

» User Guide «

AM4120 IPMI Firmware

Doc. ID: 1045-9586, Rev. 1.0 November 3, 2011

Revision History

Publication Title:		AM4120 IPMI Firmware User Guide			
	Doc. ID:	1045-9586			
Rev.		Brief Description of Changes	Date of Issue		
1.0	Initial issue		3-Nov-2011		

Imprint

Kontron Modular Computers GmbH may be contacted via the following:

MAILING ADDRESS

TELEPHONE AND E-MAIL

Kontron Modular Computers GmbH

+49 (0) 800-SALESKONTRON

Sudetenstraße 7

sales@kontron.com

D - 87600 Kaufbeuren Germany

For further information about other Kontron products, please visit our Internet web site: www.kontron.com.

Disclaimer

Copyright © 2011 Kontron AG. All rights reserved. All data is for information purposes only and not guaranteed for legal purposes. Information has been carefully checked and is believed to be accurate; however, no responsibility is assumed for inaccuracies. Kontron and the Kontron logo and all other trademarks or registered trademarks are the property of their respective owners and are recognized. Specifications are subject to change without notice.

Page ii ID 1045-9586, Rev. 1.0

Table of Contents

Revisio	n History	ii
	-	
	ner	
	Contents	
List of	ables	V
1. II	troduction	1
1.1	Terminology and Acronym Definitions	1
1.2	Related Publications	2
1.3	IPMI in AdvancedMC / AdvancedTCA Environment	2
1.4	Module Management Controller Hardware	2
2. N	MC Firmware	3
2.1	Key Features	3
2.2	Supported IPMI and ATCA Commands	
	2.1 Standard IPMI Commands	
2	2.2 AdvancedTCA and AMC Commands	12
<i>3. C</i>	EM Commands and Command Extensions	14
3.1	Get Device ID Command with OEM Extensions	14
3.2	Set Control State (Firmware Hub, Boot Order)	15
3.3	Get Control State (Firmware Hub, Boot Order)	
3.4	OEM Module Quiescence Feedback	
3	1.1 Usage if a Shutdown Daemon is Announced as Present	18
3	1.2 Usage if no Shutdown Daemon is Announced as Present	
<i>4.</i> S	ensors Implemented on the AM4120	19
4.1	Sensor List	20
4.2	Sensor Thresholds	22
4.3	OEM Event/Reading Types	24

<i>5.</i>	Firmw	are Code	26
5.1	Struc	cture and Functionality	26
5.2	? Firm	ware / Module Identification	26
5.3	3 Firm	ware Upgrade	27
	5.3.1	Firmware File Formats	27
	5.3.2	Firmware Upgrade - "ipmitool hpm"	28
	5.3.3	Firmware Upgrade - "ipmitool fwum"	29
6.	FRU li	nformation	29
6.1	FRU	Version Identification	29
6.2	? FRU	Data Update	30
7.	E-Key	ing	30
7.1	Boar	d Configuration for E-Keying	30
		Express Reference Clock - FCLKA	
8.	U-Boo	t Failover Control - Automatic Flash Selection	31
9.	Hot S	vap	31
9.1	l Gene	eral	31
9.2	2 OSF	Requirements for Graceful Shutdown	32
10.	OS Su	pport / Tools	32
		· · · · · · · · · · · · · · · · · · ·	
		Support - Board Support Packages	
11.	IPMI N	Nodule Management LEDs	33

List of Tables

1	Terminology and Acronym Definitions	1
2	Related Publications	2
3	Standard IPMI Commands	4
4	AdvancedTCA and AMC Commands	12
5	Get Device ID Command with OEM Extensions	14
6	Set Control State	15
7	Get Control State	16
8	OEM Module Quiescence Feedback	17
9	Sensor Name Prefix	19
10	Sensor List	20
11	Thresholds - Standard Temperature Range	22
12	Thresholds - Extended Temperature Range	22
13	Voltage Sensor Thresholds	23
14	OEM Event/Reading Types	24
15	IPMI Module Management LED Functions	34

This page has been intentionally left blank.

Page vi ID 1045-9586, Rev. 1.0

1. Introduction

1.1 Terminology and Acronym Definitions

The following table provides descriptions for terms and acronyms used in this guide. The descriptions are derived primarily from the IPMI specifications.

Table 1: Terminology and Acronym Definitions

TERM/ACRONYM	DESCRIPTION
AMC	Advanced Mezzanine Card
ВМС	Baseboard Management Controller
BSP	Board Support Package
FRU	Field Replaceable Unit
FWH	Firmware Hub
I ² C	Inter-Integrated Circuit
IPMB	Intelligent Platform Management Bus
IPMB-0	AdvancedTCA shelf-level IPMB
IPMB-L	Local, on-carrier IPMB that links the carrier IPMC with the MMCs of installed modules
IPMC	Intelligent Platform Management Controller located on the AMC carrier
IPMI	Intelligent Platform Management Interface
IOL	IPMI over LAN. An MMC is accessed via LAN, not IPMB.
KCS	Keyboard Controller Style
MMC	Module Management Controller – an IPMI controller located on the AMC module
MP	Management Power
PICMG	PCI Industrial Computer Manufacturer Group
PWR	Payload Power
SDR	Sensor Data Record
SDRR	Sensor Data Record Repository
SEL	System Event Log
SMBIOS	System Management BIOS
SMS	System Management Software (designed to run under the OS)
SOL	Serial over LAN. A serial interface is redirected by LAN using the RMCP+ protocol.

ID 1045-9586, Rev. 1.0

1.2 Related Publications

The following publications contain information relating to this product.

Table 2: Related Publications

PRODUCT	PUBLICATION
IPMI	IPMI Specification V2.0
IPMI	IPMI - Platform Management FRU Information Storage Definition v1.0, Document Revision 1.1
MicroTCA	PICMG® MTCA.0 Micro Telecommunications Computing Architecture R1.0
AMC	PICMG® AMC.0, Advanced Mezzanine Card Specification R2.0 PICMG® AMC.1, PCI Express R2.0 PICMG® AMC.2, Gigabit Ethernet R1.0 PICMG® AMC.4, Serial RapidIO, Rev 1.0
AM4120	AM4120 User Guide, ID 1045-6958 Kontron's "U-Boot" Bootloader User Guide, ID 1046-1856
IPMI Tools	ipmitool documentation: http://ipmitool.sourceforge.net
IPMI Tools	OpenIPMI documentation: http://www.openipmi.sourceforge.net

As a hot-swappable field-replaceable unit (FRU), the AM4120 follows the stringent carrier grade RASM feature set, namely - Reliability, Availability, Serviceability, Maintainability.

Built in accordance with the AMC.0 specification, the AM4120 is also compliant with the AMC.1, AMC.2 and AMC.4 specifications and is easily managed via its management features.

As with every Advanced Mezzanine Card (AMC), the AM4120 is equipped with a Module Management Controller (MMC).

1.3 IPMI in AdvancedMC / AdvancedTCA Environment

The Module Management Controller is a crucial component of any AMC module. Besides acting as a regular IPMI management controller (sensor monitoring, event logging, etc.), it also provides an interface to all necessary data related to module power requirements and implemented interfaces (E-Keying). Further, it plays an active role in the module hot swap state management. The carrier IPMI Controller (IPMC) communicates with the MMC using the local IPMB (IPMB-L) bus. In an ATCA/AMC environment, it is the IPMC that actually turns on/off module (payload) power. However, before the IPMC enables the module payload power, various criteria must be satisfied by both the carrier and the module, including power requirements and capabilities, matching interfaces, current module hot swap state, and any other special conditions as specified by the Shelf Manager policy.

1.4 Module Management Controller Hardware

On the AM4120 processor AMC module, the MMC is implemented using an NXP® ARM7 microcontroller with 512 kB of internal flash and 56 kB of RAM.

Page 2 ID 1045-9586, Rev. 1.0

An external 64 kB serial EEPROM chip is used for firmware private data and for FRU inventory storage. Furthermore, an external 4 MB serial SPI flash is used for additional firmware image storage.

The MMC implements one local Keyboard Controller Style (KCS) interface with interrupt support for communication with the system side management software and the U-Boot bootloader. The IPMB-L bus is used for interconnection with the IPMC.

The MMC provides access to various sensors which permit the monitoring of:

- System power voltages: +12V (PWR), +5V, +3.3V, +3.3V (MP)
- · Temperatures: board and airflow near AMC edge-connector
- Power Good, LAN links, board reset, IPMB-L state, Health error, IPMI watchdog, Firmware update/rollback, etc.

2. MMC Firmware

2.1 Key Features

The following are key features of the AM4120 MMC firmware:

- Compliant with the related IPMI and PICMG® specifications
- Firmware designed and specially made for AdvancedMC environments (ATCA, μTCA)
- Supports one KCS interface with interrupt support
- · Supports the local IPMB (IPMB-L) interface
- Out-of-Band management and monitoring using IPMB-L interface permits access to sensors regardless of the module's CPU state
- Sensor thresholds fully configurable
- Sensor names prefixed with AMC module Bay ID (A1...4, B1...4)
- Usable in μTCA slots 1...12. Sensor names for slots 9...12 are prefixed with C1...C4
- Complete IPMI watchdog functionality
- · Complete FRU functionality
- Firmware can be updated in the field
- Firmware image management may be done by the open tool "ipmitool" (functions "hpm" or "fwum")
- Downloading new firmware image does not break currently running firmware activities
- Manual and automatic firmware image roll-back in case of upgrade failure
- Interoperable with other AMC, ATCA, or IPMI solutions
- U-Boot fail-over control for automatic U-Boot firmware bank switching after having detected a non-working U-Boot
- OEM commands for U-Boot firmware bank selection
- Graceful shutdown support
- The "Health" LED shows MMC's heartbeat and pulses on KCS interface traffic

ID 1045-9586. Rev. 1.0

2.2 Supported IPMI and ATCA Commands

2.2.1 Standard IPMI Commands

The following table shows an excerpt from the command list specified in the IPMI specification 2.0. The shaded table cells indicate commands supported by the AM4120 MMC.

M = mandatory, O = optional

Table 3: Standard IPMI Commands

COMMAND	IPMI 2.0 SPEC. SECTION	NETFN	CMD	KONTRON SUPPORT ON MMC	
IPM DEVICE "GLOBAL" COMMANDS					
Get Device ID	20.1	Арр	01h	M / Yes	
Cold Reset	20.2	Арр	02h	O / Yes	
Warm Reset	20.3	Арр	03h	O / No	
Get Self Test Results	20.4	Арр	04h	O / Yes	
Manufacturing Test On	20.5	Арр	05h	O / No	
Set ACPI Power State	20.6	Арр	06h	O / No	
Get ACPI Power State	20.7	Арр	07h	O / No	
Get Device GUID	20.8	Арр	08h	O / No	
Broadcast "Get Device ID"	20.9	Арр	01h	M / Yes	
BMC WATCHDOG TIMER COMMANDS				0	
Reset Watchdog Timer	27.5	Арр	22h	O / Yes	
Set Watchdog Timer	27.6	Арр	24h	O / Yes	
Get Watchdog Timer	27.7	Арр	25h	O / Yes	
BMC DEVICE AND MESSAGING COMMANDS				0	
Set BMC Global Enables	22.1	Арр	2Eh	O / Yes	
Get BMC Global Enables	22.2	Арр	2Fh	O / Yes	
Clear Message Flags	22.3	Арр	30h	O / Yes	
Get Message Flags	22.4	Арр	31h	O / Yes	
Enable Message Channel Receive	22.5	Арр	32h	O / Yes	

Page 4 ID 1045-9586, Rev. 1.0

Table 3: Standard IPMI Commands (Continued)

COMMAND	IPMI 2.0 SPEC. SECTION	NETFN	CMD	KONTRON SUPPORT ON MMC
Get Message	22.6	Арр	33h	O / Yes
Send Message	22.7	Арр	34h	O / Yes
Read Event Message Buffer	22.8	Арр	35h	O / Yes
Get BT Interface Capabilities	22.9	Арр	36h	O / No
Get System GUID	22.14	Арр	37h	O / No
Get Channel Authentication Capabilities	22.13	Арр	38h	O / No
Get Session Challenge	22.15	Арр	39h	O / No
Activate Session	22.17	Арр	3Ah	O / No
Set Session Privilege Level	22.18	Арр	3Bh	O / No
Close Session	22.19	Арр	3Ch	O / No
Get Session Info	22.20	Арр	3Dh	O / No
Get AuthCode	22.21	Арр	3Fh	O / No
Set Channel Access	22.22	Арр	40h	O / No
Get Channel Access	22.23	Арр	41h	O / No
Get Channel Info	22.24	Арр	42h	O / No
Set User Access	22.26	Арр	43h	O / No
Get User Access	22.27	Арр	44h	O / No
Set User Name	22.28	Арр	45h	O / No
Get User Name	22.29	Арр	46h	O / No
Set User Password	22.30	Арр	47h	O / No
Activate Payload	24.1	Арр	48h	O / No
Deactivate Payload	24.2	Арр	49h	O / No
Get Payload Activation Status	24.4	Арр	4Ah	O / No
Get Payload Instance Info	24.5	Арр	4Bh	O / No
Set User Payload Access	24.6	Арр	4Ch	O / No
Get User Payload Access	24.7	Арр	4Dh	O / No

ID 1045-9586, Rev. 1.0

Functional Description

Table 3: Standard IPMI Commands (Continued)

COMMAND	IPMI 2.0 SPEC. SECTION	NETFN	CMD	KONTRON SUPPORT ON MMC
Get Channel Payload Support	24.8	Арр	4Eh	O / No
Get Channel Payload Version	24.9	Арр	4Fh	O / No
Get Channel OEM Payload Info	24.10	Арр	50h	O / No
Master Write-Read	22.11	Арр	52h	O / No
Get Channel Cipher Suits	22.15	Арр	54h	O / No
Suspend/Resume Payload Encryption	24.3	Арр	55h	O / No
Set Channel Security Keys	22.25	Арр	56h	O / No
Get System Interface Capabilities	22.9	Арр	57h	O / No
CHASSIS DEVICE COMMANDS				0
Get Chassis Capabilities	28.1	Chassis	00h	O / Yes
Get Chassis Status	28.2	Chassis	01h	O / Yes
Chassis Control	28.3	Chassis	02h	O / Yes
Chassis Reset	28.4	Chassis	03h	O / No
Chassis Identify	28.5	Chassis	04h	O / No
Set Chassis Capabilities	28.7	Chassis	05h	O / No
Set Power Restore Policy	28.8	Chassis	06h	O / No
Get System Restart Cause	28.11	Chassis	07h	O / No
Set System Boot Options	28.12	Chassis	08h	O / No
Get System Boot Options	28.13	Chassis	09h	O / No
Get POH Counter	28.14	Chassis	0Fh	O / Yes
EVENT COMMANDS				
Set Event Receiver	29.1	S/E	00h	M / Yes
Get Event Receiver	29.2	S/E	01h	M / Yes
Platform Event (a.k.a. "Event Message")	29.3	S/E	02h	M / Yes

Page 6 ID 1045-9586, Rev. 1.0

Table 3: Standard IPMI Commands (Continued)

COMMAND	IPMI 2.0 SPEC. SECTION	NETFN	CMD	KONTRON SUPPORT ON MMC	
PEF AND ALERTING COMMANDS					
Get PEF Capabilities	30.1	S/E	10h	O / No	
Arm PEF Postpone Timer	30.2	S/E	11h	O / No	
Set PEF Configuration Parameters	30.3	S/E	12h	O / No	
Get PEF Configuration Parameters	30.4	S/E	13h	O / No	
Set Last Processed Event ID	30.5	S/E	14h	O / No	
Get Last Processed Event ID	30.6	S/E	15h	O / No	
Alert Immediate	30.7	S/E	16h	O / No	
PET Acknowledge	30.8	S/E	17h	O / No	
SENSOR DEVICE COMMANDS				М	
Get Device SDR Info	35.2	S/E	20h	M / Yes	
Get Device SDR	35.3	S/E	21h	M / Yes	
Reserve Device SDR Repository	35.4	S/E	22h	M / Yes	
Get Sensor Reading Factors	35.5	S/E	23h	O / No	
Set Sensor Hysteresis	35.6	S/E	24h	O / Yes	
Get Sensor Hysteresis	35.7	S/E	25h	O / Yes	
Set Sensor Threshold	35.8	S/E	26h	O / Yes	
Get Sensor Threshold	35.9	S/E	27h	O / Yes	
Set Sensor Event Enable	35.10	S/E	28h	O / Yes	
Get Sensor Event Enable	35.11	S/E	29h	O / Yes	
Re-arm Sensor Events	35.12	S/E	2Ah	O / No	
Get Sensor Event Status	35.13	S/E	2Bh	O / No	
Get Sensor Reading	35.14	S/E	2Dh	M / Yes	
Set Sensor Type	35.15	S/E	2Eh	O / No	
Get Sensor Type	35.16	S/E	2Fh	O / No	

ID 1045-9586, Rev. 1.0

Functional Description

Table 3: Standard IPMI Commands (Continued)

COMMAND	IPMI 2.0 SPEC. SECTION	NETFN	CMD	KONTRON SUPPORT ON MMC	
FRU DEVICE COMMANDS					
Get FRU Inventory Area Info	34.1	Storage	10h	M / Yes	
Read FRU Data	34.2	Storage	11h	M / Yes	
Write FRU Data	34.3	Storage	12h	M / Yes	
SDR DEVICE COMMANDS				0	
Get SDR Repository Info	33.9	Storage	20h	O / No	
Get SDR Repository Allocation Info	33.10	Storage	21h	O / No	
Reserve SDR Repository	33.11	Storage	22h	O / No	
Get SDR	33.12	Storage	23h	O / No	
Add SDR	33.13	Storage	24h	O / No	
Partial Add SDR	33.14	Storage	25h	O / No	
Delete SDR	33.15	Storage	26h	O / No	
Clear SDR Repository	33.16	Storage	27h	O / No	
Get SDR Repository Time	33.17	Storage	28h	O / No	
Set SDR Repository Time	33.18	Storage	29h	O / No	
Enter SDR Repository Update Mode	33.19	Storage	2Ah	O / No	
Exit SDR Repository Update Mode	33.20	Storage	2Bh	O / No	
Run Initialization Agent	33.21	Storage	2Ch	O / No	
SEL DEVICE COMMANDS				0	
Get SEL Info	40.2	Storage	40h	O / No	
Get SEL Allocation Info	40.3	Storage	41h	O / No	
Reserve SEL	40.4	Storage	42h	O / No	
Get SEL Entry	40.5	Storage	43h	O / No	
Add SEL Entry	40.6	Storage	44h	O / No	
Partial Add SEL Entry	40.7	Storage	45h	O / No	

Page 8 ID 1045-9586, Rev. 1.0

Table 3: Standard IPMI Commands (Continued)

COMMAND	IPMI 2.0 SPEC. SECTION	NETFN	CMD	KONTRON SUPPORT ON MMC
Delete SEL Entry	40.8	Storage	46h	O / No
Clear SEL	40.9	Storage	47h	O / No
Get SEL Time	40.10	Storage	48h	O / No
Set SEL Time	40.11	Storage	49h	O / No
Get Auxiliary Log Status	40.12	Storage	5Ah	O / No
Set Auxiliary Log Status	40.13	Storage	5Bh	O / No
LAN DEVICE COMMANDS				0
Set LAN Configuration Parameters	23.1	Transport	01h	O / No
Get LAN Configuration Parameters	23.2	Transport	02h	O / No
Suspend BMC ARPs	23.3	Transport	03h	O / No
Get IP/UDP/RMCP Statistics	23.4	Transport	04h	O / No
SERIAL/MODEM DEVICE COMMANDS				0
Set Serial/Modem Configuration	25.1	Transport	10h	O / No
Get Serial/Modem Configuration	25.2	Transport	11h	O / No
Set Serial/Modem Mux	25.3	Transport	12h	O / No
Get TAP Response Codes	25.4	Transport	13h	O / No
Set PPP UDP Proxy Transmit Data	25.5	Transport	14h	O / No
Get PPP UDP Proxy Transmit Data	25.6	Transport	15h	O / No
Send PPP UDP Proxy Packet	25.7	Transport	16h	O / No
Get PPP UDP Proxy Receive Data	25.8	Transport	17h	O / No
Serial/Modem Connection Active	25.9	Transport	18h	O / No
Callback	25.10	Transport	19h	O / No
Set User Callback Options	25.11	Transport	1Ah	O / No
Get User Callback Options	25.12	Transport	1Bh	O / No
SOL Activating	26.1	Transport	20h	O / No

ID 1045-9586, Rev. 1.0

Functional Description

Table 3: Standard IPMI Commands (Continued)

COMMAND	IPMI 2.0 SPEC. SECTION	NETFN	CMD	KONTRON SUPPORT ON MMC		
Get SOL Configuration Parameters	26.2	Transport	21h	O / No		
Set SOL Configuration Parameters	26.3	Transport	22h	O / No		
BRIDGE MANAGEMENT COMMANDS (ICMB)				0		
Get Bridge State	[ICMB]	Bridge	00h	O / No		
Set Bridge State	[ICMB]	Bridge	01h	O / No		
Get ICMB Address	[ICMB]	Bridge	02h	O / No		
Set ICMB Address	[ICMB]	Bridge	03h	O / No		
Set Bridge Proxy Address	[ICMB]	Bridge	04h	O / No		
Get Bridge Statistics	[ICMB]	Bridge	05h	O / No		
Get ICMB Capabilities	[ICMB]	Bridge	06h	O / No		
Clear Bridge Statistics	[ICMB]	Bridge	08h	O / No		
Get Bridge Proxy Address	[ICMB]	Bridge	09h	O / No		
Get ICMB Connector Info	[ICMB]	Bridge	0Ah	O / No		
Get ICMB Connection ID	[ICMB]	Bridge	0Bh	O / No		
Send ICMB Connection ID	[ICMB]	Bridge	0Ch	O / No		
DISCOVERY COMMANDS (ICMB)				0		
Prepare For Discovery	[ICMB]	Bridge	10h	O / No		
Get Addresses	[ICMB]	Bridge	11h	O / No		
Set Discovered	[ICMB]	Bridge	12h	O / No		
Get Chassis Device ID	[ICMB]	Bridge	13h	O / No		
Set Chassis Device ID	[ICMB]	Bridge	14h	O / No		
BRIDGING COMMANDS (ICMB)						
Bridge Request	[ICMB]	Bridge	20h	O / No		
Bridge Message	[ICMB]	Bridge	21h	O / No		

Page 10 ID 1045-9586, Rev. 1.0

Table 3: Standard IPMI Commands (Continued)

COMMAND	IPMI 2.0 SPEC. SECTION	NETFN	CMD	KONTRON SUPPORT ON MMC			
EVENT COMMANDS (ICMB)							
Get Event Count	[ICMB]	Bridge	30h	O / No			
Set Event Destination	[ICMB]	Bridge	31h	O / No			
Set Event Reception State	[ICMB]	Bridge	32h	O / No			
Send ICMB Event Message	[ICMB]	Bridge	33h	O / No			
Get Event Destination	[ICMB]	Bridge	34h	O / No			
Get Event Reception State	[ICMB]	Bridge	35h	O / No			
OEM COMMANDS FOR BRIDGE NETFN				0			
OEM Commands	[ICMB]	Bridge	C0h-FEh	O / No			
OTHER BRIDGE COMMANDS							
Error Report	[ICMB]	Bridge	FFh	O / No			

2.2.2 AdvancedTCA and AMC Commands

The following table shows an excerpt from the command lists specified in the PICMG 3.0 R 2.0 AdvancedTCA Base Specification and the PICMG AMC.0 Advanced Mezzanine Card Specification, R 1.0. The shaded table cells indicate commands supported by the AM4120 MMC.

M = mandatory, O = optional

Table 4: AdvancedTCA and AMC Commands

COMMAND	PICMG 3.0 SPEC. TABLE	NETFN	CMD	KONTRON SUPPORT ON MMC
AdvancedTCA			•	М
Get PICMG Properties	3-9	PICMG	00h	M / Yes
Get Address Info	3-8	PICMG	01h	N/A
Get Shelf Address Info	3-13	PICMG	02h	N/A
Set Shelf Address Info	3-14	PICMG	03h[1]	N/A
FRU Control	3-22	PICMG	04h	M / Yes [1]
Get FRU LED Properties	3-24	PICMG	05h	M / Yes
Get LED Color Capabilities	3-25	PICMG	06h	M / Yes
Set FRU LED State	3-26	PICMG	07h	M / Yes
Get FRU LED State	3-27	PICMG	08h	M / Yes
Set IPMB State	3-51	PICMG	09h	N/A
Set FRU Activation Policy	3-17	PICMG	0Ah	N/A
Get FRU Activation Policy	3-18	PICMG	0Bh	N/A
Set FRU Activation	3-16	PICMG	0Ch	N/A
Get Device Locator Record ID	3-29	PICMG	0Dh	M / Yes
Set Port State	3-41	PICMG	0Eh	N/A
Get Port State	3-42	PICMG	0Fh	N/A
Compute Power Properties	3-60	PICMG	10h	N/A
Set Power Level	3-62	PICMG	11h	N/A
Get Power Level	3-61	PICMG	12h	N/A
Renegotiate Power	3-66	PICMG	13h	N/A
Get Fan Speed Properties	3-63	PICMG	14h	N/A

Page 12 ID 1045-9586, Rev. 1.0

Table 4: AdvancedTCA and AMC Commands (Continued)

COMMAND	PICMG 3.0 SPEC. TABLE	NETFN	CMD	KONTRON SUPPORT ON MMC
Set Fan Level	3-65	PICMG	15h	N/A
Get Fan Level	3-64	PICMG	16h	N/A
Bused Resource	3-44	PICMG	17h	N/A
Get IPMB Link Info	3-49	PICMG	18h	N/A
AMC	AMC.0 TABLE			
Set AMC Port State	3-27	PICMG	19h	O / Yes
Get AMC Port State	3-28	PICMG	20h	O / Yes
Set Clock State	3-44	PICMG	2Ch	O / Yes
Get Clock State	3-45	PICMG	2Dh	O / Yes

[1] Only "FRU Control - Cold Reset" and "FRU Control - Quiesce" are supported.

3. OEM Commands and Command Extensions

3.1 Get Device ID Command with OEM Extensions

The IPMI specification defines four optional bytes in the response to Get Device ID. The response bytes [13:16] hold the 'Auxiliary Firmware Revision Information'.

Table 5: Get Device ID Command with OEM Extensions

	COMMAND	LUN	NetFn	CMD
Get Dev	vice ID command with OEM extensions	00h	App = 06h	01h
	REQUEST DA	ГА		
Byte	Data Field			
-	-			
	RESPONSE DA	TA .		
Byte	Data Field			
1	Completion Code			
2 - 12	Regular Get Device ID command response	fields		
13	Release number of the MMC firmware:			
	10h for R10,			
	11h for R11,			
14	Module geographical address (site number):			
	1 8 = Module in AMC bay A1, A2, A3, A4, I			
	or in µTCA slot 1 8 with bus addre 72h, 74h, 76h, 78h, 7ah, 7ch, 7eh, 80			
	912 = Module in µTCA slot 9 12 = Bay C			
	with bus addresses 82h, 84h, 86h, 88			
	0, > 12 = Module position is not in range. The switched off	IPMB-L bus is		
15 - 16	Reserved			

Page 14 ID 1045-9586, Rev. 1.0

3.2 Set Control State (Firmware Hub, Boot Order)

Table 6: Set Control State

	COMMAND	LUN	NetFn	CMD		
Set Co	ntrol State (Firmware Hub, Boot Order)	00h	OEM = 3Eh	20h		
	REQUEST DA	ГА				
Byte	Data Field					
1	Control ID: 00h = Firmware Hub (SPI Flash) Selection 9Dh = Boot Order Configuration					
2	Control State for SPI Flash selection: (These settings are stored in EEPROM and applied (to logic) each time the IPMI controller detects power-on) 00h = Standard SPI boot flash is selected (default) 01h = Recovery SPI boot flash is selected					
	Please note that this selection may be forcibly overridden either by DIP-Switch (SW3 switch 2, refer to the AM4120 User Guide, Table 4-2) or during a bootloader firmware update process. In case of a failed boot process from the standard SPI NOR flash, the IPMI controller will select the recovery SPI NOR flash and boot the board again. In case of a boot failure from the recovery SPI NOR flash, the board locks up. Refer to chapter 8. U-Boot Failover Control.					
	Control State for Boot Order Configuration: (These settings are stored in EEPROM and applied (to logic) each time the IPMI controller detects power-on) 00h = No override, boot as usual (for all other values, refer to the U-Boot User Guide)					
	RESPONSE DA	ATA				
Byte	Data Field					
1	Completion Code					

3.3 Get Control State (Firmware Hub, Boot Order)

Table 7: Get Control State

	COMMAND	LUN	NetFn	CMD		
Get Cor	ntrol State (Firmware Hub, Boot Order)	00h	OEM = 3Eh	21h		
	REQUEST DA	ГА				
Byte	Data Field					
1	Control ID:					
	00h = Firmware Hub (SPI Flash) Selection					
	9Dh = Boot Order Configuration					
	RESPONSE DA	ATA .				
Byte	Data Field					
1	Completion Code					
4	Control State (refer to Chapter 3.2, Set Control S	tate)				
	00h 01h for control ID = Firmware Hub SPI Flash Select					
	00h FFh for control ID = Boot Order Configurati	ion				

Page 16 ID 1045-9586, Rev. 1.0

3.4 OEM Module Quiescence Feedback

This command is used to control a graceful shutdown of the AM4120 and is a prerequisite for the hot swap feature. For further information on hot swap, refer to Chapter 9, Hot Swap.

A shutdown daemon should be used to shut down the system in an orderly manner. For this purpose, Kontron's BSPs include a Graceful Reboot and Shutdown Daemon, "grnsd".

This command can also be used to set a timeout time for the case that the graceful shutdown daemon is unable to shut down the system in time. As a default value at system start this time is set to 20 seconds to ensure that the system can be shut down properly in any case (e.g. U-boot running or OS without graceful shutdown daemon 'grnsd'). OS's with the graceful shutdown daemon 'grnsd' can modify the quiescent wait time as required.

Table 8: OEM Module Quiescence Feedback

	COMMAND	LUN	NetFn	CMD					
OEM M	odule Quiescence Feedback	00h	OEM = 3Eh	40h					
	REQUEST DATA								
Byte	Data Field								
1	Control bits: [7] - 1b = set quiesce wait timeout [6] - 1b = quiescence acknowledge (OS ready) [5] - 1b = OS daemon present [4:0] Reserved								
2	1								
	RESPONSE DA	ιΤΑ							
Byte	Data Field								
1	Completion code								
2	Control bits: [7] - Reserved [6] - 1b = quiescence acknowledge (OS ready) [5] - 1b = OS daemon present [4] - 1b = quiesce request (FRU Control) [3] - Reserved [2] - 1b = graceful reboot request (FRU Control) [1] - 1b = quiescence reached (MMC acknowledg) [0] - 1b = module hot swap switch opened	e)							
4	Quiesce wait timeout (valid only if OS daemon pr	esent = 1)							

Functional Description

3.4.1 Usage if a Shutdown Daemon is Announced as Present

If a timeout time has to be set to avoid an endless waiting for the sleep state, the daemon calls this command after system start with the "set quiesce wait timeout" bit set and the "Quiesce wait timeout" time <> 0. Afterwards, the daemon calls this command cyclically with the "OS daemon present" bit set. When the MMC gets a FRU Control (Quiesce) request from the carrier (e.g. during a hot swap sequence), it sets the "quiesce request (FRU Control)" bit in its command response. After the daemon sees this bit set in the response, it should shut down the system. After having set the "quiesce request (FRU Control)" bit, the MMC starts the timeout timer (if a timeout time was defined) and monitors the sleep signal line to recognize the sleep state which should be caused by the shutdown. When the MMC detects the sleep state (signal) or it receives a command with the "quiescence acknowledge" bit set or the timeout timer has expired, the MMC sends a "Module Hot Swap Event" message to the carrier, and in the following the payload power will be switched off.

3.4.2 Usage if no Shutdown Daemon is Announced as Present

If no command call announces that a daemon is present, the MMC automatically uses the default timeout time 0 (endless wait) during the hot swap process. But if the timeout time was set to a value 1...255, this time will be used in any case while waiting for the sleep state (signal).

Settings changed with this command are volatile (in particular quiesce timeout and OS daemon present). Bits [6:5] are always settable, but once the quiesce request comes, they cannot be cleared until quiescence state is entered and exited.

Page 18 ID 1045-9586, Rev. 1.0

4. Sensors Implemented on the AM4120

The MMC includes various sensors for voltage or temperature monitoring and various others for pass/fail type signal monitoring.

Each sensor is associated with a Sensor Data Record (SDR). Sensor Data Records contain information about the sensor's identification such as sensor type, sensor name, sensor unit. SDRs also contain the configuration of a specific sensor such as threshold, hysteresis or event generation capabilities that specify each sensor's behavior. Some fields of the sensor SDR are configurable using IPMI commands others are always set to built-in default values.

Finally, one field, which is the sensor owner, must reflect the module's address that enables the AMC carrier to identify the owner of the sensor when it is scanned and merged into the AMC Carrier's SDR repository.

From the IPMI perspective, the MMC is set up as a satellite management controller (SMC). The MMC supports sensor device IPMI commands and uses the static sensor population feature of IPMI. All Sensor Data Records can be queried using Device SDR commands.

Each sensor has a name field in its SDR. The sensor name has a prefix, which is automatically adapted, dependent on the physical position of the module in a carrier or in a µTCA chassis.

The following prefixes are used for all sensors of an AMC module:

Table 9: Sensor Name Prefix

AMC Bay	1	2	3	4	5	6	7	8	-	-	-	-
μTCA slot	1	2	3	4	5	6	7	8	9	10	11	12
Sensor Name Prefix	A1:	A2:	A3:	A4:	B1:	B2:	B3:	B4:	C1:	C2:	C3:	C4:

Module sensors that have been implemented are listed in the sensor list below.

4.1 Sensor List

The following table indicates all sensors available on the AM4120. For further information on Kontron's OEM specific sensor types and sensor event type codes presented in the following table, please refer to Chapter 4.3, OEM Event/Reading Types.

Table 10: Sensor List

Sensor Number / Name	Sensor Type (Code) / Event/Reading Type (Code)	Ass. Mask / Deass. Mask / Reading Mask	Description	Health LED Red on Error
00h / A1:IPMI Info-1	OEM Firmware Info 1 (C0h) / OEM (70h)	0003h / 0000h / 7FFFh	For internal use only	N
01h / A1:IPMI Info-2	OEM Firmware Info 2 (C0h) / OEM (71h)	0003h / 0000h / 7FFFh	For internal use only	N
02h / A1:IPMI Watchdog	Watchdog (23h) / Sensor-specific (6Fh)	010Fh / 0000h / 010Fh	Watchdog 2	Y
03h / A1:FRU Agent	OEM (C5h) / Discrete (0Ah)	0140h / 0000h / 0147h	FRU agent	N
04h / A1:Health Error	Platform Alert (24h) / Digital discrete (03h)	0000h / 0000h / 0003h	Aggregate states (power, temperature, etc.). Visualization by the Health LED.	Y
05h / A1:MMC Reboot	Platform Alert (24h) / Digital discrete (03h)	0002h / 0000h / 0003h	MMC reboot active state. Is asserted during boot time.	N
06h / A1:ModuleHotSwap	OEM (F2h) / Sensor-specific (6Fh)	001Fh / 0000h / 001Fh	Hot swap sensor	N
07h / A1:IPMBL State	OEM (C3h) / Sensor-specific (6Fh)	0007h / 0000h / 000Fh	State of IPMB-L bus	N
08h / A1:MMC Stor Err	Mgmt. Subsyst. Health (28h) / Sensor-specific	0002h / 0000h / 0003h	Storage error	N
0Ah / A1: MMC FwUp	Firmware Upgrade Manager (C7h) / Sensor specific (6Fh)	010Fh / 0000h / 010Fh	Status of Firmware Upgrade Manager	N
0Dh / A1:Board Reset	OEM (C4h) / Sensor-specific (6Fh)	04DEh / 0000h / 04DEh	Board reset event	Y
0Eh / A1:Temp Board	Temperature (01h) / Threshold (01h)	7A95h / 7A95h / 3F3Fh	Board temperature	Y
0Fh / A1:Temp AMC In	Temperature (01h) / Threshold (01h)	7A95h / 7A95h / 3F3Fh	Air temperature near AMC edge-connector	Y
13h / A1:Board 3.3vIPM	Voltage (02h) / Threshold (01h)	2204h / 2204h / 1212h	AMC Management Power (MP) 3.3V	Y
14h / A1:Board 12.0v	Voltage (02h) / Threshold (01h)	2204h / 2204h / 1212h	AMC Payload Power (PWR) 12V	Y
15h / A1:Board 5.0V	Voltage (02h) / Threshold (01h)	2204h / 2204h / 1212h	Board 5V supply	Y

Page 20 ID 1045-9586, Rev. 1.0

Table 10: Sensor List

Sensor Number / Name	Sensor Type (Code) / Event/Reading Type (Code)	Ass. Mask / Deass. Mask / Reading Mask	Description	Health LED Red on Error
16h / A1:Board 3.3V	Voltage (02h) / Threshold (01h)	2204h / 2204h / 1212h	Board 3.3V supply	Y
17h / A1:Pwr Good	Power supply (08h) / OEM (77h)	0000h / 0000h / 0887h	States of all power lines	N
18h / A1:Pwr Good Evt	Power supply (08h) / OEM (77h)	0000h / 0887h / 0887h	Power fail events for all power lines	Y
1Ah / A1:FWH0 Boot Err	Boot Error (1Eh) / Sensor-specific (6Fh)	0008h / 0008h / 0008h	Firmware Hub 0 boot error	Y
1Bh / A1:FWH1 Boot Err	Boot Error (1Eh) / Sensor-specific (6Fh)	0008h / 0008h / 0008h	Firmware Hub 1 boot error	Y
1Dh / A1:Lan AMC0 Link	LAN (27h) / Sensor-specific (6Fh)	0000h / 0000h / 0003h	LAN link status – AMC port 0	N
* 1Eh / A1:Lan AMC1 Link	LAN (27h) / Sensor-specific (6Fh)	0000h / 0000h / 0003h	LAN link status – AMC port 1	N
* 1Fh / A1:Lan FrontA Lk	LAN (27h) / Sensor-specific (6Fh)	0000h / 0000h / 0003h	LAN link status – Front port A	N
20h / A1:Lan FrontB Lk	LAN (27h) / Sensor-specific (6Fh)	0000h / 0000h / 0003h	LAN link status – Front port B	N

^{*} Either "Lan AMC1 Link" or "Lan FrontA Lk" sensor is valid. Which one is valid and readable, depends on the board's configuration (SW2 switch 2, refer to AM4120 User Guide, Table 4-1).

4.2 Sensor Thresholds

The AM4120 CPU module is available for two different operating temperature ranges. For each operating temperature range, a set of temperature thresholds for the sensors is defined. The standard temperature range uses thresholds defined by Table 11, and the extended temperature range uses thresholds defined by Table 12. Table 13 provides voltage sensor thresholds.

Table 11: Thresholds - Standard Temperature Range

Sensor Number / ID String	0Eh / A1:Temp Board	0Fh / A1:Temp AMC In
Upper non-recoverable	75 °C	75 °C
Upper critical	70 °C	70 °C
Upper non-critical	65 °C	65 °C
Normal max.	60 °C	60 °C
Nominal	55 °C	55 °C
Normal min.	0 °C	0 °C
Lower non-critical	-5 °C	-5 °C
Lower critical	-7 °C	-7 °C
Lower non-recoverable	-10 °C	-10 °C

Table 12: Thresholds - Extended Temperature Range

Sensor Number / ID String	0Eh / A1:Temp Board	0Fh / A1:Temp AMC In
Upper non-recoverable	90 °C	90 °C
Upper critical	85 °C	85 °C
Upper non-critical	80 °C	80 °C
Normal max.	75 °C	75 °C
Nominal	70 °C	70 °C
Normal min.	0 °C	0 °C
Lower non-critical	-40 °C	-40 °C
Lower critical	-42 °C	-42 °C
Lower non-recoverable	-45 °C	-45 °C

Page 22 ID 1045-9586, Rev. 1.0

Table 13: Voltage Sensor Thresholds

Sensor Number / ID String	17h / A1:Board 3.3vIPM	18h / A1:Board 12.0v	19h / A1:Board 5.0V	1Ah / A1:Board 3.3V
Upper non-recoverable	n.a.	n.a.	n.a.	n.a.
Upper critical	3.50 V	13.4 V	5.36 V	3.50 V
Upper non-critical	n.a.	n.a.	n.a.	n.a.
Normal max.	3.46 V	13.2 V	5.31 V	3.46 V
Nominal	3.30 V	12.0 V	5.00 V	3.30 V
Normal min.	3.13 V	10.8 V	4.70 V	3.13 V
Lower non-critical	n.a.	n.a.	n.a.	n.a.
Lower critical	3.11 V	10.7 V	4.67 V	3.11 V
Lower non-recoverable	n.a.	n.a.	n.a.	n.a.

4.3 OEM Event/Reading Types

Kontron's OEM specific sensor types and sensor event type codes are presented in the following table.

Table 14: OEM Event/Reading Types

OEM SENSOR Type (CODE)	OEM EVENT/READING TYPE (CODE)	DESCRIPTION	
Firmware Info 1 (C0h)	70h	Internal Diagnostic Data	
Firmware Info 2 (C0h)	71h	Internal Diagnostic Data	
Board Reset (C4h)	6Fh (sensor type specific)	Sensor-specific Offset	Event
		00h	Reserved
		01h	HwPowerReset
		02h	PCIReset
		03h	HwWatchDogReset
		04h	SoftReset
		05h	Reserved
		06h	ColdReset
		07h	IPMICommand
		08h	Reserved
		09h	Reserved
		0Ah	BMCWatchdog
IPMBL State (C3h)	6Fh (sensor type specific)	Sensor discrete State	Meaning
		08h	IPMB-L running
		others	IPMB-L not running

Page 24 ID 1045-9586, Rev. 1.0

Table 14: OEM Event/Reading Types (Continued)

OEM SENSOR TYPE (CODE)	OEM EVENT/READING TYPE (CODE)	DESCRIPTION	
Firmware Upgrade Manager (C7h)	6Fh (sensor type specific)	Sensor-specific Offset	Event
		0h	First Boot after upgrade
		1h	First Boot after rollback (error)
		2h	First Boot after errors (watchdog)
		3h	First Boot after manual rollback
		4h	Reserved
		5h	Reserved
		6h	Reserved
		7h	Reserved
		8h	Firmware Watchdog Bite, reset occurred
Power Supply (08h) i.e. for Power Good /	77h (OEM)	Sensor-specific Offset	Event
Power Good Event		0h	12V good (PWR)
		1h	5V good
		2h	3V3 good
		3h	Reserved
		4h	Reserved
		5h	Reserved
		6h	Reserved
		7h	vccCore good
		8h	Reserved
		9h	Reserved
		Ah	Reserved
		Bh	3V3IPMI good (MP)
		Ch	Reserved

Table 14: OEM Event/Reading Types (Continued)

OEM SENSOR TYPE (CODE)	OEM EVENT/READING TYPE (CODE)	DESCRIPTION	
Hot Swap Sensor (F2h)	6Fh (sensor type specific)	Sensor-specific Offset	Event
		00h	Handle close
		01h	Handle open
		02h	Quiesced
		03h	Backend Power Failure
		04h	Backend Power Shutdown

5. Firmware Code

5.1 Structure and Functionality

MMC firmware code is organized into boot code and operational code (IPMI firmware). Both are stored in the internal flash of the micro-controller.

An additional external SPI NOR flash device is used for holding two copies of the operational code. One copy will always be the active operational code. The other firmware copy will either be a newly downloaded firmware or the 'previously good' operational code for rollback.

Upon an MMC start or reset, the controller first executes the boot code. The boot code will check the status of the firmware and calculate a checksum of the operational code. Upon successful verification of the operational code checksum, the firmware will execute the operational code. The operational code is upgradable in the field.

5.2 Firmware / Module Identification

IPMI provides two methods to identify the AM4120 MMC firmware:

- Issuing the IPMI Command Get Device ID
- Reading the Device Locator Record (SDR Type 12h)

A full description of the IPMI command Get Device ID and the Device Locator Record (SDR Type 12h) can be found in the IPMI specification. For further information refer to Table 2, Related Publications.

IPMI Command: Get Device ID

The response on the IPMI command Get Device ID offers the following information (among others):

Manufacturer ID = 3A98h / 15000d (Kontron IANA ID)

Device ID = 20h (NXP ARM7 microcontroller)

Product ID = identifies the firmware (its board family firmware)

Page 26 ID 1045-9586, Rev. 1.0

- Firmware revision (byte 4:5) reflects the core version of the running firmware, which will change only after major functional update.
- SDR revision (byte 13, OEM extension) will be incremented with each firmware update

For a description of the OEM extensions refer to Chapter 3.1, "Get Device ID Command with OEM Extensions".

Device Locator Record

The Device Locator Record (SDR Type 12h) contains a Device ID String which identifies the MMC as AM4120 MMC. Additionally, some run-time information such as AMC slot and slot-dependent IPMB address is available in this record.

For example, when using the Linux "ipmitool" on a AM4120 placed in the first AMC slot of a μ TCA system, by calling:

```
ipmitool sdr list mcloc
```

the following information is displayed:

A1:AM4120 | ... @72h | ok

5.3 Firmware Upgrade

The standard way to upgrade the MMC's operational code is to use the open tool "ipmitool" (see Table 2, Related Publications). This tool allows download and activation of new operational code and also a rollback to the "last known good" operational code. Additionally, the status and the firmware version of the firmware copies can be checked.

For local or remote firmware upgrade, the following IPMI interfaces are available:

- KCS interface (local, requires active payload, but fast)
- IPMB (remote, independent of the payload state)

During the download process, the currently running operational code operates as usual until the activation command is issued. During the activation process, the MMC is off-line for about 20 seconds while the boot code is re-organizing the firmware storage. Afterwards, it starts the new operational code. If this doesn't succeed, after a timeout the boot code performs an automatic rollback to the "last known good" operational code.

5.3.1 Firmware File Formats

Firmware images for upgrade are provided in two formats:

- Firmware in binary format, e.g. FW_IPMI_<BOARD>_<REL>_FWUM.bin, for usage with "ipmitool fwum .." commands
- Firmware images in the PICMG defined HPM.1 file format, e.g. FW_IPMI_<BOARD>_<REL>_FWUM.hpm, for usage with "ipmitool hpm .." commands

where:

<BOARD> indicates board family of the MMC's firmware

<REL> indicates release (version) of MMC's firmware

5.3.2 Firmware Upgrade - "ipmitool hpm"

Firmware upgrade using a HPM.1 file requires at least "ipmitool" version 1.8.10.

The firmware upgrade procedure starts with downloading the HPM.1 file using, for example, the following command:

```
ipmitool hpm upgrade <HPM.1 FWFile>.hpm all
```

The next step is the activation of the newly downloaded MMC firmware. This is done using:

```
ipmitool hpm activate
```

Detailed information about the active firmware image or the inactive image can be obtained using the commands mentioned below.

To obtain detailed version information of the active MMC firmware, use the following command:

```
ipmitool hpm compprop 1 1
```

To obtain the version information of the rollback image (only valid if a newly downloaded firmware is already activated), use the following command:

```
ipmitool hpm compprop 1 3
```

To obtain the version information of the newly downloaded MMC firmware (only valid after download and before activation), use the following command:

```
ipmitool hpm compprop 1 4
```

To obtain detailed information about the MMC's HPM.1 upgrade capabilities, use the following command:

```
ipmitool hpm targetcap
```

To perform a manual rollback to the previously good firmware image, use the following command:

ipmitool hpm rollback

5.3.3 Firmware Upgrade - "ipmitool fwum"

"ipmitool" version 1.8.9 doesn't support HPM.1 correctly. Tool versions prior to this do not support HPM.1 at all.

The firmware upgrade procedure starts with the download of the binary firmware file using, for example, the following command:

```
ipmitool fwum download <Binary FWFile>.bin
```

The next step is the activation of the newly downloaded MMC firmware. This is done using:

```
ipmitool fwum upgrade
```

Detailed information about the active and inactive firmware images can be obtained using the following command:

```
ipmitool fwum status
```

To perform a manual rollback to the previously good firmware image, use the following command:

ipmitool fwum rollback

6. FRU Information

The MMC provides 4 kB of non-volatile storage space for FRU information. Some of the data stored there, such as the Module Current Requirements record or E-Keying information (refer to AMC.0 specification for details), are mandatory for module functionality in an ATCA/AMC environment.

Please note that missing FRU information possibly will prevent the AMC module from being accepted by the carrier controller during the hot swap process, and the module will possibly not receive payload power.

Full low-level access to read or write a module's FRU information is provided by regular IPMI FRU Device commands. Please be careful when writing FRU information directly using standard IPMI commands. Damaging the FRU information may lead to a non-working payload.

6.1 FRU Version Identification

The FRU data fields, as defined in the IPMI - Platform Management FRU Information Storage Definition v1.0, Rev 1.1, are used to record the version of the FRU installed. The revision number is incremented for each new release of FRU data.

Example of board FRU ID: "STD_R01" Example of product FRU ID: "STD_R01"

6.2 FRU Data Update

Update of the FRU data can be done via regular IPMI FRU device commands. The correct FRU data must be prepared at the factory.

7. E-Keying

E-Keying has been defined in the AMC.0 R2.0 Specification to prevent module damage, prevent malfunctions, and verify bay connection compatibility. Therefore, the FRU data of an AMC module contains PICMG-defined records which describe the module's AMC interoperability:

- · Module Current Requirements Record
- Clock Configuration Record, for the PCI Express reference clock
- AMC Point-to-point Record, describing module's AMC port capabilities

The IPMI commands Set AMC Port State and Get AMC Port State defined by the AMC.0 specification are used by the carrier or MCH for either granting or rejecting the E-Keys (i.e. enabling or disabling of AMC ports during E-Keying).

Which AMC port connections are activated is decided during E-Keying. The information which AMC port is enabled or not, can be directly read from the board's E-Keying configuration registers (IAKEY0, IAKEY1 and IAKEY2) at addresses 0x298 / 0x299 / 0x29Ah.

7.1 Board Configuration for E-Keying

The AM4120 supports either a Serial RapidIO interface (default) or a PCI Express interface in the AMC port Fat Pipes region.

The required interface settings must be configured via DIP Switch SW2.

For further information, refer to the AM4120 User Guide, Chapter 4.1 DIP Switch Configuration.

7.2 PCI Express Reference Clock - FCLKA

Both sides (Root Complex and Endpoint) of a PCI Express connection should be driven by a common reference clock. The PCI Express reference clock may be generated locally by the module or acquired from the AMC connector.

When the AM4120 is configured as PCI Express Root Complex, it may act either as clock receiver or as clock source. If configured as PCI express Endpoint, the AM4120 is acting as clock receiver only. Both are described by the Clock Configuration Record (for the PCI Express reference clock) and defined by the "AMC.1 R2.0, PCI Express on AMC" specification.

The DIP Switch SW3 can be used to overwrite the clock configuration (clock receiver, clock source, etc.) regardless of the E-Keying results. Please refer to the AM4120 User Guide for details.

Clock Receiver:

The PCI Express reference clock provided by the carrier may be slightly modulated (SSC - Spread Spectrum Clock). The FRU E-Keying data for the AM4120 contains two AMC link descriptors for each PCI Express channel, one with SSC (priority 1) or with non-SSC (priority 2). The carrier's IPMC selects the "matching" link descriptor (SSC or non-SSC) during E-Keying using the Set AMC Port State command.

Page 30 ID 1045-9586, Rev. 1.0

Clock Source:

When the AM4120 acts as clock source for the PCI Express reference clock, the clock signal must be routed also to the PCI Express Endpoint. The backplane, the carrier's IPMC or the MCH must be capable of doing this (Clock E-Keying according to AMC.1 R2.0).

The information whether the AMC clock or the local clock is used as PCI Express reference clock can be directly read from the board's E-Keying clock configuration register (ICKEY0) at address 0x297.

The DIP Switch SW3 can be used to forcibly configure the PCI Express reference clock. Please refer to the AM4120 User Guide for details.

8. U-Boot Failover Control - Automatic Flash Selection

For normal operation, the MMC specifies the standard SPI NOR flash to be used for booting and starts the payload. Then it waits for a message from the U-Boot bootloader. This message contains a checksum report, i.e. it reports whether the boot flash's checksum is valid.

If either the checksum is invalid or the message is not received within a given time, the currently used SPI NOR flash is assumed to contain a corrupted image. In this case, the MMC generates a "Boot Error - Invalid boot sector" event for the related sensor. The sensor "FWH0 Boot Err" indicates the boot error and generates the event for the standard SPI NOR flash. When booting from the standard SPI NOR flash fails, the MMC selects the recovery SPI NOR flash, then the board processor is reset and the MMC waits for the checksum report message from U-Boot again.

In the event the recovery SPI NOR flash boot is successful, payload control is turned over to U-Boot.

If again the checksum is invalid or the message is not received within a given time, the MMC indicates the boot error with sensor "FWH1 Boot Err" and generates the event. The MMC remains operable, however, now some form of intervention (human) on the part of the IPMI management system is required to resolve the failure of the module to properly boot.

9. Hot Swap

9.1 General

As a hot-swappable field replaceable unit (FRU), the AM4120 also follows the same stringent carrier grade RASM feature set, namely - Reliability, Availability, Serviceability, Maintainability. When offered in combination with AdvancedTCA platforms, TEM (Telecom Equipment Manufacturers) clients literally conserve valuable system AdvancedTCA system slots. The AM4120 supports full hot swap capability as per PICMG 3.0. It can be removed from or installed in a running system without powering-down the system. Please refer to the PICMG 3.0 specification for additional details.

During hot swap of a working module, the payload side has to be shut down automatically on command of the MMC and the end of shutdown has to be signalled back to the MMC.

9.2 OS Requirements for Graceful Shutdown

Requirements:

At system start on the payload side, the Kontron shutdown daemon "grnsd" must be started. It is included in the Linux board support packages for the AM4120. This daemon communicates cyclically with the MMC for the exchange of states, commands and acknowledges. For this, it uses the OEM Module Quiescence Feedback command. Refer to Chapter 3.4.

Hot swap operation sequence processed by MMC and OS:

- On command of the carrier controller the MMC sets a "shut down request" flag.
- The "grnsd" daemon recognizes this request in the response to its cyclical OEM Module
 Quiescence Feedback command and initiates the shutdown of the payload software
 system.
- At the end of the shutdown process, the "grnsd" daemon informs the MMC by setting the appropriate flag when calling the OEM Module Quiescence Feedback command.
- The MMC reports this to the carrier controller so that the hot swap processing can be continued and finished.

By default the MMC waits endlessly for this information. If an endless wait is to be avoided, it is possible to set a timeout time after which the system will be switched off unconditionally. For the setting of the timeout refer to Chapter 3.4, OEM Module Quiescence Feedback.

10. OS Support / Tools

10.1 Linux Tools

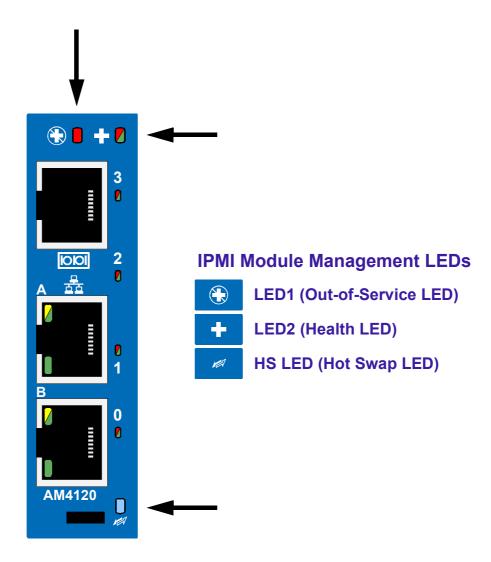
OpenIPMI - KCS driver

Normally all drivers and kernel modules needed for communication between the payload software and the MMC firmware via the KCS interface come with the distribution. The OpenIPMI library package includes some applications and the required libraries.

"ipmitool"

Another very useful all-in-one tool is the "ipmitool" (http://ipmitool.sourceforge.net). It provides a user-friendly interface to many IPMI features and extensions, for example, to get sensor readings, change sensor thresholds or access other Management Controllers via IPMB. Before "ipmitool" can be used, the OpenIPMI driver mentioned above must be loaded too.

10.2 OS Support - Board Support Packages


To see which Operating Systems are supported refer to the board's data sheet. Please visit http://www.kontron.com to get the data sheet. Please also have a look in the download section for latest versions of Board Support Packages or Firmware Updates.

For further information concerning IPMI, refer to the BSP documentation for the respective OS.

Page 32 ID 1045-9586, Rev. 1.0

11. IPMI Module Management LEDs

There are three IPMI Module Management LEDs on the front panel of the AM4120. The following figure illustrates an AM4120 module and the location of the LEDs.

ID 1045-9586, Rev. 1.0

The following table describes the functions of the IPMI Module Management LEDs.

Table 15: IPMI Module Management LED Functions

LED	COLOR	STATE	NORMAL MODE	OVERRIDE MODE selectable by user or carrier, depending on PICMG LED command	
LED1	red	off	Default	By user:	
(Out-of- Service		on	MMC out of service or in reset state	 Only lamp test 	
LED)		blinking	MMC firmware upgrade		
LED2 green/		green: blinking	MMC running showing its heartbeat	By user:	
(Health red+amber LED)	green: blinking and pulsing	MMC heart beat and KCS traffic	Only lamp test		
	red: on + amber: blinking	Health error detected + MMC heart beat			
		red: on + amber: blinking and pulsing	Health error detected + MMC heart beat and KCS traffic		
HS LED blue (Hot Swap		on	a) Module ready for hot swap extraction, or	By carrier: • On	
LED)		b) Module has just been inserted in a powered system	 Off Slow/Fast Blinking		
		blinking	Module hot swap in progress; module not ready for extraction	By user: Only lamp test	
		off	Module is in normal operation		

Page 34 ID 1045-9586, Rev. 1.0