

DEVICE NET USER MANUAL

Absolute Rotary Encoder with DEVICE NET Interface

> MHM510-DNET-001 MHK515-DNET-001

> > **User Manual**

DEVICE NET USER MANUAL

Tél	1	+33 (0)3 88 20 80 80
Fax	:	+33 (0)3 88 20 87 87
Mail	:	info@bei-ideacod.com
Web	1	www.bei-ideacod.com

Alteration of Specifications reserved

Technical specifications, which are described in this manual, are subject to change due to our permanent strive to improve our products.

Disclaimer of Warranty

BEI IDEACOD makes no representations or warranties, either express or implied, by or with respect to anything in this manual. And shall not be liable for any implied warranties of merchantability and fitness for a particular purpose or for any indirect, special, or consequential damages.

DEVICE NET USER MANUAL

 Tél
 :
 +33 (0)3 88 20 80 80

 Fax
 :
 +33 (0)3 88 20 87 87

 Mail
 :
 info@bei-ideacod.com

 Web
 :
 www.bei-ideacod.com

1. Introduction	5
2. Data Transmission	5
2.1. The Object Dictionary	5
3. Programmable Parameters	6
3.1. Encoder parameters	6
3.1.2. Resolution per revolution	6
4. Operating Mode	8
4.1. Polled Mode	8
4.2. Change of State Mode	9
4.3. Saving Parameter	
5. Transmission of the actual position	11
6. Installation	12
6.1. Electrical connection	12
6.2. Setting of the baudrate	13
7. Power On	14
7. Power On 7.1. Operating Mode	14 14
 7. Power On 7.1. Operating Mode 7.2. Programming 7.2.1 Operating Parameter 	14 14 14
 7. Power On 7.1. Operating Mode 7.2. Programming 7.2.1. Operating Parameter	14 14 14 14 14
 7. Power On 7.1. Operating Mode 7.2. Programming 7.2.1. Operating Parameter 7.2.3. Total resolution 7.3 Configuration with DeviceNet Manager 	14 14 14 14 15 18
 7. Power On 7.1. Operating Mode 7.2. Programming	14 14 14 15 18 23
 7. Power On 7.1. Operating Mode	14 14 14 14 15 18 23 25
 7. Power On 7.1. Operating Mode	14 14 14 14 15 18 23 25
 7. Power On 7.1. Operating Mode	14 14 14 15 18 23 25 25
 7. Power On 7.1. Operating Mode	 14 14 14 15 18 23 25 25 25 26
 7. Power On 7.1. Operating Mode	14 14 14 15 18 23 25 25 26 26
 7. Power On 7.1. Operating Mode	 14 14 14 15 18 23 25 25 26 26 26 27

DEVICE NET USER MANUAL

Tél	1	+33 (0)3 88 20 80 80
Fax	:	+33 (0)3 88 20 87 87
Mail	:	info@bei-ideacod.com
Web	:	www.bei-ideacod.com

1. Introduction

Absolute rotary encoders provide a definite value for every possible position. All these values are reflected on one or more code discs. The beams of infrared LEDs are sent through code discs and detected by Opto-Arrays. The output signals are electronically amplified and the resulting value is transferred to the interface.

The absolute rotary encoder has a maximum resolution of 65536 steps per revolution (16 Bit). The Multi-Turn version can detect up to 16384 revolutions (14 Bit). Therefore the largest resulting resolution is 30 Bit = 1.073.741.824 steps. The standard Single-Turn version has 12 Bit, the standard Multi-Turn version 24 Bit.

The integrated CAN-Bus interface of the absolute rotary encoder supports all of the DeviceNet functions. The following modes can be programmed and enabled or disabled:

- Polled Mode
- Change of State

The protocol supports the programming of the following additional functions: Code sequence (Complement) Resolution per revolution Total resolution Preset value

The general use of absolute rotary encoders with DeviceNet interface is guaranteed.

Tel : +33 (0)3 88 20 80 80 Fax : +33 (0)3 88 20 87 87 Mail : info@bei-ideacod.com Web : www.bei-ideacod.com

DEVICE NET USER MANUAL

2. Data Transmission

The data transmission in the DeviceNet network is realised by message telegrams. Basically, these telegrams can be divided into the CAN-ID and 8 following bytes as shown in the table below:

CAN-ID	Message Header	Message Body
11 Bit	1 Byte	7 Byte

2.1. The Object Dictionary

Instance Attribute of the Position Sensor Objects

Class Code: 23 hex

Attribute ID	Access	Name	Data Type	Description
1 hex	Get	Number of Attributes	USINT	Number of supported Attributes
2 hex	Get	Attribute	Array of USINT	List of supported Attribute
3 hex	Get	Position value	DINT	current position
70 hex	Get /	Code sequence	Boolean	Controls the code sequence
	Set			clockwise or counterclockwise
71 hex	Get / Set	resolution per revolution	INT	resolution for one revolution
72 hex	Get / Set	total resolution	DINT	total measurable resolution
73 hex	Get / Set	preset value	DINT	setting a defined position value

Get / Set: : read, write

DEVICE NET USER MANUAL

3. Programmable Parameters

3.1. Encoder parameters

3.1.1. Operating Parameter

The operating parameter can be used to select the code sequence.

Attribute ID	Default value	Value range	Data Type
0 b hex	1 hex	0 hex - 1hex	Boolean

The parameter code sequence (complement) defines the counting direction of the process value **as seen on the shaft** whether clockwise or counter clockwise. The counting direction is defined in the attribute 70 hex:

Bit 0	Drehrichtung	Ausgabecode
1	CW	Steigend
0	CCW	Fallend

3.1.2. Resolution per revolution

The parameter resolution per revolution is used to program the encoder to set a desired number of steps per revolution. Each value between 1 and the maximum (see type shield) can be realised

Attribute ID	Default value	Value range	Data Type
71 hex	(*)	0hex - 2000hex	Unsigned Integer16

(*) see type shield, Maximum resolution: 12/24 Bit Encoder: 1,000 hex (4096) 13/25 Bit Encoder: 2,000 hex (8192)

When the value is set larger than 4096 (8192 for a 13/25 Bit encoder), the process value of the encoder will not be single stepped and values will be skipped while rotating the shaft.

So, it is recommended, to keep the measuring steps per revolution below 4096 (8192) measuring steps.

Tél : +33 (0)3 88 20 80 80 Fax : +33 (0)3 88 20 87 87 Mail : info@bei-ideacod.com Web : www.bei-ideacod.com

DEVICE NET USER MANUAL

3.1.3. Total resolution

This value is used to program the desired number of measuring steps over the total measuring range. This value must not exceed the total resolution of the encoder with 24 bit = 16,777,216 steps (25 bit = 33,554,432 steps). Please note the value written on the type shield.

Attribute ID	Default value	Value range	Data Type
72 hex	(*)	0h - 2,000,000h	Unsigned Integer 32

(*) see type shieldMaximum total resolution24 Bit Encoder: 1,000,000 hex25 Bit Encoder: 2,000,000 hex

Attention:

The following formula letters will be used:

- PGA Physical total resolution of the encoder (see type shield)
- PAU Physical resolution per revolution (see type shield)
- GA Total resolution (customer parameter)
- AU Resolution per revolution (customer parameter)

If the desired resolution per revolution is less than the physical resolution per revolution of the encoder, then the total resolution must be entered as follows: Total resolution

GA = PGA * AU / PAU, if AU < PAU Example: Customer requirement: AU = 2048, Encoder type shield: PGA=24 bit, PAU=12 bit

GA = 16777216 * 2048 / 4096 GA = 8388608

If the total resolution of the encoder is less than the physical total resolution, the parameter total resolution must be a multiple of the physical total resolution:

- k = PGA / GA
- k = integer

3.1.4. Preset value

The preset value is the desired position value, which should be reached at a certain physical position of the axis. The position value of the encoder is set to the desired process value by the parameter preset. The preset value must not exceed the parameter total measuring units

Attribute ID	Default value	Value range	Data Type
73 hex	0 hex	0hex - total measuring range	Unsigned Integer 32

Tél : +33 (0)3 88 20 80 80 Fax : +33 (0)3 88 20 87 87 Mail : info@bei-ideacod.com Web : www.bei-ideacod.com

DEVICE NET USER MANUAL

4. Operating Mode

4.1. Polled Mode

For switching the polled mode on the following telegrams are needed. Further it is assumed in the

following example a master MAC ID of 0A hex and a slave MAC ID of 03 hex.

Allocate Master / Slave Connection Set

1. Allocate Polling

Byte Offset	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit O
0	Frag [0]	XID	MACID					
1	R/R [0]	Service [4E	e [4B]					
	Class ID [ilass ID [03]						
	Instance ID [01]							
	Allocation Choice [03]							
	0	0	Allocator MAC ID					

Example:

CAN-ID	Byte 0	Byte 1	Byte 2	Byte 3	Byte 4	Byte 5
41E	0A	4B	03	01	03	0A

1. Setting the Expected_packet_rate of the Explicit Message Connection on 0: Example:

CAN-ID	Byte 0	Byte 1	Byte 2	Byte 3	Byte 4	Byte 5	Byte 6
41C	0A	10	05	01	09	00	00

1. Setting the Expected_packet_rate of the Polling Connection on 0:n: Example:

CAN-ID	Byte 0	Byte 1	Byte 2	Byte 3	Byte 4	Byte 5	Byte 6
41C	0A	10	05	02	09	00	00

Tél : +33 (0)3 88 20 80 80 Fax : +33 (0)3 88 20 87 87 Mail : info@bei-ideacod.com Web : www.bei-ideacod.com

DEVICE NET USER MANUAL

Release Master / Slave Connection Set

Release Polling

Byte Offset	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
0	Frag [0]	XID	MAC ID					
1	R/R [0]	Service [4	4C]					
	Class ID [0	uss ID [03]						
	Instance II	D [01]						
	Release C	hoice [03]						

Example:

CAN-ID	Byte 0	Byte 1	Byte 2	Byte 3	Byte 4
41E	0A	4C	03	01	03

4.2. Change of State Mode

The absolute rotary encoder sends data, without any request from the host, when the actual process value is changing. No telegram will occur when the position value is not changing. This results in a reduced bus loading.

Allocate Master / Slave Connection Set

Allocate COS

Byte Offset	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit O
0	Frag [0]	XID	MAC ID					
1	R/R [0]	Service [4B	IB]					
	Class ID [0	Class ID [03]						
	Instance II	D [01]						
	Allocation	cation Choice [51]						
	0	0	Allocator	r MAC ID				

DEVICE NET USER MANUAL

Example:

CAN-ID	Byte 0	Byte 1	Byte 2	Byte 3	Byte 4	Byte 5
41E	0A	4B	03	01	51	0A

2. Setting Expected_packet_rate of the Explicit Message Connection on 0: Example:

CAN-ID	Byte 0	Byte 1	Byte 2	Byte 3	Byte 4	Byte 5	Byte 6
41C	0A	10	05	01	09	00	00

3. Setting Expected_packet_rate of the Change of State Connection on 0: Example:

CAN-ID	Byte 0	Byte 1	Byte 2	Byte 3	Byte 4	Byte 5	Byte 6
41C	0A	10	05	04	09	00	00

Release Master / Slave Connection Set

Release COS

Byte Offset	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit O
0	Frag [0]	XID	MAC ID					
1	R/R [0]	Service [40	2]					
	Class ID [0	Class ID [03]						
	Instance ID [01]							
	Release C	hoice [51]						

Example:

CAN-ID	Byte 0	Byte 1	Byte 2	Byte 3	Byte 4
41E	0A	4C	03	01	51

Tél : +33 (0)3 88 20 80 80 Fax : +33 (0)3 88 20 87 87 Mail : info@bei-ideacod.com Web : www.bei-ideacod.com

DEVICE NET USER MANUAL

4.3. Saving Parameter

The parameters of the absolute rotary encoder are saved in a non-volatile FLASH memory. Because of a limited number of writing cycles (\approx 1,000), it is useful to transmit the modified parameter in the first step only in the RAM area. After adjusting and examination,

those values can be saved in the FLASH memory. After successful saving of the parameter the encoder sends his MAC-ID on the bus. To get the process value a new allocation of the slave is required.

Byte	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Offset								
0	Frag [0]	XID	MAC ID					
1	R/R [0]	Service [3	Service [32]					
	Class ID [23]							
	Instance ID [01]							

Example:

(MAC-ID	Master:	0A hex,	MAC-ID	Slave:	03
hex)					
CAN-ID	Byte 0	Byte 1	Byte 2	Byte 3	
41C	0A	32	23	01	

5. Transmission of the actual position

The process value is transmitted according to the following table.

CAN-ID	process value						
11 Bit	Byte 0 Byte 1 Byte 2 Byte 3						
	27 to 20	2 ¹⁵ to 2 ⁸	2 ²³ to 2 ¹⁶	2 ³¹ to 2 ²⁴			

DEVICE NET USER MANUAL

Tél	:	+33 (0)3 88 20 80 80
Fax	:	+33 (0)3 88 20 87 87
Mail	:	info@bei-ideacod.com
Web	:	www.bei-ideacod.com

6. Installation

6.1. Electrical connection

The rotary encoder is connected by three cables. The power supply is achieved with a two-wire connection cable through one PG 9. Each one of the twisted-pair and shielded bus lines are guided in and out through two PG 9 on the right side (as seen on clamps)

Clamp	Description
\bot	Ground
+	24 V Supply voltage
-	0 V Supply voltage
CG	CAN Ground
CL	CAN Low
СН	CAN High
CG	CAN Ground
CL	CAN Low
СН	CAN High

There is a resistor provided in the connection cap, which must be used as a line termination on the last device

Resistor:

The setting of the node number is achieved by 2 turn-switches in the connection cap. Possible addresses lie between 0 and 63 whereby every address can only be used once. 2 LEDs

Dev	DeviceNet Devices				
BCE	BCD coded rotary switches				
x1 x10	Device adress 063 Setting CAN-node number				
xBd	Setting of the baud-rate				

on the backside of the connection cap show the operating status of the encoder.

Tél	1	+33 (0)3 88 20 80 80
Fax	:	+33 (0)3 88 20 87 87
Mail	:	info@bei-ideacod.com
Web	:	www.bei-ideacod.com

DEVICE NET USER MANUAL

6.2. Setting of the baudrate

Baudrate in kBit/s	BCD coded rotary
	switches
125	0
250	1
500	2
125	3
reserved	49

DEVICE NET USER MANUAL

 Tél
 :
 +33 (0)3 88 20 80 80

 Fax
 :
 +33 (0)3 88 20 87 87

 Mail
 :
 info@bei-ideacod.com

 Web
 :
 www.bei-ideacod.com

7. Power On

7.1. Operating Mode

After power on the absolute rotary encoder sends two times his MAC ID telegram on the bus.

7.2. Programming

If some parameters should not be modified you can skip over this chapter.

The following numbers are given in hexadecimal

format. In the examples, the CAN ID and MAC ID are 0A (hex) and for the slave 03 (hex). The changeable values are written in an italics.

7.2.1. Operating Parameter

Master to absolute rotary encoder: Set-Parameter

CAN ID	MAC ID	Service	Class	Instance	Attribute		Data	
		Code	ID	ID	ID			
	Byte 0	Byte1	Byte 2	Byte 3	Byte 4	Byte 5	Byte 6	Byte 7
41C	0A	10	23	01	70	Х	-	-

X: 1 hex for CW (Default)

0 hex for CCW

Absolute Rotary Encoder to Master: Confirmation

CAN ID	MAC ID	Service Code
	Byte 0	Byte 1
41B	0A	90

7.2.2. Resolution per revolution

Master to Absolute Rotary Encoder:Set-Parameter

CAN ID	MAC ID	Service	Class	In-	Attribute	Data		
		Code	ID	stance	ID			
				ID				
	Byte 0	Byte 1	Byte 2	Byte 3	Byte 4	Byte 5	Byte 6	Byte 7
41C	0A	10	23	01	71	Х	X	-

X: desired resolution per revolution

Confirmation

DEVICE NET USER MANUAL

 Tél
 :
 +33 (0)3 88 20 80 80

 Fax
 :
 +33 (0)3 88 20 87 87

 Mail
 :
 info@bei-ideacod.com

 Web
 :
 www.bei-ideacod.com

Absolute rotary encoder to master:

CAN IDMAC IDService CodeByte0Byte141B0A90

7.2.3. Total resolution

A fragmented transmission is needed, when the total resolution must be sent to the encoder. So here are more messages necessary.

Master to Absolute Rotary Encoder:Set-Parameter

CAN ID	MAC ID	Fragment	Service	Class	Instance	Attribute		
			Code	ID	ID	ID		
	Byte 0	Byte 1	Byte 2	Byte 3	Byte 4	Byte 5	Byte 6	Byte 7
41C	8A	00	10	23	01	72	Х	Х

Absolute Rotary Encoder to Master: Confirmation

CANID	MAC ID		
	Byte0	Byte 1	Byte 2
41B	8A	C0	00

Master to Absolute Rotary Encoder:Set-Parameter

CANID	MAC ID	Frag-						
		ment						
	Byte 0	Byte 1	Byte 2	Byte 3	Byte 4	Byte 5	Byte 6	Byte 7
41C	8A	81	Х	Х	-	-	-	-

X: desired total resolution

Absolute Rotary Encoder to Master: Confirmation

CANID	MAC ID		
	Byte0	Byte 1	Byte 2
41B	8A	C1	00

Absolute Rotary Encoder to Master: Confirmation

CAN ID	MAC ID	Service Code
	Byte0	Byte1
41B	0A	90

DEVICE NET USER MANUAL

7.2.4. Preset Value

Master to Absolute Rotary Encoder:Set-Parameter

CAN ID	MAC ID	Fragment	Service	Class	Instance	Attribute		
			Code	ID	ID	ID		
	Puto 0	Duto 1	Dute 2	Duto 2	Duto 1	Duto E	Dute (Dute 7
	вуте о	вуте т	Byte Z	Byte 3	Byte 4	Byte 5	Byle 6	Byte /

X: desired preset value

Absolute Rotary Encoder to MasterConfirmation

CAN ID	MAC ID		
	Byte0	Byte 1	Byte 2
41B	8A	C0	00

Master to Absolute Rotary Encoder:Set-Parameter

CAN ID	MAC ID	Fragment						
	Byte 0	Byte 1	Byte 2	Byte 3	Byte 4	Byte 5	Byte 6	Byte 7
41C	8A	81	Х	Х	-	-	-	-

X: desired preset value

Absolute Rotary Encoder to MasterConfirmation

CAN ID	MAC ID		
	Byte0	Byte 1	Byte 2
41B	8A	C1	00

Absolute Rotary Encoder to Master: Confirmation

CANID	MAC ID	Service Code
	Byte0	Byte1
41B	0A	90

DEVICE NET USER MANUAL

7.2.5. Parameter Saving

Master to Absolute Rotary Encoder: Set-Parameter

CANID	MAC ID	Service Code	Class ID	Instance ID
	Byte0	Byte1	Byte 2	Byte 3
		32	23	01

If the transfer has been successful, the absolute rotary encoder responds after 3-4s with the Duplicate MAC-ID. After that the master must reallocate the slave.

If the transfer is not successful, an error message will be sent. The service code used to save the parameter set is manufacturer specific.

DEVICE NET USER MANUAL

7.3 Configuration with DeviceNet Manager Figure 1 EDS File

The EDS File contains information about device specific parameters as well as possible operating modes of the encoder. With this file you have a data sheet in an electronic format, which can be used to configure the device in the network, for example with DeviceNet Manager from Allen Bradley.

To install the EDS (Electronic Data Sheet) file you need a disc with this file. Further you must choose from the menu the entry UTILITIES and the sub menu INSTALL EDS FILES.

After that a window will open , where a drive and the file is selected. Like shown in figure 1, the file 1.EDS has been chosen. At the bottom of the window more information is displayed like manufacturer, product type and version number.

After a successful installation the user can assign a bitmap to the encoder. The file with the name AWC58xx.bmp is the right one.

Figure 2 Selection of Bitmap File

Encoder Installation in the Network

To configure the encoder in the network you have the following two possibilities:

- 1. Offline
- 2. Online

To create a network online it is necessary to select the topic START ONLINE BUILD in the menu UTILITIES. After that the network is scanned and the encoder is automatically shown in the main window, if an encoder is installed. For the detailed proceedings please look in the manual of the software DeviceNet Manager.

If the network is built up offline you must create a new project. After configuration of network specific information such as baudrate and description, a window with an empty network and device list on the left side is shown. Under the window device list you will find the encoder in the area: GENERIC- Sensorsysteme. Use the mouse pointer to drag and drop the symbol and move it to the line network. Additionally you must edit the device description and the node number. Please be careful to edit the same node number (MAC-ID) in the software tool as configured in the connection cap of the encoder.

Tél	1	+33 (0)3 88 20 80 80
Fax	:	+33 (0)3 88 20 87 87
Mail	:	info@bei-ideacod.com
Web	:	www.bei-ideacod.com

DEVICE NET USER MANUAL

PeviceNet Manager - [EXAMPLE.PC3]	
File Edit Project Who Utilities View Window Help	_ <u>-</u> • ×
" ┣ ⋿ ₩ ╱ ४ ⋕ ?	
Project Name : EXAMPLE	<u> </u>
Network Network Data Rate Network Description	
NETBEI 125 k Example Net	
Device List	
🗁 Generic 📃	
- 🔁 Allen-Bradley Compan	
Rockwell Automation/F	
El Sensor	
Photoelectric Sensor	
	_
Product PEL Vendor PELSoneor	- Comm
Type Generic Revision 1.4 Catalog 5812-4096-XB00D20	
For Help, press F1 Ready	

Figure 3 Select encoder from device list

After successful execution of the before described steps the network may look figure 4. When a double click is made on the encoder symbol a parameter window will open.

Tél	:	+33 (0)3 88 20 80 80
Fax	:	+33 (0)3 88 20 87 87
Mail	:	info@bei-ideacod.com
Web	:	www.bei-ideacod.com

DEVICE NET USER MANUAL

ParticeNet Manager - [EXAMPLE.PC3]	
🚰 Eile Edit Project Who Utilities View Window !	
1 2	
Project Name : EXAMPLE	
Network Network Data Rate Network Desc	iption
NETBEI 125 k Example Net	
Device List	
🗁 Generic 🔶	Node 1
- 🔁 Allen-Bradley Compan	
- 🔁 Rockwell Automation/F	
BEI Sensor	
	S * _
AC Drive	BEI
Photoelectric Sensor	
🔁 General Purpose Discre	_1
Software	
	Comm.
Product BEI Vendo	BEI Sensor
Type Generic Revisio	n 1.4 Catalog 5812-4096-XB00D20
For Help, press F1	Ready

Figure 4 Installation of network

This parameter masks makes it possible to edit different parameters like monitoring the position value. The adjustable parameters are marked with the number 1-4. The 5th entry displays the actual position value, when the function monitoring is activated with the button start monitor.

The button Load from Device makes it possible to download the device specific parameter in the configuration software. So it is very easy to check the parameter or programming a replacement device with the same parameter. In the same way the control button Save to Device transmits the edited parameters to the encoder. Please notice that the transmitted values are saved in the RAM area. By power off and on you will loose these parameters. After checking the parameters they can be saved in the FLASH memory by selecting the menu entry UTILITIES-BASIC DEVICE CONFIGURATION.

The entered values in the mask are taken from the following figure. This prevent a mistake through over taking wrong parameters.

Tél	:	+33 (0)3 88 20 80 80
Fax	:	+33 (0)3 88 20 87 87
Mail	:	info@bei-ideacod.com
Web	:	www.bei-ideacod.com

DEVICE NET USER MANUAL

Device Configuration - Modify Numeric Parameter	×
Parameter #2 Resolution per revolution Status: Offline Configuration	OK Cancel
Value 4096 (Steps)	Load from Device
Minimum 1 Maximum 4096 Default = 4096	Start Monitor
Internal Value 4096 Signed Decimal	Earam Help
Select <u>D</u> efault << Pre <u>v</u> ious	<u>N</u> ext >>

Figure 5 Parameter mask

By a double click on each parameter a further window opens to edit the value directly via keyboard or scroll bar. A transmission of the parameter into the RAM memory is secured with the Save to Device Button. A short description about each parameter is displayed using the function Parameter Help.

Device Configuration - Enhanced Mode		×
Node Name: Node_1 Vendor: BEI Sensor Product Name: BEI Description: Axis Movement Device Info	Node Address: 1	Close Help Set to <u>D</u> efaults
Parameters	Parameter <u>G</u> roup	Modify Parameter
Num Name Value 1 Code sequence clockwise 2 Resolution per revolutio 3 Total Resolution 4 Preset Value 5R Position	[All Parameters] TRUE 4096 Steps 16777216 Steps 0 Steps 0 Steps 0 Steps	Load from File Load from Device
		Save to Device <u>Print to Text File</u>

Figure 6 Parameter mask

Tél : +33 (0)3 88 20 80 80 Fax : +33 (0)3 88 20 87 87 Mail : info@bei-ideacod.com Web : www.bei-ideacod.com

DEVICE NET USER MANUAL

Saving Parameter by activated Scanner

((only necessary when firmware of Allen Bradley scanner is lower 4.001)

1747-SI	DN Scan List I	Editor : [PR	OJ] Node	_1 [1]			×
<u>N</u> ode	Name	Mapped	Active	Rx Size	Tx Size	Туре	Load From
							<u>s</u> dn <u>File</u>
							Save To
							S <u>D</u> N File
							Add Devices From
							Proj <u>₩</u> ho
_ Edit Se	election ———				1	o. r.	Scan List Tools
Prod T	уре:			Г	Electronic	Scanlist Key	Ayto Map
Cat No	n. D:				🗖 Device	e <u>T</u> ype	Datata <u>b</u> le Map
Revisi	on:				Vendo	r	Display Filters
Ed	dit I/O Para <u>m</u> eten	S	Rem	gve	Produg	<u>e</u> t No.	Print to File
CI	ose He	lp	S <u>e</u> lec	t All			□ SD <u>N</u> Slave Mode

Picture 7 Scanner Mask

following described steps are not necessary when the firmware of the AB scanner is 4.001 or higher. A update of the scanner is very easy to execute. Please contact AB for further information. When the parameter should be transmitted from the DeviceNet Manager to the encoder via the button SAVE to DEVICE, the entry Active In Scanlist must be deactivated. The mapped process values could be placed further. After configuration of parameters the encoder could be set active in the scanlist again. If there are only encoders mentioned in the scanlist you could alternately select all devices with SELECT ALL and set then the state Active in Scanlist.

Another way is to select each encoder with the mouse pointer.

If you don't follow the description, the error message - 'Target device did not respond to connection based request.' - is possible from DeviceNet manager and also in the scanner display.

DEVICE NET USER MANUAL

Tél	1	+33 (0)3 88 20 80 80
Fax	:	+33 (0)3 88 20 87 87
Mail	:	info@bei-ideacod.com
Web	:	www.bei-ideacod.com

7.4. Store Parameters

For saving the encoder parameter into FLASH memory you must select the menu item UTILITIES and the entry BASIC DEVICE CONFIGURATION. The selected node number of the device must be entered into the field Device-Node-Address as well as some other parameters listed in the following figure 7. To store the parameter please select the button SAVE.

Tél	1	+33 (0)3 88 20 80 80
Fax	:	+33 (0)3 88 20 87 87
Mail	:	info@bei-ideacod.com
Web	:	www.bei-ideacod.com

DEVICE NET USER MANUAL

-	W 🖪 🗖 🖏 🗸	🏧 😰 🗚 🏚 🦻 🔒	🕃 📾 🕾 🔿 🕿 🚄 👪 😊	🖉 🕸 🔻 🗢
□ <u>F</u> ile <u>E</u>	dit <u>P</u> roject Wh <u>o U</u> t	ilities ⊻iew <u>W</u> ind	low <u>H</u> elp	\$
1	🛦 🖻 🖪 🕖 🎜 👗	×	boo ?k?	
Project Name	EDADA			+
Network	- De	vice Configuration -	Basic Mode	
DEVICE	Device <u>N</u> ode Address:)1 👤	Close Help	
•	Data Address	Service Code		+
Generic	Cl <u>a</u> ss: 35	Sa <u>v</u> e: 50	Custom Service	
AC Drive AC Drive Photoelect	Attribute: 1	Load: 14	Get Attribute	
🕒 General Pi	Data Radix	Data Size		
🔁 Software	Decimal	● <u>B</u> yte		
主 Communic	O He <u>x</u>	O <u>W</u> ord	Load from Device	
🔁 Barcode S	🔘 Binary	O <u>D</u> ouble Word		
主 SCANport	Attrib <u>u</u> te Data		Save to Device	
🔁 Dodge EZI	0			*
Node_1				
Product -		Vendor		 @ / }
Туре Ge	neric	Revision 1.4	Catalog 5812-4096-XB00D20	Mac 63 - 125K
Edit device par	rameters	Ready	,	KFD16.DL

Figure 7 Saving parameters in FLASH memory

Use the following values for the parameter:

Class	35
Instance & Attribute	1
Data Size	Byte
SAVE Service Code	50, Custom Service
Instance	1
Attribute Data:	0
Data:	Decimal

Tél : +33 (0)3 88 20 80 80 Fax : +33 (0)3 88 20 87 87 Mail : info@bei-ideacod.com Web : www.bei-ideacod.com

DEVICE NET USER MANUAL

8. Technical Data

8.1 Electrical Data

Interface	Transceiver according ISO/DIS 11898, up to 64 nodes		
	galvanically isolated by opto-couplers		
Transmission rate	150 kBaud, 250 kBaud, 500kBaud		
Device addressing	Adjustable by rotary switches in connection cap		
Supply voltage	10 - 30 V DC (absolute limits)		
Current consumption	max. 230 mA with 10 V DC, max. 100 mA with 24 V DC		
Power consumption	max. 2.5 Watts		
Step frequency LSB	800 kHz		
Accuracy of division	± 1/2 LSB (12 bit), ± 2 LSB (16 bit)		
EMC	Emitted interference: EN 61000-6-4		
	Noise immunity: EN 61000-6-2		
Electrical lifetime	> 10 ⁵ h		

8. 2 Mechanical Data

Housing	Aluminum, optional stainless steel			
Lifetime	Dependent on shaft version and shaft loading - refer to ta-			
	ble			
Max. shaft loading	Axial 40 N, radial 110 N			
Inertia of rotor	≤ 30 gcm ²			
Friction torque	\leq 3 Ncm (without shaft sealing)			
RPM (continuous operation)	Singleturn: max. 12,000 RPM			
	Multiturn: max. 6,000 RPM			
Shock (EN 60068-2-27)	≤ 30 g (halfsine, 11 ms)			
Permanent shock (EN 60028-2-	\leq 10 g (halfsine, 16 ms)			
29)				
Vibration (EN 60068-2-6)	≤ 10 g (10 Hz 1,000 Hz)			
Weight (standard version)	Singleturn: ≈ 550 g			
	Multiturn: ≈ 600 g			
Weight (stainless steel version)	Singleturn: ≈ 1,100 g			
	Multiturn: ≈ 1,200 g			

Flange	Synchro (S)		Clamp (C)	Hollow shaft (B)
Shaft diameter	6 mm	10 mm	10 mm	15 mm
Shaft length	10 mm	20mm	20 mm	-
hollow shaft depth min. / max.	-	-	-	15 mm / 30 mm

Tél	:	+33 (0)3 88 20 80 80
Fax	:	+33 (0)3 88 20 87 87
Mail	:	info@bei-ideacod.com
Web	:	www.bei-ideacod.com

DEVICE NET USER MANUAL

8.3 Minimum (mechanical) lifetime

Flange	Lifetime in 10 ⁸ revolutions with F_a / F_r					
	40 N / 60 N	40 N / 80 N	40 N / 110 N			
C10 (Clamp flange 10 x 20)	247	104	40			
S10 (Synchro flange 10 x 20)	262	110	42			
S6 (Synchro flange 6 x 10) without shaft sealing	822	347	133			

S6 (Synchro flange 6 x 10) with shaft sealing: max. 20 N axial, 80 N radial

8. 4 Environmental Conditions

Operating temperature	– 40 +85°C
Storage temperature	- 40 + 85 °C
Humidity	98 % (without liquid state)
Protection class (EN 60529)	Casing side: IP 65
	Shaft side: IP 64 (optional with shaft sealing: IP66)

Tél : +33 (0)3 88 20 80 80 Fax : +33 (0)3 88 20 87 87 Mail : info@bei-ideacod.com Web : www.bei-ideacod.com

DEVICE NET USER MANUAL

9. Mechanical Drawings

Synchro flange (S)

available in 2 versions

Synchro flange	d / mm	I/mm
Version S06	6f6	10
Version S10	10 _{h8}	20

Schlüsselweite, wrench size=17

Tél	:	+33 (0)3 88 20 80 80
Fax	:	+33 (0)3 88 20 87 87
Mail	:	info@bei-ideacod.com
Web	:	www.bei-ideacod.com

DEVICE NET USER MANUAL

Hollow shaft (B)

Mounting instructions

The clamp ring may only be tightened if the shaft of the driving element is in the hollow shaft.

The diameter of the hollow shaft can be reduced to 12mm, 10 mm or 8 mm by using an adapter (this reducing adapter can be pushed into the hollow shaft). Allowed shaft movements of the drive element are listed in the table.

	axial	radial
static	± 0,3 mm	± 0,5 mm
dynamic	± 0,1 mm	± 0,2 mm

F 67013 Strasbourg Cedex

Tél	:	+33 (0)3 88 20 80 80
Fax	:	+33 (0)3 88 20 87 87
Mail	:	info@bei-ideacod.com
Web	:	www.bei-ideacod.com

DEVICE NET USER MANUAL

10. Versions / Order Description

Description	Туре Кеу									
Reference	MHM5_	D2	B1	В-			_			0CC
Interface	DeviceNet	D2								
Version			B1							
Code	Binary			В						
Revolutions (Bits)	Singleturn				00					
	Multiturn (409	6 revolu	tions)		12					
	Multiturn (163	84 revol	utions)		14					
Steps per revolution	4096					12				
(Bits)	8192					13				
	65536					16				
Flange	Clamp flange	Ç					С			
	Synchro flang	le					S			
	Hollow shaft						В			
	Square flange	e					Q			
Shaft diameter	10 mm							10		
	06 mm							06		
	15 mm (hollo)	<i>w</i> shaft)						15	0	
Mechanical options	without								0	
	Shaft sealing	(IP66)							S	
	Stainless steel	version							V	
	Customized								С	
Connection	Connection (Cap								000

Standard = bold, further models on request

Ordering reference for a 10mm solid shaft absolute multiturn encoder : MHM5 D2 B1 B 12 13 C 10 0 0CC : MHM510-DNET-001

Ordering reference for a 15mm blind shaft absolute multiturn encoder : MHK5 D2 B1 B 12 13 B 15 0 0CC : MHK515-DNET-001

Tél	:	+33 (0)3 88 20 80 80
Fax	:	+33 (0)3 88 20 87 87
Mail	:	info@bei-ideacod.com
Web	:	www.bei-ideacod.com

DEVICE NET USER MANUAL

Accessories and Documentation

Description		Туре
Reducing adapter *	15 mm to 12 mm	RR12
Reducing adapter *	15 mm to 10 mm	RR10
Reducing adapter *	15 mm to 8 mm	RR8

only for hollow shaft

*