set");

 /* Create a query to look for last names equal to "Doe". */
 Query query = new Query(QueryMethodWithArgs.class,
 "getName(false) == \"Doe\"");

 /* Perform the query. */
 Iterator iterator = query.iterator(set);

 /* Print the matches. */
 while (iterator.hasNext())
 System.out.println(iterator.next());

 } finally {
 session.terminate();
 }
 }
}

154 PSE Pro for Java User Guide

Chapter 7: Working with Collections
Description of Query Syntax
PSE Pro performs syntax analysis of the query expression in the context of the
elementType class or interface that is passed to the query constructor. This must be
a publicly accessible class or interface, or a derived type.

When the query is executed against a particular collection using the select() or
pick() method, every element of that collection must be an instance (in the sense of
instanceof) of the elementType that was specified when the query was created.

The queryExpression is a predicate. The query is executed on a collection by
evaluating this query expression on each element of the collection. However, it
might not be necessary to explicitly fetch and examine all elements of the collection.
This depends on the available indexes and query optimization strategy.

Supported
operations

Queries on utility collections can include most Java operations, as follows:

• Arithmetic: + / - * %

• Bitwise: ^ | &

• Unary numeric: ~ -

• Unary logic: !

• Relational: > < <= >= instanceof

• Equality: == !=

• String concatenation: +

• Conditional AND, OR: && ||

• Shift operations: << >> >>>

• Cast operations: (type)

Unsupported
operations

The following operations are not supported:

• Assignment: = += *= /= %= -= <<= >>= >>>= &= ^= |=

• Conditional: ?:

• Array dereference: []

• New: new

• Prefix/Postfix: ++ --

Statements are not permitted. Only expressions are permitted.

For details on operations and the operands, see the Java Language Specification. The
operators have their usual Java meanings except for the relational and equality
operators when used with String operands. In a query expression, PSE Pro uses
these operators to compare the contents of the two strings rather than their identities.
Null Strings are considered to be less than all other values.

String literals In a query expression, you must enclose String literals in escaped quotation marks.
For example:

new Query(Foo.class, "name == \"Davis\"")
Release 7.1 155

Querying PSE Pro Utility Collections
You can specify wildcards in query strings. You can search for substrings and
perform case-insensitive searches. See Matching Patterns in Query Strings on
page 156.

Wrapper
objects

The query facility treats wrapper objects just as it does other Objects. For example,
suppose you have the query expression "A==B". A and B refer to Integer wrappers.
This results in an identity check on the objects. The query facility determines whether
A and B both refer to the same wrapper instance. The query facility does not check
that the values of A and B are equal. You can specify
"A.intValue()==V.intValue()" to compare contents.

This behavior might change in a future release so that the query facility treats
wrapper objects in the way that it treats primitives. Consequently, you should not
rely on the identity check for wrapper objects.

Other rules You can use parentheses to group expressions.

The precedence and associativity of the operators is the same as that for the Java
language.

The entire query expression must resolve to a Boolean value.

Sample Program That Uses Queries
In the com/odi/demo/query directory, there is a sample program that uses PSE Pro
utility queries. See the README.htm file in that directory.

Matching Patterns in Query Strings
Specifying a
pattern-
matching query

To specify a string pattern to be matched in a query, the pattern matching operator
(~~) is used. This operator, which has greater precedence than the multiplication
operator (*), has two arguments. These arguments must be either Strings or null.
The left-hand argument specifies the text to be checked for a match. The right-hand
argument specifies the pattern to be matched.

Pattern-
matching
characters

The following characters have special meanings when used in the right-hand
argument of the pattern matching operator. All other characters match themselves.

Note The reserved characters are invalid if they are not preceded by an ampersand (&).

Operator Function

 ? Matches any single character

 * Matches 0 or more of any character

 & Escape character

 [Reserved

] Reserved

 (Reserved

) Reserved

 | Reserved
156 PSE Pro for Java User Guide

Chapter 7: Working with Collections
The following table shows special two-character sequences, known as escape
sequences, that start with an ampersand (&). These escape sequences are used to
include characters literally in the pattern without their special meaning and to enable
case-insensitive matching.

Note that the ampersand (&) must appear in front of every sequence. An ampersand
followed by any other character is invalid.Case sensitivity in matching

By default, pattern matches are case sensitive. The &i escape sequence enables case-
insensitive matching for an entire pattern. This escape sequence can be specified only
at the start of a pattern.

Optimizing
pattern
matching

The pattern-matching operator takes advantage of any ordered indexes available on
the text being matched. If the pattern starts with a character other than an asterisk (*)
or a question mark (?), the query searches only the portion of the index that matches
the initial constant prefix. Therefore, patterns that specify a constant prefix produce
much more efficient queries.

Escape Sequence Function

&? Matches a question mark

&* Matches an asterisk

&[Matches left square bracket

&] Matches right square bracket

&(Matches left parenthesis

&) Matches right parenthesis

&| Matches a vertical bar

&& Matches an ampersand

&i Enables case-insensitive matching
Release 7.1 157

Querying PSE Pro Utility Collections
Pattern-
matching
examples

The following pattern-matching examples use the following class:

public class Person {public String name;}

• Matching a name beginning with the characters Tom:

 new Query(Person.class,"name ~~ \"Tom*\"");

• Matching a name ending with the characters man or burn:

 new Query(Person.class, "name ~~ \"*man\" || name ~~\"*burn\"");

• Matching a name using a single wildcard character with a bound variable:

 FreeVariables vars = new FreeVariables();
 vars.put("var", String.class);
 Query query = new Query(Person.class,"name ~~ var", vars);
 FreeVariableBindings bindings = new FreeVariableBindings();
 bindings.put("var","*Gr?y");
 query.select(coll, bindings);

• Matching a name using a case-insensitive match for ?foo:

 new Query(Person.class,"name ~~ \"&i&?foo\"");

• Matching a name using a case-insensitive match for *foo appearing anywhere:

 new Query(Person.class,"name ~~ \"&i*&*foo*\"");

• Matching a name foo appearing anywhere followed by &bar:

 new Query(Person.class,"name ~~ \"*foo*&&bar*\"");

• Matching the name (a):

 new Query(Person.class,"name ~~ \"&(a&)\"");

Using Free Variables in Queries
Free variables are lexically the same as identifiers in the Java language. If you use free
variables in your query, you must specify them in an optional third argument to the
Query constructor. Use the com.odi.util.query.FreeVariables class. This class
implements the Map interface. In addition, it provides type checking to ensure that
the keys and values are Strings and Classes, respectively. For example:

FreeVariables vars = new FreeVariables();
vars.put("INPUT_SALARY", Integer.TYPE);
Query q = new Query(Person.class,
 "salary>=INPUT_SALARY", vars);

When you execute a query, you must bind any free variables to particular values. Do
this by passing an additional argument to the Query.select() or Query.pick()
method. This argument must be of type
com.odi.util.query.FreeVariableBindings. This class, like FreeVariables,
implements the Map interface and provides additional type checking to ensure that
the keys are Strings.

The values you bind to the free variables must be of the type specified by the
corresponding entry in the FreeVariables map that was specified at query
construction. For primitive types, the type of value stored in the
FreeVariableBindings must be the associated wrapper type. PSE Pro does not
check that the correct types are bound until it executes the query.
158 PSE Pro for Java User Guide

Chapter 7: Working with Collections
For example, the INPUT_SALARY free variable is used in the previous example query.
Your application might read in a value from a user in an interactive program or
compute the value in some other way. Regardless of how your application computes
the value, the free variable is bound to a specific value only when the query is
executed. For example:

int INPUT_SALARY = {user input or some other computation};
FreeVariableBindings bindings = new FreeVariableBindings();
bindings.put("INPUT_SALARY", new Integer(INPUT_SALARY));
Set result = q.select(employees, bindings);

Executing Queries
You can execute a query that

• Specifies predefined variables or free variables

• Returns one element or a set of elements

Obtaining a set To obtain the set of elements that satisfy a query, call the
com.odi.util.query.Query.select() method. The two overloadings follow:

public Set select(Collection coll)

public Set select(Collection coll,
 FreeVariableBindings freeVariableBindings)

The coll argument specifies the collection to be queried. If this query has been
explicitly optimized with the Query.optimize() method, any indexes specified in
the optimization must be available on this collection. If this query has not been
explicitly optimized, PSE Pro optimizes it for all indexes on the collection being
queried. If the query has been explicitly optimized for indexes that are not available
on the specified collection, PSE Pro signals QueryIndexMismatchException.

The freeVariableBindings argument specifies a FreeVariableBindings object
that defines bindings for each free variable in the query. For each entry, the key is a
String that identifies the free variable, and the value is the value that should be
associated with the free variable during the evaluation of the query. The value must
be of the type specified by the corresponding entry in the FreeVariable argument
passed to the Query constructor. For the query to be evaluated, every free variable
associated with the query when it was constructed must have a corresponding
binding. Also, every free variable binding must correspond to a free variable that
was specified when the query was constructed. If the free variable bindings do not
match the free variable definitions specified when the query was constructed, PSE
Pro signals QueryException.

The select() method returns a newly allocated transient Set that contains the
elements that satisfy the query. If PSE Pro does not find any matching elements, it
returns an empty collection. The returned Set is transient.
Release 7.1 159

Querying PSE Pro Utility Collections
Obtaining a
single element

To obtain one element that satisfies a query, call the
com.odi.util.query.Query.pick() method. Following are the two overloadings:

public Object pick(Collection coll)

public Object pick(Collection coll,
 FreeVariableBindings freeVariableBindings)

The coll and freeVariableBindings arguments are the same as for the select()
method. The pick() methods return the first element found that satisfies the query.
If no elements in the collection satisfy the query, PSE Pro signals
NoSuchElementException.

Type of returned
element

The select() and pick() methods never return elements that are not of the class
that was specified as the collection element type when the query was constructed.

Null values Queries ignore null elements but not null fields. The result set of a query never
includes null elements. When a query reaches a null element, execution continues to
the next element. Suppose you have a query like the following:

name != "fred"

A query that evaluates this on a collection returns elements with null name fields as
well as elements with names that are not "fred".

Now suppose you have a query like the following:

spouse.name != "fred"

On a collection that includes elements that do not have spouses, this query does not
return those elements without spouses. It returns only the elements that have
spouses with names that are not "fred", plus the elements that have spouses with
null name fields.

Limitations on Queries
When a query refers to a class or field, the class or field must be public.

When a query refers to a method, the method must return something. In other
words, in a query string, you cannot refer to a method that returns void.
160 PSE Pro for Java User Guide

Chapter 7: Working with Collections
Enhancing Query Performance with Indexes
When you want to run a query on a particularly large collection, it is useful to build
indexes on the collection to accelerate query processing. An index provides a reverse
mapping from a field value, or from the value returned by a method when it is called,
to all elements that have the value. A query that refers to an indexed member
executes faster because it is not necessary to examine each object in the collection to
determine the elements that match the predicate. Also, PSE Pro does not need to
fetch into memory every element.

This section discusses the following topics:

• How Indexes Work

• Adding Indexes to Collections

• Dropping Indexes from Collections

• Using Multistep Indexes in Queries

• Sample Program That Uses Indexes

• Sample Program That Queries User-Defined Fields

• Modifying Index Values

• Managing Indexes and Index Values

• Optimizing Queries for Indexes

• Manipulating Indexes Outside the Query Facility

How Indexes Work
When you add an index to a collection, PSE Pro examines every element of the
collection to determine the value of the indexed field or method. After you build the
index, you can run queries against the collection without reexamining the elements
to determine the values of any indexed members. The query examines the index
instead of the collection.

A query can include both indexed fields and methods and nonindexed fields and
methods. PSE Pro evaluates the indexed fields and methods first and establishes a
preliminary result set. PSE Pro then applies the nonindexed fields and methods to
the elements in the preliminary result set.
Release 7.1 161

Querying PSE Pro Utility Collections
Adding Indexes to Collections
You can add indexes to any collection that implements the
com.odi.util.IndexedCollection interface, directly or indirectly. Note that the
IndexedCollection interface extends the Collection interface.

The IndexedCollection interface provides methods for adding and removing
indexes and updating indexes when the indexed data changes. In this release of PSE
Pro, com.odi.util.OSTreeSet is the only collection class that already implements
IndexedCollection. You can, of course, define other Collection classes that
implement IndexedCollection. Call the
com.odi.util.IndexedCollection.addIndex() method to create an index.
Following are the three overloadings:

• addIndex(Class elementType, String path)

• addIndex(Class elementType, String path, boolean ordered, boolean

duplicates)

• addIndex(Class elementType, String path, boolean ordered, boolean

duplicates, Placement placement)

The elementType argument indicates the type to which the index applies. Objects of
other types can be in the collection that you index but they are ignored by the index.
A query that uses the index does not return such elements.

The path argument indicates the member to be indexed. A method member can have
no arguments or one constant argument. The path can be either the name of a public
field or a call to a public instance method, where the public instance method can be
in a superclass. The path can also designate a complex navigation path through
multiple public data members, such as a.b().c.name. If the syntax is incorrect, PSE
Pro signals IndexException.

The ordered and duplicates arguments allow you to specify whether the index is
ordered and whether it allows duplicates. If you do not specify the boolean
arguments, the index is unordered and it allows duplicates.

Finally, the Placement parameter indicates the database or segment in which to store
the index. If you do not pass a Placement argument, PSE Pro stores the index in the
same database, segment, and cluster as the collection.

Dropping Indexes from Collections
Call the com.odi.util.IndexedCollection.dropIndex() method to remove an
index from a collection. Following is the method signature:

public boolean dropIndex(Class elementType, String path)

The elementType argument indicates the type to which the index applies.

The path argument indicates the member for which the index is being removed.

If the index being dropped is a primary index from an OSTreeSet, the method
replaces the primary index with a map that uses object hash codes to find the objects
in the OSTreeSet.
162 PSE Pro for Java User Guide

Chapter 7: Working with Collections
Note Removing an index from a collection destroys the index.

Using Multistep Indexes in Queries
You can create a query that uses a multistep index, which is an index on a complex
navigational path that accesses multiple public data members. It optimizes queries
that use that same path. For example, if you wanted to know all employees whose
supervisor has a salary less than 50,000, you could create a multistep index and use
it in your query as follows:

public class Employee {
 public int salary;
 public Employee supervisor;
 ...
}

// Getting the employees collection
Collection employees = (Collection)db.getRoot("employees");

// Adding the multistep index
employees.addIndex(Employee.class, "supervisor.salary",
 true /*ordered*/, true /*duplicates*/);

 ...
//Query using the multistep index
Query q=new Query(Employee.class, "supervisor.salary < 50000");
Set result = q.select(employees);
Release 7.1 163

Querying PSE Pro Utility Collections
Sample Program That Uses Indexes
In the com/odi/demo/query directory, the QueryCustomers class includes the
following example of using an index:

IndexedCollection collection = new OSTreeSet(db);
try {
 collection.addIndex(Employee.class, "salary");
} catch (IllegalAccessException e) {
 System.err.println("Couldn't access field: " + e);
 System.exit(1);
}
Set result = q.select(employees);

Sample Program That Queries User-Defined Fields
In the com/odi/demo/props directory, the generic PropertiesObject class allows
you to create instances in a database without defining the Java classes for the schema.
For more information, see the README file.

Modifying Index Values
After you add an index to a collection, PSE Pro maintains it automatically as you add
or remove elements from the collection. However, it is your responsibility to manage
index maintenance when indexed members are modified for instances that are
already members of an indexed collection.

For example, suppose you insert Lee into your collection of employees. You build an
index for this collection on the phoneExtension field. A query of "phoneExtension
== 1234" returns Lee. If you remove Lee from the collection, PSE Pro updates the
index so it no longer includes Lee. However, if you leave Lee in the collection but
change Lee’s phone extension, you must manually correct the index so that Lee
refers to the correct phone extension.

Methods There are three methods that you can use to manually maintain an index:

• IndexedCollection.removeFromIndex() removes a value from the index.

• IndexedCollection.addToIndex() inserts a value into the index.

• IndexedCollection.updateIndex() removes a value from the index and
replaces it with a value that you specify.

After an application calls one of these methods, the next time the application uses
that index, it uses the updated index. A call to updateIndex() does the same thing
as a call to removeIndex() followed by a call to addToIndex(). The exception is that
removeIndex() and addToIndex() inspect the value to determine the index key.
That is, they apply the index’s path expression to obtain the key from the value. With
updateIndex(), you pass in the old key and the new key. PSE Pro does not have to
inspect the value to determine its key. For this reason, and because there is a single
call, using updateIndex() is more efficient.
164 PSE Pro for Java User Guide

Chapter 7: Working with Collections
Removing and
adding index
values

The removeFromIndex() method has the following two overloadings:

public void removeFromIndex(Object value)

public void removeFromIndex(Class elementType,
 String path, Object value)

The addToIndex() method has the following two parallel overloadings:

public void addToIndex(Object value)

public void addToIndex(Class elementType,
 String path, Object value)

Usually, after you remove a value from an index, you should add a value to replace
it.

If you know exactly the value that you need to add or remove, you can use the form
that specifies elementType, path, and value. If you do not know the indexes that
exist, or if you modified a lot of different fields and want to update all indexes, use
the short form. In this case, PSE Pro iterates over all indexes and updates all of them.

Following is an example of removing and adding values to an index:

Employee lee = new Employee("Lee", 1234);
collection.insert(lee);
try {
 collection.removeFromIndex(lee);
 lee.setExtension(5678);
 collection.addToIndex(lee);
} catch (IllegalAccessException e) {
 System.err.println("Could not access field: " + e);
 System.exit(1);
}

Updating
indexes

The updateIndex() method has the following signature:

public void updateIndex(Class elementType,
 String path, Object oldKey, Object newKey, Object value)

Following is an example of updating an index:

Employee lee = new Employee("Lee", 1234);
collection.insert(lee);
lee.setExtension(5678);
collection.updateIndex(
 Employee.class, "extension",
 new Integer(1234), new Integer(5678), lee);
Release 7.1 165

Querying PSE Pro Utility Collections
Managing Indexes and Index Values
When you add or drop an index, you do it at the class level. That is, you specify the
class and member that the index is on. For example, you might add an index on the
name field of the Employee class, as follows:

employeeCollection.addIndex(Employee, "name")

However, when you perform maintenance on an index, that is, when you call
removeFromIndex(), addToIndex(), or updateIndex(), you do it at the instance
level. For example, suppose you have an employee named Jones with an employee
ID number of 1234. The employee’s name changes to Smith. You must update this
index entry at the instance level by

1 Removing the object from the index while the object still has its old key value

2 Adding the object back into the index with the new key value

The following example shows how to update the index when an employee’s name
changes from Jones to Smith:

employeeCollection.removeFromIndex(employee1234);
employee1234.setName("Smith");
employeeCollection.addToIndex(employee1234);

For each index on the Employee class, these methods update the index’s value for
employee1234. If there are multiple indexes on Employee, the one-argument
overloading of removeFromIndex() and addToIndex() updates all of them. You
need not specify that you want to update the index on the name field. For example,
there might be indexes on the Employee.salary and Employee.location fields, as
well as the Employee.name field. The previous code fragment would update the
indexes on salary and location, as well as the index on name, even though only the
index on name needs to be updated. This technique is useful when you make a lot of
changes to different fields.

If you use the three-argument overloading of removeFromIndex() or
addToIndex(), you can update only the index that needs to be updated. You must
know the type of the indexed element, the name of the indexed member, and the
value to be removed or added. For example:

employeeCollection.removeFromIndex(
 Employee.class, "name", employee1234);
employee1234.setName("Smith");
employeeCollection.addToIndex(
 Employee, "name", employee1234);

You can also update an index by using the updateIndex method. Instead of
removing the object with its old key value from the index and then adding the object
with its new key value back into the index, you can just call the updateIndex
method.

If you call the updateIndex method by using the previous example, and then your
code would look like the following:

employeeCollection.updateIndex(
 Employee.class, "name", employee1234.name, "Smith", employee1234)
employee1234.setName("Smith");
166 PSE Pro for Java User Guide

Chapter 7: Working with Collections
Optimizing Queries for Indexes
If you do not explicitly optimize a query for a particular set of indexes, PSE Pro
optimizes the query automatically when it applies the query to a collection. This
means that PSE Pro optimizes the query to use exactly those indexes that are
available on the collection being queried.

Preparation Before you optimize a query, you must obtain an instance of IndexDescriptorSet.
An IndexDescriptorSet implements a set of IndexDescriptor objects. An
IndexDescriptor is an object that describes an IndexMap on an instance of
IndexedCollection. Typically, you can obtain an IndexDescriptorSet with a call
to IndexedCollection.getIndexes() on any collection that has exactly the indexes
for which you want to optimize your query.

Explicit
optimization

To explicitly optimize a query, call the Query.optimize() method. The method
signature is

public synchronized void optimize(IndexDescriptorSet indexes)

The indexes argument is an instance of IndexDescriptorSet that contains
IndexDescriptor objects that describe the indexes against which to optimize.

Reoptimizing If you apply an optimized query to the same collection again or to another collection
with the same indexes, PSE Pro uses the same optimization. Reoptimization is not
required. However, suppose you apply an optimized query to a collection that does
not have all the indexes that were present when the query was first run. In this
situation, PSE Pro must reoptimize the query. PSE Pro does this automatically; your
intervention is not required.

Manual
optimization

Automatic index optimization is convenient and effective. However, suppose a
query is to be run multiple times against more than one collection, potentially with
different indexes available. In this situation, it might be best to manually control the
query optimization strategy.

For example, consider that the same query is to be run repeatedly against two
different collections, in which the collections have different indexes. One alternative
is to create two separate query objects, one for each collection. This avoids the
overhead of recomputing the indexing optimization strategy each time you apply
the query to a different collection. A second alternative is to explicitly optimize a
query to use only the intersection of the indexes that are available on both collections.
You can do this with a call to Query.optimize(). Pass in an IndexDescriptorSet
object that contains descriptions of only the common indexes.

Restriction If you explicitly optimize a query with the Query.optimize() method, it cannot run
against a collection that does not have the specified indexes. If you try to do this, PSE
Pro signals QueryIndexMismatchException. In this way, an explicitly optimized
query differs from an automatically optimized query. An automatically optimized
query reoptimizes itself as needed when you run it against a collection with different
indexes.

This might be useful when it would be undesirable to run a particular query on a
collection that does not have the required indexes. For example, this is useful when
Release 7.1 167

Storing Objects as Keys in Persistent Hash Tables
the collection is very large and the overhead of examining every element of the
collection is prohibitive.

To evaluate query expressions efficiently, PSE Pro compiles query expressions into
classes and methods that are loaded when the query is evaluated. Each new query
potentially can result in the creation of a new class with a new internal name to
represent the compiled state of the query. When the query is no longer referenced,
this class is normally garbage collected by the Java VM GC and its storage reclaimed.

-Xnoclassgc
option to Java
VM

If you are using Java collection classes with the -Xnoclassgc option to the Java VM,
you risk running out of heap storage as the query expression classes that are
generated by PSE Pro accumulate over time. The -Xnoclassgc option prevents the
query expression classes from being garbage collected.

Manipulating Indexes Outside the Query Facility
You can use the IndexMap interface to directly access and manipulate indexes
outside the query facility. This interface is useful when you want a sorted result set
and you can represent the query as a single range expression on an indexed member.
Instead of running a query, you can iterate over the index directly. See the on-line
Java A P I Reference for more information on com.odi.util.IndexMap.

Storing Objects as Keys in Persistent Hash
Tables

The com.odi.util.OSHashtable class introduces a new requirement for classes of
objects that will be stored as keys in persistent collections: these classes must provide
a suitable hashCode() method. PSE Pro and the class file postprocessor provide
facilities for doing this conveniently.

This section discusses the following topics:

• Requirements for Hash Code Methods

• Providing an Appropriate Persistent Hash Code Method

• Storing Built-In Types as Keys in Persistent Hash Tables

Requirements for Hash Code Methods
Objects that are stored as keys in persistent hash tables must provide hash codes that
remain the same across transactions. PSE Pro can create a new transient Java object
in each transaction to represent a particular persistent object, so it is important that
the hashCode() method used for persistent objects return the same hash code for
these different transient objects.

The default Object.hashCode() method supplies an identity-based hash code. This
identity hash code might depend on the virtual memory address or some internal
implementation-level metadata associated with the object. Such a hash code is
unsuitable for use in a persistent identity-based hash table because it would
effectively be different each time an object was fetched in a transaction.
168 PSE Pro for Java User Guide

Chapter 7: Working with Collections
Providing an Appropriate Persistent Hash Code Method
In cases in which a persistence-capable class does not override the hashCode()
method it inherits from Object, the class file postprocessor arranges for the class to
implement a hashCode() method suitable for storing instances in persistent hash
tables. It does this by adding an int field to the class. This field is initialized to an
appropriate hash code when an instance is created and returns the value stored in
the field from its hashCode() method. This hash code value is guaranteed to remain
unchanged for the lifetime of the object.

Applications need to provide their own hashCode() methods for classes that define
equals() methods that depend on the contents of instances rather than on object
identity. If the equals() method only uses the == operator to compare the argument
with this (or inherits Object.equals()), it is identity based and the hashCode()
method provided by the class file postprocessor is appropriate. If the equals()
method compares the contents of the objects, it is contents based and your
application must supply a hashCode() method that returns the same hash code
value for all objects whose contents make them return true when compared to the
equals() method.

If an application does not need to store instances of a particular persistence-capable
class as keys in a persistent hash table, there is no special requirement for that class’s
hashCode() method. In this case, to avoid making all your instances one word
larger, have the class define or inherit a hashCode() method that calls the
superclass’s hashCode() method:

public int hashCode() {return super.hashCode();}

Doing this ensures that the hashCode() method inherited from Object is used,
which returns a hash code that can be used only in a nonpersistent context.

Storing Built-In Types as Keys in Persistent Hash Tables
You can use the following built-in Java types as OSHashtable keys without
overriding the hashCode() method:

• java.lang.String

• Wrapper classes, for example, Character, Integer, Long, Float

There is no way to override the hashCode() method for arrays. Therefore, do not use
Java arrays as keys in persistent hash tables. You can, however, define a class that
stores the array as a field and provides an appropriate hashCode() method.

Java wrapper classes work well as keys because their hashCode() methods are based
on the value of the object rather than on its address.
Release 7.1 169

Storing Objects as Keys in Persistent Hash Tables
Using Third-Party Collections Libraries
You can use a third-party Java collections library with PSE Pro. The advantages of
doing so are that it might have features that you need or that you might be familiar
with its use. The disadvantage is that it might not scale to the degree that you need.
170 PSE Pro for Java User Guide

Chapter 8
Generating Persistence-
Capable Classes Automatically

This chapter provides information and instructions for using the class file
postprocessor to make classes persistence capable. Reference information for all
postprocessor options is in Chapter 13, Tools Reference, on page 271. For
information on what Java-supplied classes are persistence capable, see Java-
Supplied Persistence-Capable Classes on page 261.

Caution For simple applications, it is best to postprocess all classes together. For more
complex applications, you can postprocess your classes in correctly grouped batches.
See Postprocessing a Batch of Files Is Important on page 173.

Failure to postprocess the correct classes together can result in problem situations
that appear when you try to run the application and that are difficult to diagnose.
There are postprocessor options that allow you to determine those classes that are
made persistence capable.

Contents This chapter discusses the following topics:

Overview of the Class File Postprocessor 172

Running the Postprocessor 175

Managing Annotated Class Files 182

Creating Persistence-Aware Classes 186

How the Postprocessor Works 187

Including Transient and Already Annotated Classes 192

Putting Processed Classes in a New Package 193

Creating Persistence-Capable Classes with Transient Fields 196

Customizing Updated Classes 197

Optimizing Operations That Retrieve Persistent Objects 201

Performing a Test Run of the Postprocessor 202

Using an Input File 203

Annotations You Must Add 204

Class File Postprocessor Limitations 206
Release 7.1 171

Overview of the Class File Postprocessor
Overview of the Class File Postprocessor
To store an object in a database, the object must be persistence capable. For an object
to be persistence capable, it must include code that allows persistence. PSE Pro
includes the class file postprocessor utility to insert the required code, referred to as
annotations, into your class files automatically.

Annotating
classes
automatically

The command you use to run the class file postprocessor command-line utility is
osjcfp. The postprocessor provides a number of command options that allow you
to tailor the results to your needs.

You can run the postprocessor (or its companion API) on classes or class libraries that
you create or that you purchase from a vendor. See
com/odi/demo/collections/README.htm for an example of making a third-party
library persistence capable.

Note You must explicitly postprocess each class that you want to be persistence capable
by using the osjcfp utility. When you extend a persistence-capable class, objects do
not inherit persistence, which is the ability to be stored in a database.

When you postprocess or manually annotate a class, this registers the class with PSE
Pro. If a class is not postprocessed or manually annotated, PSE Pro signals
ClassNotRegisteredException.

This overview provides the following information:

• Description of the Annotations

• Description of the Process

• Postprocessing a Batch of Files Is Important

• Manual Annotation

Description of the Annotations
The class file postprocessor annotates classes you define so that they are persistence
capable. This means that the postprocessor makes a copy of your class files, places
them in a directory you specify (either the source directory or another directory), and
adds byte-code instructions (annotations) that are required for persistence.

These annotations are

• Modifying the class to implement the com.odi.IPersistent interface.

• Defining methods to initialize instance fields with data from the database, writing
modified fields to the database, and resetting instance fields to default values.

• Modifying methods to fetch the contents of persistent instances from the database
as needed and to mark modified instances so their changes can be written to the
database at transaction commit.

Before an application can access the contents of a persistent object, it must call the
ObjectStore.fetch() method to read the object or the ObjectStore.dirty()
method to modify the object. These calls make the contents of the object available
172 PSE Pro for Java User Guide

Chapter 8: Generating Persistence-Capable Classes Automatically
to your application. The postprocessor inserts these calls in methods of classes
that it makes persistence capable or persistence aware.

• Defining an additional class that provides schema information about the
persistence-capable class, if specified or required. This new class is a subclass of
the com.odi.ClassInfo class.

Description of the Process
Before you run the postprocessor, you must compile your source files. The set of files
you run the postprocessor on can contain a combination of class files, .zip files, and
.jar files. The postprocessor generates annotated class files and places them in a
directory that you specify.

This destination directory is never the original directory unless you specify the
-inplace option (see page 274). When you are in a development cycle, it is best to
specify a directory other than the original directory. Doing so avoids errors and
provides both a persistence-capable and a transient version of the same class.

It is not necessary to recompile all classes before iteratively running the
postprocessor. The requirement is that the compiled classes be consistent.

The postprocessor tries to minimize the amount of work it does. It checks file
modification times and reprocesses only those files that have changed.

Postprocessing a Batch of Files Is Important
In one execution of the postprocessor, the postprocessor must operate on a correctly
grouped set of files. For example, an application might use a file, perhaps a library,
that is already annotated. You must not specify the annotated files when you run the
postprocessor on the rest of the files in your application. Hence, the term batch means
all files that the postprocessor must annotate in one execution of the osjcfp
command. Each batch must have its own postprocessor destination directory for this
to work correctly.

You can use the postprocessor -inplace option to create multiple batches. When
you do, there is no requirement for the separate batches to be stored in different
directories.

Example of one
batch

When you write a program that uses persistence, the program usually consists of a
batch (a set) of classes, for example, classes A, B, and C. They typically are defined in
files called A.java, B.java, and C.java. It is possible for each class to reference the
other classes. For example, B might refer to C, and C might refer to B. There is no
ordering or layering; there are no rules for references among the classes.

When this is the scenario, you must run the postprocessor on all of these classes at
the same time. You cannot run the postprocessor on each file individually. This is
because when the postprocessor operates on A, it might refer to B and C. The
postprocessor must have information about B and C to correctly annotate A.

Example of two
batches

In relatively simple programs, there is only one batch involved. However,
sometimes there might be more than one batch in an application. Suppose, for
example, that you want to write a persistent program that uses an existing library.
Release 7.1 173

Overview of the Class File Postprocessor
An example of this is djgl, which is the persistence-capable version of ObjectSpace's
JGL library. Your program consists of A, B, and C plus the JGL library.

In a simple (one-batch) program, when you run the postprocessor, you always
specify all files in your application. In this case, you do not want the postprocessor
to operate on JGL because it has already been postprocessed. In fact, you probably
do not have the class files that have not been postprocessed.

It is correct to run the postprocessor on only A, B, and C. This is because there is a rule:
JGL classes never know about A, B, and C. After all, JGL was written, finished, and
put on the shelf before A, B, and C were created.

There are two batches here:

• The first batch contains the persistence-capable JGL library. runs the
postprocessor on this batch.

• The second batch contains your own classes, A, B, and C. You run the
postprocessor on this batch.

Whenever you run the postprocessor, you must run it on a whole batch. Each batch
must have its own postprocessor destination directory.

Checking for
correct batches

To determine whether you have correctly grouped your files in batches, you can
apply this rule: Class A and class B must be in the same batch if either of the following
is true:

• Class B inherits from class A and either class is persistence capable.

• Class A is persistence capable or persistence aware and it refers directly to the
fields of class B, which is persistence capable.

Postprocessor API
PSE Pro also includes a companion API for it class file postprocessor utility for those
times when it is useful to call the postprocessor from your Java application. The
method that you call is

com.odi.filter.OSCFP.filter(String[] argv)

For information on how to use this method, see the Postprocessor API on page 279.

Manual Annotation
In exceptional situations, you might want to insert all required annotations needed
for persistence and not use the postprocessor at all. For more information, see
Chapter 9, Generating Persistence-Capable Classes Manually, on page 207. You can
also manually annotate your code to meet some persistence requirements and then
run the postprocessor to insert the other annotations.
174 PSE Pro for Java User Guide

Chapter 8: Generating Persistence-Capable Classes Automatically
Running the Postprocessor
To make classes persistence capable, do the following:

1 Compile the source files.

2 Run the postprocessor on the resulting class files.

You must run the postprocessor on all class files in a batch at the same time.

Some Java-supplied classes are persistence capable. Others are not persistence
capable and cannot be made persistence capable. A third category of classes can be
made persistence capable but there are important issues to consider when you do so.
Be sure to read Java-Supplied Persistence-Capable Classes on page 261.

The topics discussed in this section are

• Preparing to Run the Postprocessor

• Requirements for Running the Postprocessor

• Example of Running the Postprocessor

• About the Postprocessor Destination Directory

• How the Postprocessor Interprets File Names

• Order of Processing

• How the Postprocessor Handles Duplicate File Specifications

• How the Postprocessor Handles Files Not Found

• .Zip and .Jar Files as Input to the Postprocessor

• How the Postprocessor Handles Previously Annotated Classes

• Troubleshooting OutOfMemory Error

• How the Postprocessor Handles Inner Classes

• When ClassInfo.java Files Are Generated

Preparing to Run the Postprocessor
Before you run the postprocessor, ensure that the following .jar files are explicitly
specified in your CLASSPATH. An entry for the directory containing them is not
sufficient.

• A tools.jar entry must be in your CLASSPATH environment variable.

• If you are using PSE Pro, the pro.jar file must be in your CLASSPATH
environment variable.

• Also, you must update your PATH environment variable to contain the bin
directory from the PSE Pro for Java distribution.

On Windows, you might set PATH to be something like this:

 PATH=c:\winnt\system32;
 c:\winnt;
 c:\jdk15\bin;
 c:\ODI\PSEProJ\bin
Release 7.1 175

Overview of the Class File Postprocessor
On UNIX, it would be something like this:

 PATH=/home/mydir:
 /usr/local/odi/pseproj/bin:
 /usr/local/jdk15/bin

Requirements for Running the Postprocessor
The postprocessor requires specification of

• The -dest option with a destination directory for the annotated class files. This
can be an absolute or a relative path name. This directory must already exist when
you specify it on the postprocessor command line. The postprocessor does not
create it.

You can also specify the -inplace option to instruct the postprocessor to
overwrite your original class files. If you do, the -dest option is still required.

• A batch of files. A batch includes all files in your application except already
annotated files that your application refers to. You can specify

- One or more .class files

- One or more .zip files

- One or more .jar files

- One or more class names (you must specify the package names)

- Any combination of the previous items

Insert a space between specifications and be sure to specify the required destination
parameter. When you run the postprocessor, each batch must have its own
destination directory. For example:

osjcfp -dest osjcfpout com.odi.demo.threads.Institution Banking.jar Account.class

You can specify additional options, which are described in osjcfp: Running the
Postprocessor on page 272.

Example of Running the Postprocessor
To make the Person class persistence capable, enter a command such as the
following:

osjcfp -dest ..\osjcfpout Person.class

This command assumes that the Person.class file is in the current directory and the
osjcfpout directory is a sibling to the current directory. When the postprocessor
successfully generates an annotated version of the Person.class, the file contains
the information PSE Pro needs to store instances of Person persistently.

The postprocessor places the annotated Person.class file in a package-relative
subdirectory of the osjcfpout directory. For example, suppose the Person class
package name is com.odi.demo.people. Further suppose that the osjcfpout
directory is in the \users\kim directory. The postprocessor writes the annotated
class file to a file whose name is made up of the destination directory, the class
package, the class name, and the .class extension:
176 PSE Pro for Java User Guide

Chapter 8: Generating Persistence-Capable Classes Automatically
\users\kim\osjcfpout\comcom\odi\demo\people\Person.class

Note that both of the following commands have the same results, as specified
previously:

osjcfp -dest ..\osjcfpout Person.class
osjcfp -dest \users\kim\osjcfpout com.odi.demo.people.Person

About the Postprocessor Destination Directory
The postprocessor never overwrites the class files specified on the postprocessor
command line unless you specify the -inplace option when you run the
postprocessor. If you do specify the -inplace option, the postprocessor overwrites
the original class files with the annotated class files.

If you specify a destination directory in such a way that it would store the annotated
class file in the same location as the unannotated class file and you do not specify the
-inplace option, the postprocessor displays an error message and terminates. It
does not produce any class file output.

The postprocessor ignores classes that are rooted in the destination directory. If you
try to postprocess a class that exists only in the destination directory and you do not
specify -inplace, the postprocessor reports that it cannot find the file. For example,
if you specify the following command when you run osjcfp, you receive an error as
shown:

setenv CLASSPATH
 /usr/devo/java/test:
 /opt/ODI/pseproj/lib/pro.jar:
 /opt/ODI/pseproj/lib/tools.jar
cd /usr/devo/java/test
javac com/users/jobs/teacher.java
osjcfp -d . com.users.jobs.teacher

Error: Class com/users/jobs/teacher could not be found.

Because the postprocessor ignores the destination directory in the CLASSPATH when
it looks up classes, it is unable to locate the specified class. Consequently, the
destination directory you specify cannot be the root directory for any of the classes
you want to postprocess or any classes referenced by classes you want to
postprocess.

Typically, after you run the postprocessor, you have a transient version of a class
(your original file) and a persistence-capable version of the class (in the destination
directory).

If there are no errors, the postprocessor places a version of all files specified on the
command line in the destination directory. The postprocessor annotates those files
that require annotations and does not modify those files that do not.
Release 7.1 177

Overview of the Class File Postprocessor
How the Postprocessor Interprets File Names
If a name you specify ends with .class, .zip, or .jar, the postprocessor assumes
that it is an explicit file name for a class file, .zip file, or .jar file, respectively.

If a name you specify does not end with .class, .zip, or .jar, the postprocessor
assumes that it is a class name delimited with periods, for example, a.b.C. The
postprocessor uses the CLASSPATH environment variable or the -classpath
specification on the postprocessor command line to locate the .class file, which can
be in a .zip file or .jar file. (The use of the -classpath option does not affect the
class path used for the execution of the postprocessor.)

-classpath
example

Here is an example of adding the -classpath option. The command is entered all on
one line.

osjcfp -dest osjcfpout
 -classpath /usr/local/odi/pseproj:
 /usr/local/odi/pseproj/lib/pro.jar
 com.odi.demo.threads.Institution Banking.zip Account.class

CLASSPATH
and -classpath

The postprocessor uses the class path you specify in the command line to locate the
specified files. This is in place of the CLASSPATH environment variable. At run time,
Java implementations append the location of the system classes to the end of the
CLASSPATH environment variable. You must do this manually if you specify the
-classpath option. This is shown in the previous examples as classes.jar.

Order of Processing
The postprocessor processes the class files in the order in which they appear on the
command line and according to the persistence mode that is in effect when the
postprocessor reaches the file name. The persistence mode indicates whether the
postprocessor is

• Annotating the class to be persistence capable

• Annotating the class to be persistence aware

• Copying the class to the destination directory without annotating it
178 PSE Pro for Java User Guide

Chapter 8: Generating Persistence-Capable Classes Automatically
Persistence
mode options

The default persistence mode is that the postprocessor generates persistence-capable
classes. Following are the options you can specify to determine the persistence mode:

If you specify a .class file or class name, the postprocessor processes it according to
the persistence mode that is in effect when the postprocessor reaches the file name.
If you specify a .zip file or .jar file, the postprocessor processes all class files in the
.zip file or .jar file according to the persistence mode that is in effect when the
postprocessor reaches the name of the .zip file or .jar file in the command line. For
example:

osjcfp -dest osjcfpout -persistaware Tent.class Family.class \
-persistcapable Campers.jar Site.class -copyclass Weather.class

Example After you run the postprocessor with the previous command,

• The Tent and Family classes are persistence aware.

• The Site class, its superclass if it has one other than java.lang.Object, all
classes in the Campers.jar file, and any of their superclasses (other than
java.lang.Object) are persistence capable.

• The Weather class is not annotated and is copied as it is to the destination
directory.

Persistence Mode
Option

Description

-pc |-persistcapable Classes specified after this option are made persistence
capable. The postprocessor annotates these classes to
include all annotations required by PSE Pro for an object
to be persistent. This is the default. If you do not specify
a persistence mode option in the postprocessor
command line, the postprocessor makes all specified
classes and superclasses of those classes persistence
capable.

-pa |-persistaware Classes specified after this option are made persistence
aware. The postprocessor annotates these classes so that
they can operate on persistent objects, but instances of
these classes cannot themselves be stored persistently.

-cc |-copyclass Classes specified after this option are not annotated.
Specify this option for classes that should not be
annotated either because they are nonpersistent or are
already annotated. The postprocessor copies these
classes to the destination directory along with the
annotated classes.
Release 7.1 179

Overview of the Class File Postprocessor
How the Postprocessor Handles Duplicate File Specifications
It is permissible for a class to be specified more than once in a command line. For
example, a file can be in a .zip file and you can also explicitly specify it. On UNIX
and on Windows NT using a Sun JDK, a file can be included in a wildcard
specification and you can also explicitly specify it. In the previous example, the
Family class could be in the Campers.jar file. If it were, the postprocessor would
annotate the Family class to be persistence capable. This is because making a class
persistence capable supersedes making it persistence aware. Likewise, making a
class persistence aware supersedes copying it as is to the destination directory.

If you specify the same class more than once on a command line, both specifications
must resolve to the same disk location. For example, suppose you specify both
Person.class and com.odi.demo.people.Person. This is allowed only if the class
path causes com.odi.demo.people.Person to resolve to the same Person.class
that is explicitly specified.

How the Postprocessor Handles Files Not Found
The postprocessor must be able to find every file that you specify on the command
line. If it cannot find one or more files, it displays an error message and stops
processing. It does not produce any annotated class files.

.Zip and .Jar Files as Input to the Postprocessor
If a class originates in a .zip file or .jar file, either because you specify a .zip file
or .jar file when you run the postprocessor or because the class path search locates
the class in a .zip file or .jar file, the postprocessor writes the annotated class to
the package-appropriate subdirectory of the destination directory.

How the Postprocessor Handles Previously Annotated Classes
If the postprocessor previously annotated a .class file, you can specify only that
.class file to be copied. You cannot specify it to be annotated. If you do, the
postprocessor displays a message that states the specified class that was already
annotated and terminates without producing any annotated files.

Troubleshooting OutOfMemory Error
Java imposes a memory limitation of 16 MB unless you override it. If you receive a
java.lang.OutOfMemory error during postprocessing, you must increase the run-
time memory pool. Do one of the following:

• Set the OSJCFPJAVA environment variable to include the -Xmx option. For
example, Solaris csh users can enter

 setenv OSJCFPJAVA "java -Xmx32m"

Windows users can enter

 set OSJCFPJAVA=java -Xmx32m
180 PSE Pro for Java User Guide

Chapter 8: Generating Persistence-Capable Classes Automatically
• Edit the osjcfp script (Solaris) or osjcfp.bat script (Windows) to incorporate
the -Xmx option in the invocation of Java near the end of the script. On Solaris, the
line to change is

 $OSJCFPJAVA $javaargs com.odi.filter.OSCFP $args

On Windows, the line to change is

 %osjcfpjava% com.odi.filter.OSCFP %1 %2 %3 %4 %5 %6 %7 %8

Add -Xmx32m before the com.odi.filter.OSCFP entry. This allows the Java
virtual machine to increase the heap to 32 MB. You can increase this value further
if you need to.

How the Postprocessor Handles Inner Classes
When you define a class inside another class, you must explicitly make both the
outer class and the inner class persistence-capable. For example, suppose you define
the following class:

Class Foo {
 int a;
 public class Bar {}
}

You must specify both the Foo class and the Bar class when you run the
postprocessor:

osjcfp -dest ../osjcfpout -pc Foo.class -pc Foo$Bar.class

When ClassInfo.java Files Are Generated
The postprocessor always generates xxxClassInfo classes for persistence-capable
classes that are private. However, by default, the postprocessor does not generate
xxxClassInfo classes for persistence-capable classes that are public. Instead, the
postprocessor relies on the ability of PSE Pro to build an xxxClassInfo class
dynamically when needed, using the reflection API. This optimization reduces the
disk footprint and application start-up times because there are fewer classes to load
when the application starts.

The reflection API is subject to security and access constraints that are enforced to
varying degrees at run time, depending on the version of your Java Virtual Machine
and your platform. If your application encounters run-time security errors while
attempting to generate xxxClassInfo classes dynamically, specify the
-nooptimizeclassinfo option when you run the postprocessor. When you specify
-nooptimizeclassinfo, the postprocessor generates the xxxClassInfo classes;
therefore, the reflection API is not used.
Release 7.1 181

Overview of the Class File Postprocessor
Managing Annotated Class Files
After you run the postprocessor, there are two versions of your class files:

• The unannotated class files in the original directory

• The annotated class files in the destination directory

It is important to keep these versions separate because

• When you compile source code, you must ensure that any class files the compiler
reads in are unannotated class files. The compiler must find unannotated class
files before it finds annotated class files with the same names.

Note: While the above is true for simple applications, it might not be true for more
complex applications. See Using the Right Class Files in Complex Applications on
page 184.

• When you run your application, you must ensure that PSE Pro finds the annotated
class files before it finds the unannotated class files with the same names.

There are several ways to accomplish this. recommends that you

• Specify the -classpath argument to the compiler so it finds the unannotated class
files first

• Modify your CLASSPATH environment variable so Java can find the annotated
class files first when it runs your application

To help you manage annotated class files, this section discusses

• Ensuring That the Compiler Finds Unannotated Class Files

• Ensuring That PSE Pro Finds Annotated Class Files

• Using the Right Class Files in Complex Applications

• Alternatives for Finding the Right Files

• How the Postprocessor Determines Whether to Generate an Annotated Class File

Ensuring That the Compiler Finds Unannotated Class Files
The compiler can locate class files in the following two ways:

• Through the CLASSPATH environment variable

• Through the -classpath argument to the compiler

CLASSPATH is convenient when you compile, but when you try to run your
application, PSE Pro finds the unannotated files before it finds the annotated files.
The -classpath option is more cumbersome to use because it means that the path
to Java system classes must be listed explicitly in the argument, but it is safe. It
ensures that the compiler does not operate on annotated class files.
182 PSE Pro for Java User Guide

Chapter 8: Generating Persistence-Capable Classes Automatically
Example 1 For example, suppose that PSE Pro is installed in c:\pse and you are building an
application in c:\app. Your destination directory for annotated class files is
c:\app\osjcfpout. Your CLASSPATH variable might look like the following:

CLASSPATH=c:\ODI\PSEProJ\lib\pro.jar;c:\app\osjcfpout;c:\app

When you run the compiler, specify the -classpath option with the following path.
This removes the destination directory from the class look-up path and adds the Java
classes to the path.

javac -classpath c:\app;
 c:\ODI\PSEProJ\lib\pro.jar;
 c:\jdk1.2\lib\classes.jar App.java

Example 2 Following is an example of why it is important for the compiler to operate on
unannotated class files. Suppose you have two classes named X and Y in the same
postprocessor batch. Neither of these classes is explicitly declared to implement
com.odi.IPersistent. Now suppose you add the following two methods to class Y:

void foo(com.odi.IPersistent p) {}
void bar() { foo(new X()); } // Trying to pass an X instance to
 // a function that is expecting com.odi.IPersistent

If you recompile only Y.java and the compiler finds the annotated classes,
examination of the annotated class file allows the compiler to determine that X
implements IPersistent, which allows Y.bar() to compile. If you then recompile
both X and Y, the compiler recognizes that X is not declared to implement
com.odi.IPersistent and refuses to compile class Y, even though it compiled
successfully earlier.

Ensuring That PSE Pro Finds Annotated Class Files
When you run your application, PSE Pro must find the annotated class files before it
finds the unannotated class files. The recommended way to ensure this is to define a
CLASSPATH environment variable that has the postprocessor destination directory
before the source file directory.

Example Consider the following example:

• You are building an application in c:\app.

• You create a directory named c:\app\osjcfpout to hold the annotated class
files.

In this scenario, use the following CLASSPATH:

c:\app\osjcfpout;c:\app;c:\ODI\PSEProJ\lib\pro.jar

After you modify your CLASSPATH environment variable, you can run the
postprocessor with no special action. The postprocessor excludes the destination
directory from the class path when it does class-path-based searches.
Release 7.1 183

Overview of the Class File Postprocessor
Using the Right Class Files in Complex Applications
There are situations in which you want the compiler to read in annotated class files.
In these cases, the referenced classes are similar to an independent library on which
you are building your application. The referenced classes form a batch, which is a
group of class files that must be postprocessed together. The other files in your
application form a second batch.

Independent
library

For example, suppose this second batch is named X. Specify the -classpath option
so that it points to the

• Unannotated class files for any classes in X

• Annotated class files for any classes that are in other batches and are referenced
by classes in X

This is the most common multiple-batch scenario. Your application is in one batch
and the other batches are existing reusable libraries. Each batch has its own
postprocessor destination directory.

Classes
referenced by
other classes

Now suppose that you are not using an existing library. Your application itself
contains a group of referenced classes (first batch), then another group of classes
(second batch) that reference the first batch. The following instructions show how to
build your application in stages:

1 Compile the source files and postprocess the class files in the first batch. (This is
the batch of files that are referenced by other classes in the application.)

2 Compile the source files in the second batch. You might not want to compile all
files in this batch at the same time. Specify the -classpath option to point to the
annotated class files in the first batch and any unannotated class files in the second
batch.

3 Run the postprocessor on the second batch. Specify a destination directory that is
different from the destination directory that was specified when the postprocessor
operated on the first batch. You can package the result of postprocessing the
second batch in a .zip file or .jar file.

Alternatives for Finding the Right Files
In some circumstances, updating your CLASSPATH environment variable might be
cumbersome or might not work well with your development environment. (This is
true for the Symantec Cafe product.) In these cases, you can copy annotated files
back to the building directory. However, if you do this, you must remove the
annotated files before you recompile. This ensures that subsequent compilation and
postprocessing operate on unannotated class files.

Two other alternatives are to

• Delete the contents of the destination directory before you recompile

• Specify the -classpath option when you run the postprocessor, just as you did
for compilation
184 PSE Pro for Java User Guide

Chapter 8: Generating Persistence-Capable Classes Automatically
How the Postprocessor Determines Whether to Generate an
Annotated Class File

When you run the postprocessor, it checks whether any annotated file it is going to
create already exists. If an annotated file does not already exist, the postprocessor
generates it. If an annotated file does exist, the postprocessor compares the date on
the compiled input file with the date on the annotated output file. If the input file
date is after the output file date, the postprocessor generates a new output file. If the
input file date is before the output file date, the postprocessor does not generate a
new file. It assumes that the annotated file that already exists is still valid.

This works well when you run the postprocessor repeatedly with the same
command line. However, when you change input parameters to the postprocessor,
it is a good idea to remove the previously annotated class files from the destination
directory. The reason for this is that a comparison of dates might not cause a new
annotated file to be generated when the specification of a new input parameter
requires a new annotated file to be generated.

To force the postprocessor to overwrite existing annotated files, specify the -f or
-force option when you run the postprocessor.
Release 7.1 185

Overview of the Class File Postprocessor
Creating Persistence-Aware Classes
If you know that a class will never need to be stored persistently, you can run the
postprocessor to make the class persistence aware. A persistence-aware class can
operate on persistent objects but cannot be persistent itself. For an example of how
you might use persistence-aware classes, see com/odi/demo/pport/README.htm.

Persistence-aware annotations require less space than persistence-capable
annotations require. The postprocessor adds calls to ObjectStore.fetch() and
ObjectStore.dirty() only where they are needed to operate on persistent objects.
When the postprocessor makes a class persistence aware, it does not annotate that
class’s superclass. You need only make a class persistence aware, instead of copying
it as is, if

• The class accesses fields of a persistence-capable class instead of using methods to
access the fields.

• The class accesses elements of persistent arrays.

You must make a class persistence aware (or persistence capable) when it includes
methods that obtain arrays from persistent objects.

Specifying the Postprocessor Command Line
To create a persistence-aware class, specify the -pa or -persistaware option
followed by the names of the classes that you want to be persistence aware. For
example:

osjcfp -dest osjcfpout -persistaware Compute.class

The preceding command line annotates Compute.class so that it has calls to the
fetch() and dirty() methods.

No Changes to Superclasses
Another reason to make a class persistence aware is that doing so does not require
changing its superclasses. This is important for classes such as java.lang.Thread,
whose superclass should not be modified. java.lang.Thread is inherently
transient, so it makes no sense for it to become persistent because it is not useful
when you take it out of the database. Typically, Java system classes are restricted
from annotations by the postprocessor.
186 PSE Pro for Java User Guide

Chapter 8: Generating Persistence-Capable Classes Automatically
How the Postprocessor Works
This section describes postprocessor behavior relative to various components in
your application. It is important to be familiar with the information here so that the
postprocessor produces the results you expect. The topics covered in this section are

• Ensuring Consistent Class Files

• Modifications to Superclasses

• Effects on Inheritance

• Location of Annotated Class Files

• Postprocessor Errors and Warnings

• Handling of final Fields

• Handling of Static Fields

• Which Java Executable to Use

• Line-Number and Local-Variable Information

• Using a Debugger

• Handling of finalize() Methods

• Description of Postprocessor Optimizations

Ensuring Consistent Class Files
When you run the postprocessor on more than one class file at a time, all specified
classes must be consistent. To ensure class consistency, compile all classes together.
The postprocessor does not detect inconsistencies among files it operates on. For
example, suppose you modify and recompile a class without also recompiling its
subclasses. This can cause inconsistencies, which the postprocessor does not detect
when it annotates the class files.

Modifications to Superclasses
When you run the postprocessor to make classes persistence capable, it generates
annotated class files for the specified classes and for any superclasses that are in the
same packages as the specified classes. PSE Pro requires annotations to superclasses
for all classes that the postprocessor makes persistence capable. If a superclass is not
in the same package as one of its subclasses that is being made persistence capable,
you must explicitly specify the superclass on the postprocessor command line.

Effects on Inheritance
If a class that the postprocessor is annotating has no superclass other than
java.lang.Object, the postprocessor annotates the class to implement the
com.odi.IPersistent interface.

Implementation of the IPersistent interface is mandatory for objects that you want
to be persistent. You must define classes so that if they inherit from another class, it
is a class that can implement IPersistent.
Release 7.1 187

Overview of the Class File Postprocessor
Every class inherits from the Object class, which defines the hashCode() method
and provides a default implementation. For a persistent object, this default
implementation often returns a different value for the same persistent object (the
object on the disk) at different times. This is because PSE Pro fetches the persistent
object into different Java objects at different times, in different transactions or
different invocations of Java.

This is not a problem if you never put the object into a persistent hash table or other
structure that uses the hashCode() method to locate objects. If you do put them in
hash tables or something similar, the hash table or other structure that relies on the
hashCode() method might become corrupted when you bring the objects back from
the database.

To resolve this problem, you can define your own hashCode() method and base it
on the contents of the object so it returns the same thing every time. The signature of
this method must be

public int hashCode()

If you do not provide a hashcode() method, the postprocessor adds one if it is
necessary. If the default behavior of the postprocessor is not ideal for your
application, you can specify the -hashcode and -nohashcode options to control
where the postprocessor adds a hashCode() method.

Location of Annotated Class Files
When you run the postprocessor, you must specify a destination directory with the
-dest option. The postprocessor uses the destination directory as the root directory
of the class hierarchy of annotated files. The postprocessor places the annotated class
file in the package-relative subdirectory of the destination directory. With the
destination directory specified in your CLASSPATH environment variable, Java can
find the annotated classes.

You must create the destination directory before you specify it in an osjcfp
command line. The postprocessor creates the required subdirectories in the
destination directory.

For example, suppose that you specify osjcfpout as the destination directory. When
you run the postprocessor on the Person.class file, which is in the
com.odi.demo.people package, the postprocessor places the annotated file in

osjcfpout\com\odi\demo\people\Person.class

The package name of the annotated class file remains the same, unless you specify
an option to change it. The class name of the annotated class file is always the same
as the class name of the unannotated class file.

Postprocessor Errors and Warnings
If an error occurs while the postprocessor is running, it terminates without writing
any annotated class files.

For any warnings from the postprocessor, you might determine that you can safely
ignore the warning. In this case, you can stop the postprocessor from warning you
188 PSE Pro for Java User Guide

Chapter 8: Generating Persistence-Capable Classes Automatically
about the field in question. To do so, specify the -quietfield option followed by the
fully qualified name of the field for which you want to suppress warnings.
Alternatively, you can specify -quietclass to suppress all warnings on the class.

Handling of final Fields
You cannot make final fields persistent. If you try to do this, the postprocessor
displays a warning message and treats the fields marked as final as though you
declared them to be transient. To allow such fields to be stored persistently, you
must remove the final keyword.

Handling of Static Fields
The postprocessor never stores static fields in the database and never causes the
values of static fields to be altered. You must write your own code to update static
fields and to store static fields in the database, if that is what you want to do.

Static fields that
can hold
persistent
values

The postprocessor displays a warning for a static field that can hold potentially
persistent values. The postprocessor cannot determine the type of the object that is
actually pointed to. Consequently, depending on the type of object referenced, the
warning might not be applicable. For example, suppose you have a persistence-
capable class named X. The X class has a static member named y of a type that
implements com.odi.IPersistent. When you run the postprocessor, it displays a
warning such as the following:

X.y is a static field of a type that implements com.odi.IPersistent
and that might refer to a persistent object. If this field does refer
to a persistent object it must be user maintained.

Referring to a
persistent
object

If the field mentioned in the warning is intended to refer to a persistent object, you
can write your application as follows:

• When you create a database, create an object of the desired type and create a
database root to refer to the object. This makes the object persistent and provides
a mechanism that you can use to find the object.

• When you start a new transaction, if the object referenced by the static field is null
or stale, look up the database root and set the value of the static field to the root
value.

If you specify ObjectStore.RETAIN_STALE when you commit or abort a
transaction, you must ensure that you correctly access the objects at the beginning of
the next transaction. This is because PSE Pro does not make the object referenced by
X.y persistent if it is only reachable from X.y. If PSE Pro makes it persistent because
it is reachable from some other point, the object referenced by X.y might become
stale at the end of the transaction in which it becomes persistent. If it does, and if the
object referenced by X.y does become persistent, it is possible that the application
might try to use the stale version of the object.

How can X.y be reachable from some other point? Perhaps another persistent object
or an object that is going to be persistent refers to the object that the static data
member is referring to. When PSE Pro commits the transaction and performs
transitive persistence, it finds the object that the static data member is referring to.
Release 7.1 189

Overview of the Class File Postprocessor
References to
stale objects

An issue to consider is stale references to stale objects. To avoid the inadvertent use
of stale objects, update X.y at transaction boundaries. Set X.y to null or to another
value to ensure that if a stale object is referenced by X.y, it is no longer accessible
through X.y. Then you can suppress the warning with the -quietfield option.

Summary For class X, the important points are listed below.

class X {static OSHashtable y = new OSHashtable();}

• X.y does not become persistent just because class X is persistence capable or
because an instance of X becomes persistent.

• If you want X.y to become persistent, you must make it reachable from a root
through a path that does not involve a static field, for example,
db.createRoot("X.y", X.y).

• If X.y does become persistent, you must be aware that the OSHashtable object
referenced by X.y might become stale at transaction boundaries. If it does, you
must update X.y to refer to a nonstale instance.

Which Java Executable to Use
The postprocessor is a Java program; it requires a Java virtual machine to run. It uses
the first Java executable that it finds in your PATH environment variable. If you want
the postprocessor to use another Java executable, set the OSJCFPJAVA environment
variable to the name of the Java executable you want the postprocessor to use. The
default is java.

If the postprocessor cannot find a Java executable, it generates a Bad command or
file name error message.

Line-Number and Local-Variable Information
When the postprocessor annotates a class file, it maintains any existing line-number
and local-variable information.

Using a Debugger
The class file postprocessor annotates methods with VM instructions for
automatically performing fetch() and dirty() operations on objects. It does this in
such a way that the debugging information in the class files remains intact. Typically,
the annotations are invisible to an application. However, it is possible to encounter
them under certain circumstances when using a debugger. For example, you might
encounter the following when you use the Step into command:

x = foo(y.m);

Stepping into that statement might cause you to enter the PSE Pro code that causes
the contents of the y object to be fetched. In such a situation, use the Step out
command to leave the PSE Pro code. Then use the Step into command again, which
should then step into the call to the foo() method.

You should rely on the Step over command whenever possible. However, there are
situations in which you must use the Step into command. If you inadvertently step
190 PSE Pro for Java User Guide

Chapter 8: Generating Persistence-Capable Classes Automatically
into a PSE Pro method, step out of the PSE Pro code and return to your own code by
doing one of the following:

• Use a Step out command.

• Set a breakpoint in the calling code.

• Use repeated Step over commands until the method returns.

Handling of finalize() Methods
The Java GC calls the java.lang.Object.finalize() method on an object that is
no longer referenced. The GC does this before it frees the space occupied by the
object. In this way, the finalize() method provides a hook that you can use to free
resources that are not freed by garbage collection, for example, memory that was
allocated by a native method call.

If your persistence-capable class defines a finalize() method (recommends that
it should not), the class file postprocessor inserts annotations at the beginning of the
finalize() method that change the persistent object to a transient object. See
Avoiding finalize() Methods on page 131.

Description of Postprocessor Optimizations
The postprocessor optimizes fetch() and dirty() calls in several ways. If you
determine that an optimization is preventing insertion of a required call to fetch()
or dirty(), you can disable the optimization.

• For array objects in looping constructs, the postprocessor inserts the call to
fetch() or dirty() only in the first loop iteration. To disable this optimization,
specify the -noarrayopt option when you run the postprocessor. This causes the
postprocessor to insert calls to fetch() or dirty() in every iteration.

• For access to fields relative to this in nonstatic member methods, the
postprocessor optimizes calls to fetch() and dirty(). To disable this
optimization, specify the -nothisopt option when you run the postprocessor.
This causes the postprocessor to insert a fetch() or dirty() call for each access
to a field in this.

You should disable these optimizations if you commit transactions or evict persistent
objects as follows:

• If you call commit() or evict() while iterating over persistent array elements,
specify -noarrayopt when you run the postprocessor.

• If you call commit() or evict() in between accesses to different fields of this,
specify -nothisopt when you run the postprocessor.
Release 7.1 191

Overview of the Class File Postprocessor
Including Transient and Already Annotated
Classes

After you run the postprocessor, the annotated class files are in the package-relative
subdirectory of the destination directory (root directory) you specified. You might
want other class files in this destination directory. These could be transient
(nonpersistence-capable or nonpersistence-aware) class files or files that have
already been annotated.

Copying Classes to the Destination Directory
To copy certain files to the destination directory along with the annotated files,
specify the -copyclass option followed by the name of the file you want to copy.
For example:

osjcfp -dest osjcfpout a.jar -copyclass b.class

In this example, the postprocessor annotates the files in a.jar and copies them to the
package-relative subdirectory of the osjcfpout directory. The postprocessor also
copies b.class to the osjcfpout directory but it does not modify the b.class file.

You can follow the -copyclass option with one or more .class file names, class
names, .jar file names, or .zip file names. This option applies to each name that
follows it until the postprocessor reaches a -pc or -pa option.

Specifying Classes to Be Copied and Classes to Be Persistence
Capable

Classes for which you specify the -copyclass option can overlap with classes for
which you specify the -persistcapable or -persistaware option. For example:

osjcfp -dest osjcfpout -copyclass *.class -persistcapable a.class

This allows you to keep all files in a package together and annotate only the classes
that need to be annotated. You need not partition classes into those that need
annotations and those that do not. You can specify the same file with more than one
persistence-mode option because the -persistcapable option and the
-persistaware option override the -copyclass option.

When Can a Class Be Transient?
Suppose you have a persistence-capable class, class A. A class that refers to class A can
be transient if all access to A’s nontransient data members is through methods on A.
The methods of A will be properly annotated. Because all other classes only use A’s
methods, the other classes do not need to be persistence-aware. Consequently, you
need not postprocess any classes that refer to A.

Any class that directly accesses A’s nontransient data members must be either
persistence capable or persistence aware. Any other class that refers to A and does
not directly access nontransient data members can be transient. That is, you do not
have to postprocess it.
192 PSE Pro for Java User Guide

Chapter 8: Generating Persistence-Capable Classes Automatically
An important exception to this is that if a class manipulates an array object that might
be persistent (specifically, setting and getting array elements), that class must be
annotated to be persistence aware. However, if the code that provides access to the
array is annotated to access the values of the array, you can avoid making the class
persistence aware. It is difficult to reliably implement this in the general case.

If you compile with optimization the classes that use the methods that get and set
array values, the compiler might inline the get and set methods. In this case, you
must make the class that uses the get and set methods persistence aware.

Putting Processed Classes in a New Package
Normally, the postprocessor places the annotated files in a package-relative
subdirectory of the destination directory, and the annotated files have the same
package names as the original files. However, there is an option that allows you to
change the package name of files specified in the postprocessor command line. The
-translatepackage option modifies the package name so that the persistence-
capable version of the class is in one package and the transient version (the original)
is in another package.

To help you use the -translatepackage option, this section discusses the following
topics:

• Using the -translatepackage Option

• How the Postprocessor Applies the Option

• Updating References to New Package Name

• References to Transient and Persistent Versions of a Class

• References to Transient Instances of a Persistence-Capable Class

Using the -translatepackage Option
To create persistence-capable classes whose package name is different from the
original package name, specify the -translatepackage option followed by the
current package name, then the new package name. The format for this option is

{-translatepackage | -tp} orig_pkg_name new_pkg_name

For example, suppose you have the a.b.C class and you want to create the d.e.C
persistence-capable class. Run the postprocessor in the following way:

osjcfp -dest osjcfpout -translatepackage a.b d.e C.class
Release 7.1 193

Putting Processed Classes in a New Package
Exact match
required

The specification for the original package name must exactly match the package
name of the specified file. If there is not an exact match, the postprocessor does not
place the annotated file in the new package. For example, suppose you have two
classes named com.odi.demo.New and com.odi.Old. You want to move
com.odi.Old to the com.odi.beta package and you specify the following
command:

osjcfp -dest osjcfpout -tp com.odi com.odi.beta com.odi.demo.New com.odi.Old

The postprocessor places the annotated file for the com.odi.Old class in
com.odi.beta.Old in the package-relative subdirectory of the osjcfpout directory
(osjcfpout\com\odi\beta\com.odi.beta.Old.class).

The postprocessor does not place the annotated file for com.odi.demo.New in a
different package because the original package name is com.odi.demo and not just
com.odi. The postprocessor annotates com.odi.demo.New and places it in
osjcfpout\com\odi\demo\com.odi.demo.New.class.

How the Postprocessor Applies the Option
The postprocessor applies the -translatepackage specification to

• All classes in the original package that are locatable by means of the CLASSPATH
environment variable or the -classpath option, if you specify it. The -classpath
specification overrides the CLASSPATH environment variable.

• Files on the command line whose package name exactly matches the specification
for the original package name. This is true for files processed with the
-persistcapable, -persistaware, or -copyclass option.

When copying
files

It does not matter whether the postprocessor is making any other changes to the
specified files. The postprocessor changes the package names of files for which the
-copyclass option is specified along with new persistence-capable or persistence-
aware files.

Multiple option
specifications

You can specify this option more than once on a command line to specify several
package translations. If you accidentally specify more than one translation for the
same package, the postprocessor performs the last translation you specify in the
command line.

Updating References to New Package Name
A change to the package name of a class requires updating all references to that class
to reflect the new name.

The postprocessor updates the references in classes that it is currently operating on.
This includes each class specified on the command line and each class found in a
.zip file or .jar file that is specified on the command line.

The postprocessor cannot detect whether there are .class files for which the
postprocessor was not called that refer to the renamed package. You must either run
the postprocessor on the complete set of class files or modify the Java source of any
files that the postprocessor is not annotating.
194 PSE Pro for Java User Guide

Chapter 8: Generating Persistence-Capable Classes Automatically
References to Transient and Persistent Versions of a Class
You might want a class to refer to both the transient and persistence-capable versions
of another class.

It is not possible for the postprocessor to determine the references that should be to
persistence-capable objects. Because of this, you must code the class so it uses the full
path name of the different versions of the class. This is the only way to clarify the
version of the class that is wanted. However, this technique works correctly only
when you are operating across batches. It does not work when you are within the
same batch.

Example Following is an example of what that means. Suppose you have a utility class called
a.b.C. You want to have both a transient and a persistence-capable version of a.b.C.
When you run the postprocessor, you specify -translatepackage to create a
persistence-capable version called y.z.C. Then in another class called a.b.D, you try
to use both versions of the class. You write source code in a.b.D that explicitly refers
to y.z.C much like the following:

int n= y.z.C.countThem()

When you try to compile a.b.D, compilation can succeed only if you put the
annotated classes into the class path of the compiler. Otherwise, the compiler reports
an error, because there is no such thing as y.z.C. Also, it is not possible for a.b.C
and a.b.D to be in the same batch, because the -translatepackage option would
apply to a.b.D. This would make all of a.b.D’s calls go to the persistence-capable
version, which is not what you want.

Steps to follow To use persistence-capable and transient versions of the same class, follow these
steps:

1 Create a utility library.

This is the first batch. This library creates transient versions of the class.

2 Run the postprocessor on the first batch and specify options that put the two
different versions of the class in two different packages.

This step creates the persistence-capable version of the class.

3 Use the library from an application.

The application is the second batch.

4 Compile the application with the annotated files of the first batch, but not the
second batch, in the compiler’s class path.

References to Transient Instances of a Persistence-Capable Class
You can use instances of a persistence-capable class in a transient-only manner. No
special action is required and the calls to ObjectStore.fetch() and
ObjectStore.dirty() do nothing. There is no need for the unannotated version of
the class to be available at run time. To use the annotated version of the class, even if
you are using it transiently, the pro.jar or stublib.jar file must be available in the
CLASSPATH at run time. If you are using the class only transiently, it can be the
stublib.jar that is available.
Release 7.1 195

Putting Processed Classes in a New Package
Creating Persistence-Capable Classes with
Transient Fields

You can create a persistence-capable class with transient fields. A transient field is a
field that is not stored in the database. The postprocessor ignores transient fields. Use
the transient keyword to create a transient field. For example:

class A {
 transient java.awt.Component myVisualizationComponent;
 int myValue;
 ...
}

In this class, the myVisualizationComponent field is declared to be a transient
reference to java.awt.Component. The java.awt package contains GUI classes that
do not lend themselves to being persistence capable.

In your persistence-capable class, you might have transient fields that you want to
be able to access outside a transaction. In this situation, you can specify the
-noannotatefield or -naf option for the field when you run the postprocessor.
This option prevents access to the specified field from causing fetch() and dirty()
calls on the containing object. Normally, access to a transient field causes fetch() or
dirty() to be called to allow the postInitializeContents() and
preFlushContents() methods to convert between persistent and transient state.

Transient Fields and Serialization
If you have a class that has fields that are declared as transient, this causes the default
handling of these fields by object serialization to ignore the fields. If you want them
ignored by object serialization and you want them to be stored persistently, specify
the -ignoretransient option for the class when you run the postprocessor.

On the other hand, there might be a field that must be available for object
serialization, but you do not want to store that field in the database. In this situation,
specify the -transientfield option for the field when you run the postprocessor.
This option causes the postprocessor to treat the specified field as though it has a
transient modifier, even if it does not.

Initialization of Some Transient Fields
In the declaration of a transient field in a persistence-capable class, you might want
to initialize the value of the transient field. However, when the postprocessor creates
the hollow object constructor for the class, it does not define the constructor to
initialize the transient field. This is true even when you specify the final keyword.
The postprocessor does not initialize such fields because the initialization occurs as
inlined code in each of the constructors for the class. For example:

private transient final MyField myField = new MyField();

The final keyword indicates to the postprocessor that initialization is required.
However, the initialization code is not readily available and myField is not
initialized. There are several ways to handle this situation.
196 PSE Pro for Java User Guide

Chapter 8: Generating Persistence-Capable Classes Automatically
You can create the hollow object constructor manually. For example, suppose you
define the MyField class, which extends the MyFarm class, as in the following
example:

...
public MyField(com.odi.ClassInfo dummyClassInfo) {
 super(dummyClassInfo);
}

This requires you also to manually define a hollow object constructor for the MyFarm
class and for each superclass of the myFarm class.

Alternatively, you can remove the final qualifier and initialize the transient field in
an IPersistent.postInitializeContents() method.

If you include an inline initialization of a field declared to be transient and final,
the postprocessor displays an error message and stops processing. If you include an
inline initialization of a field declared to be transient, but not final, the
postprocessor warns you about the situation and continues processing. If you
determine that you can safely ignore the message, you can turn it off with the
-ignoretransient option to the postprocessor.

See also Transient Fields in Persistence-Capable Classes on page 130.

Customizing Updated Classes
There are several ways you can customize persistence-capable and persistence-
aware annotations: You can implement your own versions of methods that the
postprocessor typically adds; you can implement hook methods that PSE Pro calls at
specified points; you can define a hollow object constructor in place of the hollow
object constructor the postprocessor typically defines; you can also insert your own
fetch() and dirty() calls.

Implementing Customized Methods and Hook Methods
The three methods described next are among the several annotations that the
postprocessor adds to persistence-capable classes.

• The initializeContents() method loads real values into hollow instances of
your persistence-capable class. In other words, hollow objects become active
objects with an internal clean state.

• The flushContents() method copies values from a modified instance (active
persistent object) back to the database. This changes the internal clean or dirty
state of the persistent object to the clean state.

• The clearContents() method resets the values of an instance to the default
values. This changes a clean active object to a hollow object.

Alternatives If you want to, you can customize the behavior of these methods in the following two
ways:
Release 7.1 197

Customizing Updated Classes
• Implement the method yourself. See Defining Required Methods in the Class
Definition on page 209. If you do, the postprocessor does not add the method.
However, if you implement any of the three methods listed previously, you must
implement all of them. Also, you must define the ClassInfo subclass, define an
instance of it, and register the instance. This is because the ClassInfo instance
and the three previous methods must agree on the conventions for field
numbering. An example of a program that implements these methods is in the
com/odi/demo/rep directory in the Rectangle.java file. See
com/odi/demo/rep/README.htm.

• Implement the hook method that corresponds to the method you want to
customize. The postprocessor does not annotate hook methods. These hook
methods provide a way to perform transient field maintenance. You might also be
able to use these methods as an update mechanism for notification about a
change:

- postInitializeContents() — If you define this method, PSE Pro calls it
immediately after it calls the initializeContents() method.

- preClearContents() — If you define this method, PSE Pro calls it just before
it calls the clearContents() method.

- preFlushContents() — If you define this method, PSE Pro calls it just before
it calls the flushContents() method.

Warning The body of a hook method must not call any methods of the class and must not start
or end a transaction. This is because the class methods are annotated and, therefore,
make calls to fetch() and dirty(). Such calls in the middle of initializing or writing
the object are not allowed because they might cause the virtual machine to encounter
a stack overflow.

Sample
program with
hook methods

Following is an example of a program that implements these hook methods:

import com.odi.*;

/**
* PColor provides a persistent representation of colors that can
* be used with the Java AWT package. The java.awt.Color class
* itself cannot be stored persistently, because some of its
* internal state depends on the particular kind of color display
* being used. If a java.awt.Color were created on a computer
* that used a 24-bit-deep color monitor, stored in a database,
* and then retrieved and used on a different computer that had
* a gray-scale monitor, it would not function correctly. PColor
* stores the color value as three integers, and then recreates
* the java.awt.Color object whenever the PColor object is
* brought into Java from persistent storage.
*
* For expository purposes, this example pretends that the value
* of a java.awt.Color object can change after the object is
* created. The real java.awt.Color class is immutable, and so
* the setBlue method below would not work, and the
* preFlushContents method would not actually be needed.
*/

public class PColor {
198 PSE Pro for Java User Guide

Chapter 8: Generating Persistence-Capable Classes Automatically
/*These instance variables are stored persistently. They
 represent the color value. */
 int red;
 int green;
 int blue;

/*This instance variable is declared transient, so it is not
stored persistently. It is managed by the methods below. */
transient java.awt.Color color;
 PColor(int r, int g, int b) {
 red = r;
 green = g;
 blue = b;
 color = new java.awt.Color(r, g, b);
 }
/*When a PColor is brought into Java from persistent storage,
 the java.awt.Color object is created. Note that this method
 runs after the initializeContents, so that it can use the
 values of the persistent instance variables. */
 public void postInitializeContents() {
 color = new java.awt.Color(red, green, blue);
 }
/*When a PColor is sent out from Java to persistent storage, the
color value from the java.awt.Color object is copied into the
persistent instance variables, so that it will be saved.
Note that this method runs before flushContents, so that it
can set up the values of the persistent instance variables. */

 public void preFlushContents() {
 red = color.getRed();
 green = color.getGreen();
 blue = color.getBlue();
 }
/*When clearContents happens, this method sets the color
instance variable to null, so that this PColor object won’t be
stopping the java.awt.Color object from being reclaimed. */

 public void preClearContents() {
 color = null;
 }
/*Equality for PColor objects is the same as equality of the
underlying java.awt.Color objects. */

 public boolean equals(Object obj) {
 if (obj instanceof PColor) {
 return color.getRGB() == ((PColor)obj).color.getRGB();
 }
 return false;
 }
 public java.awt.Color getColor() {
 return color;
 }
 public int getBlue() {
 return color.getBlue();
 }
 public int setBlue(int b) {
 color.setBlue(b);
 }
 /* and so on.... */
}

Release 7.1 199

Customizing Updated Classes
Creating a Hollow Object Constructor
For each persistence-capable class, the postprocessor finds or generates a hollow
object constructor. The hollow object constructor takes a single argument whose type
is com.odi.ClassInfo. Typically, you need not define a hollow object constructor,
but you can if you want to.

Why define
one?

A reason to define your own hollow object constructor is to initialize transient fields
that you want to be usable, even if the fetch() method has not been called.

You should avoid performing actions in a hollow object constructor that would
cause the object to be fetched. Doing so might cause infinite recursion to occur.

For example, if a class has a persistent hashCode() method, it is a bad idea to define
a hollow object constructor to register the instances of the class in a hash table. Doing
so would cause the hashCode() method to be called, which in turn would attempt
to fetch the object.

Creation steps When the postprocessor creates the hollow object constructor, it follows these steps:

1 The postprocessor selects an appropriate superclass hollow object constructor.

If the superclass has an accessible constructor that takes a single
com.odi.ClassInfo argument, or if it will have one because the postprocessor
adds it during this execution of the tool, the postprocessor uses that constructor.
The postprocessor reports an error if it cannot find an accessible constructor.

2 The postprocessor creates a public constructor that

- Accepts a com.odi.ClassInfo argument

- Invokes the selected superclass constructor

- Initializes all persistent fields to an appropriate default state that is equivalent
to the result of the clearContents() method

You can define the hollow object constructor instead of allowing the postprocessor
to do it. If you define one, the postprocessor does not generate one.
200 PSE Pro for Java User Guide

Chapter 8: Generating Persistence-Capable Classes Automatically
Optimizing Operations That Retrieve
Persistent Objects

Before an application can access the contents of a persistent object, it must call the
ObjectStore.fetch() method to read the object or the ObjectStore.dirty()
method to modify the object. These calls make the contents of the object available to
your application. The postprocessor inserts these calls in methods of classes that it
makes persistence capable or persistence aware. However, the postprocessor might
not annotate your code for best performance. You might find that you can improve
performance by inserting the fetch() and dirty() calls yourself.

Caution If you insert a fetch() or dirty() call in a method, the postprocessor does not add
any additional fetch() or dirty() calls to that method.

Procedure for Optimizing Operations
Before you add the calls yourself, first allow the postprocessor to add the fetch()
and dirty() calls. Then run and monitor your program. If you want to try to
improve performance, add the calls to your source file and recompile. When you run
the postprocessor again, it recognizes that the fetch() or dirty() call is already in
place and does not add any fetch() or dirty() calls to any methods that already
contain such a call.

If you do this annotation, you should also add implements IPersistent to the
definition of any class that is accessed with a fetch() or dirty() call. When you do
this, the compiler can effectively use the multiple overloadings of the fetch() and
dirty() methods, which take com.odi.IPersistent arguments. Also, the compiler
can generate more efficient code when you declare the class to implement
IPersistent in your source.

Inlining Code
An important consideration when annotating by hand is that the compiler might
inline the code into calling methods. This makes it appear to the postprocessor that
the code annotations are in the calling method, which might not be true.

When you are using the JDK javac compiler, this occurs when you specify the -O
(capital O, as in Oslo) option.

To ensure that the postprocessor functions correctly, you must do one of the
following:

• Prevent the compiler from inlining code.

• If you add fetch() and dirty() calls to a method that is a candidate for inlining,
also annotate all the methods that call that method. A method is a candidate for
inlining if it calls static, final, or private methods, or invokes methods with
the super qualification construct.
Release 7.1 201

Performing a Test Run of the Postprocessor
Preventing Fetch of Transient Fields
You might want to avoid the insertion of the fetch() call in methods that operate
only on transient fields. A strategy for doing this takes advantage of the fact that the
postprocessor does not annotate a method if it already includes a fetch() or
dirty() call. If you know that a method operates only on transient fields, you can
prevent insertion of the fetch() call with code such as the following:

try {
 method body goes here
} catch (SomeRuntimeExceptionThatWillNotOccur) {
 ObjectStore.fetch(this);
}

This imposes no execution time and prevents the postprocessor from inserting the
fetch() method. You can create your own exception, which inherits from
java.lang.RuntimeException, or select an existing one. The safest approach is to
create your own exception so you can be sure that the exception is never signaled.

Performing a Test Run of the Postprocessor
You can run the postprocessor without actually updating any files. The tool
performs all processing and error checking and can display messages that indicate
what it is doing. This allows you to make corrections before creating the persistence-
capable versions of your classes. To perform a test run of the postprocessor, specify
the -nowrite option on the command line. For example:

osjcfp -dest osjcfpout -nowrite classes.jar

This command processes all class files in the .jar file and displays any error
messages. To view information messages from the postprocessor, include the
-verbose option. For example:

osjcfp -dest osjcfpout -nowrite -verbose classes.jar

It does not matter where you place the -nowrite or -verbose option in the
command line. Wherever you place them, they apply to all files that the
postprocessor processes.

To suppress nonfatal warning messages, specify the -quiet option. The -quiet and
-verbose options are mutually exclusive. The last one used on the command line
applies to the entire execution. For example, the following line suppresses warning
messages during the processing of all specified files because the -quiet option
follows the -verbose option.

osjcfp -dest osjcfpout -nowrite -verbose classes.jar -quiet more.jar

You can also suppress some, but not all, warnings. Specify the -quietclass option
followed by the fully qualified name of a class to suppress warnings for that class.
Specify the -quietfield option followed by the fully qualified name of a field to
suppress warnings that pertain to that field. These options apply only to the element
whose name immediately follows the option. If the -verbose option is also specified,
these options take precedence.
202 PSE Pro for Java User Guide

Chapter 8: Generating Persistence-Capable Classes Automatically
Using an Input File
When you are running the postprocessor on a lot of files and specifying many
options, the command line can be very long. As a convenience, you can enter the
options and file names in a file, then specify the file name as a postprocessor option.
Be sure to prefix the file name with the @ symbol.

Windows On Windows systems, there is a limit of eight arguments on a command line.
Consequently, you usually must use input files on Windows.

Format You can include comments in the input file. You can place items on different lines
and line continuation symbols are not required. Line breaks are treated as white
space. Otherwise, enter data in the input file exactly as you would enter it on the
command line.

Indicate comments with a # sign. The postprocessor ignores any subsequent
characters on the same line as the # sign.

Example For example, suppose you enter some postprocessor options and files for the
postprocessor to operate on in an input file named optionsAndFiles. You specify
this file as follows:

osjcfp @optionsAndFiles

You can intersperse input file specifications with options and files that you enter on
the command line. For each specified input file, the postprocessor removes any
comments from the input file and replaces the input file specification with the data
in the input file. The postprocessor then begins to process the command line. For
example:

osjcfp -dest osjcfpout @file1 -tp old.pack new.pack @file2

The postprocessor

1 Replaces @file1 with the contents of file1

2 Replaces @file2 with the contents of file2

3 Executes the command line starting with the -dest option

Nesting and
wildcards

You cannot nest input file specifications. That is, you cannot include the @file_name
option in an input file. Also, you cannot use wildcards in an input file. The
postprocessor does not expand them.
Release 7.1 203

Performing a Test Run of the Postprocessor
Annotations You Must Add
There are some annotations that the postprocessor either cannot perform or does not
perform because of execution performance considerations. You must include these
annotations when you code your source files.

Keep in mind that when you add even one fetch() or dirty() call to a method, the
postprocessor recognizes that the method is already annotated and does not add any
other fetch() or dirty() calls to that method. If you do annotate a method, be sure
to add all required calls.

This section provides information about the following topics:

• Interfacing with Nonpersistent Methods

• Interfacing with Native Classes

• Annotating Subclasses

• Passing Arrays

• Implementing the Hollow Object Constructor for Some Instance Fields

• Using the Java Reflection API with Persistence-Capable Objects

Interfacing with Nonpersistent Methods
It is possible for a method in a persistence-capable class to pass a persistent object to
a nonpersistent method. When this happens, you must ensure that there is a fetch()
or dirty() call for the persistent object before it is passed to the nonpersistent
method.

If all access to persistent objects is through annotated methods (methods in
persistence-capable or persistence-aware classes), manual annotations are not
required. For arrays, there is no way to define a class so arrays of that class can be
accessed only by persistence-aware classes. You must be sure to call the fetch() or
dirty() method on a persistent array before passing it to a method in a
nonpersistent class.

Interfacing with Native Classes
The postprocessor cannot analyze or annotate native methods. If your code passes a
persistent object to a native method, and if the native code might try to access the
object other than through annotated methods, be sure to insert a call to fetch() or
dirty() for the persistent object before it is passed. In cases in which native code
might access or navigate among persistent objects, you must do one of the following:

• Modify the native code to call fetch() or dirty() itself.

• Make the necessary fetch() and dirty() calls before calling the native method.
204 PSE Pro for Java User Guide

Chapter 8: Generating Persistence-Capable Classes Automatically
Annotating Subclasses
After you create a persistence-capable or persistence-aware class, you can define a
subclass of that class. Doing so does not make the subclass persistence capable or
persistence aware. You must run the postprocessor on the subclass.

If you forget to run the postprocessor on a subclass and if the subclass is reachable
from a persistent root, other than through a transient field, PSE Pro might try to
migrate instances of the subclass to the database. This attempt causes an error
because the subclass is not persistence capable.

Passing Arrays
In your application, you might pass an array to a nonpersistent method when the
nonpersistent method is defined as having a parameter of type java.lang.Object.
In this situation, the postprocessor cannot determine that it should insert fetch() or
dirty() calls for the array in the calling method before passing the array. You must
annotate the calling method yourself.

If the called method is declared to accept an array argument, the postprocessor
recognizes that a fetch() call might be needed and inserts it.

Implementing the Hollow Object Constructor for Some Instance
Fields

A class can include nonstatic (instance) fields that contain initializer expressions in
their declarations. Postprocessor-generated ClassInfo constructors do not run these
initializers. Normally, this is not a problem. The constructor allows hollow object
initialization and the initializeContents() method overwrites these fields when
the object is fetched.

However, there might be transient nonstatic fields that have initializer expressions
or fields that are treated as transient by your implementation of the ClassInfo type
and the initializeContents() and flushContents() methods. In this case, you
must manually implement the hollow object constructor or PSE Pro does not run the
initializer. It is impossible for the postprocessor to detect such cases, and no warning
message can be provided. See Creating a Hollow Object Constructor on page 200.

Using the Java Reflection API with Persistence-Capable Objects
You can use the java.lang.reflect.Field class to get and set fields of persistence-
capable objects. To do so, you must

• Call the ObjectStore.fetch() method for an object before you call any of the
java.lang.reflect.Field get methods to get the value of any of the object’s
fields.

• Call the ObjectStore.dirty() method for an object before you call any of the
java.lang.reflect.Field set methods to set the value of any of the object’s
fields.
Release 7.1 205

Class File Postprocessor Limitations
Class File Postprocessor Limitations
It is possible to cause invalid references when you run the postprocessor and rename
the package. In an annotated class, the postprocessor locates and updates class
names if they are in field, method, or class references. The postprocessor cannot
locate and update string arguments to Class.forName() if the name specifies a class
whose package has been renamed.
206 PSE Pro for Java User Guide

Chapter 9
Generating Persistence-
Capable Classes Manually

This chapter provides information about the way to define persistence-capable and
persistence-aware classes in your program explicitly without using the automated
class file postprocessor supplied with PSE Pro.

Technical Support recommends that you use the automated postprocessor. See
Chapter 8, Generating Persistence-Capable Classes Automatically, on page 171. For
information on which Java-supplied classes are persistence capable, see Java-
Supplied Persistence-Capable Classes on page 261.

You might choose the manual method if you want to

• Manually optimize the code

• Perform translation between nonpersistent objects and a custom persistent
representation

You can partially manually annotate a class, then run the postprocessor to insert the
remaining required annotations.

You must explicitly postprocess or manually annotate each class that you want to be
persistence capable. The capacity for an object to be stored in a databases is not
inherited when you subclass a persistence-capable class.

Contents This chapter discusses the following topics:

Explicitly Defining Persistence-Capable Classes 208

Additional Information About Manual Annotation 215

Creating and Accessing Fields in Annotations 220
Release 7.1 207

Explicitly Defining Persistence-Capable
Classes

Follow these steps to annotate your program so that classes you define are
persistence capable:

1 Define your class to implement the IPersistent interface. See page 208.

2 In the class definition, define the required fields. See page 208.

3 In the class definition, define the required methods. See page 209.

4 In the class definition, define accessor methods so that they make the appropriate
ObjectStore.fetch() and ObjectStore.dirty() method calls. See page 211.

5 If required, define a class that extends the ClassInfo class. See page 212.

Interfaces never require ClassInfo classes.

If you will be running your application in an environment that allows the
unrestricted use of the Java reflection API, public or abstract classes with hollow
object constructors do not require ClassInfo classes.

6 For any ClassInfo subclasses you define, create an instance of the ClassInfo
subclass. Only one instance of this subclass is ever needed.

7 Call the static get() method on ClassInfo. (Typically, this is in static initializer
code for the manually annotated class.) See page 212.

Some Java-supplied classes are persistence capable. Others are not persistence
capable and cannot be made persistence capable. A third category of classes can be
made persistence capable, but there are important issues to consider when you do
so. Be sure to read Java-Supplied Persistence-Capable Classes on page 261.

About interfaces Interfaces are always persistence capable. You must specify them when you run the
postprocesor, but other than that, you need not do anything to make an interface
persistence capable.

Implementing the IPersistent Interface
Every persistence-capable class must implement the IPersistent interface or be a
subclass of a class that implements it. As with any interface, every method defined
in the IPersistent interface must be defined in a class that implements
IPersistent. If you want to rely on the postprocessor to insert the missing methods
for you, you must not explicitly implement the IPersistent interface.

Defining the Required Fields
The following code must be in your class definition. You can add this code yourself,
or you can run the postprocessor to add it.

transient private com.odi.imp.ObjectReference ODIRef;
transient public byte ODIObjectState;

The ODIRef field stores a reference. The ODIObjectState field holds some object
state bits. The underlying run-time classes in PSE Pro access these fields through the
IPersistent accessor methods, as needed.
208 PSE Pro for Java User Guide

Chapter 9: Generating Persistence-Capable Classes Manually
Defining Required Methods in the Class Definition
This section describes the methods that must be defined in a class that implements
the IPersistent interface.

Define the initializeContents() method to load real values into hollow instances
of your class. This changes a hollow object to an active object. PSE Pro provides
methods on the GenericObject class that retrieve each Field type. Be sure to call
the correct methods for the fields in your persistent object. There is a separate
method for obtaining each type of Field object. PSE Pro calls the
initializeContents() method as needed. The method signature is

public void initializeContents(GenericObject genObj)

Following is an example:

public void initializeContents(GenericObject handle) {
 name = handle.getStringField(1, PCI);
 age = handle.getIntField(2, PCI);
 children = (Person[])handle.getArrayField(3, PCI);
}

If the class you are annotating implements IPersistent through a superclass, you
must also initialize superclass fields by invoking initializeContents() on the
superclass.

Define the flushContents() method to copy values from a modified instance
(active persistent object) back to the database. This method changes an active clean
or dirty object to an active clean object. PSE Pro provides methods on the
GenericObject class that set each Field type. Be sure to call the correct methods for
the fields in your persistent object. There is a separate method for setting each type
of Field object. PSE Pro calls the flushContents() method as needed. The method
signature is

public void flushContents(GenericObject genObj)

Following is an example:

public void flushContents(GenericObject handle) {
 handle.setClassField(1, name, PCI);
 handle.setIntField(2, age, PCI);
 handle.setArrayField(3, children, PCI);
}

If the class you are annotating implements IPersistent through a superclass, you
must also flush superclass fields by invoking flushContents() on the superclass.

Define the clearContents() method to reset the values of an instance to the default
values. This method changes an active clean object to a hollow object. This method
must set all reference fields that referred to persistent objects to null. PSE Pro calls
this method as needed. The method signature is

public void clearContents()

Following is an example:

public void clearContents() {
 name = null;
Release 7.1 209

 age = 0;
 children = null;
}

If the class you are annotating implements IPersistent through a superclass, you
must also clear superclass fields by invoking clearContents() on the superclass.

Field accessor
methods

The following accessor methods must be in the class definition:

• public ObjectReference ODIgetRef()

• public void ODIsetRef(ObjectReference objRef)

• public byte ODIgetState()

• public void ODIsetState(byte state)

If you do not want to define them, you can run the postprocessor to insert them for
you, but you must not declare the class to implement IPersistent. However, if
you explicitly define an ODIgetxxx() method, you must explicitly define its
associated ODIsetxxx() method. Likewise, if you explicitly define an ODIsetxxx()
method, you must explicitly define its associated ODIgetxxx() method.

If you add the code yourself, it must look like the following:

public com.odi.imp.ObjectReference ODIgetRef() {
 return ODIRef;
}

public void ODIsetRef(com.odi.imp.ObjectReference objRef) {
 ODIRef = objRef;
}

public byte ODIgetState() {
 return ODIObjectState;
}

public void ODIsetState(byte state) {
 ODIObjectState = state;
}

Implementing the IPersistentHooks Interface
There are times when you might want a persistence-capable class to maintain
transient information in parallel with persistent information. The
IPersistentHooks interface allows you to do this.

If a persistence-capable class implements the IPersistentHooks interface, PSE Pro
calls the IPersistentHooks methods that are defined when it calls the
corresponding methods defined in the IPersistent interface.

As with any interface, every method defined in the IPersistentHooks interface
must also be defined in the class that explicitly implements the IPersistentHooks
interface.

If you explicitly declare that a class implements the IPersistentHooks interface
without providing all the definitions declared in the interface, you receive a
compilation error. However, if you define some methods, but not all of them, and
210 PSE Pro for Java User Guide

Chapter 9: Generating Persistence-Capable Classes Manually
you do not explicitly declare that the class implements the IPersistentHooks
interface, you can use the postprocessor to insert the missing methods and the
interface declaration.

Hook methods The following methods must also be in the class definition. You can define them as
methods with empty bodies. If you do not define them and your class does not
explicitly implement the IPersistentHooks interface, you can use the
postprocessor to add these methods with empty bodies.

• postInitializeContents() is called by PSE Pro immediately after it calls the
initializeContents() method.

• preFlushContents() is called by PSE Pro immediately before it calls the
flushContents() method.

• preClearContents() is called by PSE Pro immediately before it calls the
clearContents() method.

• preDestroyPersistent() is called by PSE Pro after your application calls the
ObjectStore.destroy() method and before PSE Pro destroys anything.

• postPersisted() is called by PSE Pro after it assigns a database location to a new
persistent object and after it calls the flushContents() method.

Making Object Contents Accessible
In each class that you want to be persistence capable, you must annotate your class
definition to include calls to the ObjectStore.fetch() and ObjectStore.dirty()
methods. It does not matter whether the class explicitly implements IPersistent or
inherits from a class that implements IPersistent. These calls are required for the
class to be persistence capable.

With some exceptions, before your application can access the contents of an object, it
must call the

• ObjectStore.fetch() method on the object to read its contents

• ObjectStore.dirty() method on the object to modify its contents

Calls to fetch()
or dirty()

Your application calls the method and passes an object whose contents you want to
access. This makes the contents of the object available. Modify the methods that
reference nonstatic fields to call the ObjectStore.fetch() and
ObjectStore.dirty() methods as needed. While this step is not mandatory, it does
provide a systematic way of ensuring that the application calls the fetch() or
dirty() method before accessing or updating object contents.

Remember that you can add some annotations and run the postprocessor to add
other annotations. You might want to define the required methods and the
ClassInfo subclass, but let the postprocessor insert the required fetch() and
dirty() calls.

Exceptions You need not call the fetch() or dirty() method on instances of primitive
wrapper classes (see Description of Java-Supplied Persistence-Capable Classes on
page 261). If you do call fetch() or dirty() on these objects, nothing happens and
processing continues.
Release 7.1 211

You need not call the fetch() or dirty() method on instances of
java.lang.String. If you call fetch() on instances of java.lang.String, nothing
happens. If you call dirty() on instances of java.lang.String, PSE Pro signals
ObjectException.

Defining a ClassInfo Subclass
If required, define a public class that inherits from the ClassInfo class. (See
page 215 for requirements.) You must define this class in a separate file. If you plan
to use the postprocessor to insert any annotations, the name of this class must be one
of the following:

• The name of the persistence-capable class, followed by ClassInfo, for example,
PersonClassInfo

• The suffix specified with the -classinfosuffix option to the postprocessor

In each ClassInfo subclass definition, you must include the following methods.

Define a create() method to create instances of your persistence-capable class with
default field values:

public IPersistent create() {return new Person(this);}

This should call a constructor, referred to as a hollow object constructor, that leaves
fields in the default state. For an abstract class, the create() method can return null.

Define the public getClassDescriptor() method to obtain the class object for your
class. For example:

public Class getClassDescriptor()
 throws ClassNotFoundException {
 return Class.forName("com.odi.demo.people.Person"); }

Define the public getFields() method to allow access to the names and types of the
fields of the class. For example:

public Field[] getFields() { return fields; }
private static Field[] fields = {
 Field.createString("name"),
 Field.createInt("age"),
 Field.createClassArray("children", "Person", 1)
};

The definition of the getFields() method can specify create methods for fields that
are not in the class definition and can omit create methods for fields that are in the
class definition.

Example of a Manually Annotated Persistence-Capable Class
Following is an example of a definition of a manually annotated persistence-capable
class. Three consecutive periods indicate lines from a complete program that have
been omitted here because they are not pertinent to creating a persistence-capable
class.

Class definition package com.odi.demo.people;
import com.odi.*;
212 PSE Pro for Java User Guide

Chapter 9: Generating Persistence-Capable Classes Manually
// Define a class that implements IPersistent:

class Person implements IPersistent {

 // Fields:

 String name;
 int age;
 Person children[];
 // Other fields ...

 // Constructor:

 public Person(String name, int age, Person children[]) {
 this.name = name; this.age = age; this.children = children;
 }

 // Hollow object constructor:

 public Person(ClassInfo info) { }

 // Accessor methods that have been modified to call
 // the fetch() and dirty() methods:

 public String getName() {ObjectStore.fetch(this);
 return name; }
 public void setName(String name) {ObjectStore.dirty(this);
 this.name = name; }
 public int getAge() {ObjectStore.fetch(this); return age; }
 public void setAge(int age) {ObjectStore.dirty(this);
 this.age = age; }
 public Person[] getChildren() {ObjectStore.fetch(this);
 return children; }
 public void setChildren(Person children[]) {
 ObjectStore.dirty(this); this.children = children;
 }
 // Other methods ...

 // Additions required for PSE Pro:

 // Define the initializeContents() method to load real
 // values into hollow persistent objects, which makes
 // them active persistent objects:

 public void initializeContents(GenericObject handle) {
 name = handle.getStringField(1, myClassInfo);
 age = handle.getIntField(2, myClassInfo);
 children = (Person[])handle.getArrayField(3, myClassInfo);
 }

 // Define the flushContents() method to copy the
 // contents of a persistent object to the database:

 public void flushContents(GenericObject handle) {
 handle.setClassField(1, name, myClassInfo);
 handle.setIntField(2, age, myClassInfo);
 handle.setArrayField(3, children, myClassInfo);
 }
Release 7.1 213

 // Define the clearContents() method to reset the values
 // of a persistent instance to the default values.
 // This method must set all reference fields that
 // referred to persistent objects to null:

 public void clearContents() {
 name = null;
 age = 0;
 children = null;
 }

 // Define the ODIRef and ODIObjectState fields and
 // their accessor methods.
 transient private com.odi.imp.ObjectReference ODIRef;
 transient public byte ODIObjectState;
 public com.odi.imp.ObjectReference ODIgetRef() {
 return ODIRef;
 }
 public void ODIsetRef(com.odi.imp.ObjectReference objRef) {
 ODIRef = objRef;
 }
 public byte ODIgetState() {
 return ODIObjectState;
 }
 public void ODIsetState(byte state) {
 ODIObjectState = state;
 }

 // Create an instance of the subclass of ClassInfo and
 // register that instance:

 static ClassInfo myClassInfo =
 ClassInfo.get("com.odi.people.Person");
}

ClassInfo
definition

In a separate file, define the subclass of the ClassInfo class if its definition is
required. For example:

// Define the subclass of ClassInfo. A recommended naming
// convention is to prefix the name of your persistence-capable
// class to "ClassInfo".

package com.odi.demo.people;

import com.odi.*;

public class PersonClassInfo extends ClassInfo {

 // Define a create() method to create instances of your
 // class with default field values. The method
 // calls the hollow object constructor and passes this,
 // which is an instance of the ClassInfo subclass:

 public IPersistent create() { return new Person(this); }

 // Define these public methods to provide access to
 // the name of the persistence-capable class, the name of its
 // superclass, and the names of its fields.
 // The array returned by getFields() must contain the
 // fields in the order of their field numbers.
214 PSE Pro for Java User Guide

Chapter 9: Generating Persistence-Capable Classes Manually
 public Class getClassDescriptor()
 throws ClassNotFoundException {
 return Class.forName("com.odi.demo.people.Person"); }
 public Field[] getFields() { return fields; }
 private static Field[] fields = {
 Field.createString("name"),
 Field.createInt("age"),
 Field.createClassArray(
 "children", "com.odi.demo.People.Person", 1)
 };

}

It does not matter whether the ClassInfo class explicitly implements IPersistent
or inherits from a class that implements IPersistent.

ClassInfo is an abstract class for managing schema information for persistence-
capable classes. PSE Pro requires the schema information to manage the object. If you
do not explicitly define a ClassInfo class, PSE Pro uses the Java reflection API to
create the needed information at run time.

After you perform the steps described in this section, you can store instances of your
class in a database.

PSE Pro does not let you store final instance variables persistently. This is because
it is not possible to write the initializeContents() and clearContents()
methods to handle final instance variables correctly.

Additional Information About Manual
Annotation

This section provides additional information about manually annotating a class to be
persistence capable. It discusses the following topics:

• Defining a hashCode() Method

• Defining a clone() Method

• Working with Transient-Only and Persistent-Only Fields

• Defining Persistence-Aware Classes

• Following Postprocessor Conventions

• Annotating Abstract Classes

Defining a hashCode() Method
Every class inherits from the Object class, which defines the hashCode() method
and provides a default implementation. For a persistent object, this default
implementation often returns a different value for the same persistent object (the
object on the disk) at different times. This is because PSE Pro fetches the persistent
object into different Java objects at different times (in different transactions or
different invocations of Java).
Release 7.1 215

Additional Information About Manual Annotation
This is not a problem if you never use the object as a key in a persistent hash table or
other structure that uses the hashCode() method to locate objects. If you do use the
object as a key, the hash table or other structure that relies on the hashCode()
method might become corrupted when you bring the objects back from the database.

To resolve this problem, you can define your own hashCode() method and base it
on the contents of the objects so it returns the same thing every time. The signature
of this method must be

public int hashCode()

Defining a clone() Method
If your persistence-capable class implements the Cloneable interface, your class
must define a clone() method. This clone() method must ensure that it correctly
initializes and checks the ODIRef and ODIObjectState fields when it performs a
clone operation. For new cloned objects, your application should initialize ODIRef to
null and ODIObjectState to zero.

Working with Transient-Only and Persistent-Only Fields
The definition of the ClassInfo.getFields() method returns an array of
com.odi.Field instances. There is one element for each field that you want to store
and retrieve in a persistent object. PSE Pro does not require an exact match between
each field in the Java class definition and each field array element returned by the
getFields() method. Furthermore, fields listed in the getFields() return value
need not directly represent fields in the class. They can represent state from which
values for fields in the class are synthesized.

Transient-only
fields

A persistence-capable Java class can define a field that does not appear in the list of
fields returned by the ClassInfo.getFields() method. Such a field is a transient-
only field. The initializeContents() method that is associated with the class can
be used to initialize transient-only fields based on persistent state. For example:

class A {
 transient java.awt.Component myVisualizationComponent;
 int myValue;
 ...
 }

In this class, the myVisualizationComponent field is declared to be a transient
reference to java.awt.Component. The java.awt package contains GUI classes that
do not lend themselves to being persistence capable.

Number of fields The number of nonstatic, nontransient declared fields in the class should generally
be equal to the number of fields reported by the getFields() method, unless the
flushContents() and initializeContents() methods are written to combine or
split fields. If they are so written, you can define an arbitrary mapping of persistent
fields to Java instance fields. For example:

class Some {
 int a;
 int b;
 int aPlusb;
216 PSE Pro for Java User Guide

Chapter 9: Generating Persistence-Capable Classes Manually
 initializeContents(GenericObject, go) {
 a=go.getField(1, SomeClassInfo);
 b=go.getField(2, SomeClassInfo);
 c=a+b;
 }
 ...
}

In a separate file:

public class SomeClassInfo
 static Field[] fields=
{ field.createInt"a");
 field.createInt("b");
}

Persistent-only
fields

The list of Field objects returned by the getFields() method might include one
or more fields that are not in the Java class definition. Such fields are persistent-only
fields. The flushContents() method associated with the class must set the field
value in the generic object based on other fields of the class.

Variable
initializers

If you manually annotate a class, you should avoid using variable initializers to
initialize persistent fields of persistence-capable objects. Instead, perform the
initialization in the constructor. This is because the values computed by the variable
initializer expression typically are overwritten by the
com.odi.IPersistent.initializeContents() method. When an object is
actually fetched from the database, the fields are initialized with their correct
persistent values.

Example An example of how you might use transient-only and persistent-only fields is in the
demo directory that is included in PSE Pro. In the rep example, Rectangle.a and
Rectangle.b are transient-only fields, while ax, ay, bx, and by are persistent-only
fields. Following is the part of the example that shows this:

package com.odi.demo.rep;

/**
* A Rectangle has two Points, representing its upper-left
* and lower-right corners. However, its persistent
* representation is formed by storing the x and y coordinates of
* the two points, rather than the points themselves. This
* demonstrates the control that the definer of a persistent
* class has over the persistent representation. Note that
* Identity of the Point objects is not preserved, since thePoint *
objects are not persistent objects. */

import com.odi.*;

public class Rectangle implements IPersistent {

 transient private com.odi.imp.ObjectReference ODIref;
 transient public byte ODIobjectState;

 transient Point a;
 transient Point b;
Release 7.1 217

Additional Information About Manual Annotation
 static ClassInfo classInfo
 = ClassInfo.register(new RectangleClassInfo());

 public com.odi.imp.ObjectReference ODIgetRef() {
 return ODIref;
 }

 public void ODIsetRef(com.odi.imp.ObjectReference objRef) {
 ODIref = objRef;
 }

 public byte ODIgetState() {
 return ODIobjectState;
 }
 public void ODIsetState(byte state) {
 ODIobjectState = state;
 }

 Rectangle(Point a, Point b) {
 this.a = a;
 this.b = b;
 }

 void describe() {
 System.out.println("Rectangle with two points:");
 a.describe();
 b.describe();
 }
 /* Annotations for persistence. */

 Rectangle(ClassInfo ignored) {}

 public void initializeContents(GenericObject handle) {
 a = new Point(handle.getIntField(1, classInfo),
 handle.getIntField(2, classInfo));
 b = new Point(handle.getIntField(3, classInfo),
 handle.getIntField(4, classInfo));
 }

 public void flushContents(GenericObject handle) {
 handle.setIntField(1, a.x, classInfo);
 handle.setIntField(2, a.y, classInfo);
 handle.setIntField(3, b.x, classInfo);
 handle.setIntField(4, b.y, classInfo);
 }

 public void clearContents() {
 a = null;
 b = null;
 }
 /* This class is never used as a persistent hash key. */
 public int hashCode() {
 return super.hashCode();
 }
}

In a separate file:

public class RectangleClassInfo extends ClassInfo
{
218 PSE Pro for Java User Guide

Chapter 9: Generating Persistence-Capable Classes Manually
 public IPersistent create() { return new Rectangle(this); }
 public Class getClassDescriptor() throws
 ClassNotFoundException {
 return Class.forName("com.odi.demo.rep.Rectangle");
 }

 public Field[] getFields() { return fields; }
 private static Field[] fields =
 { Field.createInt("ax"),
 Field.createInt("ay"),
 Field.createInt("bx"),
 Field.createInt("by"), };}

Defining Persistence-Aware Classes
A persistence-aware class is a class whose instances

• Can operate on persistent objects

• Cannot be stored in a database

For a class to be persistence aware, you must annotate it so that it includes calls to
the ObjectStore.fetch() and ObjectStore.dirty() methods. The fetch()
method makes the contents of a persistent object available to be read. The dirty()
method makes the contents of a persistent object available to be modified.

To make a class persistence aware, modify each method that references

• Nonstatic fields of persistence-capable classes

• Array elements of arrays that might be persistent

Modify each method so that it calls the ObjectStore.fetch() or
ObjectStoret.dirty() method. This call must be before any attempt to access the
contents of the persistent object. The fetch() and dirty() methods make the
contents of persistent objects available.

A persistence-aware class includes the fetch() and dirty() annotations. It does
not include the other annotations that are required for a class to be persistence
capable.

Following Postprocessor Conventions
If you plan to define all required annotations explicitly, you need not be concerned
with postprocessor conventions. However, if you plan to insert some annotations
explicitly and use the postprocessor to insert other annotations, you must follow
these postprocessor conventions.

• The name of the ClassInfo subclass must have the following format:

 class_nameClassInfo

For example, if you define the Boat class, the name of the associated subclass of
ClassInfo must be BoatClassInfo.

• In the ClassInfo subclass definition, when you define the hollow object
constructor, it must take a single argument of type ClassInfo. See page 214.
Release 7.1 219

Creating and Accessing Fields in Annotations
Annotating Abstract Classes
Persistence-capable classes and their superclasses, even if they are abstract, must
each have a corresponding ClassInfo subclass. But an application does not create
instances of abstract classes, so you cannot write the required create() method in
the ClassInfo subclass in the usual way. Define the create() method so that it
returns null. Because this method is never called, it is safe to define it this way.

Now suppose you define the following two classes:

abstract class Y {
 int yValue;
 abstract void doSomething();
}

class X extends Y {
 float xValue;
 void doSomething() {}
}

Class Y must have an associated ClassInfo subclass and class X must have an
associated ClassInfo subclass. The ClassInfo subclass associated with X does not
extend the ClassInfo subclass associated with Y.

In the ClassInfo subclass for X, the Field array must include only those fields
defined explicitly in X; XClassInfo.getFields() must report only the immediate
persistent fields in X. The ClassInfo subclass for Y defines a Field array that
contains the fields explicitly defined in Y.

Creating and Accessing Fields in Annotations
As part of the process of manually defining a class that is persistence capable, the
required annotations must, among other things,

• Define an initializeContents() method in the persistence-capable class

• Define a flushContents() method in the persistence-capable class

• Define a getFields() method in the ClassInfo subclass

To define these methods correctly, you must know how PSE Pro makes persistent
objects accessible and the methods that are available to create and access individual
fields in an object. To help you do this, this section discusses the following topics:

• Making Persistent Objects Accessible

• Creating Fields

• Getting and Setting Generic Object Field Values

• Methods for Creating Fields and Accessing Them in Generic Objects
220 PSE Pro for Java User Guide

Chapter 9: Generating Persistence-Capable Classes Manually
Making Persistent Objects Accessible
The ObjectStore.fetch() method makes the contents of a persistent object
available to be read by an application. The ObjectStore.dirty() method makes the
contents of a persistent object available to be updated by an application.

To execute a fetch() or dirty() call, PSE Pro first checks whether a fetch() or
dirty() call was already invoked on the object in the current transaction. If it was,
PSE Pro does nothing and the program continues. If it was not, PSE Pro executes the
fetch() or dirty() call, as required.

When PSE Pro retrieves a persistent object, it calls the initializeContents()
method that you defined. The initializeContents() method calls methods on
GenericObject to obtain the field values for the persistent object. The result is that
your program has access to the desired data.

PSE Pro provides the GenericObject class for transferring data between a database
and a Java application or applet. A generic object represents an object’s data as it is
stored in the database. A generic object is a temporary buffer that PSE Pro uses while
it is copying data from the database into a persistent object or writing data into the
database from a persistent object. PSE Pro creates instances of GenericObject as
needed. You do not define subclasses of GenericObject, nor do you create instances
of GenericObject.

For an object that was not already retrieved, PSE Pro copies the contents of the object
from the database into the GenericObject instance. It then passes this instance to the
initializeContents() method defined in the persistence-capable class.

Suppose you called the dirty() method on a persistent object and modified it. To
update the object in the database, commit the transaction. This causes PSE Pro to
create an instance of GenericObject to hold the contents of your object. Then PSE
Pro calls the flushContents() method that you defined when you defined the
persistence-capable class.

The flushContents() method must call methods on the GenericObject instance
that store the object’s field values in the generic object. PSE Pro calls the
flushContents() method as needed to copy the new contents of the object into the
database.

Creating Fields
PSE Pro provides the Field class to represent a Java field in a persistent object. When
you define a persistence-capable class, you must define a getFields() method in
the required ClassInfo subclass. This method provides a list of the nonstatic fields
(also called instance variables) whose values are being stored and retrieved.

Description of
getFields()

The getFields() method must return an array that contains the nonstatic persistent
object fields. The order in which they appear in the array implies their associated
field numbers. This array must include only those fields defined in the persistence-
capable class and not any inherited fields.
Release 7.1 221

Creating and Accessing Fields in Annotations
Field numbers represent the position of a nonstatic field within the list of all
nonstatic fields defined for the class and its superclasses. The first field has field
number 1. (Note that the first field number is not 0.)

Order of fields When you define the getFields() method in the ClassInfo subclass, you
determine the order and, therefore, the number of each field even though you do not
explicitly assign any numbers. PSE Pro assigns the numbers according to the order
in which the values are returned from the field create methods defined in the
getFields() method. The field numbers are consecutive with no gaps. For example:

Example public Field[] getFields() {return fields;}

 private static Field[] fields = {
 Field.createString("name"),
 Field.createInt("age"),
 Field.createClassArray("children",
 "com.odi.demo.people.Person", 1)
 };

The previous definition causes PSE Pro to associate 1 with the name field, 2 with the
age field, and 3 with the children field.

When you define the initializeContents() and flushContents() methods, you
must specify the correct field number for each field that the methods get and set.

Creation
methods

The Field class provides a create method for each Java data type. Minimally, the
create methods on the Field object

• Return the created Field object

• Take a String parameter that specifies the name of the field

There are separate create methods for singleton and array fields of each primitive
type. There are also string fields, class fields, and interface fields. The complete list
of field create methods is in Methods for Creating Fields and Accessing Them in
Generic Objects on page 223.

Getting and Setting Generic Object Field Values
As described earlier, PSE Pro provides the GenericObject class to transfer objects
between the database and an application. Consequently, when you define a
persistence-capable class, you must define the initializeContents() method to
retrieve values from fields in instances of GenericObject and the flushContents()
method to set values in fields of instances of GenericObject.

When you define the initializeContents() and flushContents() methods, you
must use a method that is appropriate for the type of each field in the instance of
GenericObject. For example, for each character field, you must use the

• getCharField() method in the initializeContents() method

• setCharField() method in the flushContents() method

There is a different method for getting and setting each Java type. To get or set an
array of any type, you define the getArrayField() and setArrayField() methods,
respectively. In the initializeContents() method, be sure to call the methods that
222 PSE Pro for Java User Guide

Chapter 9: Generating Persistence-Capable Classes Manually
get the values. In the flushContents() method, be sure to call the methods that set
the values. The methods that get and set fields in a generic object are listed in the
table in Methods for Creating Fields and Accessing Them in Generic Objects on
page 223.

Methods for Creating Fields and Accessing Them in Generic
Objects

Kind of Java Field Code Method That Operates on It

Single byte byte Field.createByte()
GenericObject.getByteField()
GenericObject.setByteField()

Array of bytes byte[] Field.createByteArray()
GenericObject.getArrayField()
GenericObject.setArrayField()

Single character char Field.createChar()
GenericObject.getCharField()
GenericObject.setCharField()

Array of characters char[] Field.createCharArray()
GenericObject.getArrayField()
GenericObject.setArrayField()

Single 16-bit integer short Field.createShort()
GenericObject.getShortField()
GenericObject.setShortField()

Array of 16-bit
integers

short[] Field.createShortArray()
GenericObject.getArrayField()
GenericObject.setArrayField()

Single 32-bit integer int Field.createInt()
GenericObject.getIntField()
GenericObject.setIntField()

Array of 32-bit
integers

int[] Field.createIntArray()
GenericObject.getArrayField()
GenericObject.setArrayField()

Single 64-bit integer long Field.createLong()
GenericObject.getLongField()
GenericObject.setLongField()

Array of 64-bit
integers

long[] Field.createLongArray()
GenericObject.getArrayField()
GenericObject.setArrayField()

Single 32-bit floating-
point number

float Field.createFloat()
GenericObject.getFloatField()
GenericObject.setFloatField()

Array of 32-bit
floating-point
numbers

float[] Field.createFloatArray()
GenericObject.getArrayField()
GenericObject.setArrayField()

Single 64-bit floating-
point number

double Field.createDouble()
GenericObject.getDoubleField()
GenericObject.setDoubleField()
Release 7.1 223

Creating and Accessing Fields in Annotations
Array of 64-bit
floating-point
numbers

double[] Field.createDoubleArray()
GenericObject.getArrayField()
GenericObject.setArrayField()

Single Boolean value boolean Field.createBoolean()
GenericObject.getBooleanField()
GenericObject.setBooleanField()

Array of Boolean
values

boolean[] Field.createBooleanArray()
GenericObject.getArrayField()
GenericObject.setArrayField()

Single string value String Field.createString()
GenericObject.getStringField()
GenericObject.setStringField()

Array of string
values

String[] Field.createStringArray()
GenericObject.getArrayField()
GenericObject.setArrayField()

Enum Field.createEnum()
GenericObject.getEnumField()
GenericObject.setEnumField()

A class Field.createClass()
GenericObject.getClassField()
GenericObject.setClassField()

A class array Field.createClassArray()
GenericObject.getArrayField()
GenericObject.setArrayField()

An interface Field.createInterface()
GenericObject.getInterfaceField()
GenericObject.setInterfaceField()

An interface array Field.createInterfaceArray()
GenericObject.getArrayField()
GenericObject.setArrayField()

Kind of Java Field Code Method That Operates on It
224 PSE Pro for Java User Guide

Chapter 10
Using the Java Dynamic Data
(JDD) Classes

The Java Dynamic Data (JDD) classes provide the API for creating, storing, and
accessing persistent data, based on type information (schema) that the application
defines at run time. JDD is designed for applications that model dynamic data and
require greater flexibility when defining and redefining types than is available with
persistence-capable Java classes.

This chapter explains how JDD works and shows how to use the JDD classes to
perform common database operations.

Contents This chapter covers the following topics:

An Overview of JDD 225

Basic JDD Tasks 227

Relationships 232

Improving Query Performance with Superindexes 237

Mixing Java Objects with JDD 238

Note To compile and run a Java program that uses the JDD classes, you must set the
CLASSPATH environment variable to include the location of the JDD .jar file.

An Overview of JDD
Three concepts are central to understanding JDD: types, attributes, and entities. These
concepts are analogous to Java’s classes, fields, and objects. Just as a Java class defines
a set of fields that can be assigned values in an object of the class, so a JDD type
defines a set of attributes that can be assigned values in an entity of the type.

The difference between Java and JDD is that, in Java, the definition of classes and
their fields must occur before run time — during program development. In JDD, on
the other hand, the definition of types and their attributes occurs dynamically at run
time. Furthermore, JDD enables you to add, change, or remove types and their
attributes at run time — without having to run the postprocessor, perform schema
evolution, restart the Java virtual machine, or even begin a new transaction. In fact,
JDD makes it possible to create a new type, add attributes to the type, create entities
of the type, assign attribute values in the entities, and then perform queries — all in
Release 7.1 225

An Overview of JDD
the same transaction. See A Simple JDD Application on page 230 for an example
program that uses JDD to perform these tasks within a single transaction.

The following sections provide more information about JDD types, attributes, and
entities.

Types
A type is an object of the class Type that defines the attributes that can be accessed
for entities of the type. Once you have created a type by invoking the Type()
constructor, you can add attributes and create entities of the type.

Types have multiple inheritance; each type can have multiple subtypes and multiple
supertypes.

Each type also maintains an extent of its entities and all of its subtypes’ entities. This
feature allows you to access entities through their type, either directly or by querying
the type. A query on a type executes through the type’s extent, which includes the
extent of each of its subtypes.

Attributes
An attribute is an object of the class Attribute. You create attribute objects when
you define a type’s attributes, and you assign attribute values in the entities of the
type. The different subclasses of Attribute — for example, IntAttribute and
EntityAttribute — determine the types of values that can be assigned to attributes.
These subclasses provide typed versions of accessor methods — for example, get()
and put() — for type safety.

Methods in the Attribute class and its subclasses enable you to do the following:

• Set default values.

• Add constraints, including (for numeric attributes) maximum and minimum
values.

• Declare an attribute as transient.

• Make an attribute immutable. Once the value of an immutable attribute is
assigned, it cannot be changed.

• Make an attribute required. A required attribute must be assigned a value for each
entity of the type.

Relationships You can also use attributes to represent bidirectional relationships. The
Relationship interface and the classes that implement it enable you to model three
types of relationships:

• One-to-one

• One-to-many

• Many-to-many

To create a relationship, you invoke the constructor for the appropriate relationship
class. The constructor creates attributes in the types on both sides of the relationship.
Each attribute references the other side of the relationship.
226 PSE Pro for Java User Guide

Chapter 10: Using the Java Dynamic Data (JDD) Classes
For example, the OneToMany() constructor could be used to create a one-to-many
relationship between two types, Department and Employee. The constructor would
create one attribute in the Department type and the other in the Employee type. The
attribute for Department could contain references to all Employee entities who are
members of a department, and the attribute for Employee could reference the
Department entity.

JDD maintains referential integrity on both sides of the relationship. To continue
with the preceding example, if you were to add or remove an Employee entity, JDD
would automatically update the attribute in the appropriate Department entity.

For more information, see Relationships on page 232.

Entities
An entity is an object of the Entity class. You create an entity as belonging to a type,
and assign values to an entity’s attributes, which are defined by the type. Later, when
you add new attributes to the type, you can assign them values in the existing
entities. You can also change an entity’s type.

To make an entity available to a query, you must add it to the extent of the entity’s
type — by calling the addToExtent() method on the type. You can get a list of all the
entities in the extent of a type — exclusive of its subtypes — by invoking the
entities() method on the type. You can also get a list of all entities in the extent of
the type and its subtypes, by invoking the extent() method.

Basic JDD Tasks
This section describes how to use the JDD API to perform basic database operations
with JDD, including

• Defining Types and Their Attributes

• Creating Entities of a Type

• Querying a Type

Most of the code examples shown in these sections are from the sample program
listed at the end of this section; see A Simple JDD Application on page 230.

Defining Types and Their Attributes
Before storing any entities in a database, you must first create their types. To create
a type, invoke the Type() constructor, as in the following example:

Type Car = new Type(db, "Car");

The db argument is the database that you previously opened or created. The Car
argument is the name of the new type, which is also the object returned by the
constructor. To make Car a subtype of an existing type (for example, Vehicle), you
specify an object of the supertype as the first argument, as in the following example:

Type Car = new Type(Vehicle, db, "Car");
Release 7.1 227

Basic JDD Tasks
After creating a type, you can create its attributes. It is not necessary that you create
all attributes that the type will ever require. In fact, the value of JDD is that it lets you
add attributes on an ongoing basis, as dictated by the changing data model.
Likewise, you can remove attributes whenever the need arises.

To create an attribute, you invoke the constructor for one of the subclasses of the
Attribute class. The choice of the subclass depends on the type of values you will
be storing in the attribute; for example, to store floating-point values, invoke the
DoubleAttribute() constructor.

The following code defines three attributes in the Car type — make, color, and year:

StringAttribute make = new StringAttribute(Car, "make");
StringAttribute color = new StringAttribute(Car, "color");
IntAttribute year = new IntAttribute(Car, "year");

Indexing If you will be performing query operations on the type, you can optimize queries by
adding indexes. As explained in Types on page 226, you perform queries on a type,
which maintains an extent of entities. To add an index, call the addIndex() method
on the type, specifying the name of the attribute to be used as the key. The attribute
name (a string) must be preceded by the dollar-sign character ($). You can cascade
through a hierarchy of attributes by preceding each name with the $ character; for
example, $a.$b.$c.

The following example adds indexes to the Car type, specifying three attributes as
keys — make, color, and year:

Car.addIndex("$make");
Car.addIndex("$color");
Car.addIndex("$year");

If Car has subtypes, addIndex() will also add indexes to the subtypes. Later, if you
add another subtype, JDD automatically adds an index to the subtype, using the
same keys.

For most applications, the indexing provided by addIndex() is sufficient to optimize
queries. However, if your application queries types that have many subtypes, you
should consider adding superindexes; for more information, see Improving Query
Performance with Superindexes on page 237.

After you have defined types and their attributes, you have provided the type
information needed to create entities.

Creating Entities of a Type
Creating an accessible entity requires not just the construction of an entity, but also
assigning values to its attributes and adding the entity to its type’s extent. This last
step makes the entity available to queries.

To create an entity, call the create() method on its type. This method invokes the
Entity() constructor and returns an Entity object, as follows:

Entity car = null;
car = Car.create();
228 PSE Pro for Java User Guide

Chapter 10: Using the Java Dynamic Data (JDD) Classes
If you do not have a type object available for calling the create() method, you can
call the static findType() method to get the type, as follows:

Type Car = Type.findType("Car", db);

Assigning
attribute values

To assign attribute values in the entity, call the put() method on the attribute object,
as follows:

make.put(car, carMake[i%4]);
color.put(car, carColor[i%3]);
year.put(car, 1980+i);

If you do not have the attribute object (for example, make), you can call put() on the
entity (car), specifying the name of the attribute as an argument, as follows:

car.put("make", "Ford"); // allowed, but not recommended!

However, such calls can be expensive, especially when assigning values to the same
attribute in a highly iterative loop. Calling an entity’s put() method with the
attribute name as an argument incurs the expense of a string lookup for each call.

Instead, call put() on the attribute object, specifying the entity object and the value
to assign as arguments. If you do not have the attribute object, call the findAttr()
method on the type to retrieve the attribute, as in the following example:

// make this call outside the access loop
StringAttribute make = (StringAttribute)Car.findAttr("make");

// make this call to assign the attribute value inside the loop
make.put(car, "Ford");

The same consideration applies when calling get() to retrieve an attribute value.

Adding an entity
to the type’s
extent

The final stage in creating an entity is to add it to the extent of its type. Unless you
add it to the extent, the entity is not put in the database. The following example adds
a car entity to its type, Car:

Car.addToExtent(car);

At this point, you have populated the database and can perform queries.

Querying a Type
Queries are performed in JDD using the query mechanism provided by OSJI; for
detailed information, see Querying PSE Pro Utility Collections. The only difference
between OSJI queries and JDD queries is that, when you specify an attribute in a
query string, you must precede the attribute name with the $ character, just as you
do when adding an index; see Defining Types and Their Attributes on page 227. You
can cascade references through a hierarchy of attributes by preceding each attribute
with the $ character; for example, $a.$b.$c.

To query the database, construct a TypeQuery object, as follows:

TypeQuery query = new TypeQuery
 (Car, "($make == \"Fiat\") && ($year > 1990)");

You can use the iterator() method on the TypeQuery object to get a Java Iterator
object and then use methods on the Iterator object to access the entities returned
by the query.
Release 7.1 229

Basic JDD Tasks
A Simple JDD Application
The following sample program exercises the basic features of a JDD application to
store and retrieve (through a query) information about cars.

The program creates a Car type and gives it three attributes: make, color, and year.
The program then creates several Car entities, assigns values to their attributes, and
queries the Car type for a list of entities that match the selection criteria specified by
the query.

The command lines for compiling and executing the program follow the program
listing.

// Cars.java: use the JDD classes to store information about
// cars; all type information is created at run time
import com.odi.*;
import com.odi.util.*;
import java.util.*;
import com.odi.jdd.*;
import com.odi.jdd.rel.*;

public class Cars {

 static Database db;
 static Transaction tr;

 static public void main(String args[]) {
 Session session = null;
 try {
 session = Session.create(null, null);
 session.join();
 load();
 } finally { session.terminate(); }
 }

 static void load() {
 String carMake[] =
 new String[] { "BMW", "Honda", "Edsel", "Fiat" };
 String carColor[]=new String[] { "red", "black", "green" };

 System.out.println("Creating database ...");
 try {
 Database.open("cars.db",
 ObjectStore.UPDATE).destroy();
 } catch (DatabaseNotFoundException e) { }

 db = Database.create("cars.db",
 ObjectStore.ALL_READ | ObjectStore.ALL_WRITE);

 tr = Transaction.begin(ObjectStore.UPDATE);

 System.out.println("Generating type information ...");

 // create the type of the entities
 Type Car = new Type(db, "Car");

 // create attributes
 StringAttribute make = new StringAttribute(Car, "make");
 StringAttribute color = new StringAttribute(Car, "color");
230 PSE Pro for Java User Guide

Chapter 10: Using the Java Dynamic Data (JDD) Classes
 IntAttribute year = new IntAttribute(Car, "year");

 // add indexes to the attributes
 Car.addIndex("$make");
 Car.addIndex("$color");
 Car.addIndex("$year");

 System.out.println("Creating Entities ...");
 Entity car = null;
 for (int i = 0; i < 20; i++) {
 // create a Car entity
 car = Car.create();

 // assign values to its attributes
 make.put(car, carMake[i%4]);
 color.put(car, carColor[i%3]);
 year.put(car, 1980+i);

 // add the entity to its type's extent
 Car.addToExtent(car);
 }

 System.out.println(
 "Querying for all Fiats older than 1990 ...");
 TypeQuery query = new TypeQuery
 (Car, "($make == \"Fiat\") && ($year > 1990)");
 Iterator iter = query.iterator(null);
 System.out.println("\n Make\tColor\tYear\n");
 while (iter.hasNext()) {
 car = (Entity)iter.next();
 System.out.println(" " + make.get(car) +
 "\t" + color.get(car) + "\t" + year.get(car));
 }
 tr.commit(); // done
 }
}

Here are the command lines to compile and execute the program, along with the
output from the run:

C:\examples>javac Cars.java
C:\examples>java Cars
Creating database ...
Generating type information ...
Creating Entities ...
Querying for all Fiats older than 1990 ...

 Make Color Year

 Fiat black 1999
 Fiat green 1991
 Fiat red 1995
Release 7.1 231

Relationships
Relationships
The Relationship class and its subtypes enable you to create and use bidirectional
relationships as attributes. The relationship classes provide methods for adding
related entities to the attributes as well as for accessing them.

The types of relationships and the classes that implement them are as follows:

• One-to-one, implemented by the OneToOne class

• One-to-many, implemented by the OneToMany class

• Many-to-many, implemented by the ManyToMany class

JDD provides automatic maintenance on relationships whenever a member object is
added or removed.

The following sections describe the relationship types and how to use them in a JDD
application.

One-to-One Relationships
The one-to-one relationship is implemented by the OneToOne class. The constructor
for this class creates attributes on both sides of the relationship, each of which is
represented by an entity reference to the other side. The signature for the constructor
is

public OneToOne(Type OneSide,
 java.lang.String OneSideAttribute,
 Type OtherSide,
 java.lang.String OtherSideAttribute)

You can use the constructed OneToOne object as an attribute object. For example, to
assign related entities to the relationship, you would invoke the put() method on
the OneToOne object. The signature of put() is

void put(Entity OneSideEntity, Entity OtherSideEntity)

To access the entity in the attribute, call the get() method on the attribute. Invoking
the OneSideAttribute.get() method returns OtherSideEntity, and invoking the
OtherSideAttribute.get() method returns OneSideEntity.

One-to-Many Relationships
The one-to-many relationship is implemented by the abstract class OneToMany. A
one-to-many relationship has an owner (the “one” side) and members (the “many”
side).

To create a one-to-many relationship, use the constructor for one of the subclasses,
LinkedOneToMany or IndexedOneToMany. Their signatures are as follows:

public LinkedOneToMany(Type ownerType,
 java.lang.String ownerAttr,
 Type memberType,
 java.lang.String memberAttr
 boolean doublyLinked)
232 PSE Pro for Java User Guide

Chapter 10: Using the Java Dynamic Data (JDD) Classes
public IndexedOneToMany(Type ownerType,
 java.lang.String ownerAttr,
 Type memberType,
 java.lang.String memberAttr
 java.lang.String primaryIndexPath)

Both constructors create attributes for the types ownerType and memberType. The
attribute on the owner side is a set of entity references to memberType entities, and
the attribute on the member side is an entity reference to an ownerType entity. For
both constructors, the constructed object can be used as an ownerAttr object.

The constructor signatures for LinkedOneToMany and IndexedOneToMany differ in
their last argument, as follows:

• The doublyLinked argument to LinkedOneToMany() specifies the type of list to
use for the member entity references. If the doublyLinked argument is true, the
list is doubly linked; otherwise, it is singly linked. A doubly linked list is more
efficient when removing elements.

• The IndexedOneToMany() constructor implements the ownerAttr attribute as an
OSTreeSet. It is for use with a very large set that you expect to query. The
primaryIndexPath argument specifies the primary index; if this argument is
omitted, no primary index is created. For more information about OSTreeSet, see
Description of OSTreeSet on page 143.

The sample program listed in Relationship Example on page 235 uses the
LinkedOneToMany() constructor to implement a one-to-many relationship between
Book entities and Borrower entities, as follows:

LinkedOneToMany books = new LinkedOneToMany
 (Borrower, "books", Book, "BorrowedBy", true);

In the next line, the constructed object (books) is used to call the add() method,
which adds the Book and Borrower entities to the relationship:

books.add(borrower[i%2], book);

The add() method returns false if the entities were already related in this
relationship; otherwise, it returns true and adds them to the relationship.

The next line retrieves the borrower of a book, by calling the get() method on book,
specifying the name of the attribute (BorrowedBy) as an argument:

Entity person = (Entity)book.get("BorrowedBy");

The next line makes two calls. The first call is to invoke the get() method on books
(an attribute of the Borrower type), which returns a ToManySet object. This object is
the set of Book objects related to person. The iterator() method is then invoked on
the ToManySet object and returns an Iterator object that can be used to access the
list of borrowed books:

Iterator iter = books.get(person).iterator();
Release 7.1 233

Relationships
Many-to-Many Relationships
The many-to-many relationship is represented by the abstract ManyToMany class. An
object of this class maintains sets of entities on both sides of the relationship.
Whenever an element is added to the set that represents one side of the relationship,
JDD maintains the inverse direction as well. Similar relationship maintenance is
performed when removing elements from a set.

To create a many-to-many relationship, call the ManyToMany() constructor. Its
signature is as follows:

public ManyToMany(Type ownerType,
 java.lang.String ownerName,
 Type memberType,
 java.lang.String memberName)

To add related entities to the relationship, call the add() method on the ManyToMany
object. Its signature is as follows:

public boolean add(Entity ownerEntity, Entity memberEntity)

The add() method returns false if ownerEntity and memberEntity were
previously linked in this relationship; otherwise, it adds entity references to the
attributes and returns true.

Linked Objects and Many-to-Many Relationships
Some applications require a many-to-many relationship that can also represent the
linking of two entities in a link object. The ManyToManyWithObject class can be used
to implement both the relationship as well as link objects.

Consider, for example, an application that tracks students and the courses in which
they are enrolled. The application creates two types, Student and Course. It
implements a many-to-many relationship so that a Course entity can reference all
the students taking the course, and a Student entity can reference all courses for
which a student is enrolled. Furthermore, the application uses a link object to
represent each student’s enrollment in a course. The link object has a type (for
example, Enrollment), enabling it to have attributes (for example, grade).

The ManyToManyWithObject() constructor has the following signature:

public ManyToManyWithObject(Type ownerType,
 java.lang.String ownerName,
 Type memberType,
 java.lang.String memberName,
 java.lang.String linkObjectType)

The linkObjectType argument is the type of the link object. If a type with that name
already exists, JDD uses the existing type; otherwise, it creates a new type.

The constructor implements the relationship as two maps, one on each side of the
relationship. The keys of each map are the related entities, and the values are the link
objects. To illustrate with the previous example, each Student entity can have a map
keyed by Course entities with values of Enrollment objects. And each Course entity
can have a map keyed by Student entities, whose values are also Enrollment
objects.
234 PSE Pro for Java User Guide

Chapter 10: Using the Java Dynamic Data (JDD) Classes
Accessor methods can be used to do the following:

• Retrieve the map of link objects.

• Get the set of entities referenced in the attribute.

• Add related entities to the relationship and create a link object.

• Unlink or remove entities from the map and delete the link object.

Relationship Example
The example program listed in this section is a simple lending- library application
that keeps a record of borrowers and the books each has borrowed. It creates two
types, Book and Borrower, and uses the LinkedOneToMany class to implement a one-
to-many relationship that represents the relationship between borrower and book. A
borrower can have many books, but a book can have only one borrower.

The Book and Borrower types each have two attributes. The Book type has these
attributes:

• title, the title of a Book entity

• BorrowedBy, a reference to a Borrower entity

The Borrower type has these attributes:

• name, the name of a Borrower entity

• books, the list of the Book entities loaned out to Borrower

The title and name attributes are created by invoking the StringAttribute()
constructor. The BorrowedBy and books attributes are created by invoking the
LinkedOneToMany() constructor.

Each of the Book entities is created in a for loop. After an entity is created, the book
it represents is recorded as having been loaned out to a borrower by adding the
related Book and Borrower entities to the one-to-many relationship.

The command lines for compiling and executing the program are shown following
the source code listing.

// Library.java: use JDD classes to store and retrieve
// information for a lending library -- who has borrowed which
// books. The one-to-many relationship between borrower and
// books is implemented by JDD's LinkedOneToMany class.
import com.odi.*;
import com.odi.util.*;
import java.util.*;
import com.odi.jdd.*;
import com.odi.jdd.rel.*;

public class Library {

 static Database db;
 static Transaction tr;

 static public void main(String args[]) {
 Session session = null;
 try {
Release 7.1 235

Relationships
 session = Session.create(null, null);
 session.join();
 loan();
 } finally { session.terminate(); }
 }

 static void loan() {
 Entity borrower [] = new Entity[2]; // borrowers

 String titleStr[] = new String[] { // titles of books
 "Life of Johnson", "Tale of a Tub", "Rambler",
 "Beggar's Opera", "Memoirs of Martinus Scriblerus",
 "Reflections", "Seventeen Thirty-Eight"
 };

 // create database
 try {
 Database.open
 ("library.db", ObjectStore.UPDATE).destroy();
 } catch (DatabaseNotFoundException e) { }

 db = Database.create("library.db",
 ObjectStore.ALL_READ | ObjectStore.ALL_WRITE);

 tr = Transaction.begin(ObjectStore.UPDATE);

 // create Book type with title attribute
 Type Book = new Type(db, "Book");
 StringAttribute title = new StringAttribute(Book,"title");

 // create Borrower type with name attribute
 Type Borrower = new Type(db, "Borrower");
 StringAttribute name =
 new StringAttribute(Borrower, "name");

 // create a one-to-many relationship between Borrower and
 // Book
 LinkedOneToMany books = new LinkedOneToMany
 (Borrower, "books", Book, "BorrowedBy", true);

 // create two Borrower entities
 borrower[0] = Borrower.create();
 borrower[0].put(name, "Terry");
 Borrower.addToExtent(borrower[0]);
 borrower[1] = Borrower.create();
 borrower[1].put(name, "Alice");
 Borrower.addToExtent(borrower[1]);

 // create Book entities
 Entity book = null;
 for (int i = 0; i < 7; i++) {
 book = Book.create();
 title.put(book, titleStr[i]);
 Book.addToExtent(book);

 // lend them out to the borrowers
 books.add(borrower[i%2], book);
 }

 // Who borrowed the last book?
236 PSE Pro for Java User Guide

Chapter 10: Using the Java Dynamic Data (JDD) Classes
 Entity person = (Entity)book.get("BorrowedBy");
 System.out.println("\"" + title.get(book) +
 "\" is out on loan to " + person.get(name));

 // get the list of books loaned to this borrower
 Iterator iter = books.get(person).iterator();
 System.out.println(person.get(name) +
 " borrowed these books:");
 while (iter.hasNext())
 System.out.println("\t" + ((Entity)iter.next()).get(title));

 tr.commit(); // done
 }
}

Here are the command lines to compile and execute the program, along with the
output from the run:

C:\examples>javac Library.java
C:\examples>java Library
"Seventeen Thirty-Eight" is out on loan to Terry
Terry borrowed these books:
 Life of Johnson
 Rambler
 Memoirs of Martinus Scriblerus
 Seventeen Thirty-Eight

Improving Query Performance with
Superindexes

A superindex is a special type of index for optimizing queries on types that have
many subtypes. The following sections provide background information to explain
how JDD implements default indexing; when default indexing may not be sufficient
to optimize queries; and how superindexes can improve the performance of queries.

Note Applications that do not query types with many subtypes will probably not benefit
from superindexing and should use the default indexing as described in Defining
Types and Their Attributes on page 227.

Queries and Default Indexing
When an application queries a type, by default the query is recursive: separate query
operations execute on the type and on any of its subtypes. Likewise, when you call
addIndex() on a type, the index is recursively added to the type and to all its
subtypes. These indexes are automatically maintained and updated by JDD when
you add or remove a subtype, or when you change the value of an attribute.

This default level of indexing is sufficient for most query operations. However, if you
query a parent type that has a large and intricate hierarchy of subtypes, indexing can
add to the overhead of the query. To reduce the time it takes to query such types, JDD
provides the superindex.
Release 7.1 237

Mixing Java Objects with JDD
Superindexing
When you call addSuperIndex() on a type, JDD adds a single superindex to the
type, which indexes the parent type and all its subtypes. When you query the parent
type, only one query operation occurs — not the recursive queries that occur when
you query a type with default indexing. As with default indexing, JDD automatically
updates the superindex if you add or remove a subtype or if you change the value of
an attribute.

There are several disadvantages to using a superindex that you should consider
when deciding which type of index to add:

• A superindex can benefit query performance only when added to types having
many subtypes. If your application queries types with few or no subtypes, adding
a superindex will not significantly improve query performance.

• Invoking the addSuperIndex() method creates a single superindex, which is
added to the type object to which the method is applied. If you begin the query
with a subtype, you do not get the benefit of any indexing — unless you have
explicitly called addSuperIndex() on the subtype.

• When you change an attribute value for a type that has a superindex, JDD
automatically updates any superindexes that have been added to the subtypes. If
you have added many superindexes to many subtypes, index maintenance can
become time consuming.

• Superindexes may not be added to types that have subtypes in different segments
of the same database or in different databases. Once a superindex has been added
to a type, no new subtypes may be added that are in a different database or
segment.

Mixing Java Objects with JDD
JDD enables you to mix persistent Java objects and JDD entities in the same
application. JDD classes are extendable. For example, you can extend the Entity
class to have native Java fields and methods. You can similarly extend the Type and
Attribute classes.

When you extend JDD classes to include native fields, however, you lose some of the
flexibility that JDD provides. The reason is that, to make the extended classes
persistence-capable, you must use the PSE Pro API to do the following:

• Run the osjcfp postprocessor to make the classes persistence capable.

• Perform schema evolution if you change any of the persistence-capable classes.

If you only have to run the postprocessor once and never have to perform schema
evolution, these tasks may not be an issue. But if your application models data that
is constantly changing, you will probably want to rely as much as possible on JDD
for persistent storage.

This section is organized as follows:
238 PSE Pro for Java User Guide

Chapter 10: Using the Java Dynamic Data (JDD) Classes
• When You Must Use the PSE Pro API on page 239

• Pros and Cons of Mixing the PSE Pro API with JDD on page 239

• Using Extended JDD Classes on page 239

When You Must Use the PSE Pro API
You must use the PSE Pro API to perform the following operations:

• Creating and managing sessions; for more information, see How Sessions Keep
Threads Organized.

• Opening and closing a database; for more information, see Chapter 4, Managing
Databases.

• Starting and committing a transaction; for more information, see Chapter 5,
Working with Transactions.

Pros and Cons of Mixing the PSE Pro API with JDD
Among the reasons for using the PSE Pro API to include persistence-capable classes
in a JDD application are the following:

• Native fields of Java objects take up much less space in the database than JDD
attributes.

• Accessing and modifying native fields is significantly faster.

If either of these factors weighs heavily with your application, you might consider
extending JDD classes to define native fields and accessor methods.

Fields vs.
attributes

When deciding whether to store data as a native field or an attribute, you should
consider whether you will have to change the field at a later date. Deleting or
renaming a field or changing its type requires recompiling source code, running the
postprocessor, and possibly performing schema evolution. Changing an attribute,
on the other hand, has no such risks.

Access time Another factor to consider is access time: accessing a native field is significantly
faster than accessing an attribute. If you need to access the same data in a highly
iterative, time-critical loop, you should consider storing it as a native field.

Using Extended JDD Classes
The most likely candidate for extending is the Entity class. After compiling and
postprocessing an application that uses the extended entity, you use the application
to create a type for the entity, give the type a set of attributes, and create entities of
the type — using the same procedure described in Defining Types and Their
Attributes on page 227 and Creating Entities of a Type on page 228.

Creating
attribute objects
for native fields

If you want to use any of the JDD accessor methods on a native field, you must first
create an attribute object for the field, as described in Creating Entities of a Type on
page 228. Note, however, that using a JDD method to access a native field is
significantly slower than using a native method. When you use a JDD accessor
method on an attribute object associated with a native field, JDD uses Java reflection
to access the field.
Release 7.1 239

Mixing Java Objects with JDD
Querying native
fields

JDD allows you to mix native fields and attributes in the same query string. The
query treats the field reference differently, depending on whether or not you precede
the name with the $ character:

• If the name begins with the $ character (for example, $age), JDD interprets it as
the name of an attribute object. If the object is associated with a native field, the
query uses Java reflection to access the field.

• If the name does not begin with the $ character (for example, age), JDD interprets
it as the name of a native field. The query accesses the field directly, just as an PSE
Pro query would.

Indexing native
fields

Creating attribute objects for native fields also allows you to add indexes to the
fields. JDD performs the same index maintenance on native fields as on attributes,
except if either of the following is true:

• The PSE Pro API was used to add the index.

• A field was updated directly instead of through a JDD accessor method.

If either condition is true, JDD does not update the index.

Example The following example uses a persistence-capable class, UserEntity, which extends
JDD’s Entity class and defines a native integer field called age:

// create the type User in the database represented by db
Type User = new Type(db, "User");

// create an entity of the type User; UserEntity extends Entity
UserEntity user = new UserEntity(User);

// assign to the age field
user.age = 32; // native Java field

To use a JDD method to access age, you first create an attribute object for it, as
follows:

// create an attribute object for the age field, which is
// defined in the UserEntity class
IntAttribute ageAttr =
 (IntAttribute)myUser.findAttr("age");

// call JDD’s put() method on the attribute object for the age // field
ageAttr.put(user, 32);
240 PSE Pro for Java User Guide

Chapter 11
Using Java Data Objects (JDO)
with PSE Pro

PSE Pro for Java provides a complete implementation of the Java Data Objects (JDO)
1.0.1 specification. Creating your application with JDO is an alternative to using the
native PSE Pro interface for storing persistent data. This chapter describes how to
configure PSE Pro applications to use JDO. The chapter contains the following
sections:

Overview of JDO with PSE Pro 241

Creating JDO Applications 245

Example Application 255

Note PSE Pro applications should not mix data created by the JDO interface and data
created by the native ObjectStorePSE Pro interface. Because the two interfaces have
different models of persistence support, applications for a given ObjectStorePSE Pro
database should consistently use only one interface. Progress Software Corporation
makes no claim regarding the compatibility of the two interfaces.

You need JDK 1.5 or later to use JDO with PSE Pro.

PSEJDO interface is implemented to be compliant with the 1.0.1 Specification. It is
recommended that the user become familiar with the following sites for JDO related
API and information:

• http://java.sun.com/products/jdo

• http://www.JDOcentral.com

• http://groups.yahoo.com/group/JavaDataObjects

Overview of JDO with PSE Pro
After defining PersistenceCapable classes (classes whose instances can be stored
in a database), developers need to write very little additional code to allow their
applications to use persistent data.

The ObjectStorePSE storage engine in conjunction with the PSEJDO interface allows
you to quickly read or modify portions of your persistent data. You are not required
to read in all persistent data when you just want to look at a subset. This reduces
Release 7.1 241

Overview of JDO with PSE Pro
start-up and transaction commit times and allows you to run much larger Java
applications without increasing the amount of memory or swap space on the system.

When you access persistent data inside a transaction, PSEJDO ensures that your
results are not compromised by other users sharing the data. If something goes
wrong, or if you determine that you do not want to keep changes, you can abort the
transaction. In that case, ObjectStorePSE Pro restores the database to the state it was
in before the transaction started. This makes it straightforward to write applications
that have to recover from exceptions or failures.

PSEJDO is designed for applications that need standard persistent support and
utilize a single process architecture. The implementation is 100% pure Java, uses less
than 600 KB of disk space, and runs entirely within the application process. It
supports transactions and provides access to objects without reading the entire
database.

What does PSEJDO do?
The JDO for PSE Pro product provides the user a standard way to realize transparent
persistence with a robust storage engine. The combination of the JDO
implementation and PSE Pro storage engine allows the user to use:

• Multi-threaded applications to use data in the database

• Start, commit and abort transactions to access data in the database

• Automatic extent maintenance to help manage locating objects

• Store objects in a database, retrieve and update those objects

PSEJDO can recover from an application failure or system crash. If a failure prevents
some of the changes in a transaction from being saved to disk, the product ensures
that none of that transaction's changes are saved in the database. When you restart
the application, the database is consistent with the way it was before the transaction
started.

PSE Pro does not have facilities for protection against media failure. The full
ObjectStore product provides a feature set than can help users construct solutions to
deal with this kind of failure; see www.objectstore.net for more information.

JDO for PSE Pro can support

• Hundreds of thousands of objects in a database and hundreds of megabytes of
data in a database

• Multiple PersistenceManagers per database

• An ability to collect garbage in a database

• JDO Collection and Extent support

• JDO Query support

• Full database recovery from system failure

• Utilities for displaying information about the objects in the database and checking
the references between objects
242 PSE Pro for Java User Guide

Chapter 11: Using Java Data Objects (JDO) with PSE Pro
Description of PSEJDO Architecture
PSEJDO is a Java library that runs entirely within your Java virtual machine process.
A PSE Pro database consists of three files. PSE Pro uses the standard Java class
java.io.RandomAccessFile to access a database. There is no client/server
distinction.

There is no PSE Pro server. PSE Pro accesses a file on the file system. PSE Pro has no
special privileges. If PSE Pro can read or write a file, so can any other user using
ordinary file I/O.

PSEJDO does not lock objects in memory. It uses weak references to maintain objects
in memory, allowing the java garbage collector to work as expected to keep virtual
memory available.

Because PSEJDO is compliant to a standard interface, all the key interfaces are
defined by the JDO standard. In this section, the major interfaces are highlighted to
give background before examining the sample code.

PersistenceCapable
An interface implemented by all user classes that can be stored in the database. This
interface creates the contract that a PersistenceManager uses to manage the state of
a persistent object. User classes that need to go into the database will implement this
interface. There is an enhancement process that is used to alleviate the need for the
developer to write any code to comply to this interface.

PersistenceManager
Instances of this interface are used to create context for accessing persistent data.
PSEJDO provides the classes that implement this interface. Developers utilize this to
inquire or cause effect on lifecycle actions of PersistenceCapable classes.
Developers use this interface to create transactions to access persistent data.

PersistenceManagerFactory
This interface is used to create PersistenceManager instances. PSEJDO provides the
classes that implement this interface. OSJDO uses a Properties object to get a
PersistenceManagerFactory instance . See PSEJDO Properties File on page 249
and Standard JDO Properties on page 249 for more information about these
properties. The PersistenceManagerFactory uses these properties to configure
PersistenceManager instances.

JDOHelper
This is used to bootstrap the PSEJDO implementation. The class provides a series of
management and administration functions. This is typically used to create an
instance of a class that implements PersistenceManagerFactory.

Extent
A class that implements Extent represents a collection of all objects of a particular
type. All classes that are PersistenceCapable will have an Extent by default. You
can specify if classes should not have an Extent so as to avoid unnecessary database
Release 7.1 243

Overview of JDO with PSE Pro
overhead. JDO expects to use Extents to create the initial navigational access into a
database.

Query
Classes that implement the Query interface are instantiated from a
PersistenceManager. A Query can be used to apply a restriction across
Collections and/or Extents to return qualified objects.

Query Limitations
If a contains expression is used in the query filter, the argument to the contains
method should be Decalared Variable. Also, the contains expression should be
a left operand of an AND expression and Declared Variable should be used in the
right operand of that AND expression (see the third paragraph of section 14.6.5 of the
JDO 1.0.1 specification).

Navigation is not currently supported in the ordering specification. This implies that
the query results can currently be sorted only on the sortable fields of the result type.
For example, if a query execution returns a result set that contains elements of the
type Person and Person is defined as:

public class Person {
 String name;
 int age;
 Person spouse;
}

the query results can be sorted based on either name or age, but not spouse.name or
spouse.age.

Query Enhancements
You can use public method invocations in a query filter. However, you cannot use
invocations of methods named contains because that is a key word in the JDOQL.

You can use pattern matching expressions via the pattern matching operator “~~” as
in native PSE Pro queries.

The PSE Pro implementation of queries generates classes dynamically and loads
them using the PSE Pro Class loader. This may cause problems in applications
running under a security manager if the security policy does not take this situation
into account. Applications running under a security manager need to take this into
account when specifying security policies for the application.
244 PSE Pro for Java User Guide

Chapter 11: Using Java Data Objects (JDO) with PSE Pro
Creating JDO Applications
In order to use the PSEJDO interface, your application must include the standard
JDO components as implemented by PSE Pro. These components include:

• PersistenceManagerFactory

You create a PersistenceManagerFactory by using
JDOHelper.getPersistenceManagerFactory() setting various runtime
configuration properties

• PersistenceManager

You acquire a PersistenceManager by invoking
PersistenceManagerFactory.getPersistenceManager(). The
PersistenceManager will have the characteristics as defined by the properties
used to create the PersistenceManagerFactory.

• Transaction

Transactions are used to define units of atomic work. You create a Transaction
by invoking PeristenceManager.currentTransaction().

Start and commit a transaction by calling Transaction.begin() and
Transaction.commit().

• PersistenceCapable

PersistenceCapable objects are stored in the database in two ways. The first is
to make a object persistent with a call to
PersistenceManager.makePersistent() for a single instance or with a call to
PersistenceManager.makePersistentAll()for multiple instances. The second
way an object becomes persisistent is if it is reachable from an object that was
made persistent.

When a PersistenceCapable object becomes persistent it is automatically added
to the Extent for its class unless the class is specified to not require an Extent.

Persistent objects are retrieved and displayed by accessing the Extent for the
class.

• PSEJDO enhancer

When you write a PSEJDO program for PSE Pro, you write it as though your user
classes already implement PersistenceCapable. However, a program cannot
store objects persistently until you run the PSEJDO enhancer on your compiled
class files. The enhancer generates an annotated version of the class files. The
annotated version of the class definition is persistence capable. You run the
enhancer after you compile the program and before you run the program.
Release 7.1 245

Overview of JDO with PSE Pro
Developing Applications
Before you can run applications that use the JDO interface, you must

• Add relevant PSE Pro and JDO files to your CLASSPATH environment variable.

• Create the persistence descriptor file.

• Compile the source file.

• Run the JDO enhancer on the .class files.

Adding Files to Your CLASSPATH
In your CLASSPATH environment variable, you need files for the Standard JDO
interfaces, PSEJDO implementation files, and PSE Pro implementation files. All the
files are located in the lib directory of the PSE Pro installation.

• jdo.jar — The standard JDO interface

• psejdo.jar — The PSEJDO implementation

• pro.jar — Standard PSE Pro for Java

• tools.jar — Standard PSE Pro for Java

Make sure all jar files are explicitly in your classpath; an entry for the directory that
contains them is not sufficient.

For example, the default installation directory for PSE Pro on Windows is
C:\ODI\PSEProJ and you need the following addition to your CLASSPATH:

C:\ODI\PSEProJ\lib\pro.jar;
 C:\ODI\PSEProJ\lib\tools.jar;
 C:\ODI\PSEProJ\lib\jdo.jar;
 C:\ODI\PSEProJ\lib\psejdo.jar;
 C:\ODI\PSEProJ

The default installation directory on UNIX,is /usr/local/odi/pseproj and you
need the following addition to your CLASSPATH:

/usr/local/odi/pseproj/lib/pro.jar:
 /usr/local/odi/pseproj/lib/tools.jar:
 /usr/local/odi/pseproj/lib/jdo.jar:
 /usr/local/odi/pseproj/lib/psejdo.jar:
 /usr/local/odi/pseproj

Persistence Descriptor
This is an XML file specifing the metadata that describes the classes that are to be
stored persistently. It is used at both enhancement time and at runtime. It also can
contain particular information that may influence the enhancement or runtime
process. Some of the tags are defined by the JDO standard. It is also possible for
vendors to augment the XML by using the <extension> tag to specifically optimize
or configure a particular product. PSE Pro does not currently add vendor-specific
extensions.
246 PSE Pro for Java User Guide

Chapter 11: Using Java Data Objects (JDO) with PSE Pro
The JDO enhancer uses the CLASSPATH to resolve the location of the Document Type
Definition (DTD). A DTD compliant with the 1.0.1 JDO specification is included in
the jdo.jar file, so the JDO enhancer will automatically find it.

The name for the descriptor file follows the JDO specification; if it describes a single
class, it should be named class-name.jdo and if it describes a package it should be
named package.jdo.

The key tags in the persistence descriptor file are as follows:

<jdo> - namespace for jdo

<package> - java package name for classes to be enhanced

<class> - The Java class that needs to be annotated. The attribute <identity-type>
should always be datastore and the attribute <requires-extent> can be true or
false.

<field> - Fields of the class that should be stored persistently. The attribute
<persistence-modifier> can be persistent, transactional, or none. PSEJDO
always treats the attribute <default-fetch-group> as though it is set to true.

For an example XML persistence descriptor file, refer to Example Persistence
Descriptor on page 258.

Compiling the Program
You compile PSE Pro applications that use the JDO interface just as you would any
other PSE Pro application. For example, to compile the example program at the end
of this chapter, change to the PSE Pro installation directory and, on Windows
platforms, enter

javac com\odi\demo\jdo\people*.java

On UNIX platforms, enter

javac com/odi/demo/jdo/people/*.java

As output, the javac compiler produces the byte code class file Person.class in the
same directory that contains the Person.java file

Running the JDO Enhancer
For PSE Pro applications that use the JDO interface, you annotate the persistent
classes with the JDO enhancer. You use the JDO enhancer instead of the PSE Pro
postprocessor that is used to annotate classes for the native PSE Pro interface.

After you compile your application, you run the JDO enhancer on the classes you
want to store in your database. The JDO enhancer modifies these classes so that they
implement the PersistenceCapable interface. In addition, the JDO enhancer
annotates the class methods so they can manage the lifecycle of the persistent classes
in the JVM. The enhancer generates new annotated class files. After you run the
enhancer, you should use the annotated class files rather than the original class files.

The command to run the JDO enhancer is

osenhance -dest <destination_directory> [-cpath <classpath>]
Release 7.1 247

Overview of JDO with PSE Pro
 args [options]

args
This specifies the classes you want to annotate. You can use the class names of the
classes or the file names, for example com.odi.demo.class1 or
/build/classes/com/odi/demo/class1.class. The associated persistence
descriptor XML file must be available on the JDO enhancer classpath. You need to
include all classes you want to make persistent.

options
You can use the following options to osenhance:

 { -cpath | -classpath } <classpath>
Specifies the path by which to locate class files for enhancing. If you specify this
option, PSE Pro uses it in place of the CLASSPATH environment variable. The
-cpath option does not affect the class path used to run the enhancer.

 { -d | -dest } <destination_directory>
This option is required. The JDO enhancer uses the directory you specify for
destination_directory as the root for locating the annotated files. The JDO
enhancer places each class file it operates on in the package-appropriate
subdirectory of the destination directory, as though the destination directory were
in your class path.

If the destination directory specification would cause the enhancer to overwrite an
original file and you did not specify the -inplace option, the enhancer reports
an error and terminates without producing any output.

 { -f | -force }
Forces the postprocessor to overwrite existing annotated .class files.

 -inplace
Causes the JDO enhancer to annotate stand-alone files — files that are not in .zip
files or .jar files — in place rather than writing the annotated file in the
destination directory. When the enhancer annotates a class in place, it overwrites
the original class files with the annotated class files. If a class originates in a .zip
file or .jar file, the enhancer writes the annotated class to the destination
directory.

Do not use this option when you are doing iterative development. During
development, a separate output directory avoids errors and supports debugging.

When you specify the -inplace option, you must still specify a destination
directory, but the enhancer ignores it for stand-alone files.

 -nowrite
Performs process and error checking but does not actually annotate class files.
This option allows a test run of the JDO enhancer. You use it to determine whether
or not all specified classes are accessible, whether additional options are needed,
and if you specify -v (verbose), you can see where the resulting files would be
located.

 { -q | -quiet }
Causes the JDO enhancer to refrain from displaying warnings. A warning
message provides information about something that the JDO enhancer recognizes
248 PSE Pro for Java User Guide

Chapter 11: Using Java Data Objects (JDO) with PSE Pro
as a possible problem but cannot confirm as actually being a problem. This option
cancels a previous -verbose option, if you specified one.

 { -v | -verbose }
Causes the JDO enhancer to write descriptions of its actions to standard output.
This option cancels a previous -quiet option, if you specified one.

PSEJDO Properties File
PSEJDO uses a Properties object that contains the properties necessary for setting
up the PersistenceManagerFactory class. The properties should include relevant
standard JDO properties as well PSEJDO vendor-specific properties. The
information for these properties can be loaded from a file. For example, the example
application at the end of this chapter uses a file called jdo.properties. It contains
the following:

javax.jdo.PersistenceManagerFactoryClass=
 com.odi.jdo.OsjdoPersistenceManagerFactory
javax.jdo.option.ConnectionURL=
 osjdo:C:\ODI\PSEProJ\com\odi\demo\jdo\people\person.odb
com.odi.jdo.option.ConnectionOpenMode=update
com.odi.jdo.option.Product=PSEPro
com.odi.jdo.option.ConnectionOpenAction=auto

Standard JDO Properties
To obtain a PersistenceManagerFactory, a JDO application typically sets up a
Properties object containing the desired set of properties, and passes it to
JDOHelper.getPersistenceManagerFactory. The standard JDO properties are
described in this section.

javax.jdo.PersistenceManagerFactoryClass
The value of the PersistenceManagerFactoryClass property determines the type
of PersistenceManagerFactory object returned by
JDOHelper.getPersistenceManagerFactory. OSJDOPSEJDO applications should
set the value of this property to com.odi.jdo.OsjdoPersistenceManagerFactory.

javax.jdo.option.ConnectionURL
In PSEJDO, this property specifies the name of the PSE Pro database that will provide
context for operations such as makePersistent and getExtent.

The syntax of the ConnectionURL property given when acquiring an
OsjdoPersistenceManager is as follows: a scheme specifier of osjdo followed by a
colon, followed by a PSE Pro database pathname, for example
osjdo:/usr/guy/Person.odb.

This property can also be manipulated by the following methods:

• String PersistenceManagerFactory.getConnectionURL()

• void PersistenceManagerFactory.setConnectionURL(String v)
Release 7.1 249

Overview of JDO with PSE Pro
javax.jdo.option.Optimistic
This boolean property specifies that generated PersistenceManagers will use
optimistic transactions, an optional feature of JDO that is not currently supported by
PSE Pro.

javax.jdo.option.RetainValues
This boolean property controls the treatment of persistent instances after commit. If
true, then the instance is retained in the cache between transactions as an accessible
persistent-nontransactional object. Otherwise the instance cannot be read between
transactions. Defaults to false.

This property can also be manipulated by the following methods:

• boolean PersistenceManagerFactory.getRetainValues()

• void PersistenceManagerFactory.setRetainValues(boolean v)

javax.jdo.option.RestoreValues
This boolean property controls the treatment of persistent-new instances after
rollback. If true, then an instance’s fields are restored to their values as of the time
the instance became persistent-new. Defaults to false.

This property can also be manipulated by the following methods:

• boolean PersistenceManagerFactory.getRestoreValues()

• void PersistenceManagerFactory.setRestoreValues(boolean v)

javax.jdo.option.IgnoreCache
This property has no effect in PSEJDO.

javax.jdo.option.NontransactionalRead
Setting this option to true allows reading of persistent data when there is no
transaction in progress. Defaults to false.

javax.jdo.option.NontransactionalWrite
This boolean property enables an optional feature that is not implemented in
PSEJDO. Attempts to set it result in JDOUnsupportedOptionException.

javax.jdo.option.Multithreaded
This boolean property indicates to the JDO implementation whether the application
intends to allow multiple threads to access a PersistenceManager. Defaults to
false.

This property can also be manipulated by the following methods:

• boolean PersistenceManagerFactory.getMultithreaded()

• void PersistenceManagerFactory.setMultithreaded(boolean v)
250 PSE Pro for Java User Guide

Chapter 11: Using Java Data Objects (JDO) with PSE Pro
javax.jdo.option.ConnectionUserName
javax.jdo.option.ConnectionPassword
These two String-valued properties specify a user name and password for the
database connection. In PSE Pro, these options have no effect.

These properties can also be manipulated by the following methods:

• String PersistenceManagerFactory.getConnectionUserName()

• void PersistenceManagerFactory.setConnectionUserName(String v)

• void PersistenceManagerFactory.setConnectionPassword(String v)

javax.jdo.option.ConnectionFactoryName
javax.jdo.option.ConnectionFactory2Name
These two properties are currently not used in PSEJDO, and attempts to set them are
ignored.

PSEJDO Specific Properties
This section describes the PSEJDO vendor-specific properties.

com.odi.jdo.option.ConnectionOpenAction
This String valued property indicates whether the database named in
ConnectionURL should be created or merely opened. Possible values are create,
open, and auto. If the value is create, the database will be created, and any existing
database with the same name will be destroyed. If the value is open, the
implementation will expect the database to be already extant and open it in the mode
indicated by the ConnectionOpenMode property. If the value is auto, then the
database will be created if it does not already exist, and opened in update mode if it
does not exist. The default value is open.

This property can also be manipulated by the following methods:

• String OsjdoHelper.getConnectionOpenAction(
PersistenceManagerFactory pmf)

• void OsjdoHelper.setConnectionOpenAction(
PersistenceManagerFactory pmf, String v)

com.odi.jdo.option.ConnectionOpenMode
This String valued property indicates whether the database named in
ConnectionURL should be opened in update or read-only mode. Possible values are
the Strings update, mvcc, and readonly. Defaults to update. Attempts to give this
property values not mentioned here result in a JDOFatalUserException being
thrown. The value of ConnectionMode is ignored unless ConnectionOpenAction is
set to open.

This property can also be manipulated by the following methods:

• Boolean OsjdoHelper.getConnectionOpenMode(
PersistenceManagerFactory pmf)

• String OsjdoHelper.setConnectionOpenMode(
PersistenceManagerFactory pmf, String v)
Release 7.1 251

Overview of JDO with PSE Pro
com.odi.jdo.option.Product
This property is mapped to the PSE Pro Session property com.odi.product. By this
means the application can choose the underlying implementation to use for storing
JDO persistent objects. For PSE Pro, the value of this option should be PSE Pro.
However, if PSE Pro, is the only implementation available, there is no need to set this
option. It is needed only when both PSE Pro and ObjectStore are available in the
runtime environment.

This property can also be manipulated by the following methods:

• String OsjdoHelper.getProduct(PersistenceManagerFactory pmf)

• void OsjdoHelper.setProduct(PersistenceManagerFactory pmf, String
v)

com.odi.jdo.option.StringPoolSize
This property is mapped to the PSE Pro, Session property
com.odi.stringPoolSize.

This property can also be manipulated by the following methods:

• int OsjdoHelper.getStringPoolSize(PersistenceManagerFactor pmf)

• void OsjdoHelper.setStringPoolSize(PersistenceManagerFactory pmf,
int v)

PSEJDO Feature Set
The 1.0.1 JDO specification describes many optional features. The table below lists
the JDO features and whether or not they are available with PSEJDO.

The JDO interface provides an API to examine the optional supported features. An
example program is provided in the com\odi\demo\jdo\features directory. The
list returned when you run the program indicates the features that are supported.
You can run this program by running the following commands:

1 On Windows

 javac C:\ODI\PSEProJ\com\odi\demo\jdo\features*.java

On Unix:

 javac /opt/ODI/PSEProJ/com/odi/demo/jdo/features/*.java

2 On either platform run:

 java -Djavax.jdo.PersistentManagerFactoryClass=
 com.odi.jdo.OsjdoPersistentManagerFactory
 com.odi.jdo.demo.feature.OptionalSupport

Optional JDO Feature PSEPRO Support

javax.jdo.option.TransientTransactional Yes, except for fields
declared transactional in
the meta data

javax.jdo.option.NontransactionalRead Yes
252 PSE Pro for Java User Guide

Chapter 11: Using Java Data Objects (JDO) with PSE Pro
PSE Pro Features
There are a number of features included in the native PSE Pro interface that are also
supported by the PSEJDO interface. The following table lists the native PSE Pro
features and indicates whether or not PSEJDO supports them.

Contact Progress Software Corporation regarding additional feature support in
upcoming releases. As with the optional JDO features we anticipate this list to
change substantially in upcoming releases.

javax.jdo.option.NontransactionalWrite No

javax.jdo.option.RetainValues Yes

javax.jdo.option.RestoreValues Yes

javax.jdo.option.Optimistic No

javax.jdo.option.ApplicationIdentity No

javax.jdo.option.DataStoreIdentity Yes

javax.jdo.option.NondurableIdentity No

javax.jdo.option.ArrayList No

javax.jdo.option.HashMap No

javax.jdo.option.Hashtable No

javax.jdo.option.LinkedList No

javax.jdo.option.TreeMap No

javax.jdo.option.TreeSet Yes

javax.jdo.option.Vector Yes

javax.jdo.option.Map No

javax.jdo.option.List No

javax.jdo.option.Array Yes

javax.jdo.option.NullCollection No

javax.jdo.option.ChangeApplicationIdentity No

javax.jdo.option.JDOQL Yes

PSE Pro Feature PSEJDO Support

Persistent Arrays No

Indexes No

Persistent Garbage Collection Yes

osjcheckdb utility Yes

osjshowdb utility Limited, no query support

ObjectStore Browser Yes

Allow Methods in Queries Yes, except for the contains() method
on collection types
Release 7.1 253

Overview of JDO with PSE Pro
Persistent Garbage Collector
The Database Garbage Collector tool (osjgcdb) provided with PSE Pro will also
work on jdo databases. The tool will reclaim space occupied by deleted objects (via
PersistenceManager.deletePersistent) in the database, if there are no other
objects in the database containing references to these deleted objects. For more
information on garbage collecting, see the osgc utility in Managing ObjectStore.

TreeSets
ObjectStore adds support for TreeSet collections. In OSJDO a java.util.TreeSet is
converted to a com.odi.jdo.mutable.Osjdo.TreeSet. The ObjectStore support for
TreeSets is designed for holding large numbers of objects and provides indexing
capabilities for better query processing performance.

The OSJDO implementation of TreeSets does not yet provide support for the
SortedSet interface. This will be fixed in a future release.

Adding Indexes to TreeSets
OSJDO provides an API for adding and managing indexes for TreeSets. The
following methods are available in the OsjiHelper class:

• void addIndex(Collection c, Class elementType, String path);

• void addIndex(Collection c, Class elementType, String path, boolean
ordered, boolean duplicates);

• void addIndex(Collection c, Class elementType, String path, boolean
ordered, boolean duplicates, Placement place);

• void addToIndex(Collection c, Object value);

• void addToIndex(Collection c, Class type, String path,
Object value);

• boolean dropIndex(Collection c, Class type, String path);

• IndexMap getIndex(Collection c, Class type, String path, boolean
ordered);

• IndexDescriptorSet getIndexes(Collection c);

• IndexMap getSuperIndex(Collection c, Class type, String path,
boolean ordered);

• boolean hasIndex(Collection c, Class type, String path, boolean
ordered);

• void removeFromIndex(Collection c, Class type, String path, Object
value);

• void removeFromIndex(Collection c, Object value);

• void updateIndex(Collection c, Class type, String path, Object
oldKey, Object newKey, Object value);

The behavior of these methods is similar to the corresponding methods in the native
PSE Pro interface. For more information, see Enhancing Query Performance with
Indexes on page 161.
254 PSE Pro for Java User Guide

Chapter 11: Using Java Data Objects (JDO) with PSE Pro
Example Application
The sample program stores information about a few people, then retrieves some of
the information from the database and displays it. The program shows the
components you must include in your application so that it can use the PSEJDO
interface to PSE Pro. The important steps in creating PSEJDO applications are:

1 Before you begin make sure the environment variable OS_PSE_ROOTDIR is set to
the PSE Pro installation directory and that the PATH environment variable
contains %OS_PSE_ROOTDIR%/bin on Windows or $OS_PSE_ROOTDIR/bin on
UNIX.

2 Create a PersistenceManagerFactory; this example uses
JDOHelper.getPersistenceManagerFactory() and uses jdo.properties to
set various runtime configuration properties.

3 Acquire a PersistenceManager by invoking
PersistenceManagerFactory.getPersistenceManager(). The
PersistenceManager has the characteristics defined by the properties that are
used to create the PersistenceManagerFactory.

4 Create a Transaction by invoking
PeristenceManager.currentTransaction().

5 Start and commit a transaction by calling Transaction.begin() and
Transaction.commit(). The example uses one transaction to populate the
database and a second transaction to read and display database data.

6 In the example store the first object by using the
PersistenceManager.makePersistent() call. Other objects are stored in the
database simply because they are reachable from the object that was made
persistent.

7 Retrieve and display persistent objects by accessing the Person Extent.

8 At the end the example invokes PersistenceManager.close().

9 Run the PSEJDO enhancer on the compiled class files to generate an annotated
version of the class files. The annotated version of the class definition is
persistence capable.

Example Code
package com.odi.demo.jdo.people;

import java.io.InputStream;
import java.io.FileInputStream;
import java.util.Properties;
import java.util.Iterator;
import java.util.Collection;
import java.util.Vector;

import javax.jdo.*;

public class Person {
 String name;
 int age;
Release 7.1 255

Example Application
 Vector children;

/**
 * Command line: com.odi.demo.jdo.people.Person <create | read>
 */

 public static void main(String argv[]) {

 // process command line arguments
 String operation = null;
 String propFileName =
 System.getProperty("jdo.properties","jdo.properties");

 if (argv.length > 0)
 operation = argv[0];
 if (argv.length > 1 ||
 !("create".equals(operation) ||
 "read".equals(operation))) {
 System.out.println
 ("Usage: people.Person <create | read>");
 System.exit(-1);
 }

 // acquire the PersistenceManagerFactory
 PersistenceManagerFactory pmf = null;
 try {
 InputStream propStream =
 new FileInputStream(propFileName);
 Properties props = new Properties();
 props.load(propStream);
 pmf = JDOHelper.getPersistenceManagerFactory(props);
 } catch(Throwable ex){
 ex.printStackTrace(System.out);
 throw new RuntimeException("Could not create PMF from
 property file");
 }

 // generate a PersistenceManager from the factory
 PersistenceManager pm = pmf.getPersistenceManager();

 // do the requested operation
 if ("create".equals(operation))
 populate(pm);
 else if ("read".equals(operation))
 traverse(pm);
 else
 ; // not reached

 pm.close();
 }

 static void populate(PersistenceManager pm) {
 Transaction tx = pm.currentTransaction();
 tx.begin();

 // make a network of regular transient Person objects
 Vector kids = new Vector();
 kids.addElement(new Person("Riley", 6, null));
 kids.addElement(new Person("Isabel", 3, null));
 Person guy = new Person("Guy", 47, kids);
256 PSE Pro for Java User Guide

Chapter 11: Using Java Data Objects (JDO) with PSE Pro
 // now mark the parent object as persistent
 pm.makePersistent(guy);

 // through reachability analysis, upon commit the parent
 // and children and the Vector of children
 // are written into the database.
 tx.commit();
 System.out.println("Created and populated database.");
 }

 static void traverse(PersistenceManager pm){
 Transaction tx = pm.currentTransaction();
 tx.begin();

 // look up the Person object that represents the parent
 // by querying the Extent of the Parent class
 Extent personExtent = pm.getExtent(Person.class, false);
 Query q = pm.newQuery(personExtent, "name == \"Guy\"");
 Collection persons = (Collection)q.execute();

 // assume that there is one and only one object
 // returned from the query
 Person guy = (Person)persons.iterator().next();

 // now access the persistent objects directly
 // as if they were ordinary transient objects
 Vector kids = guy.getChildren();

 System.out.print(guy.getName() + " is " + guy.getAge() +
 " and has " + kids.size() + " children: ");
 for (int i = 0; i < kids.size(); i++) {
 Person kid = (Person)kids.elementAt(i);
 if (i > 0) System.out.print(", ");
 System.out.print(kid.getName() + " age " + kid.getAge());
 }
 System.out.println("");
 tx.commit();
 }

 public Person(String name, int age, Vector children) {
 this.name = name;
 this.age = age;
 this.children = children;
 }

 public Person() {
 name = null;
 age = 0;
 children = null;
 }

 public String getName() {return name;}
 public int getAge() {return age;}
 public Vector getChildren() { return children; }
}

Release 7.1 257

Example Application
Example Persistence Descriptor
The XML metadata for the example application is contained in persistence descriptor
file named Person.jdo. In this example, the Person class is included in the
metadata, so it is PersistenceCapable. It has an identity-type of datastore and
its requires-extent is set to true. The class includes three fields, name, age, and
children that are specified as persistent.

The example uses the following XML:

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE jdo SYSTEM "jdo.dtd">
<jdo>
 <package name="com.odi.demo.jdo.people">
 <class name="Person"
 identity-type="datastore" requires-extent="true">
 <field name="name" persistence-modifier="persistent"
 default-fetch-group="true"/>
 <field name="age" persistence-modifier="persistent"
 default-fetch-group="true"/>
 <field name="children" persistence-modifier="persistent"
 default-fetch-group="true"/>
 </class>
 </package>
</jdo>

Example Properties File
The example application uses information contained in a file called jdo.properties
to configure the PSEJDO implementation for the example. It sets up the class to be
used for PersistenceManagerFactory. It also uses ObjectStore specific extensions
to configure the application to use the PSE Pro product. The file contains the
following:

javax.jdo.PersistenceManagerFactoryClass=
 com.odi.jdo.OsjdoPersistenceManagerFactory
javax.jdo.option.ConnectionURL=
 osjdo:C:\ODI\PSEProJ\com\odi\demo\jdo\people\person.odb
com.odi.jdo.option.ConnectionOpenMode=update
com.odi.jdo.option.Product=PSEPro
com.odi.jdo.option.ConnectionOpenAction=auto
258 PSE Pro for Java User Guide

Chapter 11: Using Java Data Objects (JDO) with PSE Pro
Before You Run the Program
Before you can run the sample program, you need to:

• Add additional files to the CLASSPATH environment variable

• Compile the source file

• Run the enhancer on the .class file

Adding Additional Files to the CLASSPATH
In your CLASSPATH environment variable, specify the required jar files as described
in Adding Files to Your CLASSPATH on page 246.

Compiling the Program
To compile the example program, change to the PSE Pro installation directory and,
on Windows platforms, enter

javac com\odi\demo\jdo\people*.java

On UNIX platforms, enter

javac com/odi/demo/jdo/people/*.java

As output, the javac compiler produces the byte code class file Person.class in the
same directory that contains the Person.java file

Running the Enhancer
You need to run the JDO enhancer to modify the Person class so that it implements
the PersistenceCapable interface and annotate the Person class methods to
manage the lifecycle of a peoplePerson interface in the JVM. The JDO enhancer
generates new annotated class files. After you run the postprocessor, you should use
the annotated class files rather than the original class files.

The following command can be used to run the JDO enhancer on the example
application on Windows:

osenhance -dest C:\ODI\PSEProJ\classes
 com.odi.demo.jdo.people.Person

On UNIX, use the following:

osenhance -dest /ODI/PSEProJ/classes
 com.odi.demo.jdo.people.Person

Using the -dest option specifies that you want to place the newly annotated class
files in a classes directory under the PSE Pro installation.

The final argument, com.odi.demo.jdo.people.Person, specifies the name of the
class in the example you need to be make PersistenceCapable.

This command will modify the Person.class file as it finds it in the java classpath.
Release 7.1 259

Example Application
Running the Program
Run the example program as a Java application. On Windows platforms, run it with
the following command:

java -classpath C:\ODI\PSEProJ\classes;%CLASSPATH%
 -Djdo.properties=
 C:\ODI\PSEProj\com\odi\demo\jdo\people\jdo.properties
 com.odi.demo.jdo.people.Person create

Run the example program on UNIX with the following command:

java -classpath /opt/ODI/PSEProJ/classes:${CLASSPATH}
 -Djdo.properties=
 /opt/ODI/PSEProJ/com/odi/demo/jdo/people/jdo.properties
 com.odi.demo.jdo.people.Person create

This will create three new files that represent the PSE Pro database, person.odb,
person.odf, person.odt. See Chapter 4, Managing Databases, on page 59 for an
explanation of these files. For simplicity the user should make sure these files are
treated as a cohesive unit for backup and relocation purposes.

To see the results of the creation, on Windows platforms execute:

java -classpath C:\ODI\PSEProJ\classes;%CLASSPATH%
 -Djdo.properties=
 C:\ODI\PSEProj\com\odi\demo\jdo\people\jdo.properties
 com.odi.demo.jdo.people.Person read

On UNIX platforms execute:

java -classpath /opt/ODI/PSEProJ/classes:${CLASSPATH}
 -Djdo.properties=
 /opt/ODI/PSEProJ/com/odi/demo/jdo/people/jdo.properties
 com.odi.demo.jdo.people.Person read

The expected output is

Guy is 47 and has 2 children named: Riley age 6, Isabel age 3
260 PSE Pro for Java User Guide

Chapter 12
Miscellaneous Information

This chapter provides miscellaneous information about PSE Pro.

Contents This chapter discusses the following topics:

Java-Supplied Persistence-Capable Classes 261

Description of Special Behavior of String Literals 265

Serializing Persistent Objects 267

Using Persistence-Capable Classes in a Transient Manner 268

Environment Variables 269

Java-Supplied Persistence-Capable Classes
Some Java-supplied classes are persistence capable. Others are not persistence
capable and cannot be made persistence capable. A third category of classes can be
made persistence capable, but there are important issues to consider when you do so.

Description of Java-Supplied Persistence-Capable Classes
The following Java classes are persistence capable:

• java.lang.String

• java.math.BigInteger

• java.math.BigDecimal

• java.util.Locale

• java.util.Currency

The wrapper classes follow:

• java.lang.Boolean

• java.lang.Byte

• java.lang.Character

• java.lang.Double

• java.lang.Float

• java.lang.Integer

• java.lang.Long
Release 7.1 261

Java-Supplied Persistence-Capable Classes
• java.lang.Short

• Arrays of Object, of any of the primitive types (boolean, byte, integer, and so
on), and of any persistence-capable type are all persistence capable. (You can
allocate an array and initialize it later, just as you would with any other field.)

Identity PSE Pro does not always preserve identity for objects that are instances of the Java
wrapper or String classes. It is more efficient to store these objects as values rather
than as objects. Because identity is not always preserved, programs that use object
identity to compare wrapper class objects work differently when used with
persistent objects. For example, the following method is incorrect:

boolean comparePersistIntegers(Integer x, Integer y) {
 return (x == y);
}

Instead, it should be written as

boolean comparePersistIntegers(Integer x, Integer y) {
 return x.equals(y);
}

Additional information about object identity is in About Object Identity on page 107.

Virtual memory
overhead

When PSE Pro makes them persistent, String types, primitive wrapper types, and
arrays have more run-time virtual memory overhead than types that implement
IPersistent. This is because PSE Pro must create entries for these types in two hash
tables. com.odi.IPersistent requires an entry in a single hash table because
certain information is stored in fields in the object.

Persistent and
persistence
capable

In your program, some wrapper objects or strings might be persistent and some
might be transient, though both are persistence capable:

PSE Pro always makes objects of type java.lang.Double or java.lang.Long
persistent when it migrates them into a database. This can happen with an explicit
call to ObjectStore.migrate() or through transitive persistence. All other wrapper
objects behave like this:

• If the application explicitly calls ObjectStore.migrate() on a wrapper object,
or as a value in an com.odi.util.OSTreeMap, the wrapper object or string
becomes persistent.

• If the wrapper object or string is only reachable through transitive persistence, it
does not become persistent when the transaction is committed. Instead, PSE Pro
stores the object as an immediate value.

This means that PSE Pro does not store the object in any of its internal hash tables
and does not store the object as a separate value in the database. Instead, PSE Pro
stores the object in the location of the reference to the object. The reference
completely describes the object.

• Some strings become immediate if you set the com.odi.useImmediateStrings
property to true when a session is created and the string is eight characters or
less. These strings are stored as values of fields in persistent objects and are not
persistent unless you explicitly call ObjectStore.migrate to make them
persistent.
262 PSE Pro for Java User Guide

Chapter 12: Miscellaneous Information
Any routine that requires a persistent object, as opposed to a persistence-capable
object, notices the distinction between persistent and persistence capable but transient.
For example, if an application calls Segment.of() on an Integer object, the return
value might be a segment in a database or PSE Pro might signal
ObjectNotPersistentException. You cannot always predict what the return value
will be because an Integer-valued field in a persistent object can contain either a
persistent or a transient value.

Unicode strings PSE Pro stores Unicode strings. You can specify any Java string with Unicode
characters in it and PSE Pro can store it persistently and retrieve it correctly. PSE Pro
uses UTF-8 (Unicode Transformation Format) encoding/compression to store
regular English strings compactly. Sun’s Java implementation uses the same
mechanism.

Immediate
strings

The identity of immediate strings is not maintained.

Can Other Java-Supplied Classes Be Persistence Capable?
Many Java system classes cannot be persistence capable. There are other Java system
classes that you can make persistence capable but you must consider some issues
when you do so. In some situations, you can subclass the Java system class and make
the subclass persistence capable. Of course, this would not work for final classes.

Primitive types You cannot store an object of a primitive type, such as an int, directly in a database
as a discrete object. To store an object of a primitive type in a database you can

• Place it in a wrapper object, such as an Integer

• Define it as a field in a persistence-capable class

For example, you cannot make byte persistence capable because by itself a byte is
not an Object, but you can make byte[] persistence capable because it is an Object.

Native methods Classes that use native methods cannot be made persistence capable by the
postprocessor because the postprocessor cannot annotate the native methods the
way it can annotate Java code. What this means is that if a class has native methods
and you postprocess the class, PSE Pro cannot guarantee that everything will work
properly.

You might choose to postprocess your code, then add native code. If you do this, you
must ensure that any persistent objects that your native code references are properly
fetched from the database before the native method is called.

Classes that
hold state

Other system classes do not make sense as persistent objects because they hold state
that is inherently tied to the process, such as open file channels or Java threads.

Post-processing For other classes, such as java.lang.Stringbuffer, the previous obstacles might
not apply. If you postprocess the .class file for java.lang.StringBuffer and
specify the -modifyjava option, the postprocessor produces a persistence-capable
StringBuffer class:

osjcfp -dest \osjcfpout -modifyjava java.lang.StringBuffer
Release 7.1 263

Java-Supplied Persistence-Capable Classes
Then you must put the new .class file in your CLASSPATH variable ahead of the
standard Java .class file. All subsequent use of the StringBuffer class in this
environment would use the persistence-capable version.
264 PSE Pro for Java User Guide

Chapter 12: Miscellaneous Information
Performance
drawbacks

There are, however, some drawbacks to doing this. Some slowdown of some or all
the methods will occur, because the postprocessor must add new instructions to
check whether the object needs to be brought in from the database or needs to be
marked as modified.

The amount of slowdown is hard to determine. It depends on the details of the
method. Even parts of your program that never handle persistence are affected by
these extra instructions. This also applies to indirect uses of the class, for example, if
StringBuffer is used heavily in a Java library that you are using, such as a user
interface or network library.

Library version
problems

There can also be problems with Java library version skew. If you postprocess
java.lang.StringBuffer from version 1.1 of the Java Virtual Machine, then your
user uses your program with version 1.1.2, and StringBuffer has changed in some
way between 1.1 and 1.1.2, your user will see the 1.1 version (persistence capable)
everywhere in the entire Java environment. If your user was depending, directly or
indirectly, on the new 1.1.2 version of StringBuffer, something might not work
properly.

Renaming the
class

You might need to rename the newly created persistence-capable version so that the
non-persistence-capable version is still available to the other Java system classes. To
do this, specify the -translatepackage option when you run the postprocessor. See
Putting Processed Classes in a New Package on page 193.

This avoids the problem and is generally safer. However, you might need the
persistence-capable class to have the original class name. For example, suppose you
have a library with a method that takes an argument of type
java.lang.Stringbuffer. You want to pass in a persistence-capable object. You
cannot rename the class because the argument type would not match.

java.util.Hashta
ble

PSE Pro itself uses java.util.Hashtable. Consequently, invoking Java or using
PSE Pro with a persistence-capable version of java.util.Hashtable that is
available in your CLASSPATH is likely to cause trouble, such as infinite loops. A better
approach is to substitute the PSE Pro-supplied class com.odi.util.OSHashtable.

Description of Special Behavior of String
Literals

There are special considerations when you make String literals persistent.

When a Java program refers to a String literal by using quotation marks to name a
string, Java treats the resulting String as a constant value. Multiple calls to a method
with the String literal operate on the same String object.

The com.odi.stringPoolSize initialization property allows you to control the way
that PSE Pro causes Strings, other than literals with the same contents, to be
represented by a single, shared instance in the database in certain circumstances. See
Description of com.odi.stringPoolSize on page 54.
Release 7.1 265

Description of Special Behavior of String Literals
Example of String Behavior
Consider the following example:

Object string() {String result = "string"; return result;}
Object intArray() {int[] result = { 1, 2, 3 }; return result;}
boolean stringsTheSame() {return string() == string();}
boolean intArraysTheSame() {return intArray() == intArray();}

The stringsTheSame() method always returns true because every call to
string() returns the same String object. The intArraysTheSame() method
always returns false because each call to intArray() constructs a new int[]
object.

Destroying Strings
By default, String objects that become persistent during a transaction revert to
being transient at the end of the transaction. Persistent objects usually are made stale
at the end of a transaction. Unlike objects that implement IPersistent, when a
String is made stale, it becomes transient.

When you destroy a String, in the transaction in which the destroy operation
occurs, PSE Pro keeps track of the fact that the object was destroyed. An attempt to
use a destroyed String literal causes PSE Pro to signal ObjectNotFoundException.
The solution is to copy the String before you destroy it.

You should not destroy a String in a database unless you know that no other object
in the database refers to that String. A safe, though possibly inefficient, way to
handle this is to use

new String(String)

to force a new identity to each String that might be referenced. Also, you must
disable the String pool by specifying 0 for the value of the
com.odi.stringPoolSize initialization property. This ensures that you can safely
destroy the old String instance.

It is usually best to avoid destroying strings or objects altogether and let the
persistent garbage collector take care of destroying such unreachable objects. The
persistent GC can typically destroy and reclaim such objects very efficiently, because
it can batch such operations and cluster them effectively. If you set up the GC to run
when the system is lightly loaded, you can defer the overhead of the destroy
operations to a time when your system would otherwise be idle, thus getting greater
real throughput from your application when you really need it.

Immediate
strings

You do not need to destroy immediate strings. Destroying an immediate string has
no effect. Immediate strings are not persistent objects. They are transient values that
are not stored in the database.
266 PSE Pro for Java User Guide

Chapter 12: Miscellaneous Information
Serializing Persistent Objects
You can serialize many classes that implement com.odi.IPersistent. For this to
work, the definition of your persistence-capable class must implement the
java.io.Serializable interface. The classes you can serialize include

• com.odi.util.OSHashtable

• com.odi.util.OSTreeMap

• com.odi.util.OSVector

• com.odi.util.OSTreeSet

During serialization, none of the transient fields in the IPersistent implementation
needs to be written out. When you deserialize instances of the
com.odi.util.OSTreeMap and com.odi.util.OSTreeSet classes, you can specify
their placement by using the ObjectStore.setPlacementForSerialization()
method.

Before serializing an object, an application must always invoke
ObjectStore.deepFetch() on the object to be serialized. The deepFetch() method
ensures that the contents of all components of the object are accessible. This must be
the case for an application to serialize an object.

Why you use
deepFetch()

In a PSE Pro application, the first time you read or modify an object, PSE Pro makes
the contents of the object available. The contents do not have to be available before
you start the operation. You need not add Java code to make the contents available.
When a PSE Pro program follows a reference from a source object to a target object,
the contents of the target object are automatically available. This happens because
the postprocessor recognizes the Java byte-code instructions that follow references
and it inserts the code that fetches the object contents.

Serialization works differently. It follows references from one Java object to another
without using Java byte codes. Serialization does not perform the automatic fetches
the way that PSE Pro does. Consequently, before you initiate serialization of an
object, its contents and the contents of all its components must already be available.
The ObjectStore.deepFetch() operation does this for you.

Example When an application serializes and deserializes a persistent object with the default
serialization methods, PSE Pro effectively creates a transient copy of the object and
its components. Following is code that provides an example of serializing and
deserializing persistent objects. In this example, list2 is a transient copy of the
persistent list.

public
class SerializationExample {

public static void main(String argv[])
 throws java.lang.ClassNotFoundException, java.io.IOException,
 java.io.FileNotFoundException {
 String dbName = argv[0];
 Session.createGlobal(null, null);
 /* Create a database with a list in it. */
 Database db = Database.create(dbname,
 ObjectStore.ALL_READ | ObjectStore.ALL_WRITE);
Release 7.1 267

Using Persistence-Capable Classes in a Transient Manner
 Transaction tr = Transaction.begin(ObjectStore.UPDATE);
 List curr = new List("1", null);
 db.createRoot("list", curr);
 for (int i=2; i < 5; i++) {
 curr.next = new List(""+i, null);
 curr = curr.next;
 }
 tr.commit();

 /* Illustrate use of serialization in this example. */
 tr = Transaction.begin(ObjectStore.UPDATE);
 List head = (List)db.getRoot("list");

 /* Fetch the entire list prior to serializing it. */
 ObjectStore.deepFetch(head);

 FileOutputStream f = new FileOutputStream("tmp");
 ObjectOutputStream os = new ObjectOutputStream(f);
 os.writeObject(head);

 FileInputStream in = new FileInputStream("tmp");
 ObjectInputStream is = new ObjectInputStream(in);

 /* list2 is effectively a copy of the list denoted by head. */
 List list2 = (List)is.readObject();
 ...

 tr.commit();
 }
}

public class List implements java.io.Serializable {

 public Object value;
 public List next;

 List(Object value, List next) {
 this.value = value;
 this.next = next;
 }

 ...
}

Using Persistence-Capable Classes in a
Transient Manner

The stublib.jar file contains stubs of PSE Pro classes that allow user-defined
persistence-capable classes to be used in a purely transient manner. The annotations
in the persistence-capable classes make calls to the various PSE Pro stub routines in
stublib.jar.

The stublib.jar file provides a stripped-down version of the PSE Pro API. This
allows better performance and a smaller footprint than the complete .jar file.
268 PSE Pro for Java User Guide

Chapter 12: Miscellaneous Information
For example, you might want to use stublib.jar for the client in an RMI or CORBA
application. The client might use persistence-capable classes, which make references
to various PSE Pro methods, but the client never directly accesses a PSE Pro
database. In this situation, the stub routines in stublib.jar satisfy the
requirements of the Java VM’s linker.

To use stublib.jar, put it in your CLASSPATH instead of pro.jar.

If your application uses any classes in com.odi.util, you must use pro.jar. You
cannot use stublib.jar because the stub definitions are not sufficient for the
com.odi.util classes.

Java primitive
fields

Java primitive fields are represented the same way as similarly sized C++ primitives.
The sizes of Java primitives when they are stored in instance fields or arrays are
shown in the following table.

Environment Variables
PSE Pro includes the following environment variables:

• OS_JAVA_VM specifies the command for running the Java virtual machine, when it
is set. The default is that this variable is not set. The Windows tool batch files use
the value of this variable when it is set.

• OSJCFPJAVA specifies the name of the Java executable you want the postprocessor
to use. The default is java. If this variable is not set, the postprocessor uses the first
Java executable that it finds in your PATH environment variable. If you want the
postprocessor to use another Java executable, set the OSJCFPJAVA environment
variable to the name of the Java executable you want the postprocessor to use.

If the postprocessor cannot find a Java executable, it signals a Bad command or
file name error message.

Primitive Primitive Size in Bytes

boolean 1

byte 1

short 2

char 2

int 4

float 4

double 8

long 8
Release 7.1 269

Environment Variables
270 PSE Pro for Java User Guide

Chapter 13
Tools Reference

This chapter provides reference information for the following tools:

osjcfp: Running the Postprocessor 272

osjcheckdb: Checking References in a Database 280

osjgcdb: Collecting Garbage in Databases 281

osjshowdb: Displaying Information About a Database 282

osjup70: Upgrading Databases to 7.0 Format 283

osjversion: Obtaining PSE Pro Version Information 284
Release 7.1 271

osjcfp: Running the Postprocessor
To make classes persistence capable, compile the source files, then run the
postprocessor on the resulting class files. You must run the postprocessor on all class
files in a batch at the same time. The postprocessor can accept a command line that
intersperses file names, options, and input file specifications. Complete information
about the postprocessor is in Chapter 8, Generating Persistence-Capable Classes
Automatically, on page 171.

Command Format
osjcfp -dest destination_dir file_name [file_name...][options].

Options
@input_file

Causes the contents of the named input file to replace this argument in the
command line. The postprocessor does this before any other argument
processing. You can specify this option multiple times on one command line to
include multiple files. You cannot nest this option. That is, the postprocessor does
not expand this argument if it appears in an input file.

 -annotatefield qualified_field_name

Instructs the postprocessor to insert fetch() or dirty() calls in annotated code
whenever a method accesses a transient field in a persistent class. The
-annotatefield option turns off the -noannotatetransientfields option.

{ -cis | -classinfosuffix } suffix_string

Specifies the suffix that the postprocessor adds to the name of the ClassInfo
subclass that the postprocessor generates for each class that it makes persistence
capable. By default, the suffix is ClassInfo. This is useful when you need to limit
the number of characters in file names. For all batches in an application, you must
specify the same suffix if you do not use the default.

{ -cpath | -classpath } class_path

Specifies the path by which to locate class files for postprocessing. If you specify
this option, PSE Pro uses it in place of the CLASSPATH environment variable. The
-classpath option does not affect the class path used to run the postprocessor.

{ -sysclasspath | -syscpath} system_class_path

Specifies the path by which to locate class files for Java system classes for
postprocessing. If you specify this option, PSE Pro uses it in place of the value in
the sun.boot.class.path system property. When using jview, system classes
cannot be found unless you specify their location using this option. The -
sysclasspath option does not affect the class path used to run the postprocessor.
272 PSE Pro for Java User Guide

Chapter 13: Tools Reference
{ -cc | -copyclass }

Copies classes to the destination directory without annotating them. This option
applies to class names, .class files, .jar files, and .zip files that you specify on
the command line after the -copyclass option and before the next
-persistcapable or -persistaware option or the end of the command line. This
option is useful when you want nonpersistent classes or classes that have already
been annotated to be in the same directory as persistence-capable or persistence-
aware classes being created.

If you specify the -persistaware or -persistcapable option for any file for
which you also specify the -copyclass option, the postprocessor ignores the
-copyclass option for that file.

If you specify the -translatepackage option and the copyclass option, the
postprocessor modifies the class to accommodate the new package name.

{ -d | -dest } destination_dir

This option is required. The postprocessor uses the directory you specify for
destination_dir as the root for locating the annotated files. The postprocessor
places each class file it operates on in the package-appropriate subdirectory of the
destination directory, as though the destination directory were in your class path.

If the destination directory specification would cause the postprocessor to
overwrite an original file and you did not specify the -inplace option, the
postprocessor reports an error and terminates without producing any output.

{ -emlf | -embeddedmaxlengthfield }

Specifies that Java Strings for a given field will be represent as embedded Unicode
arrays. Using embedded strings can significantly improve performance for those
applications that heavily use small strings (less than 100 characters).

This option takes the following two arguments:

- First argument is the fully qualified name of a string field

- Second argument is the maximum size string that can be stored in that field.

Note that you cannot declare embedded string fields as indexable fields for Java
peer collections.

{ -f | -force }

Forces the postprocessor to overwrite existing annotated .class and ClassInfo
files.

-hashcode class_name

Causes the postprocessor to add a persistent hashCode() method to the specified
class. You typically use this option with the -nodefaulthashcode option. If you
specify this option for a class for which you explicitly defined a hashCode()
method, the postprocessor reports an error.
Release 7.1 273

-includesummary inc_class_name

Instructs the postprocessor to include the specified summary in the new summary
it creates. It does not matter whether the postprocessor is also annotating any
classes. Replace inc_class_name with the name of a file generated by a previous
execution of the postprocessor with the -summary option. You must know the
name of the generated file. If you did not postprocess the library yourself, you
must get the name of the generated class from the library vendor. When you
specify the -includesummary option, you must also specify the -summary option.
This option provides information that is needed by the schema evolution API,
which is not available in PSE Pro. You can, however, use serialization to perform
schema evolution.

{ -index | -indexablefield } field

Marks a field as indexable for a peer (com.odi.coll) collection. This option
applies only to the field that immediately follows it. You must specify a fully
qualified field, for example, com.odi.demo.people.name. You can specify this
option multiple times. This option does not apply to utility (com.odi.util)
collections.

This option is useful because it allows a query to run faster. The postprocessor
does not actually add the index. You can add a persistent index with a call to the
API at run time. When the index is present, queries that use the specified field are
faster.

Suppose you declare a field to be indexable, then you change the value of that
field. Performance is slightly slower than if the field were not indexable. This is
true for any object of the class, whether or not the object is in a collection.

Now suppose an object with an indexable field is in a collection and the collection
has an index on the indexable field. If you change the value of the field,
performance is slightly slower than when the object is not in a collection. The extra
time is needed to update the index.

An object can belong to many collections. Each collection can have an index on a
particular field. If you change the value of that field, ObjectStore must update each
index and the performance penalty is greater.

If a class has any indexable fields, every instance of the class is larger by three 32-
bit words in the database.

-inplace

Causes the postprocessor to annotate stand-alone files — files that are not in .zip
files or .jar files — in place rather than writing the annotated file in the
destination directory. When the postprocessor annotates a class in place, it
overwrites the original class files with the annotated class files and writes the
ClassInfo subclass to the same directory as the persistence-capable class. If a
class originates in a .zip file or .jar file, the postprocessor writes the annotated
class and its corresponding ClassInfo subclass to the destination directory.

Do not use this option when you are doing iterative development. During
development, a separate output directory avoids errors and supports debugging.
274 PSE Pro for Java User Guide

Chapter 13: Tools Reference
When you specify the -inplace option, you must still specify a destination
directory, but the postprocessor ignores it for stand-alone files.

{ -it | -ignoretransient } field_name

Instructs the postprocessor to ignore the transient attribute of the specified field
and treat the field as a persistence-capable field. You must specify a fully qualified
field name. The field is treated as persistence capable only for purposes of
postprocessing. This option is useful when a persistence-capable class you are
defining inherits from a class that includes a transient field. If you do not specify
this option for a transient field, the postprocessor ignores the field, which can
cause problems if you want to use the field.

-modifyjava

Allows the postprocessor to modify classes in standard Java packages. The default
is that the postprocessor does not modify standard Java classes.

{ -naf | -noannotatefield } qualified_field_name

Prevents access to the specified field from causing fetch() and dirty() calls on
the containing object. This is useful for transient fields when you access them
outside a transaction. Normally, access to a transient field causes fetch() or
dirty() to be called to allow the postInitializeContents() and
preFlushContents() methods to convert between persistent and transient state.

{ -natf | -noannotatetransientfields}

Prevents the postprocessor from inserting fetch() or dirty() calls into the
annotated code for transient fields of persistent classes that are accessed by
methods. This option is useful when you want to access the transient fields
outside of transactions.

The default behavior, if thenoannotatetransientfields option is not specified,
is for the postprocessor to insert fetch() or dirty() calls into the annotated code
when transient fields of persistent classes are accessed.

-noarrayopt

Disables optimization of fetch() and dirty() calls for array objects in looping
constructs. This causes osjcfp to insert the calls to fetch() or dirty() in every
iteration rather than only in the first loop iteration.

{-nodefaulthashcode | -ndhc }

Prevents the postprocessor from automatically adding a hashCode() method to
a class, except classes for which you explicitly specify the -hashcode option. If
you specify this option, it is your responsibility to ensure that there is a suitable
hashCode() method for classes that are used as keys in persistent hash tables.

-noinitializeropt

Disables optimization of fetch() and dirty() calls in constructors. Specify this
option when you want the postprocessor to perform full annotation of
constructors. Full annotation means that if the object becomes persistent during
constructor execution, modifications to the object are handled correctly. By
Release 7.1 275

default, the postprocessor does not fully annotate constructors to handle changes
in the newly constructed object. Typically, this is the desired behavior.

If your application inserts objects into PSE Pro collections during construction of
the objects being inserted, you must specify the -noinitializeropt option.
Doing so avoids errors in the handling of modifications to the newly constructed
objects.

-noopt

Disables the three optimizations that are disabled by the -noarrayopt,
-noinitializeropt, and -nothisopt options. The -noopt option is a shortcut
you can use when you want to specify all three options. You might want to specify
this option when the optimizations are preventing the postprocessor from
inserting required fetch() and dirty() calls in your classes.

-nooptimizeclassinfo

Instructs the postprocessor to generate xxxClassInfo classes for persistence-
capable classes that are public. Use this option if your application encounters run-
time security errors when the xxxClassInfo classes are dynamically generated
using the reflection API.

-nothisopt

Disables optimization of fetch() and dirty() calls for access to fields relative
to this in nonstatic member methods. This causes osjcfp to insert a fetch() or
dirty() call for each access to a field in this.

-nowrite

Performs process and error checking but does not actually annotate class files.
This option allows a test run of the postprocessor. You use it to determine whether
or not all specified classes are accessible, whether additional options are needed,
and if you specify -v (verbose), you can see where the resulting files would be
located.

{ -pa | -persistaware }

Causes subsequent .class files, .jar files, and .zip files on the command line to
be persistence aware. This means that instances of the classes can operate on
persistent objects but cannot be persistent. The postprocessor annotates
persistence-aware classes so that there are calls to ObjectStore.fetch() and
ObjectStore.dirty() where needed during operations on potentially persistent
objects and arrays that might be used by the persistence-aware class. This option
applies to class names, .class files, .jar files, and .zip files that you specify on
the command line after the -persistaware option and before the next
-persistcapable or -copyclass option, or the end of the command line. In other
words, the -persistcapable option or the -copyclass option alters this mode.
The -pc option is in effect by default.

{ -pc | -persistcapable }

Causes subsequent .class files, .jar files, and .zip files on the command line
to be persistence capable. This option applies to class names, .class files, .jar
files, and .zip files that you specify on the command line after the
276 PSE Pro for Java User Guide

Chapter 13: Tools Reference
-persistcapable option and before the next -persistaware or -copyclass
option or the end of the command line. The -pa (persistence-aware) option or the
-copyclass option alters this mode. The -pc option is in effect by default.

{ -q | -quiet }

Causes the postprocessor to refrain from displaying warnings. A warning
message provides information about something that the postprocessor recognizes
as a possible problem but cannot confirm as actually being a problem. This option
cancels a previous -verbose option, if you specified one.

{ -qc | -quietclass } class_name

Causes the postprocessor to refrain from displaying warnings for the specified
class. A warning message provides information about something that the
postprocessor recognizes as a possible problem but cannot confirm as actually
being a problem. This option applies only to the name that immediately follows
it. Specify a fully qualified class name. If the postprocessor is renaming the class,
it does not matter whether you specify the old name or the new name. If you
specify -verbose in the same command, this option takes precedence over the
specified class.

{ -qf | -quietfield } member_name

Causes the postprocessor to refrain from displaying warnings for the specified
class field. A warning message provides information about something that the
postprocessor recognizes as a possible problem but cannot confirm as actually
being a problem. This option applies only to the name that immediately follows
it. Specify a fully qualified class field name. If the postprocessor is renaming the
class, it does not matter whether you specify the old name or the new name. If you
specify -verbose in the same command, this option takes precedence for the
specified class field.

-summary gen_class_name

Causes the postprocessor to generate a class with the name gen_class_name. This
generated class extends the com.odi.PersistentTypeSummary class. The gen_
class_name.getPersistentClasses() method returns a list of the classes that
were made persistence capable in this execution of the postprocessor. The
generated class has a no-argument constructor that passes arrays to the
PersistentTypeSummary class constructor. To identify persistence-capable
classes in libraries and include them in this summary, specify the
-includesummary option. This option provides information that is needed by the
schema evolution API, which is not available in PSE Pro. You can, however, use
serialization to perform schema evolution.

{ -tf | -transientfield } qualified_field_name

Causes the postprocessor to treat the specified field as though it has a transient
modifier, even if it does not. This typically is useful when a field should not be
stored in a database, but it must be available for object serialization.
Release 7.1 277

{ -tp | -translatepackage } orig_pkg_name new_pkg_name

Renames classes that belong to orig_pkg_name so that they belong to new_pkg_
name. The original .class files remain in the original location and the
postprocessor does not annotate them. For example, suppose the postprocessor
makes a class named a.b.C persistent with -tp a.b a.b.x. The persistent class
has the name a.b.x.C.

A package specification of "." implies the default unnamed package. For example,
the option -tp . persist causes the unpackaged class name C to be renamed
persist.C.

orig_pkg_name must exactly match the package name of the class being
annotated. For example, for a file named a.c.D, a specification of -tp a a.b does
not translate the package name. The package of a.c.D is a.c, not a.

The postprocessor changes the package name of all classes in the original package
that it can locate through the CLASSPATH environment variable or, if it is specified,
the -classpath option.

{ -v | -verbose }

Causes the postprocessor to write descriptions of its actions to standard output.
This option cancels a previous -quiet option, if you specified one.

File Names
You can specify any number of class names, .class files, .jar files, or .zip files
on the command line. The postprocessor recognizes files as follows:

name.class

Explicit file name for a class file.

name.zip

Explicit file name for a class .zip file. The postprocessor processes all .class files
in the .zip file according to the persistence mode that is in effect when the
postprocessor encounters the name of the .zip file. The postprocessor places each
file from the .zip file in the package-relative subdirectory of the destination
directory. A .zip file allows the postprocessor to process multiple files without
the specification of each one on the command line. Also, you can simply specify a
.zip file. You need not unzip the file before processing the .class files.

name.jar

Explicit file name for a class .jar file. The postprocessor treats the file the same
way that it treats a .zip file.

name

Qualified class name delimited by ".". The postprocessor uses the CLASSPATH
environment variable or the specification for the -classpath option to locate the
.class file, which can be in a .zip file or a .jar file.

Because the postprocessor recognizes name.class as well as name, you can run a
command such as
278 PSE Pro for Java User Guide

Chapter 13: Tools Reference
osjcfp -dest osjcfpout *.class

You need not derive qualified class names from the file paths.

Postprocessor API
PSE Pro also includes a companion API for it class file postprocessor utility for those
times when it is useful to call the postprocessor from your Java application. The
method that you call is

com.odi.filter.OSCFP.filter(String[] argv)

The arguments you pass with the argv parameter are the same as the arguments you
would use for the osjcfp command-line utility. These arguments are listed in the
preceding sections. The following example shows how to use the postprocessor API:

String args = new String[numArgs];
args[0] = "-inplace"
args[1] = "-dest";
args[2] = ".";
 ...;
filter.OSCFP myPostprocessor = new filter.OSCFP();
myPostprocessor.filter(args);

Note When using this method, you cannot use wildcards with file names. For example, on
the command line, *.class expands to all the .class files listed in your current
directory; however, it does not expand when used with the API. You must specify
each file name explicitly.
Release 7.1 279

osjcheckdb: Checking References in a
Database

The osjcheckdb utility or the Database.check() method checks the references in a
database. This tool scans a database and checks that there are no references to
destroyed objects. You can fix references to destroyed objects by finding the objects
that contain the dangling references and overwriting the invalid references with
something else, such as a null value. In addition to finding references to destroyed
objects, the tool performs various consistency checks on the database.

If the tool does not find any problems, it does not produce any output.

Check paths Before you invoke osjcheckdb from the command line, ensure that tools.jar is in
your CLASSPATH variable. Also ensure that the distribution bin directory that
contains osjcheckdb is in your PATH variable. The format for invoking this tool from
the command line is

Command line osjcheckdb [-openUpdateForRecovery] database_name1.odb ...

Optionally, specify the -openUpdateForRecovery flag. If you specify this option
and a database to be checked needs to be recovered before it can be checked, PSE Pro
recovers the database and then checks references. If you do not specify this option,
and a database to be checked needs to be recovered, PSE Pro throws
com.odi.DatabaseNeedsRecoveryException. If no database to be checked needs to
be recovered, it does not matter whether or not you specify this option.

You can specify one or more databases. Separate multiple specifications with a space.
If osjcheckdb cannot check a database that you specify, it displays a message about
the inaccessible database and continues to the next database.

Be sure to specify the name of the .odb file of the database.

The tool displays messages about any errors that it finds.

API The function signature for invoking the API for this tool is

Database.check(java.io.PrintStream)

When PSE Pro executes this method, it operates on the committed contents of the
database and on any changes that have been saved as a result of
ObjectStore.evict() or ObjectStore.evictAll(). PSE Pro does not operate on
any changes that have been made but not committed or evicted.

The method writes any errors it finds to the argument stream. It also returns a
Boolean value, which is true if the references are valid and false if there are any
bad references.
280 PSE Pro for Java User Guide

Chapter 13: Tools Reference
osjgcdb: Collecting Garbage in Databases
The command-line utility for collecting garbage in a database is osjgcdb. Invoke this
tool with the following format:

osjgcdb [-detail] database_name.odb ...

You can specify multiple database names. When you specify the -detail option,
PSE Pro displays information about the properties used to perform the garbage
collection. For example, execution of

osjgcdb db.odb

is the same as calling the Database.GC() method on the db.odb database. Here are
two examples:

osjgcdb \temp\mumble.odb
Reclaimed 1 unreachable objects.

osjgcdb -detail \temp\mumble.odb
Reclaimed 1 unreachable objects.
-- listing properties --
Rescan Passes=1
Unreferenced Dead Objects=1
Unreferenced Objects=1
Rescan Objects=0
Unreferenced Live Objects=0
com.odi.gc.reclaimedObjects=1

The osjgcdb tool requires

• The tools.jar file in your CLASSPATH environment variable

• The PSE Pro bin directory in your PATH environment variable

Not PSE This tool and its API are not provided with PSE.
Release 7.1 281

osjshowdb: Displaying Information About a
Database

The osjshowdb utility displays information about one or more databases. This utility
is useful when you want to know how many and what types of objects are in a
database. You can use this utility to verify the general contents of the database.

This utility displays the following information:

• Name of the database

• Name and number of each type of object in the database

• Total size in bytes occupied on the disk by each type of object

• Number of destroyed objects

-showObjs
option

If you specify the -showObjs option, the osjshowdb utility also displays the
following information for each object:

• oid, which is an internal representation of its location in the database

• Type

• Number of bytes it occupies on the disk

• If it is an array, the number of elements in the array

-showData
option

Specify the -showData option with osjshowdb to display string values as well as the
references that an object contains. When you specify the -showData option, it implies
the -showObjs option.

Path variables Before you invoke osjshowdb from the command line, ensure that tools.jar is in
your CLASSPATH environment variable. Also ensure that the distribution bin
directory that contains osjshowdb is in your PATH variable.

Command line To execute the osjshowdb utility, use this format:

osjshowdb [-showData] [-showObjs] db1.odb [db2.odb]...

You can specify one or more databases.

When the utility displays java.lang.String objects, the number of elements is the
number of characters in the string. The total bytes indicates the number of bytes that
the data occupies on the disk.

There are internal structures in the database that are not included in the calculations
performed by the osjshowdb utility. Consequently, the total number of bytes as
indicated in the output from osjshowdb is never equal to the actual size of a segment.

API The API for the osjshowdb utility is Database.show().

When PSE Pro executes this method, it operates on the committed contents of the
database and on any changes that have been saved as a result of
ObjectStore.evict() or ObjectStore.evictAll(). PSE Pro does not operate on
any changes that have been made but not committed or evicted.
282 PSE Pro for Java User Guide

Chapter 13: Tools Reference
osjup70: Upgrading Databases to 7.0 Format
Release 7.0 changes the format of PSE Pro databases. Consequently, you must
upgrade 6.x databases before you can use them with 7.0. To upgrade a database, run
the osjup70 utility on that database. This utility is in the bin directory of your PSE
Pro installation directory. The format for running the osjup70 utility is as follows:

osjup70 dbname

Replace dbname with the absolute or relative path of the database you want to
upgrade.

You must upgrade each 6.x database that you want to use with 7.0. If you do not
upgrade a database, and you try to use it with PSE Pro 7.0, PSE Pro does not open
the old database and signals an exception.
Release 7.1 283

osjversion: Obtaining PSE Pro Version
Information

You can use the osjversion utility to display the version number and the build date
for the version of PSE Pro you are running. This command is in the bin subdirectory
of the installation directory. You must include bin in your path to run osjversion.
For example:

C:\ODI\PSEProJ\bin>osjversion

ObjectStore PSE Pro for Java Release 7.0 for Windows NT Systems
Build packaged 04-22-07 23:11

This command is useful when you want to ensure that you have the right version in
your path.

The osjversion utility checks what is available through the PATH environment
variable. To check what is available through the CLASSPATH variable, you can write
a program such as the following.

import com.odi.ObjectStore;
class OSVersion {
 public static void main (String[] args) {
 ObjectStore.initialize(null,null);
 System.out.println(ObjectStore.releaseName());
 }
}

284 PSE Pro for Java User Guide

Appendix
Packaging Your Application for
End Users

When you package your application for delivery to end users, the package must
include one and possibly two class files for each persistence-capable class in your
application:

• The annotated class file

• The corresponding ClassInfo class file, if one was generated

For example, if you have a persistence-capable class called Person, in the App
package, you must provide users with

• The annotated App\Person.class file

• The App\PersonClassInfo.class file, if present

There is no corresponding ClassInfo file for persistence-capable interfaces.

The class file postprocessor only generates ClassInfo files for persistence-capable
classes if the class does not provide public access to all the required fields and
methods. In most cases, ClassInfo instance is created as needed at run time. Check
the destination directory specified for the postprocessor to determine which
ClassInfo files were generated.

You can jar these files with the rest of your package. You need not send the
unannotated version of your persistence-capable classes. The annotated version can
be used in a transient context.

For persistence-aware classes, you must provide the annotated class file. There is no
corresponding ClassInfo class file.
Release 7.1 285

286 PSE Pro for Java User Guide

Glossary

active persistent
object

An active persistent object starts as an exact copy of the object that it
represents in the database. PSE Pro initializes a hollow object so that it
becomes an active object. This happens when an application calls the
ObjectStore.fetch() or ObjectStore.dirty() method. If an
application calls the ObjectStore.dirty() method, rather than the
ObjectStore.fetch() method, on a hollow object, the resulting active
object can be modified.

Consequently, an active object is not necessarily identical to the object in the
database that it represents. An application can read or update an active
persistent object; a persistent object must be active for an application to read
or update it.

API object An object defined by the PSE Pro API that is associated with one session. An
API object can be an object of one of the following classes: Cluster,
Database, DatabaseRootEnumeration, DatabaseSegmentEnumeration,
Segment, or Transaction.

batch A batch is a set of files that must be postprocessed together. Often, this is all
the files in your application. In more complex applications, there might be
multiple batches that each contain a library and a batch of files that you
write, which reference the libraries.

database Persistent storage is organized into databases. Before a persistent object can
be created, the database in which it is to be stored must exist, and this
database must be opened by the process performing the creation. The
database must also be opened by any processes accessing the object.

hollow persistent
object

A hollow persistent object contains fields that are identical to the fields of
the object in the database that the persistent object represents, but the fields
have default values.

multistep index An index on a complex navigational path that accesses multiple public data
members, such as a.b().c.name.

persistence-aware If the methods of a class can operate on persistent objects but an instance of
the class cannot itself be stored in a database, the class is persistence aware.

When a method accesses fields in a persistent object, PSE Pro checks to
ensure that the data has been read from the database. This checking is done
by calls to the ObjectStore.fetch() and ObjectStore.dirty() methods.
A persistence-aware class includes the annotations that call the fetch()
and dirty() methods. It does not include the other annotations required
Release 7.1 287

Glossary
for a class to be persistence capable. Normally, you run the class file
postprocessor to annotate a class so that it is persistence aware.
Occasionally, you manually annotate the class yourself.

persistence-capable A persistence-capable object has the capacity to be stored in a database. If
you can store the instances of a class in a database, the class is persistence
capable and the instances of the class are persistence-capable objects.

The definition of a persistence-capable class includes specific annotations
required by PSE Pro. After you compile class definitions, you run the PSE
Pro class file postprocessor on the compiled classes to add the annotations
that make the classes persistence capable.

Some Java-supplied classes are persistence capable. Others are not
persistence capable and cannot be made persistence capable. A third
category of classes can be made persistence capable but there are important
issues to consider when you do so. Be sure to read Java-Supplied
Persistence-Capable Classes on page 261.

persistent object A persistent object is a representation of an object that is stored in a
database.

After an application retrieves an object from the database, the application
works with the persistent object in the Java environment. A persistent object
always exists in one of three states:

• Hollow

• Active

• Stale

session A session allows the use of the PSE Pro API. PSE Pro uses the abstract
com.odi.Session class to represent sessions.

Your application must create a session. After a session is created, it is an
active session. A session remains active until your application or PSE Pro
terminates it. After a session is terminated, it is never used again. You can,
however, create a new session.

A session consists of a set of persistent objects and a set of PSE Pro API
objects such as a Database and a Transaction.

In a single Java VM, PSE Pro and ObjectStore allow multiple concurrent
sessions.

If you are using ObjectStore or PSE Pro, separate Java virtual machines can
each run multiple sessions at the same time. See How Sessions Keep
Threads Organized on page 37.

stale persistent object A stale persistent object is no longer valid. Its fields have default values and
it should not be used.

A persistent object might become stale after an application commits or
aborts a transaction in which the active or hollow persistent object was
accessible. When an application calls the ObjectStore.destroy() method,
the target of the destroy method becomes stale.
288 PSE Pro for Java User Guide

Glossary
An application must not try to read or update a stale object.

transitive persistence When an application commits a transaction, it stores in the database any
transient objects that can be transitively reached from any persistent objects.
This is the process of transitive persistence.
Release 7.1 289

Glossary
290 PSE Pro for Java User Guide

A
AbortException.getOriginalException() method 111
aborting transactions

default effects on persistent objects 130
setting default object state 123
setting objects to default state 124
specifying a particular object state 124

abstract classes 220
accessing persistent objects

committing transactions 111
default effects of methods 130
dirty() method 211
evicting objects 118
fetch() method 211
in JDO applications 244
optimizing 201
procedure 95
saving changes by committing transaction 111
saving changes through eviction 118

active persistent objects
aborting transactions 125
committing transactions 114, 117
default effects of methods 130
definition 26
evicting 120

adding thread to session 46
addSuperIndex() method in JDD 238
aggregations, very large 142
annotations

customizing 197
description 172
manual 207
superclass modifications 187
you must add 204

applications
complex, finding right class files 184
failure 23
required components 32

archive logging 22
arrays

optimizations 275
passing 205

attributes, JDD
assigning values to 229
overview 226
type safety 226

B
Bad command or file name error message 190, 269
batch

definition 173

postprocessing two 173
postprocessor requirement 176

breakpoint
debugging 191

C
C++ applications 22
changing classes

schema evolution 69
strategy 78

Class could not be found error 177
class file

transient version 177
class files

annotated
finding 183
locations 188
managing 182

applications, complex 184
compiling unannotated 182
inner 181
nested 181
referring to persistent and transient versions 195

ClassCastException troubleshooting 55
ClassInfo class

-classinfosuffix option 272
-nooptimizeclassinfo option 181
subclass, defining 212
when generated 181

-classinfosuffix option 272
ClassNotRegisteredException 172
CLASSPATH environment variable

alternatives 184
class files, locating 182
-classpath option 178
for JDO 246
requirements 175

-annotatefield option 272
-classpath option 178, 272
clearContents() method

postprocessor 197

Cluster.getObjects() method 100
clusters

objects, iterating through 100
collections

adding indexes 162
advantages 146
alternative, selecting best 148
bags 141
built-in types, storing 169
choosing 148
comparison 148
creating 150
hash code 141
hash code requirements 168
implemented interfaces 140
inserting objects during construction 276
introduction 139
iterating 150
lists 145
navigating 150
OSHashBag 141
OSHashMap 141
OSHashSet 142
OSHashtable 142
OSTreeMap 142
OSTreeSet 143
OSVector 145
OSVectorList 145
querying 151
relative size 148
sets 142
third-party 170

com.odi.disableWeakReferences property 54
com.odi.gc.reachableObjects property 69
com.odi.gc.reclaimedObjects property 69
com.odi.jdo.option.ConnectionOpenAction property 251
com.odi.jdo.option.ConnectionOpenMode property 251
com.odi.jdo.option.Product property 252
com.odi.jdo.optionStringPoolSize property 252
com.odi.OstoreLicenseFile property 29
com.odi.queryDebugLevel property 54
com.odi.Session class 38
com.odi.stringPoolSize property 54
com.odi.trapUnregisteredType property 55
com.odi.useDatabaseLocking property

effects 57
turning on 57

com.odi.useFsync property 57
com.odi.useImmediateStrings property 57
com.odi.util.query.Query class 152

commit(ObjectStore.RETAIN_READONLY) 114, 117
commit(ObjectStore.RETAIN_UPDATE) method 116
committing transactions

after evicting objects 122
default effects on persistent objects 130
failures 84
introduction 83
RETAIN_HOLLOW 114
RETAIN_READONLY 114
RETAIN_STALE 113
RETAIN_TRANSIENT 117
RETAIN_UPDATE 116
saving changes 111
setting default object state 112
setting objects to default state 113

concurrency
effects 89
granting locks 88
introduction 87
lock availability 89
multiple processes 89
multiple sessions 89
multiple threads 89

consistent state 86
cooperating threads 47
-copyclass option 179, 273
copying classes without annotating 179
copying databases 67
creating database roots 96
creating databases 59
creating external references 102
creating sessions 40
D
Database class

description 59
database locking

lock directory 90
processes 90

database operations
table of 76

database roots
changing object referred to 98
creating 96
destroying 98
how many 99
null values 98
primitive values 98
retrieving 97

Database.check() method 280
Database.close() method 65
Database.create() method

default schema installation 60
example 60

Database.createRoot() method 96
Database.destroy() method 74
Database.destroyRoot() method 98
Database.GC() method 68
Database.getOpenMode() method 75
Database.getPath() method 75
Database.getSizeInBytes() method 76
Database.isOpen() method 75
Database.open() method 63
Database.setRoot() method 98
databases

closing 63
closing to release lock 90
concurrent access 87
consistent state 86
controlling size 78
copying 67
creating 60
creating roots 96
destroying 74
destroying objects 125
displaying information about 282
garbage collection 68
identity 66
information about, displaying 76
information about, obtaining 75
locks 88
managing 59
moving 67
objects, storing 94
open types 63
open? 75
opening 63
pathname of 75
platforms 59
read-only, open for? 75
recovering 64

references, checking 280
roots, how many 99
schema evolution 69
segments 61
size of 76
transient 62
update, open for? 75
upgrading to 7.0 283

dead objects 282
debugger 190
deepFetch() method

description 116
serialization 267

-dest option 273
destination directory

about 177
requirement 176

destroying database roots 98
destroying databases 74
destroying objects

cleaning up references 129
ObjectNotFoundExceptions 129
persistent objects, default effects 130
preDestroyPersistent() hook method 126

destroying objects in the database 125
destroying objects referred to by other objects 129
dirty() method

background 221
manual annotations 211

disableWeakReferences property 54
disk space

copy of object in database 107
freeing 78

duplicates
postprocessor, file specifications for 180
strings 262

dynamic data, classes for modelling 225
E
embedded strings 273
-embeddedmaxlengthfield option 273

entities, JDD
adding to type extent 229
creating 228
overview 227

environment variables
OS_JAVA_VM 269
OSJCFPJAVA 269

evicting objects
all 121
persistent objects, default effects on 130
persistent objects, references to 119
RETAIN_HOLLOW 119
RETAIN_STALE 119
threads, cooperating 121
outside transactions 122
transactions, committing 122

evolving schema
introduction 69
not required for JDD 225
strategy 78
when required 69

examples
annotations, manual 212
basic JDD tasks 230
before running a program 35
code for people demo 33
compiling 36
general use 31
getFields() method 222
hook methods 198
identity 107
indexes on collections 164
JDD relationships 235
JDO application 255
persistence mode options, multiple 179
postprocessing batches 173
postprocessor command line 176
querying utility collections 152
running a program 36
running postprocessor 176
schema evolution 72
serialization 72
serializing 267
transient-only fields 217

Exported objects
ObjectStore.RETAIN_STALEargument value 76

Extent 243
extent, adding entities to 229
external references

creating 102

encoding as strings 103
introduction 101
obtaining objects 103
reusing 105

ExternalReference class 101
ExternalReference.fromString() method 103
ExternalReference.getObject() method 103
ExternalReference.toString() method 103
F
failover 22
fetch() method

background 221
manual annotations 211

Field class 221
fields in manual annotations 223
final fields

initialization 196
final fields

postprocessor handling of 189
finalize() method

annotations 191
avoiding 131

flushContents() method
postprocessor 197

-force option 273
free variables 158
G
garbage collection

active objects from commit() 115
active objects from evict() 120
databases 68
hollow objects from commit() 114
hollow objects from evict() 119
osjgcdb utility 69
persistent, overview 67
segments 69
stale objects from commit() 113
stale objects from evict() 119
strings 68
weak references 110

GenericObject class
description 221
getting field values 222
setting field values 222

getFields() method
background 221
example 222

global sessions 40
H
hash tables

references to destroyed objects 129
-hashcode option 273
hashCode()

arrays 169
requirements 168

hollow object constructors
creating 200
transient nonstatic fields 205

hollow persistent objects
aborting transactions 124
default effects of methods 130
definition 25
evict() 119
transactions, committing 114

hook methods 197
I
identity

databases 66
Java wrapper classes 262
persistent objects 107

-ignoretransient option 275
-includesummary option

description 274
-indexablefield option

description 274
IndexDescriptor class 167
IndexDescriptorSet class 167
IndexedCollection interface 162
IndexedOneToMany class in JDD 232
indexes

adding in JDD 228
adding to collections 162
background 161
dropping 162
example 164
introduction 161
managing 166
modifying 164
multistep 163
optimizing queries 167

superindexes in JDD 237
updating 165

initializeContents() method
postprocessor 197

initializing API
specifying properties 52

initializing objects
definition 25

initializing transient fields 196
inner classes 181
-inplace option 274
input file for postprocessor 203
@input_file option 272
interfaces

annotations 208
IPersistentHooks interface 210

hook methods 211
iterating over entities in extent of type 229
iterators 150
J
jar files 180
Java Data Objects (JDO) 241
Java executables 190
Java Remote Method Interface

See RMI 115
Java-supplied classes 261
JDD

mixing entities and Java objects 238
overview 225

JDO
CLASSPATH 246
enhancer

enhancer
JDO enhancer 247

Extent 243
JDOHelper 243
metadata 246
overview 241
persistence descriptor file 246
PersistenceCapable 243

PersistenceManager 243
PersistenceManagerFactory 243
Query 244

JDO properties
PSE Pro specific 251
standard 249

L
large aggregations 142
libraries

postprocessing existing 173
license files 29
LinkedOneToMany class in JDD 232
ListIterator class 150
lock queue 89
locking databases

background 88
description 88
lock availablity 89

long file names
-classinfosuffix option 272

M
manual annotations

abstract classes 220
accessing fields 220
ClassInfo subclass definition 212
creating fields 220
example 212
fields, accessing 223
fields, creating 223
fields, transient-only 216
methods, required 209
persistence-aware classes 219
postprocessor conventions 219
procedure 208

ManyToMany class in JDD 234
many-to-many relationships in JDD 234
ManyToManyWithObject class in JDD 234
maps

OSHashMap 141
OSTreeMap 142
querying 146

-modifyjava option 275
moving databases 67
moving objects into a database 94
N
native methods

capability for persistence 263
postprocessing 204

nested classes 181
nested transactions 82

-noannotatefield option 196, 275
-noarrayopt option 191, 275
-nodefaulthashcode option 275
-noinitializeropt option 275
noncooperating threads 48
nonglobal sessions 41
nonpersistent methods 204
-noopt option 276
-nothisopt option 191, 276
notification 198
-nowrite option 202, 276
null values

queries 160
O
object table 110
objects

destroying 125
evicting

See evicting objects
external references 101
identity 107
is it persistent? 96
listing in a cluster 100
listing in a segment 100
obtaining from external references 103
retrieving 95, 97
storing 94
updating 107

ObjectStore
what it does 22

ObjectStore library property 54, 57
ObjectStore utility collections

hash code method requirements 168
ObjectStore.deepFetch() method 115, 267
ObjectStore.destroy() method 125
ObjectStore.dirty() method 211
ObjectStore.evict() method 118
ObjectStore.evict(RETAIN_HOLLOW) method 119
ObjectStore.evict(RETAIN_STALE) method 119
ObjectStore.evictAll() method 121

ObjectStore.fetch() method 211
ObjectStore.READONLY 80
ObjectStore.READONLY constant 63, 80
ObjectStore.READONLY_NON_BLOCKING 80
ObjectStore.RETAIN_HOLLOW

aborting transactions 124
committing transactions 114
evicting objects 119

ObjectStore.RETAIN_READONLY

aborting transactions 125
committing transactions 114
evicting objects 120

ObjectStore.RETAIN_STALE

aborting transactions 124
committing transactions 114
evicting objects 119

ObjectStore.RETAIN_TRANSIENT

aborting transactions 125
committing transactions 117
evicting all persistent objects 121

ObjectStore.RETAIN_UPDATE

aborting transactions 125
committing transactions 116

ObjectStore.UPDATE

description 80
starting transaction 80

ObjectStore.UPDATE constant 63
ObjectStore.UPDATE_NON_BLOCKING 80
ObjectStoreConstants.READONLY 63, 80
ObjectStoreConstants.READONLY_NON_BLOCKING 80
ObjectStoreConstants.UPDATE 63, 80
ObjectStoreConstants.UPDATE_NON_BLOCKING 80
ODMG binding 22
odx directory 90
OneToMany class in JDD 232
one-to-many relationships in JDD 232
OneToOne class in JDD 232
one-to-one relationships in JDD 232
on-line backup 22
optimizations, postprocessor

descriptions 191
disabling 191

optimizing JDD queries 237
-summary option

description 277
options

-annotatefield 272
-classinfosuffix 272
-classpath 178, 272
-copyclass 179, 273

-dest 273
-embeddedmaxlengthfield 273
-force 273
-hashcode 273
-ignoretransient 275
-includesummary 274
-indexablefield 274
-inplace 274
-modifyjava 275
-noannotatefield 196, 275
-noarrayopt 191, 275
-nodefaulthashcode 275
-noinitializeropt 275
-noopt 276
-nothisopt 191, 276
-nowrite 202, 276
-persistaware 179, 276
-persistcapable 179, 276
-quiet 202, 277
-quietclass 189, 277
-quietfield 189, 277
-showData 282
-showObjs 282
-sysclasspath 272
-transientfield 196, 277
-translatepackage 193, 278
-verbose 202, 278

OS_JAVA_VM environment variable 269
oscopy utility 67
OSHashBag collection 141
OSHashMap collections 141
OSHashSet collections 142
OSHashtable collections

description 142
Java compatibility 147
lazy allocation 142

OSJCFPJAVA environment variable 190, 269
osjcfputility

command-line syntax 272
overview 172

osjcheckdb utility 280
osjshowdb utility 76, 282
osjup70 utility 59, 283
osjversion utility 284
osmv utility 67
OSTreeMap collections 142
OSTreeSet collections 143
OSVector collections

description 145
Java compatibility 147

OSVectorList collections 145
P
package names

postprocessed classes 193
renaming 206

PATH requirements 175
pattern matching 156

optimizing 157
special characters 157

performance
database size 21
Java-supplied classes 265
lazy hash table allocation 142
lazy vector allocation 145

-persistaware option 179, 276
-persistcapable option 179, 276
persistence

how objects become persistent 94
Java-supplied classes 261
manual annotations 216
transitive 94

persistence mode options 179
persistence-aware classes

creating 186
definition 27
manual annotations 219

PersistenceCapable 243
persistence-capable classes

abstract 220
annotations 172
definition 24
generating automatically 171
generating manually 207
Java-supplied 261
subclasses 205
superclasses 187
transient fields 196
transient versions 177
using as transient 268

PersistenceManager 243

PersistenceManagerFactory 243
persistent objects

associated session 45
definition 25
destroying 125
evicting all 121
external references 101
garbage collection 67
hollow after abort() 124
hollow after commit() 114
hollow after evict() 119
identity 107
is this object persistent? 96
multiple representations 50
object state, specifying 107
optimizing retrieval 201
readable after abort() 125
readable after commit() 114
retrieving 95
serializing 267
specifying UPDATE transaction type 81
stale after abort() 124
stale after commit() 113
stale after evict() 119
transient after abort() 125
transient after commit() 117
transient after evictAll() 121
transient fields 130
updatable after abort() 125
updatable after commit() 116

Persistent.preDestroyPersistent() method 126
Placement.getSession() method 44
postInitializeContents() hook method 198
postprocessor

annotated class files, location 188
annotated class files, managing 182
annotated classes, subclasses 205
applications, complex 184
batches 173
Class could not be found error 177

CLASSPATH requirements 175
command line, sample 176
consistency 187
conventions 219
customizing 197
debugger 190
destination directory background 177
destination directory requirement 176
duplicate file specifications 180
errors and warnings 188
example of multiple persistence modes 179
example of running 176
file name interpretation 178
file not found 180
final fields 189
hollow object constructor 200
hook methods, sample 198
how it works 187
input file 203
introduction 172
jar files 180
Java classes, modifying 275
limitations 206
new packages 193
nonpersistent classes 192
nonpersistent methods 204
not used by JDD 225
objects, optimizing retrieval of 201
optimizations 191
optimizations can cause problems 132
PATH requirements 175
persistence mode options 179
persistence-aware classes 186
preparations 175
previously annotated classes 180
processing order 178
running 175, 272
static fields 189
superclasses, modifications 187
testing 202
transient classes 195
transient fields 196
-translatepackage option 193
zip files 180

preClearContents() hook method 198
preFlushContents() hook method 198
processes

allowing access 91
default locking 90

properties

com.odi.disableWeakReferences 54
com.odi.ObjectStoreLibrary 54, 57
com.odi.stringPoolSize 54
com.odi.useFsync 57
com.odi.useImmediateStrings 57
parameter 53
system 52
trapUnregisteredType 55

Q
queries

creating 152
debug information 54
example 152
executing 159
expression syntax in JDD 229
free variables 158
in JDD 229
indexes 161
introduction 151
limitations 160
maps 146
multistep indexes 163
null values 160
operators 155
optimizing for indexes 167
optimizing in JDD 237
pattern matching 156
sample program 153
string literals 155
syntax 155
unsupported 155
with JDO 244

-quiet option 202, 277
-quietclass option 189, 277

suppressing warnings 202
-quietfield option 189, 277

suppressing warnings 202
R
reachability 94
read-only

database locks 88
database open type 63
nonblocking transaction type 80
transaction type 80

recovering databases 64
recovery 23
references

checking 280
destroying sources 126
destroying targets 129
external 101
from evicted objects 119
to transient instances 195

reflection API 181
registering classes

manual annotation 208
postprocessor 172

relationships, JDD
example 235
linked objects 234
many-to-many 234
one-to-many 232
one-to-one 232
types 232

remote machines 22
remote method invocation

See RMI
RETAIN constants

See ObjectStore.RETAIN
retaining objects

abort transaction 122
commit read-only 114
commit transient 117
commit update 116
commit(ObjectStore.RETAIN HOLLOW) 114
default abort retain state 123
default commit retain state 112
evict active 120
evict hollow 119
eviction 118
retain argument 111

RMI
preparing to serialize 115
serializing for 267
using persistence-capable classes 268

S
saving modifications

committing transactions 111
evicting objects 118

schema evolution

needed when 69
not required for JDD 225
procedure 69
serialization sample code 72
strategy 78

Segment.GC() method 69
Segment.getObjects() method 100
segments

description 61
garbage collection 69
objects, iterating through 100
transient 62

serialization
persistent objects 267
sample code for schema evolution 72

Session.createGlobal() method 40
Session.getCurrent() method 44, 49
Session.getGlobal() method 40, 44
Session.getName() method 41
Session.isActive() method 44
Session.join() method 46
Session.leave() method 48
Session.of(object) method 44
Session.ofThread(thread) method 44
Session.terminate() method 43
sessions

associated objects 45
calls that do not imply 46
calls that imply 46
creating 40
definition 38
global session 40
is one active? 44
join rules 45
metaobjects 52
names 41
nonglobal 41
objects, copies of 38
obtaining 44
properties, specifying 52

shutting down 43
threads 44
threads not associated 49
threads, explicitly adding 46
threads, relationship to 44
threads, removing 48
transactions 42

-showData option 282
-showObjs option 282
shutting down sessions 43
64 bit platforms

transient C++ peer objects 62
Cluster.of() method

transient C++ peer objects on 64 bit platforms 62
transient C++ peer objects

64 bit platforms 62
stale persistent objects

aborting transactions 124
attempts to access 130
committing transactions 113
definition 26
evict() 119

static fields
postprocessor handling 189
session ownership 51

Step into command 190
Step out command 190
Step over command 190
storing external references 102
storing objects

has this object been stored? 96
persistence 94
procedure 94

string pool size 54
strings

destroying 266
destroying objects that reference 129
embedded 273
garbage collection 68
making them persistent 265
pool size 54
queries 155

stublib.jar file 268
-summary option

description 277
superclasses

abstract 220
modifications for persistence 187
persistence-aware classes 186

superindexes in JDD 237

synchronization 112
-sysclasspath option 272
system crash 23
system properties 52
T
terminating sessions 43
testing postprocessor 202
third-party collections 170
threads

allowable simultaneous actions 51
already initialized? 49
applets 49
committing a transaction, effect of 51
cooperating 47
joined to session? 49
joining session explicitly 46
noncooperating 48, 49
not joined to session 49
objects, evicting 121
persistent objects, access to 50
removing from session 48
sessions 44
synchronizing 48
transaction boundaries 87

tools.jar file 35
Transaction class

description 79
Transaction.abort()

canceling modifications 123
example 124
general discussion 84
retain 85

Transaction.abort(retain)

specifying object state 123
Transaction.abort(RETAIN_HOLLOW) 124
Transaction.abort(RETAIN_READONLY) 125
Transaction.abort(RETAIN_STALE) 124
Transaction.abort(RETAIN_UPDATE) 125
Transaction.begin() method 80
Transaction.commit()

general discussion 83
saving modifications 111

Transaction.commit(retain)

general discussion 84
specifying object state 111

Transaction.current() method 82
Transaction.getSession(thread) method 44
Transaction.isAborted() 85
Transaction.isActive() 86
Transaction.setDefaultAbortRetain() method 123
Transaction.setDefaultCommitRetain() method 112
Transaction.setDefaultRetain() method 112, 123
transactions

aborted? 85
aborting 84
aborting to cancel changes 122
active? 86
boundaries, determining 86
committing

description 83
setting object state 111

ending 83
evicting objects outside 122
nested 82
RETAIN_HOLLOW 114
RETAIN_READONLY 114
RETAIN_STALE 113
RETAIN_TRANSIENT 117
RETAIN_UPDATE 116
sessions 42
starting 79
transaction object, obtaining 82
types 80
update and read-only, comparison 81
with JDO 245

transient and persistence-capable versions of same class 195
transient database 62
transient fields

annotations, manual 216
annotations, preventing 202
initialization 196
persistence-capable classes, behavior 130
postprocessor 196

transient instance of persistence-capable class 195
transient objects 27
transient segment 62
transient version of class file 177
transient views of collections 146
-transientfield option 196, 277
transitive persistence

becoming persistent 94
definition 28

-translatepackage option 193, 278
trapping unregistered types 55
trapUnregisteredType property 55
troubleshooting

access not allowed 191
bad command or file name 190, 269
class could not be found 177
ClassCastException 55, 133
destroyed objects, references to 129
OutOfMemoryError

postprocessor 180
storing large objects 138

retaining for read or update 116
trapping unregistered types 55
UnregisteredTypeException 133

two sessions
static variables 51
two object copies 38

Type.addToExtent() method in JDD 229
Type.entities() method in JDD 227
Type.extent() method in JDD 227
TypeQuery class in JDD 229
types, JDD

adding indexes 228
defining 227
defining attributes in 228
finding in database 229
overview 226
querying 229

U
Unicode strings 263
unknown types 133
unregistered type property 55
UnregisteredType class 133
UnregisteredTypeException 133
update

database locks 88
database open type 63

nonblocking transaction type 80
transaction type 80

updating objects 107
useFsync property 57
UTF8 encoding 263
utilities

garbage collection 69
osjcheckdb 76, 280
osjshowdb 76, 282
osjversion 284

V
variable initializers 217
-verbose option 202, 278
version information 284
very large aggregations 142
views of maps 146
W
weak references 54, 110
weak references property 54
wrapper classes

identity 262
persistence-capable 261
queries 156

Z
zip files 180

	PSE Pro for Java User Guide
	Preface
	Introducing PSE Pro
	What Is PSE Pro?
	What PSE Pro Does
	Benefits of Using PSE Pro
	Description of PSE Pro Architecture
	Definitions of PSE Pro Terms
	Session
	Persistence Capable
	Persistent Object
	Persistence Aware
	Transient Object
	Transitive Persistence
	Annotations
	Database Roots

	Prerequisites for Using PSE Pro

	Example of Using PSE Pro
	Overview of Required Components
	Sample Code
	Before You Run the Program
	Adding an Entry to CLASSPATH
	Compiling the Program
	Running the Postprocessor

	Running the Program

	Using Sessions to Manage Threads
	How Sessions Keep Threads Organized
	What Is a Session?
	How Are Threads Related to Sessions?
	What Is the Benefit of a Session?
	What Kinds of Sessions Are There?

	Creating Sessions
	Creating Global Sessions
	Creating Nonglobal Sessions

	Working with Sessions
	Sessions and Transactions
	Shutting Down Sessions
	Obtaining a Session
	Determining Whether a Session Is Active

	Associating Threads with Sessions
	Joining Threads to a Session Automatically
	Associating a Persistent Object with a Session
	Rules for Joining a Thread to a Session Automatically
	Examples of Calls That Imply Sessions
	Examples of Calls That Do Not Imply Sessions
	Explicitly Associating Threads with a Session

	Working with Threads
	Cooperating Threads
	Noncooperating Threads
	Synchronizing Threads
	Removing Threads from Sessions
	Threads That Create a Session
	Other Threads
	Threads and Applets
	Determining Whether PSE Pro Is Initialized for the Current Thread

	Threads and Persistent Objects
	Multiple Representations of the Same Object
	Example of Multiple Sessions
	Application Responsibility
	Effects of Committing a Transaction
	Description of Allowable Simultaneous Actions
	API Objects and Sessions

	Description of PSE Pro Properties
	About Property Lists Relevant to PSE Pro
	Description of com.odi.disableCrossTransactionCaching
	Description of com.odi.disableWeakReferences
	Description of com.odi.queryDebugLevel
	Description of com.odi.stringPoolSize
	Description of com.odi.trapUnregisteredType
	Description of com.odi.useDatabaseLocking
	Description of com.odi.useFsync
	Description of com.odi.useImmediateStrings

	Managing Databases
	Creating a Database
	Method Signature for Creating a Database
	Example of Creating a Database
	Result of Creating a Database
	Specifying a Database Name in Creation Method
	When the Database Already Exists
	Segments

	Determining Whether a Database, Segment, or Cluster Is Transient
	Opening and Closing a Database
	Opening a Database
	Possible Open Modes
	Threads, Sessions, and Open Databases
	Opening the Same Database Multiple Times
	Closing a Database
	When Closing a Database Is Required
	Shutting Down PSE Pro Closes Open Databases
	Objects in Closed Databases

	Moving or Copying a Database
	Performing Garbage Collection in a Database
	Background About the Persistent Garbage Collector
	API for Collecting Garbage in a Database
	API for Collecting Garbage in a Segment
	Command-Line Utility for Collecting Garbage

	Schema Evolution: Modifying Class Definitions of Objects in a Database
	When Is Schema Evolution Required?
	Considerations for Using Serialization to Perform Schema Evolution
	Steps for Using Sample Schema Evolution Serialization Code
	Sample Code for Using Serialization to Perform Schema Evolution

	Destroying a Database
	Obtaining Information About a Database
	Is a Database Open?
	What Kind of Access Is Allowed?
	What Is the Pathname of a Database?
	What Is the Size of a Database?
	With Which Session Is the Database or Segment Associated?
	Which Objects Are in the Database?
	Are There Invalid References in the Database?

	Database Operations and Transactions
	Restrictions on Databases
	Controlling Database Size

	Working with Transactions
	Starting a Transaction
	Calling the begin() Method
	Description of Transaction Types
	Allowing Objects to Be Modified in a Transaction
	Difference Between Update and Read-Only Transactions

	Working Inside a Transaction
	PSE Pro and Transactions
	Obtaining the Session Associated with the Current Transaction
	Is a Transaction in Progress for the Current Session?
	Transaction Already in Progress
	Obtaining Transaction Objects

	Ending a Transaction
	Committing Transactions
	What Can Cause a Transaction Commit to Fail?
	When an Application Terminates During a Commit Operation
	Aborting Transactions
	Has This Transaction Been Aborted?
	Is This Transaction Active?

	Determining Transaction Boundaries
	Inconsistent Database State
	Multiple Cooperating Threads
	Performance Considerations

	Description of Concurrency Rules
	Definition of One Writer and Multiple Readers
	Description of Database Locks
	When PSE Pro Grants Database Locks
	Determining If a Lock Is Available
	Effects of Concurrency Rules
	Preventing More Than One Process from Accessing a Database

	Storing, Retrieving, and Updating Objects
	Storing Objects
	How Objects Become Persistent
	What Is Reachability?
	Storing Java-Supplied Objects

	Retrieving Persistent Objects
	Steps for Retrieving Persistent Objects
	Determining the Database That Contains an Object
	Determining Whether an Object Has Been Stored

	Working with Database Roots
	Creating Database Roots
	Retrieving Root Objects
	Roots with Null Values
	Using Primitive Values as Roots
	Changing the Object Referred to by a Database Root
	Destroying a Database Root
	Destroying the Object Referred to by a Database Root
	How Many Roots Are Needed in a Database?

	How Many Objects Can You Store in a Database?
	Iterating Through the Objects in a Cluster, Segment, or Database
	Using External References to Stored Objects
	Creating External References
	Obtaining Objects from External References
	Encoding External References as Strings
	Using the ExternalReference Field Accessor Methods
	External Reference Equality
	Reusing External Reference Objects
	External Reference Examples

	Updating Objects in the Database
	Background for Specifying Object State
	About Object Identity
	About the Object Table

	Committing Transactions to Save Modifications
	Setting a Default Commit Retain State for a Session
	Setting Persistent Objects to a Default State
	Making Persistent Objects Stale
	Making Persistent Objects Hollow
	Retaining Persistent Objects as Readable
	Retaining Persistent Objects as Writable
	Retaining Persistent Objects as Transient
	The Way Transient Fields Are Handled

	Evicting Objects to Save Modifications
	Description of Eviction Operation
	Setting the Evicted Object to Be Stale
	Setting the Evicted Object to Be Hollow
	Setting the Evicted Object to Be Read-Only
	Summary of Eviction Results for Various Object States
	Evicting All Persistent Objects
	Evicting Objects When There Are Cooperating Threads
	Committing Transactions After Evicting Objects
	Evicting Objects Outside a Transaction

	Aborting Transactions to Cancel Changes
	Setting a Default Abort Retain State for a Session
	Setting Persistent Objects to a Default State
	Specifying a Particular State for Persistent Objects

	Destroying Objects in the Database
	Calling ObjectStore.destroy()
	Destroying Objects That Refer to Other Objects
	Destroying Objects That Are Referred to by Other Objects
	Effects of Destroying an Object

	Default Effects of Various Methods on Object State
	Transient Fields in Persistence-Capable Classes
	Behavior of Transient Fields
	Preventing fetch() and dirty() Calls on Transient Fields

	Avoiding finalize() Methods
	Troubleshooting Access to Persistent Objects
	Handling Unregistered Types
	How Can There Be Unregistered Types?
	Can Applications Work When There Are Types Not Registered?
	What Does PSE Pro Do About Unregistered Types?
	When Does PSE Pro Create UnregisteredType Objects?
	Can Your Application Run with UnregisteredType Objects?
	Troubleshooting ClassCastExceptions Caused by Unregistered Types
	Troubleshooting the Most Common Problem

	Using Enums in Persistent Objects
	Using Generic Types

	Working with Collections
	Description of PSE Pro Utility Collections
	Introduction to java.util Interfaces and Classes
	Description of OSHashBag
	Description of OSHashMap
	Description of OSHashSet
	Description of OSHashtable
	Description of OSTreeMapxxx
	Description of OSTreeSet
	Description of OSVector
	Description of OSVectorList
	Advantages of Using PSE Pro Utility Collections
	Querying Collection Views of Map Entries
	Background About Utility Collections and Java Collections

	The Way to Choose a Collection
	Comparing Collection Classes
	Performance-Based Recommendations for Collections

	Using PSE Pro Utility Collections
	Creating Collections
	Navigating Collections with Iterators
	Performing Collection Updates During Iteration

	Querying PSE Pro Utility Collections
	Creating Queries
	Description of Query Syntax
	Sample Program That Uses Queries
	Matching Patterns in Query Strings
	Using Free Variables in Queries
	Executing Queries
	Limitations on Queries

	Enhancing Query Performance with Indexes
	How Indexes Work
	Adding Indexes to Collections
	Dropping Indexes from Collections
	Using Multistep Indexes in Queries
	Sample Program That Uses Indexes
	Sample Program That Queries User-Defined Fields
	Modifying Index Values
	Managing Indexes and Index Values
	Optimizing Queries for Indexes
	Manipulating Indexes Outside the Query Facility

	Storing Objects as Keys in Persistent Hash Tables
	Requirements for Hash Code Methods
	Providing an Appropriate Persistent Hash Code Method
	Storing Built-In Types as Keys in Persistent Hash Tables

	Using Third-Party Collections Libraries

	Generating Persistence- Capable Classes Automatically
	Overview of the Class File Postprocessor
	Description of the Annotations
	Description of the Process
	Postprocessing a Batch of Files Is Important
	Postprocessor API
	Manual Annotation

	Running the Postprocessor
	Preparing to Run the Postprocessor
	Requirements for Running the Postprocessor
	Example of Running the Postprocessor
	About the Postprocessor Destination Directory
	How the Postprocessor Interprets File Names
	Order of Processing
	How the Postprocessor Handles Duplicate File Specifications
	How the Postprocessor Handles Files Not Found
	.Zip and .Jar Files as Input to the Postprocessor
	How the Postprocessor Handles Previously Annotated Classes
	Troubleshooting OutOfMemory Error
	How the Postprocessor Handles Inner Classes
	When ClassInfo.java Files Are Generated

	Managing Annotated Class Files
	Ensuring That the Compiler Finds Unannotated Class Files
	Ensuring That PSE Pro Finds Annotated Class Files
	Using the Right Class Files in Complex Applications
	Alternatives for Finding the Right Files
	How the Postprocessor Determines Whether to Generate an Annotated Class File

	Creating Persistence-Aware Classes
	Specifying the Postprocessor Command Line
	No Changes to Superclasses

	How the Postprocessor Works
	Ensuring Consistent Class Files
	Modifications to Superclasses
	Effects on Inheritance
	Location of Annotated Class Files
	Postprocessor Errors and Warnings
	Handling of final Fields
	Handling of Static Fields
	Which Java Executable to Use
	Line-Number and Local-Variable Information
	Using a Debugger
	Handling of finalize() Methods
	Description of Postprocessor Optimizations

	Including Transient and Already Annotated Classes
	Copying Classes to the Destination Directory
	Specifying Classes to Be Copied and Classes to Be Persistence Capable
	When Can a Class Be Transient?

	Putting Processed Classes in a New Package
	Using the -translatepackage Option
	How the Postprocessor Applies the Option
	Updating References to New Package Name
	References to Transient and Persistent Versions of a Class
	References to Transient Instances of a Persistence-Capable Class

	Creating Persistence-Capable Classes with Transient Fields
	Transient Fields and Serialization
	Initialization of Some Transient Fields

	Customizing Updated Classes
	Implementing Customized Methods and Hook Methods
	Creating a Hollow Object Constructor

	Optimizing Operations That Retrieve Persistent Objects
	Procedure for Optimizing Operations
	Inlining Code
	Preventing Fetch of Transient Fields

	Performing a Test Run of the Postprocessor
	Using an Input File
	Annotations You Must Add
	Interfacing with Nonpersistent Methods
	Interfacing with Native Classes
	Annotating Subclasses
	Passing Arrays
	Implementing the Hollow Object Constructor for Some Instance Fields
	Using the Java Reflection API with Persistence-Capable Objects

	Class File Postprocessor Limitations

	Generating Persistence- Capable Classes Manually
	Explicitly Defining Persistence-Capable Classes
	Implementing the IPersistent Interface
	Defining the Required Fields
	Defining Required Methods in the Class Definition
	Implementing the IPersistentHooks Interface
	Making Object Contents Accessible
	Defining a ClassInfo Subclass
	Example of a Manually Annotated Persistence-Capable Class

	Additional Information About Manual Annotation
	Defining a hashCode() Method
	Defining a clone() Method
	Working with Transient-Only and Persistent-Only Fields
	Defining Persistence-Aware Classes
	Following Postprocessor Conventions
	Annotating Abstract Classes

	Creating and Accessing Fields in Annotations
	Making Persistent Objects Accessible
	Creating Fields
	Getting and Setting Generic Object Field Values
	Methods for Creating Fields and Accessing Them in Generic Objects

	Using the Java Dynamic Data (JDD) Classes
	An Overview of JDD
	Types
	Attributes
	Entities

	Basic JDD Tasks
	Defining Types and Their Attributes
	Creating Entities of a Type
	Querying a Type
	A Simple JDD Application

	Relationships
	One-to-One Relationships
	One-to-Many Relationships
	Many-to-Many Relationships
	Linked Objects and Many-to-Many Relationships
	Relationship Example

	Improving Query Performance with Superindexes
	Queries and Default Indexing
	Superindexing

	Mixing Java Objects with JDD
	When You Must Use the PSE Pro API
	Pros and Cons of Mixing the PSE Pro API with JDD
	Using Extended JDD Classes

	Using Java Data Objects (JDO) with PSE Pro
	Overview of JDO with PSE Pro
	What does PSEJDO do?
	Description of PSEJDO Architecture

	Creating JDO Applications
	Developing Applications
	PSEJDO Feature Set
	PSE Pro Features

	Example Application
	Example Code
	Example Persistence Descriptor
	Example Properties File
	Before You Run the Program
	Running the Program

	Miscellaneous Information
	Java-Supplied Persistence-Capable Classes
	Description of Java-Supplied Persistence-Capable Classes
	Can Other Java-Supplied Classes Be Persistence Capable?

	Description of Special Behavior of String Literals
	Example of String Behavior
	Destroying Strings

	Serializing Persistent Objects
	Using Persistence-Capable Classes in a Transient Manner
	Environment Variables

	Tools Reference
	osjcfp: Running the Postprocessor
	Postprocessor API

	osjcheckdb: Checking References in a Database
	osjgcdb: Collecting Garbage in Databases
	osjshowdb: Displaying Information About a Database
	osjup70: Upgrading Databases to 7.0 Format
	osjversion: Obtaining PSE Pro Version Information

	Appendix
	Packaging Your Application for End Users
	Glossary

