
Use Case Editor (UCEd) User Guide
version 1.6.2

Stéphane S. Somé

School of Information Technology and Engineering (SITE)
University of Ottawa

800 King Edward, P.O. Box 450, Stn. A
Ottawa, Ontario, K1N 6N5, Canada

ssome@site.uottawa.ca

August 2007

Contents

1 Objective of UCEd 3

2 UCEd startup window 5
2.1 File Menu . 6
2.2 Validate Menu . 7
2.3 Generation Menu . 7
2.4 State Machine . 8

2.4.1 State Machine Viewer 9
2.5 Simulation Menu . 9

3 Domain model 11
3.1 Elements of a Domain model 11
3.2 Conditions . 13

3.2.1 Simple conditions . 13
3.2.2 Complex conditions . 17

3.3 Any conditions . 18
3.4 Operation declaration . 18
3.5 UCEd Domain Model Edition tool 19

3.5.1 Domain Model element types 20
3.5.2 Domain elements edition 20
3.5.3 Editors key combinations 23

3.6 Domain Model validation . 24
3.7 Extraction of Domain elements from Use cases 24

4 Use Cases 27
4.1 Use Case Diagrams . 27
4.2 Description of Use Cases . 28

4.2.1 Normal use cases description 29

1

CONTENTS 2

4.2.2 Extension use cases description 38
4.3 UCEd Use Cases Edition tool 38

4.3.1 Use Case models edition 39
4.3.2 Use Case descriptions edition 42

4.4 Use Cases validation . 46

5 State Models 47
5.1 Control flow based state model 47
5.2 State models synthesis based on operation effects 49

5.2.1 Detailed State Charts 49
5.2.2 State machine synthesis 52
5.2.3 State chart generation 53

6 Simulator tool 55
6.1 Operation of the simulator tool 55
6.2 Simulation History . 57

7 Scenario Model 59
7.1 Elements of scenarios . 59
7.2 Scenario Model Edition tool 61

7.2.1 Scenario model element types 62
7.2.2 Scenario model edition 62

7.3 Scenario validation rules . 64
7.4 Scenario simulation . 64

Chapter 1

Objective of UCEd

The objective of the Use Case Editor (UCEd) is to provide automated sup-
port to requirements engineering. Requirements in UCEd approach consist
of a Domain model, Use Cases, and Scenarios.

• A Domain model describes the system under consideration with the
pertinent concepts in the system’s operating environment. The de-
scription of each domain element includes properties, operations and
relationships. A domain model is conveniently represented as a UML
[4] high level class diagram.

• A Use Case is “the specification of a sequence of actions, including
variants, that a system (or a subsystem) can perform, interacting with
actors of the system” [4]. A use case describes a piece of behavior of a
system without revealing the internal structure of the system. As such
use cases are effective means for requirements elicitation and analy-
sis, and various software development approaches including the Unified
Software Development Process [3] recommend use cases for require-
ments description.

• A Scenario is sequence of interactions between a system and actors of
that system. Scenarios can be considered as instances of use cases [4].

UCEd takes a set of related use cases written in a restricted form of
natural language and generates State Models that integrates the behavior
specified by the use cases. The generation process relies on information
contained in an application domain model.

3

CHAPTER 1. OBJECTIVE OF UCED 4

UCEd uses generated state models as prototypes for simulation. Simu-
lation can be manual through a generated graphical user interface, or auto-
mated with scenarios.

The end objectives of UCEd are:

1. the production of validated requirements in the form of use cases, a
domain model definition, and scenarios,

2. the production of requirements specifications in the form of description
of operation effects in the domain model, and generated state models,
and,

3. the production of re-usable test scripts in the form of scenarios.

Chapter 2

UCEd startup window

Figure 2.1 shows UCEd startup window. Apart from a menu, the win-
dow shows the current project name (by default a project named ’Unnamed
Project’ is loaded as a current project) and a toolbar. A project consists

Loaded project name

Toolbar

Figure 2.1: UCEd startup window

of: a domain model (see chapter 3), a use case model (see chapter 4), a state

model (see chapter 5) generated from the use cases, and a scenario model (see
chapter 7).
UCEd menus are as follow.

File for opening editors are working with projects.

Validate for validating domain and use case models.

Generate for state model generation.

State Machine for state model visualization.

5

CHAPTER 2. UCED STARTUP WINDOW 6

Simulation for use cases simulation.

Help tells about UCEd.

Some of the functions are accessible through the Toolbar.

2.1 File Menu

The File menu includes the following sub-menus.

Open shows a sub-menu with:

Use Case Editor to open a Use Case Edition tool window (see sec-
tion 4.3).

Domain Editor to open a Domain Model Edition tool window (see
section 3.5).

Scenario Editor to open a Scenario Model Edition tool window (see
section 7.2).

Simulator to open a Simulator tool window (see chapter 6).

New Project to create a new project. The User is prompted to save the
currently loaded project if it has been modified and is unsaved.

Load Project to load a project.

XMI Import Project to import a project use case model and domain
model saved in the XMI format. This feature allows using models
developed with UML modeling tools with XMI export facilities such as
ArgoUML1.

Save Project to save the current project. The User is prompted for a name
if the project is unnamed.

Save Project As to save the current project in new files. The user is
prompted for an XML file name. The binary file name is created by
appending ’.bin’ to the XML file name.

1http://www.argouml.tigris.org

CHAPTER 2. UCED STARTUP WINDOW 7

Export Project As HTML to generate a HTML representation of the do-
main model, the use case model and the state model.

Exit to quit UCEd. If the current project has been modified and is unsaved,
UCEd prompts for saving before exiting.

2.2 Validate Menu

The Validate menu includes sub-menus

Extract Domain from Use Cases to create or update an existing domain
model given a use case model.

Validate Domain to validate the domain model, and

Validate Use Cases to validate the use case model.

We discuss extraction of domain from use cases in section 3.7. Domain
validation rules are presented in section 3.6 and use cases validation rules are
presented in section 4.4.

2.3 Generation Menu

UCEd implements two algorithms for state model generation from use cases:
an algorithm based on control flow information in use cases and an algorithm
based on operation effects specified in the Domain.

• Control flow based generation infers a state model solely from use cases
structure and from use case sequencing statements.

• Operation effects based generation infers a state model where states are
characterized by conditions, and these conditions are obtained from the
postconditions of operations.

The Generation menu includes a menu for generation based on control
flow and a menu for generation based on operation effects.

Each of these menus in turn includes a sub-menu corresponding to each
of the top-level use cases in the use case model.

CHAPTER 2. UCED STARTUP WINDOW 8

• In the generation based on control-flow menu, the selection of a use case
launches the generation of a state model corresponding to the selected
use case. The generated state model includes states models for the use
cases linked by use case sequencing statements.

In addition to a sub-menu per use case, the generation based on control-
flow menu includes a sub-menu

Generate StateChart Chart to generate a control flow based state
model for all the top-level use cases in the use case model. Use
case sequencing relations produce [4] flownodes.

• In the generation based on operation effects menu, the selection of a
use case incrementally adds the use case behavior to a global operation-
effect based state model (if it has not already been added).

In addition to a sub-menu per use case, the generation based on oper-
ation effects menu includes sub-menus.

Add: All Use Cases to add all top-level use cases in the use case
model to the state model, and

Reset State Machine to blank the state model.

2.4 State Machine

The State Machine menu includes a menu for visualization of state models
generated based on control flow and a menu for visualization of state models
generated based on operation effects.

• The menu for visualization of state models generated based on control
flow includes a sub-menu for each of the top-level use cases in the use
case model. These sub-menus allow to visualize the control flow state
model of their corresponding use case. In addition, a sub-menu titled
View StateChart Chart allows to visualize the combined control-flow
based state model.

• The menu for visualization of state models generated based on opera-
tion effects includes the following sub-menus

CHAPTER 2. UCED STARTUP WINDOW 9

View StateChart to show the generated state model without inter-
nal states and with complex transitions (with trigger, conditions,
reactions).

View Detailed State Graph to show the generated state model with
internal states and simple transitions (a single operation per tran-
sition).

Export StateChart in Graphviz dot format to export the global
State Chart based on operation effects to Graphviz2 dot format.
Different tools can then be used to visualize the graph and export
in other formats.

2.4.1 State Machine Viewer

Figure 2.2 shows the state model viewer menu tab.

Figure 2.2: State Model Viewer.

Export: allows to export a state machine as a jpg or bmp image.

View: allows switching state machine transition labels on and off.

Zoom In/Zoom out allows to zoom in/out the state model view.

2.5 Simulation Menu

The Simulation menu includes a menu for simulation of state models gen-
erated based on control flow and a menu for simulation of the state model
generated based on operation effects.

2http://www.graphviz.org/

CHAPTER 2. UCED STARTUP WINDOW 10

• The menu for simulation of state models generated based on control
flow includes a sub-menu for each of the top-level use cases in the
use case model. Each sub-menu allow to simulate the control flow
state model of their corresponding use case. In addition, a sub-menu
Simulate StateChart Chart allows simulation of the global control-based
state model. This sub-menu includes

Set Initial Use Case to specify which use case(s) are initially en-
abled to execute.

Start New Simulation to initiate a new simulation session. A new
scenario is added to the simulation history and a new simulation
starts from the current initial state. The added scenario records
all simulated events up to the start of the next simulation session.

• The menu for simulation of the state model generated based on oper-
ation effects includes

Start New Simulation to initiate a new simulation session.

Set Initial State to set an initial state. By default UCEd set the first
created state as the initial state. This feature allows setting up
a new state as the initial state by choosing among all the state
model states.

In addition, the Simulation menu includes a menu View Simulation History
to view a list of scenarios generated from previous simulation sessions.

Chapter 3

Domain model

A domain model is a high-level class model that captures domain concepts
and their relationships. Domain concepts are the most important types of
objects in the context of a system according to [3]. The development of a
domain model is an integral part of requirements engineering in the UCEd
approach.

3.1 Elements of a Domain model

A domain model must include a concept representing the system under con-
sideration as a black box (a system concept). The model may also include
one or more concepts representing other classes of objects in the system en-
vironment that interact with the system.

Concepts and system concepts can have zero or more concept instances
(i.e. objects) defined in the domain model. These instances can be used in
conditions and actions.

UCEd uses an extension of UML class diagrams[5] for domain models.
The traditional way to extend UML is through stereotypes, tagged values
and constraints.

An UCEd domain concept is an instance of a stereotype of UML Class
meta-class called Concept. The Concept stereotype includes a tag called
possibleValues, used to enumerate a concept possible values. These possible
values are used in conditions (see section 3.2).

Concepts attributes must be instances of a stereotype called ConceptAt-
tribute, and the operations of a concept must be instances of stereotype

11

CHAPTER 3. DOMAIN MODEL 12

ConceptOperation.
The ConceptAttribute stereotype extends the UML meta-class Attribute

with a tag possibleValues. This tag is used to enumerate the possible values
of the attribute.

The stereotype ConceptOperation extends UML Operation meta-class
such that some of an operation postconditions can be specialized as withdrawn-
conditions. Withdrawn-conditions denote conditions that are removed after
the operation execution. The other postconditions; added-conditions are con-
ditions that become true following the execution of the operation.

Figure 3.1 shows a graphical representation of a domain model in the UML
notation. The effects of the domain operations are specified in Figure 3.2.

The domain in Figure 3.1 includes a system concept called PMSystem as
well as environment concepts: USER, Doctor, Nurse and Patient. Doctor
and Nurse are sub concepts (specialization) of USER. Display is a concept
sub component (aggregate) of PM System.

The possible values of PMSystem are ON and OFF, it is thus possible
to express conditions (see section 3.2) such as: ’PMSystem is OFF’ or ’PM-
System is ON’. USER and Display also have lists of possible values in the
model.

Examples of attributes include security of PMSystem and identification
of USER. The possible value of PMSystem attribute ’security’ is high. USER
identification has as possible values valid and invalid.

PM System and USER have operations. An example of the PM System
operation is validate User identification this operation postconditions include
an added-condition: ’User identification is valid OR User identification is
invalid’ and a withdrawn-condition: Display is pin enter prompt. Therefore,
after operation validate User identification is executed,

• if the condition ’Display is pin enter prompt’ was verified prior to the
operation, this condition is removed (the value of Display becomes
unknown) and

• the condition ’User identification is valid OR User identification is in-
valid’ is now verified.

CHAPTER 3. DOMAIN MODEL 13

possible values:
pin enter prompt

 welcome message,
 patient info prompt
 vital signs prompt

Display
<<concept>>

Doctor Nurse

<<concept>>

Patient

log transaction
prompt vital signs
prompt patient information
emit alarm
eject card
display welcome message

ask PIN
validate USER identification

possible values:
ON, OFF

PM System

identification
possible values:

valid, invalid
card

possible values: inserted,
regular

insert card
type PIN
enter patient information
choose patient admission
enter vital signs
connect cables

<<concept>>

USER

possible values:
logged in

used

by

security
possible values: high

<<system concept>>

monitors

number of attempts

Figure 3.1: Example of Domain model in UML.

3.2 Conditions

Conditions are predicative sentences describing situations prevailing within a
system and environment.

3.2.1 Simple conditions

Entity bound conditions

An entity bound simple condition must adhere to the following syntax.

CHAPTER 3. DOMAIN MODEL 14

Operation: ask for PIN
added-conditions: PM System Display is pin enter prompt

Operation: validate User identification
added-conditions: User identification is valid

OR User identification is invalid
withdrawn-conditions: PM System Display is pin enter prompt

Operation: display welcome message
added-conditions: PM System Display is welcome message,

User is logged in
Operation: eject card

added-conditions: NOT Card is inserted
withdrawn-conditions: ANY ON User*

Operation: prompt for patient information
added-conditions: PM System Display is patient prompt info

Operation: prompt for vital signs
added-conditions: PM System Display is vital sign prompt

Operation: insert card
added-conditions: User card is inserted

Figure 3.2: Example of Domain model in UML with description of operations.

[determinant] entity verb value

Elements between “[]” are optional.
A simple condition starts with an optional determinant followed by an entity,
a verb, and a value. Notice that UCEd grammars are not case sensitive.

• Possible determinants are “a”, “an” and “the”.

A condition may or may not start with a determinant with no difference
in the meaning. For instance, the conditions ’User is logged in’, ’A User
is logged in’, ’The User is logged in’, and ’An User is logged in’ are all
equivalent. Notice that UCEd doesn’t check that determinant are correctly

used according to the English grammar.

• An entity consists of one or more words specified as

word1 · · ·wordn

CHAPTER 3. DOMAIN MODEL 15

The sequence of words must correspond to a concept (an actor or the
system under consideration) or an attribute of a concept in the domain
model.

Entities names are specified in extension.

– to refer to a concept (or system concept),

the sequence used word1 · · ·wordn needs to correspond to a con-

cept as declared in the domain model,

– to refer to an attribute

the sequence used word1 · · ·wordi · · ·wordn needs to be such that
word1 · · ·wordi refers to an entity and wordi+1 · · ·wordn refers to
an attribute of the entity as declared in the domain model,

– to refer to the component of a concept (an aggregate)

the sequence used word1 · · ·wordi · · ·wordn needs to be such that
word1 · · ·wordi refers to an entity and wordi+1 · · ·wordn refers to
an aggregate of the entity as declared in the domain model,

As examples,

the sequence “User number of attempts” must be used to refer to
attribute “number of attempts” of concept “User”

the sequence “User Display” must be used to refer to component

“Display” of concept “User”

• The verb must be derived from “to be” or “to have”, and the present
tense must be used.

Therefore the only possible verb expressions are:

“is”

“isn’t”

“is not”

“are”

“aren’t”

“are not”

“has”

CHAPTER 3. DOMAIN MODEL 16

“hasn’t”

“has not”

“have”

“haven’t”

“have not”

“can”

“can’t”

“can not”

As for determinants, UCEd does not check the correct English usage of

verb expressions. As an example, “User card is inserted” and “User
card are inserted” are equally valid.

• A value is an entity qualifier.

A value may be one of the possible values of the condition entity,
or specified as a general comparison.

– For possible values, the sequence of words used to refer to the
value must be declared as a possible value of the entity in the
domain model.

As an example, for “User identification is valid”, “valid” must be
declared as a possible value of entity “User identification”.

– For general comparisons, the syntax for value specification must
adhere to the following

comparator value

The comparator must be one of the following: ”>”, ”<”, ”=”,
”<=”, ”>=”, ”<>”, ”greater than”, ”less than”, ”equal to”, ”dif-
ferent to”, ”greater or equal to”, or ”less or equal to”.

The value must be a sequence of words referring or not to a
numerical value.

When a comparison is used, the entity in the condition must be
defined with no possible value listed in the domain model.

As an example attribute “number of attempts” of concept “User”
doesn’t have any possible value in the PMSystem domain. This

CHAPTER 3. DOMAIN MODEL 17

attribute can therefore be used in a condition such as “User num-
ber of attempts is > 5” where a value is specified as a general
comparison.

On the other hand, suppose attribute “identification” has a set
of possible values defined, only conditions involving these possible
values would be allowed.

Entities with possible values such as “identification” are discrete
entities, while entities without possible values such as “number of
attempts” are non discrete.

Non-Entity bound conditions

A non-entity bound condition is a proposition declared in the domain (see
Table 3.1). The condition must appear as declared in the domain.

3.2.2 Complex conditions

A complex condition is a negation, a conjunction or a disjunction of condi-
tions.

• A negation is a condition has one of the forms:

“NO” condition

“NOT” condition

An example of negation is “Not User identification is valid”.

Notice that negation may also be introduced in the verb form as in
“Not User identification is not valid”. Both forms are equivalents.

• A conjunction/disjunction of a condition has one of the forms:

condition “AND” condition

condition “OR” condition

The default associativity of “AND” and “OR” is from the left to the
right. Parentheses may be used to alter that order.

CHAPTER 3. DOMAIN MODEL 18

3.3 Any conditions

An any condition refers to a set of conditions on a same entity. Any-
conditions may only be used as withdrawn-conditions.

Recall that withdrawn postconditions are conditions that are removed or
become irrelevant after an operation. As shown in the PM System domain
model, a withdrawn condition may be specified as an ’individual’ condition
the same way as an added-condition. However, it is sometime useful to
refer to all the conditions affecting an entity. As an example let us assume
that after his/her card has been ejected, no information about a User is
anymore relevant (in order words, the System forgets all about the User i.e.
identification, numbers of attempts, etc). It is not always feasible as in that
case to list all the possible individual conditions that must be withdrawn.
An any condition can be conveniently used in that case.

The syntax for an any condition is as follow

“ANY” “ON” entity [*]

The condition specification must start with keywords “ANY ON”, followed by
an entity name. A wildcard ’*’ may be used to refer to the entity sub-entities
in addition to the entity itself.

As an example “ANY ON User” refers to all the conditions with “User”
as the entity (e.g. “User is logged in”), but does not include conditions on
“User Card” or “User identification”.

The withdrawn-condition “ANY ON User* ” on the other hand refers
to all the conditions on “User”, as well as all the conditions on attributes
of User such as “User identification”, “User number of attempts” and on
sub-components such as “User Card”.

3.4 Operation declaration

Concept operations need to be declared in the domain model in the format

action verb [action object]

• action verb is a verb in infinitive and the

• action object refers to a concept or an attribute of a concept affected
by the action.

CHAPTER 3. DOMAIN MODEL 19

As an example, “validate user identification” is an operation name where
the action verb is “validate” and the action object is “user identification”
(an attribute of concept “User”).

3.5 UCEd Domain Model Edition tool

Figure 3.3 shows UCEd Domain Model Edition tool. The tool has the same

Domain model

element type
Displayed

viewing area

area

Messages

Figure 3.3: UCEd Domain Model Edition tool.

look and functionality as the Scenario Edition tool.
The domain model is displayed as a tree in a domain model viewing area.

Elements are edited by double-clicking or by using the contextual menu.
The tool message area displays various messages including validation error
messages. The Edit menu allows common edition actions, while the Validate

menu launches domain model validation.

CHAPTER 3. DOMAIN MODEL 20

Edit menu

Domain Model Edition tool, Scenario Model Edition tool as well as Use Case
Edition tool edit allows the following editing operations.

Undo to undo the latest action (Keyboard shortcut CTRL-z).

Redo to undo the latest undone action (Keyboard shortcut CTRL-ALT-z).

Copy to copy the current line in an editor (Keyboard shortcut ALT-c).

Paste to paste a copied line, or the more recently deleted line at the current
position (Keyboard shortcut ALT-v).

Notice that pasting may not be possible if the copied line cannot be
validly inserted at the current position.

3.5.1 Domain Model element types

Table 3.1 shows the UCEd representation of domain element types, the icon
associated with each of the elements in the editor, and the type of their
possible children. An excerpt of domain concept description is shown in
Figure 3.4.

3.5.2 Domain elements edition

A domain model can be edited by left-clicking on an element in the viewing
area to select it, and then right-clicking. That will bring a context dependent
menu, which allows operation to be performed on the selected element.

The menu displayed for a Concept includes:

New System Concept to add a new System Concept to the domain model.

New Concept to add a new Concept to the domain model.

Add Non-Entity bound condition to declare a new Non-Entity bound
condition.

Change Concept to System Concept to transform the concept to a sys-
tem concept if possible.

CHAPTER 3. DOMAIN MODEL 21

Domain element types Icon Possible children

System Concept Concept, Aggregate, Attribute,
Possible Value Set, Operation Set

Concept Concept, Aggregate, Attribute,
Possible Value Set, Operation Set

Aggregate Aggregate, Attribute, Possible Value Set,
Operation Set

Attribute Possible Value Set

Operation Set Operation

Operation Precondition,
Added Condition, Withdrawn Condition

Possible Value Set Value

Value

Operation Precondition

Added Condition

Withdrawn Condition

Non Entity Bound Condition

Table 3.1: UCEd representation of domain elements.

Change Concept to Aggregate to transform the concept to an aggregate
if possible.

Add Sub-concept to Concept to insert a sub-concept as a child of the
concept (inheritance relation). Once inserted, the User may enter the
sub-concept name through the Edition area.

Add Sub-component to Concept to insert an aggregate as a child of the
concept (aggregation relation).

Add Attribute to Concept to insert an attribute as a child of the con-
cept.

CHAPTER 3. DOMAIN MODEL 22

Figure 3.4: Example of UCEd domain concept.

Add OperationSet to Concept to insert an operation set as a child of
the concept.

Add ConceptInstance to Concept to insert an instance as a child of the
concept (instantiation relation).

Add PossibleValue Set to Concept to insert a possible value set as a
child of the concept.

Delete Concept to delete the concept with all its children.

Rename Concept to change the value of the concept.

A domain model may also be edited using key combinations (see Section
3.5.3). For instance if a selected line refers to a Concept:

CTRL+ inserts a concept after that concept.

CHAPTER 3. DOMAIN MODEL 23

CTRL- delete the selected concept with all its sub-elements.

CTRL→ indent the concept if it is not on the first line. The indented con-
cept becomes a sub-concept (a specialization) of the preceding concept
(or system concept).

CTRL← outdents the concept if it is a sub-concept of a concept (or system
concept). The concept becomes a concept at the same level as the
preceding concept.

CTRL↑ forwards the selected concept by changing its type. The concept is
changed to a System concept if it is at the top-level of the domain.

CTRL↓ backwards the selected concept by changing its type. A concept,
which is a sub-concept of another concept is transformed to an Aggre-

gate of that concept.

3.5.3 Editors key combinations

Domain Model Edition tool, Scenario Model Edition tool as well as Use Case
Edition tool allows entering commands by using one of the following key
combinations:

CTRL+ to insert a line after the selected line.

CTRL- to delete the selected line.

CTRL→ to indent the selected line.

CTRL← to outdent the selected line.

CTRL↑ to forward the selected line.

CTRL↓ to backward the selected line.

↑ or RETURN to select to the following line.

↑ to select the previous line.

An operation might not be possible depending on the context. The result of the
operation performed depends on the selected element.

CHAPTER 3. DOMAIN MODEL 24

3.6 Domain Model validation

Selection of Domain Validation in the Validate menu launches domain
model validation. Domain validation checks the following.

1. Names of domain elements must be unique in their scope of definition.
For examples:

• at the domain level, there shouldn’t be any duplicate concept/system
concept,

• all the attributes of a concept must have different names,

• all the values in a possible values set must be different,

• etc.

2. There must be at least one system concept at the domain level.

3. Each added and withdrawn condition must conform to the syntax in
section 3.2.

4. Entities used in conditions must be present in the domain model (as
System Concepts, Concepts or Attributes).

5. Discrete Values used in conditions must be defined as possible values of
corresponding entities in the conditions.

6. If a condition uses a general comparison, the entity in that condition
must have no possible value defined.

7. Any conditions must only be used as withdrawn conditions.

3.7 Extraction of Domain elements from Use

cases

Sub-menu Validate->Extract Domain from Use Cases brings a Domain

Model Extractor wizard that helps identify domain elements from use cases
text elements.

Figure 3.5 shows the Domain Model Extractor wizard. The text ele-
ment can be accepted as a non-entity bound condition or as an entity bound
condition/use case operation.

CHAPTER 3. DOMAIN MODEL 25

Figure 3.5: Domain Model Extractor

To accept as non-entity bound condition, select the box labelled “Accept
as non-entity bound condition”.

Use section “Select parts to match string” to identify entities and op-
erations. The section shows the condition, use case actor or the use case
operation which needs to be analyzed in order to extract system concepts,
concepts, aggregates, possible values or operations. The following are the
parts of the wizard interface.

Concept to select a Concept from the string to be resolved. After selection,
a concept name needs to be chosen by right-clicking at the right of the
field.

CHAPTER 3. DOMAIN MODEL 26

System Concept to select a System Concept from the string to be resolved.

There can’t be both a Concept and a System Concept within a string
to be resolved.

Aggregation to select an aggregate from the string to be resolved.

Attribute to select an attribute from the string to be resolved.

Operation to select an operation from the string to be resolved.

With the wordnetdata1 directory under the working directory (contain-
ing all wordnet data files), the system will detect the operation for you
automatically. But this detection is based on extracting the operation
under the assumption that its first word is a verb. But this is not
guaranteed to work perfectly at all times as there could be words that
belongs to both the noun and verb categories. In such a case you have
to manually select the correct operation. If you don’t have the wordnet
data files then the system will require the user to select the operations
manually.

A warning is displayed to the fact that the resulting model may be incorrect
if the Next button is pressed while the string to be matched can’t be obtained
by concatenating all the selections made.

1http://www.cogsci.princeton.edu/˜wn/

Chapter 4

Use Cases

Use cases are narrative description of behaviors. The set of a system use
cases with the actors that participate in these use cases, constitutes a use
case model. A use case diagram is used as a representation of a use case
model in the UML.

4.1 Use Case Diagrams

A use case diagram depicts use case names, actors, relations between actors
and use cases, and relations between use cases.

A relation between an actor and a use case captures the fact that the
actor participates in the use case.

Relations between use cases include the include, extend relations1.

• The include relation denotes the inclusion of a use case as a sub-process
of another use case (the base use case). By default, the control resumes
to the including use case only after the successful completion of the in-
cluded use case (primary scenario). Control resumption from secondary
scenarios can be explicitly specified using [continue statement.

• The extend relation denotes an extension of a use case as addition of
’chunks’ of behaviors defined in an extension use case. These chunks of
behaviors are added at specific places in a base use case called extension

points.

1The current version of UCEd doesn’t support the UML specialization relation.

27

CHAPTER 4. USE CASES 28

An extend relation also includes a condition under which the extension
can take place.

Figure 4.1 shows a UML use case diagram. The actors are ’Patient’ and

USER

Extension points

pin entered:
after step user insert card

after step user enter pin

card inserted:

Log in

Admit Patient

Log out

PATIENT

Log in secure

NURSE DOCTOR

Discharge Patient

Silence alarm

<<include>>

<<include>>

<<include>>

<<extend>>
System security is high

Figure 4.1: Example of Use Case diagram for a PM System.

’USER’. ’Doctor’ and ’Nurse’ are specializations of USER. The diagram in-
cludes use cases: ’Log in’, ’Admit Patient’, ’Silence alarm’, ’Discharge Pa-
tient’, ’Log out’ and ’Log in secure’. ’Log out’ is included by use cases:
’Admit Patient’, ’Silence alarm’ and ’Discharge Patient’. ’Log in secure’ is
an extension use case that extends use case ’Log in’ under condition System
security is high.

A use case model doesn’t provide use cases details. UCEd includes an
editor for that purpose. The next section describes use case description
elements.

4.2 Description of Use Cases

Use case diagrams are abstract high-level view of functionality. They do
not describe use cases interactions. According to the UML specification, the

CHAPTER 4. USE CASES 29

realization of a use case may be specified by a set of collaborations that define
how instances in the system interact to perform the sequences of the use case.
The collaborations may be captured using a variety of notations including
natural language, sequence diagrams, activity diagrams and state diagrams.

In practice in order to allow for an easy communication with stakeholders,
use cases collaborations are usually written as structured natural language
interactions between actors and a system. Different templates and guidelines
for use cases edition have been proposed in the literature. UCEd template
is largely based on [1] where use cases are described using structured text.

We distinguish two types of use case descriptions corresponding to the
two types of use cases. Normal use case description for normal use cases
and extension use case description for extension use cases.

4.2.1 Normal use cases description

A normal use case includes a Title, Description, System Under Design field,
Scope field, Level field, a Primary Actor field, a Participants field, a Goal
field, a list of Following Use Cases field, a Precondition, an Invariant, a
Success Postcondition, a sequence of Steps, a set of Any Extensions, and a
set of Extension Points. The description of these elements is as follow.

• Title: a label that uniquely identifies the use case within the use case
model.

• Description: a free form text that summarizes the use case.

• System Under Design specifies what is the system in the use case. The
system is the entity that react to stimuli from external actors.

• Scope: specifies what system is being considered black box under design
(e.g. whole business, system, sub-system, function).

The different possible values for scope are defined in property file
traits.properties.

• Level: is the use case level of detail.

The different possible values for scope are defined in property file
traits.properties.

• Primary Actor: the actor that initiates the use case.

CHAPTER 4. USE CASES 30

• Participants: other actors participating in the use case.

• Goal: a statement of the primary actor expectation at the successful
completion of the use case.

• Follows Use Cases: a list of normal use cases that the use case directly
follow.

A follow list expression reflects how the listed use cases are synchro-
nized in relation to the described use case. Two operators are used. Op-
erator AND expresses synchronization (synchronized follow list), while
operator OR expresses asynchronism (unsynchronized follow list).

Given use cases uc0, uc1, uc2, · · ·, ucn, the following interpretation is
given.

– If the follow list of uc0 is specified as “uc1 AND uc2 AND · · ·ucn”,
all of uc1, uc2, · · ·, ucn must reach a point from which use case
uc0 is enabled before use case uc0 (synchronism).

– If the follow list of uc0 is specified as “uc1 OR uc2 OR · · ·ucn”, use
case uc0 may be executed as soon as any of use cases uc1, · · ·, ucn

reaches a point from which use case uc0 is enabled (asynchronism).

When a use case uci refers to a use case ucj in its follow list, use case
ucj must include an enabling directive referring to use case uci.

• Invariant: a condition that must hold through the use case.

• Precondition: a condition that must hold before an instance of the use
case can be executed.

• Success Postcondition: a condition that must be true at the end of a
’successful’ execution of an instance of the use case.

• Steps: a sequence of repeat blocks and steps.

A repeat block is a sequence of steps that are supposed to repeat based
on time and/or condition.

Each step references a use case step operation.

A use case step operation may be a concept operation instance, a branch-
ing statement or a use case sequencing statement .

CHAPTER 4. USE CASES 31

A step may also include a set of step extensions and an alternative post-

condition. Each step extension defines an alternative behavior (sec-
ondary scenario) following the step. Alternative postconditions are
conditions that must hold at the end of the secondary scenario defined
by an step extension.

• Any Extensions: a set of step extensions that applies to all the steps in
the use case.

• Extension Points: a set of locations in the use case steps where additional
behaviors defined in extension use cases might be inserted.

A use case description can be seen as a two parts description with:

- a static part that includes the use case Title, Description, System Under
Design, Scope, Level, Primary Actor, a Participants, Goal, a list of Fol-
lowing Use Cases, Precondition, Invariant, and Success Postcondition
fields,

- a dynamic or procedural part that consists of the use case Steps.

Repeat Blocks

A repeat block defines a sequence of steps that iterate according to a condi-
tion and/or delay. A repeat block is introduced as follow.

“repeat” “while” condition

“repeat” “every” duration specification

“repeat” “every” duration specification, “while” condition

The first form introduces repetitive steps controlled by a condition, the sec-
ond form repetitive steps controlled by time and the third form introduces
repetitive steps controlled by time and a condition.

Concept operation instances

A concept operation instance denotes an operation execution by a concept
(a concept being an actor or the system under consideration). Concept op-
eration instances must follow the syntax

CHAPTER 4. USE CASES 32

[delay specification] [condition statement] [determinant] entity
operation reference

Syntaxes for determinant and entity are defined in section 3.2.

Delay specification

The two types of delays are before and after delays. They specify an amount
of time relative to the completion of the previous step (or to when the pre-
condition became true in case of the first step).

For a before delay, the step must be initiated before that delay. For an
after delay, the delay needs to pass before the step can be executed. None,
only one or both delays may be included in an operation instance statement.
A before delay syntax is

“before” duration specification

An after delay syntax is

“after” duration specification

A duration specification specifies a time amount as follow

value unit

A value is a word that may refer to a number or not.
A unit must be one of: ”mmsec”, ”microsecond”, ”msec”, ”millisecond”,
”sec”, ”second”, ”min”, ”minute”, ”h”, ”hour”, or ”day”.

Condition statements

A condition statement is used to constraint a use case step.
The following format is used for condition statements

“IF” condition “THEN”

The condition need to hold for the step to be possible.
Notice that no subsequent step is executed when a use case step doesn’t hold.

The use case is simply abandoned, unless a step extension can be executed.

CHAPTER 4. USE CASES 33

Operation references

An operation reference denotes the execution of an operation by an entity.
The operation must be declared as one of the entity operations according to
a specific format (see section 3.4).
An operation reference has the following form:

action specification [action participant]

The action specification has the form

conjugated action verb [(binding word)+] action object

• The conjugated action verb is the action verb used in the concept
operation declaration in the present tense.

UCEd recognizes the regular form of present formation; the addition
of ’s ’ to the infinitive, as well as exceptional cases ending in ’es ’.

• A binding word may be:

– a possessive adjective ”his”, ”her” or ”its” or,

– an article ”a”, ”an”, ”the” or,

– a preposition ”to”, ”for”.

None or any number of binding words may appear between the
conjugated action verb and the action object.

As an example, “validates the user identification”, “validates her user
identification” are valid operation references given operation “val-
idate user identification”.

Notice that UCEd doesn’t verify the English correctness of sentences
therefore “validates the a its user identification” would also be ac-
cepted.

• The optional action participant is an arbitrary sequence of words
that are left uninterpreted by UCEd.

In other words as soon as the concept operation has been recognized,
any other following word is irrelevant.

For instance, given the operation declaration “validate user identifica-
tion”, “validates the user identification with the Branch” is an operation reference

with action participant specification “with the Branch”.

CHAPTER 4. USE CASES 34

Branching statement

Branching statements are use to jump from a step in a use case to another
step.
A branching statement has the form

[delay specification] [condition statement] “GOTO” [“STEP”] step reference

• A step reference is a number or a label assigned to a step within a
use case.

Branching statements can only appear as last in a procedure.

Use case sequencing statements

Use case sequencing statements are: inclusion statement, enabling directives

and continue statement.

• A use case inclusion statement has the following syntax

[condition statement] “include” [“use” “case”] use case name

A use case inclusion statement refers to an included use case. The
meaning of a use case inclusion is that the steps of the included use
case replace the inclusion statement in the base use case. The remain-
ing steps of the base use case are normally executed after the included
use case primary scenario. Continue statements may be used to spec-
ify continuation after specific secondary scenarios in addition to the
primary scenario.

• A use case enabling directive has the following syntax

[condition statement] “enable” [“in” “parallel”] [“use” “case”]
[use case names] or

[condition statement] “resume” [“in” “parallel”] [“use” “case”]
[use case names]

use case names is a list of use case names that are enabled for execution
following the directive.

– If use case names is not specified, the statement applies to the
use case itself and results in its repetition.

CHAPTER 4. USE CASES 35

– If “in” “parallel” is specified, the use cases in the list referred by
use case names are set to execute in parallel. Otherwise, the next
operation forces a choice among these use cases.

For each use case referred to in an enabling directive, the enabled use
case must include the enabling use case in its follow list .

• A continue statement has the following syntax

[condition statement] “continue” [“use” “case”]

Continue statements are meaningful only within included use cases.
A continue statement specifies that the including use case execution
continue from a scenario even if it is a secondary scenario.

A continue statements must be last in a scenario as any subsequent
statement would be unreachable.

Step extension

A step extension specifies an alternative behavior that may follow a step. The
enabling condition of a step extension is specified as follow:

delay specification [condition statement], or

condition

The enabling condition of a step extension may be

• a before delay,

• an after delay,

• a condition,

• a combination of before and after delays, or

• a combination of before, after delays and a condition.

A step extension specifies a sequence of extension actions. Each exten-
sion action may be a concept operation instance, a branching statement or a
reference to an included use case.

CHAPTER 4. USE CASES 36

Example of normal use case

Figure 4.2 shows the details of the use case Log in. The use case Log
in describes a login procedure that must be used by the users of the PM
System. Use case Log in precondition is condition “PMSystem is ON ”, and
postcondition is condition “User is logged in”.
Log in includes six steps listed in the section titled Steps. Each step refers
to a use case step operation.

For instance step 1 references the User’s operation ’insert card’ and step
2 the PMSystem operation ’ask pin’. Step 5 includes a step condition ’User
identification is valid’. The execution of step 5 (and that of the following
step) is possible only under that condition. Step 6 operation is constrained
by an after delay ’After 45 sec’. Means 45 seconds need to pass after the
completion of step 5 before this step is possible.

Steps 1, 2 and 4 have step extensions described in the section titled Ex-
tensions. Each extension label starts with the corresponding step label. Ex-
tension 1a corresponds to step 1, 2a corresponds to step 2. Extensions 4a
and 4b correspond to step 4.

Extensions 1a, 4a and 4b include conditions. For instance, after step 1 is
completed the operation 1a1 followed by 1a2 are executed if the condition
’User Card is not regular’ evaluates to true. Extension 2a includes an after

delay, such that 60 seconds need to pass after step 2 operation completion
for the extension to be possible.

All the extension actions in use case Log in are operation instances. The
exception is extension 4a that includes a branching statement branching back
to step 2.

Use case Log in includes one any extension. Any extension labels start
with ’*’. Log in any extension doesn’t include a condition or a delay. Conse-
quently, the extension is possible anytime during the execution of an instance
of the use case.

Use case Log in includes the extension points labelled card inserted after
step 1, and pin entered after step 3. An extension use case such as Log in
secure shown in Figure 4.3 can refer to these extension points.

A use case includes a primary scenario (or main course of events) and
0 or more secondary scenarios that are alternative courses of events to the
primary scenario [6]. The primary scenario is described in the section titled
Steps while the secondary scenarios consist of interactions in the primary
scenario followed by behaviors defined in the section titled Extensions. As

CHAPTER 4. USE CASES 37

Title: Log in

Primary Actor: User

Participants:

Goal: A User wants to identify herself in order to be able to use the PM system
to perform a task such as admitting a patient or changing silencing an
alarm.

Precondition: PM System is ON

Postcondition: User is logged in

Steps: 1: User inserts a Card in the card slot

2: PMSystem asks for PIN

3: User types her PIN

4: PMSystem validates the USER identification

5: IF the USER identification is valid THEN PMSystem displays a wel-
come message to User

6: AFTER 45 sec PMSystem ejects the USER Card

Extensions :

*1 :

*1a: USER presses cancel button

*1b: PMSystem ejects Card

1a: USER Card is not regular

1a1: PMSystem emits alarm

1a2: After 20 sec PMSystem ejects Card

2a: after 60 seconds

2a1: PMSystem emits alarm

2a2: After 20 sec PMSystem ejects Card

4a: User identification is invalid AND User number of attempts is less
than 4

4a1 Go to Step 2

4b: User identification is invalid AND User number of attempts is equal
to 4

4b1: PMSystem emits alarm

4b2: After 20 sec PMSystem ejects Card

EXTENSION POINTS :

STEP 1. card inserted

STEP 3. pin entered

CHAPTER 4. USE CASES 38

Title: Log in secure

Parts: At extension point card inserted

1: System logs transaction

At extension point pin entered

1: System logs transaction

Figure 4.3: Extension use case.

an example, use case Log in primary scenario is defined by step 1 to 6
operation (sequence 1-2-3-4-5-6). Examples of secondary scenarios are
defined by sequences 1-1a1-1a2 and 1-2-3-4-4b1-4b2.

4.2.2 Extension use cases description

An extension use case includes a Title as previously defined, and one ore
more parts. These parts are to be inserted at specific extension points in a
base use case.

A part includes:

• a reference to an extension point (defined in a base use case in reference
to a step), and

• a sequence of steps defined as previously with the difference that ex-
tension use cases cannot include extension points.

As an example suppose the extension use case Log in secure shown in
Figure 4.3. Log in secure extends use case Log in such that information
provided by a user logging in is recorded. This extension use case includes
two parts. One to be included at the extension point “card inserted” and the
other at the extension point “pin entered”.

4.3 UCEd Use Cases Edition tool

The UCEd Use Case Edition tool shown in Figure 4.4 is used for use case
models creation and edition. The editor includes two panes: a left pane used
for use case models (a use case model is displayed in a tree form), and a right
pane that shows the description of the selected use case in the model.

CHAPTER 4. USE CASES 39

Use Case model

selected object
type

Use Case model

display area

Message
area

Use Case description

display area

Use Case description

selected element

Figure 4.4: UCEd Use Cases Edition tool.

The Edit menu allows common edition actions. Validate menu launches
use cases validation and Extract Domain, the extraction of domain elements
from use cases.

4.3.1 Use Case models edition

Table 4.1 shows the UCEd representation of use case model element types,
the icon associated with each of the elements in the editor, and the type of
their possible children. Figure 4.5 shows an example of use case model.

Use case model edition, domain edition (see section 3.5.2), and scenario
model edition (see section 7.2) are similar.

A use case model can be edited by left-clicking on an element in the
viewing area, and then right-clicking to bring a context dependent menu
that allows operations on the selected element. As an example, the menu for
an Extension Use Case includes:

New Normal Use Case to add a Use Case to the use case model.

CHAPTER 4. USE CASES 40

Use Case model element types Icon Possible children

Normal Use Case UC Include Relation

Extend Use Case eUC Include Relation, Extend Relation

Include Relation In

Extend Relation Ex Extend Relation Condition

Extend Relation Condition

Actor A

Table 4.1: UCEd representation of use case model elements.

New Extend Use Case to add an Extension Use Case to the use case
model.

New Actor to add an Actor to the use case model.

Add Include Relation to Extend Use Case to add an Include relation

as a child of the selected use case.

Add Extend Relation to Extend Use Case to add an Extend relation

as a child of the selected use case.

Delete Extend Use Case to delete the selected use case from the model.

A use case model may also be edited using key combinations (see Section
3.5.3). For instance if the selected line refers to a Normal Use Case:

CTRL+ inserts a new normal use case after that normal use case.

CTRL- deletes the selected normal use case with its description.

CTRL→ indent the use case if it is not on the first line and if it has no
description. The use case is transformed to an Include Relation, which
is the child of the preceding use case.

CTRL← has no effect.

CTRL↑ forwards the selected normal use case by changing its type to an
Extension Use Case.

CHAPTER 4. USE CASES 41

Figure 4.5: Example of UCEd use case model.

CTRL↓ backwards the selected use if it has no description, by changing its
type to an Actor.

CHAPTER 4. USE CASES 42

4.3.2 Use Case descriptions edition

Figure 4.6 shows the initial view of a newly created normal use case. The

Figure 4.6: Initial description of a new use case in the editor.

description panel shows lines labeled with the use case fields Title, Primary
Actor, Participants, Goal, Precondition, and Postcondition (only Title would
be shown for an extension use case). These fields may be edited by selecting
the corresponding line and entering a field value.

The first line in a use case procedural part is created by:

1. selecting the step separator line (STEPS), and

2. using the contextual menu or typing the key combination CTRL+ to
insert a new line.

CHAPTER 4. USE CASES 43

Figure 4.7 shows the editor in Figure 4.2 after insertion of the procedural part
first line. For a normal procedure, the first line created is a Step. A Part is

Figure 4.7: Description of a new use case in the editor after the first step
creation.

created in the case of an extension procedure.
A use case procedural part is edited by selecting a line and using the

contextual menu or a key combination (see Section 3.5.3). In addition to the
standard keys:

CTRL F1 inserts an extension point after the current line (for normal use
cases only).

CTRL F2 inserts an any extension to the use case (for normal use cases
only).

CHAPTER 4. USE CASES 44

The editor does lines labeling automatically.

• For a Part

CTRL+ inserts a part after the selected part.

CTRL- deletes the selected part.

CTRL→ indents the selected part as a Step of the preceding Part (if
the selected line is not the first line).

CTRL← has no effect on parts.

CTRL↑ has no effect on parts.

CTRL↓ transforms the selected part to a Step of the preceding Part
(if the selected line is not the first line).

• For a Step

CTRL+ inserts a step after the selected step.

CTRL- deletes the selected step.

CTRL→ indents the selected Step as an Extension of the preceding
Step (if the selected line is not the first line).

CTRL← has no effect on steps.

CTRL↑ has no effect on steps.

CTRL↓ transforms the selected Step to an Extension of the preceding
Step (if the selected line is not the first line).

• For an Extension

CTRL+ inserts an Operation instance as an action of the Extension.

CTRL- deletes the Extension.

CTRL→ indents the selected Extension as an action Operation in-
stance of the preceding Extension (if the selected line is not the
first Extension of a Step).

CTRL← outdents the selected Extension as a Step

CTRL↑ transforms the selected Extension to a Step (if it has no chil-
dren).

CHAPTER 4. USE CASES 45

CTRL↓ transforms the selected Extension to an Extension action Op-
eration instance of the preceding Extension (if the selected line is
not the first Extension of a Step).

• For an Extension action Operation instance

CTRL+ inserts an Operation instance as an action of the Extension.

CTRL- deletes the action.

CTRL→ has no effect on an Extension action.

CTRL← outdents the selected Extension action as an Extension.

CTRL↑ transforms the selected Extension action to an Extension.

CTRL↓ transforms the selected Extension action Operation instance
to a Branching statement.

• For an Extension action Branching statement

CTRL+ inserts an Extension to the selected Branching statement
Step.

CTRL- deletes the Branching statement.

CTRL→ has no effect on an Extension action.

CTRL← outdents the selected Branching statement as an Operation
instance.

CTRL↑ transforms the selected Branching statement to an Operation
instance.

CTRL↓ has no effect on a Branching statement.

• For an Extension Point

CTRL+ inserts a Step after the selected Extension Point.

CTRL- deletes the Extension Point.

CTRL→ has no effect on an Extension Point.

CTRL← has no effect on an Extension Point.

CTRL↑ has no effect on an Extension Point.

CTRL↓ has no effect on an Extension Point.

CHAPTER 4. USE CASES 46

4.4 Use Cases validation

Selection of Use Case Validation in the Validate menu launches the current
Use Case model validation. Use Case model validation checks the following.

1. Use case model elements must be unique. There shouldn’t be any
duplicate use case or actor.

2. All include and extend relation must refer to normal use cases

3. There must not be cycles of use cases inclusion.

4. A use case Primary Actor must be a domain Concept.

5. A use case Precondition must be a valid condition.

• the syntax must conform to condition syntax described in section
3.2,

• the entities used must be present in the domain model (as System

Concepts, Concepts or Attributes),

• the discrete values used in must be defined as possible values of
the corresponding entities,

• if a general comparison is used as value in a condition, the entity
in that condition must have no possible value defined.

6. A use case Postcondition must be a valid condition (same as precondi-
tions).

7. Use Case steps must follow the use case syntax defined in section 4.2.

• When an after delay and a before delay are used in conjunction,
the delay value of the before delay must be greater than the delay
value of the after delay.

• Step conditions must be valid conditions.

• Operation instances must be present in the domain model.

• Use case inclusion operations must refer to normal use cases.

Chapter 5

State Models

A State Model describes a system’s behavior in interaction with its environ-
ment. UCEd uses state models as frameworks for use cases integration. Two
generation approaches are used: state model synthesis based on control flow
and state model synthesis based on operation effects. Both approaches allow
generation of state models in the StateChart[2] formalism.

Control flow based generation is appropriate at earlier stages when opera-
tions haven’t been specified. Synthesis based on operation effects is useful to
validate contract specification of operations and is therefore more appropriate
at the later stage.

5.1 Control flow based state model

Control flow based state model generation relies on the implicit flow of control
among use case events and the explicit flow of control among use cases as
specified by follow lists coupled with enabling directives.

At the use case level, UCEd generates a StateChart-Chart. A UML ac-
tivity diagram[4] with use cases as nodes. Figure 5.1 is a StateChart-Chart
generated by UCEd as shown by the state model viewer. A StateChart-Chart
includes control flow nodes (join, fork, merge, decision) that capture use case
sequencing constraints expressed by follow lists and enabling directives.

The details of each use case can be shown by double-clicking on the
use case node. Each use case corresponds to a StateChart. Statecharts are
useful for reactive behavior model description. A StateChart is defined as a
tuple [Trigc, Reacc, Gc, Sc, S0c, Fc].

47

CHAPTER 5. STATE MODELS 48

Figure 5.1: Generated StateChart-Chart.

• Trigc is a set of triggers. Trigc includes operations from the environ-
ment and timeout events.

• Reacc is a set of reactions that are operations executed by the system.

• Gc is a set of guard conditions.

• Sc is a set of states. The followings are notable characteristics of Stat-
eCharts states.

CHAPTER 5. STATE MODELS 49

– Hierarchical states: a state may have super-states and sub-states.
A system is in a state s is concurrently in all the sub-states of s.

Any transition starting from a state s also applies to all the sub-
states of s.

– Parallel states: a system may be in several unrelated states at a
same time.

• S0c ∈ Sc is the initial state of the statechart.

• Fc is a transition function in domain Sc × Trigc × 2Gc × 2Reacc × Sc.
Each transition s × trig × g × reac × s′ includes a start state s, an
optional trigger trig, a set of guards g, a set of reactions reac and an
ending state s′.

Figure 5.2 shows the previous StateChart-Chart (Fig. 5.1) with all use cases
StateCharts displayed. Generated StateCharts includes states and transi-
tions representing use case interactions. A transition to a use case state (or
a flow node) corresponds to an enabling directive. Such a transition results
in the system entering the use case initial state.

5.2 State models synthesis based on opera-

tion effects

State model synthesis based on operation effects proceeds by (1) a synthesis
of a detailed version of StateChart and (2) transformation to a compact
version if possible.

5.2.1 Detailed State Charts

Figure 5.3 shows a description of a detailed State Chart. In a detailed State
Chart:

• Transitions are simple. Each includes a single event that can be: a
system operation, an actor operation, a timeout or a guard condition.

• States describe situations in which the system and environment may
be at some point in time.

CHAPTER 5. STATE MODELS 50

CHAPTER 5. STATE MODELS 51

Figure 5.3: Example of a detailed state model

A State situation is defined as a set of characteristic conditions.

A characteristic condition is either a condition as defined in section 3.2
(i.e. a valuation of a domain entity) or a timeout condition.

Two states are identical if they have the same characteristic conditions.

States in Figure 5.3 are listed with their set of characteristic conditions.

CHAPTER 5. STATE MODELS 52

As an example, state 4 characteristic conditions are {Card is inserted,
Alarm is System Status, status is irregular, PMSystem is ON }.

Notice that all domain entities always have a value that may be explicit
or unknown, in a given state. As an example, since attribute Display

of the PMSystem doesn’t have an explicitly defined value in state 4, its
implicit value is unknown value.

A timeout condition reflects the ’relevancy’ of the fact that a timer ex-
pired. As an example, timeout condition Timer0:20 second that char-
acterizes state 5 means that timer Timer0 that was set for 20 seconds
has expired, and that information is ’relevant’.

A state sb is a sub-state of a state sa (its super-state), if its characteristic
conditions include those of sa in the logical sense. As an example,
state 1 in Figure 5.3 is a super-state of state 2. State 2 characteristic
conditions include state 1 characteristic conditions.

A state may have more than one direct super-states. State 17 which
direct super-states are states 9 and 16 is an example of such a state.

• A transition specifies the change from a state (a starting situation) to
another state (a resulting situation).

5.2.2 State machine synthesis

UCEd implements an algorithm [7] for the generation of a state machine
from use cases. The principle of the state machine generation algorithm is
as follow. For each use case, we augment an initially empty state transition
machine with states and transitions such that each scenario in the use case is
included as state transition sequences in the state transition machine. We use
the operations effects (added and withdrawn conditions) to determine states.

Suppose “-” is an operator such that C1 and C2 being 2 sets of conditions,
C1 − C2 is a set obtained by removing all the conditions in C2 from C1, and
C1 + C2 is a set obtained by adding all the conditions in C2 to C1. Given a
state s such that cond(s) are the characteristic conditions of s, the execution
of operation op with added-condition add conds(op) and withdrawn condi-
tions withdr conds(op) produces a state s′ such that
cond(s′) = (cond(s) - withdr conds(op)) + add conds(op).

The finite state machine generation algorithm augments a state model
with a use case as follow.

CHAPTER 5. STATE MODELS 53

• First we determine a set of states corresponding to the use case pre-
conditions.

• Then, starting from these first states, we follow each scenario by adding
transitions corresponding to operations.

• After each transition, the resulting state is used as a starting point for
the following operation in a scenario.

• Timeout triggered transitions are created to account for delays.

The state model in Figure 5.3 has been generated from use case Log
in shown in Figure 4.2. State 1 set of characteristic conditions is the use
case set of preconditions {“PMSystem is ON”}. State 2 is obtained by
considering the use case step 1. This state is characterized by the set of
conditions {“System is ON”, “Card is inserted”} since the operation “in-
sert Card” adds the condition “Card is inserted” according to the domain
model in Figure 3.1. The algorithm generates state 3 when adding step
1 extension 1a. State 3 is a sub-state of state 2 because of 1a exten-
sion condition “Card status is irregular”. State 3 characteristic conditions
are {“PMSystem is ON”, “Card is inserted”, “Card is irregular”}. Transi-
tion 7 ---[TIMEOUT(Timer1:60.0 second)]--> 8 is an example of time-

out-triggered transition. This transition is created to consider extension 2a
after delay. Timer1 is considered to be set as the state 7 is entered. Therefore
the timeout event is produced if more than 60.0 seconds passes while in that
state.

5.2.3 State chart generation

UCEd generates compact State Charts from detailed State Charts. A differ-
ence between the two forms of State Charts is that a compact State Chart
transition may include a trigger, a set of guards and a set of reactions. While
there is a single event per transition in a detailed State Chart.

Compact State Chart generation is impossible when a detailed State
Chart includes non-deterministic transitions. In order for compact State
Chart generation to be possible the set of all transitions starting from a
state s (including transitions from the super-states of s) should:

• consists on transitions on triggers only, or

CHAPTER 5. STATE MODELS 54

• consists on transitions on guard conditions only, or

• consists on a single transition on a system reaction.

Chapter 6

Simulator tool

Figure 6.1 shows UCEd simulator tool used to simulate the current state
model.

The simulator includes an actor operations panel (left panel) and a simu-

lation results panel (right panel).
The actor operations panel includes a line for each of the actor operation

such that clicking on that line triggers the given operation.
The simulation results panel includes different areas.

Previous State displays the label of the states and characteristics condi-
tions before the latest actor operation.

System Reaction displays all the reactions of the simulated transition. .

Current State displays the current states labels and the current charac-
teristic conditions holding in the system (if an operation effects-based
State Chart is being simulated).

At the beginning of a simulation session, the current state is initially
the state model initial state and the current characteristic conditions
are the initial state characteristic conditions. As the simulation goes
on, transitions taken change the set of characteristic conditions and
current states.

6.1 Operation of the simulator tool

Simulation menu sub-menu Start New Simulation starts a fresh simula-
tion session. Initially, the previous states area is empty and the current states

55

CHAPTER 6. SIMULATOR TOOL 56

Actor
Operations

Figure 6.1: Simulator tool view

area shows the label and characteristic conditions of the state model initial
state.

Clicking on a trigger in the actors operations panel, selects the corre-
sponding event.

If the state model doesn’t include a transition triggered by the selected
operation from any of the current states, the simulator displays a message
and the current states remain unchanged.

If there is a transition triggered by the selected operation, its reactions are
added to the System Reactions area and the current states altered to include
the transition resulting state.

When a state from which there are outgoing transitions with guards is
reached, the simulator prompts the User such that one of the guards is chosen.
Figure 6.2 shows an example of interaction for a guard choice.

CHAPTER 6. SIMULATOR TOOL 57

Figure 6.2: Prompt for guard choice

When a timeout triggered transition is encountered, the simulator prompts
the User for a choice between letting enough time pass for the timeout or
not. Figure 6.3 shows an example of interaction for a time delay choice.

Figure 6.3: Prompt for time delay choice.

6.2 Simulation History

Each event in a simulation session is recorded in a scenario. The simulation
history shown in Figure 6.4, is the set of scenarios obtained from simulation.

Scenarios can not be edited in the simulation history viewer. They may
however be moved to the scenario model edition tool.

Left-clicking on a line in the history viewer, then right-clicking, brings a
menu which allows moving the selected scenario to the scenario model edition
tool. Once moved, a scenario can be subject to all the editing operations
supported by the scenario model edition tool.

CHAPTER 6. SIMULATOR TOOL 58

Figure 6.4: View of Simulation History.

Chapter 7

Scenario Model

A scenario describes a sequence of interactions involving a system and actors
of that system. Use Cases are collection of scenarios. However a scenario is
not limited to a single use case. A scenario may cross over several use cases.

Scenarios are useful to document interactions of interest that may be
wanted or not and to serve as repeatable scripts for simulation.

7.1 Elements of scenarios

A scenario is a sequence of: triggers, system reactions, waiting delays, guard
realizations and assertions. Figure 7.1 shows a scenario that describes a
normal login to the PMSystem.

• A trigger is an operation of an actor of the system (a concept in the
domain model).

Line 1 of scenario Normal login is a trigger corresponding to operation
“insert card” of concept “User”.

• A system reaction is an operation of the system under consideration (a
system concept in the domain model).

Line 3 of scenario Normal login is a system reaction.

• A waiting delay specifies a point in a scenario where a certain amount
of time passes without any trigger or system reaction.

Line 4 of scenario Normal login is a waiting delay of 30 seconds.

59

CHAPTER 7. SCENARIO MODEL 60

Scenario: Normal login

1. Trigger: USER insert card

2. Guard: USER Card status is NOT irregular AND PMSystem security
is NOT high

3. Reaction: PMSystem ask Pin

4. Wait: 30 sec

5. Trigger: USER type PIN

6. Reaction: PMSystem validate USER identification

7. Guard: USER identification is valid

8. Reaction: PMSystem display welcome message

9. Assertion: User is logged

Figure 7.1: Scenario describing a normal login to the PMSystem.

Timeouts may be enabled by waiting delays during scenario execution.

• A guard realization is a condition set to hold at a certain point in a
scenario.

Line 7 of scenario Normal login is a guard realization.

Guard realizations are used set conditions necessary for choosing among
several execution paths.

• A assertion is a condition that needs to be true at a certain point in a
scenario.

Line 9 of scenario Normal login is an assertion.

Assertions serve to check that certain conditions are realized at specific
points in an interaction sequence.

A scenario may be “positive” (by default) or “negative”. A positive scenario
describes interactions that need to be supported while a negative scenario
describes interactions that need to be avoided.

CHAPTER 7. SCENARIO MODEL 61

7.2 Scenario Model Edition tool

Figure 7.2 shows UCEd Scenario Edition tool. The tool has the same look as

Figure 7.2: Scenario edition tool.

the Domain Model Edition tool. A scenario model is displayed as a tree in
the scenario viewing area. The tool message area displays various messages
including validation error messages and scenario simulation results. The Edit

menu allows common edition actions.

CHAPTER 7. SCENARIO MODEL 62

7.2.1 Scenario model element types

Table 7.1 shows the UCEd representation of scenario model element types,
the icon associated with each of the elements in the editor, and the type of
their possible children.

Scenario model element types Icon Possible children

Scenario Trigger, System Reaction, Guard
Realization, Assertion,
Waiting Delay

Negative Scenario Trigger, System Reaction, Guard
Realization, Assertion,
Waiting Delay

Trigger

System Reaction

Guard Realization

Assertion

Waiting Delay

Table 7.1: UCEd representation of scenario elements.

7.2.2 Scenario model edition

A scenario model can be edited by left-clicking on an element in the viewing
area, and then right-clicking. That will bring a context dependent menu,
which allows operation to be performed on the selected element.

• The menu displayed for a Scenario includes:

New Scenario to add a new “Positive” Scenario to the scenario model.

New Negative Scenario to add a new Negative Scenario to the model.

Change to Negative Scenario to set the Scenario as a Negative
Scenario.

CHAPTER 7. SCENARIO MODEL 63

For a Negative Scenario, the corresponding menu option would be
Change to Scenario to set the Scenario as “Positive”.

Add Trigger to add a Trigger at the end of the Scenario.

Add System Reaction to add a System Reaction at the end of the
Scenario.

Add Delay to add a Waiting Delay at the end of the Scenario.

Add Guard to add a Guard Realization at the end of the Scenario.

Add Assertion to add an Assertion at the end of the Scenario.

Edit Scenario Description to edit a text description associated with
the Scenario.

Validate Scenario to check the scenario elements according to sce-
nario validation rules.

Simulate Scenario to simulate the execution of the Scenario.

Notice that a scenario needs to be validated before its simulation.

Export Scenario to produce a HTML output from the scenario.

Delete Scenario to delete the Scenario with all its children.

• The menu displayed for scenario elements includes:

New Scenario to add a new “Positive” Scenario to the scenario model.

New Negative Scenario to add a new Negative Scenario to the model.

Insert Trigger to insert a Trigger after the current selection.

Insert System Reaction to insert a System Reaction after the cur-
rent selection.

Insert Delay to insert a Waiting Delay after the current selection.

Insert Guard to insert a Guard Realization after the current selec-
tion.

Insert Assertion to insert an Assertion after the current selection.

Delete Element to delete the current selection.

A scenario model may also be edited using key combinations (see Section
3.5.3).

CHAPTER 7. SCENARIO MODEL 64

7.3 Scenario validation rules

To be valid a scenario must satisfy the following rules.

1. Each trigger must correspond to a valid Concept operation.

[determinant] entity operation reference

With entity a reference to a Concept.

2. Each system reaction must correspond to a valid System Concept oper-

ation.

[determinant] entity operation reference

With entity a reference to the System Concept.

3. Each guard realization must be a valid condition.

4. Each assertion must be a valid condition.

5. Each waiting delay must be a valid duration specification (see section
4.2.1).

7.4 Scenario simulation

Scenario simulation consists of running UCEd simulator using the scenario
triggers, guard realizations and waiting delays to drive the simulation. System
reactions are compared with the actual reactions produced by simulation; and
assertions are used to check reached states.
Notice that a scenario need to be validated before its simulation.

Figure 7.3 shows a scenario simulation result. Simulation output is dis-
played in the scenario model editor tool message area. A scenario simulation
proceeds according to the follow.

• The simulation is initiated from the state chart initial state, and the
scenario elements considered in sequence.

The conditions corresponding to the current simulation state are dis-
played before each of the scenario actions.

CHAPTER 7. SCENARIO MODEL 65

Figure 7.3: Scenario simulation result.

• A trigger is simulated by checking if there is a transition on it from
the current simulation state. If so, and if the transition guards are
satisfied, all the reactions are checked with the system reactions that
immediately follow in the scenario.

– A scenario fails and an error message is displayed if a trigger can
not be fired.

– If a scenario doesn’t specify system reactions, any actual system
reactions following a trigger are just displayed in the simulation
output.

CHAPTER 7. SCENARIO MODEL 66

– If a scenario includes system reactions different to those obtained
from the state model, a warning message is displayed but the
simulation continues normally.

• When a state from which there are outgoing transitions with guards is
reached, there must be a guard realization in the scenario at that point
in the course of the simulation such that a single outcome is selected.
An error message is displayed and the simulation fails when a selection
is not possible.

• For a timeout to be simulated, there needs to be a waiting delay equal or
greater that the timeout delay when the timeout transition is reached.

Bibliography

[1] A. Cockburn. Writing Effective Use Cases. Addison Wesley, 2001.

[2] D. Harel. STATECHARTS: A Visual Formalism for Complex Systems.
Science of Computer Programming, 8:231–274, 1987.

[3] I. Jacobson, G. Booch, and J. Rumbaugh. The Unified Software Devel-
opment Process. Addison Wesley, 1998.

[4] OMG. UML 2.0 Superstructure, 2003. Object Management Group.

[5] J. Rumbaugh, I. Jacobson, and G. Booch. The Unified Modeling Language
Reference Manual. Addison-Wesley, 1998.

[6] Geri Schneider and Jason P. Winters. Applying Use Cases a practical
guide. Addison-Wesley, 1998.

[7] S. Somé. An approach for the synthesis of state transition graphs from
use cases. In Proceedings of the International Conference on Software
Engineering Research and Practice (SERP’03), volume I, pages 456–462,
june 2003.

67

