ODMG OQL
User Manual

Release 5.0 - February 1998

Information in this document is subject to change without
notice and should not be construed as a commitment by
O, Technology.

The software described in this document is delivered under a
license or nondisclosure agreement.

The software can only be used or copied in accordance with the
terms of the agreement. It is against the law to copy this
software to magnetic tape, disk, or any other medium for any
purpose other than the purchaser’s own use.

Copyright 1992-1998 O, Technology.

All rights reserved. No part of this publication can be
reproduced, stored in a retrieval system or transmitted in any
form or by any means, electronic, mechanical, photocopy
without prior written permission of O, Technology.

0,, O,Engine API, O,C, O,DBAccess, O,Engine, O,Graph,
O,Kit, O,Look, O,Store, O,Tools, and O,Web are registered
trademarks of O, Technology.

SQL and AIX are registered trademarks of International
Business Machines Corporation.

Sun, SunOS, and SOLARIS are registered trademarks of Sun
Microsystems, Inc.

X Window System is a registered trademark of the
Massachusetts Institute of Technology.

Unix is a registered trademark of Unix System Laboratories, Inc.
HPUX is a registered trademark of Hewlett-Packard Company.
BOSX is a registered trademark of Bull S.A.

IRIX is a registered trademark of Siemens Nixdorf, A.G.
NeXTStep is a registered trademark of the NeXT Computer, Inc.
Purify, Quantify are registered trademarks of Pure Software Inc.
Windows is a registered trademark of Microsoft Corporation.

All other company or product names quoted are trademarks or
registered trademarks of their respective trademark holders.

Who should read this manual

OQL is an object-oriented SQL-like query language, the ODMG
standard. This manual describes how to use OQL as an embedded
function in a programming language (e.g. O,C, C, C++, or Smalltalk) or
interactively as a query language. It assumes previous knowledge of the
O, system.

Other documents available are outlined, click below.

See O, Documentation set

TABLE OF CONTENTS

This manual is divided into the following chapters:

1 -
2 - Getting Started
3-

4 - OQL Reference

Introduction

OQL Rationale

ODMG OQL User Manual

(22 || TABLE OF CONTENTS

INTRODUCTION 1-1

1.1 SYStemM OVEIVIEW......ccceiiiieieeeeere e e e e 1-2
(@ P PEPPPPPRRRRR 1-4
Browser INtErfacecccuuuuiiiiiiiiiiiiiiiee e 1-5

1.2 Interactive and embedded query language 1-7
INteractive OQLooeiiiiiiiiiiei e 1-7
Embedded OQLooi i 1-8

1.3 MaNUAI OVEIVIEW. ...ttt 1-8

GETTING STARTED 2-1

P R = - T (ol o (U= =P 2-2
Database entry POINTSuuuiiiiiiiiie e 2-4
SIMPIE QUETIES ... 2-5

2.2 Select... from ... Where ..., 2-6
=] P PPPPPPPPPPPRPPP 2-7
N [0 | o SO UURRPPPPUPPRTTN 2-8
Path @XPreSSIONSuuueiiiiii i eee et e e e e e e e e e eeeaenenees 2-8
Testing ON NIl .. 2-9
IS 00T = 14 = V2RSSR 2-9

2.3 Constructing reSultSooovvvvreiiiiiiciee e 2-10
Creating an ODJECTccooeiiiiieeeee e 2-12

2.4 OPEIALIOIS ..ottt ettt e e e e e ee e e e e eeeaes 2-13
[©01 U | o | SRR 2-13
DETINE .. 2-14
EIEMENT ... 2-14
EXISTS .o 2-15
(€1 (01U I o) SRS RSSRRRN 2-15
LK e e e e aaaeee 2-19
Order DY e 2-19

2.5 SELOPEIALOIS ...t 2-20

2.6 CONVEISIONS...coiiiiiiiiiiiitiieae e e e e e e e e et e ettt ae e e e e e e aeaaaeas 2-21
LISTTO SO ..eiiiiiiiieeeiei e 2-21
SEETO lIST. e 2-21

ODMG OQL User Manual

TABLE OF CONTENTS

FIATEN .. 2-21
2.7 CombiNiNG OPEratorsScieeeiieeeeeeeee it e e e e e 2-22
2.8 INUEXES ...oiiiiiii it 2-22
DISPIAY INAEXeieiiiiiiiiiiie e e e e eeeeeeeees 2-23
2.9 Chapter SUMMANYoooieiiiiieeeeeeeeeieee e eeeeeeeeeees 2-24
OQL RATIONALE 3-1
3.1 The ODMG Standardcccoeeeeeeeeeeiiiiiiiieeiiiiie e 3-2
3.2 The ODMG MOAEL.......cccoviiiiiiiiiiiii e 3-3
3.3 OQL by eXampleccooiiiiiiiiiiiceiee e 3-7
Path @XPreSSIONSccooeeeeieeiiieeeeere e 3-7
Data manipulationueeiiiiiiiie e 3-9
Method INVOKINGoiiieeiiiccceeeeeeee e 3-10
PolymMOrphiSM.....ccoo 3-11
Operator COMPOSITIONccoeeeeeeeiiceeeeeeee e e e e e 3-12
OQL REFERENCE 4-1
4.1 INTOAUCTION ...eeviiiiiieie ettt 4-2
A e T o1 o] [R PPPOPPRTS 4-2
4.3 Language Definitioncovviviiiiiiiiiiie e 4-3
4.3.1 QUETY Program.....c..u ittt eeai e 4-3
4.3.2 Named Query Definitionccoovviiiiiiiiiiccic e 4-3
4.3.3 Elementary EXPreSSIONS.......ccooiiiiiiiiiiiiiiiiiiiiiieee e eeeeeeaaeees 4-5
4.3.3.1 AtOMIC LItEralS ..cceveiiiiiiiiiiieeee e 4-5
4.3.3.2 Named ODJECES.....uuiiiiiiiie e a e 4-5
4.3.3.3 Iterator Variable ... 4-5
4.3.3.4 Named QUEIYcccoeiiieeeeeeeiiiire e e e e 4-5
4.3.4 Construction EXPreSSIONSccooviiiiiiiiiiiiiiiiiaaeeee e e e e e eeeeeeeeeeeennenns 4-6
4.3.4.1 Constructing ODJECTS.......cceviiiiiriiiiiiaeeeee e 4-6
4.3.4.2 CoNStructing StruCtUIeS..........cooviiiiviiiiiiiiiiieieeeeee e 4-6
4.3.4.3 CONSLIUCLNG SIS ...vvveiiiiiieiieeeeeeeeeeeeeeeeii e 4-7

ODMG OQL User Manual il

TABLE OF CONTENTS

4.3.4.4 CONSLrUCtING LIStS....uuuiiiieeiii e 4-7
4.3.4.5 CONSLructing Bagscccvvvvvrrmmniiiaieeeeeeeeeeeeeeeeeiiivis 4-8
4.3.4.6 CONSLIUCLING AITAYS ..eevvveveeiiiiiniiiiieaeeeeeeeeeaeeeeeeeenennnnnnns 4-8
4.3.5 AtomiC Types EXPreSSIONSuuuuuuuiiiiaeieeeeeeeeeeeeeeeeeiive s 4-8
4.3.5.1 Unary EXPreSSIONS........cccovviiiiiuiiiiiiiiiaaeaeeeeeeeeeeeeenennneens 4-8
4.3.5.2 Binary EXPressionS.......ccccovvvvvvveeiiiiiiiiieseee e e e e e e eeaeeeee 4-9
4.3.5.3 StriNg EXPreSSIiONScooooeiieiiieieieeeiiiiee e 4-9
4.3.6 ODJECt EXPreSSIONScoevveveiiiiiiiiiiiiieea e e e e e e e e e e eeeeeeeeeernannnn e 4-11
4.3.6.1 Comparison of Mutable Objects...........cccceevvivvvvnnnnnnnn. 4-11
4.3.6.2 Comparison of Immutable Objects............c.evvvvennnnnnn. 4-11
4.3.6.3 Extracting an Attribute or Traversing a Relationship from
AN ODJECT ... 4-11
4.3.6.4 Applying an Operation to an Object............cccc..ouveeees 4-12
4.3.6.5 Applying an Operation with Parameters to an Object 4-12
4.3.6.6 Dereferencing an ODbjecCt...........ccceevvvvvivveviiiicccieee e 4-14
4.3.7 Collections EXPreSSIONScccovviiiiiiiiiiiiiiiaaaeeeae e e e e e e e eeeeeeeeinnnens 4-14
4.3.7.1 Universal Quantification............cccceeeeveviiiinieeeeeiiieeeen, 4-14
4.3.7.2 Existential Quantification.............cccccoeeeeeeriiiiiiiee e, 4-14
4.3.7.3 Membership TEStINGuuuieiiriiiieeeeeeeeeeeeeeean 4-15
4.3.7.4 Aggregate OpPeratorS.cccuuuieeeeieeiiiieee e e eeeeennns 4-15
4.3.8 SeleCt From WREIe ...t 4-16
4.3.8.1 ProjECHON. ...uuueieee ettt e e 4-16
4.3.8.2 Iterator Variablesoouuviiiiiiiiiiieeeeeeeeeeeii 4-17
4.3.8.3 PrediCateccoocuiiiiiiiiiiiiiieeeeee e 4-18
4.3.9 Group-bY OPEratoruuuueiiiieeee e 4-18
4.3.10 Order-by OPEIatOrcoeeeeiiieiiieeeeiiiiiee e e eeeeenaeees 4-20
4.3.11 Indexed Collection EXPreSSiONSccceeeevvveveeeevvviiiiiiieeaeeeenns 4-21

4.3.11.1 Getting the i-th Element of an Indexed Collection... 4-21
4.3.11.2 Extracting a Subcollection of an Indexed Collection.4-21

4.3.11.3 Getting the Firstand Last Elements of an Indexed Collection
.. 4-22

ODMG OQL User Manual

TABLE OF CONTENTS

4.3.11.4 Concatenating Two Indexed Collections 4-22
4.3.12 Binary Set EXPreSSIONScuuuuuriiiiiaieeeeee e 4-22
4.3.12.1 Union, Intersection, Difference..............cccccvvvvvinnnns 4-23
4.3.12.2 INCIUSION...cciiiiiiieiieie et 4-23
4.3.13 Conversion EXPreSSIONS..........oovvvveeiiiiiiiiiiiiaaaa e eeeeeeeeeeeeeneenns 4-24
4.3.13.1 Extracting the Element of a Singleton...................... 4-24
4.3.13.2 Turning @ List INt0 @ Set........ccooevvviiiiiiiiiiiiiicieee e, 4-24
4.3.13.3 Removing Duplicates...........cccceeeeeiiiieeieeeeeeeeeeeeeeiiiiens 4-25
4.3.13.4 Flattening Collection of Collections...................o.. 4-25
4.3.13.5 Typing an EXPreSSioN..........cceeeeiieeeeeeeeeeeeeeeeeeenennnnnnns 4-26
4.3.14 FUNCtioN Call........ueeiiiiieiieeeiee e 4-26
4.3.15 SCOPE RUIES.....cccooeeiie e 4-26
4.4 Syntactical Abbreviations...........cccccoeevieiieeeeii 4-28
4.4.1 Structure CONSIIUCTIONcoeeiiiiiiiiiiiiiiie e 4-29
4.4.2 AQQregate OPEratorS eiiiiiiia et e e eeei e 4-30
4.4.3 Composite PrediCates..........oooiiiiiiiiiiiiiiiiiiiee e 4-30
444 SUING LILEIAl ...ceeeeiiiiiiiieee e 4-31
45 OQL BNF ..o 4-32
4.5.1 GramMMAI . .coeeieie e e et e e e et e e e e e e e e e e eraaa e e e eeennnnns 4-32
4.5.1.1 Axiom (see Sections 4.3.1, 4.3.2) .cccceeeeiiiiiiiiiiiiiiiinnns 4-32
4.5.1.2 Basic (see Section 4.3.3)....ccccovvviiiiiiiiiiiiiiiiieeee e 4-32
4.5.1.3 Simple Expression (see Section 4.3.5)........ccccceevvunens 4-33
4.5.1.4 Comparison (see Section 4.3.5)covvvvvevivevniinnnennn. 4-33
4.5.1.5 Boolean Expression (see Section 4.3.5)............cccc... 4-33
4.5.1.6 Constructor (see Section 4.3.4).......cccceeeeevvevveeennnnnnnns 4-33
4.5.1.7 Accessor (see Sections 4.3.6, 4.3.11, 4.3.14, 4.3.15)
... 4-34

4.5.1.8 Collection Expression (see Sections 4.3.7, 4.4.3)....4-34
4.5.1.9 Select Expression (see Sections 4.3.8, 4.3.9, 4.3.10)4-34

ODMG OQL User Manual Y,

TABLE OF CONTENTS

4.5.1.10 Set Expression (see Section 4.3.12)ccccceeeeeennnn.
4.5.1.11 Conversion (see Section 4.3.13)cccceveeiiieiiiiinnennn.
4.5.2 Operator PrioritieSoovvviveeiiiiiiiiee e

INDEX [-i

Vi

ODMG OQL User Manual

1 INTRODUCTION

Congratulations! You are now a user of the object-oriented query
language OQL.

O, is arevolutionary system that is particularly well adapted for
developing large-scale client/ server applications in both fields of
business and technical software development.

This chapter introduces the O, system and the OQL query language.

It is divided up into the following sections :

System Overview
Interactive and embedded query language
Manual overview

ODMG OQL User Manual

1-1

1 INTRODUCTION

1.1 System Overview

The system architecture of O, is illustrated in Figure 1.1.

External

Development Tools
Interfaces

Standard

O, Dev. Tools
Dev. Tools

o0L

C C++ o,C Java
I I I ? I O,Corba

Database Engine

O,DBA
I O,Engine

02W6b

[o0ec
[oe
=
[

I O,Store

Figure 1.1: Oy System Architecture
The O, system divided into three components. The Database Engine
provides all the features of a Database system and an object-oriented
system. This engine is accessed with Development Tools, such as
various programming languages, O, development tools and any
standard development tool. Numerous External Interfaces are provided.
All encompassing, O, is a versatile, portable, distributed, high-
performance dynamic object-oriented database system.

Database Engine:

* O,Store The database management system provides low level
facilities, through O,Store API, to access and manage a
database: disk volumes, files, records, indices and
transactions.

* O5Engine The object database engine provides direct control of
schemata, classes, objects and transactions, through
O,Engine API. It provides full text indexing and search
capabilities with O,Search and spatial indexing and
retrieval capabilities with O,Spatial. It includes a
Notification manager for informing other clients
connected to the same O, server that an event has
occurred, a Version manager for handling multiple
object versions and a Replication API for synchronizing
multiple copies of an O2 system.

1-2 ODMG OQL User Manual

System Overview :

Programming Languages:

O, objects may be created and managed using the following
programming languages, utilizing all the features available with O,
(persistence, collection management, transaction management, OQL

queries, etc.)
e C

o C++

¢ Java

* O,C

. OQL

O, functions can be invoked by C programs.
ODMG compliant C++ binding.
ODMG compliant Java binding.

A powerful and elegant object-oriented fourth
generation language specialized for easy development
of object database applications.

ODMG standard, easy-to-use SQL-like object query
language with special features for dealing with complex
O, objects and methods.

O, Development Tools:

* O,Graph
* O,Loo0k

° OzKlt

* O,Tools

Create, modify and edit any type of object graph.

Design and develop graphical user interfaces, provides
interactive manipulation of complex and multimedia
objects.

Library of predefined classes and methods for faster
development of user applications.

Complete graphical programming environment to design and
develop Q database applications.

Standard Development Tools:

All standard programming languages can be used with standard
environments (e.g. Visual C++, Sun Sparcworks).

External Interfaces:

* O,Corba

* O,DBAccess

« 0,0DBC

. OZWeb

Create an O,/ Orbix server to access an O, database
with CORBA.

Connect O, applications to relational databases on
remote hosts and invoke SQL statements.

Connect remote ODBC client applications to O,
databases.

Create an O, World Wide Web server to access an O,
database through the internet network.

ODMG OQL User Manual 1-3

INTRODUCTION

oQL

OQL is an object-oriented SQL-like query language. OQL is the query
language of the ODMG-93 standard?. It can be used in two different
ways either as an embedded function in a programming language or as
an ad hoc query language.

You can use OQL as a function called from O,C, C, C++, Smalltalk or
Java, in order to manipulate complex values and methods. Each
construct produces a result which can then be used directly in the
programming language. Methods can be triggered to modify the
database. You will find that programming is easier because OQL can
filter values using complex predicates whose evaluations are optimized
by the OQL optimizer in O,.

OQL can also be used interactively as an ad hoc query language
allowing database queries from both technical and non-technical users.
Interactive features include fast and simple browsing of the database.

1. The Object Database Standard: ODMG - 93. Atwood, Barry, Duhl, Eastman, Ferran,
Jordan, Loomis and Wade. Edited by R.G.G. Cattell. © 1996 Morgan Kaufman Publish-
ers.

1-4

ODMG OQL User Manual

System Overview : Browser Interface

Browser Interface

The browser interface you see depends on the operating system you are
using.

Unix

In Unix, the O,Look graphical user interface generator is used to
generate the graphical form of OQL query results.

Figure 1.2 shows a typical query result in graphical form, as generated
by O,Look.

Eraser button Sl/22/72
BG2E6A (Set collar 100mm} |E77*ﬂ134 ‘Fixing element?
EF7-C3467 {Fixing element? IBOS—BFS? <Bolt}
KLWSS tBolt>r IS:L23BBFGH/<Buehor1ng support
YOB-876 (Screwl |I<LINY135HGF {Screwl
[[) ROZ-738-A {MWasher> KUMYFEES {Washer:
Object icons

SLF¥1S <Fixing strap} IP855 ‘Anchoring clip?

WO7-DD4 {Screwl EUMY135-32 {Screwl
RO2-262 {basher: EUMY225-F <{lasher>

BA124-440BF (Assembled unit? |Sﬂ]]HEl7 tFixing =et}

Figure 1.2: Typical OQL query result in graphical form, as generated in Unix

In addition to the usual Motif buttons a graphical query result has an
Eraser button. Clicking on the Eraser button removes the graphical
result. This query result consists of a number of objects. Each object
has its own pop-up menu which is displayed by clicking the Object icon
using the right mouse button. This pop-up menu can be used to access
the public methods of each object.

ODMG OQL User Manual 1-5

INTRODUCTION

Windows NT

In Windows NT, the query result is displayed in a window in textual
form containing hypertext links. Each link represents a sub-object.

The label for a specific link may be obtained by applying the title
method to the sub-object represented by the link.

Clicking on a hypertext link, with the right mouse button, replaces the
contents of the window with a representation of the sub-object
associated with the link.

Figure 1.3 shows a typical query result in graphical form, as generated
in Windows NT.

= 02: 0QL Query BB

=nom : Joseph
=age: 20
= gpoux : Person

Back Forward New YWindow QuUIT

Figure 1.3: Typical OQL query result in graphical form, as generated in Windows NT

Note

The browser shown in Figure 1.3 has the following buttons:
Back this button displays the previous object.

Forward this button displays the next sub-object. It is only valid if
the Back button has been activated at least once.

New Window This button displays the current object in a new window.
Each window is an independent browser.

Quit This button closes the active window.

The query result is an object of the Person class, which has a name, an
age and a spouse. A spouse is also an object of the Person class, and
thus appears in as a hypertext link. Left clicking displays the spouse
object.

The rest of this manual will only show graphical displays from the Unix
platform.

ODMG OQL User Manual

Interactive and embedded query language :

1.2 Interactive and embedded query language

It is because OQL is so easy to use interactively that all kinds of users
including non-technical users can browse the database quickly and

efficiently to get the information they want. OQL can also be used as a
function called from C, C++, Smalltalk, Java, O,C and O, Engine API.

Interactive OQL

The OQL interpreter can be triggered by the query command of O2dba,
O2dsa or O, shells. The command interpreter prompts you with the
following message:

type your command and end with ~D
To run OQL, type:

query
D

You must type D (Control - D) on a separate line. You now see:

Query Interpreter
type your query and end with *D

Type your query, ending it with ~D .
"this is a query"
"D

The answer is automatically displayed and the system returns to the
OQL prompt:

type your query and end with "D

To leave the query session type:

AD (or quit)

You are now back in the command interpreter and you see the message:
type your command and end with ~D

You can also use OQL in the O,Tools programming environment (Refer
to the O,Tools User Manual).

Note
In a Windows environment ~Z (Control - Z) is used instead of "D
(Control - D).

ODMG OQL User Manual 1-7

1]

INTRODUCTION

Embedded OQL

1.3

Any valid query can be passed from O,C code to OQL using the system
supplied function o2query . This is detailed in the O,C Reference
manual.

Similarly, you can pass a query to a C++, C, Smalltalk or Java program.
Refer to the respective manuals for details.

Finally an OQL function exists in O,Engine and is described in the
O,Engine API Reference Manual.

Manual overview

This manual is divided up into the following chapters:

Chapter 1 - Introduction
This chapter introduces the O, system and the OQL query language.

It outlines the concepts of the ad hoc query language that allows you to
browse the database quickly and efficiently to get the information you
want, and the embedded query language that you can call from inside
your programs.

Chapter 2 - OQL - Getting started

This chapter introduces the OQL language so you can start to use OQL
in order to obtain the exact information you want from your database.

It describes and illustrates basic and “select..from..where” queries,
details how to construct results and describes the use of operators and

indexes. To fully understand this chapter, you must know the ODMG
data model.

Chapter 3 - OQL Rationale

This chapter introduces the ODMG standard and describes the ODMG
object model. It also gives an example based presentation of OQL.

Chapter 4 - OQL Reference

This chapter contains the ODMG reference manual for OQL 1.2. It is the
same as the ODMG standard with added notes and explanations on how
to use OQL with O,.

For each feature of the language, you get the syntax, in informal
semantics, and an example. Finally, the formal syntax is given.

1-8

ODMG OQL User Manual

% GETTING
STARTED

AN OBJECT-ORIENTED DATABASE
QUERY LANGUAGE

So that you can obtain the exact information you want from your
database, O, has an object oriented database query language OQL.

OQL is a powerful and easy-to-use SQL-like query language with special
features for dealing with complex objects, values and methods.

This chapter introduces the OQL language and is divided up into the
following sections:

* Basic queries

e Select ... from ... where

e Constructing results

* Operators

e Set operators

* Conversions

e Combining operators

* Indexes

* Chapter Summary

To understand this chapter you need to know the ODMG data model?.

As an introduction to the data model you can refer to chapter 3 of this
manual or the O,C Beginner’s Guide.

Experience of SQL, though not a prerequisite, will facilitate the OQL
learning process.

1. The Object Database Standard: ODMG - 93, release 1.2. Edited by R.G.G. Cattell. ©
1996 Morgan Kaufman Publishers.

ODMG OQL User Manual 2-1

GETTING STARTED

2.1

Basic queries

All the examples shown below are based on the following O, schema:

In 0,C

class 02_set_Employee public type
unique set (Employee)
end;

class 02_list_Client public type
list (Client)
end;

class Company public type
tuple (name: string,
employees: 02_set_Employee,
clients: 02_list_Client
)
method public title: string
end;

class Client public type
tuple (name: string,
order: list (tuple (what: string,
price: real))

)

end;

class Employee public type
tuple (name: string,
birthday: Date,
position: string,
salary: real)
method age: integer
end;

2-2

ODMG OQL User Manual

Basic queries

In C++

class Company {

public:
d_String name;
d_Set<d_Ref<Employee> > employees;
d_List<d_Ref<Client> > clients;
char* title() {return name;}

%

class item { d_String what; double price;};

class Client {

public:
d_String name;
d_Array<item> order;

¥

class Employee {

public:
d_String name;
d_Date birthday;
d_String position;
float salary;
int age();

h

Two persistent roots are also defined: An object, Globe
the_employees

and a collection

name Globe: Company;
constant name the_employees: 02_set_Employee;

ODMG OQL User Manual

2-3

2 GETTING STARTED

Database entry points
To query any database you need various entry points.
In O, these are the named objects and named values.
For example, Globe is an entry point.

The simplest OQL query calls an entry point:

Globe

This returns:

In an O, database, named objects and values can either be values of
any type, or objects of any class. Consequently, OQL allows you to query
values or objects of any type or class.

Note

The query results shown below are all given in the Unix graphic form.

2-4

ODMG OQL User Manual

Basic queries : Simple queries

Simple queries
Simple queries can involve different types of values:
* Atomic values

With atomic values you can carry out arithmetic calculations, e.g.,

2*2

This is a query which returns the integer 4.

e Struct values

You can also consider the value of the object Globe of class Company as
a struct (or tuple) value with three attributes.

The only operation you can carry out on a struct is extracting a field,
e.g.,

Globe.name

This returns the name of the Globe Company.

The International Globe

ODMG OQL User Manual 2-5

GETTING STARTED

List or array values

A list is an ordered collection that allows duplicates and you can
therefore extract any of its elements if you know their position.

For example, you can extract the first element of the list in clients as
follows.

Globe.clients[0]

In OQL, you count list elements from O.

For OQL, an array behaves the same way as a list.

Call of a method

To apply a method to an object is a base query, e.g.

Globe.title

2.2

This applies the method title to the object Globe and returns the
result of the method title

The International Globe

Select ... from ... where

The select from where clause enables you to extract those elements
meeting a specific condition from a collection. O, collections include
set, bag (a multi-set or set with duplicates), list (an insertable and
dynamic array) or array.

The OQL query has the following structure:

select : defines the structure of the query result

from : introduces the collections against which the query runs.

2-6

ODMG OQL User Manual

Select ... from ... where : Set

Set

where : introduces a predicate that filters the collection.

This section now describes how to use this clause.

A set is a non-ordered collection.

The most frequent query on a set is a filter. This consists of extracting
the elements of a set which have certain characteristics.

For example:

select e
from e in Globe.employees
where e.salary > 200.00

This query returns those employees working at the International Globe
with a salary over 200:

itizen Kane if

The select clause defines the query result as the employees and the
from clause gives the set on which torun the query. The variable e
represents each of its elements in turn. The where clause filters the
employees so that those earning more than 200 are extracted.

This query therefore builds a collection of employees.
This collection is in fact a bag as duplicates are accepted. You can also
add the keyword distinct to eliminate any duplicates from the

resulting bag and then produce a true set.

Moreover, you can access from e any attributes, e.g. salary and get a
set of real numbers. For example:

select distinct e.salary
from e in Globe.employees
where e.position = "Reporter"

This gives a set of the salaries of the Reporters:

ODMG OQL User Manual 2-7

GETTING STARTED

| {240.000000 250,000000

You can also use a query to select from more than one collection:

select e

from e in Globe.employees,
c in Globe.clients

where e.name = c.name

This query returns the set of employees who have the same name as a
client. If there is a client called Kent and an employee called Kent, you
see the following window:

Path expressions

Objects are related to other objects, and in order to get to the data it
needs, a query can follow various paths that start from any O, object or
collection. For example,

select distinct ord.what
from cl in Globe.clients,

ord in cl.order
where cl.name = "Haddock"

You obtain the set of what the client(s) called Haddock bought:

Pooklet

2-8

ODMG OQL User Manual

Select ... from ... where : Testing on nil

Testing on nil

After your application has updated the database, you may find that
some objects are now equal to nil. You can test for this using OQL. For
example, you can test that a client exists and if so, which client has
three orders:

select c.name
from c in Globe.clients
where c!=nil and count (c.order) = 3

To simplify programming, OQL skips nil objects when they are
encountered. If a path expression contains a nil object, a predicate is
always considered false . This means that the previous expression can
be rewritten as follows:

select c.name
from c in Globe.clients
where count (c.order) = 3

List or array

Alist or an array is an ordered collection that can contain duplicate
elements.

Since it is ordered, you may extract any of its elements if you know their
position. For example:

Globe.clients[2]

This extracts the third element of the list (the first element is at position
0).

As with sets you can filter a list.

ODMG OQL User Manual 2-9

GETTING STARTED

For example: what are the names of the clients who buy the
International Globe newspaper?

select e.name
from e in Globe.clients

2.3

Note

Note

The result of this query is a bag of the name of Globe clients:

The query returns a bag and not a list. Toreturn a list, you must define
an order. See “Order by” on page 19.

You can also add the keyword distinct to a selection to eliminate any
duplicates from the resulting set.

You can manipulate very complex structures. A list can be made up of
tuples which in turn can have a set attribute, etc. Consequently, you
have access to all the embedded components of an object.

For more details, refer to Section 2.3 for constructing query results and
Section 2.7 for combining operators.

Constructing results

The structure of a query result is very often implicit. For example, when
you extract the age field of an employee, which is of type integer, you
obtain an integer. When you filter a set, bag or list, you obtain a set, bag
or list depending on what you select.

2-10

ODMG OQL User Manual

Constructing results

However, you can also construct a query result with an explicit
structure using the struct , set , bag, list and array constructors.

For example, using the struct constructor:

select struct (employee: e.name,
position: e.position,
salary: e.salary)
from e in Globe.employees

or simply:

select e.name, e.position, e.salary
from e in Globe.employees

This query gives the name, position and salary of the employees at the
International Globe newspaper:

lpaxitian |hul paxition Japortwr
nalary |5‘.i.lh'|\.ll\.l.l.l salary |ﬂ-l.ll.ll.ll.ﬂ\.l\.l

rissa |:||r\t'.l|] LT |H| leas |
lpxikion |P!rp-:rl.-r paziiion |hIRH
53] oy |:|5.r-|.-.n-'m FTE2 |1m_m-.an

i LaEn |E-q.l|.l-udl Liw B L o Edines

] ey PRGN] salari B, 0000 _J

You can use the special "*" operator to select all attributes of the
elements of a collection.

ODMG OQL User Manual 2-11

GETTING STARTED

For example:

select * from Globe.employees

Note that in this example you do not need to define a variable with
from .

You can also build up embedded structures simply by combining
struct operators.

For example, to get the identities and salaries of all those employees
working as reporters and older than 22.

select struct (employee: struct (name: e.name,
age: e.age),
salary: e.salary)
from e in Globe.employees
where e.position = "Reporter" and
e.age > 22

This query gives a bag with one element:

enployes

age 23

salary [260.000000

Creating an object

You create values using struct , list , array , bag and set . In OQL,
you can also create objects using the class name and by initializing the
attributes of your choice. Any un-initialized attributes are set to the
default value. For example, to create an object of the class Client

Client (name: "Trent")

This creates a temporary object with the name attribute initialized to
Trent .

2-12

ODMG OQL User Manual

Operators : Count

You can then make the object persistent in the usual way (refer to the
0,C, C++, Smalltalk and Java manuals). The result of this query is the
new object.

An object collection can be created in the same way. For example, use
the following query to create an 02_list_Client collection.

02_list_Client (list(Client(name:"John"),
(Client(name:"Jack™))

2.4 Operators

Count

This section outlines the basic OQL operators you can useto query the
database.

You can query the database using the count clause.

For example, to find out how many employees there are at the
International Globe newspaper:

count (Globe.employees)

This query returns an integer.

Other aggregate operators are min, max, sumand avg.

ODMG OQL User Manual 2-13

2 GETTING STARTED

Define
You can name the result of a query using the define clause. For
example,
define MyEmployees as
select e
from e in Globe.employees
where e.name like "Sp*"
This names the result of the query and not the query itself.
The name MyEmployees can then be used in other queries. Named
queries greatly improve the legibility of complex queries.
Note
You can only reuse these named queries in the same query session,
i.e., uptoacommit or abort point.
Element

When you have a set or a bag that contains a single element, you extract
the element directly using the element operator. For example,

element (select e
from e in Globe.employees
where e.name = "Tintin")

This query gives the result:

2-14 ODMG OQL User Manual

Operators : Exists

Exists

You can add a new persistent name to cover all the different companies
that exist:

name TheCompanies: list (Company);

You can now carry out more complex queries, such as selecting which
company has at least one employee under the age of 23:

select c.name
from c in TheCompanies
where exists e in c.employees: e.age < 23

The answer is a bag of names:

The International Gl

The Daily Mews

The Telegraph

IIIE

Group by

This operator groups together objects of a collection with the same value
for particular attributes.

For example,

select *
from e in Globe.employees
group by e.salary

This groups the employees by salary giving a bag of two-attribute
tuples:

ODMG OQL User Manual 2-15

2 GETTING STARTED

= oZshall]
EX
ey L] il L, D00
. =
] B
slary |"ur~ — wilary o6, D

- [[O=
salary {150, 0

|p|r':|':'.:1

1 — I 1

The first attribute is the salary and is called salary as specified. The
second is the set of objects (employees) with the same salary and is
called partition

Thus, the type of the result of this query is:

bag (struct (salary: real,
partition: bag (struct (e:Employee))))

2-16 ODMG OQL User Manual

Operators : Group by

You can work on a partition value by computing statistics on each

partition.

The following query returns a bag of two-attribute tuples with the salary

and the number of employees earning each of these salaries:

select salary, number: count (partition)
from e in Globe.employees
group by e.salary

You get the following type of window:

|
“

= o2ahall
(=]

rambar |] | rambar |5|
rmahar |ﬁ' | Faahar |f|
b |f| |

Finally you can filter the result of grouping by applying predicates on

aggregative operations. You can select groups with conditions on

average, count, sum, maximum and minimum values of partitions. You
do this using the having clause.

ODMG OQL User Manual

2-17

2 GETTING STARTED

For example, if you wish to select only groups with more than one

salary:

select salary, number: count (partition)
from e in Globe.employees

group by e.salary
having count (partition) > 1

The following screen is displayed.

1
= aZshall |-1

R b I".‘ |
L

2-18 ODMG OQL User Manual

Operators

Like

Order by

The like operator allows you to test part of a character string. The "*"
character stands for any string including the empty string.

The query:

select distinct e.salary
from e in Globe.employees
where e.name like "Sp*"

returns the salaries of all employees whose names begin with Sp:

| {1228..000000 240,000000

You can obtain a sorted list using the order by clause. For example, to
sort the employees by name and by age:

select e from e in Globe.employees order by e.name, e.age

Theresult of an order by operation is always a list, even though the
source of the objects to sort (the set employees , in this case) may be a
set.

This query returns a list of employees; their order is alphabetical by
name, and then by age:

ODMG OQL User Manual 2-19

2 GETTING STARTED

2.5 Set operators

The standard set operations are defined on set and bag: union ,
intersect (intersection) and except (difference).

You can also write these operators as + (union), * (intersection) and -
(difference).

You can define another query YourEmployees :

define YourEmployees as
select e
from e in Globe.employees
where e.name = "Tintin"

Now you can combine the queries by adding together two sets:

MyEmployees + YourEmployees

The simple addition (union) of the two sets of employees gives you a set
containing the answer:

The pick operator is defined on a set or a bag. It returns an element of
the collection, chosen arbitrarily.

For example:

pick (MyEmployees)

2-20 ODMG OQL User Manual

Conversions

2.6 Conversions

List to set
To convert a list or array to a set you use the listtoset operator.
Example:
listtoset (Globe.clients) intersect
listtoset (TheCompanies|[2].clients)
Set to list
To convert a set or bag to a list you must order it.
For example:
select e from e in the_employees order by e.salary
returns a list sorted by salary.
You can also use "*" to build a list. This avoids a real sort algorithm and
should be used when the final order of the list is unimportant.
select e from e in the_employees order by *
returns a list of all employees in random order.
Flatten

To convert a collection of collections into a flattened collection you use
the flatten operator.

For example:

flatten (select distinct c.clients
from c in TheCompanies)

returns a set of clients.

ODMG OQL User Manual 2-21

2 GETTING STARTED

2.7 Combining operators

OQL is a complete functional language in that every operator can be
combined with any other operator.

You can use combine and build up operators, universal and existential
quantifiers, wild-card operators, standard set operators as well as list
concatenation, ordering and grouping operators on sets, bags and lists.

For example:

select cl.name, paid: sum (select p.price from p in
cl.order)

from cl in Globe.clients

where count (cl.order) >2

order by sum (select p.price from p in cl.order)

This sorts all the clients, with more than two orders, by how much they
have paid to the company:

name Tournesol

paid 151,100000

name Haddock

paid 224,800000

2.8 Indexes

When OQL extracts one or more elements from a collection using a
specified predicate or order operation, it must scan the whole collection
to find the required elements.

You can improve performance if the system is able to directly access the
matching elements. This is done by establishing an index on a
collection.

An index maps a key to one or more elements of a named collection.

2-22 ODMG OQL User Manual

Indexes : Display index

Whenever a program searches for elements of the collection using the
key, the system uses the index to quicken the search.

This entire process is totally transparent to you as the programmer. The
absence or presence of an index has no effect on program code, only on
system performance.

The benefits of indexes include the following:

e Complete logical and physical independence

You do not have to change your query to use indexing. Indexes are
created by administration commands.

e High performance during use and maintenance

Access from an index means constant time access irregardless of the
size of the collection.

Example:

e Defining an index for all employees:

create index the_employees on salary;

e The following query will then be optimized:

select e

from e in the_employees

where e.salary > 1000 and e.salary <5000
Display index

The "display index" query allows you to see how OQL will use existing indexes in que-
ries you will make. To stop this feature, execute "display index" again.

Note

Please refer to the System Administration Guide for details on how to
create and manage indexes.

ODMG OQL User Manual 2-23

2 GETTING STARTED

2.9 Chapter Summary

This chapter has covered the following points:

* Basic queries

To query any database you need various entry points. In O, these are
the named instances — i.e. named objects and named values.

Simple queries include: calling an entry point, applying a method to a
named object, extracting a field, etc.

e Select..from..where

The select ... from ... where clause enables you to extract those
elements meeting a specific condition from a list or set.

e Constructing results

The structure of a query result is very often implicit. However, you can
also construct a query result with an explicit structure using the
struct , set and list constructors.

* Operators

OQL operators include define , element , order by , count , exists ,
group by and like . They can be combined for complex queries.

¢ Indexes

When OQL extracts one or more elements from a set or list it scans the
whole collection to find the desired elements. You can improve
performance if you tell the system exactly where to look.This is done by
establishing an index on a collection. An index maps a key to one or
more elements of a named collection.

2-24 ODMG OQL User Manual

3 OQL
RATIONALE

Most commercial object database systems now have a common data
model based on the OMG object model. This data model is defined in the
ODMG 93 report. Based on this ODMG model, the query language OQL
was defined and adopted by the ODMG group.

This chapter is divided up as follows:
* The ODMG standard

* The ODMG model
* OQL by example

ODMG OQL User Manual 3-1

3 OQL RATIONALE

3.1 The ODMG standard

The ODMG standard covers the following points:
1. an object model

2. an object definition language for this model, with its own syntax, ODL
or its expression through C++ and Smalltalk syntax

3. an object query language for this model, OQL

4. a C++ binding allowing C++ programs to operate on a database
compliant to the object model

5. a Smalltalk binding allowing Smalltalk programs to operate on a
database compliant to the object model

3-2

ODMG OQL User Manual

The ODMG model

3.2

The ODMG model

The ODMG object model supports the notion of classes, of objects with
attributes and methods, of inheritance and specialization. It offers the
classical types to deal with string, date, time, time interval and
timestamp. And finally, it supports the notions of relationships and
collections.

ODMG-93 introduces a set of predefined generic collection classes:
Set<T>, Bag<T> (a multi-set, i.e., a set with repeated elements),
Varray<T> (a variable size array), List<T> (a variable size and
insertable array).

An object refers to another object through a Ref. A Ref behaves as a C++
pointer, but with more semantics: it is a persistent pointer but
referential integrity can be expressed in the schema and maintained by
the system. This is done by declaring the relationship as symmetric.

Combining relationships and collections, an object can relate to more
than one object through arelationship. Therefore, 1-1 relationships, 1-n
relationships and n-m relationships can be supported with the same
guarantee of referential integrity.

ODMG-93 enables explicit names to be given to any object or collection.
From a name, an application can directly retrieve the named object and
then operate on it or navigate to other objects following the relationship
links.

Let us now present the model through a complete example. We use here
C++ syntax for our object definition language, following the ODMG C++
ODL binding (i.e., the way of defining an ODMG schema using the
standard C++ language).

ODMG OQL User Manual 3-3

OQL RATIONALE

class Person{
d_String name;
d_Date birthdate;
d_Set < d_Ref<Person> > parents
inverse children;
d_List <d_Ref<Person> > children
inverse parents;

d_Ref<Apartment> lives_in
inverse is_used_by;

Methods

Person(); :
0 Constructor: a new Person is born

int age(); :
9e() Returns an atomic type

void marriage(d_Ref<Person> spouse);

void birth(d_Ref<Person> child);

d_Set< d_Ref<Person> > ancestors;;

virtual d_Set<d_String> activities();
A redefinable method

class Employee: Person{

float salary;
Method

virtual d_Set<d_String> activities();

This person gets a spouse

This person gets a child

Set of ancestors of this Person

A subclass of Person

This method is redefined

3-4

ODMG OQL User Manual

The ODMG model

class Student: Person{

d_String grade;

A subclass of Person

Method

virtual d_Set<d_String> activities();

The method is redefined

ODMG OQL User Manual

3-5

OQL RATIONALE

class Address{
int number;
d_String street;

k

class Building{
Address address;
A complex value Address embedded in this object

d_List< <d_Ref<Apartment> > apartments
inverse building;
Method
d_Ref<Apartment> less_expensive();

k

class Apartment{
int number;
d_Ref<Building> building;
d_Ref<Person>is_used_hy
inverse lives_in;

kh

d_Set< d_Ref<Person>> Persons;
All persons and employees

d_Set< d_Ref<Apartment> > Apartments;
The Apartement class extent

d_Set< d_Ref<Apartment> > Vacancy;
The set of vacant appartements
d_List< d_Ref<Apartment> > Directory;

The list of appartements ordered by their number of rooms

ODMG OQL User Manual

OQL by example : Path expressions

3.3

OQL by example

Let us now turn to an example based presentation of OQL. We use the
database described in the previous section, and instead of trying to be
exhaustive, we give an overview of the most relevant features.

Path expressions

As explained above, one can enter a database through a named object,
but more generally as soon as one gets an object (which comes, for
instance, from a C++ expression), one needs a way to “navigate” from it
and reach theright data one needs. To do thisin OQL, we usethe“. ” (or
indifferently “-> ") notation which enables us to go inside complex
objects, as well as to follow simple relationships. For instance, given a
Person p to know the name of the street where this person lives, we use

the following OQL query:

p.lives_in.building.adddress.street

This query starts from a Person , traverses an Apartment , arrives in a
Building and goes inside the complex attribute of type Address to get
the street name.

This example treated 1-1 relationship, let us now look at n-p
relationships. Assume we want the names of the children of the person
p. We cannot write: p.children.name because children is a List of
references, so the interpretation of the result of this query would be
undefined. Intuitively, the result should be a collection of names, but we
need an unambiguous notation to traverse such a multiple relationship
and we use the select-from-where clause to handle collections just as
in SQL.

select c.name
from c in p.children

The result of this query is a value of type Bag<String>. If we want to get
a Set, we simply drop duplicates, like in SQL by using the distinct
keyword.

select distinct c.name
from c in p.children

Now we have a means to navigate from any object to any other object
following any relationship and entering any complex subvalues of an
object.

ODMG OQL User Manual 3-7

OQL RATIONALE

For instance, we want the set of addresses of the children of each
Person of the database. We know the collection named Persons
contains all the persons of the database. We have now to traverse two
collections: Persons and Person::children . Like in SQL, the select-
from operator allows us to query more than one collection. These
collections then appear in the from part. In OQL, a collection in the
from part can be derived from a previous one by following a path which
starts from it, and the answer is:

select c.lives_in.building.address
from p in Persons,
¢ in p.children

This query inspects all children of all persons. Its result is of the type
Bag<Address>.

Predicate

Of course, the where clause can be used to define any predicate which
then serves to select the data matching the predicate. For instance, to
restrict the previous result to the people living on Main Street, and
having at least 2 children who do not livein the same apartment as their
parents, the query is:

select c.lives_in.building.address

from p in Persons,
¢ in p.children

where
p.lives_in.building.address.street

= "Main Street" and

count(p.children) >= 2 and
c.lives_in !=p.lives_in

Join

In the from clause, collections which are not directly related can also be
declared. As in SQL, this allows us to compute “joins” between these
collections. For instance, to find the people living in a street and having
the same name as this street, we do the following: the Building extent
is not defined in the schema, so we have to compute it from the
Apartments extent. To compute this intermediate result, we need a
select-from operator again. So the join is done as follows:

3-8

ODMG OQL User Manual

OQL by example : Data manipulation

select p
from p in Persons,
b in (select distinct a.building
from a in Apartments)
where p.name = b.address.street

This query highlights the need for an optimizer. In this case, the inner
select subquery must be computed once and not for each person!

Data manipulation

A major difference between OQL and SQL is that an object query
language must manipulate complex values. OQL can therefore create
any complex value as a final result, or inside the query as intermediate
computation.

To build a complex value, OQL uses the constructors struct , set , bag,
list and array . For example, to obtain the addresses of the children of
each person, along with the address of this person, we use the following

query:

select struct(me: p.name,
my_address:
p.lives_in.building.address,
my_children:
(select struct(
name: c.name,
address:
c.lives_in.building.address)
from c in p.children))
from p in Persons

ODMG OQL User Manual 3-9

3 OQL RATIONALE

This gives, for each person, the name, the address, and the name and
address of each child. The type of the result is a bag of the following
struct:

struct{
String me;
Address my_address;
Bag<struct{String name;
Address address}> my_children;

OQL can also create complex objects. For this purpose, it uses the name
of a class as a constructor. Attributes of the object of this class can be
initialized explicitly by any valid expression.

For instance, to create a new building with 2 apartments, if there is a
type name in the schema, called List_apart , defined by:

tydedef List<<Ref<Apartment> > List_apart;

the query is:

Building(
address:
Address (number: 10,
street: "Main street"),
apartments:
List_apart(list(Apartment(number: 1),
Apartment(number: 2))))

Method invoking

OQL allows method calls with or without parameters anywhere the
result type of the method matches the expected type in the query. In
case the method has no parameter, the syntax for method call is the
same as for accessing an attribute or traversing a relationship. If the
method has parameters, these are given between parenthesis. This
flexible syntax frees the user from knowing whether the property is

3-10 ODMG OQL User Manual

OQL by example : Polymorphism

stored (an attribute) or computed (a method). For instance, to get the
age of the oldest child of “Paul” , we write the following query:

select max(select c.age
from c in p.children)

from p in Persons,

where p.name = "Paul"

Of course, a method can return a complex object or a collection and
then its call can be embedded in a complex path expression. For
instance, inside a building b, to know who inhabits those least
expensive apartment, we use the following path expression:

b.less_expensive.is_used_by.name

Although less_expensive is a method we “traverse” it as if it were a
relationship.

Polymorphism

A major contribution of object technology is the possibility of
manipulating polymorphic collections, and thanks to the “late binding”
mechanism, to carry out generic actions on the elements of these
collections. For instance, the set Persons contains objects of class
Person , Employee and Student . So far, all the queries against the
Persons extent dealt with the three possible classes of objects of the
collection. A query is an expression whose operators operate on typed
operands. It is correct if the type of operands matches those required by
the operators. In this sense, OQL is atyped query language. This is a
necessary condition for an efficient query optimizer. When a
polymorphic collection is filtered (for instance Persons), its elements
are statically known to be of that class (for instance Person). This
means that a property of a subclass (attribute or method) cannot be
applied to such an element, except in two important cases: late binding
to a method, or explicit class indication.

* Late binding

To list the activities of each person, we use the following query:

select p.activities
from p in Persons

ODMG OQL User Manual 3-11

3 OQL RATIONALE

activities is a method which has 3 incarnations, one for Student
one for Employee and one for generic Person . Depending on the kind of
person of the current p, the right incarnation is called.

e Class indicator

To go down the class hierarchy, a user may explicitly declare the class of
an object that cannot be inferred statically. The interpreter then has to
check at runtime, that this object actually belongs to the indicated class
(or one of its subclasses).

For example, assuming we know that only “students” spend their time
in following a course of study, we can select those persons and get their
grade. We explicitly indicate in the query that these persons are
students:

select ((Student)p). grade
from p in Persons
where "course of study" in p.activities

Operator composition

OQL is a purely functional language: all operators can be composed
freely as long as the type system is respected. This is why the language
is so simple and its manual so short. This philosophy is different from
SQL, which is an ad-hoc language whose composition rules are not
orthogonal to the type system. Adopting a complete orthogonality,
makes the language easier to learn without losing the SQL style for
simple queries. Among the operators offered by OQL but not yet
introduced, we can mention the set operators (union , intersect
except), theuniversal (forall) and existential quantifiers (exists), the
order by and group by operators and the aggregative operators
(count , sum, min, max and avg).

To illustrate this free composition of operators, let us write a rather
elaborate query. We want to know the name of the street where the set
of employees living on that street and have the smallest average salary,
compared to the sets of employees living in other streets. We proceed
step by step and use the define OQL instruction to evaluate temporary
results.

3-12 ODMG OQL User Manual

OQL by example : Operator composition

1. Build the extent of class Employee (not supported directly by the
schema)

define Employees as
select (Employee) p
from p in Persons
where "has a job" in p.activities

2. Group the employees by street and compute the average salary in
each street

define salary_map as
select street,

average_salary: avg (select p.e.salary
from partition p)

from e in Employees
group by e.lives_in.building.address.street

The group by operator splits the employees into partitions,
according to the criterion (the name of the street where this person
lives). The select clause computes, in each partition, the average of
the salaries of the employees belonging to this partition.

The result of the query is of type:

Bag<struct{String street;
float average_salary;}>

3. Sort this set by salary

define sorted_salary_map as
select s from s in salary_map
order by s.average_salary

Theresult is of type:

List<struct{String street;
float average_salary;}>

ODMG OQL User Manual 3-13

3 OQL RATIONALE

4. Now get the smallest salary (the first in the list) and take the
corresponding street name. This is the final result.

sorted_salary_map[0].street

In a single query, we could have written:

(select street,

average_salary: avg (select p.e.salary
from partition p)
from e in (select (Employee) p

from p in Persons
where "has a job" in p.activities)

group by e.lives_in.building.address.street
order by avg (select p.e.salary from partition p))
[0]. street

3-14 ODMG OQL User Manual

4 OQL

REFERENCE

This chapter gives the full referencial information of the object query
language OQL.

It is divided into the following sections:

* Introduction

* Principles

* Language Definition

* Syntactical Abbreviations

e OQL BNF

Theinformation given below is the same as that of the ODMG standard?
with notes added on how to use this language with O,.

1. The Object Database Standard: ODMG - 93. Atwood, Duhl, Ferran, Loomis and Wade.
Edited by R.G.G. Cattell. © 1996 Morgan Kaufman Publishers.

ODMG OQL User Manual 4-1

Ll

4.1

4.2

Introduction

In this chapter, a formal and complete definition of the language is
given. For each feature of the language, we give the syntax, its
semantics, and an example. Alternate syntax for some features are
described in Section 4.4, which completes OQL in order to accept any
syntactical form of SQL.

The chapter ends with the formal syntax which is given in Section 4.5

Principles

Our design is based on the following principles and assumptions:
* OQL relies on the ODMG object model.

* OQL is a superset of the standard SQL part which allows you to query
a database. Thus, any select SQL sentence which runs on relational
tables, works with the same syntax and semantics on collections of
ODMG objects. Extensions concern Object Oriented notions, like
complex objects, object identity, path expression, polymorphism,
operation invocation, late binding etc...

* OQL provides high-level primitives to deal with sets of objects but
does not restrict its attention to this collection construct. Thus, it
also provides primitives to deal with structures, lists, arrays, and
treats all such constructs with the same efficiency.

* OQL isafunctional language where operators can freely be composed,
as soon as the operands respect the type system. Thisis a
consequence of the fact that the result of any query has a type which
belongs to the ODMG type model, and thus can be queried again.

* OQL is not computationally complete. It is an easy to use query
language which provides easy access to an object database.

* Based on the same type system, OQL can be invoked directly from
within programming languages for which an ODMG binding is
defined, e.g., C++ and SmallTalk. Conversely, OQL can invoke
operations programmed in these languages.

* OQL does not provide explicit update operators but rather can invoke
operations defined on objects for that purpose, and thus does not
breach the semantics of an Object Database which, by definition, is
managed by the "methods" defined on the objects.

* OQL provides declarative access to objects. Thus OQL queries can be
easily optimized by virtue of this declarative nature.

* The formal semantics of OQL can easily be defined.

4-2

ODMG OQL User Manual

Language Definition : Query Program

4.3

Language Definition

OQL is an "expression" language. A query expression is built from typed
operands composed recursively by operators. We will use the term
expression to designate a valid query in this section.

4.3.1 Query Program
A query program consists of a (possibly empty) set of query definition
expressions followed by an expression, which is evaluated as the query
itself. The set of query definition expressions is non recursive (although
a query may call an operation which issues a query recursively).
For example:
define jones as select distinct x from Students x

where x.name = "Jones";
select distinct student_id from jones
This defines the set jones of students named Jones, and evaluates the
set of their student_ids
O, note

With the O, query interpreter you use CTRL-D (on Unix) or CTRL-Z (On
Windows) between two queries rather that ";".

4.3.2 Named Query Definition

If g is an identifier and e is a query expression, then define qas e is
a query definition expression which defines the query with name q.

Example:

define Does as select x from Student x
where x.name ="Doe"

This statement defines Does as a query returning a bag containingall the
students whose name is Doe.

define Doe as element(select x from Student x
where x.name="Doe")

This statement defines Doe as a query which returns the student whose
name is Doe (if there is only one, otherwise an exception is raised).

ODMG OQL User Manual 4-3

O, note

» define operation is available only with the interactive query
interpreter. It has no meaning for OQL embedded in programming
languages (C++, Smalltalk, O,C) because standard programming
language variables can be used for that purpose.

* A defined name is valid up to the next commit or abort

* You can get the list of current defined queries by typing the query:
display queries

4-4

ODMG OQL User Manual

Language Definition : Elementary Expressions

4.3.3

4.3.3.1

4.3.3.2

4.3.3.3

4334

Elementary Expressions

Atomic Literals

If I'is an atomic literal, then | is an expression whose value is the literal
itself.

Literals have the usual syntax:

e Object Literal: nil

* Boolean Literal: false, true

* Integer Literal: sequence of digits, e.g, 27

* Float Literal: mantissa/ exponent. The exponent is optional, e.g., 3.14
or 314.16e-2

* Character Literal: character between simple quotes, e.g., 'Z’
e String Literal: character string between double quote, e.g.,"a string"

Named Objects

If e is a named object, then e is an expression. It defines the entity
attached to the name.

Example:

Students

This query defines the set of students. We have assumed here that the
name Students exists which corresponds to the extent of objects of the
class Student .

Iterator Variable

If x is a variable declared in a from part of a select-from-where..., then x
is an expression whose valueis the current element of the iteration over
the corresponding collection.

Named Query

If defineqase is a query definition expression, then g is an
expression.

Example:

Doe

This query returns the student with name Doe. It refers to the query
definition expression declared in Section 4.3.2.

ODMG OQL User Manual 4-5

4.3.4

43.4.1

4.3.4.2

Construction Expressions

Constructing Objects

Ift is atypename, p;,p 5, ...p n are propertiesoft,ande 1, e »,
..,& pareexpressions,thent(p q:e 1...,p €) isanexpression.

This defines a new object of typet whose propertiesp 1,p o, ...,.p n
areinitialized with the expressions e, e »,....e n- Thetype of e; must
be compatible with the type of p;.

Ift is atypename of a collection and e is a collection literal, then t(e)
is a collection object. The type of e must be compatible with t.

Examples:

Employee (name: "Peter", boss: Chairman)

This creates a mutable Employee object.

vectint (set(1,3,10))

This creates a mutable set object (assuming that vectint is the name of
a class whose type is Bag<int>).

Constructing Structures

fp,p 2 ..p n are property names, and e, e o, ..., € hare
expressions, then

struct(p 1:€ 1,pP 2:€ o, .., P n€n

is an expression. It defines the structure taking values eq,e »,...,e n

on properties p;, P 2, P p-

Note that this dynamically creates an instance of the type struct(p ~ :
t,p 2t o, ., P n.t) ift; isthetypeof e;.

Example:

struct(name: "Peter", age: 25);

This returns a structure with two attributes name and age taking
respective values Peter and 25 .

See also abbreviated syntax in some contexts, in Section 4.4.1.

4-6

ODMG OQL User Manual

Language Definition : Construction Expressions

4.3.4.3 Constructing Sets
Ife,e 5, ..., € n are expressions, then setle q,e o, ...,e n) isan
expression. It defines the set containingthe elements eq,e 5, ...,e n-
It creates a set instance.
Example:
set(1,2,3)
This returns a set consisting of the three elements 1, 2, and 3.
4.3.4.4 Constructing Lists
Ifeq,e o ..., &4 are expressions, then
list(e Le 9, .., 8 n) orsimply (e, e 5, ..,e n)
are expressions. They definethe list having elements e, e 5, ...,e n-
They create a list instance.
If min, max are two expressions of integer or character types, such that
min < max, then
list(min .. max) or simply (min .. max)
are expressions whose value is: list(min, min+1, ... max-1, max)
Example:
list(1,2,2,3)
This returns a list of four elements.
Example:
list(3 .. 5)
This returns the list(3,4,5)
O, note

In O, the keyword list is mandatory.

ODMG OQL User Manual 4-7

4.3.45

4.3.4.6

4.3.5

4351

Constructing Bags

Ifeq,e 5 ...,e n are expressions, then bag(e 1,e », ..., e
expression. It defines the bag having elements e, e 5, ..., e
creates a bag instance.

Example:

n) is an
ne It

bag(1,1,2,3,3)

This returns a bag of five elements.

Constructing Arrays

Ife;,e 5, ...,e n areexpressions, then array(e ., ,,...,€
expression. It defines an array having elements e;,e , ...,e
creates an array instance.

Example:

npisan
ne It

array(3,4,2,1,1)

This returns an array of five elements.
Atomic Types Expressions

Unary Expressions

If e is an expression and <op> is a unary operation valid for the type of
e, then <op> e is an expression. It defines the result of applying <op>to

e.
Arithmetic unary operators are: +, -, abs

Boolean unary operator is: not.

Example:

not true

This returns false

ODMG OQL User Manual

Language Definition : Atomic Types Expressions

4.35.2

4.35.3

Binary Expressions

If e; and e, are expressions and <op> is a binary operation, then
ei<op>e, is an expression. It defines the result of applying <op> to e;
and e,.

Arithmetic integer binary operators are: +, -, *, /, mod (modulo)
Floating point binary operators are: +, 0%

Relational binary operators are: = = < <=, >, >=

These operators are defined on all atomic types.

Boolean binary operators are: and, or

Example:

count(Students) - count(TA)

O, note

This returns the difference between the number of students and the
number of TAs.

String Expressions
If s, and s, are expressions of type string, then
S1lls o, and s;+s 5

are equivalent expressions of type string whose value is the
concatenation of the two strings.

In O, the operator | | is not accepted. To concatenate 2 strings use "+".

If c is an expression of type character, and s an expression of type
string, then

cins

is an expression of type boolean whose value is true if the character
belongs to the string, else false.

ODMG OQL User Manual 4-9

If s is an expression of type string, and i is an expression of type
integer, then

s(i]
is an expression of type character whose value is the i+1th character of
the string.
If s is an expression of type string, and low and up are expressions of
type integer, then

s[low:up]

is an expression of type string whose value is the substring of s from the
low+1 th character up to the up+1 th character.

If s is an expression of type string, and pattern a string literal which
may include the wildcard characters: "?" or " _", meaning any character,
and "*" or "%, meaning any substring including an empty substring,
then

s like pattern

is an expression of type boolean whose value is true if s matches the
pattern, else false.

Example:

"a nice string’ like '%nice%str_ng’

O, note

is true.

In O, the only supported wildcard is "*".

4-10

ODMG OQL User Manual

Language Definition : Object Expressions

4.3.6

4.3.6.1

4.3.6.2

4.3.6.3

Object Expressions

Comparison of Mutable Objects

If e, and e, are expressions which denote mutable objects (objects with
identity) of the same type, then

e,=e and e l=e ,

are expressions which return a boolean. The second expression is
equivalentto notle ;=€ ,).

e; =e ,istrueifthey designate the same object.

Example:

Doe = element(select s from Students s
where s.name = "Doe")

is true.

Comparison of Immutable Objects

If e; and e, are expressions which denote immutable objects (literals) of
the same type, then

e;=e , and ejl=e ,

are expressions which return a boolean. the second expression is
equivalent to

notle ;=e).

e;=e sistrueifthevalue e, is equal to the value e,.

Extracting an Attribute or Traversing a Relationship from an Object

If e is an expression, if p is a property name, then e->p ande.p are
expressions. These are alternate syntax to extract the property p of an
object e .

If e happens to designate a deleted or a non existing object, i.e. nil , an
attempt to access the attribute or to traverse the relationship raises an
exception. However, a query may test explicitly if an object is different
from nil before accessing a property.

Example:

Doe.name

This returns Doe.

ODMG OQL User Manual 4-11

4.3.6.4

4.3.6.5

Example:

Doe->spouse != nil and Doe->spouse->name = "Carol"

O, note

This returns true , if Doe has a spouse whose name is Carol, or else
false

According to a recent evolution of the ODMG standard, OQL does not
now raise an exception when it traverses a path which contains a nil
Instead of this, a predicate involving such a path is always false . This
means that OQL now skips such elements and thus the explicit test to
nil is not yet mandatory.

Applying an Operation to an Object
If e is an expression, if f is an operation name, then

e->f and e.f

are expressions. These are alternate syntax to apply on operation on an
object. The value of the expression is the onereturned by the operation
or else the object nil , if the operation returns nothing.

Example:

jones->number_of_students

This applies the operation number_of_students to jones .

Applying an Operation with Parameters to an Object

If e is an expression, ife;, e 5, ..., e, are expressions, iff is an
operation name, then

e->fle 1,e o5, ...,€ n) and efe e 5 .., € n)

are expressions that apply operation f with parameters e, e , ...,
e, to object e. The value of the expression is the onereturned by the
operation or else the object nil, if the operation returns nothing.

In both cases, if e happens to designate a deleted or a non existing object,
i.e. nil , an attempt to apply an operation to it raises an exception.
However, a query may test explicitly if an object is different from nil
before applying an operation.

4-12

ODMG OQL User Manual

Language Definition : Object Expressions

Example:

Doe->apply_course("Maths", Turing)->number

This query calls the operation apply_course

on class Student for the

object Doe. It passes two parameters, a string and an object of class
Professor. The operation returns an object of type Course and the query

returns the number of this course.

ODMG OQL User Manual

4-13

4.3.6.6

4.3.7

43.7.1

4.3.7.2

Dereferencing an Object
If e is an expression which denotes an object with identity (a mutable

object), then *e is an expression which delivers the value of the object (a
literal).

Example:

Given two variables of type Person, pl and p2, the predicate

pl =p2

is true if both variables refer to the same object, while

*pl =*p2

istrue if the objects have the same values, even if they are not the same
objects.

Collections Expressions

Universal Quantification

If x isavariablename, e; and e, are expressions, e; denotes a collection
and e, a predicate, then

forall xine 1:€e o

is an expression. It returns true if all the elements of collection e, satisfy
e, and false otherwise.

Example:

for all x in Students: x.student_id > 0

This returns true if all the objects in the Students set have a positive
value for their student_id attribute. Otherwise it returns false

Existential Quantification

If x is a variable name, if e; and e, are expressions, e; denotes a
collection and e, a predicate, then

exists x in e 1.€e 5
is an expression. It returns true if thereis at least one element of
collection e, that satisfies e, and false otherwise.

Example:

exists x in Doe.takes: x.taught_by.name = "Turing"

4-14

ODMG OQL User Manual

Language Definition : Collections Expressions

4.3.7.3

4.3.7.4

O, note

Thisreturns true if at least one course Doe takes is taught by someone
named Turing.

If e is a collection expression, then
exists(e) and unigue(e)

are expressions which return a boolean value. The first onereturns true
if there exists at least one element in the collection, while the second one
returns true, if there exists only one element in the collection.

Notice that these operators allow the acceptance of the SQL syntax for
nested queries such as:

select ... from col where exists (select ... from col 1
where predicate)

The nested query returns a bag to which the operator exists is applied.
This is of course the task of an optimizer to recognize that it is useless to
compute effectively the intermediate bag result.

In O, these two last operations are not supported. Only the form "exists
X in el: e2"is valid.

Membership Testing

If e, and e, are expressions, e 5 is a collection, e; has the type of its
elements, then

e;in e,

is an expression. It returns true if element e; belongs to collection e,.

Example:

Doe in Does

This returns true .

Aggregate Operators

If e is an expression which denotes a collection, if <op> is an operator
from {min, max, count, sum, avg} , then <op>(e) is an expression.

Example:

max (select salary from Professors)

This returns the maximum salary of the Professors.

ODMG OQL User Manual 4-15

4.3.8

4.3.8.1

Select From Where

If e 1,e 5, ..., e, areexpressions which denote collections, and x4,X »,
... X parevariable names, if & is an expression of type boolean, and
if projection is an expression or the character *, then

select projectionfrome ,asx ;,e ,asx ,.,e |, asx p, wheree’

and

select distinct projectionfrome jasx .,e ,asx .., e n as
X Where e

are expressions.

The result of the query is a set for a select distinct or a bag for a
select.

If you assumeeq, e 5, .., € n are all set and bag expressions, then
the result is obtained as follows: take the cartesian product® of the sets
e,,e 2,...,€ n: filter that product by expression e’ (i.e., eliminate from
theresult all objects that do not satisfy boolean expression e’); apply
the projection to each one of the elements of this filtered set and get the
result. When theresult is a set (distinct case) duplicates are
automatically eliminated.

The situation where one or more of the collections e4, e 5, ..., e n is
an indexed collection is a little more complex. The select operator first
converts all these collections into sets and applies the previous
operation. Theresult is a set (distinct case) or else a bag. So, in this case,
we simply transform each of the e;'s into a set and apply the previous
definition.

Projection

Before the projection, the result of the iteration over the from variables is
of type

bag< struct(x 1. type_of(e 1 elements), ... x n: type_of(e n
elements)) >

The projection is constructed by an expression which can then refer
implicitly to the "current" element of this bag, using the variables x; . If
for e; neither explicit nor implicit variableis declared, then x; is given an
internal system name (which is not accessible by the query anyway).

By convention, if the projection is simply "*", then the result of the
selection is the same as the result of the iteration.

If the projection is "distinct *", the result of the select is this bag
converted into a set.

1. Thecartesian product between a set and a bag is defined by first converting the set into
a bag, and then getting the resulting bag which is the cartesian product of the two bags.

4-16

ODMG OQL User Manual

Language Definition : Select From Where

4.3.8.2

In all other cases, the projection is explicitly computed by the given
expression.

Example:

select couple(student: x.name, professor: z.name)
from Students as x,

x.takes as y,

y.taught_by as z
where z.rank = "full professor"”

This returns a bag of objects of type couple giving student names and
the names of the full professors from which they take classes.

Example:

select *
from Students as x,
x.takes as y,
y.taught_by as z
where z.rank = "full professor”select *

This returns a bag of structures, giving for each student "object", the
section object followed by the student and the full professor "object"
teaching in this section:

bag< struct(x: Student, y: Section, z: Professor) >

Iterator Variables

Avariable, x;, declared in the from part ranges over the collection e; and
thus has the type of the elements of this collection. Such a variable can
be used in any other part of the query to evaluate any other expressions
(see the Scope Rules in Section 4.3.15). Syntactical variations are
accepted for declaring these variables, exactly as with SQL. The as
keyword may be omitted. Moreover, the variable itself can be omitted,
and in this case, the name of the collection itself serves as a variable
name to range over it.

ODMG OQL User Manual 4-17

4.3.8.3

4.3.9

Example:

select couple(student: Students.name, professor: z.name)
from Students,

Students.takes y,

y.taught_by z
where z.rank = "full professor"

O, note

In O, an additional syntax is allowed to declare a variable x:
"...from xin collection ...".

This syntax will also be included in the next release of the ODMG
standard.

Predicate

In a select-from-where query, the where clause can be omitted, with the
meaning of a true predicate.

Group-by Operator

If select_query is a select-from-where query, partition_attributes is a
structure expression and predicate a boolean expression, then

select_query group by partition_attributes
is an expression and

select_query group by partition_attributes having predicate
is an expression.

The cartesian product visited by the select operator is split into
partitions. For each element of the cartesian product, the partition
attributes are evaluated. All elements which match the same values
according to the given partition attributes, belong to the same partition.
Thus the partitioned set, after the grouping operation is a set of
structures: each structure has the valued properties for this partition
(the valued partition_attributes), completed by a property which is
conventionally called partition and which is the bag of all objects
matching this particular valued partition.

4-18

ODMG OQL User Manual

Language Definition : Group-by Operator

If the partition attributes are:
att 1- € 1,att 2:€ o, ..., att n© n,
then the result of the grouping is of type

set< struct(att 1. type_of(e 1), att 5 type_of(e 2)seees
att n: type_of(e n)s
partition: bag< type_of(grouped elements) >)

The type of grouped elements is defined as follows.

If the from clause declares the variables v, on collection col {,v 5 on
col 5,...,v non col ,, thegrouped elements form a structure with one
attribute "v " for each collection having the type of the elements of the
corresponding collection.

partition: bag< struct(v 1: type_of(col 1 elements), ...,

v n: type_of(col n elements))>.
If a collection col | has no variable declared the corresponding attribute
has an internal system name.

This partitioned set may then be filtered by the predicate of a having
clause. Finally, theresultis computed by evaluating the select clause for
this partitioned and filtered set.

The having clause can thus apply aggregate functions on partition,
likewise the select clause can refer to partition to compute the final
result. Both clauses can refer also to the partition attributes.

Example:

select *
from Employees e
group by low: e.salary < 1000,

medium: e.salary >= 1000 and salary < 10000,
high: e.salary >= 10000

This gives a set of three elements, each of which has a property called
partition which contains the bag of employees that enter in this
category. So the type of the result is:

set<struct(low: boolean, medium: boolean, high: boolean,
partition: bag<struct(e: Employee)>)>
The second form enhances the first one with a having clause which

enables you tofilter theresult using aggregative functions which operate
on each partition.

ODMG OQL User Manual 4-19

4.3.10

Example:

select department,
avg_salary: avg(select p.e.salary from partition p)

from Employees e
group by department: e.deptno
having avg(select p.e.salary from partition p) > 30000

O, note

This gives a set of couples: department and average of the salaries of the
employees working in this department, when this average is more than
30000. So the type of the result is:

bag<struct(department: integer, avg_salary: float)>

In O, the syntax of partition_attributes does not accept the keyword
struct and thus is always given as a list of criteria separated by
commas. See Section 4.4.1.

Order-by Operator
If select_query is a select-from-where or a select-from-where-group_by
query, and ifeq, e ,, ..., e n are expressions, then

select_query orderbye 4,e 5, .., € n

is an expression. It returns a list of the selected elements sorted by the
function e;, andinsideeach subset yieldingthesamee;, sorted bye 5,
- and the final subsub...set, sorted by e,,.

Example:

select p from Persons p order by p.age, p.name

This sorts the set of persons on their age, then on their name and puts
the sorted objects into the result as a list.

Each sort expression criterion can be followed by the keyword asc or
desc, specifying respectively an ascending or descending order. The
default order is that of the previous declaration. For the first expression,
the default is ascending.

4-20

ODMG OQL User Manual

Language Definition : Indexed Collection

Example:

select * from p in Persons
order by p.age desc, p.name asc, p.department

4311

43111

Indexed Collection Expressions

Getting the i-th Element of an Indexed Collection

If e, and e, are expressions, e is alist or an array, e, is an integer, then
eq[e 5] is an expression. This extracts the e,+1th element of the
indexed collection e;. Notice that the first element has the rank 0.

Example:

list (a,b,c,d) [1]

This returns b.

Example:

element (select x
from Courses x
where x.name = "math" and
x.number ="101").requires[2]

43.11.2

This returns the third prerequisite of Math 101.

Extracting a Subcollection of an Indexed Collection.

If e;, e 5, and ez are expressions, e is a list or an array, e, and ez are
integers, then eq[e ,:e 3] is an expression. This extracts the
subcollection of e, starting at position e, and ending at position es.

Example:

list (a,b,c,d) [1:3]

This returns list (b,c,d)

ODMG OQL User Manual 4-21

Example:

element (select x
from Courses x
where x.name="math" and
x.number="101").requires[0:2]

This returns the list consisting of the first three prerequisites of Math
101.

4.3.11.3 Getting the First and Last Elements of an Indexed Collection

If e is an expression, if <op> is an operator from {first, last} ,eisa
list or an array, then <op>(e) isan expression. This extractsthefirst and
last element of a collection.

Example:

first(element(select x
from Courses x
where x.name="math" and
x.number="101").requires)

This returns the first prerequisite of Math 101.

4.3.11.4 Concatenating Two Indexed Collections

If e, and e, are expressions, if e; and e, are both lists or both arrays,
then e;+e, is an expression. This computes the concatenation of e; and
e,.

Example:

list (1,2) + list(2,3)

This query generates list (1,2,2,3)

4.3.12 Binary Set Expressions

4-22 ODMG OQL User Manual

Language Definition : Binary Set Expressions

43.12.1

4.3.12.2

Union, Intersection, Difference

If e; and e, are expressions, if <op> is an operator from {union,

except, intersect}, if e, and e, are sets or bags, then e; <op>e »
is an expression. This computes set theoretic operations, union,
difference, and intersection on e; and e,, as defined in Chapter 2.

When the collection kinds of the operands are different (bag and set), the
set is converted into a bag beforehand and the result is a bag.

Examples:

Student except Ta

This returns the set of students who are not Teaching Assistants.

bag(2,2,3,3,3) union bag(2,3,3,3)

This bag expression returns bag(2,2,3,3,3,2,3,3,3)

bag(2,2,3,3) intersect bag(2,3,3,3)

The intersection of 2 bags yields a bag that contains the minimum for
each of the multiply values. So the result is: bag(2,3,3)

bag(2,2,3,3,3) except bag(2,3,3,3)

This bag expression returns bag(2)

Inclusion

If e, and e, are expressions which denote sets or bags, if <op> is an
operator from {<, <=, >, >=}, then e; <op> e, is an expression whose
value is a boolean.

When the operands are different kinds of collections (bag and set), the
set is first converted into a bag.

e;<e ,istrueife isincluded into e, but not equal to e,

e;<=e sistrueife;isincluded into e,

ODMG OQL User Manual 4-23

Example:

set(1,2,3) < set(3,4,2,1)

istrue
4.3.13 Conversion Expressions
4.3.13.1 Extracting the Element of a Singleton
If e is a collection-valued expression, element(e)is an expression. This
takes the singleton e and returns its element. If e is not a singleton this
raises an exception.
Example:
element(select x from Professors x
where x.name ="Turing")
This returns the professor whose name is Turing (if there is only one).
4.3.13.2 Turning a List into a Set
If e is a list expression, listtoset(e) is an expression. This converts
the list into a set, by forming the set containing all the elements of the
list.
Example:
listtoset (list(1,2,3,2))
This returns the set containing 1, 2, and 3.
O, note

To carry out the reverse operation (set to list) you use the order by
operator. If you are not interested in a given order you can use "*" as
shown in the following query:

select e from e in aSet order by *

4-24

ODMG OQL User Manual

Language Definition : Conversion Expressions

4.3.13.3

4.3.13.4

Removing Duplicates
If e is an expression whose value is a collection, then

distinct(e)

is an expression whose value is the same collection after removing the
duplicated elements. If e is a bag, distinct(e) isaset. Ifeisan ordered
collection, the relative ordering of the remaining elements is preserved.

Flattening Collection of Collections

If e is a collection-valued expression, flatten(e) is an expression. This
converts a collection of collections of t into a collection of t. So this
flattening operates at the first level only.

Assuming the type of e to be col ;<col ,<t>>,
the result of flatten(e) is:

* If col 5, is aset (resp. a bag), the union of all col ,<t> is done and the
result is a set<t> (resp. bag<t>)

e If col 5 isalist (resp. an array) and col ; is a list (resp. an array) as
well, the concatenation of all col ,<t> is done following the order in
col ; and theresult is col ,<t>, which is thus a list (resp. an array).
Of course duplicates, if any, are maintained by this operation.

* If col 5 isalist or an array and col 1 is a set or a bag, the lists or
arrays are converted into sets, the union of all these sets is done and
theresult is a set<t> |, therefore without duplicates.

Examples:

flatten(list(set(1,2,3), set(3,4,5,6), set(7)))

This returns the set containing 1,2,3,4,5,6,7.

flatten(list(list(1,2), list(1,2,3)))

This returns list(1,2,1,2,3).

flatten(set(list(1,2), list(1,2,3)))

This returns the set containing 1,2,3.

ODMG OQL User Manual 4-25

4.3.13.5

4.3.14

4.3.15

Typing an Expression

If e isan expression, if c isatypename, then (c)e is an expression. This
asserts that e is an object of class type c.

If it turns out that it is not true, an exception is raised at runtime. This
is useful to access a property of an object which is statically known to be
of a superclass of the specified class.

Example:

select ((Employee) s).salary
from Students s
where s in (select sec.assistant from Sections sec)

This returns the set of salaries of all students who are teaching
assistants, assumingthat Students and Sections aretheextents of the
classes Student and Section

Function Call
If fis afunction name, ife;, ez, ... e , are expressions, then
f() and f(el, e2, ..., en)

are expressions whose valueis thevaluereturned by the function, or the
object nil , when the function does not return any value. The first form
allows you to call a function without a parameter, while the second one
calls a function with the parameters e, e ,, ..., e n-

OQL does not define in which language the body of such a function is
written. This feature allows you to smoothly extend the functionality of
OQL without changing the language.

Scope Rules

The from part of a select-from-where query introduces explicit or implicit
variables to range over the filtered collections. An example of an explicit
variable is:

select ... from Persons p ...
while an implicit declaration would be:
select ... from Persons ...

The scope of these variables reaches all parts of the select-from-where
expression including nested sub-expressions.

The group by part of a select-from-where-group_by query introduces the
name partition along with possible explicit attribute names which
characterize the partition. These names are visible in the corresponding
having and select parts, including nested sub-expressions within these
parts.

4-26

ODMG OQL User Manual

Language Definition : Scope Rules

Inside a scope, you use these variable names to construct path
expressions and reach properties (attributes and operations) when these
variables denote complex objects. For instance, in the scope of the first
from clause above, you access the age of a person by p.age .

When the variable is implicit, as in the second from clause, you use the
name of the collection directly, Persons.age

However, when there is no ambiguity, you can use the property name
directly as a shortcut, without using the variable nameto open the scope
(thisis made implicitly), writing simply: age. Thereis no ambiguity when
a property name is defined for one and only one object denoted by a
visible variable.

To summarize, a name appearing in a (nested) query is looked up in the
following order:

e avariablein the current scope, or
* anamed query introduced by the define clause, or
* anamed object, i.e., an entry point in the database, or

e an attribute name or an operation name of a variable in the current
scope, when thereis no ambiguity, i.e., this property name belongs to
only one variable in the scope.

Example:

Assumingthat in the current schema the names Persons and Cities are
defined.

select scopel
from Persons,

Cities c

where exists(select scope2 from children as child)

or count (select scope3, (select scope4 from
partition)
from children p,
scope5 v
group by age: scope6

)

In scopel, we see the names: Persons, c, Cities, all property names of
class Person and class City as soon as they are not present in both

classes, and they are not called "Persons", "c", nor "Cities".

In scope2, we see the names: child, Persons, c, Cities, the property
names of the class City which are not property of the class Person. No
attribute of the class Person can be accessed directly since they are
ambiguous between "child" and "Persons".

ODMG OQL User Manual 4-27

O, note

4.4

In scope3, we see the names: age, partition, and the same names from
scopel, except "age" and "partition”, if they exist.
In scope4, we see the names: age, partition, p, v, and the same names

from scopel, except "age", "partition”, "p" and "v", if they exist.

In scope5, we seethe names: p, and the same names from scopel, except

p", if it exists.

In scope6, we see the names: p, v, Persons, c, Cities, the property names
of the class City which are not property of the class Person. No attribute
of the class Person can be accessed directly since they are ambiguous
between "child" and "Persons".

Implicit attribute scope is not available with O,. You must always access
an attribute with the dot notation: v.att

Syntactical Abbreviations

OQL defines an orthogonal expression language, in the sense that all
operators can be composed with each others as soon as the types of the
operands are correct. To achieve this property, we have defined a
functional language with simple (like +) or composite operators (like
select from where group_by order_by) which always deliver aresultin the
sametype system and which thus can berecursively operated with other
operations in the same query.

In order to accept the whole DML query part of SQL, as a valid syntax for
OQL, OQL isadded some ad-hoc constructions each time SQL introduces
a syntax which cannot enter in the category of true operators. This
section gives the list of these constructions that we call "abbreviations",
since they are completely equivalent to a functional OQL expression
which is also given. Doing that, we thus give at the same time the
semantics of these constructions, since all operators used for this
description have already been defined.

4-28

ODMG OQL User Manual

Syntactical Abbreviations : Structure Construction

441

Structure Construction

The structure constructor was introduced in Section 4.3.4.2. Alternate
syntax are allowed in two contexts: select clause and group-by clause.

In both contexts, the SQL syntax is accepted, along with the one already
defined.

select projection {, projection} ...

select ... group by projection {, projection}
where projection is in one of the following forms:
e (i) expression as identifier
e (ii) identifier: expression

e (iii) expression
This is an alternate syntax for:

struct(identifier: expression {, identifier: expression})

Ifthereis only one projection and the syntax (iii)is used in a select clause,
then it is not interpreted as a structure construction but rather the
expression stands as it is. Furthermore, a (iii) expression is only valid if
it is possible to infer the name of the corresponding attribute (the
identifier). This requires that the expression denotes a path expression
(possibly of length one) ending in a property whose name is then chosen
as the identifier.

Example:

select p.name, salary, student_id

from Professors p, p.teaches

O, note

This query returns a bag of structures:

bag<struct(name: string, salary: float, student_id:
integer)>

O, accepts the 3 alternatives of the projection syntax in the select part,
as well as the struct syntax. In the group by part, O, accepts the 3
alternatives but does not accept the struct syntax.

ODMG OQL User Manual 4-29

4.4.2 Aggregate Operators

These operators were introduced in Section 4.3.7.4. SQL adopts a
notation which is not functionnal for them. So OQL accepts this syntax
too.

If we define aggregate as one of min, max, count, sum and avg,
select count(*) from

is equivalent to: count(select * from ...)

select aggregate(query) from ...

is equivalent to: aggregate(select query from ...)

select aggregate(distinct query) from ...

is equivalent to: aggregate(distinct(select query from ...)

O, note

O, does not support Aggregate Operator abbreviations.

4.4.3 Composite Predicates

If e; and e, are expressions, e, is a collection, e; has the type of its
elements, if relation

is a relational operator (=, !=, <, <=, >, >=), then
e, relation somee, and eqrelationanye , and eqrelationalle
are expressions whose value is a boolean.
The two first predicates are equivalent to:
exists x in e > e 1 relation x
The last predicate is equivalent to:
forallxine > e 1 relation x

Example:

10 < some (8,15, 7, 22)

istrue

4-30 ODMG OQL User Manual

Syntactical Abbreviations : String Literal

O, note

In O, Composite Predicate abbreviations are not supported.

4.4.4 String Literal

OQL accepts simple quotes as well to delimit a string (see Section
4.3.3.1), as SQL does. This introduces an ambiguity for a string with one
character which then has the same syntax as a character literal. This
ambiguity is solved by context.

O, note

In O, a string must be delimited by double quotes.

ODMG OQL User Manual 4-31

45 OQL BNF

45.1

451.1

45.1.2

The OQL grammar is given using a BNF-like notation.

{symbol } means a sequence of 0 or more symbol(s).

[symbol] means an optional symbol. Do not confuse with the
separators []

keyword is aterminal of the grammar. Keywords are not case sensitive.
xxX_name has the syntax of an identifier
xxx_literal is self explanatory, e.g., "a string" is a string_literal

bind_argument stands for a parameter when embedded in a
programming language, e.g., $3i.

The non terminal query stands for a valid query expression. The
grammar is presented as recursive rules producing valid queries. This
explains why most of the time this non terminal appears on the left side
of ::=. Of course, all operators expect their "query" operands to be of the
right type. Type constraints were discussed in the previous sections.

Theserules must be completed by the priority of OQL operators which is
given after the grammar. Some syntactical ambiguities are solved
semantically from the types of the operands.

Grammar

Axiom (see Sections 4.3.1, 4.3.2)
query_program ::={define_query;} query
define_query ::= define identifier as query

Basic (see Section 4.3.3)
query ;= nil

query = true

query = false

query ::= integer_literal

query ::=float_literal

query ::= character_literal

query ::= string_literal

query = entry_name

query ::= query_name

query ::= bind_argument

query ::= from_variable_name
query ::= (query)

1. Abind argument allows to bind expressions from a programming language to a query
when embedded into this language (see Chapters on language bindings).

4-32

ODMG OQL User Manual

OQL BNF : Grammar

451.3

45.1.4

45.1.5

4.5.1.6

Simple Expression (see Section 4.3.5)
1

query ::= query + query
query ::= query - query
query ::= query * query
query ::= query | query
query ::= - query

query ::= query mod query
query ::= abs (query)

query ::= query || query
Comparison (see Section 4.3.5)
query ::= query comparison_operator query
query ::= query like string_literal
comparison_operator ::= =
comparison_operator ::= I=

comparison_operator ::= >
comparison_operator ::= <
comparison_operator ::= >=
comparison_operator ::= <=

Boolean Expression (see Section 4.3.5)

query = not query
query ::= query and query
query ::= query or query

Constructor (see Section 4.3.4)
query ::= type_name ([query])

query ::=type_name (identifier :query {, identifier : query}
query ::= struct (identifier: query {, identifier: query})

query ::= set ([query {, query} D

query = bag ([query {,query} D

query ::= list ([query {,query} D

query ::= (query, query {, query})
query : [list J(query .. query)
query :: array ([query {,query} D

1. The operator + is also used for list and array concatenation.

ODMG OQL User Manual

4-33

45.1.7

45.1.8

45.1.9

Accessor (see Sections 4.3.6, 4.3.11, 4.3.14, 4.3.15)
query ::= query dot attribute_name

query ::= query dot relationship_name

query ::= query dot operation_name

query ::= query dot operation_name(query {,query})
dot = o>
query ;= * query

query ::= query [query]
query ::= query [query:query]

query ::= first (query)
query = last (query)
query ::= function_name([query {,query} D

Collection Expression (see Sections 4.3.7, 4.4.3)

query = for all identifier in query: query
query ::= exists identifier in query: query
query ::= exists (query)

query = unique (query)

query ::= query in query

query ::= query comparison_operator quantifier query
quantifier ::= some

quantifier ::= any

quantifier ::= all

query = count (query)

query = count (*)

query ::= sum (query)

query = min (query)

query ::= max (query)

query ::= avg (query)

Select Expression (see Sections 4.3.8, 4.3.9, 4.3.10)
query ::= select [distinct] projection_attributes
from variable_declaration {, variable_declaration}

[where query]

[group by partition_attributes]

[having query]

[order by sort_criterion {, sort_criterion}
projection_attributes ::= projection {, projection}
projection_attributes ::= *
projection ::= query
projection ::= identifier: query
projection ::= query as identifier
variable_declaration ::= query [[as]identifier]

4-34

ODMG OQL User Manual

OQL BNF : Operator Priorities

45.1.10

451.11

45.2

partition_attributes ::= projection {, projection}

sort_criterion ::= query [ordering |
ordering ::= asc
ordering ::= desc

Set Expression (see Section 4.3.12)

query ::= query intersect query
query ::= query union query
query ::= query except query

Conversion (see Section 4.3.13)

query ::= listtoset (query)
query = element (query)
query ::= distinct (e)
query ::= flatten (query)

query ::= (class_name) query

Operator Priorities

The following operators are sorted by decreasing priority. Operators on
the same line have the same priority and group left-to-right.

o 0o .-

not - (unary) + (unary)
in

* | mod intersect

+ - union except |

< > <= >= <some <any <all
operators)

= I= like
and exists for all

or

(identifier) thisis the cast operator
order

having

group by

where

from

select

(etc ... for all comparison

ODMG OQL User Manual

4-35

4-36 ODMG OQL User Manual

INDE X

ODMG OQL User Manual

INDEX

Symbols

+ 2-20 2-20

A

Accessor 4-34
Addition of sets 2-20
Aggregative operators 3-12
Architecture
0, 1-2
Arithmetic 4-33
Array 2-6, 2-6,2-9
Constructing 4-8
Set conversion 2-21
array 2-11,2-12 3-9
Array value 2-6
Atomic value 2-5
Attribute 4-11
avg 2-13 3-12 4-15

B

Bag 2-6,2-12
Constructing 4-8

bag 2-11, 2-12, 3-9

Boolean 4-33

Browser Interface 1-5
Unix 1-5
Windows NT 1-6

by 2-19

C

C 13
C++
Interface 1-3

C++ binding 3-2 3-3

Class indicator 3-12

Collection 2-6,3-3,3-7,4-25
indexed expression 4-21
Named 2-22

Collection expression 4-34

Combining operators 2-12,2-22

Comparison 4-33
concatenation 4-22

Construction

Array 3-9

Bag 3-9

List 3-9

Set 3-9

Struct 3-9
Constructor 2-11, 3-9, 4-33
Conversion 2-21, 4-24, 4-35
count 2-13 3-124-15
Creating objects 2-12

D

Data manipulation 3-9
Database entry point 2-4
define 2-14 2-20,3-12
difference 4-23

distinct 2-7,3-7

ODMG OQL User Manual

INDEX

E

element 2-14 4-24
except 2-20 3-12 4-23

Existential quantification 2-22 3-12 4-14

exists 2-15 3-12

F

first 4-22

flatten 2-21
Flattening 4-25

forall ... Iin 3-12
from 3-8

G

group ... by 2-15 3-12,3-13 4-18

H

Hypertext links 1-6

intersect 2-20, 3-12,4-23
intersection 4-23

Java 1-3
Join 3-8
Join query 2-8

last 4-22
Late binding 3-11
like 2-19

List 2-6, 2-6,2-9
Constructing 4-7
Set conversion 2-21
Values 2-6

list 2-11, 3-9, 4-24
listtoset 2-21

M

max 2-13 3-12 4-15
Membership 4-15
Method call 2-6,3-10

ODMG OQL User Manual

INDEX

Method invoking 3-10

min 2-13 3-12 4-15
Motif 1-5

N

name 2-15

Named
Collection 2-22
Objects 2-4
Query 2-14
Values 2-4

O

0,

Architecture 1-2
0,C 1-3
O,Corba 1-3
O,DBAccess 1-3
O,Engine 1-2
O,Graph 1-3
O,Kit 1-3
O,Look 1-3 1-5
O,Report 1-3
O,Store 1-2
O,Tools 1-3
O,Web 1-3
Object

Creation 2-12

Named 2-4
Objects 4-6
ODMG model 3-3

ODMG standard 3-2 4-1

Operation 4-12

Operator 2-13 3-12
- 2-20
* 2-20
+ 2-20
Aggregative 3-12
avg 2-13 3-12 4-15
Combining 2-12 2-22
Composition 3-12
count 2-13 3-12 4-15
define 2-14,3-12
element 2-14
except 2-20,3-12
exists 2-15 3-12
flatten 2-21
forall...in 3-12

group...by 2-153-12,3-13 4-18

intersect 2-20,3-12
like 2-19
max 2-13 3-12 4-15
min 2-13 3-12 4-15
order by 2-19 4-20
Set 2-20,2-22 3-12
sum 2-13 3-12 4-15
union 2-20,3-12
Wild-card 2-22
OQL 1-31-4,2-1
Operators 2-13
Rational 3-1
Result 2-10

order by 2-19 3-12 4-20

P

partition 2-16

Path expressions 2-8 3-7
Polymorphism 3-11
Predicate 3-8

I-iv

ODMG OQL User Manual

INDEX

Q T

Query Testing on nil 2-9
Basic 2-2 4-32 Typing 4-26
Named 2-14

Result 2-10 2-14

U
R

union 2-20,3-12, 4-23
Universal quantification 2-22 3-12 4-14

Ref 3-3 Unix 1-5

Relationship 3-3,3-7,4-11

S vV

Value
Select from where 4-16 Atomic 2-5
select from where 2-6, 3-7 List 2-6
Set 2-6,2-7 Named 2-4
Constructing 4-7 Struct 2-5
List conversion 2-21
Operators 2-20,3-12
set 2-11 2-12 3-9,4-22 4-24
Set expression 4-35 W
Smalltalk 1-3
Smalltalk binding 3-2
struct 2-11, 2-12,2-12,3-9
Struct value 2-5 where 3-8
structure 4-6 Windows NT 1-6

Subcollection 4-21, 4-21
sum 2-13 3-12 4-15

System
Architecture 1-2

ODMG OQL User Manual I-v

' INDEX

I-vi ODMG OQL User Manual

	MAIN MENU TO O2 DOCUMENTATION
	ODMG OQL User Manual
	Who should read this manual
	TABLE OF CONTENTS
	1 INTRODUCTION 1-1
	1.1 System Overview 1-2
	1.2 Interactive and embedded query language 1-7
	1.3 Manual overview 1-8

	2 GETTING STARTED 2-1
	2.1 Basic queries 2-2
	2.2 Select ... from ... where 2-6
	2.3 Constructing results 2-10
	2.4 Operators 2-13
	2.5 Set operators 2-20
	2.6 Conversions 2-21
	2.7 Combining operators 2-22
	2.8 Indexes 2-22
	2.9 Chapter Summary 2-24

	3 OQL RATIONALE 3-1
	3.1 The ODMG standard 3-2
	3.2 The ODMG model 3-3
	3.3 OQL by example 3-7

	4 OQL REFERENCE 4-1
	4.1 Introduction 4-2
	4.2 Principles 4-2
	4.3 Language Definition 4-3
	4.4 Syntactical Abbreviations 4-28
	4.5 OQL BNF 4-32

	INDEX I-i

	1 INTRODUCTION
	1.1 System Overview
	Figure 1.1: O2 System Architecture
	OQL
	Browser Interface
	Figure 1.2: Typical OQL query result in graphical form, as generated in Unix
	Figure 1.3: Typical OQL query result in graphical form, as generated in Windows NT

	1.2 Interactive and embedded query language
	Interactive OQL
	Embedded OQL

	1.3 Manual overview

	2 GETTING STARTED
	2.1 Basic queries
	Database entry points
	Simple queries

	2.2 Select ... from ... where
	Set
	Join
	Path expressions
	Testing on nil
	List or array

	2.3 Constructing results
	Creating an object

	2.4 Operators
	Count
	Define
	Element
	Exists
	Group by
	Like
	Order by

	2.5 Set operators
	2.6 Conversions
	List to set
	Set to list
	Flatten

	2.7 Combining operators
	2.8 Indexes
	Display index

	2.9 Chapter Summary

	3 OQL RATIONALE
	3.1 The ODMG standard
	1. an object model
	2. an object definition language for this model, with its own syntax, ODL or its expression throu...
	3. an object query language for this model, OQL
	4. a C++ binding allowing C++ programs to operate on a database compliant to the object model
	5. a Smalltalk binding allowing Smalltalk programs to operate on a database compliant to the obje...

	3.2 The ODMG model
	3.3 OQL by example
	Path expressions
	Data manipulation
	Method invoking
	Polymorphism
	Operator composition
	1. Build the extent of class Employee (not supported directly by the schema)
	2. Group the employees by street and compute the average salary in each street
	3. Sort this set by salary
	4. Now get the smallest salary (the first in the list) and take the corresponding street name. Th...

	4 OQL REFERENCE
	4.1 Introduction
	4.2 Principles
	4.3 Language Definition
	4.3.1 Query Program
	This defines the set jones of students named Jones, and evaluates the set of their student_ids.

	4.3.2 Named Query Definition
	If q is an identifier and e is a query expression, then define q as e is a query definition expre...
	Example:
	This statement defines Does as a query returning a bag containing all the students whose name is ...
	This statement defines Doe as a query which returns the student whose name is Doe (if there is on...

	4.3.3 Elementary Expressions
	4.3.3.1 Atomic Literals
	If l is an atomic literal, then l is an expression whose value is the literal itself.
	Literals have the usual syntax:

	4.3.3.2 Named Objects
	If e is a named object, then e is an expression. It defines the entity attached to the name.
	This query defines the set of students. We have assumed here that the name Students exists which ...

	4.3.3.3 Iterator Variable
	If x is a variable declared in a from part of a select-from-where..., then x is an expression who...

	4.3.3.4 Named Query
	If define q as e is a query definition expression, then q is an expression.
	This query returns the student with name Doe. It refers to the query definition expression declar...

	4.3.4 Construction Expressions
	4.3.4.1 Constructing Objects
	If t is a type name, p1, p2, ...,pn are properties of t, and e1, e2, ...,en are expressions, then...
	This defines a new object of type t whose properties p1, p2, ...,pn are initialized with the expr...
	If t is a type name of a collection and e is a collection literal, then t(e) is a collection obje...
	This creates a mutable Employee object.
	This creates a mutable set object (assuming that vectint is the name of a class whose type is Bag...

	4.3.4.2 Constructing Structures
	If p1, p2, ...,pn are property names, and e1, e2, ..., en are expressions, then
	is an expression. It defines the structure taking values e1, e2, ..., en on properties p1, p2,
	Note that this dynamically creates an instance of the type struct(p1: t1, p2: t2, ..., pn: tn) if...
	This returns a structure with two attributes name and age taking respective values Peter and 25.
	See also abbreviated syntax in some contexts, in Section 4.4.1.

	4.3.4.3 Constructing Sets
	If e1, e2, ..., en are expressions, then set(e1, e2, ..., en) is an expression. It defines the se...
	This returns a set consisting of the three elements 1, 2, and 3.

	4.3.4.4 Constructing Lists
	If e1, e2, ..., en are expressions, then
	list(e1, e2, ..., en) or simply (e1, e2, ..., en)
	are expressions. They define the list having elements e1, e2, ..., en. They create a list instance.
	If min, max are two expressions of integer or character types, such that min < max, then
	list(min .. max) or simply (min .. max)
	are expressions whose value is: list(min, min+1, ... max-1, max)
	This returns a list of four elements.
	This returns the list(3,4,5)

	4.3.4.5 Constructing Bags
	If e1, e2, ..., en are expressions, then bag(e1, e2, ..., en) is an expression. It defines the ba...
	This returns a bag of five elements.

	4.3.4.6 Constructing Arrays
	If e1, e2, ..., en are expressions, then array(e1, e2, ..., en) is an expression. It defines an a...
	This returns an array of five elements.

	4.3.5 Atomic Types Expressions
	4.3.5.1 Unary Expressions
	If e is an expression and <op> is a unary operation valid for the type of e, then <op> e is an ex...
	Arithmetic unary operators are: +, -, abs
	Boolean unary operator is: not.
	This returns false.

	4.3.5.2 Binary Expressions
	This returns the difference between the number of students and the number of TAs.

	4.3.5.3 String Expressions

	4.3.6 Object Expressions
	4.3.6.1 Comparison of Mutable Objects
	If e1 and e2 are expressions which denote mutable objects (objects with identity) of the same typ...
	e1 = e2 and e1 != e2
	are expressions which return a boolean. The second expression is equivalent to not(e1 = e2).
	e1 = e2 is true if they designate the same object.
	is true.

	4.3.6.2 Comparison of Immutable Objects
	If e1 and e2 are expressions which denote immutable objects (literals) of the same type, then
	e1 = e2 and e1 != e2
	are expressions which return a boolean. the second expression is equivalent to
	not(e1 = e2).
	e1 = e2 is true if the value e1 is equal to the value e2.

	4.3.6.3 Extracting an Attribute or Traversing a Relationship from an Object
	If e is an expression, if p is a property name, then e->p and e.p are expressions. These are alte...
	If e happens to designate a deleted or a non existing object, i.e. nil, an attempt to access the ...
	This returns Doe.
	This returns true, if Doe has a spouse whose name is Carol, or else false.

	4.3.6.4 Applying an Operation to an Object
	If e is an expression, if f is an operation name, then
	e->f and e.f
	are expressions. These are alternate syntax to apply on operation on an object. The value of the ...
	This applies the operation number_of_students to jones.

	4.3.6.5 Applying an Operation with Parameters to an Object
	e->f(e1, e2, ..., en) and e.f(e1, e2, ..., en)
	are expressions that apply operation f with parameters e1, e2, ..., en to object e. The value of ...
	In both cases, if e happens to designate a deleted or a non existing object, i.e. nil, an attempt...
	Doe->apply_course("Maths", Turing)->number
	This query calls the operation apply_course on class Student for the object Doe. It passes two pa...

	4.3.6.6 Dereferencing an Object
	If e is an expression which denotes an object with identity (a mutable object), then *e is an exp...

	4.3.7 Collections Expressions
	4.3.7.1 Universal Quantification
	If x is a variable name, e1 and e2 are expressions, e1 denotes a collection and e2 a predicate, then
	is an expression. It returns true if all the elements of collection e1 satisfy e2 and false other...
	This returns true if all the objects in the Students set have a positive value for their student_...

	4.3.7.2 Existential Quantification
	If x is a variable name, if e1 and e2 are expressions, e1 denotes a collection and e2 a predicate...
	is an expression. It returns true if there is at least one element of collection e1 that satisfie...
	This returns true if at least one course Doe takes is taught by someone named Turing.
	If e is a collection expression, then
	exists(e) and unique(e)
	are expressions which return a boolean value. The first one returns true if there exists at least...
	Notice that these operators allow the acceptance of the SQL syntax for nested queries such as:
	The nested query returns a bag to which the operator exists is applied. This is of course the tas...

	4.3.7.3 Membership Testing
	If e1 and e2 are expressions, e2 is a collection, e1 has the type of its elements, then
	e1 in e2
	is an expression. It returns true if element e1 belongs to collection e2.
	This returns true.

	4.3.7.4 Aggregate Operators
	If e is an expression which denotes a collection, if <op> is an operator from {min, max, count, s...
	This returns the maximum salary of the Professors.

	4.3.8 Select From Where
	If e1, e2, ..., en are expressions which denote collections, and x1, x2, ..., xn are variable nam...
	are expressions.
	The result of the query is a set for a select distinct or a bag for a select.
	If you assume e1, e2, ..., en are all set and bag expressions, then the result is obtained as fol...
	The situation where one or more of the collections e1, e2, ..., en is an indexed collection is a ...
	4.3.8.1 Projection
	Before the projection, the result of the iteration over the from variables is of type
	The projection is constructed by an expression which can then refer implicitly to the "current" e...
	By convention, if the projection is simply "*", then the result of the selection is the same as t...
	If the projection is "distinct *", the result of the select is this bag converted into a set.
	In all other cases, the projection is explicitly computed by the given expression.
	from Students as x,
	x.takes as y,
	This returns a bag of objects of type couple giving student names and the names of the full profe...
	This returns a bag of structures, giving for each student "object", the section object followed b...

	4.3.8.2 Iterator Variables
	A variable, xi, declared in the from part ranges over the collection ei and thus has the type of ...

	4.3.8.3 Predicate
	In a select-from-where query, the where clause can be omitted, with the meaning of a true predicate.

	4.3.9 Group-by Operator
	If select_query is a select-from-where query, partition_attributes is a structure expression and ...
	select_query group by partition_attributes
	is an expression and
	select_query group by partition_attributes having predicate
	is an expression.
	The cartesian product visited by the select operator is split into partitions. For each element o...
	If the partition attributes are:
	then the result of the grouping is of type
	The type of grouped elements is defined as follows.
	If the from clause declares the variables v1 on collection col1, v2 on col2, ..., vn on coln, the...
	If a collection colk has no variable declared the corresponding attribute has an internal system ...
	This partitioned set may then be filtered by the predicate of a having clause. Finally, the resul...
	The having clause can thus apply aggregate functions on partition, likewise the select clause can...
	from Employees e
	This gives a set of three elements, each of which has a property called partition which contains ...
	The second form enhances the first one with a having clause which enables you to filter the resul...
	avg_salary: avg(select p.e.salary from partition p)
	from Employees e
	group by department: e.deptno
	This gives a set of couples: department and average of the salaries of the employees working in t...

	4.3.10 Order-by Operator
	If select_query is a select-from-where or a select-from-where-group_by query, and if e1, e2, ...,...
	is an expression. It returns a list of the selected elements sorted by the function e1, and insid...
	This sorts the set of persons on their age, then on their name and puts the sorted objects into t...
	Each sort expression criterion can be followed by the keyword asc or desc, specifying respectivel...

	4.3.11 Indexed Collection Expressions
	4.3.11.1 Getting the i-th Element of an Indexed Collection
	If e1 and e2 are expressions, e1 is a list or an array, e2 is an integer, then e1[e2] is an expre...
	This returns b.
	This returns the third prerequisite of Math 101.

	4.3.11.2 Extracting a Subcollection of an Indexed Collection.
	If e1, e2, and e3 are expressions, e1 is a list or an array, e2 and e3 are integers, then e1[e2:e...
	This returns list (b,c,d).
	This returns the list consisting of the first three prerequisites of Math 101.

	4.3.11.3 Getting the First and Last Elements of an Indexed Collection
	If e is an expression, if <op> is an operator from {first, last}, e is a list or an array, then <...
	This returns the first prerequisite of Math 101.

	4.3.11.4 Concatenating Two Indexed Collections
	If e1 and e2 are expressions, if e1 and e2 are both lists or both arrays, then e1+e2 is an expres...
	This query generates list (1,2,2,3).

	4.3.12 Binary Set Expressions
	4.3.12.1 Union, Intersection, Difference
	If e1 and e2 are expressions, if <op> is an operator from {union, except, intersect}, if e1 and e...
	When the collection kinds of the operands are different (bag and set), the set is converted into ...
	This returns the set of students who are not Teaching Assistants.
	This bag expression returns bag(2,2,3,3,3,2,3,3,3)
	The intersection of 2 bags yields a bag that contains the minimum for each of the multiply values...
	This bag expression returns bag(2)

	4.3.12.2 Inclusion
	When the operands are different kinds of collections (bag and set), the set is first converted in...
	e1 < e2 is true if e1 is included into e2 but not equal to e2
	e1 <= e2 is true if e1 is included into e2
	is true

	4.3.13 Conversion Expressions
	4.3.13.1 Extracting the Element of a Singleton
	If e is a collection-valued expression, element(e) is an expression. This takes the singleton e a...
	This returns the professor whose name is Turing (if there is only one).

	4.3.13.2 Turning a List into a Set
	If e is a list expression, listtoset(e) is an expression. This converts the list into a set, by f...
	This returns the set containing 1, 2, and 3.

	4.3.13.3 Removing Duplicates
	If e is an expression whose value is a collection, then
	distinct(e)
	is an expression whose value is the same collection after removing the duplicated elements. If e ...

	4.3.13.4 Flattening Collection of Collections
	If e is a collection-valued expression, flatten(e) is an expression. This converts a collection o...
	Assuming the type of e to be col1<col2<t>>,
	the result of flatten(e) is:
	This returns the set containing 1,2,3,4,5,6,7.
	This returns list(1,2,1,2,3).
	This returns the set containing 1,2,3.

	4.3.13.5 Typing an Expression
	If e is an expression, if c is a type name, then (c)e is an expression. This asserts that e is an...
	If it turns out that it is not true, an exception is raised at runtime. This is useful to access ...
	This returns the set of salaries of all students who are teaching assistants, assuming that Stude...

	4.3.14 Function Call
	If f is a function name, if e1 , e2 , ..., en are expressions, then
	f() and f(e1, e2, ... , en)
	are expressions whose value is the value returned by the function, or the object nil, when the fu...
	OQL does not define in which language the body of such a function is written. This feature allows...

	4.3.15 Scope Rules
	The from part of a select-from-where query introduces explicit or implicit variables to range ove...
	select ... from Persons p ...
	while an implicit declaration would be:
	select ... from Persons ...
	The scope of these variables reaches all parts of the select-from-where expression including nest...
	The group by part of a select-from-where-group_by query introduces the name partition along with ...
	Inside a scope, you use these variable names to construct path expressions and reach properties (...
	When the variable is implicit, as in the second from clause, you use the name of the collection d...
	However, when there is no ambiguity, you can use the property name directly as a shortcut, withou...
	To summarize, a name appearing in a (nested) query is looked up in the following order:
	Assuming that in the current schema the names Persons and Cities are defined.
	In scope1, we see the names: Persons, c, Cities, all property names of class Person and class Cit...
	In scope2, we see the names: child, Persons, c, Cities, the property names of the class City whic...
	In scope3, we see the names: age, partition, and the same names from scope1, except "age" and "pa...
	In scope4, we see the names: age, partition, p, v, and the same names from scope1, except "age", ...
	In scope5, we see the names: p, and the same names from scope1, except "p", if it exists.
	In scope6, we see the names: p, v, Persons, c, Cities, the property names of the class City which...

	4.4 Syntactical Abbreviations
	OQL defines an orthogonal expression language, in the sense that all operators can be composed wi...
	In order to accept the whole DML query part of SQL, as a valid syntax for OQL, OQL is added some ...
	4.4.1 Structure Construction
	The structure constructor was introduced in Section 4.3.4.2. Alternate syntax are allowed in two ...
	In both contexts, the SQL syntax is accepted, along with the one already defined.
	select projection {, projection} ...
	select ... group by projection {, projection}
	where projection is in one of the following forms:
	This is an alternate syntax for:
	struct(identifier: expression {, identifier: expression})
	If there is only one projection and the syntax (iii) is used in a select clause, then it is not i...
	This query returns a bag of structures:

	4.4.2 Aggregate Operators
	These operators were introduced in Section 4.3.7.4. SQL adopts a notation which is not functionna...
	If we define aggregate as one of min, max, count, sum and avg,
	select count(*) from ...
	is equivalent to: count(select * from ...)
	select aggregate(query) from ...
	is equivalent to: aggregate(select query from ...)
	select aggregate(distinct query) from ...
	is equivalent to: aggregate(distinct(select query from ...)

	4.4.3 Composite Predicates
	If e1 and e2 are expressions, e2 is a collection, e1 has the type of its elements, if relation
	is a relational operator (=, !=, <, <=, > , >=), then
	e1 relation some e2 and e1 relation any e2 and e1 relation all e2
	are expressions whose value is a boolean.
	The two first predicates are equivalent to:
	exists x in e2: e1 relation x
	The last predicate is equivalent to:
	for all x in e2: e1 relation x
	Example:
	10 < some (8,15, 7, 22)
	is true

	4.4.4 String Literal
	OQL accepts simple quotes as well to delimit a string (see Section 4.3.3.1), as SQL does. This in...

	4.5 OQL BNF
	The OQL grammar is given using a BNF-like notation.
	The non terminal query stands for a valid query expression. The grammar is presented as recursive...
	These rules must be completed by the priority of OQL operators which is given after the grammar. ...
	4.5.1 Grammar
	4.5.1.1 Axiom (see Sections 4.3.1, 4.3.2)
	4.5.1.2 Basic (see Section 4.3.3)
	4.5.1.3 Simple Expression (see Section 4.3.5)
	4.5.1.4 Comparison (see Section 4.3.5)
	4.5.1.5 Boolean Expression (see Section 4.3.5)
	4.5.1.6 Constructor (see Section 4.3.4)
	4.5.1.7 Accessor (see Sections 4.3.6, 4.3.11, 4.3.14, 4.3.15)
	4.5.1.8 Collection Expression (see Sections 4.3.7, 4.4.3)
	4.5.1.9 Select Expression (see Sections 4.3.8, 4.3.9, 4.3.10)
	4.5.1.10 Set Expression (see Section 4.3.12)
	4.5.1.11 Conversion (see Section 4.3.13)

	4.5.2 Operator Priorities
	The following operators are sorted by decreasing priority. Operators on the same line have the sa...
	() [] . ->
	not - (unary) + (unary)
	in
	* / mod intersect
	+ - union except ||
	< > <= >= < some < any < all (etc ... for all comparison operators)
	= != like
	and exists for all
	or
	.. :
	,
	(identifier) this is the cast operator
	order
	having
	group by
	where
	from
	select

	INDEX
	Symbols
	+�2-20, 2-20

	A
	Accessor�4-34
	Addition of sets�2-20
	Aggregative operators�3-12
	Architecture
	O2�1-2

	Arithmetic�4-33
	Array�2-6, 2-6, 2-9
	Constructing�4-8
	Set conversion�2-21

	array�2-11, 2-12, 3-9
	Array value�2-6
	Atomic value�2-5
	Attribute�4-11
	avg�2-13, 3-12, 4-15

	B
	Bag�2-6, 2-12
	Constructing�4-8

	bag�2-11, 2-12, 3-9
	Boolean�4-33
	Browser Interface�1-5
	Unix�1-5
	Windows NT�1-6

	by�2-19

	C
	C�1-3
	C++
	Interface�1-3

	C++ binding�3-2, 3-3
	Class indicator�3-12
	Collection�2-6, 3-3, 3-7, 4-25
	indexed expression�4-21
	Named�2-22

	Collection expression�4-34
	Combining operators�2-12, 2-22
	Comparison�4-33
	concatenation�4-22
	Construction
	Array�3-9
	Bag�3-9
	List�3-9
	Set�3-9
	Struct�3-9

	Constructor�2-11, 3-9, 4-33
	Conversion�2-21, 4-24, 4-35
	count�2-13, 3-12, 4-15
	Creating objects�2-12

	D
	Data manipulation�3-9
	Database entry point�2-4
	define�2-14, 2-20, 3-12
	difference�4-23
	distinct�2-7, 3-7

	E
	element�2-14, 4-24
	except�2-20, 3-12, 4-23
	Existential quantification�2-22, 3-12, 4-14
	exists�2-15, 3-12

	F
	first�4-22
	flatten�2-21
	Flattening�4-25
	forall ... in�3-12
	from�3-8

	G
	group ... by�2-15, 3-12, 3-13, 4-18

	H
	Hypertext links�1-6

	I
	intersect�2-20, 3-12, 4-23
	intersection�4-23

	J
	Java�1-3
	Join�3-8
	Join query�2-8

	L
	last�4-22
	Late binding�3-11
	like�2-19
	List�2-6, 2-6, 2-9
	Constructing�4-7
	Set conversion�2-21
	Values�2-6

	list�2-11, 3-9, 4-24
	listtoset�2-21

	M
	max�2-13, 3-12, 4-15
	Membership�4-15
	Method call�2-6, 3-10
	Method invoking�3-10
	min�2-13, 3-12, 4-15
	Motif�1-5

	N
	name�2-15
	Named
	Collection�2-22
	Objects�2-4
	Query�2-14
	Values�2-4

	O
	O2
	Architecture�1-2

	O2C�1-3
	O2Corba�1-3
	O2DBAccess�1-3
	O2Engine�1-2
	O2Graph�1-3
	O2Kit�1-3
	O2Look�1-3, 1-5
	O2Report�1-3
	O2Store�1-2
	O2Tools�1-3
	O2Web�1-3
	Object
	Creation�2-12
	Named�2-4

	Objects�4-6
	ODMG model�3-3
	ODMG standard�3-2, 4-1
	Operation�4-12
	Operator�2-13, 3-12
	-�2-20
	*�2-20
	+�2-20
	Aggregative�3-12
	avg�2-13, 3-12, 4-15
	Combining�2-12, 2-22
	Composition�3-12
	count�2-13, 3-12, 4-15
	define�2-14, 3-12
	element�2-14
	except�2-20, 3-12
	exists�2-15, 3-12
	flatten�2-21
	forall...in�3-12
	group...by�2-15, 3-12, 3-13, 4-18
	intersect�2-20, 3-12
	like�2-19
	max�2-13, 3-12, 4-15
	min�2-13, 3-12, 4-15
	order by�2-19, 4-20
	Set�2-20, 2-22, 3-12
	sum�2-13, 3-12, 4-15
	union�2-20, 3-12
	Wild-card�2-22

	OQL�1-3, 1-4, 2-1
	Operators�2-13
	Rational�3-1
	Result�2-10

	order by�2-19, 3-12, 4-20

	P
	partition�2-16
	Path expressions�2-8, 3-7
	Polymorphism�3-11
	Predicate�3-8

	Q
	Query
	Basic�2-2, 4-32
	Named�2-14
	Result�2-10, 2-14

	R
	Ref�3-3
	Relationship�3-3, 3-7, 4-11

	S
	select�3-13
	Select from where�4-16
	select from where�2-6, 3-7
	Set�2-6, 2-7
	Constructing�4-7
	List conversion�2-21
	Operators�2-20, 3-12

	set�2-11, 2-12, 3-9, 4-22, 4-24
	Set expression�4-35
	Smalltalk�1-3
	Smalltalk binding�3-2
	struct�2-11, 2-12, 2-12, 3-9
	Struct value�2-5
	structure�4-6
	Subcollection�4-21, 4-21
	sum�2-13, 3-12, 4-15
	System
	Architecture�1-2

	T
	Testing on nil�2-9
	Typing�4-26

	U
	union�2-20, 3-12, 4-23
	Universal quantification�2-22, 3-12, 4-14
	Unix�1-5

	V
	Value
	Array�2-6
	Atomic�2-5
	List�2-6
	Named�2-4
	Struct�2-5

	W
	where�3-8
	Windows NT�1-6

