
ODMG OQL
 User Manual

Release 5.0 - February 1998

In format ion in th is document is subject to change without
not ice and shou ld not be construed as a commitment by
O2 Technology.

The software descr ibed in th is document is delivered under a
l icense or nondisclosu re agreement.

The software can only be used or copied in accordance with the
terms of the agreement . It is against the law to copy th is
software to magnetic tape, disk , or any other medium for any
pu rpose other than the purchaser ’s own use.

Copyr ight 1992-1998 O2 Technology.

All r ights reserved. No part of th is publicat ion can be
reproduced, stored in a retr ieval system or t ransmit ted in any
form or by any means, elect ronic, mechanical, photocopy
without pr ior wr it ten permission of O2 Technology.

O2, O2Engine API, O2C, O2DBAccess, O2Engine, O2Graph,
O2Kit , O2Look, O2Store, O2Tools, and O2Web are registered
trademarks of O2 Technology.

SQL and AIX are registered t rademarks of In ternat ional
Business Machines Corporat ion.

Sun, SunOS, and SOLARIS are registered t rademarks of Sun
Microsystems, Inc.

X Window System is a registered trademark of the
Massachuset ts Inst itu te of Technology.

Unix is a registered trademark of Unix System Laborator ies, Inc.

HPUX is a registered trademark of Hewlet t-Packard Company.

BOSX is a registered trademark of Bu ll S.A.

IRIX is a registered t rademark of Siemens Nixdorf, A.G.

NeXTStep is a registered trademark of the NeXT Computer , Inc.

Pu r ify, Quant ify are registered t rademarks of Pu re Software Inc.

Windows is a registered t rademark of Microsoft Corporat ion.

All other company or product names quoted are t rademarks or
registered t rademarks of their respect ive t rademark holders.

Who should read this manual

OQL is an object-or iented SQL-like query language, the ODMG
standard. This manual descr ibes how to use OQL as an embedded
funct ion in a programming language (e.g. O2C, C, C++, or Smalltalk) or
in teract ively as a query language. It assumes previous knowledge of the
O2 system.

Other documents available are ou t lined, click below.

See O2 Documentation set .

TAB L E OF CONTE NTS
This manual is divided in to the following chapters:

1 - In troduct ion

2 - Get t ing Star ted

3 - OQL Rat ionale

4 - OQL Reference
ODMG OQL User Manual i

TABLE OF CONTENTS

-4
-5

-7
-8

2-4
2-5

2-7
2-8
2-8
-9
-9

-12

13
14
-14
15
15
19
19

21
21
1 INTRODUCTION 1-1

1.1 System Overview...1-2

OQL ... 1
Browser Interface... 1

1.2 Interactive and embedded query language1-7

Interactive OQL ... 1
Embedded OQL ... 1

1.3 Manual overview..1-8

2 GETTING STARTED 2-1

2.1 Basic queries ...2-2

Database entry points ...
Simple queries..

2.2 Select ... from ... where ..2-6

Set...
Join ...
Path expressions...
Testing on nil ... 2
List or array.. 2

2.3 Constructing results ...2-10

Creating an object .. 2

2.4 Operators ...2-13

Count.. 2-
Define... 2-
Element .. 2
Exists.. 2-
Group by .. 2-
Like .. 2-
Order by ... 2-

2.5 Set operators ...2-20

2.6 Conversions...2-21

List to set .. 2-
Set to list... 2-
i i ODMG OQL User Manual

TABLE OF CONTENTS

-21

23

3-7
-9

10
11
12

.4-3

4-3

..4-5

-5

4-5

4-5

4-5

.4-6

4-6

4-6

4-7
Flatten ...2

2.7 Combining operators ... 2-22

2.8 Indexes .. 2-22

Display index..2-

2.9 Chapter Summary... 2-24

3 OQL RATIONALE 3-1

3.1 The ODMG standard ... 3-2

3.2 The ODMG model.. 3-3

3.3 OQL by example ... 3-7

Path expressions ...
Data manipulation ..3
Method invoking ..3-
Polymorphism...3-
Operator composition ...3-

4 OQL REFERENCE 4-1

4.1 Introduction... 4-2

4.2 Principles... 4-2

4.3 Language Definition ... 4-3

4.3.1 Query Program..

4.3.2 Named Query Definition ...

4.3.3 Elementary Expressions...

4.3.3.1 Atomic Literals ...4

4.3.3.2 Named Objects..

4.3.3.3 Iterator Variable ..

4.3.3.4 Named Query..

4.3.4 Construction Expressions ...

4.3.4.1 Constructing Objects...

4.3.4.2 Constructing Structures...

4.3.4.3 Constructing Sets ..
ODMG OQL User Manual i i i

TABLE OF CONTENTS

4-7

4-8

-8

4-8

4-8

4-9

4-9

4-11

11

11

11

12

12

-14

-14

14

14

-15

-15

-16

-16

-17

-18

-18

-20

-21

21

21

tion
22
4.3.4.4 Constructing Lists...

4.3.4.5 Constructing Bags ..

4.3.4.6 Constructing Arrays ... 4

4.3.5 Atomic Types Expressions..

4.3.5.1 Unary Expressions..

4.3.5.2 Binary Expressions...

4.3.5.3 String Expressions..

4.3.6 Object Expressions ...

4.3.6.1 Comparison of Mutable Objects................................. 4-

4.3.6.2 Comparison of Immutable Objects............................. 4-

4.3.6.3 Extracting an Attribute or Traversing a Relationship from
an Object ... 4-

4.3.6.4 Applying an Operation to an Object........................... 4-

4.3.6.5 Applying an Operation with Parameters to an Object 4-

4.3.6.6 Dereferencing an Object... 4

4.3.7 Collections Expressions .. 4

4.3.7.1 Universal Quantification... 4-

4.3.7.2 Existential Quantification... 4-

4.3.7.3 Membership Testing ... 4

4.3.7.4 Aggregate Operators... 4

4.3.8 Select From Where.. 4

4.3.8.1 Projection.. 4

4.3.8.2 Iterator Variables .. 4

4.3.8.3 Predicate ... 4

4.3.9 Group-by Operator .. 4

4.3.10 Order-by Operator ... 4

4.3.11 Indexed Collection Expressions ... 4

4.3.11.1 Getting the i-th Element of an Indexed Collection... 4-

4.3.11.2 Extracting a Subcollection of an Indexed Collection.4-

4.3.11.3 Getting the First and Last Elements of an Indexed Collec
.. 4-
iv ODMG OQL User Manual

TABLE OF CONTENTS

-22

4-22

23

-23

4-24

-24

-24

-25

25

-26

-26

4-26

-29

4-30

4-30

-31

4-32

-32

-32

-33

-33

-33

-33

)
34

-34

4-34
4.3.11.4 Concatenating Two Indexed Collections4

4.3.12 Binary Set Expressions ...

4.3.12.1 Union, Intersection, Difference................................4-

4.3.12.2 Inclusion..4

4.3.13 Conversion Expressions...

4.3.13.1 Extracting the Element of a Singleton4

4.3.13.2 Turning a List into a Set..4

4.3.13.3 Removing Duplicates..4

4.3.13.4 Flattening Collection of Collections4-

4.3.13.5 Typing an Expression..4

4.3.14 Function Call...4

4.3.15 Scope Rules...

4.4 Syntactical Abbreviations... 4-28

4.4.1 Structure Construction ..4

4.4.2 Aggregate Operators ...

4.4.3 Composite Predicates..

4.4.4 String Literal ...4

4.5 OQL BNF... 4-32

4.5.1 Grammar ...

4.5.1.1 Axiom (see Sections 4.3.1, 4.3.2)4

4.5.1.2 Basic (see Section 4.3.3)..4

4.5.1.3 Simple Expression (see Section 4.3.5).......................4

4.5.1.4 Comparison (see Section 4.3.5)4

4.5.1.5 Boolean Expression (see Section 4.3.5).....................4

4.5.1.6 Constructor (see Section 4.3.4)..................................4

4.5.1.7 Accessor (see Sections 4.3.6, 4.3.11, 4.3.14, 4.3.15
...4-

4.5.1.8 Collection Expression (see Sections 4.3.7, 4.4.3)....4

4.5.1.9 Select Expression (see Sections 4.3.8, 4.3.9, 4.3.10)
ODMG OQL User Manual v

TABLE OF CONTENTS

-35

-35

-35
4.5.1.10 Set Expression (see Section 4.3.12) 4

4.5.1.11 Conversion (see Section 4.3.13) 4

4.5.2 Operator Priorities .. 4

INDEX I-i
vi ODMG OQL User Manual

1 I NTROD U CTI ON1
Congratu lat ions! You are now a user of the object -or iented query
language OQL.

O2 is a revolu t ionary system that is part icu lar ly well adapted for
developing large-scale client / server applicat ions in both fields of
business and technical software development.

This chapter in t roduces the O2 system and the OQL query language.

It is divided up in to the following sect ions :

• System Overview

• In teract ive and embedded query language

• Manual overview
ODMG OQL User Manual 1-1

INTRODUCTION1
1.1 System Overview

The system architecture of O2 is i l lust rated in Figure 1.1.

Fi gu r e 1 .1 : O2 Syst em Ar ch i t ect u r e

The O2 system divided in to three components. The Database Engine
provides all the featu res of a Database system and an object-or iented
system. This engine is accessed with Development Tools, such as
var ious programming languages, O2 development tools and any
standard development tool. Numerous External Interfaces are provided.
All encompassing, O2 is a versat ile, por table, dist r ibu ted, h igh-
per formance dynamic object -or iented database system.

Database Engine:

• O2Store The database management system provides low level
facil it ies, through O2Store API, to access and manage a
database: disk volumes, fi les, records, indices and
t ransact ions.

• O2Engine The object database engine provides direct control of
schemata, classes, objects and t ransact ions, through
O2Engine API. It provides fu ll text indexing and search
capabil it ies with O2Search and spat ial indexing and
ret r ieval capabil it ies with O2Spat ial. It includes a
Not ificat ion manager for in forming other clients
connected to the same O2 server that an event has
occu rred, a Version manager for handling mu lt iple
object versions and a Replicat ion API for synchronizing
mu lt iple copies of an O2 system.

O2CC++ Java

O2 Dev. Tools

O2DBA

OQL

Standard
Dev. Tools

O2Web

O2Corba

Development Tools

C

Database Engine

O2Engine

O2Store

External
Interfaces

O2ODBC
1-2 ODMG OQL User Manual

System Overview :
Programming Languages:

O2 objects may be created and managed using the following
programming languages, u t i l izing all the featu res available with O2
(persistence, collect ion management , t ransact ion management , OQL
quer ies, etc.)

• C O2 funct ions can be invoked by C programs.

• C++ ODMG compliant C++ binding.

• Java ODMG compliant Java binding.

• O2C A power fu l and elegant object -or iented fou r th
generat ion language specialized for easy development
of object database applicat ions.

• OQL ODMG standard, easy-to-use SQL-like object query
language with special featu res for dealing with complex
O2 objects and methods.

O2 Development Tools:

• O2Graph Create, modify and edit any type of object graph.

• O2Look Design and develop graphical user in ter faces, provides
in teract ive manipu lat ion of complex and mult imedia
objects.

• O2Kit Library of predefined classes and methods for faster
development of user applicat ions.

• O2Tools Complete graphical programming environment to design and
develop O2 database applications.

Standard Development Tools:

All standard programming languages can be used with standard
environments (e.g. Visual C++, Sun Sparcworks).

External In ter faces:

• O2Corba Create an O2/ Orbix server to access an O2 database
with CORBA.

• O2DBAccess Connect O2 applicat ions to relat ional databases on
remote hosts and invoke SQL statements.

• O2ODBC Connect remote ODBC client applicat ions to O2
databases.

• O2Web Create an O2 Wor ld Wide Web server to access an O2
database through the in ternet network .
ODMG OQL User Manual 1-3

INTRODUCTION1
OQL

OQL is an object -or iented SQL-like query language. OQL is the query
language of the ODMG-93 standard1. It can be used in two different
ways either as an embedded funct ion in a programming language or as
an ad hoc query language.

You can use OQL as a funct ion called from O2C, C, C++, Smalltalk or
Java, in order to manipu late complex values and methods. Each
construct produces a resu lt which can then be used direct ly in the
programming language. Methods can be t r iggered to modify the
database. You will find that programming is easier because OQL can
fi lter values using complex predicates whose evaluat ions are opt imized
by the OQL opt imizer in O2.

OQL can also be used interact ively as an ad hoc query language
allowing database quer ies from both technical and non-technical users.
In teract ive featu res include fast and simple browsing of the database.

1. The Object Database Standard: ODMG - 93. Atwood, Barry, Duhl, Eastman, Fer ran,
Jordan, Loomis and Wade. Edited by R.G.G. Cat tell. © 1996 Morgan Kau fman Publish-
ers.
1-4 ODMG OQL User Manual

System Overview : Browser Interface
Browser Interface

The browser in ter face you see depends on the operat ing system you are
using.

• Unix

In Unix, the O2Look graphical user in ter face generator is used to
generate the graphical form of OQL query resu lts.

Figu re 1.2 shows a typical query resu lt in graphical form, as generated
by O2Look .

Fi gur e 1 .2 : Typi ca l OQL qu er y r esu l t i n gr aph i ca l f or m , a s gener a t ed i n Un i x

In addit ion to the usual Motif bu ttons a graphical query resu lt has an
Eraser bu t ton. Click ing on the Eraser bu t ton removes the graphical
resu lt . This query resu lt consists of a number of objects. Each object
has its own pop-up menu which is displayed by click ing the Object icon
using the r ight mouse bu tton. This pop-up menu can be used to access
the public methods of each object .

Object i cons

Er aser bu t t on
ODMG OQL User Manual 1-5

INTRODUCTION1
• Windows NT

In Windows NT, the query resu lt is displayed in a window in textual
form contain ing hypertext l inks. Each link represents a sub-object .

The label for a specific l ink may be obtained by applying the title
method to the sub-object represented by the link .

Click ing on a hypertext l ink , with the r ight mouse bu t ton, replaces the
contents of the window with a representat ion of the sub-object
associated with the link .

Figure 1.3 shows a typical query resu lt in graphical form, as generated
in Windows NT.

Fi gu r e 1 .3 : Typi ca l OQL quer y r esu l t i n gr aph i ca l f or m , as gener a t ed i n Wi ndow s NT

The browser shown in Figu re 1.3 has the following bu t tons:

Back th is bu t ton displays the previous object .

For w a r d th is bu t ton displays the next sub-object . It is only valid if
the Back bu t ton has been act ivated at least once.

New Wi nd ow This bu t ton displays the cur rent object in a new window.
Each window is an independent browser .

Qu i t This bu t ton closes the act ive window.

The query resu lt is an object of the Person class, which has a name, an
age and a spouse. A spouse is also an object of the Person class, and
thus appears in as a hyper text l ink . Left click ing displays the spouse
object.

Note Note Note Note Note Note Note Note
The rest of th is manual wil l on ly show graphical displays from the Unix
plat form.
1-6 ODMG OQL User Manual

Interactive and embedded query language :
1.2 Interactive and embedded query language

It is because OQL is so easy to use in teract ively that all k inds of users
including non-technical users can browse the database qu ick ly and
efficient ly to get the in format ion they want. OQL can also be used as a
funct ion called from C, C++, Smalltalk , Java, O2C and O2 Engine API.

Interactive OQL

The OQL interpreter can be tr iggered by the query command of O2dba,
O2dsa or O2 shells. The command interpreter prompts you with the
following message:

type your command and end with ^D

To run OQL, type:

query

^D

You must type ^D (Control - D) on a separate l ine. You now see:

Query Interpreter

type your query and end with ^D

Type your query, ending it with ^D .

"this is a query"

^D

The answer is au tomat ically displayed and the system retu rns to the
OQL prompt:

type your query and end with ^D

To leave the query session type:

^D (or quit)

You are now back in the command interpreter and you see the message:

type your command and end with ^D

You can also use OQL in the O2Tools programming environment (Refer
to the O2Tools User Manual).

Note Note Note Note Note Note Note Note
In a Windows environment ^Z (Control - Z) is used instead of ^D
(Control - D).
ODMG OQL User Manual 1-7

INTRODUCTION1
Embedded OQL

Any valid query can be passed from O2C code to OQL using the system
supplied funct ion o2query . This is detailed in the O2C Reference
manual.

Similar ly, you can pass a query to a C++, C, Smalltalk or Java program.
Refer to the respect ive manuals for details.

Finally an OQL funct ion exists in O2Engine and is descr ibed in the
O2Engine API Reference Manual.

1.3 Manual overview

This manual is divided up in to the following chapters:

• Chapter 1 - In troduct ion

This chapter in troduces the O2 system and the OQL query language.

It ou t l ines the concepts of the ad hoc query language that allows you to
browse the database qu ick ly and efficient ly to get the in formation you
want , and the embedded query language that you can call from inside
you r programs.

• Chapter 2 - OQL - Get t ing star ted

This chapter in troduces the OQL language so you can star t to use OQL
in order to obtain the exact in formation you want from you r database.

It descr ibes and il lust rates basic and “select..from..where” quer ies,
details how to construct resu lts and descr ibes the use of operators and
indexes. To fu lly understand th is chapter , you must know the ODMG
data model.

• Chapter 3 - OQL Rationale

This chapter in troduces the ODMG standard and descr ibes the ODMG
object model. It also gives an example based presentat ion of OQL.

• Chapter 4 - OQL Reference

This chapter contains the ODMG reference manual for OQL 1.2. It is the
same as the ODMG standard with added notes and explanat ions on how
to use OQL with O2.

For each featu re of the language, you get the syntax, in in formal
semantics, and an example. Finally, the formal syntax is given.
1-8 ODMG OQL User Manual

2 GE TTI NG
STARTE D

AN OBJECT-ORIENTED DATABASE
QUERY LANGUAGE

2

So that you can obtain the exact in formation you want from you r
database, O2 has an object or iented database query language OQL.

OQL is a power fu l and easy-to-use SQL-like query language with special
featu res for dealing with complex objects, values and methods.

This chapter in t roduces the OQL language and is divided up in to the
following sect ions:

• Basic quer ies

• Select ... from ... where

• Construct ing resu lts

• Operators

• Set operators

• Conversions

• Combining operators

• Indexes

• Chapter Summary

To understand th is chapter you need to know the ODMG data model1.
As an in troduct ion to the data model you can refer to chapter 3 of th is
manual or the O2C Beginner ’s Gu ide.

Exper ience of SQL, though not a prerequ isite, wil l facil itate the OQL
learn ing process.

1. The Object Database Standard: ODMG - 93, release 1.2. Edited by R.G.G. Cattell. ©
1996 Morgan Kau fman Pu blishers.
ODMG OQL User Manual 2-1

GETTING STARTED2
2.1 Basic queries

All the examples shown below are based on the following O2 schema:

• In O2C

class o2_set_Employee public type

unique set (Employee)

end;

class o2_list_Client public type

list (Client)

end;

class Company public type

tuple (name: string,

employees: o2_set_Employee,

clients: o2_list_Client

)

method public title: string

end;

class Client public type

tuple (name: string,

order: list (tuple (what: string,

price: real))

)

end;

class Employee public type

tuple (name: string,

birthday: Date,

position: string,

salary: real)

method age: integer

end;
2-2 ODMG OQL User Manual

Basic queries
• In C++

Two persistent roots are also defined: An object, Globe and a collect ion
the_employees .

class Company {

public:

d_String name;

d_Set<d_Ref<Employee> > employees;

d_List<d_Ref<Client> > clients;

char* title() {return name;}

};

class item { d_String what; double price;};

class Client {

public:

d_String name;

d_Array<item> order;

};

class Employee {

public:

d_String name;

d_Date birthday;

d_String position;

float salary;

int age();

};

name Globe: Company;

constant name the_employees: o2_set_Employee;
ODMG OQL User Manual 2-3

GETTING STARTED2
Database entry points

To query any database you need var ious entry points.

In O2 these are the named objects and named values.

For example, Globe is an entry point.

The simplest OQL query calls an entry point:

This retu rns:

In an O2 database, named objects and values can either be values of
any type, or objects of any class. Consequently, OQL allows you to query
values or objects of any type or class.

Note Note Note Note Note Note Note Note
The query resu lts shown below are all given in the Unix graphic form.

Globe
2-4 ODMG OQL User Manual

Basic queries : Simple queries
Simple queries

Simple quer ies can involve different types of values:

• Atomic values

With atomic values you can car ry ou t ar ithmet ic calcu lat ions, e.g.,

This is a query which retu rns the in teger 4.

• Struct values

You can also consider the value of the object Globe of class Company as
a st ruct (or tuple) value with three at tr ibu tes.

The only operat ion you can car ry ou t on a st ruct is ext ract ing a field,
e.g.,

This retu rns the name of the Globe Company.

2 * 2

Globe.name
ODMG OQL User Manual 2-5

GETTING STARTED2
• List or array values

A list is an ordered collect ion that allows duplicates and you can
therefore ext ract any of its elements if you know their posit ion.

For example, you can extract the f i r st element of the l ist in clients as
follows.

In OQL, you count l ist elements from 0.

For OQL, an array behaves the same way as a l ist .

• Call of a method

To apply a method to an object is a base query, e.g.

This applies the method title to the object Globe and returns the
resu lt of the method title :

2.2 Select ... from ... where

The select from where clause enables you to ext ract those elements
meeting a specific condit ion from a col lect i on . O2 collect ions include
set , bag (a mu lt i-set or set with duplicates), l i st (an inser table and
dynamic ar ray) or ar ray .

The OQL query has the following st ructu re:

select : defines the st ructure of the query resu lt

from : in t roduces the collect ions against which the query runs.

Globe.clients[0]

Globe.title
2-6 ODMG OQL User Manual

Select ... from ... where : Set
where : in t roduces a predicate that fi l ters the collect ion.

This sect ion now descr ibes how to use th is clause.

Set

A set is a non-ordered collect ion.

The most frequent query on a set is a f i l t er . This consists of ext ract i ng
the elem en t s of a set which have certain character ist ics.

For example:

This query returns those employees work ing at the Internat ional Globe
with a salary over 200:

The select clause defines the query resu lt as the employees and the
from clause gives the set on which to run the query. The var iable e
represents each of its elements in tu rn. The where clause fi lters the
employees so that those earn ing more than 200 are ext racted.

This query therefore bu ilds a collect ion of employees.

This collect ion is in fact a bag as duplicates are accepted. You can also
add the keyword distinct to eliminate any duplicates from the
resu lt ing bag and then produce a t rue set .

Moreover , you can access from e any att r ibu tes, e.g. salary and get a
set of real numbers. For example:

This gives a set of the salar ies of the Repor ters:

select e

from e in Globe.employees

where e.salary > 200.00

select distinct e.salary

from e in Globe.employees

where e.position = "Reporter"
ODMG OQL User Manual 2-7

GETTING STARTED2
Join

You can also use a query to select from more than one collect ion:

This query retu rns the set of employees who have the same name as a
client . If there is a client called Kent and an employee called Kent , you
see the following window:

Path expressions

Objects are related to other objects, and in order to get to the data it
needs, a query can follow var ious paths that star t from any O2 object or
collect ion. For example,

You obtain the set of what the client (s) called Haddock bought :

select e

from e in Globe.employees,

c in Globe.clients

where e.name = c.name

select distinct ord.what

from cl in Globe.clients,

ord in cl.order

where cl.name = "Haddock"
2-8 ODMG OQL User Manual

Select ... from ... where : Testing on nil
Testing on nil

After you r applicat ion has updated the database, you may find that
some objects are now equal to n il. You can test for this using OQL. For
example, you can test that a client exists and if so, which client has
three orders:

To simplify programming, OQL sk ips n il objects when they are
encountered. If a path expression contains a nil object, a predicate is
always considered false . This means that the previous expression can
be rewr it ten as follows:

List or array

A list or an ar ray is an ordered collect ion that can contain duplicate
elements.

Since it is ordered, you may ext ract any of its elements if you know their
posit ion. For example:

This extracts the th ird element of the l ist (the first element is at posit ion
0).

As with sets you can fi lter a l ist .

select c.name

from c in Globe.clients

where c!=nil and count (c.order) = 3

select c.name

from c in Globe.clients

where count (c.order) = 3

Globe.clients[2]
ODMG OQL User Manual 2-9

GETTING STARTED2
For example: what are the names of the clients who buy the
Internat ional Globe newspaper?

The resu lt of th is query is a bag of the name of Globe clients:

Note Note Note Note Note Note Note Note
The query returns a bag and not a l ist . To return a l ist , you must define
an order. See “Order by” on page 19.

You can also add the keyword distinct to a select ion to eliminate any
duplicates from the resu lt ing set.

Note Note Note Note Note Note Note Note
You can manipu late very complex structures. A list can be made up of
tuples which in tu rn can have a set att r ibu te, etc. Consequent ly, you
have access to all the embedded components of an object.

For more details, refer to Sect ion 2.3 for construct ing query resu lts and
Sect ion 2.7 for combin ing operators.

2.3 Constructing results

The structure of a query resu lt is very often implicit . For example, when
you extract the age field of an employee, which is of type in teger , you
obtain an in teger. When you fi lter a set , bag or l ist , you obtain a set , bag
or l ist depending on what you select.

select e.name

from e in Globe.clients
2-10 ODMG OQL User Manual

Constructing results
However , you can also construct a query resu lt with an explicit
st ructu re using the struct , set , bag , list and array constructors.

For example, using the st ruct constructor:

or simply:

This query gives the name, posit ion and salary of the employees at the
Internat ional Globe newspaper:

You can use the special "*" operator to select all at tr ibu tes of the
elements of a collect ion.

select struct (employee: e.name,

position: e.position,

salary: e.salary)

from e in Globe.employees

select e.name, e.position, e.salary

from e in Globe.employees
ODMG OQL User Manual 2-11

GETTING STARTED2
For example:

Note that in th is example you do not need to define a var iable with
from .

You can also bu ild up embedded structu res simply by combin ing
struct operators.

For example, to get the ident it ies and salar ies of all those employees
work ing as repor ters and older than 22.

This query gives a bag with one element:

Creating an object

You create values using struct , list , array , bag and set . In OQL,
you can also create objects using the class name and by in it ializing the
at t r ibu tes of you r choice. Any un-in it ialized att r ibu tes are set to the
defau lt value. For example, to create an object of the class Client :

This creates a t em porary object with the name at tr ibu te in it ialized to
Trent .

select * from Globe.employees

select struct (employee: struct (name: e.name,

 age: e.age),

 salary: e.salary)

from e in Globe.employees

where e.position = "Reporter" and

e.age > 22

Client (name: "Trent")
2-12 ODMG OQL User Manual

Operators : Count
You can then make the object persistent in the usual way (refer to the
O2C, C++, Smalltalk and Java manuals). The resu lt of th is query is the
new object.

An object collect ion can be created in the same way. For example, use
the following query to create an o2_l i st _Cl i en t collect ion.

2.4 Operators

This sect ion ou t lines the basic OQL operators you can use to query the
database.

Count

You can query the database using the count clause.

For example, to find ou t how many employees there are at the
Internat ional Globe newspaper:

This query returns an in teger .

Other aggregate operators are min , max, sum and avg .

o2_list_Client (list(Client(name:"John"),

 (Client(name:"Jack")))

count (Globe.employees)
ODMG OQL User Manual 2-13

GETTING STARTED2
Define

You can name the resu lt of a query using the define clause. For
example,

This names the resu lt of the query and not the query itself.

The name MyEmployees can then be used in other quer ies. Named
quer ies great ly improve the legibil ity of complex quer ies.

Note Note Note Note Note Note Note Note
You can only reuse these named quer ies in the same query session,
i.e., up to a com m i t or abor t point .

Element

When you have a set or a bag that contains a single element , you extract
the element direct ly using the element operator . For example,

This query gives the resu lt :

define MyEmployees as

select e

from e in Globe.employees

where e.name like "Sp*"

element (select e

from e in Globe.employees

where e.name = "Tintin")
2-14 ODMG OQL User Manual

Operators : Exists
Exists

You can add a new persistent name to cover all the different companies
that exist:

You can now carry ou t more complex quer ies, such as select ing which
company has at least one employee under the age of 23:

The answer is a bag of names:

Group by

This operator groups together objects of a collect ion with the same value
for part icu lar att r ibu tes.

For example,

This groups the employees by salary giving a bag of two-at tr ibu te
tuples:

name TheCompanies: list (Company);

select c.name

from c in TheCompanies

where exists e in c.employees: e.age < 23

select *

from e in Globe.employees

group by e.salary
ODMG OQL User Manual 2-15

GETTING STARTED2
The first at t r ibu te is the salary and is called salary as specified. The
second is the set of objects (employees) with the same salary and is
called partition .

Thus, the type of the resu lt of th is query is:

bag (struct (salary: real,

 partition: bag (struct (e:Employee))))
2-16 ODMG OQL User Manual

Operators : Group by
You can work on a par t it ion value by compu t ing stat ist ics on each
par t it ion.

The following query returns a bag of two-at t r ibu te tuples with the salary
and the number of employees earn ing each of these salar ies:

You get the following type of window:

Finally you can fi lter the resu lt of grouping by applying predicates on
aggregat ive operat ions. You can select groups with condit ions on
average, count , sum, maximum and min imum values of par t it ions. You
do this using the having clause.

select salary, number: count (partition)

from e in Globe.employees

group by e.salary
ODMG OQL User Manual 2-17

GETTING STARTED2
For example, if you wish to select only groups with more than one
salary:

The following screen is displayed.

select salary, number: count (partition)

from e in Globe.employees

group by e.salary

having count (partition) > 1
2-18 ODMG OQL User Manual

Operators
Like

The like operator allows you to test par t of a character str ing. The "* "
character stands for any str ing including the empty st r ing.

The query:

returns the salar ies of all employees whose names begin with Sp:

Order by

You can obtain a sorted list using the order by clause. For example, to
sor t the employees by name and by age:

The resu lt of an order by operat ion is always a l i st , even though the
sou rce of the objects to sor t (the set employees , in th is case) may be a
set.

This query returns a l ist of employees; their order is alphabet ical by
name, and then by age:

select distinct e.salary

from e in Globe.employees

where e.name like "Sp*"

select e from e in Globe.employees order by e.name, e.age
ODMG OQL User Manual 2-19

GETTING STARTED2
2.5 Set operators

The standard set operat ions are defined on set and bag: union ,
intersect (in tersect ion) and except (difference).

You can also wr ite these operators as + (union), * (in tersect ion) and -
(difference).

You can define another query YourEmployees :

Now you can combine the quer ies by adding together two sets:

The simple addit ion (union) of the two sets of employees gives you a set
containing the answer:

The pick operator is defined on a set or a bag. It retu rns an element of
the collect ion, chosen arbit rar i ly.

For example:

define YourEmployees as

select e

from e in Globe.employees

where e.name = "Tintin"

MyEmployees + YourEmployees

pick (MyEmployees)
2-20 ODMG OQL User Manual

Conversions
2.6 Conversions

List to set

To conver t a l ist or ar ray to a set you use the listtoset operator .

Example:

Set to list

To conver t a set or bag to a l ist you must order it .

For example:

returns a l ist sor ted by salary.

You can also use "*" to bu ild a l ist . This avoids a real sor t algor ithm and
shou ld be used when the final order of the l ist is unimportant .

retu rns a l ist of all employees in random order.

Flatten

To conver t a collect ion of collect ions in to a flat tened collect ion you use
the flatten operator.

For example:

returns a set of clients.

listtoset (Globe.clients) intersect

listtoset (TheCompanies[2].clients)

select e from e in the_employees order by e.salary

select e from e in the_employees order by *

flatten (select distinct c.clients
from c in TheCompanies)
ODMG OQL User Manual 2-21

GETTING STARTED2
2.7 Combining operators

OQL is a complete funct ional language in that every operator can be
combined with any other operator .

You can use combine and bu ild up operators, universal and existent ial
quant ifiers, wild-card operators, standard set operators as well as l ist
concatenat ion, order ing and grouping operators on sets, bags and lists.

For example:

This sorts all the clients, with more than two orders, by how much they
have paid to the company:

2.8 Indexes

When OQL extracts one or more elements from a collect ion using a
specified predicate or order operat ion, it must scan the whole collect ion
to find the requ ired elements.

You can improve per formance if the system is able to direct ly access the
matching elements. This is done by establish ing an index on a
collect ion.

An index maps a key to one or more elements of a named collect ion.

select cl.name, paid: sum (select p.price from p in

 cl.order)

from cl in Globe.clients

where count (cl.order) >2

order by sum (select p.price from p in cl.order)
2-22 ODMG OQL User Manual

Indexes : Display index

que-
Whenever a program searches for elements of the collect ion using the
key, the system uses the index to qu icken the search.

This ent ire process is totally t ransparent to you as the programmer. The
absence or presence of an index has no effect on program code, only on
system per formance.

The benefits of indexes include the following:

• Complete logical and physical independence

You do not have to change your query to use indexing. Indexes are
created by administrat ion commands.

• High performance du r ing use and maintenance

Access from an index means constant t ime access ir regardless of the
size of the collect ion.

Example:

• Defin ing an index for all employees:

• The following query wil l then be opt imized:

Display index
The "display index" query allows you to see how OQL will use existing indexes in
ries you will make. To stop this feature, execute "display index" again.

Note Note Note Note Note Note Note Note
Please refer to the System Administ rat ion Gu ide for details on how to
create and manage indexes.

create index the_employees on salary;

select e

from e in the_employees

where e.salary ≥ 1000 and e.salary ≤ 5000
ODMG OQL User Manual 2-23

GETTING STARTED2
2.9 Chapter Summary

This chapter has covered the following points:

• Basic queries

To query any database you need var ious entry points. In O2 these are
the nam ed i nst ances — i.e. named objects and named values.

Simple quer ies include: call ing an entry point , applying a method to a
named object, extract ing a field, etc.

• Select..from..where

The select ... from ... where clause enables you to ext ract those
elements meet ing a specific condit ion from a list or set .

• Constructing results

The structu re of a query resu lt is very often implicit . However , you can
also construct a query resu lt with an explicit structure using the
struct , set and list constructors.

• Operators

OQL operators include define , element , order by , count , exists ,
group by and like . They can be combined for complex quer ies.

• Indexes

When OQL ext racts one or more elements from a set or l ist it scans the
whole collect ion to find the desired elements. You can improve
performance if you tell the system exact ly where to look.This is done by
establish ing an index on a collect ion. An index maps a key to one or
more elements of a named collect ion.
2-24 ODMG OQL User Manual

3 OQL
RATI ONAL E

3

Most commercial object database systems now have a common data
model based on the OMG object model. This data model is defined in the
ODMG 93 report . Based on th is ODMG model, the query language OQL
was defined and adopted by the ODMG group.

This chapter is divided up as follows:

• The ODMG standard

• The ODMG model

• OQL by example
ODMG OQL User Manual 3-1

OQL RATIONALE3
3.1 The ODMG standard

The ODMG standard covers the following points:

1. an object model

2. an object defin it ion language for th is model, with its own syntax, ODL
or its expression through C++ and Smalltalk syntax

3. an object query language for th is model, OQL

4. a C++ binding allowing C++ programs to operate on a database
compliant to the object model

5. a Smalltalk binding allowing Smalltalk programs to operate on a
database compliant to the object model
3-2 ODMG OQL User Manual

The ODMG model
3.2 The ODMG model

The ODMG object model suppor ts the not ion of classes, of objects with
at t r ibu tes and methods, of inher itance and specializat ion. It offers the
classical types to deal with st r ing, date, t ime, t ime interval and
t imestamp. And finally, it suppor ts the not ions of relat i onsh i ps and
col lect i ons.

ODMG-93 introduces a set of predefined gener ic collect ion classes:
Set<T> , Bag<T> (a mult i-set , i.e., a set with repeated elements),
Varray<T> (a var iable size ar ray), List<T> (a var iable size and
insertable ar ray).

An object refers to another object through a Ref . A Ref behaves as a C++
pointer , bu t with more semantics: it is a persistent pointer bu t
referent ial in tegr ity can be expressed in the schema and maintained by
the system. This is done by declar ing the relat ionship as symmetr ic.

Combin ing relat ionships and collect ions, an object can relate to more
than one object through a relat ionship. Therefore, 1-1 relat ionships, 1-n
relat ionships and n-m relat ionships can be suppor ted with the same
guarantee of referent ial in tegr ity.

ODMG-93 enables explicit names to be given to any object or collect ion.
From a name, an applicat ion can direct ly ret r ieve the named object and
then operate on it or navigate to other objects following the relat ionship
l inks.

Let us now present the model through a complete example. We use here
C++ syntax for ou r object defin it ion language, following the ODMG C++
ODL binding (i.e., the way of defin ing an ODMG schema using the
standard C++ language).
ODMG OQL User Manual 3-3

OQL RATIONALE3
class Person{

 d_String name;

 d_Date birthdate;

 d_Set < d_Ref<Person> > parents

 inverse children;

 d_List < d_Ref<Person> > children

 inverse parents;

 d_Ref<Apartment> lives_in

 inverse is_used_by;

Person();

int age();

void marriage(d_Ref<Person> spouse);

void birth(d_Ref<Person> child);

d_Set< d_Ref<Person> > ancestors;;

virtual d_Set<d_String> activities();

};

class Employee: Person{

float salary;

virtual d_Set<d_String> activities();

};

Methods

Constructor : a new Person is born

Retu rns an atomic type

This person gets a spouse

This person gets a child

Set of ancestors of this Person

A redefinable method

A subclass of Person

Method

This method is redefined
3-4 ODMG OQL User Manual

The ODMG model
class Student: Person{

d_String grade;

virtual d_Set<d_String> activities();

};

A subclass of Person

Method

The method is redefined
ODMG OQL User Manual 3-5

OQL RATIONALE3
class Address{

int number;

d_String street;

};

class Building{

Address address;

d_List< <d_Ref<Apartment> > apartments

inverse building;

d_Ref<Apartment> less_expensive();

};

class Apartment{

int number;

d_Ref<Building> building;

d_Ref<Person> is_used_by

inverse lives_in;

};

d_Set< d_Ref<Person> > Persons;

d_Set< d_Ref<Apartment> > Apartments;

d_Set< d_Ref<Apartment> > Vacancy;

d_List< d_Ref<Apartment> > Directory;

};

A complex value Address embedded in th is object

Method

All persons and employees

The Apartement class extent

The set of vacant appar tements

The list of appartements ordered by their number of rooms
3-6 ODMG OQL User Manual

OQL by example : Path expressions
3.3 OQL by example

Let us now tu rn to an example based presentat ion of OQL. We use the
database descr ibed in the previous sect ion, and instead of trying to be
exhaust ive, we give an overview of the most relevant featu res.

Path expressions

As explained above, one can enter a database through a named object ,
bu t more generally as soon as one gets an object (which comes, for
instance, from a C++ expression), one needs a way to “navigate” from it
and reach the r ight data one needs. To do th is in OQL, we use the “. ” (or
indifferent ly “-> ”) notat ion which enables us to go inside complex
objects, as well as to follow simple relat ionships. For instance, given a
Person p to know the name of the street where th is person lives, we use
the following OQL query:

This query star ts from a Person , t raverses an Apartment , ar r ives in a
Building and goes inside the complex at tr ibu te of type Address to get
the street name.

This example treated 1-1 relat ionship, let us now look at n-p
relat ionships. Assume we want the names of the children of the person
p. We cannot wr ite: p.children.name because children is a List of
references, so the in terpretat ion of the resu lt of th is query wou ld be
undefined. In tu it ively, the resu lt shou ld be a collect ion of names, bu t we
need an unambiguous notat ion to t raverse such a mu lt iple relat ionship
and we use the select-from-where clause to handle collect ions just as
in SQL.

The resu lt of th is query is a value of type Bag<Str ing>. If we want to get
a Set , we simply drop duplicates, l ike in SQL by using the distinct
keyword.

Now we have a means to navigate from any object to any other object
following any relat ionship and enter ing any complex subvalues of an
object.

p.lives_in.building.adddress.street

select c.name

from c in p.children

select distinct c.name

from c in p.children
ODMG OQL User Manual 3-7

OQL RATIONALE3
For instance, we want the set of addresses of the children of each
Person of the database. We know the collect ion named Persons
contains all the persons of the database. We have now to t raverse two
collect ions: Persons and Person::children . Like in SQL, the select-
from operator allows us to query more than one collect ion. These
collect ions then appear in the from par t . In OQL, a collect ion in the
from part can be der ived from a previous one by following a path which
star ts from it , and the answer is:

This query inspects all ch ildren of all persons. Its resu lt is of the type
Bag<Address>.

• Predicate

Of course, the where clause can be used to define any predicate which
then serves to select the data matching the predicate. For instance, to
rest r ict the previous resu lt to the people l iving on Main Street , and
having at least 2 children who do not l ive in the same apartment as their
parents, the query is:

• Join

In the from clause, collect ions which are not direct ly related can also be
declared. As in SQL, th is allows us to compu te “joins” between these
collect ions. For instance, to find the people l iving in a street and having
the same name as th is street, we do the following: the Building extent
is not defined in the schema, so we have to compute it from the
Apartments extent . To compute th is intermediate resu lt , we need a
select-from operator again. So the join is done as follows:

select c.lives_in.building.address

from p in Persons,

 c in p.children

select c.lives_in.building.address

from p in Persons,

 c in p.children

where

p.lives_in.building.address.street

= "Main Street" and

count(p.children) >= 2 and

c.lives_in != p.lives_in
3-8 ODMG OQL User Manual

OQL by example : Data manipulation

This query h ighlights the need for an opt im izer . In this case, the inner
select subquery must be computed once and not for each person!

Data manipulation

A major difference between OQL and SQL is that an object query
language must manipu late complex values. OQL can therefore create
any complex value as a final resu lt , or inside the query as in termediate
computat ion.

To bu ild a complex value, OQL uses the constructors struct , set , bag ,
list and array . For example, to obtain the addresses of the children of
each person, along with the address of th is person, we use the following
query:

select p

from p in Persons,

 b in (select distinct a.building

 from a in Apartments)

where p.name = b.address.street

select struct(me: p.name,

my_address:

p.lives_in.building.address,

my_children:

(select struct(

 name: c.name,

address:

c.lives_in.building.address)

from c in p.children))

from p in Persons
ODMG OQL User Manual 3-9

OQL RATIONALE3
This gives, for each person, the name, the address, and the name and
address of each child. The type of the resu lt is a bag of the following
st ruct :

OQL can also create complex objects. For th is pu rpose, it uses the name
of a class as a constructor . At tr ibu tes of the object of this class can be
in it ialized explicit ly by any valid expression.

For instance, to create a new bu ilding with 2 apar tments, if there is a
type name in the schema, called List_apart , defined by:

tydedef List<<Ref<Apartment> > List_apart;

the query is:

Method invoking

OQL allows method calls with or without parameters anywhere the
resu lt type of the method matches the expected type in the query. In
case the method has no parameter , the syntax for method call is the
same as for accessing an at tr ibu te or t raversing a relat ionship. If the
method has parameters, these are given between parenthesis. This
flexible syntax frees the user from knowing whether the proper ty is

struct{

 String me;

 Address my_address;

 Bag<struct{String name;

 Address address}> my_children;

}

Building(

address:

 Address (number: 10,

 street: "Main street"),

apartments:

 List_apart(list(Apartment(number: 1),

 Apartment(number: 2))))
3-10 ODMG OQL User Manual

OQL by example : Polymorphism
stored (an at tr ibu te) or computed (a method). For instance, to get the
age of the oldest ch ild of “Paul” , we wr ite the following query:

Of course, a method can retu rn a complex object or a collect ion and
then its call can be embedded in a complex path expression. For
instance, inside a bu ilding b, to know who inhabits those least
expensive apartment, we use the following path expression:

Although less_expensive is a method we “traverse” it as if it were a
relat ionship.

Polymorphism

A major contr ibu t ion of object technology is the possibil ity of
manipu lat ing polymorphic collect ions, and thanks to the “late binding”
mechanism, to carry ou t gener ic act ions on the elements of these
collect ions. For instance, the set Persons contains objects of class
Person , Employee and Student . So far , all the quer ies against the
Persons extent dealt with the three possible classes of objects of the
collect ion. A query is an expression whose operators operate on typed
operands. It is cor rect if the type of operands matches those requ ired by
the operators. In th is sense, OQL is a typed query language. This is a
necessary condit ion for an efficient query opt imizer. When a
polymorphic collect ion is fi l tered (for instance Persons), its elements
are stat ically known to be of that class (for instance Person). This
means that a proper ty of a subclass (at t r ibu te or method) cannot be
applied to such an element, except in two important cases: late binding
to a method, or explicit class indicat ion.

• Late binding

To list the act ivit ies of each person, we use the following query:

select max(select c.age

 from c in p.children)

from p in Persons,

where p.name = "Paul"

b.less_expensive.is_used_by.name

select p.activities

from p in Persons
ODMG OQL User Manual 3-11

OQL RATIONALE3
activities is a method which has 3 incarnat ions, one for Student ,
one for Employee and one for gener ic Person . Depending on the k ind of
person of the cur rent p, the r ight incarnat ion is called.

• Class indicator

To go down the class hierarchy, a user may explicit ly declare the class of
an object that cannot be in fer red stat ically. The in terpreter then has to
check at runt ime, that th is object actually belongs to the indicated class
(or one of its subclasses).

For example, assuming we know that only “students” spend their t ime
in following a cou rse of study, we can select those persons and get their
grade. We explicit ly indicate in the query that these persons are
students:

Operator composition

OQL is a pu rely funct ional language: all operators can be composed
freely as long as the type system is respected. This is why the language
is so simple and its manual so shor t . This philosophy is different from
SQL, which is an ad-hoc language whose composit ion ru les are not
or thogonal to the type system. Adopt ing a complete or thogonality,
makes the language easier to learn withou t losing the SQL style for
simple quer ies. Among the operators offered by OQL bu t not yet
in troduced, we can ment ion the set operators (union , intersect ,
except), the universal (forall) and existent ial quant ifiers (exists), the
order by and group by operators and the aggregat ive operators
(count , sum, min , max and avg).

To il lust rate th is free composit ion of operators, let us wr ite a rather
elaborate query. We want to know the name of the street where the set
of employees living on that street and have the smallest average salary,
compared to the sets of employees living in other st reets. We proceed
step by step and use the define OQL inst ruct ion to evaluate temporary
resu lts.

select ((Student)p). grade

from p in Persons

where "course of study" in p.activities
3-12 ODMG OQL User Manual

OQL by example : Operator composition
1. Bu ild the extent of class Employee (not suppor ted direct ly by the
schema)

2. Group the employees by st reet and compute the average salary in
each street

The group by operator splits the employees in to par t it ions,
according to the cr iter ion (the name of the st reet where th is person
lives). The select clause computes, in each par t it ion, the average of
the salar ies of the employees belonging to th is part it ion.

The resu lt of the query is of type:

3. Sort th is set by salary

The resu lt is of type:

define Employees as

select (Employee) p

from p in Persons

where "has a job" in p.activities

define salary_map as

select street,

 average_salary: avg (select p.e.salary
 from partition p)

from e in Employees

group by e.lives_in.building.address.street

Bag<struct{String street;

 float average_salary;}>

define sorted_salary_map as

 select s from s in salary_map

 order by s.average_salary

List<struct{String street;

 float average_salary;}>
ODMG OQL User Manual 3-13

OQL RATIONALE3
4. Now get the smallest salary (the first in the l ist) and take the
corresponding st reet name. This is the final resu lt .

In a single query, we cou ld have wr it ten:

sorted_salary_map[0].street

(select street,

 average_salary: avg (select p.e.salary
 from partition p)
from e in (select (Employee) p

 from p in Persons

 where "has a job" in p.activities)

group by e.lives_in.building.address.street

order by avg (select p.e.salary from partition p))

[0]. street
3-14 ODMG OQL User Manual

4
4 OQL
RE FE RE NCE
This chapter gives the fu ll referencial in formation of the object query
language OQL.

It is divided in to the following sect ions:

• In t roduct ion

• Pr inciples

• Language Defin it ion

• Syntact ical Abbreviat ions

• OQL BNF

The information given below is the same as that of the ODMG standard1
with notes added on how to use th is language with O2.

1. The Object Database Standard: ODMG - 93. Atwood, Duhl, Ferran, Loomis and Wade.
Edited by R.G.G. Cattell. © 1996 Morgan Kau fman Publishers.
ODMG OQL User Manual 4-1

4

4.1 Introduction

In th is chapter , a formal and complete defin it ion of the language is
given. For each featu re of the language, we give the syntax, its
semantics, and an example. Alternate syntax for some featu res are
descr ibed in Sect ion 4.4, which completes OQL in order to accept any
syntact ical form of SQL.

The chapter ends with the formal syntax which is given in Sect ion 4.5

4.2 Principles

Our design is based on the following pr inciples and assumptions:

• OQL relies on the ODMG object model.

• OQL is a superset of the standard SQL par t which allows you to query
a database. Thus, any select SQL sentence which runs on relat ional
tables, works with the same syntax and semantics on collect ions of
ODMG objects. Extensions concern Object Or iented not ions, l ike
complex objects, object ident ity, path expression, polymorphism,
operat ion invocat ion, late binding etc...

• OQL provides h igh-level pr im it ives to deal with sets of objects bu t
does not rest r ict its attent ion to th is collect ion construct. Thus, it
also provides pr imit ives to deal with st ructu res, l ists, ar rays, and
t reats all such constructs with the same efficiency.

• OQL is a funct ional language where operators can freely be composed,
as soon as the operands respect the type system. This is a
consequence of the fact that the resu lt of any query has a type which
belongs to the ODMG type model, and thus can be quer ied again.

• OQL is not compu tat ionally complete. It is an easy to use query
language which provides easy access to an object database.

• Based on the same type system, OQL can be invoked direct ly from
with in programming languages for which an ODMG binding is
defined, e.g., C++ and SmallTalk . Conversely, OQL can invoke
operat ions programmed in these languages.

• OQL does not provide explicit update operators bu t rather can invoke
operat ions defined on objects for that pu rpose, and thus does not
breach the semant ics of an Object Database which, by defin it ion, is
managed by the "methods" defined on the objects.

• OQL provides declarat ive access to objects. Thus OQL quer ies can be
easily opt imized by vir tue of th is declarat ive natu re.

• The formal semant ics of OQL can easily be defined.
4-2 ODMG OQL User Manual

Language Definition : Query Program
4.3 Language Definition

OQL is an "expression" language. A query expression is bu ilt from typed
operands composed recursively by operators. We will use the term
expression to designate a valid query in th is sect ion.

4.3.1 Query Program

A query program consists of a (possibly empty) set of query defin it ion
expressions followed by an expression, which is evaluated as the query
itself. The set of query defin it ion expressions is non recursive (although
a query may call an operat ion which issues a query recu rsively).

For example:

This defines the set jones of students named Jones, and evaluates the
set of their student_ids .

O2 note
With the O2 query in terpreter you use CTRL-D (on Unix) or CTRL-Z (On
Windows) between two quer ies rather that ";".

4.3.2 Named Query Definition
If q is an ident ifier and e is a query expression, then define q as e is
a query defin it ion expression which defines the query with name q.

Example:

This statement defines Does as a query retu rn ing a bag contain ing all the
students whose name is Doe.

This statement defines Doe as a query which retu rns the student whose
name is Doe (if there is only one, otherwise an except ion is raised).

define jones as select distinct x from Students x

 where x.name = "Jones";

select distinct student_id from jones

define Does as select x from Student x

where x.name ="Doe"

define Doe as element(select x from Student x

where x.name="Doe")
ODMG OQL User Manual 4-3

4

O2 note

• def i ne operat ion is available only with the in teract ive query
in terpreter . It has no meaning for OQL embedded in programming
languages (C++, Smalltalk , O2C) because standard programming
language var iables can be used for that purpose.

• A defined name is valid up to the next commit or abor t

• You can get the l ist of cu rrent defined quer ies by typing the query:
di splay quer i es

4-4 ODMG OQL User Manual

Language Definition : Elementary Expressions
4.3.3 Elementary Expressions

4.3.3.1 Atomic Literals

If l is an atomic l iteral, then l is an expression whose value is the l iteral
itself.

Literals have the usual syntax:

• Object Literal: n il

• Boolean Literal: false, t rue

• In teger Literal: sequence of digits, e.g, 27

• Float Literal: mantissa/ exponent. The exponent is opt ional, e.g., 3.14
or 314.16e-2

• Character Literal: character between simple quotes, e.g., ’z’

• Str ing Literal: character st r ing between double quote, e.g.,"a st r ing"

4.3.3.2 Named Objects

If e is a named object , then e is an expression. It defines the ent ity
at tached to the name.

Example:

This query defines the set of students. We have assumed here that the
name Students exists which cor responds to the extent of objects of the
class Student .

4.3.3.3 Iterator Variable

If x is a var iable declared in a from par t of a select -from-where..., then x
is an expression whose value is the cu r rent element of the iterat ion over
the cor responding collect ion.

4.3.3.4 Named Query

If define q as e is a query defin it ion expression, then q is an
expression.

Example:

This query returns the student with name Doe. It refers to the query
definit ion expression declared in Sect ion 4.3.2.

Students

Doe
ODMG OQL User Manual 4-5

4

4.3.4 Construction Expressions

4.3.4.1 Constructing Objects

If t is a type name, p1, p 2, ...,p n are propert ies of t , and e 1, e 2,
...,e n are expressions, then t (p 1: e 1..., p n: e n) is an expression.

This defines a new object of type t whose proper t ies p 1, p 2, ...,p n
are in it ialized with the expressions e1, e 2, ...,e n. The type of ei must
be compat ible with the type of pi .

If t is a type name of a collect ion and e is a collect ion l iteral, then t(e)
is a collect ion object . The type of e must be compatible with t .

Examples:

This creates a mu table Employee object.

This creates a mu table set object (assuming that vect i n t is the name of
a class whose type is Bag<int>).

4.3.4.2 Constructing Structures

If p1, p 2, ...,p n are proper ty names, and e1, e 2, ..., e n are
expressions, then

struct (p 1: e 1, p 2: e 2, ..., p n: e n)

is an expression. It defines the structure tak ing values e1, e 2, ..., e n
on propert ies p1, p 2, ...,p n.

Note that th is dynamically creates an instance of the type struct(p 1:
t 1, p 2: t 2, ..., p n: t n) if t i is the type of ei .

Example:

This retu rns a st ructu re with two at tr ibu tes name and age tak ing
respect ive values Peter and 25 .

See also abbreviated syntax in some contexts, in Sect ion 4.4.1.

Employee (name: "Peter", boss: Chairman)

vectint (set(1,3,10))

struct(name: "Peter", age: 25);
4-6 ODMG OQL User Manual

Language Definition : Construction Expressions
4.3.4.3 Constructing Sets

If e1, e 2, ..., e n are expressions, then set(e 1, e 2, ..., e n) is an
expression. It defines the set contain ing the elements e1, e 2, ..., e n.
It creates a set instance.

Example:

This retu rns a set consist ing of the three elements 1, 2, and 3.

4.3.4.4 Constructing Lists

If e 1, e 2, ..., en are expressions, then

 list(e 1, e 2, ..., e n) or simply (e 1, e 2, ..., e n)

are expressions. They define the list having elements e1, e 2, ..., e n.
They create a l ist instance.

If min, max are two expressions of in teger or character types, such that
min < max, then

 list(min .. max) or simply (min .. max)

are expressions whose value is: l ist (min, min+1, ... max-1, max)

Example:

This retu rns a l ist of fou r elements.

Example:

This retu rns the list (3,4,5)

O2 note
In O2 the keyword l i st is mandatory.

set(1,2,3)

list(1,2,2,3)

list(3 .. 5)
ODMG OQL User Manual 4-7

4

4.3.4.5 Constructing Bags

If e1, e 2, ..., e n are expressions, then bag(e 1, e 2, ..., e n) is an
expression. It defines the bag having elements e1, e 2, ..., e n. It
creates a bag instance.

Example:

This retu rns a bag of five elements.

4.3.4.6 Constructing Arrays

If e1, e 2, ..., e n are expressions, then array(e 1, e 2, ..., e n) is an
expression. It defines an ar ray having elements e1, e 2, ..., e n. It
creates an ar ray instance.

Example:

This retu rns an ar ray of five elements.

4.3.5 Atomic Types Expressions

4.3.5.1 Unary Expressions

If e is an expression and <op> is a unary operat ion valid for the type of
e, then <op> e is an expression. It defines the resu lt of applying <op> to
e.

Ar ithmet ic unary operators are: +, -, abs

Boolean unary operator is: not .

Example:

This retu rns false .

bag(1,1,2,3,3)

array(3,4,2,1,1)

not true
4-8 ODMG OQL User Manual

Language Definition : Atomic Types Expressions
4.3.5.2 Binary Expressions

If e1 and e2 are expressions and <op> is a binary operat ion, then
e1<op>e 2 is an expression. It defines the resu lt of applying <op> to e1
and e2.

Ar ithmet ic in teger binary operators are: +, -, *, / , mod (modu lo)

Float ing point binary operators are: +, -, *, /

Relat ional binary operators are: =, !=. <. <=, >, >=

These operators are defined on all atomic types.

Boolean binary operators are: and, or

Example:

This retu rns the difference between the number of students and the
number of TAs.

4.3.5.3 String Expressions

If s1 and s2 are expressions of type st r ing, then

 s1 || s 2, and s1 + s 2

are equ ivalent expressions of type st r ing whose value is the
concatenat ion of the two st r ings.

O2 note
In O2 the operator | | is not accepted. To concatenate 2 st r ings use "+".

If c is an expression of type character, and s an expression of type
st r ing, then

 c in s

is an expression of type boolean whose value is true if the character
belongs to the st r ing, else false.

count(Students) - count(TA)
ODMG OQL User Manual 4-9

4

If s is an expression of type str ing, and i is an expression of type
in teger , then

 s[i]

is an expression of type character whose value is the i+1th character of
the str ing.

If s is an expression of type str ing, and low and up are expressions of
type in teger , then

 s[low:up]

is an expression of type st r ing whose value is the substr ing of s from the
low+1 th character up to the up+1 th character .

If s is an expression of type str ing, and pattern a str ing l iteral which
may include the wildcard characters: "?" or "_", meaning any character ,
and "* " or "%", meaning any substr ing including an empty substr ing,
then

 s like pattern

is an expression of type boolean whose value is t rue if s matches the
pattern, else false.

 Example:

 is t rue.

O2 note
In O2 the only supported wildcard is "*".

’a nice string’ like ’%nice%str_ng’
4-10 ODMG OQL User Manual

Language Definition : Object Expressions
4.3.6 Object Expressions

4.3.6.1 Comparison of Mutable Objects

If e1 and e2 are expressions which denote mutable objects (objects with
ident ity) of the same type, then

 e1 = e 2 and e1 != e 2

are expressions which retu rn a boolean. The second expression is
equ ivalent to not(e 1 = e 2) .

e1 = e 2 is t rue if they designate the same object.

Example:

is t rue.

4.3.6.2 Comparison of Immutable Objects

If e1 and e2 are expressions which denote immutable objects (l iterals) of
the same type, then

 e 1 = e 2 and e1 != e 2

are expressions which retu rn a boolean. the second expression is
equ ivalent to

not(e 1 = e 2).

e1 = e 2 is t rue if the value e1 is equal to the value e2.

4.3.6.3 Extracting an Attribute or Traversing a Relationship from an Object

If e is an expression, if p is a proper ty name, then e->p and e.p are
expressions. These are alternate syntax to extract the proper ty p of an
object e .

If e happens to designate a deleted or a non exist ing object , i.e. nil , an
at tempt to access the at t r ibu te or to t raverse the relat ionship raises an
except ion. However , a query may test explicit ly if an object is different
from nil before accessing a proper ty.

Example:

This retu rns Doe.

Doe = element(select s from Students s

where s.name = "Doe")

Doe.name
ODMG OQL User Manual 4-11

4

Example:

This retu rns true , if Doe has a spouse whose name is Carol, or else
false .

O2 note
According to a recent evolu t ion of the ODMG standard, OQL does not
now raise an except ion when it t raverses a path which contains a nil .
Instead of th is, a predicate involving such a path is always false . This
means that OQL now sk ips such elements and thus the explicit test to
nil is not yet mandatory.

4.3.6.4 Applying an Operation to an Object

If e is an expression, if f is an operat ion name, then

 e->f and e.f

are expressions. These are alternate syntax to apply on operat ion on an
object. The value of the expression is the one retu rned by the operat ion
or else the object nil , if the operat ion retu rns noth ing.

Example:

This applies the operat ion number_of_students to jones .

4.3.6.5 Applying an Operation with Parameters to an Object

If e is an expression, if e1, e 2 , ..., en are expressions, if f is an
operat ion name, then

e->f(e 1, e 2, ..., e n) and e.f(e 1, e 2, ..., e n)

are expressions that apply operat ion f with parameters e1, e 2, ...,
en to object e. The value of the expression is the one retu rned by the
operat ion or else the object n il, if the operat ion returns noth ing.

In both cases, if e happens to designate a deleted or a non exist ing object ,
i.e. nil , an at tempt to apply an operat ion to it raises an except ion.
However, a query may test explicit ly if an object is different from nil
before applying an operat ion.

Doe->spouse != nil and Doe->spouse->name = "Carol"

jones->number_of_students
4-12 ODMG OQL User Manual

Language Definition : Object Expressions
Example:

This query calls the operat ion apply_course on class Student for the
object Doe. It passes two parameters, a st r ing and an object of class
Professor . The operat ion retu rns an object of type Course and the query
returns the number of th is cou rse.

 Doe->apply_course("Maths", Turing)->number
ODMG OQL User Manual 4-13

4

4.3.6.6 Dereferencing an Object

If e is an expression which denotes an object with ident ity (a mu table
object), then *e is an expression which delivers the value of the object (a
l iteral).

Example:

Given two var iables of type Person, p1 and p2 , the predicate

 p1 = p2

is true if both var iables refer to the same object , while

 *p1 =*p2

is true if the objects have the same values, even if they are not the same
objects.

4.3.7 Collections Expressions

4.3.7.1 Universal Quantification

If x is a var iable name, e1 and e2 are expressions, e1 denotes a collect ion
and e2 a predicate, then

for all x in e 1: e 2

is an expression. It retu rns true if all the elements of collect ion e1 sat isfy
e2 and false otherwise.

Example:

This retu rns true if all the objects in the Students set have a posit ive
value for their student_id at t r ibu te. Otherwise it retu rns false .

4.3.7.2 Existential Quantification

If x is a var iable name, if e1 and e2 are expressions, e1 denotes a
collect ion and e2 a predicate, then

exists x in e 1: e 2

is an expression. It retu rns true if there is at least one element of
collect ion e1 that sat isfies e2 and false otherwise.

Example:

for all x in Students: x.student_id > 0

exists x in Doe.takes: x.taught_by.name = "Turing"
4-14 ODMG OQL User Manual

Language Definition : Collections Expressions
This retu rns true if at least one cou rse Doe takes is taught by someone
named Tur ing.

If e is a collect ion expression, then

 exists(e) and unique(e)

are expressions which return a boolean value. The first one returns true
if there exists at least one element in the collect ion, while the second one
returns true, if there exists only one element in the collect ion.

Not ice that these operators allow the acceptance of the SQL syntax for
nested quer ies such as:

select ... from col where exists (select ... from col 1
where predicate)

The nested query returns a bag to which the operator exists is applied.
This is of cou rse the task of an opt imizer to recognize that it is useless to
compute effect ively the in termediate bag resu lt .

O2 note
In O2 these two last operat ions are not suppor ted. Only the form "exi st s
x i n e1: e2" is valid.

4.3.7.3 Membership Testing

If e1 and e2 are expressions, e 2 is a collect ion, e1 has the type of its
elements, then

 e1 in e2

is an expression. It retu rns true i f element e1 belongs to collect ion e2.

Example:

This retu rns true .

4.3.7.4 Aggregate Operators

If e is an expression which denotes a collect ion, if <op> is an operator
from {min, max, count, sum, avg} , then <op>(e) is an expression.

Example:

This retu rns the maximum salary of the Professors.

Doe in Does

max (select salary from Professors)
ODMG OQL User Manual 4-15

4

4.3.8 Select From Where
If e 1, e 2, ..., en are expressions which denote collect ions, and x1, x 2,
..., x n are var iable names, if e’ is an expression of type boolean, and
if projection is an expression or the character *, then

select projection from e 1 as x 1, e 2 as x 2 .., e n as x n where e’

and

select distinct projection from e 1 as x 1, e 2 as x 2 ..., e n as
xn where e

are expressions.

The resu lt of the query is a set for a select distinct or a bag for a
select.

If you assume e1, e 2, ..., e n are all set and bag expressions, then
the resu lt is obtained as follows: take the cartesian product1 of the sets
e1, e 2, ..., e n; fi l ter that product by expression e’ (i.e., elim inate from
the resu lt all objects that do not sat isfy boolean expression e’); apply
the projection to each one of the elements of th is fi l tered set and get the
resu lt . When the resu lt is a set (dist inct case) duplicates are
au tomat ically eliminated.

The situat ion where one or more of the collect ions e1, e 2, ..., e n is
an indexed collect ion is a l it t le more complex. The select operator first
conver ts all these collect ions in to sets and applies the previous
operat ion. The resu lt is a set (dist inct case) or else a bag. So, in th is case,
we simply t ransform each of the ei ’s in to a set and apply the previous
defin it ion.

4.3.8.1 Projection

Before the project ion, the resu lt of the iterat ion over the from var iables is
of type

bag< struct(x 1: type_of(e 1 elements), ... x n: type_of(e n
elements)) >

The project ion is constructed by an expression which can then refer
implicit ly to the "cur rent" element of th is bag, using the var iables x i . If
for ei neither explicit nor implicit var iable is declared, then x i is given an
in ternal system name (which is not accessible by the query anyway).

By convent ion, if the project ion is simply "*", then the resu lt of the
select ion is the same as the resu lt of the iterat ion.

If the project ion is "dist inct *", the resu lt of the select is th is bag
conver ted in to a set.

1. The car tesian product between a set and a bag is defined by first convert ing the set in to
a bag, and then get t ing the resu lt ing bag which is the car tesian product of the two bags.
4-16 ODMG OQL User Manual

Language Definition : Select From Where
In all other cases, the project ion is explicit ly computed by the given
expression.

Example:

This retu rns a bag of objects of type couple giving student names and
the names of the fu ll professors from which they take classes.

Example:

This retu rns a bag of st ructu res, giving for each student "object", the
sect ion object followed by the student and the fu ll professor "object"
teaching in th is sect ion:

bag< struct(x: Student, y: Section, z: Professor) >

4.3.8.2 Iterator Variables

A var iable, x i , declared in the from part ranges over the collect ion ei and
thus has the type of the elements of th is collect ion. Such a var iable can
be used in any other part of the query to evaluate any other expressions
(see the Scope Ru les in Sect ion 4.3.15). Syntact ical var iat ions are
accepted for declar ing these var iables, exact ly as with SQL. The as
keyword may be omit ted. Moreover , the var iable itself can be omit ted,
and in th is case, the name of the collect ion itself serves as a var iable
name to range over it .

select couple(student: x.name, professor: z.name)

from Students as x,

 x.takes as y,

 y.taught_by as z

where z.rank = "full professor"

select *

from Students as x,

x.takes as y,

y.taught_by as z

where z.rank = "full professor"select *
ODMG OQL User Manual 4-17

4

Example:

O2 note
In O2 an addit ional syntax is allowed to declare a var iable x:

"... f rom x i n collect ion ...".

This syntax wil l also be included in the next release of the ODMG
standard.

4.3.8.3 Predicate

In a select -from-where query, the w here clause can be omit ted, with the
meaning of a t rue predicate.

4.3.9 Group-by Operator
If select_query is a select -from-where query, partition_attributes is a
st ructure expression and predicate a boolean expression, then

 select_query group by partition_attributes

is an expression and

 select_query group by partition_attributes having predicate

is an expression.

The cartesian product visited by the select operator is split in to
part it ions. For each element of the car tesian product, the par t it ion
at tr ibu tes are evaluated. All elements which match the same values
according to the given par t it ion at tr ibu tes, belong to the same part it ion.
Thus the par t it ioned set , after the grouping operat ion is a set of
st ructures: each st ructure has the valued proper t ies for th is par t it ion
(the valued partition_attributes), completed by a property which is
convent ionally called partition and which is the bag of all objects
matching th is par t icu lar valued par t it ion.

select couple(student: Students.name, professor: z.name)

from Students,

Students.takes y,

y.taught_by z

where z.rank = "full professor"
4-18 ODMG OQL User Manual

Language Definition : Group-by Operator
If the par t it ion att r ibu tes are:

att 1: e 1, att 2: e 2, ... , att n: e n ,

then the resu lt of the grouping is of type

set< struct(att 1: type_of(e 1), att 2: type_of(e 2),...,
 att n: type_of(e n),
 partition: bag< type_of(grouped elements) >)

The type of grouped elements is defined as follows.

If the from clause declares the var iables v1 on collect ion col 1, v 2 on
col 2, ..., v n on col n, the grouped elements form a st ructu re with one
at t r ibu te "vk" for each collect ion having the type of the elements of the
cor responding collect ion.

partition: bag< struct(v 1: type_of(col 1 elements), ... ,
 v n: type_of(col n elements))>.

If a collect ion col k has no var iable declared the cor responding at t r ibu te
has an in ternal system name.

This par t it ioned set may then be fi ltered by the predicate of a having
clause. Finally, the resu lt is computed by evaluat ing the select clause for
th is par t it ioned and fi ltered set.

The having clause can thus apply aggregate funct ions on partition,
l ikewise the select clause can refer to partition to compu te the final
resu lt . Both clauses can refer also to the par t it ion att r ibu tes.

Example:

This gives a set of three elements, each of which has a proper ty called
partition which contains the bag of employees that enter in th is
category. So the type of the resu lt is:

set<struct(low: boolean, medium: boolean, high: boolean,

 partition: bag<struct(e: Employee)>)>

The second form enhances the first one with a having clause which
enables you to fi l ter the resu lt using aggregat ive funct ions which operate
on each part it ion.

select *

 from Employees e

group by low: e.salary < 1000,

 medium: e.salary >= 1000 and salary < 10000,

 high: e.salary >= 10000
ODMG OQL User Manual 4-19

4

Example:

This gives a set of couples: depar tment and average of the salar ies of the
employees work ing in th is department, when th is average is more than
30000. So the type of the resu lt is:

bag<struct(department: integer, avg_salary: float)>

O2 note
In O2 the syntax of partition_attributes does not accept the keyword
st ruct and thus is always given as a l ist of cr iter ia separated by
commas. See Sect ion 4.4.1.

4.3.10 Order-by Operator
If select_query is a select -from-where or a select-from-where-group_by
query, and if e1, e 2, ..., e n are expressions, then

 select_query order by e 1, e 2, ..., e n

is an expression. It retu rns a l ist of the selected elements sor ted by the
funct ion e1, and inside each subset yielding the same e1, sorted by e 2,
... , and the final subsub...set , sor ted by en.

Example:

This sor ts the set of persons on their age, then on their name and puts
the sor ted objects in to the resu lt as a l ist .

Each sort expression cr iter ion can be followed by the keyword asc or
desc, specifying respect ively an ascending or descending order. The
defau lt order is that of the previous declarat ion. For the first expression,
the defau lt is ascending.

select department,

 avg_salary: avg(select p.e.salary from partition p)

from Employees e

group by department: e.deptno

having avg(select p.e.salary from partition p) > 30000

select p from Persons p order by p.age, p.name
4-20 ODMG OQL User Manual

Language Definition : Indexed Collection
Example:

4.3.11 Indexed Collection Expressions

4.3.11.1 Getting the i-th Element of an Indexed Collection

If e1 and e2 are expressions, e1 is a l ist or an array, e2 is an in teger , then
e1[e 2] is an expression. This ext racts the e2+1 th element of the
indexed collect ion e1. Not ice that the first element has the rank 0.

Example:

This retu rns b.

Example:

This retu rns the th ird prerequ isite of Math 101.

4.3.11.2 Extracting a Subcollection of an Indexed Collection.

If e1, e 2, and e3 are expressions, e1 is a l ist or an array, e2 and e3 are
in tegers, then e1[e 2:e 3] is an expression. This ext racts the
subcollect ion of e1 star t ing at posit ion e2 and ending at posit ion e3.

Example:

This retu rns list (b,c,d) .

select * from p in Persons
order by p.age desc, p.name asc, p.department

list (a,b,c,d) [1]

element (select x

 from Courses x

 where x.name = "math" and

 x.number ="101").requires[2]

list (a,b,c,d) [1:3]
ODMG OQL User Manual 4-21

4

Example:

This retu rns the list consist ing of the first three prerequ isites of Math
101.

4.3.11.3 Getting the First and Last Elements of an Indexed Collection

If e is an expression, if <op> is an operator from {first, last} , e is a
l ist or an ar ray, then <op>(e) is an expression. This ext racts the first and
last element of a collect ion.

Example:

This retu rns the first prerequ isite of Math 101.

4.3.11.4 Concatenating Two Indexed Collections

If e1 and e2 are expressions, if e1 and e2 are both l ists or both ar rays,
then e1+e2 is an expression. This compu tes the concatenat ion of e1 and
e2.

Example:

This query generates list (1,2,2,3) .

4.3.12 Binary Set Expressions

element (select x

 from Courses x

 where x.name="math" and

 x.number="101").requires[0:2]

first(element(select x

 from Courses x

 where x.name="math" and

 x.number="101").requires)

list (1,2) + list(2,3)
4-22 ODMG OQL User Manual

Language Definition : Binary Set Expressions
4.3.12.1 Union, Intersection, Difference

If e1 and e2 are expressions, if <op> is an operator from {union,
except, intersect}, i f e1 and e2 are sets or bags, then e1 <op> e 2
is an expression. This compu tes set theoret ic operat ions, union,
difference, and in tersect ion on e1 and e2, as defined in Chapter 2.

When the collect ion k inds of the operands are different (bag and set), the
set is conver ted in to a bag beforehand and the resu lt is a bag.

Examples:

This retu rns the set of students who are not Teaching Assistants.

This bag expression retu rns bag(2,2,3,3,3,2,3,3,3)

The intersect ion of 2 bags yields a bag that contains the min imum for
each of the mu lt iply values. So the resu lt is: bag(2,3,3)

This bag expression retu rns bag(2)

4.3.12.2 Inclusion

If e1 and e2 are expressions which denote sets or bags, if <op> is an
operator from {<, <=, >, >=}, then e1 <op> e2 is an expression whose
value is a boolean.

When the operands are different k inds of collect ions (bag and set), the
set is first conver ted in to a bag.

e1 < e 2 is t rue if e1 is included into e2 bu t not equal to e2

e1 <= e 2 is t rue if e1 is included into e2

Student except Ta

bag(2,2,3,3,3) union bag(2,3,3,3)

bag(2,2,3,3) intersect bag(2,3,3,3)

bag(2,2,3,3,3) except bag(2,3,3,3)
ODMG OQL User Manual 4-23

4

Example:

 is t rue

4.3.13 Conversion Expressions

4.3.13.1 Extracting the Element of a Singleton

If e is a collect ion-valued expression, element(e) is an expression. This
takes the singleton e and retu rns its element. If e is not a singleton th is
raises an except ion.

Example:

This retu rns the professor whose name is Turing (if there is only one).

4.3.13.2 Turning a List into a Set

If e is a l ist expression, listtoset(e) is an expression. This conver ts
the list in to a set , by forming the set contain ing all the elements of the
l ist .

Example:

This retu rns the set contain ing 1, 2, and 3.

O2 note
To carry ou t the reverse operat ion (set to l ist) you use the order by
operator . If you are not in terested in a given order you can use "*" as
shown in the following query:

select e from e in aSet order by *

set(1,2,3) < set(3,4,2,1)

element(select x from Professors x

where x.name ="Turing")

listtoset (list(1,2,3,2))
4-24 ODMG OQL User Manual

Language Definition : Conversion Expressions
4.3.13.3 Removing Duplicates

If e is an expression whose value is a collect ion, then

 distinct(e)

is an expression whose value is the same collect ion after removing the
duplicated elements. If e is a bag, distinct(e) is a set. If e is an ordered
collect ion, the relat ive order ing of the remain ing elements is preserved.

4.3.13.4 Flattening Collection of Collections

If e is a collect ion-valued expression, flatten(e) is an expression. This
conver ts a collect ion of collect ions of t in to a collect ion of t . So th is
flat tening operates at the first level only.

Assuming the type of e to be col 1<col 2<t>>,

the resu lt of flatten(e) is:

• If col 2 is a set (resp. a bag), the union of all col 2<t> is done and the
resu lt is a set<t> (resp. bag<t>)

• If col 2 is a l ist (resp. an array) and col 1 is a l ist (resp. an ar ray) as
well, the concatenat ion of all col 2<t> is done following the order in
col 1 and the resu lt is col 2<t> , which is thus a l ist (resp. an array).
Of cou rse duplicates, if any, are maintained by th is operat ion.

• If col 2 is a l ist or an array and col 1 is a set or a bag, the l ists or
arrays are conver ted in to sets, the union of all these sets is done and
the resu lt is a set<t> , therefore without duplicates.

Examples:

This retu rns the set contain ing 1,2,3,4,5,6,7.

This retu rns list(1,2,1,2,3).

This retu rns the set contain ing 1,2,3.

flatten(list(set(1,2,3), set(3,4,5,6), set(7)))

flatten(list(list(1,2), list(1,2,3)))

flatten(set(list(1,2), list(1,2,3)))
ODMG OQL User Manual 4-25

4

4.3.13.5 Typing an Expression

If e is an expression, if c is a type name, then (c)e is an expression. This
asser ts that e is an object of class type c.

If it tu rns ou t that it is not t rue, an except ion is raised at runt ime. This
is usefu l to access a proper ty of an object which is stat ically known to be
of a superclass of the specified class.

Example:

This retu rns the set of salar ies of all students who are teaching
assistants, assuming that Students and Sections are the extents of the
classes Student and Section .

4.3.14 Function Call
If f is a funct ion name, if e1 , e2 , ..., e n are expressions, then

 f() and f(e1, e2, ... , en)

are expressions whose value is the value returned by the funct ion, or the
object nil , when the funct ion does not retu rn any value. The first form
allows you to call a funct ion withou t a parameter, while the second one
calls a funct ion with the parameters e1, e 2, ..., e n.

OQL does not define in which language the body of such a funct ion is
wr it ten. This feature allows you to smoothly extend the funct ionality of
OQL without changing the language.

4.3.15 Scope Rules
The from par t of a select -from-where query in t roduces explicit or implicit
var iables to range over the fi ltered collect ions. An example of an explicit
var iable is:

select ... from Persons p ...

while an implicit declarat ion wou ld be:

select ... from Persons ...

The scope of these var iables reaches all par ts of the select -from-where
expression including nested sub-expressions.

The group by par t of a select -from-where-group_by query in t roduces the
name partition along with possible explicit at t r ibu te names which
character ize the part it ion. These names are visible in the cor responding
having and select parts, including nested sub-expressions with in these
parts.

select ((Employee) s).salary

from Students s

where s in (select sec.assistant from Sections sec)
4-26 ODMG OQL User Manual

Language Definition : Scope Rules
Inside a scope, you use these var iable names to construct path
expressions and reach proper t ies (at tr ibu tes and operat ions) when these
var iables denote complex objects. For instance, in the scope of the first
from clause above, you access the age of a person by p.age .

When the var iable is implicit , as in the second from clause, you use the
name of the collect ion direct ly, Persons.age .

 However, when there is no ambigu ity, you can use the property name
direct ly as a shortcu t , withou t using the var iable name to open the scope
(th is is made implicit ly), wr it ing simply: age . There is no ambigu ity when
a property name is defined for one and only one object denoted by a
visible var iable.

To summarize, a name appear ing in a (nested) query is looked up in the
following order:

• a var iable in the cu r rent scope, or

• a named query in t roduced by the define clause, or

• a named object, i.e., an entry point in the database, or

• an at tr ibu te name or an operat ion name of a var iable in the cur rent
scope, when there is no ambigu ity, i.e., th is proper ty name belongs to
only one var iable in the scope.

Example:

Assuming that in the cur rent schema the names Persons and Cit ies are
defined.

In scope1, we see the names: Persons, c, Cit ies, all proper ty names of
class Person and class City as soon as they are not present in both
classes, and they are not called "Persons", "c", nor "Cit ies".

In scope2, we see the names: ch ild, Persons, c, Cit ies, the property
names of the class City which are not property of the class Person. No
at t r ibu te of the class Person can be accessed direct ly since they are
ambiguous between "child" and "Persons".

select scope1

from Persons,

 Cities c

 where exists(select scope2 from children as child)

 or count (select scope3 , (select scope4 from

 partition)

 from children p,

 scope5 v

 group by age: scope6

)
ODMG OQL User Manual 4-27

4

In scope3, we see the names: age, par t it ion, and the same names from
scope1, except "age" and "par t it ion", if they exist .

In scope4, we see the names: age, par t it ion, p, v, and the same names
from scope1, except "age", "par t it ion", "p" and "v", if they exist .

In scope5, we see the names: p, and the same names from scope1, except
"p", if i t exists.

In scope6, we see the names: p, v, Persons, c, Cit ies, the property names
of the class City which are not property of the class Person. No at t r ibu te
of the class Person can be accessed direct ly since they are ambiguous
between "child" and "Persons".

O2 note
Implicit at t r ibu te scope is not available with O2. You must always access
an att r ibu te with the dot notat ion: v.att .

4.4 Syntactical Abbreviations

OQL defines an or thogonal expression language, in the sense that all
operators can be composed with each others as soon as the types of the
operands are correct. To achieve th is proper ty, we have defined a
funct ional language with simple (l ike +) or composite operators (l ike
select from where group_by order_by) which always deliver a resu lt in the
same type system and which thus can be recursively operated with other
operat ions in the same query.

In order to accept the whole DML query par t of SQL, as a valid syntax for
OQL, OQL is added some ad-hoc construct ions each t ime SQL int roduces
a syntax which cannot enter in the category of true operators. This
sect ion gives the list of these construct ions that we call "abbreviat ions",
since they are completely equ ivalent to a funct ional OQL expression
which is also given. Doing that , we thus give at the same t ime the
semantics of these construct ions, since all operators used for th is
descr ipt ion have already been defined.
4-28 ODMG OQL User Manual

Syntactical Abbreviations : Structure Construction
4.4.1 Structure Construction
The st ructu re constructor was in t roduced in Sect ion 4.3.4.2. Alternate
syntax are allowed in two contexts: select clause and group-by clause.

In both contexts, the SQL syntax is accepted, along with the one already
defined.

 select projection {, projection} ...

 select ... group by projection {, projection}

where projection is in one of the following forms:

• (i) expression as ident ifier

• (i i) ident ifier : expression

• (i i i) expression
This is an alternate syntax for :

 st ruct (ident ifier : expression {, ident ifier : expression})

If there is only one projection and the syntax (i i i) is used in a select clause,
then it is not in terpreted as a structure construct ion bu t rather the
expression stands as it is. Fur thermore, a (i i i) expression is only valid if
it is possible to in fer the name of the cor responding at tr ibu te (the
ident ifier). This requ ires that the expression denotes a path expression
(possibly of length one) ending in a proper ty whose name is then chosen
as the ident ifier .

Example:

This query returns a bag of structures:

bag<struct(name: string, salary: float, student_id:
integer)>

O2 note
O2 accepts the 3 alternat ives of the projection syntax in the select part ,
as well as the struct syntax. In the group by par t , O2 accepts the 3
alternat ives bu t does not accept the struct syntax.

 select p.name, salary, student_id

 from Professors p, p.teaches
ODMG OQL User Manual 4-29

4

4.4.2 Aggregate Operators
These operators were in t roduced in Sect ion 4.3.7.4. SQL adopts a
notat ion which is not funct ionnal for them. So OQL accepts th is syntax
too.

If we define aggregate as one of m i n , m ax, coun t , sum and avg,

select count(*) from ...

is equ ivalent to: count(select * from ...)

select aggregate(query) from ...

is equ ivalent to: aggregate(select query from ...)

select aggregate(distinct query) from ...

is equ ivalent to: aggregate(distinct(select query from ...)

O2 note
O2 does not suppor t Aggregate Operator abbreviat ions.

4.4.3 Composite Predicates
If e1 and e2 are expressions, e2 is a collect ion, e1 has the type of its
elements, if relation

is a relat ional operator (=, !=, <, <=, > , >=), then

 e1 relation some e2 and e1 relation any e 2 and e1 relation all e 2

are expressions whose value is a boolean.

The two first predicates are equ ivalent to:

 exists x in e 2: e 1 relation x

The last predicate is equ ivalent to:

 for all x in e 2: e 1 relation x

Example:

 is t rue

10 < some (8,15, 7, 22)
4-30 ODMG OQL User Manual

Syntactical Abbreviations : String Literal
O2 note
In O2 Composite Predicate abbreviat ions are not supported.

4.4.4 String Literal
OQL accepts simple quotes as well to delimit a st r ing (see Sect ion
4.3.3.1), as SQL does. This in troduces an ambigu ity for a st r ing with one
character which then has the same syntax as a character l iteral. This
ambigu ity is solved by context.

O2 note
In O2 a str ing must be delim ited by double quotes.
ODMG OQL User Manual 4-31

4

4.5 OQL BNF

The OQL grammar is given using a BNF-like notat ion.

• { symbol } means a sequence of 0 or more symbol(s).

• [symbol] means an opt ional symbol. Do not confuse with the
separators []

• keyword is a terminal of the grammar. Keywords are not case sensit ive.

• xxx_name has the syntax of an ident ifier

• xxx_literal is self explanatory, e.g., "a str ing" is a st r ing_literal

• bind_argument stands for a parameter when embedded in a
programming language, e.g., $3i.

The non terminal query stands for a valid query expression. The
grammar is presented as recursive ru les producing valid quer ies. This
explains why most of the t ime th is non terminal appears on the left side
of ::=. Of cou rse, all operators expect their "query" operands to be of the
r ight type. Type constraints were discussed in the previous sect ions.

These ru les must be completed by the pr ior ity of OQL operators which is
given after the grammar. Some syntact ical ambigu it ies are solved
semantically from the types of the operands.

4.5.1 Grammar

4.5.1.1 Axiom (see Sections 4.3.1, 4.3.2)

query_program ::={define_query;} query

define_query ::= define identifier as query

4.5.1.2 Basic (see Section 4.3.3)

query ::= nil

query ::= true

query ::= false

query ::= integer_literal

query ::= float_literal

query ::= character_literal

query ::= string_literal

query ::= entry_name

query ::= query_name

query ::= bind_argument 1

query ::= from_variable_name

query ::= (query)

1. A bind argu ment allows to bind expressions from a programming language to a qu ery
when embedded in to th is langu age (see Chapters on langu age bindings).
4-32 ODMG OQL User Manual

OQL BNF : Grammar
4.5.1.3 Simple Expression (see Section 4.3.5)

query ::= query + query 1

query ::= query - query

query ::= query * query

query ::= query / query

query ::= - query

query ::= query mod query

query ::= abs (query)

query ::= query || query

4.5.1.4 Comparison (see Section 4.3.5)

query ::= query comparison_operator query

query ::= query like string_literal

comparison_operator ::= =

comparison_operator ::= !=

comparison_operator ::= >

comparison_operator ::= <

comparison_operator ::= >=

comparison_operator ::= <=

4.5.1.5 Boolean Expression (see Section 4.3.5)

query ::= not query

query ::= query and query

query ::= query or query

4.5.1.6 Constructor (see Section 4.3.4)

query ::= type_name ([query])
query ::= type_name (identifier :query {, identifier : query})

query ::= struct (identifier: query {, identifier: query})

query ::= set ([query {, query}])
query ::= bag ([query {,query}])
query ::= list ([query {,query}])
query ::= (query, query {, query})

query ::= [list](query .. query)

query ::= array ([query {,query}])

1. The operator + is also used for l ist and array concatenat ion.
ODMG OQL User Manual 4-33

4

4.5.1.7 Accessor (see Sections 4.3.6, 4.3.11, 4.3.14, 4.3.15)

query ::= query dot attribute_name

query ::= query dot relationship_name

query ::= query dot operation_name

query ::= query dot operation_name(query {,query})

dot ::= . | ->

query ::= * query

query ::= query [query]

query ::= query [query:query]

query ::= first (query)

query ::= last (query)

query ::= function_name([query {,query}])

4.5.1.8 Collection Expression (see Sections 4.3.7, 4.4.3)

query ::= for all identifier in query: query

query ::= exists identifier in query: query

query ::= exists (query)

query ::= unique (query)

query ::= query in query

query ::= query comparison_operator quantifier query

quantifier ::= some

quantifier ::= any

quantifier ::= all

query ::= count (query)

query ::= count (*)

query ::= sum (query)

query ::= min (query)

query ::= max (query)

query ::= avg (query)

4.5.1.9 Select Expression (see Sections 4.3.8, 4.3.9, 4.3.10)

query ::= select [distinct] projection_attributes

 from variable_declaration {, variable_declaration}

 [where query]
 [group by partition_attributes]
 [having query]
 [order by sort_criterion {, sort_criterion}]
projection_attributes ::= projection {, projection}

projection_attributes ::= *

projection ::= query

projection ::= identifier: query

projection ::= query as identifier

variable_declaration ::= query [[as] identifier]
4-34 ODMG OQL User Manual

OQL BNF : Operator Priorities
partition_attributes ::= projection {, projection}

sort_criterion ::= query [ordering]
ordering ::= asc

ordering ::= desc

4.5.1.10 Set Expression (see Section 4.3.12)

query ::= query intersect query

query ::= query union query

query ::= query except query

4.5.1.11 Conversion (see Section 4.3.13)

query ::= listtoset (query)

query ::= element (query)

query ::= distinct (e)

query ::= flatten (query)

query ::= (class_name) query

4.5.2 Operator Priorities
The following operators are sor ted by decreasing pr ior ity. Operators on
the same line have the same pr ior ity and group left -to-r ight .

() [] . ->

not - (unary) + (unary)

i n

* / m od i n t ersect

+ - un i on except | |

< > <= >= < som e < any < al l (etc ... for all compar ison
operators)

= != l i k e

and exi st s for all

or

.. :

,

(ident ifier) th is is the cast operator

order

having

group by

where

from

select
ODMG OQL User Manual 4-35

4

4-36 ODMG OQL User Manual

I ND E X
 ODMG OQL User Manual I-i

INDEX

I-i i
Symbol s

+ 2-20, 2-20

A

Accessor 4-34

Addit ion of sets 2-20

Aggregat ive operators 3-12

Architectu re
O2 1-2

Ar ithmet ic 4-33

Array 2-6, 2-6, 2-9
Construct ing 4-8
Set conversion 2-21

array 2-11, 2-12, 3-9

Array value 2-6

Atomic value 2-5

Att r ibu te 4-11

avg 2-13, 3-12, 4-15

B

Bag 2-6, 2-12
Construct ing 4-8

bag 2-11, 2-12, 3-9

Boolean 4-33

Browser Inter face 1-5
Unix 1-5
Windows NT 1-6

by 2-19
 ODMG OQL
C

C 1-3

C++
Interface 1-3

C++ binding 3-2, 3-3

Class indicator 3-12

Collect ion 2-6, 3-3, 3-7, 4-25
indexed expression 4-21
Named 2-22

Collect ion expression 4-34

Combining operators 2-12, 2-22

Compar ison 4-33

concatenat ion 4-22

Construct ion
Array 3-9
Bag 3-9
List 3-9
Set 3-9
Struct 3-9

Constructor 2-11, 3-9, 4-33

Conversion 2-21, 4-24, 4-35

count 2-13, 3-12, 4-15

Creat ing objects 2-12

D

Data manipu lat ion 3-9

Database entry point 2-4

define 2-14, 2-20, 3-12

difference 4-23

distinct 2-7, 3-7
 User Manual

INDEX
E

element 2-14, 4-24

except 2-20, 3-12, 4-23

Existent ial quant ificat ion 2-22, 3-12, 4-14

exists 2-15, 3-12

F

first 4-22

flatten 2-21

Flat tening 4-25

forall ... in 3-12

from 3-8

G

group ... by 2-15, 3-12, 3-13, 4-18

H

Hyper text l inks 1-6
 ODMG OQL
I

intersect 2-20, 3-12, 4-23

in tersect ion 4-23

J

Java 1-3

Join 3-8

Join query 2-8

L

last 4-22

Late binding 3-11

like 2-19

List 2-6, 2-6, 2-9
Construct ing 4-7
Set conversion 2-21
Values 2-6

list 2-11, 3-9, 4-24

listtoset 2-21

M

max 2-13, 3-12, 4-15

Membership 4-15

Method call 2-6, 3-10
 User Manual I-i i i

INDEX

I-iv
Method invok ing 3-10

min 2-13, 3-12, 4-15

Mot if 1-5

N

name 2-15

Named
Collect ion 2-22
Objects 2-4
Query 2-14
Values 2-4

O

O2
Architectu re 1-2

O2C 1-3

O2Corba 1-3

O2DBAccess 1-3

O2Engine 1-2

O2Graph 1-3

O2Kit 1-3

O2Look 1-3, 1-5

O2Repor t 1-3

O2Store 1-2

O2Tools 1-3

O2Web 1-3

Object
Creat ion 2-12
Named 2-4

Objects 4-6

ODMG model 3-3

ODMG standard 3-2, 4-1

Operat ion 4-12
 ODMG OQL
Operator 2-13, 3-12
- 2-20
* 2-20
+ 2-20
Aggregat ive 3-12
avg 2-13, 3-12, 4-15
Combining 2-12, 2-22
Composit ion 3-12
count 2-13, 3-12, 4-15
define 2-14, 3-12
element 2-14
except 2-20, 3-12
exists 2-15, 3-12
flatten 2-21
forall...in 3-12
group...by 2-15, 3-12, 3-13, 4-18
intersect 2-20, 3-12
like 2-19
max 2-13, 3-12, 4-15
min 2-13, 3-12, 4-15
order by 2-19, 4-20
Set 2-20, 2-22, 3-12
sum 2-13, 3-12, 4-15
union 2-20, 3-12
Wild-card 2-22

OQL 1-3, 1-4, 2-1
Operators 2-13
Rational 3-1
Resu lt 2-10

order by 2-19, 3-12, 4-20

P

partition 2-16

Path expressions 2-8, 3-7

Polymorphism 3-11

Predicate 3-8
 User Manual

INDEX
Q

Query
Basic 2-2, 4-32
Named 2-14
Resu lt 2-10, 2-14

R

Ref 3-3

Relat ionship 3-3, 3-7, 4-11

S

select 3-13

Select from where 4-16

select from where 2-6, 3-7

Set 2-6, 2-7
Construct ing 4-7
List conversion 2-21
Operators 2-20, 3-12

set 2-11, 2-12, 3-9, 4-22, 4-24

Set expression 4-35

Smalltalk 1-3

Smalltalk binding 3-2

struct 2-11, 2-12, 2-12, 3-9

Struct value 2-5

structu re 4-6

Subcollect ion 4-21, 4-21

sum 2-13, 3-12, 4-15

System
Architectu re 1-2
 ODMG OQL
T

Test ing on n il 2-9

Typing 4-26

U

union 2-20, 3-12, 4-23

Universal quant ificat ion 2-22, 3-12, 4-14

Unix 1-5

V

Value
Array 2-6
Atomic 2-5
List 2-6
Named 2-4
Struct 2-5

W

where 3-8

Windows NT 1-6
 User Manual I-v

INDEX

I-vi
 ODMG OQL
 User Manual

	MAIN MENU TO O2 DOCUMENTATION
	ODMG OQL User Manual
	Who should read this manual
	TABLE OF CONTENTS
	1 INTRODUCTION 1-1
	1.1 System Overview 1-2
	1.2 Interactive and embedded query language 1-7
	1.3 Manual overview 1-8

	2 GETTING STARTED 2-1
	2.1 Basic queries 2-2
	2.2 Select ... from ... where 2-6
	2.3 Constructing results 2-10
	2.4 Operators 2-13
	2.5 Set operators 2-20
	2.6 Conversions 2-21
	2.7 Combining operators 2-22
	2.8 Indexes 2-22
	2.9 Chapter Summary 2-24

	3 OQL RATIONALE 3-1
	3.1 The ODMG standard 3-2
	3.2 The ODMG model 3-3
	3.3 OQL by example 3-7

	4 OQL REFERENCE 4-1
	4.1 Introduction 4-2
	4.2 Principles 4-2
	4.3 Language Definition 4-3
	4.4 Syntactical Abbreviations 4-28
	4.5 OQL BNF 4-32

	INDEX I-i

	1 INTRODUCTION
	1.1 System Overview
	Figure 1.1: O2 System Architecture
	OQL
	Browser Interface
	Figure 1.2: Typical OQL query result in graphical form, as generated in Unix
	Figure 1.3: Typical OQL query result in graphical form, as generated in Windows NT

	1.2 Interactive and embedded query language
	Interactive OQL
	Embedded OQL

	1.3 Manual overview

	2 GETTING STARTED
	2.1 Basic queries
	Database entry points
	Simple queries

	2.2 Select ... from ... where
	Set
	Join
	Path expressions
	Testing on nil
	List or array

	2.3 Constructing results
	Creating an object

	2.4 Operators
	Count
	Define
	Element
	Exists
	Group by
	Like
	Order by

	2.5 Set operators
	2.6 Conversions
	List to set
	Set to list
	Flatten

	2.7 Combining operators
	2.8 Indexes
	Display index

	2.9 Chapter Summary

	3 OQL RATIONALE
	3.1 The ODMG standard
	1. an object model
	2. an object definition language for this model, with its own syntax, ODL or its expression throu...
	3. an object query language for this model, OQL
	4. a C++ binding allowing C++ programs to operate on a database compliant to the object model
	5. a Smalltalk binding allowing Smalltalk programs to operate on a database compliant to the obje...

	3.2 The ODMG model
	3.3 OQL by example
	Path expressions
	Data manipulation
	Method invoking
	Polymorphism
	Operator composition
	1. Build the extent of class Employee (not supported directly by the schema)
	2. Group the employees by street and compute the average salary in each street
	3. Sort this set by salary
	4. Now get the smallest salary (the first in the list) and take the corresponding street name. Th...

	4 OQL REFERENCE
	4.1 Introduction
	4.2 Principles
	4.3 Language Definition
	4.3.1 Query Program
	This defines the set jones of students named Jones, and evaluates the set of their student_ids.

	4.3.2 Named Query Definition
	If q is an identifier and e is a query expression, then define q as e is a query definition expre...
	Example:
	This statement defines Does as a query returning a bag containing all the students whose name is ...
	This statement defines Doe as a query which returns the student whose name is Doe (if there is on...

	4.3.3 Elementary Expressions
	4.3.3.1 Atomic Literals
	If l is an atomic literal, then l is an expression whose value is the literal itself.
	Literals have the usual syntax:

	4.3.3.2 Named Objects
	If e is a named object, then e is an expression. It defines the entity attached to the name.
	This query defines the set of students. We have assumed here that the name Students exists which ...

	4.3.3.3 Iterator Variable
	If x is a variable declared in a from part of a select-from-where..., then x is an expression who...

	4.3.3.4 Named Query
	If define q as e is a query definition expression, then q is an expression.
	This query returns the student with name Doe. It refers to the query definition expression declar...

	4.3.4 Construction Expressions
	4.3.4.1 Constructing Objects
	If t is a type name, p1, p2, ...,pn are properties of t, and e1, e2, ...,en are expressions, then...
	This defines a new object of type t whose properties p1, p2, ...,pn are initialized with the expr...
	If t is a type name of a collection and e is a collection literal, then t(e) is a collection obje...
	This creates a mutable Employee object.
	This creates a mutable set object (assuming that vectint is the name of a class whose type is Bag...

	4.3.4.2 Constructing Structures
	If p1, p2, ...,pn are property names, and e1, e2, ..., en are expressions, then
	is an expression. It defines the structure taking values e1, e2, ..., en on properties p1, p2,
	Note that this dynamically creates an instance of the type struct(p1: t1, p2: t2, ..., pn: tn) if...
	This returns a structure with two attributes name and age taking respective values Peter and 25.
	See also abbreviated syntax in some contexts, in Section 4.4.1.

	4.3.4.3 Constructing Sets
	If e1, e2, ..., en are expressions, then set(e1, e2, ..., en) is an expression. It defines the se...
	This returns a set consisting of the three elements 1, 2, and 3.

	4.3.4.4 Constructing Lists
	If e1, e2, ..., en are expressions, then
	list(e1, e2, ..., en) or simply (e1, e2, ..., en)
	are expressions. They define the list having elements e1, e2, ..., en. They create a list instance.
	If min, max are two expressions of integer or character types, such that min < max, then
	list(min .. max) or simply (min .. max)
	are expressions whose value is: list(min, min+1, ... max-1, max)
	This returns a list of four elements.
	This returns the list(3,4,5)

	4.3.4.5 Constructing Bags
	If e1, e2, ..., en are expressions, then bag(e1, e2, ..., en) is an expression. It defines the ba...
	This returns a bag of five elements.

	4.3.4.6 Constructing Arrays
	If e1, e2, ..., en are expressions, then array(e1, e2, ..., en) is an expression. It defines an a...
	This returns an array of five elements.

	4.3.5 Atomic Types Expressions
	4.3.5.1 Unary Expressions
	If e is an expression and <op> is a unary operation valid for the type of e, then <op> e is an ex...
	Arithmetic unary operators are: +, -, abs
	Boolean unary operator is: not.
	This returns false.

	4.3.5.2 Binary Expressions
	This returns the difference between the number of students and the number of TAs.

	4.3.5.3 String Expressions

	4.3.6 Object Expressions
	4.3.6.1 Comparison of Mutable Objects
	If e1 and e2 are expressions which denote mutable objects (objects with identity) of the same typ...
	e1 = e2 and e1 != e2
	are expressions which return a boolean. The second expression is equivalent to not(e1 = e2).
	e1 = e2 is true if they designate the same object.
	is true.

	4.3.6.2 Comparison of Immutable Objects
	If e1 and e2 are expressions which denote immutable objects (literals) of the same type, then
	e1 = e2 and e1 != e2
	are expressions which return a boolean. the second expression is equivalent to
	not(e1 = e2).
	e1 = e2 is true if the value e1 is equal to the value e2.

	4.3.6.3 Extracting an Attribute or Traversing a Relationship from an Object
	If e is an expression, if p is a property name, then e->p and e.p are expressions. These are alte...
	If e happens to designate a deleted or a non existing object, i.e. nil, an attempt to access the ...
	This returns Doe.
	This returns true, if Doe has a spouse whose name is Carol, or else false.

	4.3.6.4 Applying an Operation to an Object
	If e is an expression, if f is an operation name, then
	e->f and e.f
	are expressions. These are alternate syntax to apply on operation on an object. The value of the ...
	This applies the operation number_of_students to jones.

	4.3.6.5 Applying an Operation with Parameters to an Object
	e->f(e1, e2, ..., en) and e.f(e1, e2, ..., en)
	are expressions that apply operation f with parameters e1, e2, ..., en to object e. The value of ...
	In both cases, if e happens to designate a deleted or a non existing object, i.e. nil, an attempt...
	Doe->apply_course("Maths", Turing)->number
	This query calls the operation apply_course on class Student for the object Doe. It passes two pa...

	4.3.6.6 Dereferencing an Object
	If e is an expression which denotes an object with identity (a mutable object), then *e is an exp...

	4.3.7 Collections Expressions
	4.3.7.1 Universal Quantification
	If x is a variable name, e1 and e2 are expressions, e1 denotes a collection and e2 a predicate, then
	is an expression. It returns true if all the elements of collection e1 satisfy e2 and false other...
	This returns true if all the objects in the Students set have a positive value for their student_...

	4.3.7.2 Existential Quantification
	If x is a variable name, if e1 and e2 are expressions, e1 denotes a collection and e2 a predicate...
	is an expression. It returns true if there is at least one element of collection e1 that satisfie...
	This returns true if at least one course Doe takes is taught by someone named Turing.
	If e is a collection expression, then
	exists(e) and unique(e)
	are expressions which return a boolean value. The first one returns true if there exists at least...
	Notice that these operators allow the acceptance of the SQL syntax for nested queries such as:
	The nested query returns a bag to which the operator exists is applied. This is of course the tas...

	4.3.7.3 Membership Testing
	If e1 and e2 are expressions, e2 is a collection, e1 has the type of its elements, then
	e1 in e2
	is an expression. It returns true if element e1 belongs to collection e2.
	This returns true.

	4.3.7.4 Aggregate Operators
	If e is an expression which denotes a collection, if <op> is an operator from {min, max, count, s...
	This returns the maximum salary of the Professors.

	4.3.8 Select From Where
	If e1, e2, ..., en are expressions which denote collections, and x1, x2, ..., xn are variable nam...
	are expressions.
	The result of the query is a set for a select distinct or a bag for a select.
	If you assume e1, e2, ..., en are all set and bag expressions, then the result is obtained as fol...
	The situation where one or more of the collections e1, e2, ..., en is an indexed collection is a ...
	4.3.8.1 Projection
	Before the projection, the result of the iteration over the from variables is of type
	The projection is constructed by an expression which can then refer implicitly to the "current" e...
	By convention, if the projection is simply "*", then the result of the selection is the same as t...
	If the projection is "distinct *", the result of the select is this bag converted into a set.
	In all other cases, the projection is explicitly computed by the given expression.
	from Students as x,
	x.takes as y,
	This returns a bag of objects of type couple giving student names and the names of the full profe...
	This returns a bag of structures, giving for each student "object", the section object followed b...

	4.3.8.2 Iterator Variables
	A variable, xi, declared in the from part ranges over the collection ei and thus has the type of ...

	4.3.8.3 Predicate
	In a select-from-where query, the where clause can be omitted, with the meaning of a true predicate.

	4.3.9 Group-by Operator
	If select_query is a select-from-where query, partition_attributes is a structure expression and ...
	select_query group by partition_attributes
	is an expression and
	select_query group by partition_attributes having predicate
	is an expression.
	The cartesian product visited by the select operator is split into partitions. For each element o...
	If the partition attributes are:
	then the result of the grouping is of type
	The type of grouped elements is defined as follows.
	If the from clause declares the variables v1 on collection col1, v2 on col2, ..., vn on coln, the...
	If a collection colk has no variable declared the corresponding attribute has an internal system ...
	This partitioned set may then be filtered by the predicate of a having clause. Finally, the resul...
	The having clause can thus apply aggregate functions on partition, likewise the select clause can...
	from Employees e
	This gives a set of three elements, each of which has a property called partition which contains ...
	The second form enhances the first one with a having clause which enables you to filter the resul...
	avg_salary: avg(select p.e.salary from partition p)
	from Employees e
	group by department: e.deptno
	This gives a set of couples: department and average of the salaries of the employees working in t...

	4.3.10 Order-by Operator
	If select_query is a select-from-where or a select-from-where-group_by query, and if e1, e2, ...,...
	is an expression. It returns a list of the selected elements sorted by the function e1, and insid...
	This sorts the set of persons on their age, then on their name and puts the sorted objects into t...
	Each sort expression criterion can be followed by the keyword asc or desc, specifying respectivel...

	4.3.11 Indexed Collection Expressions
	4.3.11.1 Getting the i-th Element of an Indexed Collection
	If e1 and e2 are expressions, e1 is a list or an array, e2 is an integer, then e1[e2] is an expre...
	This returns b.
	This returns the third prerequisite of Math 101.

	4.3.11.2 Extracting a Subcollection of an Indexed Collection.
	If e1, e2, and e3 are expressions, e1 is a list or an array, e2 and e3 are integers, then e1[e2:e...
	This returns list (b,c,d).
	This returns the list consisting of the first three prerequisites of Math 101.

	4.3.11.3 Getting the First and Last Elements of an Indexed Collection
	If e is an expression, if <op> is an operator from {first, last}, e is a list or an array, then <...
	This returns the first prerequisite of Math 101.

	4.3.11.4 Concatenating Two Indexed Collections
	If e1 and e2 are expressions, if e1 and e2 are both lists or both arrays, then e1+e2 is an expres...
	This query generates list (1,2,2,3).

	4.3.12 Binary Set Expressions
	4.3.12.1 Union, Intersection, Difference
	If e1 and e2 are expressions, if <op> is an operator from {union, except, intersect}, if e1 and e...
	When the collection kinds of the operands are different (bag and set), the set is converted into ...
	This returns the set of students who are not Teaching Assistants.
	This bag expression returns bag(2,2,3,3,3,2,3,3,3)
	The intersection of 2 bags yields a bag that contains the minimum for each of the multiply values...
	This bag expression returns bag(2)

	4.3.12.2 Inclusion
	When the operands are different kinds of collections (bag and set), the set is first converted in...
	e1 < e2 is true if e1 is included into e2 but not equal to e2
	e1 <= e2 is true if e1 is included into e2
	is true

	4.3.13 Conversion Expressions
	4.3.13.1 Extracting the Element of a Singleton
	If e is a collection-valued expression, element(e) is an expression. This takes the singleton e a...
	This returns the professor whose name is Turing (if there is only one).

	4.3.13.2 Turning a List into a Set
	If e is a list expression, listtoset(e) is an expression. This converts the list into a set, by f...
	This returns the set containing 1, 2, and 3.

	4.3.13.3 Removing Duplicates
	If e is an expression whose value is a collection, then
	distinct(e)
	is an expression whose value is the same collection after removing the duplicated elements. If e ...

	4.3.13.4 Flattening Collection of Collections
	If e is a collection-valued expression, flatten(e) is an expression. This converts a collection o...
	Assuming the type of e to be col1<col2<t>>,
	the result of flatten(e) is:
	This returns the set containing 1,2,3,4,5,6,7.
	This returns list(1,2,1,2,3).
	This returns the set containing 1,2,3.

	4.3.13.5 Typing an Expression
	If e is an expression, if c is a type name, then (c)e is an expression. This asserts that e is an...
	If it turns out that it is not true, an exception is raised at runtime. This is useful to access ...
	This returns the set of salaries of all students who are teaching assistants, assuming that Stude...

	4.3.14 Function Call
	If f is a function name, if e1 , e2 , ..., en are expressions, then
	f() and f(e1, e2, ... , en)
	are expressions whose value is the value returned by the function, or the object nil, when the fu...
	OQL does not define in which language the body of such a function is written. This feature allows...

	4.3.15 Scope Rules
	The from part of a select-from-where query introduces explicit or implicit variables to range ove...
	select ... from Persons p ...
	while an implicit declaration would be:
	select ... from Persons ...
	The scope of these variables reaches all parts of the select-from-where expression including nest...
	The group by part of a select-from-where-group_by query introduces the name partition along with ...
	Inside a scope, you use these variable names to construct path expressions and reach properties (...
	When the variable is implicit, as in the second from clause, you use the name of the collection d...
	However, when there is no ambiguity, you can use the property name directly as a shortcut, withou...
	To summarize, a name appearing in a (nested) query is looked up in the following order:
	Assuming that in the current schema the names Persons and Cities are defined.
	In scope1, we see the names: Persons, c, Cities, all property names of class Person and class Cit...
	In scope2, we see the names: child, Persons, c, Cities, the property names of the class City whic...
	In scope3, we see the names: age, partition, and the same names from scope1, except "age" and "pa...
	In scope4, we see the names: age, partition, p, v, and the same names from scope1, except "age", ...
	In scope5, we see the names: p, and the same names from scope1, except "p", if it exists.
	In scope6, we see the names: p, v, Persons, c, Cities, the property names of the class City which...

	4.4 Syntactical Abbreviations
	OQL defines an orthogonal expression language, in the sense that all operators can be composed wi...
	In order to accept the whole DML query part of SQL, as a valid syntax for OQL, OQL is added some ...
	4.4.1 Structure Construction
	The structure constructor was introduced in Section 4.3.4.2. Alternate syntax are allowed in two ...
	In both contexts, the SQL syntax is accepted, along with the one already defined.
	select projection {, projection} ...
	select ... group by projection {, projection}
	where projection is in one of the following forms:
	This is an alternate syntax for:
	struct(identifier: expression {, identifier: expression})
	If there is only one projection and the syntax (iii) is used in a select clause, then it is not i...
	This query returns a bag of structures:

	4.4.2 Aggregate Operators
	These operators were introduced in Section 4.3.7.4. SQL adopts a notation which is not functionna...
	If we define aggregate as one of min, max, count, sum and avg,
	select count(*) from ...
	is equivalent to: count(select * from ...)
	select aggregate(query) from ...
	is equivalent to: aggregate(select query from ...)
	select aggregate(distinct query) from ...
	is equivalent to: aggregate(distinct(select query from ...)

	4.4.3 Composite Predicates
	If e1 and e2 are expressions, e2 is a collection, e1 has the type of its elements, if relation
	is a relational operator (=, !=, <, <=, > , >=), then
	e1 relation some e2 and e1 relation any e2 and e1 relation all e2
	are expressions whose value is a boolean.
	The two first predicates are equivalent to:
	exists x in e2: e1 relation x
	The last predicate is equivalent to:
	for all x in e2: e1 relation x
	Example:
	10 < some (8,15, 7, 22)
	is true

	4.4.4 String Literal
	OQL accepts simple quotes as well to delimit a string (see Section 4.3.3.1), as SQL does. This in...

	4.5 OQL BNF
	The OQL grammar is given using a BNF-like notation.
	The non terminal query stands for a valid query expression. The grammar is presented as recursive...
	These rules must be completed by the priority of OQL operators which is given after the grammar. ...
	4.5.1 Grammar
	4.5.1.1 Axiom (see Sections 4.3.1, 4.3.2)
	4.5.1.2 Basic (see Section 4.3.3)
	4.5.1.3 Simple Expression (see Section 4.3.5)
	4.5.1.4 Comparison (see Section 4.3.5)
	4.5.1.5 Boolean Expression (see Section 4.3.5)
	4.5.1.6 Constructor (see Section 4.3.4)
	4.5.1.7 Accessor (see Sections 4.3.6, 4.3.11, 4.3.14, 4.3.15)
	4.5.1.8 Collection Expression (see Sections 4.3.7, 4.4.3)
	4.5.1.9 Select Expression (see Sections 4.3.8, 4.3.9, 4.3.10)
	4.5.1.10 Set Expression (see Section 4.3.12)
	4.5.1.11 Conversion (see Section 4.3.13)

	4.5.2 Operator Priorities
	The following operators are sorted by decreasing priority. Operators on the same line have the sa...
	() [] . ->
	not - (unary) + (unary)
	in
	* / mod intersect
	+ - union except ||
	< > <= >= < some < any < all (etc ... for all comparison operators)
	= != like
	and exists for all
	or
	.. :
	,
	(identifier) this is the cast operator
	order
	having
	group by
	where
	from
	select

	INDEX
	Symbols
	+�2-20, 2-20

	A
	Accessor�4-34
	Addition of sets�2-20
	Aggregative operators�3-12
	Architecture
	O2�1-2

	Arithmetic�4-33
	Array�2-6, 2-6, 2-9
	Constructing�4-8
	Set conversion�2-21

	array�2-11, 2-12, 3-9
	Array value�2-6
	Atomic value�2-5
	Attribute�4-11
	avg�2-13, 3-12, 4-15

	B
	Bag�2-6, 2-12
	Constructing�4-8

	bag�2-11, 2-12, 3-9
	Boolean�4-33
	Browser Interface�1-5
	Unix�1-5
	Windows NT�1-6

	by�2-19

	C
	C�1-3
	C++
	Interface�1-3

	C++ binding�3-2, 3-3
	Class indicator�3-12
	Collection�2-6, 3-3, 3-7, 4-25
	indexed expression�4-21
	Named�2-22

	Collection expression�4-34
	Combining operators�2-12, 2-22
	Comparison�4-33
	concatenation�4-22
	Construction
	Array�3-9
	Bag�3-9
	List�3-9
	Set�3-9
	Struct�3-9

	Constructor�2-11, 3-9, 4-33
	Conversion�2-21, 4-24, 4-35
	count�2-13, 3-12, 4-15
	Creating objects�2-12

	D
	Data manipulation�3-9
	Database entry point�2-4
	define�2-14, 2-20, 3-12
	difference�4-23
	distinct�2-7, 3-7

	E
	element�2-14, 4-24
	except�2-20, 3-12, 4-23
	Existential quantification�2-22, 3-12, 4-14
	exists�2-15, 3-12

	F
	first�4-22
	flatten�2-21
	Flattening�4-25
	forall ... in�3-12
	from�3-8

	G
	group ... by�2-15, 3-12, 3-13, 4-18

	H
	Hypertext links�1-6

	I
	intersect�2-20, 3-12, 4-23
	intersection�4-23

	J
	Java�1-3
	Join�3-8
	Join query�2-8

	L
	last�4-22
	Late binding�3-11
	like�2-19
	List�2-6, 2-6, 2-9
	Constructing�4-7
	Set conversion�2-21
	Values�2-6

	list�2-11, 3-9, 4-24
	listtoset�2-21

	M
	max�2-13, 3-12, 4-15
	Membership�4-15
	Method call�2-6, 3-10
	Method invoking�3-10
	min�2-13, 3-12, 4-15
	Motif�1-5

	N
	name�2-15
	Named
	Collection�2-22
	Objects�2-4
	Query�2-14
	Values�2-4

	O
	O2
	Architecture�1-2

	O2C�1-3
	O2Corba�1-3
	O2DBAccess�1-3
	O2Engine�1-2
	O2Graph�1-3
	O2Kit�1-3
	O2Look�1-3, 1-5
	O2Report�1-3
	O2Store�1-2
	O2Tools�1-3
	O2Web�1-3
	Object
	Creation�2-12
	Named�2-4

	Objects�4-6
	ODMG model�3-3
	ODMG standard�3-2, 4-1
	Operation�4-12
	Operator�2-13, 3-12
	-�2-20
	*�2-20
	+�2-20
	Aggregative�3-12
	avg�2-13, 3-12, 4-15
	Combining�2-12, 2-22
	Composition�3-12
	count�2-13, 3-12, 4-15
	define�2-14, 3-12
	element�2-14
	except�2-20, 3-12
	exists�2-15, 3-12
	flatten�2-21
	forall...in�3-12
	group...by�2-15, 3-12, 3-13, 4-18
	intersect�2-20, 3-12
	like�2-19
	max�2-13, 3-12, 4-15
	min�2-13, 3-12, 4-15
	order by�2-19, 4-20
	Set�2-20, 2-22, 3-12
	sum�2-13, 3-12, 4-15
	union�2-20, 3-12
	Wild-card�2-22

	OQL�1-3, 1-4, 2-1
	Operators�2-13
	Rational�3-1
	Result�2-10

	order by�2-19, 3-12, 4-20

	P
	partition�2-16
	Path expressions�2-8, 3-7
	Polymorphism�3-11
	Predicate�3-8

	Q
	Query
	Basic�2-2, 4-32
	Named�2-14
	Result�2-10, 2-14

	R
	Ref�3-3
	Relationship�3-3, 3-7, 4-11

	S
	select�3-13
	Select from where�4-16
	select from where�2-6, 3-7
	Set�2-6, 2-7
	Constructing�4-7
	List conversion�2-21
	Operators�2-20, 3-12

	set�2-11, 2-12, 3-9, 4-22, 4-24
	Set expression�4-35
	Smalltalk�1-3
	Smalltalk binding�3-2
	struct�2-11, 2-12, 2-12, 3-9
	Struct value�2-5
	structure�4-6
	Subcollection�4-21, 4-21
	sum�2-13, 3-12, 4-15
	System
	Architecture�1-2

	T
	Testing on nil�2-9
	Typing�4-26

	U
	union�2-20, 3-12, 4-23
	Universal quantification�2-22, 3-12, 4-14
	Unix�1-5

	V
	Value
	Array�2-6
	Atomic�2-5
	List�2-6
	Named�2-4
	Struct�2-5

	W
	where�3-8
	Windows NT�1-6

