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The Guide is definitive. Reality is frequently inaccurate.
(Douglas Adams, The Restaurant at the End of the Universe)

1 What

EasySDE is essentially a GUI front-end to some old software for developing
forest height growth (or site index) models. Fairly sophisticated and statis-
tically efficient methods are used, making good use of almost any kind of
repeated-measurements data. The old software was not particularly user-
friendly, which undoubtedly limited its appeal. EasySDE greatly simplifies
the process. Its ease of use should compare favourably to most other site
modelling procedures.

In short, various parametrizations of the Richards equation can be used.
For estimation, environmental and measurement error sources are modelled
through a stochastic differential equation (SDE). All parameters are esti-
mated simultaneously by maximum likelihood (don’t panic, all this will be
explained shortly). Data can consist of two or more height-age pairs on any
number of sample plots. The number of measurements per plot and the mea-
surement interval lengths can vary. Either permanent sample plot or stem
analysis data may be used.

Some methodological background is given in the next section. EasySDE
usage instructions follow. This should be more than sufficient for model
development using the variants that past experience has shown to be the
most useful. If you really know what you are doing, and feel adventur-
ous, for added flexibility you might want to run the underlying programs
directly. Or even hack into the code, or use some of its components for other
purposes. Details are contained in the Advanced and Programmer Notes in-
cluded in this distribution. All sources are freely available under the MIT
license (www.opensource.org/licenses).

The models and methods are described formally in Garćıa (1983), and Seber
and Wild (2003, pages 354–356 and Appendix C), but what follows should
be enough to get you started. Extensive experimental results are reported,
fo instance, in Garćıa (1999, 2005). Related methods were used by Rennolls
(1995).
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The software runs on Microsoft Windows and on Linux. Everything here
applies equally to both unless stated otherwise. The screen pictures were
generated on Windows, Linux will look slightly different.

2 Theory

2.1 Growth, height, and site

On a given site, and under “average” weather conditions, the predicted height
growth depends on the current height:

dH

dt
= f(H) , (1)

where H is top height and t is time (or age). It is usually assumed that,
within limits, other stand variables such as density do not significantly affect
top height. It might be argued that growth also depends on age. But in fact,
age, as elapsed time since birth, does not have a physical presence at any
given time — other than perhaps in the number of growth rings. Therefore, it
can hardly have a direct causal effect. Only accumulated changes reflected in
the current condition (state) of the stand can be causes. In principle, ageing
of meristems might have some influence on growth rates. For the most part,
however, tree size should be the dominant variable.

Starting from some initial height H0 at time t0, accumulation (i.e., integra-
tion) of the growth rate in (1) produces the height H1 at some other time t1.
This can be calculated taking advantage of (1) being a “separable differential
equation”:

dH

f(H)
= dt∫ H1

H0

dH

f(H)
=

∫ t1

t0

dt = t1 − t0 .

If we can analytically integrate the left-hand side, and then solve for H1, we
obtain a formula for H1 as a function of t1, t0, and H0.
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A flexible and commonly used model has f(H) = ηHm − κH. It was pro-
posed in this form by von Bertalanffy (1938, 1949), not just with m = 2/3 as
it is often said, and was popularized for plant growth by Richards (1959). In
forestry the model is sometimes called “Chapman-Richards”, following Pien-
aar and Turnbull (1973). It will be convenient to use a power transformation
Hc, with c = 1−m, and write it as

dHc

dt
= b(ac −Hc) . (2)

The equivalence can be verified by differentiating on the left-hand side, and
re-arranging. Integrating and solving for H, as explained above, gives the
height-age equation:

H = a[1− (1−Hc
0/a

c)e−b(t−t0)]1/c . (3)

I have omitted the subscript 1 to simplify. We shall also refer to t as age,
although it only needs to be a relative time or nominal age; shifting by a
constant does not make any difference.

For a whole growth curve, often H0 and t0 are taken as zero in (3), forcing
the curve to go through the origin. When using breast-height age, t0 = 0
(sometimes 0.5), and H0 = 1.3 m. This is a typical sigmoid curve. The
parameter a is the asymptote, b is a “speed” factor, scaling the time axis,
and c is a shape parameter determining the relative height of the inflection
point.

2.2 Site index

Top height growth is widely used as an indicator of site productivity. The
advantage over more direct measures, such as volume production, is that it
is less affected by stand density. It is assumed that height-age curves, e.g.
(3), vary across sites. Depending on site quality, the curves lie at different
levels, without intersecting each other. The curves may be labelled in various
ways, a common one being by the height reached at some specified reference
or base age: the site index.

Mathematically, this corresponds to a one-parameter family of curves. That
is, the curve equations for different sites differ only in the value of one scalar
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parameter. For instance, in (2) and (3) one of the parameters a, b, or c,
may change with site quality, while the others are common to all sites. More
generally, this may happen after a re-parametrization: any or all of a, b and
c may be assumed to be functions of some other parameter that varies with
site. We call a site-dependent parameter local, being specific to a sample
plot, and the others global, pertaining to the model as a whole.

The relationship between the local parameter and the conventional site index
S is found by substituting the base age ts in (3):

S = a[1− (1−Hc
0/a

c)e−b(ts−t0)]1/c . (4)

In simpler cases (4) can be algebraically solved for the local parameter, and
this substituted in (3) to obtain a height-age equation indexed by S. A
numerical solution may be needed in other instances.

All this is fairly straightforward in a deterministic world, or when dealing with
predicted trends as up to here. With actual stand observations we need to
be more precise. Implicit in the traditional concept seems to be the idea that
site curves and site index represent some sort of average over hypothetical
stands that might grow in the site. That is, site index is a property of
the site. More recently, some researchers have thought of site index as the
actual height reached by a specific stand at the base age: a property of the
stand. Failing to distinguish between these two different definitions, which
we might dub “site site-index” and “stand site-index”, has caused a great
deal of confusion and unnecessary controversy (see, for instance, Bailey and
Cieszewski, 2000, and references therein).

We take the site site-index view. Specifically, Site index is the top height at a
base age, predicted “at birth”, for any hypothetical stands (of a given species,
etc.) that might grow on a site1.

At least in this view, the site index base age is essentially arbitrary, a device
for assigning a number to each curve in the family. Therefore, modelling

1 Predicted refers to some kind of point estimate, such as an expected, most likely,
or median value. Mean, mode and median converge to the same value as sample size
increases, so, presuming an infinite number of hypothetical stands, it makes no difference
in the definition. There are differences for estimation, as discussed later. Note that heights
predicted by (3) for an existing stand, and in particular the predicted height at base age,
differ depending on its current (t0, H0). For the same reasons that your life expectancy at
birth differs from your life expectancy now.
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approaches where results change with the chosen reference age are, at best,
ugly. Our methods are strictly base-age invariant, in the sense of Bailey and
Clutter (1974).
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Figure 1: Dashed green and dotted blue: site-index curves. Continuous red: projec-
tions for off-curve site-index-20 stands.

To illustrate some of the conceptual subtleties, assume a model with a as
the local parameter, and height zero at age zero (ALOCAL in Section 2.4).
The base age is 25 years, b = 0.04, and c = 0.7. In Figure 1, the dashed
green curves are site index curves. That is, heights predicted “at birth” by
equation (3), with t0 = H0 = 0 and various values of the site parameter
a. Now, suppose that for whatever reason (e.g., unfavourable weather or
heavy weed competition) a 10 year-old stand growing on site 20 happens to
be 15% short of the “normal” height for that age and site. See the point
at age 10 just below the site-index-20 curve. What should be the future
predicted height? The popular ADA/GADA methods (Bailey and Clutter,
1974; Cieszewski and Bailey, 2000) use a transition equation similar to (3),
but obtained by eliminating the local parameter in the site-index function.
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That greatly simplifies estimation (no local parameters to deal with), but it
assumes that, given the current stand condition, growth is independent of
site quality. The ADA/GADA projection is the site index curve that passes
through the current point, the dotted blue curve. Our approach uses equation
(3) with (t0, H0) being the current point, and gives the red continuous curve.
The stand is still growing on site 20, so that predicted growth should be
higher than for a stand of the same age and height but on site 17. Similarly,
projections for stands that overshoot their nominal trajectories should be
lower than those for stands on higher site qualities that stay the course.

Warning: As with any single-number measure, the concept of site index can
fail if pushed too far. It can be a good indicator of relative productivity
within biogeoclimatic regions where growth patterns and limiting factors are
similar. Otherwise, not just the level, but also curve shape may vary in such
a way that crossings occur. An appropriate stratification should be used.
Alternatively, multidimensional indicators might be possible, although little
or no research in this direction appears to have been done. An experimental
model variant with two local parameters is included in this package.

2.3 Estimation

Rational parameter estimation requires some sort of model for the variabil-
ity of the observations. Experience with regression suggests that moderate
deviations from the assumptions — e.g., additive errors, uniform variance,
independence, normality, etc. — may not be overly critical for the quality of
the estimates. A rough characterization of the error structure is nevertheless
desirable.

It is clear, for instance, that the deviations of a stand from the model of equa-
tion (3) would tend to increase with time, and that they are not statistically
independent. This because the “error”, due among other things to weather
fluctuations, accumulates over time. Ordinary least-squares is therefore rela-
tively inefficient. Seber and Wild (2003, Ch. 7) review several approaches to
modelling this kind of data, and others are found in the forestry literature.
Many, such as autoregressive and mixed effects models, trade a somewhat
crude representation of error structure for the convenience of using standard
statistical packages. We use a more realistic stochastic model that requires
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special-purpose software. Hopefully, EasySDE now makes its application not
more difficult than other methods.

For each sample plot, we represent the effects of “environmental noise”,
mostly weather, as a perturbation added to the right-hand side of (2). The
perturbation is assumed to be a continuous random process, with values that
are independent on non-overlapping intervals. Technically, what is called
white noise, the formal derivative of a Wiener or Brownian motion process:

dHc

dt
= b(ac −Hc) +

√
2bσẇ(t) . (5)

Here w(t) is the standard (mean 0, variance 1) Wiener process, and σ is a
new parameter determining the perturbation intensity or variance2. This is
called a stochastic differential equation (SDE). To keep things “simple”, we
neglect any correlations across plots.

In addition, we recognize that an observed stand top height hi may differ
from the real Hi due to measurement and sampling error. For mathematical
convenience we assume

hc
i = Hc

i + σmεi , (6)

where the εi are independent standard normal variables, and σm is another
parameter to be estimated. This makes the error somewhat higher for larger
heights (standard error approximately proportional to H1−c

i ), which seems
reasonable.

Finally, it might happen that growth perturbations are higher at the seedling
stage than later on. An optional additional parameter σ0 may be used to
represent extra variability over some time previous to the first measurement.

The general model has then 8 “basic” parameters: a, b, c, t0, H0, σ, σm, and
σ0. In a specific model version or variant, any of these parameters may be
either fixed (e,g. zero), global, or local. They may also be some function
of other new global and local parameters — examples later. Actually, a
“local parameter” represents many parameters, one for each sample plot.
Typically, one needs to estimate hundreds of parameters. Although for most
applications only values for the globals among the first five above are used.

2 The factor
√

2b implies larger effects for higher growth rates when b is local and σ is
constant.

9



The data consists of a number of sample plots, each with a sequence of age-
height observation pairs (ti, hi). We estimate the parameters by the method
of maximum likelihood (ML). It is based on calculating the probability, under
the assumed model, of obtaining the observed data. Considered as a function
of the parameters, substituting the given data, this is called the likelihood
function. The ML estimates are the parameter values that maximize the like-
lihood function. Apart from an intuitive appeal, ML estimation has a number
of nice statistical properties. Two characteristics are particularly attractive
for this kind of application. First, no matter how complicated a model, the
procedure is well defined: one “simply” obtains the likelihood function and
finds a maximum. Second, it is invariant under transformations, that is, the
ML estimate for any function of the parameters equals that function of the
parameter ML estimates. This is convenient where parametrizations are es-
sentially arbitrary: should we get good estimates for the site index, for its
logarithm, for a local parameter, for the height at a certain age? Unlike with
other methods, all these are simultaneously possible and compatible.

The likelihood function is obtained through integrating the SDE (5), and in-
corporating the distributions implied by (6). If you must, see Garćıa (1983) or
Seber and Wild (2003) for the gory details. A modified full Newton method,
using first and second derivatives, is used for efficiency and reliability in
minimizing the negative of the log-likelihood over hundreds of variables (pa-
rameters). The implementation makes use of the special structure of the
problem, with partitioning strategies to take advantage of sparsity in the
matrix of second derivatives. Details in Garćıa (1980), and in the Advanced
and Programmer Notes in this package.

It might be worthwhile to clarify a couple of things that have caused some
confusion. I probably shot myself in the foot by delving in the Biometrics pa-
per into theoretically interesting but practically less important limitations of
the model. Some have misunderstood this and dismissed the whole approach
as useless, so let us try to keep things in perspective. No model is perfect,
nor should it be: striving for perfection has an unacceptable cost in terms of
parsimony and estimation efficiency. The first quibble was mentioning that
(5) cannot be strictly correct; the additive random perturbation could con-
ceivably make the (transformed) height to go negative. True, but in reality
unlikely and inconsequential. The same thing is routinely ignored without
a second thought when using regressions with non-negative variables. The
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second issue may be a little more troubling, at least from a methodological
point of view: Often, although not always, the estimate of either σ or σm

turns out to be zero. Apparently, sometimes the data does not provide suffi-
cient information to reliably separate the different variance components. Of
course, the problem would go away if either one of the two sources of vari-
ability is ignored, as has been done in all the other methods I know of. At
any rate, this does not seem to have any appreciable impact on the estimates
for the parameters of interest (a, b, c, t0), and might be taken as a warning
against the temptation of introducing even more “realistic” error structures.

2.4 Model selection and hypothesis testing

Models with the same number of parameters can be compared and chosen
according to the highest value of the computed likelihood, or of its logarithm,
the log-likelihood. In comparing models with different number of parame-
ters, extra flexibility needs to be penalized. Various theories suggest adding
penalties of one-half to three log-likelihood units per parameter. Akaike’s
information criterion (AIC), perhaps the most popular, prescribes one unit.
Note that the likelihood value by itself is essentially meaningless, it is the
relative values, or differences in the logarithms, that are important.

For hypothesis testing, one approach considers a log-likelihood difference of
about two units as “significant”. More orthodox is a likelihood-ratio test. It
is based on the fact that twice the log-likelihood difference is asymptotically
distributed as a χ2 with degrees-of-freedom equal to the difference in number
of parameters. For examples see Garćıa (1999, 2005).

3 Program usage

3.1 Data format

The data must be arranged in a text file with three columns: plot number,
age, and height. Plot numbers must be integers, with up to 9 digits. The
other values are free format, and columns may be separated by any number
of spaces and/or tabs.
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Each row corresponds to one measurement date, with the sequence of plot
measurements ordered by increasing age. Different plots must be separated
by a blank line. See the examples in the Work folder.

Before going any further, it is a good idea to plot the data to check for
“funnies”. SitePlot may be used for this. A detailed description is in Section
4, but for plotting just data it should be self-explanatory.

Example data. Two data sets are included in the Work folder:

bcpine.dat Breast-height age (years) and top height (m) from permanent
sample plots of lodgepole pine in the Interior of British Columbia.
Taken from a file provided with the documentation of VDYP 6:
http://www.for.gov.bc.ca/hts/vri/ip/software/vdyp

/vdyp manual/vdyp99.html#overlay

reventlow.dat Total age and heights from stem analysis of 18 beech trees
in the First Copenhagen District done by Count Reventlow around
the year 1800 (!). From Table 11 of Reventlow (1879). Converted
to metric, and stump age calculated by linear extrapolation (a likely
underestimate).

Notes on stem analysis. Often heights are interpolated for every year,
using methods such as those described by Dyer and Bailey (1987). That is
a Bad Idea, the artificial “data” can distort the real trends; use only values
for the actual crosscuts. Because in general the tree tip corresponding to the
ring count at a crosscut is located some distance above the crosscut, crosscut
heights may be adjusted as shown by Dyer and Bailey (1987). However, as
suggested by Milner (1992) and by Jim Goudie (quoted by Nigh (1995)), a
simpler and probably better method is to use the crosscut height, reducing
the ring count by 0.5 years.

3.2 Model specification

On running EasySDE, the window in Figure 2 appears. The items in it are
as follows:
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Figure 2: Stage 1: Model specification window

Title. One line of optional descriptive information to be printed at the top
of the program output.

Binary files. If checked, the data and local parameter estimates from the
previous run are used. The model version in the new run must use the same
local parameter(s).

File. Name of the input data file.
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Scaling. The ages and heights in the data file are divided by these values.
Convergence is usually faster and more reliable if the scaled ages and heights
are not too far from unity. If the scale factors are different from one, the
initial estimates and the output correspond to the scaled model. Values like
10 or 100 make things easier, simplyfying the calculations when converting
back.

Model. Click to select a model version. The Gi stand for global parame-
ters, and the Li for local parameters. A number of models are available in
EasySDE:

ALOCAL has a as local parameter, and is forced to pass through the origin.
It produces anamorphic site index curves. A-T0 to A-T0S0 include non-zero
origin parameters, and/or the additional initial variance σ0.

BLOCAL to B-T0S0 are similar, but taking b as the local parameter. The
resulting curves are “polymorphic”. Actually, proportional along the t axis.

LINEAR and POWER are more general models, where curve shape varies in a
more flexible way with site. At the cost of an extra parameter. Unfortunately,
only a numerical solution of equation (3) for the local as a function of site is
possible, so they are not as convenient for many uses3. They can be useful
for assessing the adequacy of the simpler models, and as a last resort if the
others are not good enough. These models were used in Garćıa (1996).

ABLOCALS has both a and b as local parameters, so it does not produce
traditional site index curves. It may be useful for hypothesis testing and
experimentation. Graphing the relationship between the estimated a and b
might suggest appropriate re-parametrizations.

ALOCBH to ABLOCBH are similar to the above, but using breast-height age.
They force a height of 1.3 m at age 0.5 (the standard used in BC). If your
breast-height definitions are different, the easiest may be to transform your
data temporarily and adjust the results later.

These are the models that generally have been found most useful in practice.
Other variants can be implemented with just a little more effort; see the

3 Conjecture: there are no “truly” polymorphic models with a base-age invariant ex-
plicit expression for the indexing parameter in terms of site index.
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Advanced and Programmer Notes, Section 4.

It is recommended to start with the simplest model in each class (e.g., ALOCAL
or BLOCAL), and use the estimated parameters as starting point for more
general variants. The Binary files option can be useful there.

Initial estimates. These are the starting points for the likelihood opti-
mization iterations. They must correspond to the specified scaling, if any.
For the local(s), a common value is initially used for all plots (unless the
Binary files option is specified). Tab and Shift-Tab may be used to move
among the entry fields.

Convergence can be slow or fail if initial estimates are not good enough.
When possible, try stepping through models of increasing complexity, using
previous estimates as starting points. Using Binary files takes advantage of
the previous individual-plot locals.

It is also a good idea to try several starting points, to (partially) guard
against local optima.

Some suggestions when starting from scratch: For a, guess a reasonable
height upper bound. Parameter c usually lies between 0.5 and 1; try 0.7.
Try the reciprocal of the (scaled) base age for b. The σ’s are a little trickier;
with decent scaling something around 0.05 should be OK.

Help. Displays an abbreviated version of this section.

Quit. As it says.

Next. Advances to the next stage.

3.3 Pre-processing

On clicking Next, the information is checked, and prepared for use by the
main estimation program. If there are no missing or incorrect entries in the
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Model dialog, the window in Figure 3 appears.

Figure 3: Stage 2: Data pre-processing window.

No user input is required. The input data file is checked for inconsistent plot
numbers and decreasing ages. If there are no error messages, the number of
plots is displayed, and we can proceed to the next stage by clicking Next.
The contents of the message window can be saved to a file through the Save

button.

3.4 Run

The same window is then used to display the iteration log as the optimization
proceeds. To monitor progress, values for the parameters and for the function
being minimized (which is -2 times the log-likelihood) are shown for each
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iteration, together with some other more esoteric information. Most relevant,
the contribution to the objective function and the local parameter estimates
for a few plots are shown, followed by iteration number, function, and global
parameter values. This was really more useful in the good old days of over-
night runs, to see if the program had not crashed.

It should be possible to abort the run by clicking the Quit button (but it
isn’t!). Otherwise, the program runs for up to a maximum of 200 iterations.
If this happens try a better starting point and/or better scaling.

Clicking Next takes us to:

3.5 Results

A similar window displays the final results report. The report starts with
the run identification, and the termination condition: “CONVERGED” for a
successful run.

For each plot, the following is shown: Plot number. Number of measure-
ments. Contribution to -2 times the log-likelihood (large values flag outliers).
Local parameter(s) estimate(s). Their approximate standard error. An es-
timated site index for each plot can be obtained from the local parameter
using equation (4).

General info follows: Number of plots. Total number of measurements. Log-
likelihood.

Then, info on the global parameters: Estimates. Approximate standard
errors. Matrix of approximate correlations between them4.

Finally, for the local parameter(s): Average of the estimates. Mean standard
error. Mean correlations among local parameters. Mean correlations between
local and global parameters.

Note that all results involve the specified scaling factors, if any. Back scaling
can be figured-out by substituting in (5) the age and height divided by the

4 As mentioned at the end of Section 2.3, sometimes one of the variance estimates turns
out to be zero. Take with a pinch of salt.
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respective factors. It may also be obtained from the SitePlot program, see
below. It can be a good idea to verify through a run without scaling, starting
from the final parameter values.

Before exiting, the user is prompted to optionally save the report, if not
already saved.

3.6 Behind the scenes

If you must know, the front-end runs DataPrep.exe, which reads the input
data file and generates intermediate files with the data (DATA.tmp, binary),
the locals (PARS.tmp, binary), and other info (CTRL.tmp, text). If everything
goes well, these are then passed on to SDEfit.exe, which does the hard
work. The final local estimates and other information are left in PARS.tmp,
and results in REPORT.tmp (a text file). There is a little more flexibility when
running these programs manually; a list of plot-specific local initial estimates
can then be used, see the advanced notes.

4 Graphing

SitePlot aids in plotting the data and site index curves. Running SitePlot
brings up the window in Figure 4. It generates commands for gnuplot, a free
graphing program (included in the Windows installation).

The first part is similar to EasySDE. The Title appears at the top of the
graph. Not all models are supported. Scaling factors and scaled parameter
values can be used. It is possibly to plot only data, only curves, or both.

Once the parameters are given, the site index equation can be displayed with
the Show equation button. This gives top height as a function of age, site
index, and index age (Section 2.2). The original units are used (no scaling).
The equation is in gnuplot format, which is fairly standard except for using
** for exponentiation.

On the lower part of the window, labels and ranges for the Age and Height
axes can be given or changed. Any strings can be used for the labels. If a
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Figure 4: Graphing with SitePlot.

range limit is left blank it is calculated by gnuplot automatically from the
data and/or function values. The age limits must be given when not plotting
data.

For plotting site index curves, one needs the index age, the range from
lowest to highest site index, and the site index interval between curves.

Finally, we may choose to draw a grid or not, and different line types for the
curves can be selected (enter test in gnuplot to see the types available).
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If everything goes well, on clicking OK gnuplot is executed, and the graph is
displayed. The user is left in gnuplot, where the graph can be embellished,
printed (on Windows, right-click on the graph), saved in various formats,
etc. Enter set terminal and help terminal to see the output formats
available. For instance, entering set output ’filename.eps’, followed by
set term post eps 20 and replot, produces a good quality Encapsulated
PostScript file.

Gnuplot is an excellent general-purpose graphing program, well worth
learning. See www.gnuplot.info. There is a good brief tutorial at
www.duke.edu/˜hpgavin/gnuplot.html.

The gnuplot commands are left in the file SitePlot.plt. This can be loaded
from gnuplot, possibly after manual editing. On Windows the gnuplot exe-
cutable is wgnuplot.exe.
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