
User Guide
Version 1.0

Ross McKenzie
John D. Pryce

Cardiff University
United Kingdom

Guangning Tan
Nedialko S. Nedialkov
McMaster University

Canada

1

0

0

0

1
0

0

0
0

0

0

0
0

0

0

0

0

0

0

0
0

0

0

0
0

0

0

0
0

0

0

0

0

0

0

0

0

0

0

1
0

0

0

0

1

0

0

0

0

1
0
0

0

0

0

0

0

0

0

0
0

0

0

0

0
0

0

0

0

0

0

0

0

0

0
0

0

0

0

0

0

0

0

0

0
0

0

0

1
0

0

0

0

1
0

0

0

0

1
0
0

0

0

0

0

0

0

0

0
0

0

0

0

0
0

0

0

0

0

0

0

0

0

0
0

0

0

0

0

0

0
0

0

0

0

0

0

1
0

0

0

0

1

0

0

0

0

1
0

0

0

0

0

0

0

0

0

0

0

0

0

0

0
0

0

0

0
0

0

0

0
0

0
0

0
0

0

0

0

0

0

0

0
0

0

0

1
0

0

0

0

1
0

0

0

0

1
0
0

0

0

0

0

0

0

0

0
0

0

0

0

0
0

0

0

0

0

0

0

0

0

0
0

0

0

0

0

0

0
0

0

0

0

0

0

1
0

0

0

0

1

0

0

0

0

1
0

0

0

0

0

0

0

0

0

0

0

0

0

0

0
0

0

0

0
0

0

0

0
0

0
0

0
0

0

0

0

0

0

0

0
0

0

0

1
0

0

0

0

0

0

1
0

0

0

0

1
0
0

0

0

0

0

0

0

0

0
0

0

0

0

0
0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0
0

0

0

0

0

0

1
0

0

0

0

1

0

0

0

0

1
0

0

0

0

0

0

0

0

0

0

0

0

0

0

0
0

0

0

0
0

0

0

0
0

0
0

0
0

0

0

0

0

0

0

0
0

0

0

1
0

0

0

0

1
0

0

0

0

1
0
0

0

0

0

0

0

0

0

0
0

0

0
0

0
0

0

0

0

0

0

0

0

0

0
0

0

0

0

0

0

0
0

0

0

0
0

0

1
0

0

0

0

1

0
0

0

0

1

0

0

0

0
0

0

0

0

0

0

0

0

0

0

0
0

0

0

0
0

0

0

0
0

0
0

0
0

0

0

0

0

0
0

0

0

0

0

1

0

0

0

0

1

0

0

0

0

1
0
0

0

0

0

0

0

0

0

0
0

0

0

0
0

0

0

0

0

0

0

0

0
0

0

0
0

0

0

0

0

0

0
0

0

0

1
0

0

0

0
1
0

0

0

0

1

0
0

0

0
0

00

0

0

0

0

1

0
0

1

1
0

0

0

0

0

0

0

0

0
0

0
0

0

0

0

0

0 1
0

0

1

1
0
0

0

0

0

0

0
0

0
0

0

0

0

0

0

0

0 1
0

0

1
1
0
0

0

0

0

0

0
0

0
0

0

0

0

0

0

0

0 1
0

0

1

1
0

0

0

0

0

0

0

0

0
0

0
0

0

0

0

0

0 1
0

0

1
1
0
0

0

0

0

0

0
0

0
0

0

0

0

0

0

0

0 1
0

0

1

1
0

0

0

0

0

0

0

0

0
0

0
0

0

0

0

0

0 1
0

0

0

1
1
0
0

0

0

0

0

0
0

0
0

0

0

0

0

0

0

0 1
0

0

1

1
0

0

0

0

0

0

0

0

0
0

0
0

0

0

0

0

0 1
0

0

1
1
0
0

0

0

0

0

0
0

0
0

0

0

0

0

0

0

0 1
0

0

1

1

0

0

0
0

0

0
0

0

0
0

0
0

0

0

0

0
0 1

0

0

1

1
0
0

0

0

0

0

0
0

0
0

0

0

0

0

0

0

0 1
0

0

1
1

0

0

0

1

0

0

0

0
0

00
0

0

0

0

0

0

0

0

0

0

0

0

0

00

0
0

0

0

0

0
0

0

0

0

0

0

0

00

0

0

0

0

0

0

0

0
0

0

0
0

0

00

0
0

0

0

0

0
0

0

0

0

0

0

0

00

0

0

0

0

0

0

0

0
0

0

0
0

0

00

0
0

0

0

0

0

0
0

0

0

0

0

0

0

00

0

0

0

0

0

0

0

0
0

0

0
0

0

00

0
0

0

0

0

0
0

0

0

0

0

0

0

00

0

0
0

0

0

0

0

0
0

0

0
0

0

00
0

0

0

0

0

0

0

0

0

0
0

00

0
0

0

0

0

0

0

0

0

c© Copyright 2013 R. McKenzie, N. S. Nedialkov, J. D. Pryce and G. Tan

i

Preface
Daesa, Differential-Algebraic Equations Structural Analyzer, is a Matlab tool for structural analy-
sis (SA) of differential-algebraic equations (DAEs). It allows convenient translation of a DAE system
into Matlab and provides a small set of easy-to-use functions. Daesa can analyze systems that
are fully nonlinear, high-index, and of any order. It determines structural index, degrees of freedom,
constraints, variables to be initialized, and suggests a solution scheme.

The structure of a DAE can be readily visualized by this tool. It can also construct a block-
triangular form of the DAE, which can be exploited to solve it efficiently in a block-wise manner.

This code was originated by JDP in 2001-2003. Ning Liu (M.Sc. 2006, Computing and Soft-
ware, McMaster) added new functionality, and in particular the computation of signature matrices
through operator overloading. GT did a major rewrite and added many new features to Daesa. Ian
Washington (Ph.D. candidate, Chemical Engineering, McMaster) was the first user of Daesa—he
applied it to study chemical engineering problems and suggested many improvements. The figure on
the title page is from Daesa applied to one of these problems.

We are hoping that this tool will be helpful to researchers and practitioners when studying systems
containing differential and algebraic equations. It could also be applied to pure differential and pure
algebraic systems.

For bug reporting, questions, and suggestions on improving Daesa, please contact the authors
at:

daesatool@gmail.com

We acknowledge with thanks the support given to RM and JDP by the Leverhulme Trust and the
Engineering and Physical Sciences Research Council, both of the UK, and to GT and NSN by the
Canadian Natural Sciences and Engineering Research Council and the McMaster Centre for Software
Certification.

July 9, 2013

Contents

Preface i

1 Daesa Overview 1

2 Quick start 3
2.1 Specify a DAE . 3
2.2 Perform structural analysis . 4
2.3 Extract structural analysis data . 5

2.3.1 Visualization . 5
2.3.2 Index and DOF . 6
2.3.3 Initialization summary . 6
2.3.4 Constraints . 6
2.3.5 Solution scheme . 7

3 Theory Overview 12
3.1 Structural analysis . 12
3.2 The solution method . 14
3.3 The coarse and fine block-triangularizations . 15
3.4 Advantage of block-triangularization . 16
3.5 Quasi-linearity analysis . 17

4 Daesa functions 19
4.1 Specifying a DAE . 20
4.2 Structural analysis . 21
4.3 Obtaining structural data . 21
4.4 Visualization . 27
4.5 Data output . 29

5 Examples 31
5.1 Well-posed DAE example . 31
5.2 Ill-posed DAE examples . 33
5.3 Chemical Akzo Nobel . 35
5.4 Multiple pendula . 37

ii

CONTENTS iii

6 Installation 39

A Supported standard functions 40

Index 41

Bibliography 42

In the electronic version of this document, every cross-reference is a hyperlink. For instance you
can click on the entry “Quick start” above to jump to that section. This also applies to page numbers
in the Index, and, in the body of the text, to chapter and section references and to equation numbers.
To return to where you just were, use your PDF reader’s “Back” command.

List of Figures

2.1 Daesa function for evaluating (2.1). 4
2.2 Structure of (2.1) and its block-triangularizations. 5

5.1 Structure of illPosed1 and its diagnostic block-triangularization. 33
5.2 Structure of illPosed2. 34
5.3 Matlab function for evaluating illPosed3 example. 34
5.4 Diagnostic block-triangularized structure of illPosed3. 35
5.5 Daesa function for evaluating the chemical Akzo Nobel DAE. 35
5.6 Daesa script for analyzing AkzoNobel. 36
5.7 Akzo Nobel: solution scheme. 36
5.8 Fine block-triangularized structure of the chemical Akzo Nobel problem. 36
5.9 Daesa function for evaluating the multiple pendula problem. 38
5.10 Structure of (5.1) and its fine block-triangularization. 38

iv

List of Tables

2.1 Mod2Pend: solution process for stages k ≥ 0. 10

3.1 Solution stages for the simple pendulum . 15

5.1 Solution scheme for the Akzo Nobel problem for k ≥ 0. 37

A.1 Standard functions supported by Daesa. 40

v

Chapter 1

Daesa Overview

Daesa, Differential-Algebraic Equations Structural Analyzer, is a Matlab tool for structural anal-
ysis (SA) of differential-algebraic equations (DAEs). It allows convenient translation of a DAE into
Matlab and provides a set of (currently 18) easy-to-use functions for determining and visualizing
key structural properties of the DAE.

The package is applicable to DAE systems of the general form

fi(t, xj and derivatives of them) = 0, i = 1, . . . , n, (1.1)

where t is the independent variable, and the xj(t) are n state variables. The formulation (1.1) includes
high-order systems and systems that are nonlinear in leading derivatives. Furthermore, (1.1) includes
systems of ordinary differential equations (ODEs) and pure algebraic systems.

In the next paragraphs, a concept is set in slanting type on first occurrence, with a forward
reference to further details about it.

Daesa performs analysis that is similar to the one the C++ solver Daets does [5, 6]. However,
Daets is not suitable for rapid investigation of DAEs, as it requires C++ knowledge and compiling
the user code. Daesa is a light-weight, easy-to-use tool for SA that provides convenient facilities for
analyzing a DAE to find its structural index (§3.1), the number of degrees of freedom, henceforth
referred to as the DOF (§3.1), the constraints and required initial values (§3.5) and a solution scheme
(§3.1), and also to reduce the DAE to a coarse or a fine block-triangular form (BTF) (§3.3), which
can be exploited for efficient solution in a block-wise fashion.

Daesa applies Matlab’s operator overloading to process a DAE given by a user-supplied function
for evaluating the fi in (1.1). First, using operator overloading, Daesa extracts the DAE’s signature
matrix (§3.1), from whose sparsity pattern the coarse block-triangular form can be found. It then
finds out if the problem is structurally well-posed, and if so, solves a linear assignment problem to
calculate the (global) offsets (§3.1) of the DAE, which give the structural index and DOF (§3.1).

Using both the signature matrix and the offsets, Daesa constructs the fine block-triangular form,
finds local offsets (§3.5) for the blocks, and for each block, determines if it is quasilinear in the leading
derivatives (§3.5). Based on the local offsets and linearity information, Daesa deduces a minimal
set of variables and derivatives of them that need to be initialized and a minimal set of inherent
constraints.

The package provides functions for displaying the original sparsity structure of the DAE, as well as

1

2

for displaying its coarse and fine block-triangularizations, and functions for reporting the constraints,
initialization summary, and a solution scheme for the DAE.

Remark 1 The structural index computed by Daesa is an upper bound on the differentiation index,
and in our experience it usually equals it. That is, Daesa usually finds the smallest possible set of
differentiations. Although successful on many problems of interest, the underlying SA theory (and
Daesa respectively) may fail to determine the correct structural, and therefore differentiation index
on some problems, see e.g. [4, 9].

We would have a “certificate” that the SA is successful, if the system Jacobian (§3.1) is non-
singular at a consistent point, see also [4]. The present tool does not compute consistent points and
does not evaluate the system Jacobian: it performs symbolic-type analysis of DAEs. We plan to
incorporate the evaluation of this Jacobian in a next version of Daesa.

This user guide is organized as follows. Chapter 2 provides a quick start to using Daesa—we
show basic SA with it. Chapter 3 gives an overview of the theory behind Daesa. Chapter 4 describes
the functions of Daesa. Chapter 5 presents several examples of analyzing DAEs. How to obtain
and install Daesa is described in Chapter 6.

Chapter 2

Quick start

In this chapter, we illustrate how Daesa performs basic SA (more examples are in §5). Using Daesa
involves three steps:

1. specifying a DAE (§2.1),

2. calling the main SA function (§2.2), and

3. extracting structural data (§2.3).

2.1 Specify a DAE
A DAE is given by a function with arguments and return value as follows

function f = daefcn(t,x,options)

Here t and x are the independent and dependent variables, respectively, and options is an optional
list of one or more arguments; x is a column n-vector, where x(j) is variable xj, and f is a column
n-vector with f(i) containing the evaluation of fi.

We apply our tool on the (artificially) modified two-pendulum problem (Mod2Pend), an index-7,
non-quasilinear DAE (see also [8]):

0 = f1 = x′′ + xλ

0 = f2 = y′′ + yλ−G
0 = f3 = x2 + y2 − L2

0 = f4 = u′′ + uµ

0 = f5 = (v′′′)2 + vµ−G
0 = f6 = u2 + v2 − (L+ cλ)2 + λ′′

(2.1)

In the original two-pendulum problem,

f5 = v′′ + vµ−G and f6 = u2 + v2 − (L+ cλ)2.

3

2.2. Perform structural analysis 4

The state variables are x, y, λ, u, v, and µ; G is gravity, L > 0 is the length of the first pendulum,
and c > 0 is a given constant.

Figure 2.1 shows an encoding of (2.1).

1 function f = modified2pendula(t,z,G,L,c)
2 x = z(1); y = z(2); la = z(3);
3 u = z(4); v = z(5); mu = z(6);
4 % first pendulum
5 f(1) = Dif(x,2)+x*la; % x′′ + xλ = 0
6 f(2) = Dif(y,2)+y*la-G; % y′′ + yλ−G = 0
7 f(3) = x^2+y^2-L^2; % x2 + y2 − L2 = 0
8 % modified second pendulum
9 f(4) = Dif(u,2) +u*mu; % u′′ + uµ = 0

10 f(5) = Dif(v ,3)^2+v*mu-G; % (v′′′)2 + vµ−G = 0
11 f(6) = u^2+v^2-(L+c*la)^2+ Dif(la ,2);
12 % u2 + v2 − (L+ cλ)2 + λ′′ = 0
13 end

Figure 2.1: Daesa function for evaluating (2.1).

The Dif(var,k) operator returns the kth derivative of variable var. ConstantsG, L, and c are passed
as additional parameters. In lines 2–3, the input variables z(i) are renamed for better readability.
Equations (2.1) are translated in lines 5–11.

Remark 2 Specifying a DAE in Daesa is similar to how ODEs are specified in Matlab (e.g. for
ode45) except that, instead of returning y′ in y′ = f(t,y), we return a vector of the fi’s in (1.1).

2.2 Perform structural analysis
Structural analysis is performed by the daeSA function:

function sadata = daeSA(daefcn,n,options)

Here daefcn is a function for evaluating the DAE, n is the size of the problem, and options is an
optional list of one or more arguments that are passed by daeSA to daefcn. The return object sadata
encapsulates data obtained from analyzing the DAE represented in daefcn. It can be accessed by
the functions described in §2.3 and §4.

For our problem, we set values for the size and the additional parameters and then call daeSA:

n = 6; G = 9.8; L = 1.0; c = 0.1;
sadata = daeSA(@modified2pendula ,n,G,L,c);

We shall use this sadata in the examples that follow.

2.3. Extract structural analysis data 5

Remark 3 The result of the SA is not affected by the values of G, L, and c. However, we provide
this mechanism for passing them to daefcn, as such constants matter when computing a consistent
point, evaluating the system Jacobian, and integrating the DAE. Daesa does not perform these
three tasks, but we plan to implement them in the future.

2.3 Extract structural analysis data
One can visualize the structure of a DAE and obtain SA data as follows.

2.3.1 Visualization

To display the DAE structure, we call
showStruct(sadata);

to produce the coarse block-triangularized DAE structure, we call
showStruct(sadata ,’disptype ’,’blocks ’);

and to produce the fine block-triangularized DAE structure, we call
showStruct(sadata ,’disptype ’,’fineblocks ’);

When called on sadata returned by daeSA above, these functions produce the plots in Figure 2.2.

1 2 3 4 5 6

1

2

3

4

5

6

 MODIFIED2PENDULA

 Size 6, structural Index 7, DOF 5
Shaded: structural nonzeros in system Jacobian J

Boxed: HVT

2

0

2

0

0

0

2

2

0

3

0

0

0

2

0

2

0

0

0

2

2

0

3

0

0

0

2

0

0

3

0

Indices of Variables

In
d
ic

e
s
 o

f
E

q
u
a
ti
o
n
s

4

4

6

0

0

2

ci

6 6 4 2 3 0dj

(a) original structure

5 6 4 1 2 3

5

4

6

3

2

1

MODIFIED2PENDULA: Coarse BTF
 Size 6, structural index 7, DOF 5

Shaded: structural nonzeros in system Jacobian J
Boxed: positions that contribute to det(J)

2

0

2

0

0

0

2

2

0

3

0

0

0

2

0

2

0

0

0

0

3

0

2

2

0 0

0

2

6

4

4

ci

3 0 2 6 6 4dj

Indices of Variables

In
di

ce
s

of
 E

qu
at

io
ns

(b) coarse block-triangularized structure

5 6 4 1 2 3

5

4

6

3

2

1

MODIFIED2PENDULA: Fine BTF
 Size 6, structural index 7, DOF 5

Shaded: structural nonzeros in system Jacobian J
Boxed: positions that contribute to det(J)

2

0

2

0

0

0

2

2

0

3

0

0

0

2

0

2

0

0

0

0

3

0

2

2

0 0

0

0

2

0

0

ĉi

0

0

2

6

4

4

ci

3 0 0 2 2 0d̂j
3 0 2 6 6 4dj

Indices of Variables

In
di

ce
s

of
 E

qu
at

io
ns

(c) fine block-triangularized structure

Figure 2.2: Structure of (2.1) and its block-triangularizations.

In Figure 2.2 the −∞ entries are not displayed. The top of the figures indicate index and DOF.
The shaded entries (green and yellow in color print) are where the system Jacobian (§3.1), J, is
structurally nonzero. (a) The boxed entries denote a highest-value transversal (HVT) (§3.1); (b) and
(c) the boxed entries denote the entries that contribute to det(J), which is the union of all HVTs [4].
Global offsets are denoted by ci, dj, and local offsets are denoted by ĉi, d̂j.

2.3. Extract structural analysis data 6

2.3.2 Index and DOF

The index and the DOF are obtained by

index = getIndex(sadata);
DOF = getDOF(sadata);

which return 7 and 5, respectively.

2.3.3 Initialization summary

The function printInitData reports which variables and derivatives of them need to be initialized
for a numerical solution of the analyzed DAE. The call

vars = {’x’,’y’,’lam’,’u’,’v’,’mu’};
printInitData(sadata ,’varnames ’,vars ,’outfile ’,’initdata.txt’);

produces file initdata.txt with

modified2pendula problem

Initialization summary:
x, x’, y, y’, u, v, v’, v’’, v’’’

That is, x, x′, y, y′, u, v, v′, v′′, and v′′′ need to be initialized. By default, printInitData outputs
as variable names x followed by a variable number from 1 to n. Here, these names are replaced using
the key pair ’varnames’, vars. If the key pair ’outfile’ and ’initdata.txt’ are omitted, the
function will print the output to the command window.

2.3.4 Constraints

The DAE constraints are reported by the function printConstr. For example, the call

printConstr(sadata,’outfile’,’constr.txt’);

produces file constr.txt with

modified2pendula problem

Constraints:
f1, f1’, f1’’, f1’’’, f2, f2’, f2’’, f2’’’, f3, f3’, f3’’, f3’’’, f3’’’’,
f3^(5), f5 , f6, f6’, f6’’

2.3. Extract structural analysis data 7

That is, the constraints are

f
(c1)
1 = 0, c1 ≤ 3,

f
(c2)
2 = 0, c2 ≤ 3,

f
(c3)
3 = 0, c3 ≤ 5,

f5 = 0, and

f
(c6)
6 = 0, c6 ≤ 2.

The default equation-names f1, f2, ... can be changed, like the variable-names in §2.3.3, using
the key ’fcnnames’ instead of ’varnames’. Also, as in §2.3.3, omitting the key pair ’outfile’ and
’constr.txt’ will produce an output in the command window.

2.3.5 Solution scheme

A solution scheme is reported by printSolScheme. It reports how to solve the DAE (what variables to
initialize, what equations to solve, and for which variables) by stages using its fine block-triangularized
structure. In particular, it shows how to compute values for the derivatives of each variable.

Full solution scheme. The call

printSolScheme(sadata ,’varnames ’,vars ,...
’outfile ’,’solscheme.txt’,’detail ’,’full’);

(with vars set as above) produces file solscheme.txt with

Solution scheme for ’modified2pendula’ problem

Initialization summary:
x, x’, y, y’, u, v, v’, v’’, v’’’

STAGE k = -6, 1 block
- Block 4:6 -

Solve nonlinear equation (give trial values)
0 = f3 for x, y

STAGE k = -5, 1 block
- Block 4:6 -

Using x, y
Solve linear equation (give trial values)
0 = f3’ for x’, y’

STAGE k = -4, 1 block
- Block 4:6 -

Using x, x’, y, y’
Solve linear 3x3 system
0 = f1, f2, f3’’ for x’’, y’’, lam

2.3. Extract structural analysis data 8

STAGE k = -3, 2 blocks
- Block 4:6 -

Using x, x’, x’’, y, y’, y’’, lam
Solve linear 3x3 system
0 = f1’, f2’, f3’’’ for x’’’, y’’’, lam’

- Block 1:1 -
Solve nothing (give initial value)
for v

STAGE k = -2, 3 blocks
- Block 4:6 -

Using x, x’, x’’, x’’’, y, y’, y’’, y’’’, lam, lam’
Solve linear 3x3 system
0 = f1’’, f2’’, f3’’’’ for x’’’’, y’’’’, lam’’

- Block 3:3 -
Using lam, lam’, lam’’, v
Solve nonlinear equation (give trial value)
0 = f6 for u

- Block 1:1 -
Solve nothing (give initial value)
for v’

STAGE k = -1, 3 blocks
- Block 4:6 -

Using x, x’, x’’, x’’’, x’’’’, y, y’, y’’, y’’’, y’’’’, lam, lam’,
lam’’

Solve linear 3x3 system
0 = f1’’’, f2’’’, f3^(5) for x^(5), y^(5), lam’’’

- Block 3:3 -
Using lam, lam’, lam’’, lam’’’, u, v, v’
Solve linear equation
0 = f6’ for u’

- Block 1:1 -
Solve nothing (give initial value)
for v’’

STAGE k = 0, 4 blocks
- Block 4:6 -

Using x, x’, x’’, x’’’, x’’’’, x^(5), y, y’, y’’, y’’’, y’’’’, y^(5),
lam, lam’, lam’’, lam’’’

Solve linear 3x3 system
0 = f1’’’’, f2’’’’, f3^(6) for x^(6), y^(6), lam’’’’

- Block 3:3 -
Using lam, lam’, lam’’, lam’’’, lam’’’’, u, u’, v, v’, v’’
Solve linear equation
0 = f6’’ for u’’

- Block 2:2 -
Using u, u’, u’’
Solve linear equation

2.3. Extract structural analysis data 9

0 = f4 for mu
- Block 1:1 -

Using v, v’, v’’, mu
Solve nonlinear equation (give trial value)
0 = f5 for v’’’

In this output, Block p:q denotes the sub-block in the fine block-triangularized DAE comprising
rows p to q and columns p to q. For example, Block 4:6 implies equations f3, f2, f1 and variables
x, y, λ; cf. Figure 2.2(c).

At the head of the output is an initialization summary, giving all the variables (and derivatives
of them) that need initial values. When such a value is needed in the following solution process, it
is marked by (give trial value); when it is needed, but no equations are solved, it is marked by
(give initial value). Trial values are guesses by the user, which a solver may change to satisfy
constraints; initial values are not changed in the solution process.

We discuss stages −6 to −1 and ≥ 0.

• Stage k = −6. We have a scalar equation f3 = 0, which is the first equation in block 4:6;
cf. Figure 2.1 and Figure 2.2(c). Since it is nonlinear in x and y, trial values for x and y are
necessary, and we need to determine values for them such that f3 = 0 is satisfied.

• Stage k = −5. We use the previously computed x, y, give trial values for x′, y′ and solve f ′3 = 0,
which is linear in x′ and y′.

• Stage k = −4. We use computed x, x′, y, y′ to solve 0 = f1, f2, f
′′
3 for x′′ y′′, λ; no trial values

are needed, as this system is linear in x′′, y′′, λ.

• Stage k = −3. We have two blocks: 4:6 and 1:1. For block 4:6 we use computed x, x′, x′′,
y, y′, y′′, λ to solve 0 = f ′1, f

′
2, f

′′′
3 for x′′′, y′′′, λ′. Then the equation in block 1:1 does not

require solving, but at this stage, we give an initial value for v, which is used in later stages.

• Stage k = −2. We have three blocks: 4:6, 3:3 and 1:1. For block 4:6 we use the computed
x, x′, x′′, x′′′, y, y′, y′′, y′′′, λ, λ′ to solve 0 = f ′′1 , f

′′
2 , f

(4)
3 for x(4), y(4), λ′′. For block 3:3 we use

computed λ, λ′, λ′′, v and give a trial value for u to solve 0 = f6. Finally, for block 1:1 we give
an initial value for v′ which is used in following stages.

• Stage k = −1. Again we have three blocks, 4:6, 3:3 and 1:1. For block 4:6 we use the computed
x, x′, x′′, x′′′, x(4), y, y′, y′′, y′′′, y(4), λ, λ′, λ′′ to solve 0 = f ′′′1 , f

′′′
2 , f

(5)
3 for x(5), y(5), λ′′′. For

block 3:3 we use the computed λ, λ′, λ′′, λ′′′, u, v, v′ to solve 0 = f ′6 for u′. Lastly, for block
1:1 we give an initial value for v′′ to be used in the positive number stages.

• Stage k ≥ 0. We solve linear systems as summarized in Table 2.1.

2.3. Extract structural analysis data 10

block using solve for

4:6
x, x′, . . . , x(k+5)

y, y′, . . . , y(k+5)

λ, λ′, . . . , λ(k+3)
f
(k+4)
1 , f

(k+4)
2 , f

(k+6)
3 x(k+6), y(k+6), λ(k+4)

3:3
λ, λ′, . . . , λ(k+4)

u, u′, . . . , u(k+1)

v, v′, . . . , v(k+2)
f
(k+2)
6 u(k+2)

2:2 u, u′, . . . , u(k+2)

f
(k)
4 µ(k)

µ, µ′, . . . , µ(k−1)

1:1 v, v′, . . . , v(k+2)

f
(k)
5 v(k+3)

µ, µ′, . . . , µ(k)

Table 2.1: Mod2Pend: solution process for stages k ≥ 0.

Compact solution scheme. A more compact representation of the solution scheme is produced
by

printSolScheme(sadata ,’varnames ’,vars ,...
’outfile ’,’solschemecompact.txt’,’detail ’,’compact ’);

which results in the file solschemecompact.txt:

Compact solution scheme for ’modified2pendula’ problem

Initialization summary:
x, x’, y, y’, u, v, v’, v’’, v’’’

k = -6: ~[f3] : x, y
k = -5: [f3’] : x’, y’
k = -4: [f1, f2, f3’’] : x’’, y’’, lam
k = -3: [f1’, f2’, f3’’’] : x’’’, y’’’, lam’

[] : v
k = -2: [f1’’, f2’’, f3’’’’] : x’’’’, y’’’’, lam’’

~[f6] : u
[] : v’

k = -1: [f1’’’, f2’’’, f3^(5)] : x^(5), y^(5), lam’’’
[f6’] : u’
[] : v’’

k = 0: [f1’’’’, f2’’’’, f3^(6)] : x^(6), y^(6), lam’’’’
[f6’’] : u’’
[f4] : mu

~[f5] : v’’’

On the right of “:” is the list of variables for which we solve. The brackets [...]mark the system
being solved, and [] means no equations are solved, but value(s) for variable(s) must be given. The

2.3. Extract structural analysis data 11

notation ~[...] denotes that the block of equations inside these brackets is non-quasilinear in its
highest-order derivatives. If no detail level is specified then the compact level is given by default. As
in §2.3.3, omitting the key pair ’outfile’ and ’filename.txt’ from the printSolScheme function
will result in outputs being printed to the command window.

Chapter 3

Theory Overview

In this chapter, we first introduce the basic theory and terminology of structural analysis (SA), §3.1,
and then explain the solution method §3.2, the coarse and fine block triangular forms §3.3, and the
quasi-linearity analysis (QLA), §3.5.

3.1 Structural analysis
Here we give enough theory that a user can, on small problems, do the analysis by hand. For further
details see [3, 4, 9].

Our method gives essentially the same result as does that of Pantelides [7], but is easier to use.
The steps to perform SA are as follows.

1. Form the n× n signature matrix Σ = (σij) of the DAE, where

σij =





order of the derivative to which the jth variable xj occurs in
the ith equation fi; or
−∞ if xj does not occur in fi.

2. Find a highest value transversal (HVT) of Σ. A transversal T is a set of n positions in the
matrix with one entry in each row and each column. We denote Val(T) the sum of the σij in
those positions, and we aim at finding T such that Val(T) is as large as possible. The value of
the signature matrix Σ, written Val(Σ), is defined as the value of any HVT.

The value of any transversal, and of Σ, is either an integer or −∞. The DAE is structurally
well-posed (SWP) if Val(Σ) is finite: that is, if there exists at least one transversal all of whose
σij are finite. Otherwise the DAE is structurally ill-posed (SIP), which implies there is some
error in the problem formulation.

3. Find the global offsets, integer vectors c = (c1, . . . , cn) and d = (d1, . . . , dn), with all ci ≥ 0,
that satisfy

dj − ci ≥ σij for all i, j, (3.1)

12

3.1. Structural analysis 13

with equality holding on the HVT. They are not unique, but there exist canonical smallest
offsets, in the sense of c ≤ c′ if ci ≤ c′i for all i.

We like to show the results by a “signature tableau”, which is Σ annotated with the offsets ci,
dj, the names of the functions and variables and the positions of a HVT. The −∞ entries are
left blank for readability, since in larger systems typically almost all entries are −∞. Also these
are “forbidden” positions, since an HVT of a well-posed DAE cannot have an entry in a −∞
position.

Also shown in the tableau is the number F of degrees of freedom (DOF), given by

F = Val(Σ) =
∑

dj −
∑

ci.

It is the number of independent initial values (IVs) it requires, which is the same as the
maximum number of IVs that can be specified “fixed”.

This is illustrated below for the simple pendulum example, an index-3 DAE which has two
HVTs, marked • and ◦.

Example 1 Simple pendulum

f = x′′ + xλ

g = y′′ + yλ−G (3.2)
h = x2 + y2 − L2.

The signature tableau is

x y λ ci[]f 2• 0◦ 0
g 2◦ 0• 0
h 0◦ 0• 2
dj 2 2 0 DOF: 2.

For n up to about 8, setting up Σ and finding a HVT “by eye” is usually easy. Otherwise, let
Daesa do the analysis as suggested in §4.2.

4. The n× n System Jacobian matrix is formed as

J =
∂
(
f
(c1)
1 , . . . , f

(cn)
n

)

∂
(
x
(d1)
1 , . . . , x

(dn)
n

) , or equivalently Jij =





∂fi

∂x
(σij)
j

if dj − ci = σij,

0 otherwise.
(3.3)

Equivalence of the equation (3.3) is given in [9]. By f ′i we mean dfi/dt, treating the variables
and their derivatives as (unknown) functions of t. For instance if f1 = x′′1 − x1x3 then f ′1 =
x′′′1 − x′1x3 − x1x′3; similarly for higher derivatives. The xj and derivatives thereof are treated

3.2. The solution method 14

as unrelated independent variables within fi. For instance if f1 is x1x′2x′′1, then ∂f1/∂x
(2)
1 =

∂f1/∂x
′′
1 = x1x

′
2.

If J, thus defined, is not identically singular, the SA-based method almost certainly succeeds.
To be precise, if there is a consistent point, i.e. a point that satisfies all the equations fi = 0,
where J is nonsingular, a solution to the DAE exists through that point; it is locally analytic.

Daesa can permute the system Jacobian J to upper triangularized block form and identify the
structural non-zeros in it.

For the pendulum, (3.3) gives the system Jacobian

J =



∂f/∂x′′ 0 ∂f/∂λ

0 ∂g/∂y′′ ∂g/∂λ

∂h/∂x ∂h/∂y 0


 =




1 0 x
0 1 y

2x 2y 0


 .

This is not identically singular since detJ = −2(x2 + y2). Indeed at a consistent point, from
the third equation of (3.2), detJ = −2L2 6= 0.

5. An upper bound for the standard differentiation index νd is given by the structural index

νS = max
i
ci +

{
1 if some dj is zero,
0 otherwise.

For the commonest kinds of DAE, νS = νd, but the difference can be arbitrarily large, [10].

3.2 The solution method
After finding the offsets and HVT for the DAE as described in §3.1, the SA method solves the system
in stages numbered as k with

f
(k+ci)
i for all i such that k + ci ≥ 0 (3.4)

to solve for variables

x
(k+dj)
j for all j such that k + dj ≥ 0. (3.5)

We start at a negative valued stage equal to −maxj dj, and at stage 0, we are solving an n × n
system. Thus at any stage k < 0, we are using derivatives found either at stage k or at a previous
stage, due to the incremental nature of the formula. Use the notation Jk to denote the system
Jacobian at stage k. Then Jk is a submatrix of J in the sense of being obtained by selecting certain
rows and columns of J, not necessarily contiguous. However, see [9], if we order the equations and
variables in descending order of offsets, Jk becomes the leading mk × nk submatrix of J for some mk

and nk, such that mk ≤ nk. The Jk are nested, in that both mk and nk are non-decreasing with k,
and equal n when k ≥ 0.

3.3. The coarse and fine block-triangularizations 15

For the simple pendulum, the system Jacobian takes the needed form when the equations are
ordered h, f, g, as shown below. J−2 and J−1, which are equal, are shown boxed.

J =



hx hy 0
fx′′ 0 fλ
0 gy′′ gλ


 .

The solution scheme for the simple pendulum is given in Table 3.1

k solve equations for variables
−2 h x, y
−1 h′ x′, y′

0 f, g, h′′ x′′, y′′, λ
1 f ′, g′, h′′′ x′′′, y′′′, λ′

.

Table 3.1: Solution stages for the simple pendulum

The structural analysis method uses (3.4, 3.5) to find Taylor coefficients to solve the DAE via
Taylor series, [3].

3.3 The coarse and fine block-triangularizations
A block-triangular form (BTF) of 1.1 is obtained from a sparsity pattern, which is some subset A of
{1, . . . , n}2, the n× n matrix positions (i, j) for i and j from 1 to n. When appropriate, we identify
A with its n× n incidence matrix

(aij) where aij = 1 if (i, j) ∈ A, 0 otherwise.

A natural sparsity pattern for the DAE is the set where the entries of Σ are finite:

S = {(i, j) | σij > −∞} (the sparsity pattern of Σ). (3.6)
However, a more informative BTF comes from the sparsity pattern of the Jacobian J. It depends,
as does J, on the (valid) offset vectors c, d used:

(3.7)
S0 = S0(c, d) = {(i, j) | dj − ci = σij} (the sparsity pattern of J). (3.8)

Since dj − ci = σij holds on each HVT by (3.1), and implies σij > −∞, we have

S0(c, d) ⊆ S for any c, d.

Experience suggests that in applications, a BTF based on S0 is usually significantly finer than one
based on S. We refer to the former as a fine BTF, and we refer to the latter as coarse BTF; for more
detail see [8].

3.4. Advantage of block-triangularization 16

3.4 Advantage of block-triangularization
We now discuss, by means of an example, why it is advantageous to find a BTF. First, we note that
at each k stage in the solution scheme, it may be necessary to prescribe initial values, see §2.3.5.

The equations (3.4, 3.5) can do without initial values, when k is large enough that they become
square linear systems. The latest this happens is at stage k = 0. However, it can happen for parts
of the DAE before one reaches stage k = 0, as illustrated by (3.9), comprising two simple pendula
with a coupling term:

0 = A = x′′ + xλ,

0 = B = y′′ + yλ−G,
0 = C = x2 + y2 − L2,

0 = D = u′′ + uµ,

0 = E = v′′ + vµ−G,
0 = F = u2 + v2 − (L+ cx′)2,

(3.9)

where G,L, c are constants. Its signature matrix and system Jacobian are

Σ =

x y λ u v µ ci





A 2 0• 1

B 2• 0 1

C 0• 0 3

D 2 0• 0

E 2• 0 0

F 1 0• 0 2

dj 3 3 1 2 2 0

, J =

x y λ u v µ





A 1 x

B 1 y

C 2x 2y

D 1 u

E 1 v

F ξ 2u 2v

where ξ = −2c(L+cx′)

.

(A blank in Σ means −∞, and in J means zero.)

One can see just from Σ (or from J), without studying the equations themselves, that the system splits
into parts, i.e., subsystems: part 1 has equations A,B,C for variables x, y, λ; part 2 has equations
D,E, F for variables u, v, µ. Part 1 influences part 2 by the F, x entry in the lower left block of Σ,
but is uninfluenced by it since the top right block is blank, thus giving a block lower-triangular form
(BTF).

This coupling leaves the offsets of part 2 unchanged, but increases by one those of part 1—
from ci = 0, 0, 2, dj = 2, 2, 0 to ci = 1, 1, 3, dj = 3, 3, 1. This seems to change the initial values
part 1 requires—paradoxical, since part 1 is the “uninfluenced” one. Namely, the combined DAE is
quasilinear, and by considering the stages defined by (3.4, 3.5), we find that IVs are needed for

(x, x′, x′′; y, y′, y′′; λ;u, u′; v, v′).

3.5. Quasi-linearity analysis 17

So part 1 now seems to need IVs for x′′, y′′ and λ, which as a stand-alone system it did not, see
Table 3.1. Of course this is false.

When one considers the offsets as defining a scheme for computing successive derivatives (equiv-
alently, Taylor coefficients), the reason for the raised offsets of pendulum 1 is clear. In the absence
of coupling, the natural scheme is: at stage k = −2, find x, y and u, v; at k = −1, find x′, y′ and
u′, v′; at k = 0, find x′′, y′′, λ and u′′, v′′, µ; and so on. However, u, v must satisfy F = 0. With the
coupling, F involves x′, which in the above scheme has not been found yet. Similarly, u′, v′ must
satisfy F ′ = 0, which involves x′′, which has not been found yet, and so on. This is cured by shifting
pendulum 1 back one stage, so that the scheme becomes:

k find then find
−3 x, y
−2 x′, y′ u, v
−1 x′′, y′′, λ u′, v′

0 x′′′, y′′′, λ′ u′′, v′′, µ

and so on. Hence, provided pendulum 1’s equations are solved before those of pendulum 2 at each
k-stage,

− pendulums 1 and 2 can be solved as separate size 3 systems;

− but, each derivative of x is available just when needed by pendulum 2.

Because of the shift, pendulum 1 behaves as if the overall stages k = −3,−2,−1, . . . are its local
stages k̂ = k+ 1 = −2,−1, 0, . . . associated with local offsets ĉi = 0, 0, 2 and d̂j = 2, 2, 0, which come
from analyzing it as a stand-alone system. This shows that the relation between the “minimal initial
values” problem and the sequencing of a solution scheme involves the DAE’s block lower triangular
structure. Hence, we can take advantage of a DAEs block-triangularization by considering local
offsets and local solution stages in each block to reduce the number of needed initial values.

3.5 Quasi-linearity analysis
This section illustrates how to do linearity analysis for the blocks we obtain by doing the decompo-
sition.

After permuting the DAE to upper triangularized form of b blocks (where possible), we calculate
the local offsets ĉi and d̂j for each block. Then, we analyze the linearity of the highest order derivatives
(HODs) of the variables in each block. Denote αk (k = 1, . . . , b) such that αk = 1 if the HODs within
block i are linear, and αk = 0 otherwise. With the permuted variables, we associate them with
an n-vector l such that l(j) is the block of variable xj (j = 1, . . . , n). Similarly, we associate the
permuted equations with a vector m such that m(i) is the block of equation fi (i = 1, . . . , n).

For variables xj, the required IVs are

Xj =

(
xj, x

′
j, . . . , x

(d̂j−αl(j))

j

)
,

3.5. Quasi-linearity analysis 18

where d̂j denotes local d offsets here.
For equation fi in block k, the set of constraints are

Fi =
(
fi, f

′
i , . . . , f

(ci−αm(i))

i

)
,

where ci denotes global c offsets.
Therefore, the required IVs for the system are

X = (X1,X2, . . . ,Xn) , (3.10)

and the constraints are

F = (F1,F2, . . . ,Fn) = 0,

where some of the Xj’s can be the empty vector, and some of the Fi’s can be missing.
In the quasilinear case, an xj whose d̂j is zero (it must have σij ≤ 0 for all i and thus is a “purely

algebraic variable”) does not appear in the vector Xj. Similarly, an fi with ci = 0 does not appear
in Fi.

The reason for the extra components in the non-quasilinear case is as follows. Consider a particular
independent variable value t. If a set of values Xj in (3.10) is consistent with some solution of the
DAE at t, then in the linear case that solution is unique. In the nonlinear case, there may be several
solutions consistent with these values; however, including the next level of derivatives in Xj restores
local uniqueness.

Chapter 4

Daesa functions

Daesa exploits Matlab’s operator overloading to process the DAE given by a user-supplied function
for evaluating the fi in (1.1). In particular, this is the method Daesa uses to extract the signature
matrix and determines for each equation if it is quasilinear in the leading derivatives.

After the signature matrix is constructed, Daesa finds out if the problem is structurally well-
posed , and if so, calculates the offsets of the problem and then determines structural index and
DOF. Since it knows the structure of the analyzed DAE, Daesa constructs a block-triangular form
of it, finds local offsets , and determines block by block quasilinearity. Based on the offsets and
linearity information, Daesa deduces which variables and derivatives of them need to be initialized
and what the constraints are.

The SA is performed by the function daeSA. It returns an object of the class SAdata, which
encapsulates all the data obtained from the SA. Each of the remaining Daesa functions takes an
object of this class as a parameter and extracts from it the data it needs.

In this chapter, we present all the functions in Daesa. In §4.1, we show how a DAE is specified
in a function. In §4.2, we introduce the main function, daeSA, that performs SA. In §4.3 we describe
all the functions and how to obtain structural data from the analysis performed.

19

4.1. Specifying a DAE 20

4.1 Specifying a DAE

function f = daefcn(t, x, options)

t
Input: independent variable t

x
Input: column n-vector, dependent variables where x(j) denotes variable xj for j = 1, . . . , n

options
Input (optional): list of one or more arguments that are passed to the definition of the DAE,
useful for parameters

f
Output: column n-vector, equations where f(i) contains the evaluation of fi in (1.1)

The code of daefcn may contain

• unary operations +, -

• binary arithmetic operations +, -, *, /

• standard functions: sin, cos, tan, sinh, cosh, tanh sqrt, exp, log, ^, . . . ,
where ^ denotes the “real raised to a real power” function. For a complete list of supported
functions, see Appendix A.

• Dif(var,k), the differentiation operator dk/dtk that returns the kth derivative of var.

For instance, Dif(x(3),2) represents x′′3 = d2x3/dt2.

Notes

• The code should not contain branches, that is if or switch statements. Functions that are
defined using these are not covered by the current theory.

• The code may freely introduce other variables that depend directly or indirectly on the inputs
x and/or t.

• Currently, Daesa supports only scalar operations. Array operations will be implemented in a
future version.

• In function daefcn, the indices of x and f are bounded from 1 to n. Each variable x(j) should
be used at least once, and each equation f(i) should be evaluated, where i,j=1,2,. . . n.

As an example of such a function, see Figure 2.1.

4.2. Structural analysis 21

4.2 Structural analysis
The structural analysis is performed by the daeSA function.
function sadata = daeSA(daefcn, n, options)

daefcn
Input: a function handle for evaluating the DAE; see p. 20

n
Input: positive integer, problem size

options
Input (optional): list of one or more arguments that are passed to the definition of the DAE

sadata
Output: an SAdata class object

This function performs the structural analysis and encapsulates all the data in a return SAdata object
sadata. These SA data can be accessed by the functions described in §4.3.
daeSA can fail in the following cases.

1. Problem size n in daeSA is not consistent with the number of variables or/and equations encoded
in daefcn. This can happen if

(a) variable or equation of index not in 1:n is accessed

(b) a variable is not used, and/or an equation is not evaluated.

2. daefcn contains functions or operations that are currently not supported.

3. The DAE system defined by daefcn is over- or underdetermined.

As long as all the given variable and equation indices are in 1:n, the structure of the DAE, even
if ill-posed, can be shown by showStruct, see p. 27.

4.3 Obtaining structural data
If the analyzed DAE is structurally well-posed, we write SWP; otherwise if it is structurally ill-posed,
we write SIP. An SAdata class object returned by daeSA contains data from which one can extract
the following information about the DAE:

1. swp, a logical value that indicates if the DAE is structurally well-posed

2. meqn, mvar, indices of missing equations and variables, respectively

3. index, structural index

4.3. Obtaining structural data 22

4. dof, number of degrees of freedom

5. S, signature matrix

6. HVT position of a highest value transversal

7. iv, set of variables to be initialized

8. constr, set of constraints

9. c, d, cl, dl, global and local offsets, respectively

10. pe, pv, permutation row vectors of 1:n for the triangularized signature matrix

11. cb, fb, boundaries of the diagonal blocks of the coarse, fine block-triangularization, respectively

12. cql, fql, quasi-linearity data of diagonal blocks in the coarse and fine block triangularization,
respectively

13. fhandle, DAE definition function handle

14. n, problem size

Each of the remaining functions take as input the object obtained for daeSA, which we name sadata.

function swp = isSWP(sadata)

swp
Output: 1 if SWP and 0 otherwise

function [meqn,mvar] = getMissingEqnsVars(sadata)

meqn, mvar
Output: the indices of equations (in row vector meqn) and indices of variables (in row vector
mvar) that are missing in the DAE definition.

If no equation is missing, meqn=[], and if no variable is missing, mvar=[].

function index = getIndex(sadata)

index
Output: structural index if SWP and NaN otherwise

4.3. Obtaining structural data 23

function dof = getDOF(sadata)

DOF
Output: DOF if SWP and NaN otherwise

function S = getSigma(sadata)

S
Output: signature matrix in dense form

function HVT = getHVT(sadata)

HVT
Output: if SWP, a row n-vector such that (i,HVT(i)), i=1:n, forms a HVT in the unpermuted
signature matrix. For example, for the Mod2Pend problem (§2.1), this function returns the
vector (3, 2, 1, 6, 5, 4); cf. the HVT in Figure 2.2(a).

If SIP, HVT is a row n-vector of NaN’s.

function [c,d] = getOffsets(sadata)
function [c,d,cl,dl] = getOffsets(sadata)

c, d, cl, dl
Output: If SWP, c and d are row n-vectors containing the global equation and variable offsets,
respectively; cl and dl are row n-vectors containing the local equation and variable offsets,
respectively.

If SIP, all output row vectors are [].

Note: The number of output arguments should be either 2 or 4, if not an error message will be
printed.

4.3. Obtaining structural data 24

function iv = getInitData(sadata)

iv
Output: If SWP, iv is a non-negative integer row n-vector, where iv(j) is the number of
derivatives of variable j that need initial values when solving the DAE. As a result, the sum of
the elements of iv is the total number of IVs needed.

For instance, iv(2)=3 means IVs for x2, x′2, x′′2 are necessary.
iv(4)=0 implies x4 does not participate in initialization.

If SIP, iv=[].

function constr = getConstr(sadata)

constr
Output: If SWP, constr is a non-negative integer row n-vector such that

0 = f
(r)
i for 0 ≤ r < constr(i)

are constraints. As a result, the sum of the elements of constr gives the total number of
constraints. If SIP, constr=[].

For instance, constr(3)=3 implies 0 = f3, f
′
3, f

′′
3 are constraints.

constr(1)=0 implies f1 is not in the set of constraints.

If SIP, constr=[].

4.3. Obtaining structural data 25

function [pe,pv] = getBTF(sadata)
function [pe,pv,cb] = getBTF(sadata)
function [pe,pv,cb,fb] = getBTF(sadata)

Let S=getSigma(sadata).

Assume SWP

pe, pv
Output: pe, pv are two row n-vectors such that S(pe,pv) is block-upper triangularized signa-
ture matrix, where the entries below the diagonal blocks are all −∞. The ith equation in the
permuted system is pe(i), and the jth variable in the system is pv(j).

cb, fb
Output: cb, fb are row integer vectors that specify the boundaries of the diagonal blocks of
the coarse and fine block-triangularization, respectively.

If B=S(pe,pv), the (i, j)th block of the coarse block-triangularization is
B(cb(i):cb(i+1)-1,cb(j):cb(j+1)-1). Similarly, the (i, j)th block of the fine block-trian-
gularization is B(fb(i):fb(i+1)-1,fb(j):fb(j+1)-1).

Assume SIP

pe, pv
Output: pe, pv are two row n-vectors such that S(pe,pv) is block-upper triangularized signa-
ture matrix, where the entries below the diagonal blocks are all −∞. The ith equation in the
permuted system is pe(i), and the jth variable in the system is pv(j).

cb
Output: cb an empty array

fb
a 2 ×m positive integer matrix specifying the boundaries of the diagnostic (see below) block
triangularization, where m is the number of fine blocks minus one.

If B=S(pe,pv), the (i, j)th block of the diagnostic block-triangularization is:
B(fb(1,i):fb(1,i+1)-1, fb(2,j):fb(2,j+1)-1)

Note: The number of output arguments should be either 2, 3 or 4.

Practically, the diagnostic block-triangularized form will look like:




B11 B12 B13 B14

B23 B24

B34

B44




where

• block [B11 B12] is under-determined,

• block B23 is well-determined, and

• block [B34 ; B44] is over-determined.

4.3. Obtaining structural data 26

function cql = getQLdata(sadata)
function [cql,fql] = getQLdata(sadata)

Assume SWP

cql, fql
Output: row vectors containing information about the quasi-linearity of each diagonal block in
the coarse and fine block-triangularizations of a DAE structure, respectively.

Let [pe,pv,cb,fb] = getBTF(sadata).
For the coarse block triangularization, if cql(i)=true, then the ith diagonal block comprising
equations of indices pe(cb(i):cb(i+1)-1) in variables of indices pv(cb(i):cb(i+1)-1) is
quasilinear in the leading derivatives of these variables; otherwise, cql(i)=false, and this
block is non-quasilinear.

Similarly, for the fine block triangularization, if fql(i)=true, then the ith diago-
nal block comprising equations of indices pe(fb(i):fb(i+1)-1) in variables of indices
pv(fb(i):fb(i+1)-1) is quasilinear in the leading derivatives of these variables; otherwise,
fql(i)=false, and this block is non-quasilinear.

Assume SIP

All output row vectors are [].

function h = getDAEfhandle(sadata)

h
Output: returns a handle of the function passed to daeSA

function n = getSize(sadata)

n

Assume SWP

Output: returns problem size, the number of equations and variables

Assume SIP

Output: if the problem is missing variables or equations the result is still the same, the function
returns the number of variables and equations specified in the initial daeSA function call.

4.4. Visualization 27

4.4 Visualization

function showStruct(sadata,options)

Assume SWP
This function displays the structure of the signature matrix in the current figure, or in a new
figure if none is open. showStruct can have in options one to three optional key-value pair
arguments explained as follows.

’disptype’,typeValue
typeValue is a string that indicates how the structure the DAE should be displayed.

typeValue displays
’original’ (default) original structure of the DAE as given.

showStruct(sadata, ’disptype’,’original’)
is the same as showStruct(sadata).

’blocks’ coarse block-triangularized structure of the DAE
’fineblocks’ fine block-triangularized structure of the DAE

’submat’,matValue
matValue is a row vector of size 2 or 4 specifying what submatrix of the signature matrix S to
be displayed.

size displays
2 diagonal submatrix comprising rows matValue(1) to matValue(2) and

columns matValue(1) to matValue(2)
4 submatrix comprising rows matValue(1) to matValue(2) and columns

matValue(3) to matValue(4)

’blocksubmat’,blkValue
blkValue is a row vector of size 2 or 4 specifying what blocks of the signature matrix S to be
displayed.

size displays
2 diagonal blocks comprising block rows blkValue(1) to blkValue(2) and

block columns blkValue(1) to blkValue(2)
4 submatrix comprising block rows blkValue(1) to blkValue(2) and block

columns blkValue(3) to blkValue(4)

Note: to use the key pair ’blocksubmat’, blkValue the ’disptype’ must be set to give a
block triangularization.

Assume SIP
A similar set of outputs to the SWP case are available, except the ’disptype’, ’fineblocks’
is no longer available and the ’disptype’, ’blocks’ now produces a diagnostic block-
triangularization, as detailed below and in [2].

4.4. Visualization 28

Contents of figure if SWP. Without using arguments ’submat’ or ’blocksubmat’, the figure
displays the DAE function name, size, structural index and DOF.

• In the default setting, the figure also displays

– S signature matrix

– indices of equations and variables

– c,d global offsets

– HVT position (boxed in BW print, yellow in color print)

– structural non-zeros in the system Jacobian (shaded in BW print, colored green in color
print)

• With ’disptype’,’blocks’ or ’disptype’,’fineblocks’, the figure displays:

– B , permuted signature matrix (B=S(pe,pv))

– pe, pv, permuted indices of equations and variables

– c, d, cl, dl, global and local offsets

– union of HVTs (boxed in BW print, yellow in color print)

– structural non-zeros in the system Jacobian (shaded in BW print, colored green in color
print)

• With argument ’submat’,matValue or ’blocksubmat’,blkValue, the figure only displays:

– DAE function name

– submatrix (or blocks) information

– submatrix (or blocks) of the signature matrix

– indices of equations and variables

– union of HVTs (boxed in BW print, yellow in color print)

– structural non-zeros in the system Jacobian (shaded in BW print, colored green in color
print)

If either the width or height of the matrix displayed is larger than 40, the figure does not show the
indices and the offsets.

Contents of figure if SIP. If any variable or equation of index in 1:n is not accessed, the DAE
is SIP, and the equations or variables that make the DAE SIP will be highlighted (dark shading in
BW print, colored red in color print), and figure will display:

• When no ’disptype’ is specified:

– DAE function name

4.5. Data output 29

– structurally ill posed
– indices of variables and equations

• When ’disptype’ is ’blocks’:

– DAE function name
– structurally ill posed
– indices of variables and equations
– missing equations/variables
– a diagnostic BTF, as explained in the description of getBTF on p. 25 and shown in Figure

5.1 in §5.2

• When ’disptype’ is ’fineblocks’ the user will receive a message, printed to the command
window, telling them the DAE is SIP and fine blocks cannot be displayed:

’daefcn’ is structurally ill posed. Fine blocks cannot be displayed.

4.5 Data output
For the following functions, we assume SWP. If SIP an error message is printed to the command
window:

’daefcn’ is structurally ill posed.

function printInitData(sadata, options)

This function reports the variables (and derivatives of them) that need to be initialized for
solving the DAE.

This function can have in options one or two key-value pairs, where the keys are ’varnames’
and ’outfile’.

’varnames’,vars
By default, the variable names are x1, x2, . . . , xn. If each of the variable names needs
to be replaced by the same variable name, say v, followed by index number, one can pass
’varnames’,’v’. Alternatively if one would like to specify each variable.

’varnames’,cavarnames
Different variable names can be given in a cell array of n strings, say cavarnames, and then
passed as ’varnames’,cavarnames. This results in the ith variable name being replaced by
cavarnames{i}.

’outfile’,fname
By default, the text is printed on the screen. If optional ’outfile’,’fname’ is passed, the
output is stored in a file with name fname.

4.5. Data output 30

function printConstr(sadata, options)

This function reports the functions (and derivatives of them) that form the set of the constraints.

This function can have in options one or two key-value pairs, where the keys are ’fcnnames’
and ’outfile’.

’fcnnames’,fcnname

’fcnnames’,cafcnnames
By default, the function names are f1, f2, . . . , fn. If function names are different from the
default ones, they can be replaced in the output in the same way as in printInitData. For
instance, ’fcnnames’,’g’ replaces each of the function names with g followed by index number;
’fcnnames’,cafcnnames replaces the default function names with different function names,
where cafcnnames is a cell array of n strings.

’outfile’,fname
The same as above in printInitData.

function printSolScheme(sadata, options)

This function reports a solution scheme for the DAE.
options is an optional list of one to four key-value pair arguments from

’varnames’, varname or cavarnames
’fcnnames’, fcnname or cafcnnames
’outfile’, fname
’detail’, detaillevel

The first three pairs are as described in printInitData and printConstr. The detaillevel
can be ’compact’ (default), which causes this function to report the solution scheme in compact
form, or ’full’, which results in a more detailed output. See §2.3.5 for more information on
the ’detail’ option.

In the three functions above, the output file fname can be specified as a full path, e.g.
’c:/My Documents/My_DAESA_outputs/my_files_name.txt’. If no full path is specified then the
path is relative to the current Matlab working directory. For example, ’Reports/filename.txt’
will print to a Reports folder in the current directory. For all the above print functions the format
is plain text.

Data output samples using these functions can be found in §2.3.

Chapter 5

Examples

We now work through examples of some of the functions of the previous chapter. We start with the
SWP modified2pendula example (§5.1), and then we show how Daesa visualizes problems that are
structurally ill-posed (§5.2). Then we present results from applying Daesa on the chemical Akzo
Nobel problem [1] (§5.3) and a problem consisting of several coupled pendula (§5.4). In all following
examples, it will be assumed that sadata refers to the result of calling daeSA on the daefcn being
explained.

5.1 Well-posed DAE example
First, we use the SWP case example. Recall the result of showStruct on the modified2pendula
example, displayed in Figure 2.2. We now apply the functions getHVT and getOffsets to this
example. Returning

>> HVT=getHVT(sadata)
HVT =

3 2 1 6 5 4
>> [c,d,cl,dl]= getOffsets(sadata)
c =

4 4 6 0 0 2
d =

6 6 4 2 3 0
cl =

0 0 2 0 0 0
dl =

2 2 0 0 3 0

which when compared to the results of Figure 2.2 should give the reader a better understanding of
these functions. The local offsets are returned in the original equation order and not in the permuted
block triangular equation order shown by calling showStruct with ’disptype’ set as ’fineblocks’.
If we wanted to change the ordering, the commands using getBTF detailed below should be used.

We may have a large solution scheme produced from the printInitData and printConstr func-
tions of §(2.3.3) and as such may want a more compact representation of the data. To do this we

31

5.1. Well-posed DAE example 32

use getInitData and getConstr to produce

>> iv=getInitData(sadata)
iv =

2 2 0 1 4 0
>> constr=getConstr(sadata)
constr =

4 4 6 0 1 3

so, for example variable one and its derivative are needed initial conditions for the solution process,
as already shown with printInitData in §2.3.3.

Finally, we consider the result of applying getBTF and getQLdata to the modified2pendula
example

>> [pe,pv,cb,fb]= getBTF(sadata)
pe =

5 4 6 3 2 1
pv =

5 6 4 1 2 3
cb =

1 4 7
fb =

1 2 3 4 7
>> [cql ,fql] = getQLdata(sadata)
cql =

0 1
fql =

0 1 0 1

Recalling Figure 2.2, in particular the blocks in the coarse and fine cases, should give the user a
good understanding of the outputs of these functions. Finally, if we wanted to produce now the local
offsets in the BTF ordering given by calling showStruct with ’disptype’ set as ’fineblocks’ then
we would use the following commands:

>> cl=cl(pe)
cl =

0 0 0 2 0 0
>> dl=dl(pv)
dl =

3 0 0 2 2 0

5.2. Ill-posed DAE examples 33

5.2 Ill-posed DAE examples
We now turn our attention to the SIP problem resulting from removing equation three in the
modified2pendula example mentioned above. By applying showStruct we obtain the following
figures:

1 2 3 4 5 6

1

2

3

4

5

6

ILLPOSED1
 Structurally ill posed

2

2

0

0

2

2

0

3

0

0

0In
di

ce
s

of
 E

qu
at

io
ns

Indices of Variables

(a) original structure

6 1 2 3 4 5

1

2

6

4

5

3

ILLPOSED1: Diagnostic BTF
 Structurally ill posed

Missing equation/variable

0

0

2

2

0

0

2 0

2

0

3In
di

ce
s

of
 E

qu
at

io
ns

Indices of Variables

0

0

2

2

0

0

2 0

2

0

3

(b) diagnostic block-triangularized structure

Figure 5.1: Structure of illPosed1 and its diagnostic block-triangularization.

If we apply getBTF to this example we obtain:

>> [pe,pv,cb,fb]= getBTF(sadata)
pe =

1 2 6 4 5 3
pv =

6 1 2 3 4 5
cb =

[]
fb =

1 6 6 6 7
1 2 7 7 7

see also p. 25 .

Now, to show how Daesa displays missing equations and variables, we consider illPosed2,
which is the modified2pendula example omitting both equation three and variable µ. A call of
showStruct yields Figure 5.2.

5.2. Ill-posed DAE examples 34

1 2 3 4 5 6

1

2

3

4

5

6

ILLPOSED2

 Structurally ill posed

2

2

0

0

2

2

0

3

0

In
d
ic

e
s
 o

f
E

q
u
a
ti
o
n
s

Indices of Variables

Figure 5.2: Structure of illPosed2.

In this example the missing equations and variables are made obvious by the shaded entries (red
in color print). However for a larger example, we may not be able to easily distinguish missing
equations and variables. A call of getMissingEqnsVars yields:

>> [meqn ,mvar]= getMissingEqnsVars(sadata)
meqn =

3
mvar =

6

Finally, we show how Daesa displays several diagnostic blocks for a SIP DAE. We use illPosed3
from the examples directory, see Figure 5.3

function f = illPosed3(t, z)
x1 = z(1); x2 = z(2); x3 = z(3);
x4 = z(4); x5 = z(5); x6 = z(6);
f(1) = x1 + x2 + x5 + x6 ;
f(2) = x1^3 + x2 + x5 + x6 ;
f(3) = x5 * x6 ;
f(4) = - x5^3 + x6^4;
f(5) = x1 + x2 + x3 + x4 + x5 + x6^3;
f(6) = x5 + x6 ;

end

Figure 5.3: Matlab function for evaluating illPosed3 example.

Calling showStruct with ’disptype’ set as ’blocks’ yields the diagnostic block structure seen in
Figure 5.4.

5.3. Chemical Akzo Nobel 35

4 3 1 2 5 6

5

1

2

3

4

6

ILLPOSED3: Diagnostic BTF
 Structurally ill posed

Shaded: under− and over−determined

0 0 0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

In
d
ic

e
s
 o

f
E

q
u
a
ti
o
n
s

Indices of Variables

0 0

0

0

0

0

0

0

Figure 5.4: Diagnostic block-triangularized structure of illPosed3.

Here, there is a structurally under-determined set of variables x4 and x3 in equation 0 = f5, a
structurally over-determined set of equations 0 = f3, f4, f6 in variables x5 and x6 and a structurally
well-determined system in variables x1 and x2 in equations 0 = f1, f2. For more information on the
diagnostic block-triangularization see the description of getBTF on p. 25.

5.3 Chemical Akzo Nobel
We show Daesa’s SA on the chemical Akzo Nobel problem [1], an index-1 DAE. The function for
evaluating the corresponding equations is in Figure 5.5.

function f = akzonobel(t,y)
k1 = 18.7; k2 = 0.58; k3 = 0.09; k4 = 0.42;
K = 34.4; klA = 3.3; CO2 = 0.9; H = 737;
Ks = 115.83;
r1 = k1*y(1)^4* sqrt(y(2));
r2 = k2*y(3)*y(4);
r3 = k2/K*y(1)*y(5);
r4 = k3*y(1)*y(4)^2;
r5 = k4*y(6)^2* sqrt(y(2));
Fin = klA*(CO2/H - y(2));
f(1) = -Dif(y(1),1) - 2.0*r1 + r2 - r3 - r4;
f(2) = -Dif(y(2),1) - 0.5*r1 - r4 - 0.5*r5 + Fin;
f(3) = -Dif(y(3),1) + r1 - r2 + r3;
f(4) = -Dif(y(4),1) - r2 + r3 - 2.0*r4;
f(5) = -Dif(y(5),1) + r2 - r3 + r5;
f(6) = Ks*y(1)*y(4) - y(6);

end

Figure 5.5: Daesa function for evaluating the chemical Akzo Nobel DAE.

5.3. Chemical Akzo Nobel 36

The script in Figure 5.6 produces the solution scheme in Figure 5.7 and the plot in Figure 5.8.

sadata = daeSA(@akzonobel ,6);
showStruct(sadata ,’disptype ’,’fineblocks ’);
printSolScheme(sadata ,’outfile ’,’chemakzo.txt’,’varnames ’,’y’);

Figure 5.6: Daesa script for analyzing AkzoNobel.

Solution scheme for ’akzonobel’ problem

Initialization summary:
y1, y2, y3, y4, y5

k = -1: [] : y5

[] : y4
[] : y3
[] : y2
[] : y1

k = 0: [f6] : y6
[f5] : y5’
[f4] : y4’
[f3] : y3’
[f2] : y2’
[f1] : y1’

Figure 5.7: Akzo Nobel: solution scheme.

1 2 3 4 5 6

1

2

3

4

5

6

AKZONOBEL: Fine BTF
 Size 6, structural index 1, DOF 5

Shaded: structural nonzeros in system Jacobian J
Boxed: positions that contribute to det(J)

1

0

0

0

0

0

0

1

0

0

0

1

0

0

0

0

0

1

0

0

0

0

0

1

0

0

0

1

1

1

1

1

0

0

0

0

0

0

0

0

0

ĉi

0

0

0

0

0

0

ci

1 1 1 1 1 0d̂j
1 1 1 1 1 0dj

Indices of Variables

In
di

ce
s

of
 E

qu
at

io
ns

Figure 5.8: Fine block-triangularized structure of the chemical Akzo Nobel problem.

5.4. Multiple pendula 37

This scheme suggests that, at stage k = −1, we should give initial values for yi for all i = 1, . . . , 5.
For stages k ≥ 0, we proceed as shown in Table 5.1.

block solve for

6:6 f
(k)
6 y

(k)
6

5:5 f
(k)
5 y

(k+1)
5

4:4 f
(k)
4 y

(k+1)
4

3:3 f
(k)
3 y

(k+1)
3

2:2 f
(k)
2 y

(k+1)
2

1:1 f
(k)
1 y

(k+1)
1

Table 5.1: Solution scheme for the Akzo Nobel problem for k ≥ 0.

In [1], this problem is classified as nonlinear, and initial values for all variables and their first
derivatives are given. Our solution scheme reveals six linear equations, if solved in a block-wise
manner, and reports that only y1, . . . , y5 need to be initialized.

5.4 Multiple pendula
In this example, we illustrate using a for loop in the function for evaluating a DAE system, where
the number of iterations is passed as a parameter. Consider the “chain” of pendula:

first pendulum
0 = x′′1 + λ1x1

0 = y′′1 + λ1y1 −G
0 = x21 + y21 − L2

ith pendulum
0 = x′′i + λixi

0 = y′′i + λiyi −G
0 = x2i + y2i − (L+ cλi−1)

2,

(5.1)

where the state variables of the ith pendulum (i ≥ 1) are xi, yi, and λi; G > 0 is gravity, L > 0
is the length of the first pendulum, and c is a constant. For i ≥ 2, the length of the ith pendulum
depends on λi−1. A system of p pendula has size n = 3p and index 2p+ 1, [2, 5].

The function for evaluating (5.1) is in Figure 5.9. Here, the number of pendula, p, is passed as a
parameter. In the for loop, we evaluate the equations for pendulum i = 2, . . . , p. The daeSA function
can be called as

p = 5; n = 3*p;
sadata = daeSA(@multiplependula ,n,p);

In Figure 5.10, we show the original and fine block-triangularizations of this problem (the coarse and
fine triangularizations are the same).

5.4. Multiple pendula 38

function f = multiplependula(t,x,p)
G = 9.8; L = 1; c = 0.1;
% first pendulum
f(1) = Dif(x(1),2) + x(1)*x(3); % 0 = x′′1 + λ1x1
f(2) = Dif(x(2),2) + x(2)*x(3)-G; % 0 = y′′1 + λ1y1
f(3) = x(1)^2 + x(2)^2 - L^2; % 0 = x21 + y21 − L2

% pendulum > 1
for i = 2:p

xi = 3*i-2; yi = 3*i-1; % x, y indices
li = 3*i; li1 = 3*i-3; % λi, λi−1 indices
f(xi) = Dif(x(xi),2) + x(xi)*x(li); % 0 = x′′i + λixi
f(yi) = Dif(x(yi),2) + x(yi)*x(li) - G; % 0 = y′′i + λiyi −G
f(li) = x(xi)^2 + x(yi)^2 - (L+c*x(li1))^2;

% 0 = x2i + y2i − (L+ cλi−1)
2

end
end

Figure 5.9: Daesa function for evaluating the multiple pendula problem.

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

 1

 2

 3

 4

 5

 6

 7

 8

 9

10

11

12

13

14

15

 MULTIPLEPENDULA

 Size 15, structural Index 11, DOF 10
Shaded: structural nonzeros in system Jacobian J

Boxed: HVT

2

0

2

0

0

0

0

2

0

2

0

0

0

0

2

0

2

0

0

0

0

2

0

2

0

0

0

0

2

0

2

0

0

0

2

0

2

0

0

0

0

2

0

2

0

0

0

0

2

0

2

0

0

0

0

2

0

2

0

0

0

0

2

0

2

0

0

0

0

2

0

0

2

0

0

2

0

0

2

0

0

2

0

Indices of Variables

In
d
ic

e
s
 o

f
E

q
u
a
ti
o
n
s

 8

 8

10

 6

 6

 8

 4

 4

 6

 2

 2

 4

 0

 0

 2

c i

10 10 8 8 8 6 6 6 4 4 4 2 2 2 0d j

(a) original structure

13 14 15 10 11 12 7 8 9 4 5 6 1 2 3

15

14

13

12

11

10

 9

 8

 7

 6

 5

 4

 3

 2

 1

MULTIPLEPENDULA: Fine BTF

 Size 15, structural index 11, DOF 10
Shaded: structural nonzeros in system Jacobian J

Boxed: positions that contribute to det(J)

2

0

2

0

0

0

0

2

0

2

0

0

0

0

2

0

2

0

0

0

0

2

0

2

0

0

0

0

2

0

2

0

0

0

2

0

2

0

0

0

2

0

2

0

0

0

2

0

2

0

0

0

2

0

2

0

0

0

2

0

2

0

0

0

0

0

0

0 2

0

0

2

0

0

2

0

0

2

0

0

2

0

0

ĉ i
 2

 0

 0

 4

 2

 2

 6

 4

 4

 8

 6

 6

10

 8

 8

c i

2 2 0 2 2 0 2 2 0 2 2 0 2 2 0d̂ j

 2 2 0 4 4 2 6 6 4 8 8 6 10 10 8d j

Indices of Variables

In
d
ic

e
s
 o

f
E

q
u
a
ti
o
n
s

(b) fine block-triangularized structure

Figure 5.10: Structure of (5.1) and its fine block-triangularization.

Chapter 6

Installation

This package is available at http://www.cas.mcmaster.ca/~nedialk/daesa as the zipped file
DAESA-1.0.zip. The implementation is distributed in the form of Matlab pcode files.

When DAESA-1.0.zip is unzipped, it creates directory DAESA-1.0 in the current directory with
subdirectories as follows:

subdirectory contains
src/implementation pcode files of the implementation
src/interface .m files that execute the corresponding pcode files
examples the code for the examples in this User Guide
examples/DAEs the functions for evaluating the DAEs used in this User

Guide

Before using Daesa, one should set paths to the above directories. This can be done by executing
startup.m in directory DAESA, or by setting them manually through Matlab’s GUI.

Example programs. The results in this user guide are produced by the following scripts in the
examples directory:

file used in DAE function in examples/DAEs
sa_modified2pendula.m §5.1 modified2pendula.m
sa_illPosed.m §5.2 illPosed1.m, illPosed2.m, illPosed3.m
sa_chemakzo.m §5.3 akzonobel.m
sa_multiplependula.m §5.4 multiplependula.m

(The remaining files in the examples and examples/DAEs directories are used in [2].)

Once Daesa is on Matlab’s path it can be used within Matlab from an arbitrary working
directory. If this is done, whenever an ’outfile’ is specified in the print functions of §2.3.3, the
file path (if not an absolute path) will be relative to the current working directory.

39

http://www.cas.mcmaster.ca/~nedialk/daesa

Appendix A

Supported standard functions

The following two tables list all standard functions currently supported by Daesa.

Daesa name resulting function
^ power, where the power is

a real number
exp exponential
log natural logarithm
log10 base 10 logarithm
sqrt square root
sin sine
cos cosine
tan tangent
sec secant
csc cosecant
cot cotangent
asin arcsine
acos arccosine
atan arctangent
asec arcsecant
acsc arccosecant
acot arccotangent

Daesa name resulting function
sinh hyperbolic sine
cosh hyperbolic cosine
tanh hyperbolic tangent
sech hyperbolic secant
csch hyperbolic cosecant
coth hyperbolic cotangent
asinh hyperbolic arcsine
acosh hyperbolic arccosine
atanh hyperbolic arctangent
asech hyperbolic arcsecant
acsch hyperbolic arccosecant
acoth hyperbolic arccotangent

Table A.1: Standard functions supported by Daesa.

40

Index

Functions
daeSA, 4, 21, 37
getBTF, 25, 32, 33
getConstr, 24, 32
getDAEfhandlegetDAEfhandle, 26
getDOF, 6, 23
getHVT, 23, 31
getIndex, 6, 22
getInitData, 24, 32
getMissingEqnsVars, 22, 34
getOffsets, 23, 31
getQLdata, 26, 32
getSigma, 23
getSize, 26
isSWP, 22
printConstr, 6, 30
printInitData, 6, 29
printSolScheme, 7, 30, 36
Compact, 10
Full, 7

showStruct, 5, 27, 33, 34, 37
Coarse blocks, 5
Diagnostic blocks, 33, 35
Fine blocks, 5, 36, 37

Theory
Block-triangularization, 1, 15, 17
Constraints, 1
Degrees of freedom, 1, 13, 19
Highest-value transversal, 5, 12, 13
Incidence matrix, 15
Initial values, 1, 16, 17
Linear assignment problem, 1
Offsets, 1, 13, 19
Canonical, 13
Global, 5, 12, 18

Local, 1, 5, 17–19
Quasilinearity, 1, 11, 17, 19
Signature matrix, 1, 12, 16, 19
Signature tableau, 13

Solution stages, 14–17
Sparsity pattern, 15
Structural index, 1, 2, 19
Structurally ill-posed, 12
Structurally well-posed, 1, 12, 19
System Jacobian, 5, 13–16
Val(Σ), 12, 13

41

Bibliography

[1] F. Mazzia and F. Iavernaro, Test set for initial value problem solvers, Tech. Rep. 40,
Department of Mathematics, University of Bari, Italy, 2003. http://pitagora.dm.uniba.it/
~testset/.

[2] N. S. Nedialkov, J. Pryce, and G. Tan, DAESA — a Matlab tool for structural analysis
of DAEs: Software, 2013. Accepted for publication in ACM TOMS.

[3] N. S. Nedialkov and J. D. Pryce, Solving differential-algebraic equations by Taylor series
(I): Computing Taylor coefficients, BIT, 45 (2005), pp. 561–591.

[4] , Solving differential-algebraic equations by Taylor series (II): Computing the System Jaco-
bian, BIT, 47 (2007), pp. 121–135.

[5] , Solving differential-algebraic equations by Taylor series (III): The DAETS code, JNAIAM,
3 (2008), pp. 61–80. ISSN 1790ÃŘ8140.

[6] , DAETS user guide, tech. rep., Department of Computing and Software, McMaster Uni-
versity, Hamilton, Ontario, Canada, L8S 4K1, 2008–2009.

[7] C. C. Pantelides, The consistent initialization of differential-algebraic systems, SIAM. J. Sci.
Stat. Comput., 9 (1988), pp. 213–231.

[8] J. Pryce, N. S. Nedialkov, and G. Tan, DAESA — a Matlab tool for structural analysis
of DAEs: Theory, 2013. Accepted for publication in ACM TOMS.

[9] J. D. Pryce, A simple structural analysis method for DAEs, BIT, 41 (2001), pp. 364–394.

[10] G. Reissig, W. S. Martinson, and P. I. Barton, Differential–algebraic equations of index
1 may have an arbitrarily high structural index, SIAM J. Sci. Comput., 21 (1999), pp. 1987–1990.

42

http://pitagora.dm.uniba.it/~testset/
http://pitagora.dm.uniba.it/~testset/

	Preface
	Daesa Overview
	Quick start
	Specify a DAE
	Perform structural analysis
	Extract structural analysis data
	Visualization
	Index and DOF
	Initialization summary
	Constraints
	Solution scheme

	Theory Overview
	Structural analysis
	The solution method
	The coarse and fine block-triangularizations
	Advantage of block-triangularization
	Quasi-linearity analysis

	Daesa functions
	Specifying a DAE
	Structural analysis
	Obtaining structural data
	Visualization
	Data output

	Examples
	Well-posed DAE example
	Ill-posed DAE examples
	Chemical Akzo Nobel
	Multiple pendula

	Installation
	Supported standard functions
	Index
	Bibliography

