Great

User’'s Manual

(version 2.0.2)

Performance Evaluation group

Dipartimento di Informatica
Universi@ di Torino (Italy)

Contents

1 Informal introduction to the formalisms 6
1.1 Historyof GreatSPN. e e 6
1.2 PetriNets. e e e e e 8
1.3 Stochastic PetriNets e e e e e 10
1.4 Generalized StochasticPetriNets. e 11

141 AGSPNexample e e e e e 12
1.5 Stochastic Well Formed Nets. e 14
151 ASWNexample. e e e e e e 15

2 Getting started 17
2.1 The Readers-Writers GSPNmodel, 17
2.2 Starting GreatSPN. e 18
2.3 Creating the Readers—Writersmodel 18
2.4 Savingandprintingthemodel 23
2.5 Analysis of the Readers-Writersmodel 25
2.6 Colored version of the Readers-Writersmodel 29
2.7 Analysis of the SWN Readers-Writersmodel. 33

3 GUIlindepth 35
3.1 TheMenuBar e e e e e 37

311 FileMenu. e e e e e e e e 37
3.1.2 EditMenu e e e e e e e 40
3.1.3 VieWMenuU. e e e e e e e e e e e 47
314 GridMenu e e e e e e e e e 47
315 ZoOMMENU e e e e e e e e 48
3.1.6 Rescale MeNU e e e e e 48
3.1.7 GSPNMENU. o e e e 48
3.1.8 SWNMENU. o e e e 51

3.1.9 E-GSPNMenu. o e 53

3.1.10 HelpMenu. e 53

3.2 TheObjecthar. e e e e 54
3.21 Places e 54
3.22 Transitions. e e 57
3.2.3 AICS. . . o 63
3.2.4 Marking parameters. e 64
3.25 Rateparameters. e e e e 66
3.2.6 Resultdefinitions 67
3.2.7 Changing place/transitiontags. e 69
3.2.8 Colourdefinition. e e 69

4 Solvers 74
4.1 Structural analyzers e e e e e e 74
4.1.1 Invariants. e e e e e e 76
41.1.1 Modules. e 76

4.1.1.2 Resultfilesstructure. 77

4.1.2 Minimaldeadlocksandtraps. e 77
4.1.21 Module 77

4.1.2.2 Resultfilesstructure. 77

4.1.3 Implicitplaces. e e e 78
4131 Module 78

4.1.3.2 Resultfilestructure e 78

4.1.4 ECS-Confusion-ME-SC-CC e e e e e 79
4141 Module 79

4.1.4.2 Resultfilesstructure. 79

4.1.5 Structural boundedness 80
4151 Module e 80

4.15.2 Resultfilesstructure. 80

4.2 Performance boundssolver. 81
421 Modules e e 81
4.2.2 Resultfilestructure e 81
4.3 Analytic SOIVErS. o 82
4.3.1 GSPNsSOIVers e e 82
4.3.1.1 Reachability Graphgenerator. 82

4.3.1.2 TRGstructureanalyzer e 84

4.3.1.3 Markov Chaingenerator. 84

4314 Steady Statesolver 84

4.3.1.5 Transientsolver 85

4.3.2 SWNsolvers. e 85

4.4 SIMUIators e e e 86
441 GSPNsimulation e 86
4411 Modules. e 86

4.4.1.2 Resultfilestructure e 86

442 SWNsimulation. e 87
4421 Modules. e 87

4.4.2.2 Resultfilestructure 87

45 Extended SWNfeatures. e 88
45.1 Transientanalysisof SWNmodels 88
4.5.2 Simulation of SWN models with GEN transitions 88
4.5.2.1 Rescheduling/descheduling policies. 88

45.2.2 Firing time distributions of the GEN transitions. 89

45.3 Refinedperfomanceresults e 90
453.1 Meannumberoftokensinaplace. 90

45.3.2 Transitionthroughput, 93

45.3.3 Probability. 95

454 Theresult.statfile. 96
455 Number of batches ina simulationrun 96
4.5.6 Inclusionof “reset’transitions 97

4.6 Multiple experiments. e e e e e e e 97
Compositionality in GreatSPN 102
5.1 Compositionoftwo labelled SWNs. 102
5.2 Thealgebrapackage e 104
5.2.1 Compositionmodule 104
522 Removemodule. 107
Export to other tools 108
6.1 Model checking: PROD translator e 108
6.1.1 Installation. 108
6.1.2 Useofthe PRODtranslator 109
6.1.2.1 Netswithinhibitorarcs. 109

6.1.2.2 SWN nets with symbolicmarkings. 111

6.1.2.3 ThescriptExploreRG 111

6.1.2.4 Thepre-definedmacras. 112
6.2 Kronecker solutions: APNN translator. 118
6.3 Tgiftranslator. e e 118
6.4 Fluidnetstranslator 118
6.5 Refinement of SWN performance indexes: PERFSWN. 119
Net description files 121
A.l Formatofthe .netfile 122
A.2 Formatofthe .deffile 123
A3 Grammars. e e e e e e 124
A4 Extended SWN grammar 0 i e e e e e e e e e 127
Known bugs and Warnings 129
B.1 Warnings e e e e 130
Installation 131
C.1 Systemrequirements for compilingthetool. 131
C.2 Compilingandinstallingthetoal 132
C.3 Settingthe environment. e e e 133

Chapter 1

Informal introduction to the formalisms

This chapter contains a brief history @featSPNand recalls part of the background material necessary to use the
package. The Petri net formalism and some stochastic extensions are briefly described in the following sections.
The descriptions are very concise and the reader may find major details about these formalisms in tfile book [

1.1 History of GreatSPN

The first impulse to the development of tBeeatSPNpackage stemmed from the research pursued by the Torino
group on generalized stochastic Petri nets (GSPN). GSPNs were initially developed as a tool for the specifica-
tion and performance evaluation of computer architectures at the Dipartimento di Elettronica of the Politecnico
di Torino and at the Dipartimento di Informatica of the Univexsiti Torino [3], in the frame of the Progetto
Finalizzato Informatica of the Italian Consiglio Nazionale delle Ricerche, MUMICRO project. The development
of GSPNs was stimulated by the results on SPNs described in the Ph.D. thesis of M. K. Ma]lopnw[GSPNs

a new class of transitions (call@hmediat@ that fire in zero time with priority over timed transitions was in-
troduced. A solution algorithm that exploits the reduction of the size of the Reachability Set (RS) due to the
presence of immediate transitions was first described]in [

Several computer programs were developed as part of PhD thesis to implement the steady-state numerical
solution of GSPN models, eventually leading to the first documented software package for their analysis. This
package allowed one to experiment with the new modeling tool and gain insight into the memory and CPU
time requirements of the solution algorithms as functions of the size of GSPN models. The weak points of this
package were poor portability and flexibility of the programs, and the lack of a graphical interface, which is the
most natural type of support for the definition of GSPN models. Subsequent efforts were devoted to designing
a package with the following characteristics: (1) user friendliness — in particular the availability of a graphical
interface for model definition was considered a must to satisfy this requirement —, (2) portability, (3) modularity
and easy upgradability, and (4) efficiency of the analysis modules.

The first step in this direction was the implementation of the software tool describi&d.il\[decomposition

was pursued both of the software tool and of the analysis steps. Several intermediate results were identified and
stored in the form of separate files. Several independent programs cooperate to the production of final result
files by taking as input intermediate result files produced by running other modules of the tool. Thanks to
this modular software architecturé4)], the tool was easily upgraded and adapted to different uses as soon as
new theoretical results provided new analysis algorithms. From the functional point of view, earlier versions of
GreatSPNincluded a graphical interface (based on the SunView package and on the PixRect utilities for basic
graphics), all the algorithms for the generation and steady-state or transient solution of the “underlying Markov
chain” of a GSPN, and a new algorithm for the analysis of a class of models containing a mix of exponentially
distributed and deterministic timed transitions (DSPH) A Monte Carlo simulation program with confidence
interval estimation was also introduced for two main reasons: (1) to provide a tool for performance evaluation in
the general case of Timed Transitions Petri Nets (TTPN) that are not analytically solvable and (2) to provide a tool
for the validation of models when numerical solutions cannot be implemented due to the size of the Reachability
Graph (RG), which is equal to the number of states of the underlying Markov'chain

GreatSPNstarted to become an interesting and useful support tool for performance modeling, and many re-
search and education institutions asked for permission to have it, so that the Dipartimento di Informatica of the
Universit di Torino began its free distribution. Using the package on increasingly larger and more complex mod-
els, we soon realised the need for some model validation and “debugging” tool. From this need, the Torino group
started to look more carefully at the traditional techniques and algorithms used in the classical Petri net theory for
the study of qualitative structural and behavioral properties. Major improvements in the validation capabilities of
the package were achieved with the implementation of algorithms for the computation of Place- and Transition-
invariants, that allowed an easy check of structurally necessary or sufficient conditions for boundedness and er-
godicity before the exhaustive enumeration of the state space. More specific and powerful structural analysis
techniques were also proposed for the qualitative validation of GSPijlauiid included inGreatSPN A major
check-point was undertaken with the release 1.3, [which included all the structural analysis techniques for
the validation of the underlying Petri net structure of a GSPN model. Major improvements in the validation ca-
pabilities of the package were achieved with the implementation of algorithms for the computation of Place- and
Transition- invariants, and of the specific structural analysis techniques for the qualitative validation of GSPNs
proposed in5].

At this point the weakest part of the package was the simulation feature, which used a very straightforward
(and inefficient) Monte Carlo non event-driven technique for the generation of the sample paths. The same
structural properties computed for the model validation were then reconsidered from a different perspective: they
were used for the optimization of the data structures of the analysis and simulation progthmBHhis idea
led to a completely new set of solution and simulation programs, and eventually to the implementation of the
interactive simulation facilities/] of GreatSPNL.4.

1In any case simulation usually requires costly and long computations.

One of the drawbacks of versions 1.3 and 1.4 was that they comprised both modules written in Pascal and
modules written in C. In versioGreatSPNL.5 all the Pascal modules were rewritten in C in order to increase
portability. Moreover, new algorithms and techniques were implemented for the efficient and direct construction
of the Tangible Reachability Graph (TRG), 8], further reducing the space and time requirements of this phase
with respect to the technique proposed 1&][In this version the possibility of general marking dependence
for transition rates has been restricted: immediate transition weights are now constants, while in the case of
timed transition the preferred way of expressing marking dependency is through the degree of enabling; general
marking dependency for timed transitions is still possible, but its implementation is less efficient than that of
enabling dependence. In version 1.6, the graphical interface was rewritten based on XView, a public domain
toolkit (included in the MIT distribution tape of X11R5). The basic structure and features of the graphical
interface ofGreatSPNL.3 were retained. Minor changes were introduced in order to present the control items in
a more rational way. Some features have been added in a straightforward way in order to allow the visualization
of the new structural, behavioral, and performance results obtained by the new analysis modules.

GreatSPNL1.7 represents a new major check-point for the package. New algorithms have been added for
the fast computation of performance bounds based on linear programming techiifuesfking at a purely
structural level. The computed bounds depend only on the average firing delay of the transitions while they do
not depend on the p.d.f. of such delays. Algorithms have also been added for the analysis of high-level Petri net
models providing the user with the possibility of designing models of complex systems in a more compact way.
The chosen high-level formalism is Stochastic Well-Formed nets (SWNSs), for which efficient algorithms have
been defined, that automatically generate a compact RG (called Symbolic RG) exploiting the model symmetries
[19, 23, 21]. The major objective oGreatSPNL.7 was thus a consolidation of the package to allow an easier
distribution, as well as a broader application scope, with more emphasis on the validation and the simulation of
models and on the derivation of fast performance bounds.

Research is still going on, and will eventually produce new implementations to be introduGeeatsPN
on hierarchical modelingl]/] and on the exploitation of parallel processing techniques for the efficient analysis
of large models{2, 24]. Concerning the graphical interface, porting under OSF/Motif is being considered.

1.2 Petri Nets

Introduced for the first time in the sixties4], Petri nets (PN) are a graphical and mathematical modeling tool
for describing concurrent systems. A PN is a 5-tu{ier,1,O,H), whereP is the set of places is the set of
transitions, and, O, H, are functions that defines weighted input, output and inhibitor arcs between places and
transitions. PNs incorporate a notion of (distributed) state which is denoted by a fulttiéh— IN, called
marking

A PN systems given by aPN structure plus amitial markingand it is defined as a 6-tup(®,T,I,0,H, Mo)

whereMg represents the initial distribution of tokens in the places of the net.

PN have an associated graphical representation, where places are circles, transitions are bars, input and output
functions are weighted arrows, and inhibitor function are circle headed arrows. The marking is represented by
inscribing placep with M(p) tokens, represented as black dots.

Transitions describe events that may modify the system state afidrigeule defines the dynamic behaviour
of PN models. For example, in the net below, transiticmenabledif M(p1) > n, M(p2) > m, and M(p3) < h.

Once enabled, transitidrcan fire consuming tokens from place;, mfrom p, and depositingl tokens intop,

e
FAY

Figure 1.1: Example of enabling and firing.

andv into ps.

An important consideration is that the enabling and firing rules for a generic trarisérerilocal”: indeed,
only local information (i.e. input, inhibitor and output places) need to be considered to establish wkathire
and to compute the change of marking. This justifies the assertion that the PN marking is intrinsically distributed.

A markingM’ is said to bémmediately reachablieom M if M’ can be obtained by firing a transition enabled
in M. The set of transitions enabled in the markiMgs denoted withE(M) and the firing of a transition is
denoted withM([t)M’.

Two transitions are said to be aonflictif they share input places and the firing of one transition disables the
other by removing the token in the common input places.

Starting from the initial markingvy it is possible to compute the set of all the reachable markings, the so
calledReachability SefRS) of the model. The RS does not contain information about the transition sequences
fired to reach each marking. This information is captured byRkachability Graph(RG) whose nodes are
labelled with the reachable markings and whose arcs are labelled with the transitions that the system has to fire
to move from state to state.

PN models can be used for the (qualitative) analysitogical properties of systems. Classical analysis
techniques are structural (graph-based) analysis and reachability analysis which investigate, for example, the
boundedness of the model or the presence of deadlocks.

1.3 Stochastic Petri Nets

Classical PN models include no notion of time and for this reason they have been traditionally used for the qual-
itative analysis ofogical properties of systems. Several authors have proposed augmented PN models which
include temporal specifications, so that a quantitative performance analysis of systems is possible. The introduc-
tion of temporal specifications in a PN has been done mostly by associating a delay with transitions. Stochastic
Petri Nets (SPN)J(] are PN in which transition firing delays are exponentially distributed random variables:
each transition is associated with a random firing delay whose probability density function is a negative expo-
nential with rate\;. Syntactically this extension amounts to adding a funcionT — IR such that the delay
associated to a transitidris a random variable, distributed as a negative exponential, ofWéte Thus a SPN

system is defined as a 7-tugle T,1,0,H,W,Mo) whereP, T,1,0,H, Mg are defined as in PNs aid specifies

the rates to be associated with transitions.

The semantics of SPNs is described byaae model When a marking simultaneously enables several
(conflicting and/or concurrent) transitions, all activities associated with these transitions are assumed to execute
in parallel, so that the next marking change is due to the transition whose firing delay in the present marking is
minimum, i.e., to the transition that wins the race. The firing of the winning transition implies that the activity
associated with it in the model is completed. The behaviour of the losing transitions can be specified in different
ways. Indeed, it is possible for these transitions to either remember the time during which they have already been
enabled (and thus worked), or not. However, the use of exponential distributions for the definition of temporal
specifications makes unnecessary the distinction between the distribution of the delay itself, and the distribution
of the remaining delay after a change of state, thus avoiding the need for the specification of the behaviour of the
transitions that do not fire in a given marking.

When the set of enabled transitiodB&V) contains more than one element, the probability that tranditien
the one that actually fires can be obtained from the temporal specifications as

T S LG —
| W) S A
ticE(M) ticE(M)

The definitions of the RS and the RG are still valid for SPNs but in this case the arcs of the RG are labelled with
transition names and transition rates.

Molloy [31] showed that, due to the memoryless property of the exponential distribution of firing delays,
SPN are isomorphic to continuous-time Markov chains (CTMC) in which

1. the states of the CTMC are in one-to-one correspondence with the SPN maMingsi);

2. the transition rate from statgcorresponding to markiniyl;) to statej (M;) of the CTMC is equal to the
sum of the rates of the transitions that connect the corresponding markings in the RG of the net.

10

The translation of a SPN model into a CTMC is thus conceptually very simple. The RS of the SPN is generated,
and the firing rates of enabled transitions are used to construct the state transition ratQroéttig CTMC.

If the CTMC is ergodic, it is possible to compute the steady state probability distribution of the markings
solving the matrix equation

mM =0
with the additional constraint

yn-1

whererTtis the vector of the steady state probabilities. From the steady state distribution it is possible to obtain
guantitative estimates of the behaviour of the SPN.

Difficulties may arise due to the computational complexity of the algorithm for this solution, when the number
of reachable markings grows. This is the main problem associated with the utilisation of SPN which are otherwise
very easy to employ, even for inexperienced users.

1.4 Generalized Stochastic Petri Nets

Sometimes it is not desirable to associate a random time with each transition of a model, since one would rather
associate times only with the events that are believed to have the largest impact on system performance. For
instance, the time required to test the condition to entewihite loop can be considered negligible with respect

to the time required to execute thedyof the loop.

SPN models in which logical actions are represented by transitions whose firings take no time are known by
the name ofjeneralizedSPN (GSPN) 3, 15]. Transitions that fire in zero time are calledmediatgrepresented
as black bars) to be distinguished from the transitions whose associated delays are exponentially distributed,
which are calledimed(represented as rectangular boxes).

Immediate transitions fire with priority over timed transitions and it is assumed that different priority levels
can be defined over immediate transitions. Priorities equal to zero are associated with timed transitions, priorities
equal or greater than one are associated with immediate transitions. Syntactically, this extension amounts to
adding a priority functiont: T — IN which assigns a natural number to each transition. A GSPN system is
defined as a 8-tuple?, T,1,0,H, W, 11, Mp).

In GSPN the delay associated with a timed transititga random variable, distributed as a negative expo-
nential, of raté/N(t). In the case of an immediate transitibimstead, the valu@/(t) specifies a weight.

When two or more timed transitiomsare in conflict, the selection of the one that fires first is done according
to the race policy. When two or more immediate transitipase in conflict the selection of the one that fires first
is done using the weight/(tj), normalised in such a way as to obtain a discrete probability distribution function.

Due to the presence of immediate transitions, the RS of a GSPN model contains two different types of
markings that are classified &angible andvanishing A tangible marking is a state in which no immediate

11

transitions are enabled and therefore the system spends some time in that state, while a vanishing marking is a
state in which at least an immediate transition is enabled and therefore the time spent in a vanishing marking is
equal to zero.

The execution of a GSPN model is not identical to a sample function of a Markov process, due to the existence
of multiple discontinuities at the time instants corresponding to the entrance into vanishing markings. It is
however possible to remove these markings from the analysis, since they do not contribute to the measurable
behaviour of the model. The performance of a GSPN model can thus be analyzed by examining its evolution
through the set of tangible markings only. It has been shéwit] that there is a correspondence between GSPN
models and CTMCs. Performance indices such as, for example, transition throughputs and the mean number of
tokens in a place, can be associated with a GSPN model. They are computed starting from either the transient or
the steady state probabilities of the associated CTMC.

Another extension that has been introduced by some authors is the possibility of defining marking dependent
rates: the rate of the transition is therefore a function of the state of the system. If the dependence is only from
the input and output place of the transition we still preserve the inherent distribution of the state proper of Petri
nets, if we allow instead any type of dependence, then the locality of the firing of transition can be completely
destroyed.

1.4.1 A GSPN example

To give an idea of the GSPN formalism we briefly describe an example that will be also used in $Settiom
describe the coloured formalism of Stochastic Well Formed nets. All the details about the construction and the
analysis of GSPN models will be discussed in the next chapters.

The example, taken from the telecommunication area, is a multiple server cyclic polling sgktampris-
ing a set of waiting lines in which customers that arrive from the external world queue up waiting for service. A
set of servers cyclically visit the queues providing service to the waiting customers. Upon service completion a
customer departs from the system and the server proceeds to the next queue.

The net in Figurel.2(a) shows the GSPN model of a generic queuglace ng represents the number of
free positions in the queue, whose maximum capacity is equdlde specified by its initial marking. Timed
transitionTa(i) models the customer arrival process; customers waiting for a server are queued irpéBIace
Immediate transitior(éi) models the start of a service and it can fire only when a customer is waiting inmﬂéce
and no other customers are currently served, i.e. when pgicerepresenting customers being served) is empty.
Finally the firing of timed transitioﬁ's(i) represents the service completion.

The GSPN model of the servers behaviour when polling qugisedepicted in Figure..2(b): a token in
placepg) represents the presence of a server at quelibe two immediate transitiortéi) andt\%) have priority
2 and 1 respectively. Transitiag should fire if a waiting customer is found in queuso that service can be

provided. If no customers are waiting, the server bypasses the queue (firing of trang?tj(mml walks towards

12

P

(1¢ b=
Téﬂ% \E‘(j
(a)
i3 '

t‘;‘) bu 8 y(@"‘g?‘)

|——O—{F
| E (b)
(i tgj) ; T, £) Pp)

Pp Pw w

Figure 1.2: GSPN representations of a queue and a server.

the next queue (firing of timed transitioTa(,i)). The reason for assigning a higher priority to transiﬁg)n is
to force the fact that a server can bypass a queue only if there is no possibility for it to provide service. Place
busy') represents the conditidiserver busy serving a customer at queueaihd transitionTs,(i) represents the
corresponding ongoing service. Notice that both models in FigniZmclude immediate transitioléi) and timed
transitionTs(i); the transitions with common names represent the same events in the two submodels.

The GSPN model of a polling system with four queues can be obtained by composition of four copies the
submode%(i) representing thé" queue and four copies of the submod@i) representing the behaviour of a

_I.éﬁl .r!.':au
Fan
W

11

l@l';l] i

Figure 1.3: GSPN representation of a cyclic polling system.

13

server at queue(i =0,1,2,3). Submode%(i) can be composed with submod?@i) by merging the transitions
with same label (that is, immediate transittéiﬁand timed transitior’fs(i)). On the other hand, the ring topology is
obtained by superposition of places with the same name belonging to sub?rm[gﬁglandﬂ\[s(”l). The resulting
model is depicted in Figure.3. The number of servers is parametric and it is modelled by assigitogens to

)

pIacep\(A? in the initial marking. Also the queues capadityis parametric and is specified by the initial markings

of placespg) (i=0,1,23).

1.5 Stochastic Well Formed Nets

Stochastic Well Formed Nets (SWN} 1] are a coloured extension of SPNs that allows one to build a more
compact and parametric representation of a symmetric systéotdyg similar subnets. In this way it is possible

to represent very concisely systems that would have required a huge uncoloured net. When similar subnets are
folded, some additional annotation is needed to distinguish tokens that end up being in the same folded place.
These annotations constitute tt@our structureof the net.

Tokens are no longer indistinguishable: each token can be regarded as an instance of a data structure whose
meaning depends on the place to which the token belongs. Theqabme domain(denotedC(p)) is defined
as the Cartesian product bésic colour classegossibly with repetitions of the same basic colour class. Each
basic colour class is a finite set of basic objects and it is usually defined by enumeration of its elements (e.g.
C = {c1,Cp,...Cn}). Colour classes may berderedand may be partitioned into disjoint subsets cakéatic
subclasses

Transitions’ colour domains (denot€t)) are defined analogously to places’ colour domains. Transitions
can be seen as procedures with formal parameters, the parameters being determined by the corresponding domain.

The enabling check of a transition and the state change caused by its firing dependanftinetionsthat
label the arcs connecting the transition to input, inhibitor and output places.

Arc functions are formal sums of tuples structured according to the corresponding place colour domain. If
the place colour domain is the Cartesian produdt basic colour classes, then the corresponding arc function
is a weighted sum of-tuples. Thejt" element in eack-tuple is a weighted sum of three basic functions, the
identityfunction (denoted by a variable), tBaccessofunction (“!"), and thesynchronisatioriunction (“S”).

The weights of the sum may be numberpardicates Predicates are logical expressions used to test either
equality of pairs of basic objects, selected by some idefstitgcessor function, or to check the membership of a
selected basic object in a given static subclass.

A major interest of SWNs is that they provide a modeling framework in which the intrinsic symmetries are
automatically detected and used naturally as a way for reducing the size of the underlying state space. The reduc-
tion is obtained thanks to the original concepsgmbolic markingInformally a symbolic marking corresponds

2The increment+ 1 is modulo 4.

14

to an equivalence class representing a set of ordinary markings characterised by a common future behaviour.
These ordinary markings in fact enable the same transitions whose firings lead to new ordinary states which are
still equivalent, i.e. belong to the same symbolic marking. Symbolic markings are obtained by disregarding the
identities of the objects within the places of the net and considering only their number. Colour classes are par-
titioned intodynamic subclassesnd the only relevant information is the cardinality of these subclasses (i.e. the
number of objects they contain). This shows how many elements in the net have the same behaviour at the same
time.

This type of partitioning varies from one marking to another, hence it must not be confused with the static
subclass partitioning which is part of the colour class definition.

With the introduction of dynamic subclasses places no longer contain coloured tokens but symbolic tokens
whose components are expressed in terms of dynamic subclasses. All the ordinary markings which can be
obtained by assigning identities to the objects of the dynamic subclasses belong to the same symbolic marking.

A symbolic enabling ruleand asymbolic firing rule which operate directly on the symbolic marking repre-
sentation, and an efficient algorithm for the generation of an aggregated state spacsyoalietic reachability
graph (SRG) have been defined] and implemented?]. The SRG describes the evolution of a SWN model
through a set of macro-states, the symbolic markings, that represent sets of more detailed states which are equiv-
alent.

Several properties valid for the SRG have been introduced. For example, the equivalence between the SRG
and the RG from the point of view of the reachability of the markings ensures that no information is lost by
analysing the SRG instead of the RG. Formulae have been defined to compute both the number of ordinary mark-
ings belonging to the same equivalence class and the number of ordinary firings represented by each symbolic
firing.

The SRG corresponds to a lumped version of the complete RG and this aggregation is reflected also at the
level of the underlying Markov process. 14 it has been proved that the SRG is isomorphic to an aggregated
Markov process that can be used to compute the same performance estimates that can be computed from the
general technique based on the RG, but with a lower computational cost.

1.5.1 A SWN example

Figurel.4shows the SWN model of the polling system example that has been obtained by folding all the replicas
of the submodel%(i) andﬂ\[s(i) forming the GSPN model in Figure 3, into a single net structure.

The tokens carry information to distinguish the customers associated with different queues. We thus need
one colour class defined &= {q1,d,...,qu } that represents thd queues.

In the polling system the ring connection induces a circular order relation among queues, characterised by
the “next queue” relationQ is thus defined to be aorderedcolour class with the possibility of applying the
successor function to any of its element (.62 0(i1-1)modm)-

15

The initial marking of placep, is K - (S) whereK represents the maximum capacity of each queue and
(S is a special symbol denotirgl the coloured tokens belonging to the place colour domain,K.e(S) =
K-(a1)+...+K-(gw); the initial marking of placep, represents the initial position of th¢ servers and it is
equal toN - (g1) as we are assuming that all servers are initially polling the first queue of the ring.

The identity function)x) labelling the arcs binds any elemepte Q to the variablex. For example, transition
T, has a parameterof type Q and acoloured transition instancis obtained assigning actual basic objects to this
parameter. The coloured transition instanca@.ghat assignsj, to parametex is enabled in the initial marking.

Its firing removes the coloured token) from placep, and adds it in placeq thus modeling an arrival to

the second queue. This is due to the fact that the same vardsbels both the input and output arcsTgf
actually denoting the same coloured token. When one oRtkervers polls the second queue (i.e., when place
pp contains the coloured tokep)) the service can be provided and the immediate coloured transition instance
of ts binding the parametecrto g, can fire.

The inhibitor arc connectinig andps prevents the enabling of transitityfor any coloured tokeKq;) present
in placeps. A server that polls a queue in which another server is working will bypass that queue (i.e., transition
tw will fire) because in the modeled system only one customer can be served in each queue. A server moving to
the next queue is modeled by means of the combined presence of the identity fyricod successor function
(Ix) labelling the input and the output arcs of transitiign
Pa
oS
Ta {z)

m
@ q — @
{z) po ¥ ey o
a [j
{tx)

Figure 1.4: SWN representation of the cyclic polling system.

@)

ml = N{g)

The SWN model in Figuré.4is parametric in the queue capaciti&g,(in the number of serverdlj and also
in the number of queues in the systel@|§. An important feature of this coloured model is that the service policy
may be easily modified; for example it is possible to model a random service policy instead of the cyclic one, by
simply replacing the successor function labelling the output arc of tranditiavith an identity functionly) plus
the predicatex +# y|] to model the movement of a server to a different queue. Observe that such a variation in the
GSPN model would require much more complex structure manipulation.

16

Chapter 2

Getting started

After GreatSPN2.0.Bas been installed and the user environment has been set up according to the directions given
in the AppendixC, the user can start the package and build and analyze his/her models. The aim of this chapter
is to quickly introduce the user to (modeling) usiBgeatSPN2.0.2 By following this tutorial, the user will be

able to construct a Petri Net model and to analyze it by means dbtbatSPN2.0.graphical interface. The
reader interested in a more in-depth presentation of the vaBoeestSPN2.0.2eatures may refer to Chaptér
Throughout this chapter we shall use as an example the model of the well-known multiple-reader-single-writer
problem in the access of a shared data base.

2.1 The Readers—Writers GSPN model

Let us consider a set of “processes” concurrently accessing a shared data base. When a process issues an access
request, it declares whether a read or a write operation is required. Read operations may proceed concurrently
with each other, while write operations require an exclusive access in order to maintain the consistency of the
data base. A GSPN model of this system is depicted in FigukeA token in placethink represents a process
performing some local activity. After a random amount of time, a data base access request is issued (timed
transitionarrival fires). The type of request (read or write) is randomly chosen with equal probability (immediate
transitionsisreadandiswrite have the same weight). If the operation is a read, then the access is granted if no
other process is performing a write operation on the data base (paaite is marked), otherwise the process
waits in placeRqueueauntil the access can be performed safely. The beginning of a read operation is represented
by the firing of transitiorStartR that has two effects. First, placewriteis marked, meaning that other readers
can access the data base. Second, piaingis marked, forbidding therefore the access to any writer process
(there is an inhibitor arc from plageadingto transitionStartWj. After the firing of the timed transitioEndR
the status of the process is reset to “thinking”.

Conversely, if the requested operation is a write, the process waits (in \Mguoeug until access can be
granted, i.e. when no other process is performing a write access (macéeis marked) and no other process

17

=0 Rqueue StartR reading EndR
[
/7O l
isread
N
arrival
P (] choice
think *
nowrite
T
iswrite \O
1
1
Waqueue Startw writing EndwW

Figure 2.1: The Readers—Writers GSPN model

is performing a read access (plaeadingis empty). At the completion of the write operation, modeled by the
firing of transitionEndW the absence of write access is signaled to other processes by markingg@haite,
and the status of the process is reset to “thinking”.

2.2 Starting GreatSPN

GreatSPN2.0.5s started by typingreatspn on the command line and pressitgeturn>. After a few seconds

the Control Panel, depicted in Fig.2, pops up and the user can start a work session.

WARNING! WhenGreatSPN2.0.%Ul is launched for the first time a window is displayed before the Control
Panel pops-up in which it is asked to the user to fill in the corresponding areas if he/she desires to change the
default setting for some environment variables (see cl3dpt.a more detailed description of this window). The

user has to press the “OK” button to confirm either the modification made in the window areas or the default
settings: the information contained in this window are saved intg&b&E/ . greatspn file.

To create a new model, the user has just to start creating places and transitions (as discussed i 3gection
while if the user desires to modify an already created model, he/she can retrieve it by udtilg thenu.

2.3 Creating the Readers—Writers model

To create (or to modify) a model, the user selectsationto be performed and thebject type(e.g. places,
immediate transitions, place markings, etc.) on which the action will be applied. The general principle of

18

]

GreatSPM 2.0.2 : Untitled

<— Menu bar

O e o | o JO | i) emm] £ | coieet o

Canvas

Scrol | bars

B] s

Figure 2.2: TheGreatSPN2.0.Zontrol Panel

behavior of theGreatSPN2.0.graphical interface is that the action selected by the user frorA¢tien menu

(shown in Fig.2.3) becomes the default action until a new one is chosen, and such action affects only objects
of the type currently selected. The current action is displayed istttas baron the right. TheéAction pop-up

menu is activated by pressing the right mouse button on any position @rdetSPN2.0.2vorking area. To

select an action, the user has to click with the left mouse button over the desired pull-down.oftiasbject

type is selected by moving the mouse cursor on one of the icons objbets bai(see Figure.2) and by clicking

over it with the left mouse button. The object currently selected remains highlighted until another object type is
chosen. Thenouse helpvindow, activated by selectingelp—Mouse Helpdisplays the action associated with

each mouse button. Let us start the creation of the Readers—Writers GSPN model by creating the set of places
first. To create places, we set the type of object to “place” by selectingldleeicon in theobject bar(indicated

by a circle), and after this operation the shape of the mouse cursor is changed into a circle. After the selection of
the Action—Addoption, we can move the mouse cursor within the working area and start laying down the places
of the net by clicking the left mouse button in the proper position, in order to obtain the screen image shown in
Figure2.4. TheGreatSPN2.0.graphical interface displays only a window on the real working area, that can be

1 In the rest of this manual we shall use the notafitenu Item—Optionto denote an option in a specific menu item of thenu
bar. For exampleAction—Createdenotes th€reateoption of theAction menu.

19

Figure 2.3: TheGreatSPN2.0.2ction menu

scrolled in all the directions by using tiserollbarsplaced on the right and bottom sides of the Control Panel.

To create the transitions we proceed as for places, that is by first choosing one of the three transition icons
available, i.e. deterministic (represented by a thick black box), exponential (represented by a white box), and
immediate (represented by a thin black box), and then by creating them. Note that we don't need to select the
Action—Add action again, since we didn’'t change the selection done when places were created. The screen
situation after the addition of transitions looks like Fig@®. Note that we have created transitions having

[- GreasPmZOZiUntited [[0 GreatsPnzoz:Untitled [

Figure 2.4: Place layout of the Readers—Writers megglre 2.5: Place and transition layout of the Readers—
of Fig. 2.1 Writers model

different orientations. To change the orientation of a transition, we can use the middle mouse button (each time
this button is clicked, the transition rotates of 45 degrees clockwise) before clicking the left button to actually
create the transition itself.

20

After a place or a transition has been placed on the working area, it can be moved by seleéttimptie:Move
option. An object can be dragged on ttamnvasoy clicking on it with the left mouse button, by moving the cursor
on its new position and by clicking the left button again.

The editor assigns default names (“tags”) to pla¢®g &nd transitionsTx for timed andtx for immediate)
wherex is an integer representing the objects creation order. Such tags are displayediéwheTag option
has been selected. Tags overlapping other objects of the net can be moved around in the same way as places or
transitions, that is by selecting tietion —Moveoption after clicking on theag icon, and by clicking on the
place or transition to which the tag is associated.

Now that we have created the nodes of our Petri net, we are ready to connect them with arcs. This can be
accomplished by choosing tlec icon in theobject bar(indicated by an upward arrow). Again, if we didn’t
redefine the default action, we don’t need to re-selecitttion —Addoption. To create an input arc from place
P1to transitionT1 (see Figure.6), we have to click the leftmost button of the mouse twice: first over pRice
and then over transitioll. The output arc connecting transitidi to placeP2 can be created by clicking the
left mouse button first oveF1, and then oveP2. The inhibitor arc connecting plaé6to transitiont5 is created

[creamPwzoziuntited ||

Figure 2.6: Creating arcs

by first clicking overP6 with the middlemouse button, and then ovi&rwith the left button. In the case of the
output arc connecting transitiori7 to placeP1, for aesthetical reasons we want to put two intermediate points

21

between the place and the transition, rather then connecting them with a straight line. Intermediate points are
added by just clicking the left mouse button over the desired position, provided that it is not too close to a node
of the net.

In Petri nets it is forbidden to draw arcs connecting either places to places or transitions to trarSitats.
SPNZ2.0.Znforces this rule by forbidding the creation of such arcs. Note that once one has started the drawing
of an arc, there is no way to interrupt the action, so if we realize that we started to draw an arc that we shouldn't,
the only way to get out is to complete the arc and to delete it afterwards. To delete an arc (or, more generally, an
instance of the currently—selected object), we have to click over the object we want to delete after the selection
of the Action—Deleteoption.

Now the topology of the network is complete, and we may proceed defining the initial marking. Place
marking can defined either directly, by associating an integer number of tokens with the place, or by means of a
rate parameter which has been previously defined. In either case, the association of an initial marking with a place
is performed by clicking with the left mouse button over the place we want to consider afferttbe—Change
option and theplaceicon have been selected. To creatmarking parametethe user has to click over theken
icon (graphically represented as a black dot) and to selecA¢lien—Add option. After that, the user has to
move the cursor in an emptanvasregion and click the left mouse button. A dialog box (see Eigwill pop-
up, and will ask us to enter the name of a marking parameter (in our case the name is "P”) and the corresponding
numerical value (a positive integer).

—-| Create Marking Farameter

Label :
E

Marking :
Ei

Ok Cance|

Figure 2.7: Dialog box for the creation of marking parameters

After clicking on the button “Ok” of the above dialog box, the definition of the marking parameter (“P=5")
will appear on the chosecanvasposition. Starting from this moment, the name “P” can be used as initial
marking specification for any place in the net. In our example, two places hold a non-null initial marking, and
we can define that by clicking the left mouse button on each of themChaage Place Propertiesindow (see
Fig.2.8) will pop up, so that the place marking can be changed by specifing the initial value in the “Marking:”
area.

22

~| Change Place Properties

Tag: Color Label ;
[

Marking :
E:

ok Cancel

Figure 2.8: Dialog box for changing place properties.

Alternatively, the same action can be performed by selectintpitemicon. The initial marking of a place can
be specified either as a nonnegative integer value or by using the name of an already-defined marking parameter.

As the network specification is complete, we may display a “nicer” version with rounded arcs by selecting
the View— Splineoption. This produces a net looking like the one depicted in Eig.

So far we have retained the default names given by the editor at the moment of the object creation. Although
this is useful to speed up the editing procedure, it may yield to a poor model readability, that can be improved
by giving meaningful names to places and transitions. Tags can be modified by selecting the “tag” object, by
choosing theAction—Changeoption and by pointing and clicking the left mouse button on the corresponding
place or transition. A dialog box will pop up and will ask the user to specify the new object tag.

2.4 Saving and printing the model

After the model definition has been completed, we can save its description and/or print it using several different
formats, by means of thEile menu. A model is saved by selecting thitke—Saveoption. If the model had

been previously saved, this operation will cause the old description to be overwritten. If one wants to keep
the old description, he/she can use H#ile—Save Asption of the above menu to specify a new name for

the net. The net description files are saved in the user directory defined by setting the environment variable
GSPNNET_DIRECTORY (as specified in the SHOME/.greatspn file of the user: see the Appendix C for details).
GreatSPN2.0.provides the possibility of specify comments, which are saved with the net description and which
can be subsequently re-edited. To add a comment, simply $éleectCommenbption, and use th&dit Net
Commentdialog box which pops-up. To create printouts of a model, or Encapsulated PostScript (EPS) files
suitable for inclusion inATeXdocuments, we have to select thbe— Print option. This option affects only that
portion of the model that is included in the currently-defiqetht area that is displayed as surrounded by a
dotted line if theView—Print Areaoption is selected (see Fig.9). To define the print area, we have to:

1. select theAction—Define Print Areaoption (the cursor shape will be changed into a cross);

23

GreatsPM 2.0.2 : /docsru/bernardisnets/madels/Reader _Wwriters

arcival

nowrite

iswrite

writing

Figure 2.9: Print area used for the Readers-Writers model

2. click with the left mouse button over thmnvaspoint corresponding to the upper-left corner of the print
area;

3. move the mouse cursor on the lower-right corner of the desired print area and click either the left or the
middle mouse button.

After the above operations have been completedFtlee—Print command must be selected to causeRhiat

dialog box (shown in Fig2.10 to pop up. In the window contained in the leftmost part of Bnant dialog box,
GreatSPN2.0.2hows an overview of the entire working area (remember that only a window on a portion of the
working area is shown in the Control Panel). The print area is surrounded by a thin black frame, that can be
adjusted (allowing the redefinition of the print area) by positioning the mouse cursor over the lower-right corner

(indicated by a small black square) and dragging it by clicking with the left mouse bwitlbout releasinghe
mouse button.

The six icons displayed just below the above window allow us to set:

¢ the format of the output , that can be chosen between raw PostScript (by clicking &%$tben) and
Encapsulated PostScript (by clicking on freXicon);

24

= Print

8 Print

H

L= | =1 o
.

o1 o o Cancel

B = [

J ‘) J Frintar :

B B E |EjEt Top=0.0 Left=0.0 Width=12.9 Height=7.2 (cm)

Figure 2.10:GreatSPN2.0.2 Prindialog box

¢ the destination of the output, that can be either a BlisKetteicon) or a PostScript printePfinter icon):
if the EPS format is chosen then only a printout on a file is allowed;

¢ the orientation of the output, that can be either portrait or landscape (th& ivems).

The right part of thePrint dialog box contains a window that shows the page layout (an a A4 size sheet is
assumed). The placement of the print area over the sheet can be changed either by dragging the thin black
rectangle or by clicking over one of the three icons placed at the right of the window (that allow centering the
picture on either dimension). Finally, the printout with the desired options is performed by clicking with the

left mouse button on the “Print” button. If we decided to save the printout on a3ikgtSPN2.0.2vill ask the

user (by means of a suitable dialog box) to enter a file name that will be placed either in the default PostScript
(PS) or Encapsulated Postscript (EPS) directory. The default PS and EPS directories can be set by means of the
environment variables GSPRS DIRECTORY and GSPNEPSDIRECTORY in theSHOME/.greatsprile (see
Appendix C).

2.5 Analysis of the Readers-Writers model

Once we have defined both the net structure and the initial marking of the Readers—Writers model we can have
a first understanding of its dynamic behavior by playing the “token garB®atSPN2.0.2rovides the user

of an interactive token game that can be started by selectinG8RN—Simulation...option. TheSimulation

window pops up and all the transitions of the model that are enabled in the initial marking become blinking (see
Fig. 2.11). To simulate a possible behavior of the modeled system we have simply to click with the leftmost

25

button of the mouse over the enabled (i.e. blinking) transition we want it to fire. In our running example, only
transitionarrival is enabled in the initial marking; by clicking on it, the firing action is executed, i.e. a token is
removed from the input pladhink and a token is added to the output plat@ice The new reached marking
enables the two immediate transitioissead, iswrite we can choose to fire one of them and to simulate the
corresponding firing action (and so on). By default the “Untimed” and the “Forward” options &ithelation
window are set to play the forward token game: it is possible to play the backward token game by setting the
“Backward” option in theSimulationdialog box.

1=l GreatsPN 2.0.2 : fdocsru/bernardi/nets/models/Readar_Writers R I

=] simulation

- w " Untimed Timedlnteractiue
F= 5 Ruene starth reading EndR
P 5" || rorwaral) sackuare] youes
isread\)
arcival
—

iswrite

nowrite W

(|
1 D—i
Wyuene starty writing Endur

Figure 2.11: Token game of the Readers—Writers model.

GreatSPN2.0.provides the user with a set of structural analysis algorithms that can be used to validate the
models. The user can access the above algorithms by selectiB&i— Structoption? For example, the com-
putation of minimal-support, canonical Place Invariants (by means of a modified Martinez—Silva algasfhm [
can be accomplished by means of the opf@BPN—Struct—P invariants GreatSPN2.0.2vill visualize the
Consolewindow (shown in Fig2.12), allowing one to start the P—invariant computation by clicking with the left
mouse button over the “Start” button. At the end of the above computatio@ahsolewindow will contain the
results, as displayed in Fig.13

After a GSPN model has been constructed and validated, it can be analyzed by means of the different perfor-

2 WARNING! Before launching aGreatSPN2.0.%olver be sure that the hostname set in the “Hostname:” left area of the
File—Optionswindow is the name of the machine on which the Control Panel has been started.

26

Figure 2.12:GreatSPN2.0.Zonsole Figure 2.13: Results of P-invariant computation
for the Readers—Writers model

mance evaluation techniques provided®ieatSPN2.0.2 Before starting the performance analysis of a given
GSPN model, its performance—related parameters must be defined. The default rates associated with transitions
can be displayed on the screen by selectingvieev— Rateoption. Rates overlapping some other object of the

net can be moved around in the same way as tags, by selectidgtio@ —Moveaction after the icon corre-
sponding to rates (indicated by a clock close to a timed transition) has been selected. Transition rates may be
defined as positive real numbers, name of rate parameters, or marking—dependent expressions, governed by a
context—free grammar (described in Appendix A). In this example we will only use rate parameter specifications,
that are created much in the same way as marking parameter, by chooskujitine—Addaction together with
therateicon. A dialog box (see Fig2.14) will pop up, allowing us to specify the name and the definition of

rate parameters. We will define three rate parameters for transition eates:1.0, rr = 2.0, andwr = 0.5;

and two rate parameters for choice probabilities between conflicting immediate transgron§.8, andisw =

0.2 After their definition, the above parameters can be used to specify the transition rates (weights) by choosing

Figure 2.14: Dialog box for the creation of rate parameters

27

the Action—Changeaction with the exponential (immediate) transition type selected, by clicking with the left
mouse button over the appropriate transitions and by fillingRhte or Rate ParametdiVeigh) field of the
correspondin@hange Transition Propertiesindow (see Fig2.15).

= Change Transition Properties

_ |

=
(A (B)

@ Infinite

Load Dependent

Figure 2.15: Windows for defining/changing properties of timed (A) and immediate (B) transitions.

The same window, depicted in Fig15A), allows the specification of the enabling dependence. The default
enabling dependence for timed transition is of the “infinite server” type, but it can be changed by choosing the ap-
propriate optionlffinite, Marking Dependent, 1-SeryendLoad Dependet In our example, only tharrival
and theendRtransitions are of the “infinite server” type, so the enabling dependence of all the other ones must
be changed td-Server To change the priorities of immediate transitions, use the scrollbar on the bottom-left
of the Change Transition Propertiesindow (Fig2.15B)) of the corresponding transitions to increase/decrease
their priorities.

With the specification of transition rates and probabilities as shown ireFig. we have completed the spec-
ification of the behavior of the modelGreatSPN2.0.Drovides three different performance analysis methods,
namely computation of bounds for the throughput of transitions, Markovian solution and simulation. In this chap-
ter we present an example of the Markovian solution of the Readers—Writers GSPN model, while the other tech-
nigques will be covered in Chaptér The Steady—State solution of the Embedded Markov Chain corresponding to
the GSPN model of the Readers—Writers system of Eitfis obtained by selecting tHteSPN—Solve-GSPN
Solution—Steady Stateption. TheConsolewindow will pop-up again, and after we click with the left button
on the “Start” buttonGreatSPN2.0.2vill start the analysis phase. At the end of the analyGSigatSPN2.0.2

28

arr=1,000000 isr=0.800000
rr=2.000000 jsw=0.200000

wr=0.500000
/
P=3 StartR readin
Rqueue 1800000 g EndR
| |
isread /3 irrrn‘-server
isr N
@5 arrival Isr
choice
think .
Qﬁ-server nowrite
isw
. 4
iswrite
\ o
[|
||
Waqueue StaftRPO000 writing EndwW

\

Figure 2.16: The Readers—Writers model with transition rate/probability specification

will show on the screen the values of the throughput of the various timed and immediate transitions, as well
as the values of the defined performance indices (see Figlie We can visualize the distributions of token

into places by selecting th&ction—Showaction together with theesulticon, and by clicking on the place of
interest. In Fig2.18it is shown the token distribution for plad@queue

2.6 Colored version of the Readers-Writers model

Let us suppose that the processes which are concurrently accessing to the shared data base have different be-
haviors; in particular, a group of them access to the data base only to perform a write operation, while another
group can issue either a writing or a reading request. In this section we describe how to obtain theGrelated
SPNZ2.0.%ersion of readers-writers model (see Big9 that captures the different behavior of the two kinds of
processes. Starting from the previous non-colored model of the readers-writers system we first need to define the
basic color classes representing the two kinds of processes. To create (or to modify) a basic color class definition
simply click with the left mouse button on tle®lor icon (indicated by a palette and a paintbrush) ofdbgect

bar and pop-up théction menu, using the right mouse button, in order to select the “Add” option as the current
action. After these operations, choose a place incthevasto locate the definition of the class and click with

the left mouse button: th€reate Color Definitiorwindow pops-up (see Fig.20. The top left area named as
“Label:” has to be filled with the name of the color class. The “Colorset” toggle, by default, is already switched
on (a black dot is displayed in the circle near the toggle), indicating that the current definition is a definition of a

29

B

GreatSPN 2.0.2 : fdocsrw/bernardi/nets/models/Reader _\writers

arr=1. 000000 isc=0.300000
re=2. 000000 isw=0. 200000 Equene=2. 16335

wr=0. 500000
gThin=1. 25779 [}__‘__J
LI

\\\\ Thin=1. 5773

Thru=1.25773

Thira=1.57223
hru=0. 314447

.Thru=0.31445éhj

Figure 2.17:GreatSPN2.0.2 canvasdter the Readers—Writers GSPN model has been solved

TOKEMS DISTRIBUTION [N PLACE Wdueue

TOFENS DISTRIBUTION IH PLACE Woueuve, mean=0, 225850 +/-2 1e-0&

0 0.42361
1 D0.38522
2 0.17183
3 0.04126
4 000352

Figure 2.18: Token distribution in plad&queue

basic color class. In the “Definition:” area, the definition of the basic color class is written using the SWN syntax
(see Appendix A): in the example the cld®ss the unordered union of two static subclasBéandP2. These

two colored subclasses have to be defined as well, following the same procedure described above for the color
class definition, i.e., by recalling and filling the areas of @reate Color Definitiorwindow for each of them

(see Figz.21). In our example, we have used two different alternatives of the SWN syntax to express the subsets
of colorsP1 andP2: the color subclasB1lis defined as the set of two elemepts p2while the color subclass

P2is a set of three elementq, c2, ¢3 Once the basic color classes has been defined, we proceed as follows:

e add color domains to places that may contain colored tokens. To modify place attributes, cliclptatéhe
icon and select from thAction menu theChangeoption; place color domaiR has to be written on the

30

E%g Raueue StartR reading EndR
<x> ’ <Xx> = <> —~ <x>
MO:m ycp
isread
<> N
think ~ ariva) <
[1 choice
Pc x> Ho<x>
nowrite
- [d(0=P2]
iswrite
<Xx>
P P
X> 1 S O =
Wqueue StartW writing EndwW

Figure 2.19: SWN model of the Readers-Writers system.

=] Create Color Definition

Marking

Figure 2.20: Create Color Definition window.

“Color label:” area of theChange Place Propertiesindow (see Fid2.8). In the model of Fig2.19 all the
places have color domains, except for placarite

e add color attributes to the corresponding input/output arcs. To modify arc attributes, press iten
(we don’t need to select again tAetion—Changeoption since it is the current action), and click on the
interested arc with the left mouse button; @ieange Arc Propertiewindow of Fig2.22pops-up. Press the
“Color” toggle to set the right area into “Color” mode and then add in the area the color function according
to the SWN syntax. In the model of Fiy19, all the arcs are characterized by the identity functirn
except for the input/output arcs of the non colored place and for the inhibitor arc connectingepldicg)

31

Figure 2.21: Definition of static subclasses.

to the transitiorStartWthat is labeled with thevhole place color domaifunction (S);

add a guard to the transitiaswrite. A way to model the constraint that only the processes belonging
to the static subclad32 are allowed to issue a writing request to the data base is to add a guard to the
transitioniswrite. To modify transition attributes, press one of thansitionicons and select the interested
transition: one of th€hange Transition Propertiagindows of Fig2.15pops-up, depending on the type of
transition, allowing to fill in the “Color Label:” area the guard according to the SWN syntax. In the model
of Fig.2.19, transitioniswrite can fire only when its input place contains a colored tokerbelonging to

the static subclad32.

Figure 2.22: Change Arc Properties window.

32

Finally, we define the colored marking paramei# of the SWN model of Fig2.19by pressing theolor
icon of theobject barand by selecting thAction—Addoption. TheChange Color Definitiorwindow pops up
again by clicking with the left mouse button on a location in ¢hevas To define a colored marking parameter
switch on the “Marking” toggle and then fill in the “Label:” and the “Definition:” areas with the name of the
parameter 10) and its definition (S PL) + (S F2)) respectively. The initial marking of the SWN model of
Fig.2.19 is then set by adding to the “Marking:” area of tdange Place Propertiewindow related to the
placethink the colored marking paramet#i0.

2.7 Analysis of the SWN Readers-Writers model

Concerning the analysis of SWN modeGreatSPN2.0.Z3upports the reachability graph generation (both or-
dinary and symbolic) with the corresponding Markovian solution, both in steady state and transient, and the
simulation: in this section we will describe how to obtain the symbolic reachability graph (SRG) of the Readers-
Writers model of FigR.19 and its corresponding Markovian solution, for a depth description of the different
analysis techniques see Chdpt.

Once the SWN model has been saved, we can compute the symbolic reachability graph by choosing from
the Swn—Symbolicsub-menu th&€€ompute RGption. In case last modifications of the current loaded model
have not been saved before launchinGraatSPN2.0.20lver a warning window will pop-up asking to the user
for saving or aborting the request. The request of computing the symbolic reachability graph of the SWN model
will cause theConsolewindow of Fig2.12to pop-up; it is then possible to obtain a verbose description of the
symbolic reachability graph by setting on the “Verbose Show” toggle oSiMN Symbolic RG Optiomgindow
(see Fig2.23 which appears after the “Start” button of t@ensolewindow has been pressed.

—| SWN Symbolic RG Options

M Verbose Show

Ok Cancel

Figure 2.23: SWN Symbolic RG Options window.

Finally, choose “OK” button of th&WN Symbolic RG Optiomgndow to launch th&reatSPN2.0.20lver.
The execution is displayed on th®nsolewindow and the results are visualized in tAReeatSPN2.0.2anvas: the
SWN model of Fig2.19is characterized by 45 Tangible Symbolic Markings (which correpond to 209 Tangible
Ordinary markings) and no deadlocks are found. Results are saved in different files: the symbolic reachability

33

graph is saved in filaetname.srgp5, transition throughputs and performance indices defined by the user are
contained instead inetname. sta file.

34

Chapter 3

GUI in depth

This chapter is a reference guide containing a detailed description of the various options provided by the Control
Panel (CP). The CP is a unified graphical interface used for model specification and analysis. It is based on the
X-windows systems and exploits the Motif libraries. The CP provides a graphical editor for Petri Net models

(both colored and uncolored), as well as a set of pull-down menus providing access to the solver modules of the
package.

= first EE

It seems the first time vou are running
the GreatSPN tool, To work properly it needs
some information to be set. The .greatspn file
is being created in vour home directory to store it
If vou desire to change the default setting please
fill in the fields below.

Default Printer |fpr

Mets Directory | $HOME/nets
Postscripts Directory |BHOME/ps
Eps Directory |$HOME/eps

OK CANCEL

Figure 3.1: The initial window that appears when the tool is invoked for the first time after the installation.

Starting GreatSPN2.0.2 After the GreatSPN2.0.package has been installed correctly (see Appendix C), to
invoke the CP, typgreatspn followed by a carriage return. WheébreatSPN2.0.Z5Ul is launched for the first
time after the installation a previous window (Fdl) pops-up in which it is asked to the user either to confirm
or to change the default settings of the followiBgeatSPN2.0.2nvironment variables:

35

GSPNDEFAULT_PRINTER, containing the name of the default printer;

GSPNNET_DIRECTORY, containing the path directory of the net description files;

GSPNPSDIRECTORY, containing the path directory of the printout of the nets in raw PostScript format;

GSPNEPSDIRECTORY, containing the path directory of the printout of the nets in EncapsulatedPostcript
format.

If the “OK” button is chosen then the settings are saved intostter/ . greatspn file and the CP window
(Fig.3.2) appears on the user’s terminal.

[5]

GreatsPH 2.0.2 : Untitled

Canvas

Scrol | bars

= St at us bar

Figure 3.2: TheGreatSPN2.0.Zontrol Panel

Control Panel Description As seen from Fi@.2, the top portion of the window contains 10 menu items, each

of them has a pull-down menu that provides several options. The menu items and their options allow to specify
and solve the current loaded Petri net model. ®bgct baris just below thanenu barand it contains 10 icons

which allow to perform operations, such as add/delete/change etc., on a specific object of the model. Petri net
models are displayed in theanvas The CP window shows only a part of the whaanvasand scrollbars

36

located on the right and on the bottom of the CP, allow to show different parts of it. Finally, on the bottom part
of the CP there is thstatus bayin which appropriate status messages and/or error messages are displayed.

3.1 The Menu Bar

To access the menus, position the cursor (which appears as an arrow) on the desired menu item. Press the left
mouse button and hold it down (which highlights the particular option chosen) to walk through the menu options.
Click (i.e., release the left mouse button) on a particular option to select it.

In the following we list and describe the possible options offered by each menu item. The nbtation
ltem—Optionis used to denote an option within a specific menu item.

3.1.1 File Menu

The File menu contains the following options:

File—New to edit a new model. The previous loaded one is discarded: if its last modifications performed have
not been saved;reatSPN2.0.prompts the user with a message asking if a save action is desired before editing
a new model.

File—Open to load a previously-saved model. A window pops up (Fig.allowing to navigate within direc-
tories selected by the filter and to choose the model to be loaded. By default, the filter is set on the user directory
defined by the environment variable GSRET_DIRECTORY.

File—Merge to merge a Petri Net model previously defined to the current loaded model. This option is not
available in the current version GfreatSPNMerging of twoGreatSPN2.0.2nodels can be performed using the
Composition module, described in detail in chapt.

File—Save to save the current model using the corresponding name. If the model i&SnestSPN2.0.2vill
ask the user to provide a name.

File—Save As... either to save the current model with a name, if the model is new, or to save it under a different
name (i.e., to make a copy of it).

File—Remove Resultsto remove all the result files created during the analysis of the current loaded model.

File—Remove All to remove all the files related to the current loaded model, included the net definition files.

37

Figure 3.3:GreatSPN2.0.2 Opediialog box.

[EditNetComment |

I 3 |

Figure 3.5: Options display
Figure 3.4: Comment editor display

File—Comment... to specify a comment which is saved as part of the net description. The window &.#ig.
pops up, allowing to edit the comment. To save the edited comment click with the left mouse button on the “OK”
button. To abort the action, click on the “Cancel” button.

File—Options... to specify the machine on which the solution programs will be executed.Optien win-
dow of Fig. 3.5 pops up; the “Hostname:” right button is labeled with the name of the machine on which
GreatSPN2.0.has been started, while in the “Hostname:” left box appears the name of the machine on which

38

GreatSPN2.0.has been launched the last time.

WARNING! The “Hostname” left box has to be updated with the name of the machine on GheettSPN2.0.2

has been launched in order to ensure theatSPN2.0.20lvers work properly: therefore simply press on the
“Hostname:” button, then the name written on the button will be automatically copied into the “Hostname:” left
box.

The “Verbose Show” option allows the user to require a verbose output during the execution of the analysis
programs.

File—Print... to print the current loaded model. This option affects only that portion of the current loaded
model that is included in the currently-defined print area, that is displayed as surrounded by a dotted line if the
View—Print Areaoption is selected. To define the print area, we have to:

1. activate theActionmenu (Fig3.7) by pressing the right mouse button on any position ofdhevasand
select theAction—Define Print Areaoption (the cursor shape will be changed into a cross);

2. click with the left mouse button over theanvaspoint corresponding to the upper-left corner of the print
area;

3. move the mouse cursor on the lower-right corner of the desired print area and click either the left or the
middle mouse button.

TheFile—Print... option causes thBrint dialog box (shown in Fig3.6) to pop up. In the window contained in

= Print

a4

]

Print

o
o
[y
w
>
o
1]

2= ®»

= “) ‘) Printer :
E E E Het Top=0.0 Left=0.0 Width=12.9 Height=7.2 (crm)

Figure 3.6:GreatSPN2.0.2 Printlialog box

the leftmost part of th€rint dialog box,GreatSPN2.0.8hows an overview of the entire working area (remember
that only a window on a portion of the working area is shown in the CP). The print area is surrounded by a thin

39

black frame, that can be adjusted (allowing the redefinition of the print area) by positioning the mouse cursor
over the lower-right corner (indicated by a small black square) and dragging it by clicking with the left mouse
button without releasing the mouse button. The six icons displayed just below the above window allow us to set:

¢ the format of the output, that can be chosen between raw PostScript (by clicking on the “PS” icon) and
Encapsulated PostScript (by clicking on the “TeX” icon);

¢ the destination of the output, that can be either a file (“Diskette” icon) or a PostScript printer (“Printer”
icon): if the EPS format is chosen then only a printout on a file is allowed;

¢ the orientation of the output, that can be either portrait or landscape (the two “A” icons).

The right part of thérint dialog box contains a window that shows the page layout (an A4 size sheet is assumed).
The placement of the print area over the sheet can be changed either by dragging the thin black rectangle or by
clicking over one of the three icons placed at the right of the window (that allow centering the picture on either
dimension). Finally, the printout with the desired options is performed by clicking with the left mouse button on
the “Print” button. If we decided to save the printout on a filgeatSPN2.0.2vill ask the user (by means of a
suitable dialog box) to enter a file name that will be placed either in the default PostScript (PS) or Encapsulated
Postscript (EPS) directory. The default PS and EPS directories are the ones specified by the environment variables
GSPNPSDIRECTORY and GSPNEPSDIRECTORY, respectively, which are located in i ¢OME/.greatspn

file.

File—Exit to terminateGreatSPN2.0.3ession. If the current loaded model has not been saved since its last
modification,GreatSPN2.0.&vill prompt a message asking the user if he/she wishes to save it.

3.1.2 Edit Menu

The Edit menu allows to graphically edit portions of the model; some of the options of the Edit menu are available
only if a portion of the model has been selected. The model portion affected by the Edit options can be selected
in the following way. First, activate thAction menu (Fig3.7) and choose théction—Selectoption. Then,
position the mouse pointer on the upper left corner of the desired area, click and hold down the middle mouse
button, move the mouse pointer on the lower right corner of the above area, and then release it by clicking with
the left mouse button. The Edit menu contains the following options:

Edit—Undo to undo the effects of the last modification performed on the layout of the model. This option is
not available when th8electaction is active.

40

Figure 3.7:Action menu options.

Edit—Add to make a copy of the objects, i.e., places, transitions and subnets, located in the selected area. The
copied objects can be dragged around following the movements of the mouse cursor and eventually placed on
the desired location by clicking the left mouse button. Arcs connecting the selected object are also copied and
the added places/transitions are renamed. Same operation can be performed by activAtidgien of the

Action menu. To terminate thAdd option, set theend Selectioroption selected either from the Edit menu or

from theAction menu.

Edit—Delete to delete all the items placed on the selected area.

Edit—End Selection to disactivate the selected area.

Edit—Move to move on thecanvasthe objects contained in the selected area. The starting and terminating
nodes of arcs are not changed.

Edit—Modify to modify the layout of currently-selected area. Allowed transformations are:
e clockwise rotation of a multiple of 45 degrees;

o flip X-axis: change the sign of the x coordinates of the selected objects obtaining a vertical mirror trans-
formation;

e flip Y-axis: change the sign of the y coordinates of the selected objects obtaining a horizontal mirror
transformation;

41

— Edit Lavers

The Whole Met Dlone

Figure 3.8: Edit layer window.

e mirror: the vertical and the horizontal lines crossing at the current mouse positiongartasrepresent
traces of two mirrors with respect to which an image copy of the selected subnet may be created by clicking
the left (or middle) mouse button.

Edit—Layers... to edit the layers of the current loaded net. Layers can be set visible or not, independently

of each other. Thi&reatSPN2.0.2eature can be effectively exploited to develop “dense” nets with numerous
crossing arcs, as in the case of places representing global states of a system that must be tested by many logically
distinct subnets. When this option is selected Huit Layerswindow of Fig3.8 pops-up, allowing to create,

destroy, rename and set visible or not layers of the net. WhereatSPN2.0.2nodel is created “The Whole

Net” layer, representing the whole model, is automatically generated and, by default, is set visible.

In order to describe how to generate layers of a current loaded model, let us consider the example of a fault-
tolerant multiprocessor system in which processors may access a common memory through a bus. The basic
fault-free behavior has been modeled by the net shown ir8 BigPlacerunning contains tokens representing
processors running on their own private memory. Transiti@mregnodels the time necessary for a processor
to issue a shared memory access request. Immediate trarsdéiteccrepresents the start of a shared memory
access using the bus. Timed transitamtessnodels the time needed to complete a shared memory access and to
release the bus. The net of Bis our starting point in the construction of a more complex model including not
only the normal system operation, but also the activities related to fault detection and recovery. This initial net
can be thought of as the first layer of the more complex model. Our first modeling step will be the definition of
two layers, which will be calledun andrepair, representing the normal operation of the system and the activities
related to reconfigurations and repairs of faulty processors, respectively. After loading our initial net description,

42

P=2 running

memreq

wait

= Startacc

access bus

access

Figure 3.9: Fault-free multiprocessor system model.

- e wiewlayers |
S Editlavers] =

Figure 3.10: Edit layer window after the newll_
added layer.

Figure 3.11: View layer window.

the first operation is to open tledit Layerswindow, by selecting th&dit—Layers...option, that appears as the

one of Fig3.8since no layers have already been added. Click on the “Add” button to activate the box located at
the left bottom of the window and write in that box the name of the new laym) (o be created. Click on the

“OK" button to confirm the previous operation: the new layen has been added to the list of the current layers

of the net, shown on the main box of the window (see3id). When we click the “View” button th&iew Layer

43

window pops-up, see Fig.11L this window allows to set a layer visible (with the associated box checked) or not
(with the associated box empty) by simply clicking on the corresponding box. In order to notify the editor that
the objects already defined in the net must belong tauhdayer, we have to perform the following operations:

e select the objects: 1) séiction— Selectoption from theAction menu (Fig3.7) 2) click with the middle
mouse button over theanvaspoint corresponding to the upper-left corner of the select area 3) move the
mouse cursor on the lower-right corner of the desired select area and 4) click either the left or the middle
mouse button;

¢ switch off the “The Whole Net” layer in th¥iew Layersnvindow (Fig3.11);
e choose thé\ction—Addoption from theAction menu (Fig3.7).

In this way the content of the selected subnet is added tauthiayer. Now we may proceed to the definition of a
new layer; click on the “Add” button of thEdit Layerwindow and define the new laympair. Note that after this
action, the newly added layer as well the “The Whole Net” layer are both switched on\Vfietidayerwindow,
while the other layers (in the current example, the laye) are all switched off. In this situation, any object
created is automatically added both to the net description and tephé layer. We can then start to add objects
in the usual way, until the net depicted in Fd.2is obtained. The subnet corresponding to this mepair

recfail \

P=2

running
recfail
memreq
repair
wait
repair
= Startacc

waitbus

mm getbus

recrep

Figure 3.12: The first two layers of the fault-tolerant system example.

layer has its particular meaning: transiticecfail represents the reconfiguration of the system needed after the
detection of a processor failure. Plaepair models the faulty processor held off-line. Transitrepair models

the time needed to repair or substitute the faulty processor. Transitwep represents the reconfiguration
needed after the repair or substitution of the faulty processor in order to put it on-line again.

44

Note that placesunning andbusshould belong to bothepair andrun layers. We can include them in the
new layerepair by selecting them, switching off the “The Whole Net” layer, and by choosind\tten—Add
option from theAction menu. Unfortunately, as shown in R3gL3 this operation has included intepair layer
not only the two places, but also the two arcs connected to them. These arcs can be removed from the layer by:

e choosing théAction—Deleteoption from theAction menu (Fig3.7),
e activating thearc icon from theobject bar

e picking the arcs in excess with the left button of the mouse.

= GreatsPN 2.0.2 : fdocsry/bernardi/nets/models/fault-mult -]

Figure 3.13: Inclusion of places ‘running’ and ‘bus’ into ‘repair’ layer.

Similarly, we should define two more layers as depicted inFig} representing the failure detection and
the priority given to recovery procedures over normal operation, respectively.

Fig.3.15shows the appearance of the complete net with all the layers switched on. Compare the level of
readability of this last figure, with that of the sequence of the four layers shown separately. Note also that the

last two layers are not easily recognized as ‘proper’ subnets, and would not be easily managed by tools based on
hierarchical decomposition concepts.

45

zeizebus

failoun zeizebus

\L seizebus

recfail
startace

recfail

apgess bus

O waltbus

O Tecrep

(A (B)

Figure 3.14: The *fail’ (A) and the ‘priority’ (B) layers.

failrun seizebus

Figure 3.15: The complete net with all the layers switched on.

In fact, different layers can be associated with different hierarchical views of the system, but in general the
use of layers is not limited to hierarchy; they can be used to partition a complex ‘flat’ model just in ‘slices’ among
which no hierarchy is defined, as in our example.

46

3.1.3 View Menu

This menu allows to set several options concerning the graphical display of the current loaded Petri net model.
Options remain set until they are deactivated. The View menu contains the following options:

View—Spline to display arcs with splines. Splines are slower to draw, but often result in nets easier to under-
stand.

View—Tag to show/hide the names of the net objects.

View—Rate to show/hide the transition rates.

View—Overview to show/hide net overview.

View—Find... this option is not available in the current version of the package.

View—Print Area to show/hide the print area. When tiiew—Print Areaoption is set the current print area

is surrounded by a thin broken frame. To change print area definition, choogetiba—Define Print Area

from theAction menu (Fig3.7), the cursor shape will be changed into a cross; click with the left mouse button
over thecanvasgpoint corresponding to the upper-left corner of the desired print area; move the mouse cursor on
the lower-right corner of the desired print area and click either the left or the middle mouse button.

View—Layers... to pop-up theéView Layerdialog box (Fig3.11): the layers of the loaded net are listed in the

left box; each layer can be set visible (the associated check-box checked) or not visible (the associated check-box
empty) by clicking on its corresponding check-box. To closeMlesv Layerdialog box click on the “Done”

button; to set visible all the defined layers click on the “Select All” button; to set not visible all the defined layers
click on the “Unselect All” button. The “Edit” button located on the bottom-right of the dialog box allows to
pop-up theEdit Layerwindow (see Fid3.8).

3.1.4 Grid Menu

The Grid menu allows to set grid in tleanvasin order to simplify a regular layout of the net. The size of the

gap between points in the grid ranges from one pixel to 50 pixels (the default gap size is one pixel which mean
the “None” option is set). When a grid is set, objects are added and moved in the nearest point of the grid with
respect to the mouse cursor position.

47

3.1.5 Zoom Menu

The Zoom menu allows to show the objects of the current loaded net at five different "zoom” levels, by selecting
the proper zooming factofl.(3/2, 2, 1/2, 3/9. “Zoom” operation causes the resizing of all the objects contained

in the canvasduring aGreatSPN2.0.3ession, however it doesn't affect the actual dimension of the objects of
the net. The default zoom factor of the editor is 1.

3.1.6 Rescale Menu

Net coordinates of the current net can be rescaled by selecting the Rescale menu which contains sixteen different
rescale factors ranging fro@5to 2. Choosing one of the rescaling factors, the coordinates of all the objects
contained in theanvasare multiplied by that coefficient.

WARNING! Rescaling is completely different from zooming the net: “zoom” operation affects only the editor
view of the net while “rescale” operation affects the actual coordinates of the objects of the net.

The following three subsections give a short explanation of3B&N of the SWN and of theE-GSPN menus
respectively; a depth description of tBeeatSPN2.0.2o0lvers is given in Chaptl.

The choice of launching either a structur@PN— Structsubmenu) or a numerical analyz&$PN— Solve
submenu) for GSPN models, as well as the choice of carrying out either a numerical analysis or a simulation run
on a SWN model $WN menu) - or on a E-GSPN modeE{GSPN menu) - causes th€onsolewindow of
Fig.3.16to pop-up: to launch the corresponding execution module press the “Start” button. When a solution
module is launched, then the “Interrupt” button becomes active: press it to interrupt the execution of the current
solution module.

WARNING! In some cases, the “Interrupt” action actually does not kill the launched process but only some
sub-processes originated by the former: then it is better to check from a terminal if the process is still alive or
not.

When the “Clear” button is pressed then a previous computed solution is removed. Finally the “OK” button
allows to close th&€onsolewindow.

3.1.7 GSPN Menu

The GSPN menu contains the options that allows to laeatSPN2.0.30lvers for GSPN models.

GSPN-—Struct to compute the structural properties of the current loaded GSPN model. It pops-up a sub-menu
which contains in turns the following options:

e P-invariants: to compute the minimal-support non-negative place invariants;

48

=] Console

Figure 3.16:GreatSPN2.0.Zonsole

e T-invariants: to compute the minimal support transition invariants;

e Minimal deadlocks: to compute the minimal deadlocks, i.e., the sets of places that once emptied cannot
be marked anymore;

e Minimal traps : to compute the minimal traps, i.e., the sets of places that once marked cannot loose tokens

anymore;

e ECS Confusion ME SC CC to compute the ECS, Extended Conflict Sets of immediate transitions, Con-
fusion between transitions (non free-choice conflicts), ME, structural and marking Mutual Exclusion be-
tween transitions, SC, Structural Conflicts between non-mutually exclusive transitions, and CC, structural
Causal Connection between transitions.

e Structural boundedness to verify the structural boundedness and, in case of unbounded nets, to compute
the transition sequences that can arbitrarily increase the marking of some place.

The computation of the above structural properties requires that the net description is saved on a file.

GSPN—Solve to carry out analysis of the current loaded GSPN model, in particular:
e Compute TRG: to generate the Tangible Reachability Graph;
e Compute EMC: to compute the Embedded Markov Chain, that is the CTMC associated to the TRG;

e GSPN solution to compute the CTMC solution, i.e., the probability distribution of the number of tokens
in each place and the performance results. GSPN solution can be obtained btahdystate and in
transientstate.

49

In case of transient solution request, when the “Start” button o€tbresolewindow (Fig3.16) is pressed,
the Inputwindow of Fig3.17appears. The value (positive real) of the time instant at which the transient
solution will be computed has to be inserted in the correspondingraogient time ...

= Input

transient time (+ to increment previous value)

It

OK Cancel

Figure 3.17:GreatSPN2.0.2nput window

GSPN-—Simulation... to play the interactive token-game and to launch the interactive simulation. When this
option is chosen th8imulationwindow pops-up (Fig.18 and all the transitions of the current loaded model
that are enabled in the initial marking become blinking.
Token game.To simulate a possible behavior of the current loaded GSPN model simply click with the leftmost
button of the mouse over the enabled (i.e. blinking) transition you want to fire it. By default the “Untimed” and
the “Forward” options of th&imulationwindow are set to play the forward token game: it is possible to play the
backward token game by setting the “Untimed” and “Backward” options irsilrulationdialog box.

“Moves” area allows to set the slowness of the token flow from the input places of the firing transition to its
output places: higher is the value filled in this area slower is the token flow.

=| Simulation

" Untimed| _J Timed Interactiuelaone

(" _Forward|) Backward| paouaclt

Figure 3.18:GreatSPN2.0.&imulation window

Simulation. To activate the interactive simulation of the current loaded GSPN model set the “Timed Interactive”
option: when this option is set, then the “Step”, “Fire”, “Auto”, “Set time”, “Stop” and “Breakpoint” buttons
become available. To simulate the behavior step-by-step press the “Step” button: the area located below this

50

button allows to set the number of automatic firings, e.qg., if you fill in the value 2, then two successive firings are
displayed. Press the “Auto” button to start the simulation run: the firing sequences are displayed in the canvas
automatically until an interruption command is given by the user. To interrupt the execution press the “Stop”
button, the transition throughputs computed up to the interruption (transient results) are visualized in the canvas
and they are saved in thetname. sta file. To restart the simulation from the interrupted point press the “Auto”
button again. To terminate the simulation execution press the “Stop” button first, and then the “Done” button.

WARNING! The interactive simulation does not work properly on some GSPN models: to use simulation tech-
niques on a GSPN model in order to obtain performance results is better to use the simulation solvers available
from theE-GSPNmenu.

3.1.8 SWN Menu

The SWN menu contains the following options:

SWN—Symbolic to compute solution of SWN models. In particular:
e Simulation: to launch the simulation for colored models using an abstract representation of markings, i.e.,

symbolic markings;

e Compute RG: to compute the Symbolic Reachability Graph of the model and to obtain performance
indices in steady state;

e Transient: to compute the Symbolic Reachability Graph of the model and to obtain performance indices
in transient state.

SWN—Ordinary

e Simulation: to launch the simulator for colored models using ordinary markings;

e Compute RG: to compute the Reachability Graph of the model and to obtain performance indices in steady
state;

e Transient: to compute the Reachability Graph of the model and to obtain performance indices in transient
State.

SWN Reachability Graph computation The launch of a Reachability Graph solver - either symbolic or ordi-
nary - is carried out by pressing the “Start” button of @ensolewindow (Fig.3.16) and it causes RG Options
window (see Fig3.19 to appear. It is possible to obtain a verbose description of the symbolic (or ordinary)
reachability graph by setting on the “Verbose Show” toggle of this window an by choosing the “OK” button. The
execution is displayed on thgonsolewindow and the results are visualized in BeeatSPN2.0.2anvas.

51

—| SwH Symbolic RG Options

W erbose Show

Dk Cancel

Figure 3.19: SWN Reachability Graph Options window.

SWN simulation The launch of a SWN simulation - either symbolic or ordinary - is carried out by pressing the
“Start” button of theConsolewindow (Fig.3.16 and it causes &imulation Optionsvindow (see Fig3.19 to
appear. Through this window, the user can modify the default values of the simulation parameters, in particular:

¢ “Initial Transitory”: the length of initial transitory period that has not to be taken into account for the
computation of the performance measures;

e “Batch Spacing”: the length of evolution phase between batches that has to be discarted;
e “Minimum Batch Length”: the dimension of the minimum batch;

e “Maximum Batch Length”: the dimension of the maximum batch;

e “Seed”: the seed of the random number generator;

e “Accuracy”: the precision of the approximation in the parameters estimation;

e “Confidence Level”: the confidence level in the parameters estimation.

All these parameters, except for the confidence level, can be modified by typing directly in the corresponding
area of theSimulation Optionsvindow. The “Confidence Level” can be changed instead by choosing the desired
value from the pull-down menu that pops up when the corresponding toggle is clicked. To obtain a verbose
description of the simulation results set the “Verbose Show” toggle of this window.

Click on the “OK” button to confirm the settings: the simulation execution is displayed o dmsole
window and the results are visualized in tBeeatSPN2.0.2anvas.

SWN transient The launch of a SWN transient solver - either symbolic or ordinary - is carried out by pressing
the “Start” button of theConsolewindow (Fig.3.16 and it causes thmput window of Fig.3.17) to appear. As

is the case of GSPN transient solutions, tifa@sient time..area of this window has to be filled in with the value
(positive real) of the time instant at which the SWN transient solution will be computed.

52

~| Swh Ordinary Simulation Options

Initial Transitory EBatch Spacing
‘ﬁnun 00D

Minimum Batch LenMaximum Eatch Leng
‘ﬁnun 00D

Seed Accuracy
‘31415 |35

Confidence 35 - | W verbose Show
Leval

Ok Cancel

Figure 3.20: SWN Simulation Options window.

3.1.9 E-GSPN Menu

The E-GSPN menu concerns the Extended-GSPN models, that is GSPN models in which firing times of timed
transitions can have more general distributions than the negative exponentidt-G88N menu contains the
following options:

E-GSPN—Simulation to launch the simulation;

E-GSPN—Compute RG to compute the Reachability Graph of the model and to obtain the performance indices
in steady state;

E-GSPN—Transient to compute the Reachability Graph of the model and to obtain performance indices in
transient state.

All the solvers launched from thEe-GSPN menu come from the same source files used for producing the
SWN solvers and they have the same functionalities of the latters.
WARNING! Note that the solvers lauched from theGSPN menu work also if the filmetname.disused for
the general temporal specifications of the timed transitions, has not been created (or it is not located in the same
directory where the net definition files of the current model are saved).

3.1.10 Help Menu

The Help menu, located on the right of threenu bar contains the following options:

53

Help—Mouse Help to display information about the use of the mouse buttondyiinese Helpvindow pos-up
(Fig.3.21) describing the current functions of the mouse buttons. To removeltluse Helpvindow, deactivate
the Help—MouseHelpption.

Mouse Help |

TRAG transitions |
FICK trans, for hordvert LINE—U*
l‘{nCTIDNS |

Il

[=]

Figure 3.21: Mouse help window.

Help—About when this option is chosen a window displaying the current releagseredSPNpops-up: to
remove the window, click on the “OK” button.

3.2 The Object bar

Theobject bar located just below thenenu baron theGreatSPN2.0.Zontrol Panel (see Fig.2), contains 10
icons which allow to perform operations - add/delete/change... - on a specific object of the PN model. To execute
an operation on a specific object:

e activate theAction menu (see Fig3.7) by pressing the right mouse button on any position incievas

e click with the left mouse button over the desired action: the selected action is displayedstattisebar
of the CP and it becomes the default action until a new one is chosen;

e select the object type by clicking on the corresponding icon button adltjext bar the default action will
affect only the objects of the type currently selected.

Depending on the type of action activated and of the type of selected object, different windows will pop-up; in
the following, going from the left to the right, each icon of thlgect baris described, together with the possible
actions that can be carried out on the corresponding object type.

3.2.1 Places

It is the first icon of theobject barand it is depicted as a circle.

Add: add a new placeperation causes the shape of the mouse cursor to change into a circle: to locate the new
place in thecanvas move the mouse cursor and click the left mouse button in the desired position.

54

~| Change Place Properties

Tag: Color Label ;
[

Marking :
E:

ok Cancel

Figure 3.22: Dialog box for changing place properties.

Change: change place propertiagperation causes the dialog box of Fig22to pop-up.

This dialog box is characterized by the “Tag:” area, that contains the name of the place, the “Color Label:”
area, that contains the color domain definition in case of colored places (SWN models) and the “Marking:”
area, that contains either a non negative number or a marking parameter which indicates the initial marking
of the place. To change one of the above mentioned place properties (either place name or color domain
or initial marking), click with the left (middle) mouse button over the corresponding area @tihage

Place Propertieslialog box in order to activate it and write the proper definition.

Renaming of places via GUI is subject to the constraint that places of a model must to have distincts tags
(i.e., names); the attempt of renaming a place with an existing tag (i.e., with a string corresponding to the

name of another place of the current model) provokes an error message window to pop-up. This constraint
has been introduced to avoid problems in the computation of performance results, in particular performance
indices that are functions of the places with the same name. However, if the modeler wants to define places
with the same tag, then he/she has to modify directly the net definition file of the model.

WARNING! The assignment of an undefined initial marking parameter to a place provokes an error
message window to pop-up. This type of control is not carried out for the color domain definition: be
careful then to assign a correct color domain to a place, i.e., both by following the SWN grammar (see
TableA.1 of Appendix A) and by defining basic color classes before.

Select: select a placeperation allows to select a specific place of the current loaded model by clicking over
the place with the left mouse button; this action causes a broken rectangle to surround the place. Selection
operation is normally used along with other operations, e.g., withAtteeaction to make a copy of the
place together with its input and output sets. To resetSblectoperation, choose in thaction menu
the End Selectioroption (the broken rectangle that surrounds the selected area, in this case a place, will
disappear).

Move: move a placeperation causes the shape of the mouse cursor to change into a cross; to move a place

55

simply click with the left mouse button over the place to be moved, move the mouse cursor to choose the
desired location in theanvago put the place and click again to fix the place in the desired location.

Delete: delete a placmperation allows to delete a place present indaevas to delete an existing place click
over the place to be removed with the left mouse button.

Show: show a placeoperation allows to visualize place properties; to choose the property of a place to be
displayed click with the right mouse button over the place to pop-ugPthee Propertymenu and then
click with the left mouse button over the corresponding option to set the desired propertyPladee
Propertymenu contains the following options:

P-invariants To display P-invariants the place belongs to: all the places belonging to the same P-invariant
start blinking and e&Showmenu pops-up in which the algebraic expression of the current P-invariant is
visualized (this expression is also visualized ondtegus bay.

Minimal deadlocks To display minimal deadlocks the place belongs to: all the places belonging to the
same minimal deadlock start blinking ané&howmenu pops-up in which the algebraic expression of the
current minimal deadlock is visualized (this expression is also visualized @tates bay.

Minimal traps to display minimal traps the place belongs to: all the places belonging to the same mini-
mal trap start blinking and 8howmenu pops-up in which the algebraic expression of the current minimal
trap is visualized (this expression is also visualized orsth&us bay.

WARNING! To visualize the above properties, i.e., P-invariants, minimal deadlocks and minimal traps it

is necessary to launch the corresponding structural solvers before, by choosing the related options on the
GSPN-—Structsubmenu, otherwise a window will pop-up displaying a warning message of 8qrey,

no up-to-date place invariants (or deadlocks or traps) available

Implicit places To display pairs of implicit places : the couple of implicit places start blinking and a
Showmenu pops-up in which the implication is visualized (it is also visualized osttites ba).

Absolute Marking Bounds To display the structural bounds on the number of tokens in a place. To
compute the upper bound click with the left mouse button over the place, while to compute the lower
bound click with the left-right (or middle) mouse buttons; bounds are visualized both &nhtvavindow

which pops-up and on ttetatus bar In case of unboundedness, a message will be displayed.

56

Average Marking Bounds To display the bounds for the steady state mean of a place. Bounds are
obtained from the net structure, the initial marking and the transition rates by solving a linear programming
problem. To compute the upper bound click with the left mouse button over the place, while to compute the
lower bound click with the left-right (or middle) mouse buttons; bounds are visualized both &htve
window which pops-up and on tieatus bar In case of unboundedness, a message will be displayed.

WARNING! Absolute and average marking bounds can be computed only ifsthe1ve packageld],
used for solving linear programming problems, has been installed an@rd@SPN2.0.2nvironment
variable GSPN2LPSOLVE has been set with the path-name of the executable.

End Show To reset the&showoption.

3.2.2 Transitions

There are three icons corresponding to a transition objecttMiMe icon, depicted as a thin black bar, tBXP

icon, depicted as a thick white bar, and BET icon, depicted as a thick black bar. These icons correspond,
respectively, to an immediate transition object, an exponentially distributed timed transition object and a deter-
ministic distributed timed transition object.

Add: add a transitioroperation causes the shape of the mouse cursor to change into the corresponding transition
icon -IMM, EXPor DET - depending on the type of transition selected. To locate the new transition in the
canvas move the mouse cursor and click the left mouse button in the desired position.

Change: change a transition propertiegperation causes a dialog box to pop-up.

Timed transitions.

The dialog box in this case is the one of Fig23A) in which theEXPicon, located on the top of the win-

dow, is pressed. In cagET icon is pressed, i.e., it is tiéhange Transition Propertiger a deterministic
transition, the bottom part of the dialog box, which concerns the type of server semantics to be set, is not
present. The common areas of the dialog box for exponentially distributed transitions and for deterministic
distributed transitions are the followings:

- “Tag:” it contains the name of the transition. By default, names of timed transitions are offype
where# is a number given in progressive order with respect to the transition creation.

- “Color Label:” it contains the guard definition of the transition (SWN models). No syntactical control
is carried out for the guard of its definition.

- “Rate or Rate Parameter:” for exponentially distributed transitions, it contains either the value of
the rate or the name of a rate parameter. In the latter case the rate parameter has to be previously

57

j Change Transition Properties

j Change Transition Properties

(A (B)
Figure 3.23: Windows for defining/changing properties of timed (A) and immediate (B) transitions.

defined, otherwise an error message will be displayed. For deterministic distributed transitions, values
assigned in this area are considered as delays. By default, the rate (delay) value assi@ned is 1

WARNING! In case of timed transition, a zero value as transition rate is accepted even though this
assignment will cause a segmentation fault when launching the solutions. Transition rates assigned from
GUI, are stored in the net definition file with at most six decimal digits, i.e., if you assign a value lower
than 1(E — 6 to a transition rate then the value will be truncated at thel€cimal digit in the. net file.

To change one of the above mentioned transition properties (either transition name or guard or rate), click
with the left (middle) mouse button over the corresponding area dti@nge Transition Propertiedialog
box in order to activate it and write the proper definition.

For exponentially distributed transitionSyeatSPN2.0.2llows the user to define different server seman-
tics. Letu(M) be the marking dependent parameter of the negative exponential distriButiomd) =

Pr{X < x} = 1— e HMX associated to a timed transitionand letED(t,M) be the enabling degree of

t in marking M, then depending on the semantics adopted for the timed transition, a different marking
dependent firing ratg(M) is assigned.

Infinite Every enabling set of tokens is processed as soon as it forms in the input places of the transition. Its
corresponding firing delay is generated at this time, and the timers associated with all these enabling
sets run down to zero concurrently. Multiple enabling sets of tokens are thus processed in parallel.

58

The firing rate ot is given by the functiomu(M) = ED(t,M)y, wherep is the value set in the “Rate
or Rate Parameter:” area of tdange Transition Propertiesindow. This semantics is the default
option, i.e., the “Infinite” toggle of th€hange Transition Propertiedialog box is switched on.

Marking Dependent Firing rate oft is function of the marking of a subset of places of the net; this subset
of places is not necessary equal to the set of input and inhibitor places of the transition. To choose this
option, click with the left (left-right) mouse button over the “Marking Dependent” toggle to switch
it on and to define the functiom(M) in the “Marking Dependent Definition” area, follow the syntax
given in TableA.3 of Appendix A. It is possible to display the grammar on line by clicking over the
“MD Grammar Help ...” button.

K-Server In case of single server semantics, il€.= 1, random firing delay is set when the transition
becomes first enabled, new delays are generated upon transition firing if the transition is still enabled
in the new marking. This means that enabling sets of tokens are processed serially and that the
temporal specification associated with the transition is independent of the enabling degree, i.e., the
firing rate of transitiort is given by the (constant) functiomM) =y, wherep is the value set in
the “Rate or Rate Parameter:” area of @lgange Transition Propertiesindow. In case of multiple
server semantics, i.&K € {2,...,127}, enabling sets of tokens are processed as soon as they form in
the input places of the transition up to the maximum degree of parall&lisikor larger values of the
enabling degree, the timers associated with new enabling sets of tokens are set only when the number
of concurrently running timers decreases below the vElIu&he firing rate of transitiohis given by
the functionpu(M) = min(ED(t,M), K)p. To choose this option, click with the left (left-right) mouse
button over the “1-Server” toggle to switch it on: the scrollbar located at the bottom left of the dialog
box becomes active. In case of K-Servers semantics, Kvithl move the scrollbar by keeping the
mouse button pressed to fix the desired valuekforThe “1-Server” toggle will be changed into
“K-Server” toggle automatically when the mouse button will be released.

Load Dependent Firing rate oft is a function, given in tabular form, of its enabling degig®/) =
f(ED(t,M)). This semantics is a particular case of marking dependent semantics in which the firing
rate oft whenED(t,M) = K corresponds to the the throughput of a short-circuited queueing network
in which exactlyK jobs are circulating in it (i.et, represents the load-dependent equivalent server).

To choose the load dependent server semantics switch on the “Load Dependent” toggle to activate
the scrollbar, then move the scrollbar by keeping the mouse button pressed to fix the desired value
MAX (it corresponds to the maximum population of the short-circuited queueing network). When
the mouse button is releasdd AX lines are added in the area located above the scrollbar and they

appear as follows:

Rate —-> 1.000000

59

2 -=>1.000000
3 -=> 1.000000

MAX --> 1.000000

Each line is of typgt -—> ratevalue, apart from the first one in which the stringte replaces the
numberl, whereratevalue corresponds to the value assigned to the firing rate when the enabling
degree of the transition is equal#oBy default, all theratevalue are equal to D00000. To change

one of theratevalue, click with the left mouse button over the corresponding line: automatically,
theratevalue appears on the “Rate or Rate Parameter (Weight)” area. Type the desired value and
then pressrReturn> command: the new value for thetevalue will be set and the corresponding

line in the area above the scrollbar will be updated.

Immediate transitions.

The dialog box in this case is the one of F&323B) in which thelIMM icon, located on the top of the
window, is pressed. It is characterized by the following areas:

- “Tag:” it contains the name of the transition. By default, names of immediate transitions are of type
t#, where# is a number given in progressive order with respect to the transition creation.

- “Color Label:" it contains the guard definition of the transition (SWN models). No syntactical control
is carried out for the guard at the moment of its definition.

- “Weight.” it contains the weight of the transition. By default the weight value assignedis 1
Admissible values are non-negative real numbers, in case of conflict among different immediate
transitions a normalization of the weight is performed when the solution are launched.

To change one of the above mentioned transition properties (either transition name or guard or weight),
click with the left (middle) mouse button over the corresponding area dfti@nge Transition Properties
dialog box in order to activate it and write the proper definition.

Finally, on the bottom-left part of th€hange Transition Propertiedialog box, there is a scrollbar that
allows to assign a priority level to the transition. By default, the priority level is one; the admissible
priority levels range from 1 to 126. To change the priority level of the current immediate transition, simply
click with the mouse button over the scrollbar and move it by keeping the mouse button pressed until you
find the desired value.

WARNING! Renaming of transitions via GUI is subject to the constraint that transitions of a model must
to have distincts tags (i.e., names); the attempt of renaming a transition with an existing tag (i.e., with a
string corresponding to the name of another transition of the same type) provokes an error message window

60

to pop-up. This constraint has been introduced to avoid problems in the computation of performance
results, in particular performance indices that are functions of the transitions with the same name. However,
if the modeler wants to define transitions with the same tag, then he/she has to modify directly the net
definition file of the model.

Select: select a transitioroperation allows to select a specific transition of the current loaded model by clicking
over the transition with the left mouse button; this action causes a broken rectangle to surround the transi-
tion. Selection operation is normally used along with other operations, e.g., witkdidhaction to make
a copy of the transition together with its input and output sets. To res&eteeperation, choose in the
Action menu theEnd Selectiomption (the broken rectangle that surrounds the selected area, in this case a
transition, will disappear).

Move: move a transitioroperation causes the shape of the mouse cursor to change into a cross; to move a
transition simply click with the left mouse button over the transition to be moved, move the mouse cursor
to choose the desired location in tb@nvasto put the transition and click again to fix the transition in the
desired location.

Delete: delete a transitioroperation allows to delete a transition present in¢havas to delete an existing
transition click over the transition to be removed with the left mouse button.

Rotate: rotate a transitionoperation causes the shape of the mouse cursor to change into a transition icon
(eitherIMM or EXP or DET icon depending on which transition icon is set on digect balj; to rotate a
transition click over the transition with the left mouse button: each “click” of the mouse button will rotate
the transition clockwise of a multiple of 45 degrees.

Show: show a transitioroperation allows to visualize transition properties; to choose the property of a transition
to be displayed click with the right mouse button over the transition to pop-uprtesition Property
menu and then click with the left mouse button over the corresponding option to set the desired property.
TheTransition Propertymenu contains the following options:

T-invariants To display T-invariants the transition belongs to: all the transitions belonging to the same
T-invariant start blinking and &howmenu pops-up in which the algebraic expression of the current T-
invariant is visualized (this expression is also visualized orstais bay.

ECS To display the Extended Conflict Sets (ECS) of the set of immediate transitions: all the immediate
transitions belonging to the same ECS start blinking ar8hawmenu pops-up in which the algebraic
expression of the current ECS is visualized (this expression is also visualized statileba).

61

WARNING! Since the ECSs are computed only on the subset of immediate transitions, then to visualize
them it is necessary that tH®M icon of theobject baris set. Otherwise, if another transition icon
(eitherEXP of DET) is set, theshow EC®peration causes a warning message to pop-up“tetry, NO
Ext.Conflict Sets is computed for timed transitionalthough the request has been carried out by clicking

on a specific immediate transition.

ME To display the pairs of transitions that are structurally mutually exclusive.

SC To display the pair of transitions that are in structural conflict relation.

CC To display the pair of transitions that are in causal connection relation.

Unbounded Sequences To display the firing sequences of transition that add tokens to an unbounded
place. Click over the unbounded place, the place and the unbounded firing sequence start blinking alter-
nately and the algebraic expression of the firing sequence is displayed3halsvindow that pops-up; to
visualize all the unbounded firing sequences, click repeatedly over the same unbounded place, each click
of the mouse allows, in turn, to show a unbounded firing sequence.

WARNING! To visualize the above properties, i.e., T-invariants, ECS, ME, SC, CC, and Unbounded
Sequences it is necessary to launch the corresponding structural solvers before, by choosing the related
options on th&SPN— Structsubmenu, otherwise a window will pop-up displaying a warning message of
type: “Sorry, no up-to-date transition invariants (or conflict sets or ...) available”

Actual liveness Bounds To display the actual liveness bounds of a transition.

LP liveness Bounds To display the liveness bounds of a transition.

LP throughput Bounds To display the bounds for the steady state throughput of a transition. Bounds are
obtained from the net structure, the initial marking and the transition rates by solving a linear programming
problem. To compute the upper bound click with the left mouse button over the transition, while to compute
the lower bound click with the left-right (or middle) mouse buttons; bounds are visualized bothSinahe
window which pops-up and on tieatus bar In case of unboundedness, a message will be displayed.

End Show To reset the&showoption.

62

3.2.3 Arcs

It is the fifth icon of theobject barand it is depicted as an arrow.

Add: add an arcoperation causes the shape of the mouse cursor to change into an arrow: to connect a place
(transition) to a transition (place) click with the left mouse button over the place (transition) first, and then
click over the transition (place) with the left mouse button. To add an inhibitor arc click with the middle
mouse button over the inhibitor place (inhibited transition) first and them click over the inhibited transition
(inhibitor place) with the left mouse button.

WARNING! Since, by definition of PNs, it is not possible to have an arc connecting two objects of the
same typeGreatSPN2.0.2loes not allow to connect either two transitions or two places with an arc. In
case, you have clicked on the first object and then you realize that this was not you intended to do, it is
better to continue and to terminate théd arcoperation and then to delete the just added wrong arc than

to suspend the operation by activating another action since a suspended arc provokes a segmentation fault.

Change: change an armperation causes the dialog box of Big@4to pop-up. The upper part of the dialog

Change Arc Properties

4||74|

Caolor .
_| Broken &rc

W Color |<X>I

Flace : Rqueue

Transition: isread

Ok Cancel

Figure 3.24: Change Arc Properties window.

box contains three icons. Always, only one of them is active and it indicates the current type of arc; in
particular, going from the left to the right, the first icon represents an input arc, the second represents an
output arc and the third one represents an inhibitor arc with respect to the transition. The tags of the place
and of the transition connected with the arc are displayed in the bottom part of the dialog box. For example,
the dialog box of Fig3.24displays the properties of the output arc which connects trans#ieadto the
placeRqueue Below the three icons, there are two toggles: the “Broken Arc” toggle and the “Color”
toggle.

63

e “Broken Arc”. when it is not set, i.e., the corresponding rectangle is white, then the arc is fully
displayed in thecanvas when it is set, i.e., the corresponding rectangle is black, then the arc is
partially displayed in theanvasthis means that only the ending parts of the broken line representing
the arc are displayed.

WARNING! To draw a broken arc it is necessary to break the line representing the arc with at least
two intermediate points first, then to set the “Broken Arc” toggle.

e “Color”: it is related with the area located on the right of the toggle. When it is not set, i.e., the cor-
responding rectangle is white, then the “Multiplicity” area contains the multiplicity value associated
to the arc. When it is set (in case of SWN models), i.e., the corresponding rectangle is black, then the
“Color:” area contains the arc function associated to the arc. Arc function definitions are given in the
SWN definition grammar of Tablé.1 of Appendix A.

By default, the two toggles described above are not set and the arc multiplicity is equal to one.

Move: move an aroperation allows to draw the arc as a broken line by adding some intermediate points. To
add an intermediate point just click with the left mouse button over the arc and move the mouse cursor in
thecanvagto choose the point as intermediate one, then fix the point by clicking again with the left mouse
button. To change the source (destination) of an arc, click with the middle mouse button over the source
(destination) object and then click with the left mouse button over the new source (destination) object.

Delete: delete an armperation allows to delete an arc present indaevasto delete an existing arc click over
the arc to be removed with the left mouse button.

3.2.4 Marking parameters
It is the sixth icon of thebject barand it is depicted as a token.

Add: add a marking parametasperation is used to create a new marking parameter that will be used as initial
marking of the GSPN system when solutions are launched. When this action is active, the shape of the
mouse cursor is an arrow, click on a free location ofdarvado fix the position of the marking parameter
that is going to be defined: this action causes the dialog box o8Ei§to pop-up.

The dialog box is characterized by two areas: the “Label:” area, that has to be filled with the name of the
marking parameter, and the “Marking:” area, that has to be filled with a non negative integer. To fill in the
areas of th€Create Marking Parametettialog box click over the corresponding areas to activate them and
then type the related name or value. Finally, either click over the “OK” button to confirm the settings or
click over the “Cancel” button to do not confirm.

The attempt to insert a negative value in the “Marking:” area causes a warning message to be displayed.
The name of the marking parameter has to be unigue in the current loaded model.

64

~| Create Marking Parameter

Label :
&

Marking :
Ei

Ok Cance|

Figure 3.25: Create Marking Parameter dialog box.

Change: change a marking parameteallows to change specification of an existing marking parameter. To
change the specifications of an existing marking parameter click over the marking parameter located some-
where in thecanvas this action causes a dialog box similar to the one of Big5to pop-up.

To change the values in the areas of@mange Marking Parametelialog box click over the corresponding
areas to activate them and then overwrite the old values with the new ones. Finally, either click over the
“OK” button to confirm the changes or click over the “Cancel” button to keep the old settings.

Select: select a marking parameteperation allows to select a specific marking parameter of the current loaded
model by clicking over the marking parameter with the left mouse button; this action causes a broken rect-
angle to replace the marking parameter. Selection operation is normally used along with other operations,
e.g., with theMoveaction to move the marking parameter in a different location ottdrevas To reset the
Selectoperation, choose in th&ction menu theEnd Selectioroption (the broken rectangle that replaces

the selected marking parameter, will disappear).

Move: move a marking parametaperation causes the shape of the mouse cursor to change into an arrow;
to move a marking parameter simply click with the left mouse button over the marking parameter to be
moved, move the mouse cursor to choose the desired location ¢ativasto put the marking parameter
and click again to fix the marking parameter in the desired location.

Delete: delete a marking parameteperation allows to delete a marking parameter present icdheas to
delete an existing marking parameter click over the marking parameter to be removed with the left mouse

button.

LActually, the dialog box differs only for the title that in case of change acti@hange Marking Parameter

65

3.2.5 Rate parameters

It is the seventh icon of thebject barand it is depicted with a clock and a transition.

Add: add a rate parameteoperation is used to create a new rate parameter that will be used in the temporal
specifications of one or more timed transitions of the GSPN system. When this action is active, the shape of
the mouse cursor is an arrow, click on a free location ofcdm®/ago fix the position of the rate parameter
that is going to be defined: this action causes a dialog box similar to the one of 6t Figo pop-up.

The dialog box is characterized by two areas: the “Label:” area, that has to be filled with the name of the
rate parameter, and the “Rate:” area, that has to be filled with a non negative integer. To fill in the areas
of the Create Rate Parametelialog box click over the corresponding areas to activate them and then type
the related name or value. Finally, either click over the “OK” button to confirm the settings or click over
the “Cancel” button to do not confirm.

The attempt to insert a negative value in the “Rate:” area causes a warning message to be displayed. The
name of the rate parameter has to be unique in the current loaded model.

Change: change a rate parametelows to change specification of an existing rate parameter. To change the
specifications of an existing rate parameter click over the rate parameter located somewheranudbe
this action causes the dialog box of F&j26to pop-up.

—-| Change Rate Parameter
Label :
|Err
Rate:
| 2.0
Ok Cancel

Figure 3.26: Change Rate Parameter dialog box.

To change the values in the areas of @feange Rate Parameteliialog box click over the corresponding
areas to activate them and then overwrite the old values with the new ones. Finally, either click over the
“OK” button to confirm the changes or click over the “Cancel” button to keep the old settings.

Select: select a rate parametaperation allows to select a specific rate parameter of the current loaded model
by clicking over the rate parameter with the left mouse button; this action causes a broken rectangle to

2Actually, the dialog box differs only for the title that in case of create actidiréste Rate Parameter

66

replace the rate parameter. Selection operation is normally used along with other operations, e.g., with the
Moveaction to move the rate parameter in a different location ottreras To reset thé&Selectoperation,

choose in théAction menu theEnd Selectioroption (the broken rectangle that replaces the selected rate
parameter, will disappear).

Move: move a rate parameteaperation causes the shape of the mouse cursor to change into an arrow; to move
a rate parameter simply click with the left mouse button over the rate parameter to be moved, move the
mouse cursor to choose the desired location incresasto put the rate parameter and click again to fix
the rate parameter in the desired location.

Delete: delete a rate parametesperation allows to delete a rate parameter present isdheas to delete an
existing rate parameter click over the rate parameter to be removed with the left mouse button.

Show: show rate parametersperation allows to visualize the rates/rate parameters associated to the timed
transitions as well as the weight associated to the immediate transitions of the current loaded model; this
action causes théiew— Rateoption to be switched on.

End Show: To reset theshowoption.

3.2.6 Result definitions

It is the eighth icon of thebject barand it is depicted with a bar diagram.

Add: add a resulbperation is used to create a user-defined performance result by following the grammar syntax
of Tab.A.3. When this action is active, the shape of the mouse cursor is an arrow, click on a free location
of the canvasto fix the position of the performance result name that is going to be defined: this action
causes a dialog box similar to the one of Fig27to pop-up. The dialog box is characterized by two
areas: the “Label:” area that has to be filled with the name of the performance result, e.g. 32 Fibe
nameEqueue has been assigned; and the “Definition:” area that has to be filled with the definition of the
performance result, e.g., in Fig.27, the performance result has been defined as the sum of the steady state
number of tokens in placegueue and of the steady state number of tokens in plageue. It is possible
to display the grammar on line by clicking over the “Res Grammar Help...” button.

WARNING! In case of steady state solutions, both the capital and the small lette(s, p) can be used
to define the mean (the probability). In case of transient solutions, instead, the small letter has to be used.

Change: change a resulbperation allows to change specifications of an existing user-defined performance re-
sult. To change a previous definition of a given performance result, click over its name located somewhere
in thecanvas this action causes the dialog-box of Fig27to pop-up. To change the values in the areas of

67

= Change Result Definition

Label:

|Equeue

Definition :

Ei#Rqueusl + EffWqueued; j

Res Grammar Help ‘

Ok Cancel

Figure 3.27: Change Result Definition dialog box.

the Change Result Definitiodialog box click over the corresponding areas to activate them and then over-
write the old values with the new ones. Finally, either click over the “OK” button to confirm the changes
or click over the “Cancel” button to keep the old settings.

Select: select a resulbperation allows to select a specific user-defined performance result of the current loaded
model by clicking over the performance result name with the left mouse button; this action causes a broken
rectangle to superpose the performance result name. Selection operation is normally used along with other
operations, e.g., with thieloveaction to move the performance result name in a different location of the
canvas To reset theSelectoperation, choose in th&ction menu theEnd Selectioroption (the broken
rectangle that superposes the selected performance result name, will disappear).

Move: move a resulbperation causes the shape of the mouse cursor to change into an arrow; to move a perfor-
mance result simply click with the left mouse button over the performance result to be moved, move the
mouse cursor to choose the desired location ircdrvasto put the performance result and click again to
fix it in the desired location.

Delete: delete a resulbperation allows to delete a performance result present icethneas to delete an existing
performance result click over the performance result to be removed with the left mouse button.

Show: show resultoperation allows either to visualize the definition of the performance result or, in case of
GSPN models, to display the token distribution in places. In the first case, just click with the left mouse
button over the interested performance result nanghawvindow will pop-up displaying the current def-
inition of the result. In the second case, instead, click with the left mouse button over the interested place:
a window similar to the one of Fig.28will pop-up displaying the token distribution of the place, either

68

steady state or transient depending on which solver has been launched last. Toakghalistribution
window, click with the left mouse button over it.

TOKEMS DISTRIBUTION [N PLACE Wqueue

TOKERS DISTREIBUTION IH PLACE Wquene, nmesn=0. 335855 +/-8. 1e-06

o 042861
1 035522
2 0.17133
3 004126
4 000352

Figure 3.28: Token distribution dialog box

3.2.7 Changing placef/transition tags

It is the ninth icon of thebject barand it is depicted as a label.

Change: change tagoperation allows to change the label of an object (i.e., place, transition, marking parame-
ter,...) of the current loaded model. To change the label of a given object click over it with the left mouse
button: the correspondinghange .. window will pop-up.

Move: move tagoperation allows to move the label of a transition (place): to move the label of a given transition
(place) click with the left mouse button over the label, move the mouse cursor to choose the desired location
in thecanvasto put it and click again to fix the label in the desired location.

3.2.8 Colour definition

It is the tenth icon of thebject barand it is depicted with a palette and a paintbrush.

Add: create a color definitioroperation allows to define basic color classes, static subclasses, initial colored
markings (ordinary and symbolic) and colored functions (i.e., guards and color domain). When this action
is active, the shape of the mouse cursor is an arrow, click on a free locationazfrihago fix the position
of the colored object that is going to be defined: this action causeSrékate Color Definitiordialog to
pop-up (see Fig3.29. The dialog box is characterized by the following areas: the “Label:” area that
has to be filled with the name of the colored object, e.g., in3Fi.the namep has been assigned to a
colored class; and the “Definition:” area that has to be filled with the definition of the colored object, e.g.,
in Fig. 3.29 the colored class has been defined as the unordered union of two static subsclasses named as
P1 andp2 (see the SWN grammar of Tabdel). The type of the colored object is indicated by switching
on one of the three toggles that are located on the top-right part of the dialog box:

e “Colorset”: to define either a colored class or a colored static subclass;

69

Figure 3.29: Create Color Definition window.

e “Marking”: to define an initial colored marking, either ordinary or symbolic;

e “Function”: to define a guard or a color domain.

To switch on a toggle, click over the empty circle located near the name of the toggle with the left mouse
button.

Examples of static subclass definition In Fig. 3.30 examples of static subclass definition is given: in
both theCreate Color Definitiondialog boxes, the toggle “Colorset” is switched on; the name of the
subclasses1 andpr2, respectively, are filled in the corresponding “Label” areas. Static subelass
defined as the set containing two colprsandp2. Static subclasg?, instead, is defined as a set of three
colorsc1, c2 andc3. Both the definitions are correct in tlireatSPN2.0.8yntax.

Figure 3.30: Definition of static subclasses.

70

Examples of initial marking definition In Fig.3.31examples of initial ordinary (colored) marking def-
inition is given:

Figure 3.31: Definition of initial ordinary colored markings.

the toggle “Marking” is switched on; the name of the initial markingss andm0, respectively, are filled

in the corresponding “Label” areas. Initial markifigos has to be assigned to a place that has a color
domain defined as the cartesian product of two colored classesaayy respectively.Mpos is the set
containing all the combinations of pairs of colors in which the first element belongs to the ¢tasdirst
component of the place color domain) and the second element belongs to one of the static subclasses tt
first, sec, last of the colored classlInitial markingm0 has to be assigned to a place that has a color domain
defined as a single colored class; it is the set of all the elements belonging to the place color domain.

In the SWN syntaxs> is the standard notation for the whole place color domain.

In Fig.3.32an example of initial symbolic marking definition is given. Symbolic initial markings contain

Figure 3.32: Definition of initial symbolic colored markings.

71

dynamic subclasses and they are used when it is necessary to initialize a place of the net with a fixed number
of elements belonging to the place color domain independently from their identity. The left dialog box of
Fig. 3.32shows the definition of the dynamic subclass _sub: it is a colored object of type “Marking”

defined as a set containing a single element drawn from the static subclaBlse right dialog box of

Fig. 3.32shows the definition of the symbolic initial marking for a place whose color domain contains the
static subclassv: the initial marking is simply defined as the dynamic subctasssub.

WARNING! SWN models in which symbolic initial marking are used can be analyzed only with symbolic
solver.

Example of function definition In Fig.3.33examples of colored function definition is given:

= Change Color Definition = Change Color Definition
Label : _IColorset Label : _IColorset
|Econd _JMarking |EI'.‘.'0F _JMarking
® Function ® Function
Definition: Definiticon :

[51 = 52 and 52 = 53] Ide,Vds, 0K, Flagd]

Ok Cancel Ok Cancel

Figure 3.33: Definition of colored functions.

the toggle “Function” is switched on; the name of the functionsd and I1vOF, respectively, are filled
in the corresponding “Label” areas. Functiesnd is a macro defined as the guargl = s2 and s2 =
s3] that has to be assigned to a color label of a transition; functios, instead, is a macro defined as the
cartesian product of the following colored classes, vds, OK andFrlag that has to be assigned to a place
color domain.

Change: change colomoperation allows to modify the colored definitions and the color attribute of the objects
(placeftransition/arc). To change a previous specification of a given colored definition (or a colored attribute
of an object), click over the colored definition name (the object) located somewhere ¢arthas this
action causes the correspondi@gangedialog-box to pop-up. For example, in case of modification of a
colored definition, to change the values in the areas o€thenge Color Definitiomialog box click over
the corresponding areas to activate them and then overwrite the old values with the new ones. Finally,
either click over the “OK” button to confirm the changes or click over the “Cancel” button to keep the old

72

settings.

Select: select a color definitiomperation allows to select a specific color definition of the current loaded model
by clicking over the color definition name with the left mouse button; this action causes a broken rectangle
to superpose the color definition name. Selection operation is normally used along with other operations,
e.g., with theMove action to move the color definition name in a different location of ¢havas To
reset theSelectoperation, choose in thi&ction menu theEnd Selectioroption (the broken rectangle that
superposes the selected color definition name, will disappear).

Move: move a colotoperation causes the shape of the mouse cursor to change into an arrow; to move a either
a color definition or a color label (place color domain, guard, arc expression) simply click with the left
mouse button over the colored item to be moved, move the mouse cursor to choose the desired location in
thecanvagto put it and click again to fix it in the desired location.

Delete: delete a coloroperation allows to delete a color definition present indhavas to delete an existing
color definition click over the color definition result to be removed with the left mouse button.

Show: show a color definitiomperation allows to visualize the definition of the colored item.

73

Chapter 4

Solvers

GreatSPN2.0.2s composed of many separate programs that cooperate in the costruction and analysis of PN
models by sharing files. Using network file system capabilities, different analysis modules can be run on different
machines in a distributed computing environment.

All solution modules use special storage techniques to save memory both for intermediate result files and
for program data structures. The more restrictive constraints are on the Reachability Graph construction phases;
the current practical limit depends on the specific model, but indicatively ranges from few hundred thousands
up to few millions markings on Pentium Ill PCs with 256 MB of memory. The current modular structure of
GreatSPN2.0.%5 shown in Figurel.1, in which rectangles represent program modules while ovals represent both
the intermediate and the result files generated by the modules. In this chapter we will descBleatis®N2.0.2
modules and result files related to the analysis of a GSPN/SWN model, while the compositionality aspect and
the links to other tools will be dealt in chaptérand6 respectively.

Elimination of result files The elimination of all the files resulting from the solvers execution can be performed
either through the GUI (seelle—Remove Resultgption in Chapt3) or by typing the following command:

> RMNET [-n] netdirectory/netname

wherenetdirectoryis the directory in which the GSPN model has been savedatithmas the name of the net
(without extensions). If then option is used then also the net definition files are removed.

4.1 Structural analyzers

The structural analysis portion of tiéreatSPN2.0.package implements most of the classical structural analysis
techniques for the analysis of Place/Transition nets, plus the ad-hoc techniques proposed by our group for the
detection of conflicts, mutual exclusion and confusion in the framework of nets with priorities and inhibitor
arcs. All the modules that support the structural analysis of a GSPN model read the net description files (see

74

Tgif -
translator:::

PROD
‘translator. :

PRODnet,
PROBEmMmacros,

o APNN - Fluid net::
‘translator: " translator:::

CFGreatSPN2.0.2: t T
GuUI TR

: algébraf :

Net
description files

S e

L7111 GSPN simulation -

i Structural analysi

implicit{-ecs,cc,sc, | | Engine |:Measurer | Statistics :
places |:me,bnd,

“1-unb,sub

deadloéI{:
trap -

P—in\)
T-inv

" Colored: [

le—

“MultiSolve
SoGuUl

Structural properties
files

Nets description
files (instances)

- generation

- Generation‘of iriformation’
- for efficient marking: coding :

Information for

marking encoding I Results i

“collector: ;"

table files

Plot
rgenerator:::

:‘Non-markovian:
‘PNs simulation -

N\

- EMC gereration

 TRG and TRS generation

TRG and TRS files

v o TG s G B
Sttt wiTransient - Steady state::

‘Deadlock énd:
- home states

“Liveness:i

Marking probability
distribution

Information on
model liveness

== 'Computation of

- -performance indic /

Results

“export to
‘CPN-AMI:

Figure 4.1: Graphical representation of the modular structueatSPN2.0.2

75

the appendix A for their format definition) and produce one or more intermediate result files in ASCII form. A
complete list is given in tablé.1. They are all independent of each other apart feamuct . ¢ which depends

on the result file produced by modulénvar.c (since the mutual exclusion property is computed based on the
knowledge of the elementary P-invariant as well as the net structure). Result files contain sequences of either sets
or bags of transitions and/or places, according to the following descriptions.

extension format description

.bnd N pairs upper and lower bound for tokens in places
.cC T pairs causal connection

.ecs Tsets ECS and confusion structures

impl P bags implicant places for implicit place

.mdead P sets minimal deadlocks

.me T pairs mutual exclusion

.mtrap P sets minimal traps

pin P bags place invariants

.SC T pairs structural conflict

.sub T sets immediate subnet partition

tin T bags transition invariants

.unb T bags structurally unbounded places and transition sequences

Table 4.1: List of structural result files.

41.1 Invariants
41.1.1 Modules

pinvar.c,tinvar.c: compute minimal-support, canonical Place and Transition invariants, respectively, with
a modified Martinez-Silva algorithn2P]. P(T)-invariants modules can be launched either throughGiteat-
SPN2.0.Z5UI (see ChapB) or from a terminal. In the latter case the following commands have to be used:

> pinv netdirectory/netnamfor P-invariant computation and

> tinv netdirectory/nethamfor T-invariant computation,
wherenetnames the name of th&reatSPN2.0.2et andnetdirectoryis the directory containingetname The
commands compute and display the P(T)-invariant of the model.

76

4.1.1.2 Resultfiles structure

.pin file: contains a list of Bags of places to be interpreted as the P-invariants computed on the net description
contained in the correspondinget file.

First line: integer containing the total number of bags in the file.

Subsequent lines (one per P-invariant): integer containing the number of non-null entries of the bag, followed on
the same line by one pair of integers per non-null entry: the first integer of the pair represents the multiplicity;
the second integer of the pair represent the ordinal number of the place (position of the place in the list of places
as contained in thenet file).

Last Line: always 0 as a first integer of the line (a null Bag).

.tinfile: contains alist of Bags of transitions to be interpreted as the T-invariants computed on the net description
contained in the correspondinget file.

First line: integer containing the total number of bags in the file.

Subsequent lines (one per T-invariant): integer containing the number of non-null entries of the bag, followed on
the same line by one pair of integers per non-null entry: the first integer of the pair represents the multiplicity;
the second integer of the pair represent the ordinal number of the transition (position of the transition in the list
of transitions as contained in theet file).

Last line: always 0 as a first integer of the line (a null Bag).

4.1.2 Minimal deadlocks and traps
4.1.2.1 Module

deadlock.c: compute minimal Deadlocks or Traps with a modified Alaiwan-Toudic algorithjn [Minimal
deadlocks and traps computation and visualization can be obtained either by choosing the corresponding options
in theNet—Structmenu of theGreatSPN2.0.Z5Ul (see ChapB) or by launching the following commands from
aterminal:

> deadl netdirectory/netnamtr minimal deadlocks computation and
> traps hetdirectory/netnamfor traps computation,
wherenetnamas the name of th&reatSPN2.0.2et andnetdirectoryis the directory containingetname

4.1.2.2 Resultfiles structure

.mdead file: contains a list of Sets of places to be interpreted as the minimal deadlocks computed on the net
description contained in the correspondingt file.
First line: integer containing the total number of sets in the file.

77

Subsequent lines (one per minimal deadlock): integer containing the number of non-null entries of the set,
followed on the same line by one integer per non-null entry representing the ordinal number of the place (position
of the place in the list of places as contained in thet file).

Last line: always 0 as a first integer of the line (a null Set).

.mtrap file: contains a list of Sets of places to be interpreted as the minimal traps computed on the net description
contained in the correspondinget file.

First line: integer containing the total number of sets in the file.

Subsequent lines (one per minimal trap): integer containing the number of non-null entries of the set, followed
on the same line by one integer per non-null entry representing the ordinal number of the place (position of the
place in the list of places as contained in thet file).

Last line: always 0 as a first integer of the line (a null Set).

4.1.3 Implicit places
4.1.3.1 Module

implp.c: verifies structurally implicit places with Silva’s algorithmig]. Implicit place verification can be
checked either through thereatSPN2.0.Z5Ul (see ChapB) or by launching the following command from a
terminal:

> implp hetdirectory/netname placenumber
where nethameis the name of thé&reatSPN2.0.2het, netdirectoryis the directory containingietnameand
placenumbeis the number of the place of the net to be tested as appears in the net definitimtrfdene.net

4.1.3.2 Resultfile structure

.impl file: contains a list of bags of places containing the implicant places of a given places tested for the
property of being implicit. The place is not implicit if no bag of implicant places is found.

First line: an integer containing the number of bags of implicant places, listed in the following of the file, one
bag per line.

Each implicant places line: first integer containing the nuniber 2 of non-null entries of the bag, followed on

the same line by one pair of integers per non-null entry: the first integer of the pair represents the multiplicity;
the second integer of the pair represent the ordinal number of the place. The last entry of the bag represents the
implicit place itself.

Last line: always 0 as a first integer of the line (a null Bag).

78

4.1.4 ECS-Confusion-ME-SC-CC
41.4.1 Module

struct.c computes structural token bounds for places and structural conflict, mutual exclusion, causal con-
nection, extended conflict sets, structural confusion, and subnets of independent higher priority transitions, for
priority nets with inhibitor arcs, as described [33, Z].

4.1.4.2 Resultfiles structure

.cc file: contains a description of the causal connection relati@@ bolding for each transition. One line is
listed per transition, theth line referring to the-th transition (transition in positionin the list of transition as
contained in the net file).

Each line: contains the set of transitionG& relation with the current one. The first integer tell the number of
non-null entries of the set; then one integer follows per non-null element, with the ordinal number of the transi-
tion.

.ecs file: contains both a description of the Extended Conflict Sets of immediate transiE@%3(and the
possible confusion relations. These two results are stored as two subsequent lists, each one terminated by a
character on a separate line.

One line pelECS an integer representing the number of transitions in the cuE€3 followed on the same

line by one integer per non-null item of the set representing the ordinal number of an immediate transition (i.e.
the position of the immediate transition in the list of transitions as contained imthefile).

Last line of theECSlist: One integer value = 0 used as a list terminator.

One line per confusion relation: a first integer representing the ordinal number of the cokf0Sede. the
position of theECSdescription line in the above list; a second integer containing the nushbeB of transitions

in confusion relation; two integers containing the ordinal numbers of two transitions of the da@&ttat are in
confusion relation with each other; a possible list of integers (as maNy-a3) representing the ordinal number

of the transition originating the confusion.

Last line of the confusion list: one integer value = 0 used as a list terminator.

.me file: contains a description of the mutual exclusion relatidig) holding between transition pairs. One line
is listed per transition pair iME relation.

Each line: contains two integers with the ordinal numbers of the transitidvd€inelation (i.e. their position in
the list of transitions as contained in theet file).

Last line: one integer value = 0 used as a list terminator.

79

.sc file: contains a description of the structural conflict relati®holding for each transition. One line is
listed per transition, theth line referring to the-th transition (transition in positionin the list of transitions as
contained in the net file).

Each line: contains the set of transition$€relation with the current one. The first integer tell the number of
non-null entries of the set; then one integer follows per non-null element, with the ordinal number of the transi-
tion.

.sub file: contains the partition of the net in subnets of independent immediate transitions.

First line: an integer containing the numbér> 1 of subnets in which the net is partitioned. The first subnet
contains all timed transitions, while the following ones contain independent sets of immediate transitions.

After the first line the file is organized in two subsequent lists of subnet description lines. The first list contains
two consecutive lines per subnet. The second list contains one line per subnet.

Each of the followingn = 1,...,N pairs of consecutive lines: First line of the pair: set of places ofntkte,

stored as a first integer with the number of non-null entries of the set, followed by one integer number per entry
containing the ordinal number of the place.

Second line of the pair: set of transitions of tiréh subnet, stored as a first integer with the number of non-null
entries of the set, followed by one integer number per entry containing the ordinal number of the transition.
Each of the following R+ nlines(n=1,...,N) set of input/inhibition places of theth subnet, stored as a first
integer with the number of non-null entries of the set , followed by one integer number per entry containing the
ordinal number of the place.

4.1.5 Structural boundedness
41.5.1 Module

unbound. c: verifies the structural unboundedness and associated unbounded transition sequences with a modi-
fied version of Molloy’s method{7];

4.1.5.2 Resultfiles structure

.bnd file: contains a description of the upper and lower bounds on the number of tokens in each place of the net.
One line is listed per place, theh line referring to the-th (place in position in the list of places as contained

in the . net file).

Each line: contains a pair of integers. The first integer tells the lower bound for the number of tokens in the cor-
responding current place. The second integer tells the upper bound for the number of tokens in the corresponding
current place.

80

.unb file: contains a list of sets of unbounded places together with the transitions bags that, if fireable as transition
sequences, make them unbounded. One line is used to store one set of unbounde places and their corresponding
transition bag. The list is terminated by a line containing only the integer value 0.

Each line: first integer containing the number of non-null entries of the set of unbounded places, followed on the
same line by one integer per non-null entry representing the ordinal number of the place (position of the place

in the list of places as contained in theet file). Always on the same line, one integer follows containing the
number of non-null entry: the first integer of the pair represents the multiplicity; the second integer of the pair
represent the ordinal number of the transition.

Last line: always 0 as a first integer of the line (a null Set).

4.2 Performance bounds solver

GreatSPN2.0.2ackage includes modules for the computation of the performance structural bounds of both
places and transitions of the net. Bounds are obtained from the net structure, the initial marking and the transition
rates by solving a linear programming problem (LPP) presentéd]in[

4.2.1 Modules

disab_lp.c: 1) decomposes the marking vector in disabling components for each immediate transition with more
than one input/inhibition arcs; 2) produces the reachability constraints; 3) produces the throughput flow balance
constraints for every place; 4) detects the vanishing places; 5) produces the Extended Free Choice throughput
constraints; 6) produces the inequalities for Persistent or Age Memory or Preselection Timed Transitions. Struc-
tural conflicts of immediate transitions are optimized.

WARNING! The case of conflict with race policy and with enabling memory policy for timed transitions is not
properly handled. The net description is assumed not to contain such cases.

flow_1p.c: produces equations of typevp € P: FicenXW(t, p) > Siepe XW(p,t), i.e., the throughput flow
balance constraints for all places.

mark_lp.c: produces equations of tydd = Mg+ Ca, i.e., the reachability constraints, for a predefined list of
marking vectors.

4.2.2 Resultfile structure

The performance bound modules produce the list of result files given in Zahile ASCII format.
WARNING! In order to obtain correct results, to compute performance bounds of a transition, launch the
performance bound solver on a place first.

81

extension format description

p_disab ascii list of all the constraints of the LPP

dp_in ascii place/transition name whose bounds are computed and list of all the constraints of the LPP
dp_mark ascii linear programming equations

p_out ascii solution of the LPP

Table 4.2: List of performance bounds result files.

4.3 Analytic solvers

Analytic solvers produce the list of intermediate and result files given in Zabl&ets are described in ASCII

files as lists of either place or transition ordinal numbeBags are described in ASCII files as lists of pairs of

natural numbers representing the multiplicity and the ordinal number of either places or transitions.
Unsigned compacts in the ranf§g222 — 1] are stored in non-ASCII files using a compact coding in one, two,

or three bytes

WARNING!

1. The maximum capacity of each placeMX = 255 even though this constraint is not signalled when an
analytic module is launched from the GUI.

2. If the net is characterized by an initial dead marking, the launch of an analytic solver provokes a segmen-
tation fault.

3. Reachability graph generator does not produce the RG in case of nets with all immediate transitions.

4.3.1 GSPN solvers
4.3.1.1 Reachability Graph generator

Modulesgrg.c, grgprep.c, grg_stndrd.c perform the Reachability Graph expansion of a GSPN model

by reading the net description files. The algorithm begins by putting the initial marking into the Reachability

Set, then all the enabled transitions in newly found markings are fired. Timed transition firing proceeds using a
breadth-first policy, while immediate transition paths are followed depth-first until a tangible marking is reached.

1As ordinal number we mean the number of line in the net definition file that describes the place or the transition
2Numbers in the rangf®, 127 are encoded in a single byte, with the most significant bit set to 0; numbers in the[ta8ge — 1]

are encoded in two bytes, with the two most significant bits of the first byte set to 10; numbers in thg2t4r#§é — 1] are encoded in
three bytes, with the two most significant bits of the first byte set to 11. Since most of the information is recorded using small integers
(falling in the rang€g0, 127, this coding technique allows the use of only one byte for each piece of information most of the times.

82

extension format description

GSPN models

.grg ascii data structure description for reachability graph
.aecs T sets actual conflicts sets found in the reachability graph
.rgr.aux ascii auxiliary information on reachability graph

.crgr special code coded tangible reachability graph

.ctrs uns. bytes coded tangible reachability set

Jivick uns. comp. terminal strongly connected components of the RG
Jliveness N lists enabling and liveness bounds for transitions

.gmt ascii data structure description for EMC construction
.doubles C doubles floating point numbers contained in the EMC

.emc special code compact coded EMC state transition matrix

.epd and .mpd C doubles marking probability distribution vectors

.gst ascii data structure description for performance result computation
tpd C doubles token probability distributions in places

.Ssta ascii output performance results

Table 4.3: List of analytical result files.

The ordering of the markings in the Reachability Set resulting from this firing policy is exploited by the following
modules of the package to implement a very efficient reduction of vanishing markings in the case that no-zero
time loop is present. In the program data structure, markings are lexicographically ordered by means of a balanced
binary tree in order to improve the efficiency of the search procedures. GSPN Reachability Graph generator can
be launched either through tigreatSPN2.0.Z5UI (see Chap8) or by typing the following command from a
terminal:

> newRG hetdirectory/netname
wherenetdirectoryis the directory in which the GSPN model has been savedatithmes the name of the net
(without extensions).
Moduleshow_stndrd. c displays the Tangible Reachability Graph (TRG) of a GSPN model without net-dependent
files compilation. To display the TRG of a GSPN model already generated use the following command from a
terminal:

> showRG netdirectory/netnameopt]
wherenetdirectoryis the directory in which the GSPN model has been savedatrthmas the name of the net
(without extensions). Possible display optidrgt] are:

83

-s to show the Tangible Reachability Set;
-t to show the Tangible Reachability Graph (default option);

-r to show the Reverse Tangible Reachability Graph.

4.3.1.2 TRG structure analyzer

Module strong_con.c computes the livelocks and the deadlock states of the TRG of a GSPN model.
Module liveness.c computes transition enabling and liveness bounds of a GSPN model: in particular, it takes
the TRG and its associated livelock description as inputs and computes the actual bounds for infinite server timed
transitions.

To launch the reachability graph generator and the structure analyzer of the created TRG of a GSPN model
from a terminal, use the following command:

> checkRG netdirectory/netname
wherenetdirectoryis the name of the directory in which the GSPN model has been savedeamaimes the
name of the net without extensions.

4.3.1.3 Markov Chain generator

Modulesgmt prep.c, gmt_stndrd.c: converts the Tangible Reachability Graph of a GSPN model into the
corresponding Continuous Time Markov Chain (CTMC) without net-dependent files compilation. The module
uses a depth-first algorithm to follow the immediate transition tangible to tangible paths and keep tracks of the
resulting probabilities of already followed paths to achieve a higher computational efficiency. To launch the
Reachability Graph generator and the CTMC generator from a terminal use the following command:

newMT netdirectory/netname
wherenetdirectoryis the name of the directory in which the GSPN model has been savedeamaimes the
name of the net without extensions.
To display the infinitesimal generator matrix, type the following command:

shownmtx netdirectory/netname
wherenetdirectoryis the name of the directory in which the GSPN model has been savedeamaimes the
name of the net without extensions.

4.3.1.4 Steady State solver

ggsc.c: computes the steady-state solution of the CTMC underlying a GSPN model. The solver has been
implemented using standard sparse matrix computation algorithms, adapted to the solution of a set of linearly

84

dependent equations augmented with the probability normalization condition. The Gauss elimination (actually a
modified L-U direct decomposition) proceeds without pivoting to preserve the sparse band-diagonal structure of
the matrix resulting from the breadth-first firing of the Reachability Graph. Indeed, row or column permutation
would determine a large fill-in during the elimination phase, thus making impractical the analysis of large ma-
trices. Despite this simplification the algorithm exhibits a very good numerical stability, due to the fact that the
diagonal elements used as pivot, actually are (by definition) partial pivots, since they are made equal to the sum of
all the other elements in the row as provediij[Indeed it is possible to use this method even in case of “stiff”
problems with matrix entries differing up to eight orders of magnitude on machines with 64 bit floating-point
representation. The size of the matrix to be solved can range up to<10233. In case of larger matrices it is
necessary to resort the Gauss-Seidel iterative method. In the present implementation, sparse matrices of order up
to 32000-64000 can be solved, but the convergence is badly affected by ill-conditioned or “stiff” problems. To
launch the Steady State solver from a terminal use the following command:

newSO netdirectory/netname
wherenetdirectoryis the name of the directory in which the GSPN model has been savedeamaimes the
name of the net without extensions.
To display the state probability vector, type the following command from a terminal:

showprob netdirectory/netname
wherenetdirectoryis the name of the directory in which the GSPN model has been savedeanaimes the
name of the net without extensions.

4.3.1.5 Transient solver

gtrc.c: computes the transient solution of the CTMC underlying a GSPN model using a matrix exponentiation
algorithm. The major problem in this case is a “good” choice of the time integration step: large integration steps,
depending on the matrix eigenvalues, can result in large round-off errors and poor numerical stability; on the
other hand, steps that are too small may involve unnecessary row by column matrix products. In our program
an initial estimate of the optimal integration step is made according to the maximum transition rate found in the
matrix; then the step is dynamically adjusted in order to keep it as large as possible, without incurring in too large
round-off errors during vector addition.

4.3.2 SWN solvers

to be completed

85

4.4 Simulators

4.4.1 GSPN simulation

GSPN simulator uses a “Natural Regeneration” method mechahi$to[provide point of estimates of the aver-

age number of tokens in each place together with their confidence intervals, as well as to collect the user defined
statistical results. Machine-independent congruent pseudo-random sequence generators are used to implement
stochastic transition timings. This program provides a bypass to other solution modules, and can be effectively
exploited to obtain results in case of analytically untractable models. GSPN simulator can be launched through
the GreatSPN2.0.55Ul (see Chapg).

44.1.1 Modules

engine_control.c: simulation control and communication module for the simulation engine.

engine_event.c: event-driven simulation kernel for simulation engingyeatSPN2.0.package. The program
allows both normal (forward) and reversed (backward) simulation. Periodic checkpoints are stored on file in order
to allow both extended backtracking and possibility of continuation and resume of previous runs.

engine_pn.c: PN routines for the simulation engine. No marking dependency is allowed for immediate tran-
sitions. This module is derived from “grgtndrd.c ” and it uses similar data structures and the same type of
optimization technigques.

measure_checkpoint.c: checkpoint routines for measurer module®tatSPN2.0.2

measure_pn.c: module for the definition of measurement of performance indices for GSPN simulation.

4.4.1.2 Resultfile structure

In this part the files resulting from the launch of a GSPN simulator are described.

extension format description

.etrace ascii
.mtrace ascii

.strace ascii
tpd C doubles token probability distributions in plages
.Sta ascii output performance results

Table 4.4: List of GSPN simulation result files.

86

4.4.2 SWN simulation
44.2.1 Modules

SWN simulators can be launched either throughGneatSPN2.0.5UI (see Chapg) or by typing the following
commands from a terminal:

> swn_ord_sim [opt] netdirectory/netname
for ordinary simulation and

> swn_sym_sim [opt] netdirectory/netname
for symbolic simulation[], wheraetdirectoryis the name of the directory in which the net definition files are
located anchetnames the name of the net model without extensionspt] represents the following list of
options that allow to set the parameters for a simulation run:

-f firstitr_length to set the length of evolution phase between batchs that must be discarded;

-t tr_length to set the length of initialization phase;

-m min.btc to set the dimension of the minimum batch;

-M maxbtc to set the dimension of maximum batch dimension;

-a approx to set the precision of the approximation in the parameters estimation;
-c contlevel to set the confidence level in the parameters estimation;

-s seed to set the seed for the random numbers generation;

-o start to set the starting time for debug output.

WARNING! The results computed from a simulation run are basically the mean number of token in places
and throughputs of transitions and they are all independent from the color classes. Refined results - color class
dependent - and, in general, user defined results can be obtained by using the extended SWN ordinary simulation
(see Sectiod.5).

4.4.2.2 Resultfile structure

In this part the files resulting from the launch of a SWN simulator are described.

extension format description
.simre€l;n;Cln,...Clyn, asci output performance results
.Sta ascii output performance resu|ts

Table 4.5: List of SWN simulation result files.

87

45 Extended SWN features

Several extensions have been developed for the SWN analysis modules; in the following we will describe the
most important new added features.

4.5.1 Transient analysis of SWN models

The SWN reachability analysis prototypes have been interfaced with the transient analysis software developed
for the GSPN models (implementing a numerical approach based on a randomization technique).

4.5.2 Simulation of SWN models with GEN transitions

The simulation of SWN models with ordinary marking has been extended to include generally distributed firing
time transitions (GEN transitions), diferent memory policies and several policies for the disabling and re-enabling
of firing instances.

Temporal specifications of GEN transitions have to be defined in a file nanmedresme.diswherenetname
is the name of the SWN model constructed w@heatSPN2.0.2 and located in the same directory of the net
specification filesnetmame.digs an ASCII form file, in which each row represents the temporal specification of
a GEN transition of the corresponding SWN model. Tahkeshows the line syntax, expressed in BNF format,
to be used for the temporal specifications of GEN transitions. All the terminal keywords are represented as C-
language strings within quotation marks except for the following terrgal number>, indicates a positive
real number, aneiinteger>, indicates a non negative integer number. Nota#iE6X){...} denotes the repetition
of the string in braces for a number of times derived by interpreting the st a natural number.

4.5.2.1 Rescheduling/descheduling policies

Rescheduling and descheduling policies need to be defined in case of GEN transitions characterized by multi-
ple/infinite server semantics. Rescheduling policy defines which transition instance of a multiple enabled GEN
transition previously suspended has to be inserted again in the event list. Descheduling policy defines, instead,
which transition instance of a multiple enabled GEN transition which decreases its enabling degree has to be
removed from the event list. Possible choices are:

RANDOM : the transition instance is chosen randomly;
FIRST _DRAWN : the transition instance among those suspended/enabled that was first generated:;
LAST _DRAWN : the transition instance among those suspended/enabled that was last generated,;

FIRST_SCHED : in case of descheduling, the enabled transition instance with the least scheduling time. In
case of rescheduling, the suspended transition instance with the least value of the timer;

88

<row > = <tr_.name> <firing_pol > <reschedulepol > <deschedulsol > <distrib >

<firing_pol > = “AGE” | "ENABLING”

<reschedulgpol > = <pol >

<deschedulgol > = <pol >

<pol > = “RANDOM’ | “FIRST_DRAWN" | “LAST _DRAWN" |
“FIRST_SCHED" | “LAST _SCHED”

<distrib > = “DET” | “ERL" <n_stage>|

“IPO” <n_stage> #(<n_stage>) { <rate > } |

“IPER” <n_stage> #(<n_stage>) { <prob > <rate > }|

“UNIF” <lower > <upper> | “NORM” <mean> <devstd> |
“BAR” <n_unif > #(<n_unif >) { <lower > <upper> <prob > }

<n_stage> = <integer>

<n_unif > = <integer>

<rate > = <real_.number>
<prob > = <real.number>
<lower > = <real.Lnumber>
<upper> = <real_number>
<mean> = <real_.number>
<devstd> = <real.Lnumber>

Table 4.6: BNF format of a line of thelisfile

LAST _SCHED : in case of descheduling, the enabled transition instance with the greatest scheduling time. In
case of rescheduling, the suspended transition instance with the greatest value of the timer.

4.5.2.2 Firing time distributions of the GEN transitions

SWN simulator allows to specify for each GEN transition of the model one the following types of distributions:

DET Deterministic distributiorD[t]: no further parameter needs to be specified. The delay walsegead
from the net definition file net and it corresponds to the value associated either to the rate or to the rate
parameter of the transition. Rate/rate parameter has to be defined during the model specification via the
GreatSPN2.0.Z5UL.

ERL Erlang distributionErl [k,A]: the number of stagdsmust be specified as parameter. The stagexase
read from the net definition filenet file and it corresponds to the value associated either to the rate or to
the rate parameter of the transition.

.....

be specified as parameters list.

89

IPER Hyper-exponential distributiofyplk, (01,A1),...,(ak,Ak)]: the number of stagels and the pairs de-

scribing the probability and the rate of each stéfm,Ai)}i—1... kx, must be specified as parameters list.

{AREE)

UNIF Uniform distributionU [I,u]: the lowerl and uppeu bounds must be specified as parameters.

NORM Normal distributionA/(u,0): the mean valug and the standard deviatianmust be specified as pa-
rameters.

BAR Composition of Uniform Distribution{};1 piU [li, ui]: the number of uniform distributiortsand, for each
uniform distributionU;, the lower bound;, the upper bound; and the associated probabilipy must be
specified as parameters list.

WARNING! When constructing the SWN model via GUI, all the GEN transitions have to be specified as they
were negative exponential distributed, i.e. white-box transit@dss in case of deterministic transitions.

How to launch the simulation Launch the SWN ordinary simulator (see commadnél2.]) from a terminal
together with the desired simulation options. Assuming the executable medulerd_sim is located in the
directory . /experiment, then the SWN model has to be saved in the subdirectétyperiment /nets.

4.5.3 Refined perfomance results

The statistical analysis module of SWN ordinary simulation has been extended to estimate structured performance
indexes. Besides the aggregated mean number of tokens and transition throughput, it is possible to estimate the
mean number of tokens that satisfy criteria based on the place color domain as well as the estimation of transition
throughput when the firing instances satisfy a given predicate.

4.5.3.1 Mean number of tokens in a place

GreatSPN2.0.2llows to define the mean number of tokens in a place at the following levels of detail:
1. mean number of tokens with no color distinction (simple performance index);

2. mean number of tokens for each element of the static partition the place color domain is made of. It
is a structured performance index consistingnafifferent values whera is the cardinality of the static
partition of the place color domain (maximum refinement);

3. mean number of tokens that satisfy a given predicate on the place color domain (intermediate refinement).

Example 1 Let us assume that a plapdas been characterized by the following place color domain:

90

ClixCl1xCl2
sublcl1Usuk®cll1UsulsBcl1
sublcl2U sul®cl2

CD(p)
cl1
Cl2

Then a color consists of a triplé€l1_1,Cl1.2,Cl2_1) whereCl1_1 € subicll, Cl1.2 € subjcll, andCI2_1
subkep, fori,j € {1,2,3}, ke {1,2}.

1. Case of simple performance index.@reatSPN2.0.8yntax has to be defined as:
E{ #p }
We obtain a unique performance result that represents the mean number of tokens praplddes com-
puted considering tokens without identities.

2. Case of maximum refinement. In tB¥eatSPN2.0.8yntax has to be defined as:
E{#p(*)}
We get a result for each element of the static partition of the place color domain that represents the mean
number of tokens whose colors belong to the element. In case df, exe obtain 18 results of type
p[subicll,subjcll,subkck] = mij, i, j € {1,2,3},k € {1,2}, wheremjc is the mean number of tokens
whose colors belong to the eleme(subicll, subjcll, subkclk of the static partition of the place color
domain.

3. Case of intermediate refinement. Between the two previous level of details, there are different types of
means number of tokens in plapghat can be obtained; we have classified them with respect to their
granularity inprojection, selectiomndgeneral predicateneans.

Projection. This type of results are obtained by performing a projection with respect to those component

classes of the place color domain we are interested in. [we can choose to project the color domain

of placep with respect to the second and the third component class€seatSPN2.0.8yntax:
E{#p(Cl1.2,C12)}

wherecl1_2 indicates the second repetition of the colored cl@kE, obtaining for each subs€@ll x

subjcll x subkcR j € {1,2,3},ke {1,2} of the static partition of the place color domain, the mean num-

ber of tokensnpjk, whose colors belong to that subset. Geometrically, the color domain of plzaebe

represented by a parallelepiped: its projection with respect to the second and the third component classes

results in the rectangle highlighted in Figg2lying on the plan€l1_2 x Cl2.

3The third component, since it is a unique repetition of the colored €#@sis referred by using the name of the class without
specifying its repetition, i.eG12_1 = C12.

91

A
L—1 //
T
o
N
Qo
S
[2]
//
~ +
©
-
Qo
=)
12
a1.1
sub3cl 1
sub2cl 1
sublcl 1

a1.2

\ 4

1 1 1 1
sublcll sub2cl 1 sub3cl 1

Figure 4.2: Projection of the color domain of plate

The following relations hold among these means and the ones obtained in case of maximum refinement:
3 .
mpjx = Zlmjh j€{1,2,3},ke {1,2}.
i=

Selection. This type of results are obtained by performing a selection among the set of means got from
projection operation. The selection operation allows to extract the means number of tokens whose colors
belong to a specific element of the static partition of the place color domain we are interested if, In ex.
among the six mearmapj we can choose to compute only the two measy, k € {1, 2} by defining the
following structured result:

E{#p(Cl11.2,C12) | SEL = [d(Cl1.2) = sub2cll] }

WARNING! The selection operation can contain only predicates that specify the membership (or not
membership) of a color belonging to the defined projection of the place color domain.

General predicate.This type of results are obtained by extracting specific elements of the place color
domain when its component classes are made of subclasses containing more than one element. General

predicates are applied after a projection operation and, in case, a selection operation have been performed.
In ex.1, the structured result:

E{#p(Cl1_2,C12) |
SEL = [d(Cl11_2) = sub2cll)], COND = [d(Cl1_1) <> sublcll and Cl1_1 <> Cl1_2] }

92

consists of two means and it is obtained by giving two constraints over the elements of the place color
domain: 1) the first component of a color do not have to belong to the static subuglfskl of the color

classCl1; 2) the firsts two components of a color have to be different as well in case they belong to the
same static subclass. For example, let us assume that the static subclasses are defined as the following sets
of elements:

sublcll = {a}
sulcll = {b,c}
sulBcl3 = {d}
sublcl2 = {ef}
sutlcl2 = {g,h,l}

and, in a given reachable marking of the net, the ptacentains tokens with the following colors:

(c,d,e), (a,b,e), (b,b,h), (d,b,e), (c,b,g)
Then, in the computation of the two means, tokens in ptaclearacterized by one of the first three colors
will not be considered (colofc,d,e) is eliminated by theselectionpredicate, colofa, b, e) is eliminated
by the first part of theconD predicate, while colofb, b, h) is eliminated by the second part of thenp
predicate). Instead, tokens characterized by one of the last two colors will contribute to the computation of
the two meansp1, Mppo.

4.5.3.2 Transition throughput

Similarly to the mean number of tokens in a place, in case of transition throughput aGrealiSPN2.0.2llows
to define results at the following levels of details:

1. transition throughput with no color distinction of the firing instances (simple performance index);

2. transition throughput for each element of the static partition of transition color domain is made of. It
is a structured performance index consistingqhdfifferent values whera is the cardinality of the static
partition of the transition color domain (maximum refinement);

3. transition throughput for those colored instances that satisfy a given predicate on the transition color do-
main (intermediate refinement).

The only difference with respect to the mean number of tokens in a place is the notation: for the computation
of transition throughputs we can use directly the variables appearing on the input/output arcs of the transition
instead of using the notatiar assName_i to indicate the(th) component, belonging to the cla8kssNameof
a variable.

Example 2 Let us have a transitiom, depicted in Fig4.3, with two input places and an output place. All
the arcs are characterized by the identity function: the variables of the two input arcs are gguard(y),

93

cl1 Cl1

<> <y>

<z>

Cl2

Figure 4.3: Domain of transition.

respectively, and the variable of the output arc is equdkto Input places have color domains equalaid
and the output place has color domain equalld, whereCl1,Cl2 are defined in e, then the transition color
domain is defined a8I1 x CI1 x CI2.

1. Case of simple performance index.@reatSPN2.0.8yntax has to be defined as:
x{ #T }
We obtain a unique performance result that represents the mean throughput of tranaitibit is com-
puted considering firing instances without identities.

2. Case of maximum refinement. In tlreatSPN2.0.3yntax has to be defined as:
X{#T(*)}
We get a result for each element of the static partition of the transition color domain that represents the
mean throughputs of the firing instances whose colors belong to the element. In casg, afexbtain
18 results of typeT [subicll, subjcll, subkcl] = Xij, i,] € {1,2,3},k € {1,2}, whereX;j is the mean
throughput of the firing instances whose colors belong to the elefsabicll, subjcll, subkclk of the
static partition of the transition color domain.

3. Case of intermediate refinement. Between the two previous level of details, there are different types of
(mean) throughputs of transitiohthat can be obtained; as is the case of the mean number of tokens in a
place, we have classified the results with respect to their granularsojaction, selectiorandgeneral
predicatemean throughputs.

Projection. This type of results are obtained by performing a projection with respect to those component
classes of the transition color domain we are interested in. i) e can choose to project the color do-
main of transitionT with respect to the second and the third component class€seatSPN2.0.2yntax:

E{#T (y,2)}

94

wherey is the variable belonging to the second repetition of the colored €ldsandz is the variable be-
longing to the colored clag32, obtaining for each subsétl x subjcll x subkck j e {1,2,3} ke {1,2}

of the static partition of the transition color domain, the mean through¥pig of the firing instances

whose colors belong to that subset. The following relations hold among these mean throughputs and the
ones obtained in case of maximum refinement:

3
Xpjk = leijka j€{1,2,3},ke {1,2}.
=

Selection.This type of results are obtained by performing a selection among the set of means got from pro-
jection operation. The selection operation allows to extract the mean throughputs of firing instances whose
colors belong to a specific element of the static partition of the transition color domain we are interested
in. In ex2, among the six mean$pj we can choose to compute only the two memsy, k € {1,2} by
defining the following structured result:

E{#T(y,z) | SEL = [d(y) = sub2cll] }

General predicateThis type of results are obtained by extracting specific elements of the transition color
domain when its component classes are made of subclasses containing more than one element. General
predicates are applied after a projection operation and, in case, a selection operation have been performed.
In ex2, the structured result:

E{#T(y,z) |
SEL = [d(y) = sub2cll)], COND = [d(x) <> sublcll and x <> y] }

consists of two mean throughputs and it is obtained by giving two constraints over the elements of the
transition color domain: 1) the first component of a color do not have to belong to the static subclass
sublcll of the color clas€11; 2) the firsts two components of a color have to be different as well in case
they belong to the same static subclass.

4.5.3.3 Probability

In GreatSPN2.0.2t is also possible to specify as performance result to compute the probability that a certain

logic condition be satisfied. Logic conditions are expressed in terms of place markings and, as in cases of mean

computations, they may be either color-independent or color-dependent: in the last case structured probability

results will be obtained. IGreatSPN2.0.8yntax to compute a probability result the keyweri$ used instead

of the keyworde (see the SWN extended grammar of Appendix A).

95

<row > = <userindex> | <tr_name> | <placename>

<userindex> = <indexnhame> “NOPRIORITY” | <indexname> “ACC” <approxval >
<tr_name> = <string >

<placename> := <string>

<indexname> = <string>

<approxval > = <real_.number>

Table 4.7: BNF format of a row of thetatfile

45.4 The result .stat file

The .statfile contains, for each row, these kinds of information:

e a place (transition) name, in this case during a simulation run of a SWN model the mean number of
tokens (transition throughput) will be computed without taking into account the colors (simple performance
indices).

e auser-defined performance index name along with one of the following keywords: 1) “NOPRIORITY”, in
this case the index will not considered in the test of convergence during a simulation run; 2) “ACC”, in this
case the default value assigned to the approximation parameter of the simulator is replaced for this index
by the value that follows the keyword.

The row syntax of thestatfile, expressed in BNF format, is shown in Taldle. All the terminal keywords

are represented as C-language strings within quotation marks except for the following4geaknumber>,

indicates a positive real number, ardtring >, indicates any non-empty character string not containing blank
characters.

WARNING! Ifthe .statfile does not exist, then all the performance indices (both the user-defined and the default
ones) are computed. Viceversa, if tistatfile exists, the default indices (not colored mean number of tokens in
places and not colored transition throughputs) are computed only if a row with the corresponding object name
(place/transition) appears. Instead, the user-defined performance indices, if they are not specified in a different
manner in thestatfile, they are always computed (i.e., they have priority).

455 Number of batches in a simulation run

The option-e has been added to the SWN simulator option-list, it allows to set the maximum number of batches
during a simulation run.

96

45.6 Inclusion of “reset” transitions

The SWN model specification has been enriched by using a special transition, resaettansition with the
following semantics: when a reset transition is enabled its firing brings the model back to the initial marking. A
further generalization (not yet implemented) is the possibility of specifying any marking to be reached through
the firing of a reset transition; this extension has been introduced to ease the modeling task in several application
field (e.g., in system availability analysis).

4.6 Multiple experiments

MultiSolve is a simple graphical interface to the solution algorithm&matSPN2.0.2 It allows to perform
multiple experiments with different parameters and to create figures depicting the results of the experiments.
SW Requirements In order to run correctly, MultiSolve requires the following software to be installed:

e Java(version 1.2.2 or higher);

e GreatSPN2.0.package;

e Gnuplot(version 3.7 or higher). To download it visitf]).

Starting MultiSolve To invoke MultiSolve simply typeultisolve followed by a carriage return. This causes
a window as shown in Fig.4to appear on the user’s terminal.

How to launch a set of experiments We describe how to use MultiSolve by means of an example. Let us
suppose we have constructed the simple net depicted ity usingGreatSPN2.0.package.

The net is characterized by the rate parametewhich has been assigned to transitidrisandT 3 and by
the two measure®sl = p{#P1 = 1}; andre2 = p{#P3 = 1},.

The first step is to load the net to work with on MultiSolve. This can be done either by clicking on the button
labeled asChoose a neplaced in the upper left corner of the window, or by typing directly the name of the net
without extension into the uppermost text field.

The second step is to define the parameters that are used in the experiments. Since MultiSolve is designed
for creating figures containing multiple curves that reflect measures, we have to define

1. the parameters of the individual curves,
2. the parameter that corresponds to the x-axis of the figure,

3. the measures that corresponds to the y-axis of the figure.

97

[liceoes. = 2 et ||J'h wrnzil e e Arnphe

Paramedera of gimulalion

Parametera «f madniuz orves HAramet &1 of 2-eas Indtl TrEns oy
(these may be emply) Trawnsient mnlysis v Eatch spacing:
w1 © T3 ol b Min. balch longth;
Luseca lirraile: | 2 Lowa Liil: [0 Mgz, balch longth;
Uppeca lirrsils: {2 4 Upoqoecs linwit: |4 Sescul:
Sheyrsizes:|” 2 Steqmsine 0,35 Eoouiracy:
ook kea el
Ty o niei Ty of SIAN; Caloddion: R eamiliss Lo codeaba
) GSPH Oudiray Arpaylic: ICEINT el |
3 Sun Syrrmmel v Sirmwlelion Palam cawlAives
Paramneters boaneate the fiqune
M ef 2 fezias Rt |w Syl of s
Foarticn d Ispentk _
- Lines
PRI LI OF & 13 Ruta [Lot 0 Righ #)
o Poms |
RN Oy Stlss Bt [Top @ Bottom o ~
Ak mLm o y Rls: futa [LInes nm points
N3 OF HNUROL S DOSISCrIRE T GHURR T

Momznisenexzimzle

. ==t autzeza e =
Creste ot e ¥
B =rt lats A linees
P ossi NE IS catl=he Time
sl 1= T332 &
1esd =" =2 S5 1= ddneenn- on atunesh 1S nlesFs arnpl=iesanrpl= g
TLol=1,TE=R o mAt bt Yedoe stolnne At eSS e eFs ampl =ircampl= pe
rog, = Ta=4 2
res2,-1=" T3-4 bt
= ({=.T3=r “dmrehinerabaun=tab ulk Gelve " vap Alesa e e =508 usng 1 - fille o
rest _1_':}3_2 - tdrEnChereabanstate ik Golve Teap AlRvan R =AU 8 usng 1 fille
MK PoETSCnE]

Figure 4.4: MultiSolve

The parameters of the individual curves are defined in the left upper panel of the window. A list of names of
parameters may be given in the text-field labdiaines The entries of the list are separated by spaces. Each
entry may be the name of a transition, a rate parameter, or a marking parameter. In the other three text-fields of
the panel the user defines the set of values the parameters take. These three text-fields contain lists with as many
entries as many parameters were chosen. In the case of the example gived.itkégrate parameted takes
the values 1 and 2, while the rate of transitib® takes the values 2 and 4. The experiments will be carried out
considering all the 4 different combinations. The text-fields of this panel may remain empty.

Parameters of the x-axis are defined in the middle upper panel. In case of transient analysis one has to define
the lower and the upper limit of the transient time, and the step-size that will be used to step ahead in time. If
steady-state analysis is performed the variable that corresponds to the x-axis has to be given as well. As before,
this variable may be the name of a transition, a rate parameter, or a marking parameter.

98

r1=1.000000
resl
res2

Figure 4.5: A simple example

The measures that will be computed have to be given in the text-field ¢adedlts to calculate This text-
field contains a list separated by spaces in which an entry is either a measure already defined in the net or the
name of a transition. If the name of a transition is given then the throughput of the transition is computed. In case
of our example the two measures and a transition name compose the set of results to calculate.

Having defined the parameters of the figure, we have to choose the type of analysis to perform. One has
define the type of net to work with. A net may be a GSPN or a SWN, a SWN may be ordinary or symmetric.
In case of steady-state analysis the user may choose between exact (analytic) or simulative solution. The above
choices can be made by selecting appropriately among the options represented by the check-buttohgeamed
of net, Type of SWNandCalculation. In case of simulation the parameters of the simulation can be modified
in the right upper panel of the window.

The calculations are performed by clicking on the button naPedorm calculations. The results of the

res1,r1=1,T3=2 —— 0.45 ' ' ' VLIV SR I
res2,r1=1,T3=4 - X/X/X/X
04 - /X/ - oo /] A B B T,
0.8 - X :
0.35 - =i i
0.3 | /X/ ‘0 *%*****%%%%%%%_
0.6 - 5 //ET' *X
2 o025t /% b
2 o02f i
0.4 g =
0.15 | ¥ i
01}/ 4
02+ I - T4, case | —+—
- T4, case Il ——-x-—-
0.05 T4, case lll - |
T4, case IV —&
0 1 1 1 1 1 O 1 1 1 1 1 1 1
0 05 1 15 2 2.5 3 0 0.5 1 1.5 2 25 3 35 4
Time Time
Figure 4.6: Example | Figure 4.7: Example Il

99

calculations are saved in a file in table format. The name of the file is composed by the name of the net and
the extensiorresults. The first column of the file contains the values along the x-axis. The other columns
corresponds to a measure with a combination of parameters. In the case of the exampledrtirédile contains

13 columns: the first describes the transient time, while the other 12 correspond te thpatameter-measure
combinations. For example, the second column of the file gives the value of the mestdoe different values

of transient time in case ofl = 1, T3 = 1. The first line of the file gives the description of each column.

Having performed the calculations it is possible to create figures. Parameters of the figure are set on the three
panels under the titlParameters to create... One can set the minimum and maximum values along the axises
(or let gnuplot to determine it automatically), define the position of the legend and the style of the curve. The set
of possible curves are listed in the bottom left side of the window. By clicking on the entries of the list the user
chooses which curves will be part of the figure (multiple selection is possible by holding ciuror SHIFT).

By clicking on the buttorCreate plot file a file is created with gnuplot commands; the file is loaded into the
text-areaGnuplot file. The user may modify the gnuplot commands (to learn more abaitl ot see manual
at [25]) and then by clickingMiake postscript the commands in the text-area are executed.

Fig.4.6 was created by the settings shown in Figdarénot modifying the text-area. The maximum of the
x-axis is set to 3, the position of the legend is top right, the curves are plotted by lines. Another example is given
in Fig.4.7. In this case the throughput of transitidid is depicted. The position of the legend is changed, the
style of the curve is “lines and points”. The titles of the curves are changed by modifying the gnuplot commands.
Moreover, a title is given to the y-axis by the commawrd ylabel ’Throughput’.

Example of steady state analysis is shown in4£lH). The steady-state value of the throughput of transition
T4 is depicted as a function of the rate of transitib® for 4 different values of the parametet. The four
text-fields describing the x-axis are settto, 0.2, 6, 0.6 from top to bottom. Grid is added to the figure by
adding the commanskt grid to the gnuplot text-area.

WARNING! It is important to note that MultiSolve does not perform exhaustive check of the parameters
provided by the user. The parameters are checked only in a syntactic manner. Hence, in order to control if the
desired experiments are possible on the chosen net, it is always suggested to perform some computations using
GreatSPN2.0.2self before using MultiSolve.

100

0.45

0.4

0.35

0.3

0.25

0.2

0.15

0.1

0.05

T
—+— T4,r1=2

T3

Figure 4.8: Example I

101

| ——x--- T4,r1=6 . —
—-%-- T4,r1=10
g T4,r1=14 —
/ X
T
=T LXK
T ¥
- *
el e 4 |
X7 * &
/ e B
e x e}
=
0 1 2 3 4 5

Chapter 5

Compositionality in GreatSPN

The composition of two labelled GSPNs/SWNs is performed by means of the superposition of either (1) transi-
tions or (2) places of matching labels or by applying both kinds of superposition simultaneously.

Both the nets involved in the operation may have non-injective labelling, i.e. the same label may appear
connected to two or more transitions or places.

Constraints

1. Only one of the two nets may be multilabelled, i.e. one net (from now on we assume that the 1st operand)
may contain places, transitions with multiple labels. This constraint is motivated by the fact that having
two multilabelled operands the definition of the operators is a non-trivial task.

2. Concerning SWN models, the colour domains of those places which are to be superposed have to be
identical.

In the next section, we give an informal description of composition of two labelled SWNs implemented in
the GreatSPN2.0.package, similar considerations can be done for labelled GSPNs.

5.1 Composition of two labelled SWNs

In the following, instead of giving a rigorous definition, the functioning of the operators will be described. First,
we concentrate on the case in which only transitions are superposed.

Let's us consider the labelled SWN = (P, T,Pre,Post Inh, pri, C,cd,w,\) obtained by the composition
of A1 andA& in which:

e the set of places in the resulting net is simply the union of the sets of placd®#.€; | J P> (renaming of
place names may be necessary in order to avoid matching names). The colour domain fithgives
cdyi(p) if p € P1, cdz(p) otherwise.

102

N1 N2
P1 P4 P6 P8

O O O
<Xy > <X > <X > <X >

t2 t3 t4a
[d(x)=d1] —— [d(x)=d2] — —

<x> <Ixy>

P2 P3 P5 P7 P9

[d(x)=d1]

Figure 5.1: A multilabelled, non-injective example

e The unlabelled transitions are considered non-observable with respect to the composition, and those whose
labels do not appear in the other operand, are not involved in superposition. These transitions are simply
copied intoT (as for places, renaming may be necessary). To show how the operation proceeds to super-
pose transitions let us assume thgtis multilabelled, whileA; is not, and the labelling is non-injective.

Let To(1) denote the set of transitionSsof T, with | € A(t), whereA(t) gives the set of labels af In Al
there will be a replica of € T, for each element i®)c) 1,1)20 T2(1), where®) is the cartesian product.
An example is shown in Fig5.1, for transitiontl: A(tl) = {I1,12,13} and the above defined cartesian
product has the elemen{s2,t4} and{t3,t4}. In the composed netl1l (t12) is obtained by superposing
t1,t2 andt4 (t1,t3 andt4).

If two arcs connected to different transitions that are involved in the same superposition have identical
variable names in their arc expression, then these variables are renamed in the arc expression of all the
arcs connected to one of the two transitions. If these variables appear in the guard of the transition whose
arcs’ expressions are changed, the renaming is performed in the guard as well. As an examplé, 1n Fig.

103

during the superposition afi,t2 andt4 the variablex of the arcs and guard function connected2ads
renamed tx1. (As it will be mentioned in Sectiob.2the implemented version of the algorithm allows the
user to override the above described renaming rule to “unify” values of the nets.) When two superposed
transitions have both a guard function these guard functions are joined with lagitedlation.

e The matrice$re, Post Inh describing the arc structure 8f are built in the following way: the arcs of;
and A& connected to transitions that are not involved in superposition are simply copiedl/infan arc
connected to a transition involved in superpositions will have as many instances as the times the transition
is superposed. In our example the Rictl has two instances in the composed rirdt:t11 andP1-t12.

e The priority functionpri gives the same value as before for the transitions that are not involved in super-
position. A transition resulting from superposition inherits the priority value from the involved transition
of A1. The labelling functiond andw are handled similarly to the priority one. We assume that there are
not marking dependent rates and weights, and we basically leave the user the task of replefaricigy
for the final net.

e The set of basic colour class€sand their definitions are assumed to be commomfpand AL.

The operation to superpose places is the direct counterpart of the operation described above. However to
superpose places is less complicated as it does not require renaming of arc or guard expressions and we are
assuming that places to be superposed have the same colour domain.

The simultaneous application of superposing places and transitions has two features that were not shown in
the above description. First, having an arc whose place (transition) is involvgdn) superpositions, there will
ben,-n instances of the arc in the composed net connecting all the instances of its place with all the instances of
its transition. Second, having two arcs whose places and transitions are superposed, the arc expressions of these
two arcs are added. An example for the latter is shown in Eigwhere the arc expressions of the alPds— t1
andP3 —t2 are summed.

5.2 The algebra package

The GreatSPN2.0.»ackagealgebra consists of theaComposition and theRemovemodules; in the following
we will give a description of the usage of both of them.
5.2.1 Composition module

The Composition module allows to perform the composition of two GSPNs/SWNs by using and producing
GreatSPN format. The modeler may build the component nets using the graphical intei@eatdPN2.0.2

1To find a more sophisticated and compositional way to hapdl@ndw is an open question, attempts to address this problem may
be found in the literature.

104

O" O
11 11
<x> <x>
<x>+<x1>
t1
p Ol [d=2)
<Ix> <xX>
O. O.

Figure 5.2: Superposition of places and transitions

Labels are encoded in the name of the transitions and places, so both transition and place names have the structure
tag|labell|label2..., wheretag is the name of the transition or place followed by its labels separated by bars.

The user may define the set of labels to be used for subnets composition. This feature may be useful when
composition involves more than two nets and hence is performed in several steps: in this case the modeler can
select which labels are to be considered at each stage of the composition.

The Composition module creates a graphical representation of the composed net in which the “shape” of
the original components is maintained: in case of transitions (or places) with multiple instances in the resulting
net, the additional instances are placed around the position of the originating place/transition, moreover the arcs
that connect places and transitions belonging to different subnets are drawn as “broken arcs” in the resulting
net, to improve its readability. The user has some options to control the layout of the final net by indicating the
placement of each component.

A small example for the output of the tool is given in Fig3’: the example demonstrates another feature of
the tool: if a variable name starts with the charaétét is not renamed during the superposition. This allows the
modeler to use the same variables in different components, so as to “unify” values.

TheComposition module is launched from the prompt of a console window by typing the comdgetira
followed by a list of input parameters. When it is launched without parameters the complete synopsis is diplayed:

Usage:

algebra [switches] netl net2 operator restfile resultname [placement shiftx shifty]

Switches: -no_ba: no broken arcs will be used between subnets
-rs number: result will be rescaled by number
Operators: 't’: Superposition Over Transitions

"p’: Superposition Over Places

2Note thatGreatSPN2.0.2loes not draw arc expressions on broken arcs, so those in the figure are written “by hand”.

105

N1 N2

N
Pl 3 P5 P1 P3 P5
O °
<X> <#y> <> <> <o ?}P <x1>
T1 1Y ‘
R T2(11 CJ 1311 111 OO
<Ix#y> <>
<Hy> | R ST T2J11
<!
P4 P6 x> P6 | <y> <x1>
PZ(:> A P2 P4 P6
B
AB s H °

Figure 5.3: Superposition using SWN

"b’: Superposition Over Places & Transitions

restfile: contains the labels to be used for synchronization

placement: 1 ---> netl net?2
2 -—-> netl
net2

3 ———> net2 is shifted by (shiftx,shifty)

The two operandset1 andnet?2 are theGreatSPN2.0.2hames (without extensions) of the two nets that have

to be composeq the resulting composed GSPN/SWN is saveddnultname. The first operandiet1 may

be multilabelled. The operator is defined yerator and may be: to superpose transitions,to superpose
places o to superpose both places and transitions. The set of labels over which the superposition will be
performed may be restricted to a given subset of labels, these subsets are listed inrthe file e, this file has

the following format:

transition={tll|tl2}
place={pll|pl2|pl3}

The labels that are not given in this file are not considered during the operation. If the file does not exist all
labels are considered. The last three arguments may be used to define the placement of the components: if the
parameteplacement is 1 (2) the two nets are placed next to each other horizontally (vertically), if it is 3 the
second net is shifted byi{iftx, shifty) with respect to the first net. Further options that can be set launching

the command:

e —no_ba to visualize all the arcs in the composed net; by default, the arcs connecting objects belonging to
different components are not entirely displayed, i.e., they are broken;

3|f the nets to be composed are saved in a directory different from the current one, the complete path is required

106

e -rs number to rescale the composed net by a factor givemniyber.

Merging of two models Compositionmodule can be use also to merge two no-labeBesatSPN2.0.2hodels.
Let us assumeaodell andmodel?2 be the names of two models, then the command:

algebra modell model2 t nolabel modell 2 [placement shiftx shifty]
where the filenolabel contains the following line:
transition={}

merges the two models saving the result in file namesas11_2.

5.2.2 Remove module

Together with the&Compositionmodule, the packagdgebraincludes also th&emovemodule that has been im-
plemented to eliminate labels and the charagfieom the nets. Typing the commanreimovewithout parameters
the following output is displayed:

Usage:

remove netl net2 function [labelfile]

netl: Net to work on
net2: Resulting Net
Functions: ’1’: Remove labels
"#’: Remove '#'-s
"b’: Do both
labelfile: contains the labels to be removed

(if not given all labels are removed)

net1 is the name (without extensions) of the input net whide?2 is the name of the output one. As function

orb may be given to eliminate labels, the characteos both, respectively. The set of labels to be deleted may
be a subset of the set of all the labels, and these subsets may be defined the same way as desetbedifor

in case of thalgebracommand.

107

Chapter 6

Export to other tools

6.1 Model checking: PROD translator

The PROD translator module is an interface to the PROD 16hljt translates a GSPN/SWN model defined

in GreatSPN2.0.2ormat into the corresponding model described in PROD format. The PROD translator also
produces a file containing a list of useful macros to be used during model-checking performed by means of
queries during @robe session.

6.1.1 Installation

Source files are all stored into the tar-zipped fil®Dtrans1DDMMYY.tar.gz, where DDMMYY is a date
(DD=day,MM=month,YY=year). To install the PROD translator the C compilatmg, the lexical and syn-
tactic analyzeréex andyaccare required. The installation procedure consists in the execution of the following

commands:

gunzip PRODtransl.tar.gz
tar xvf PRODtransl.tar
cd PRODtransl

install-transl

As result of such execution a direct@yobtransl is created. This directory contains the following subdi-
rectories:

e SOURCE: contains the source files of the translator;
e DOCS: contains the documentation related to the translator;

e bin: contains the executable filesod-translator andExploreRG.

108

prod-translator is the module that allows to translate a GSPN/SWN model defin€daatSPN2.0.2or-
mat to the corresponding PROD model; whilep1oreRG is a script file that contains the sequence of commands
the user have to execute to perfom pre-processing of the translated net, to generate its reachability graph (RG),
to compute the strongly connected components of RG, to launch the interactive pogtzerand, finally, to
remove all the files created during the RG generation once the analysis of the model has been finished and the
probe session has been closed.

6.1.2 Use of the PROD translator

Once the installation procedure has been performed it is possible to tranGSlegat&PN2.0.2nodel through the
command:
prod-translator nethname

wherenetnamds the name of a GSPN/SWN model created v@treatSPN2.0.2vithout extensions The
translation procedure produces the following output files:

e netnameprod.net that contains the PROD net description;

e netnameprod.macro that contains a list of macros to be used during the model checking performed
through the interactive prograptobe;

e netnameprod funz.¢ netnameprod funz.h these files are generated only in case of SWN models and
contain information related to the coloured definitions of the net. In case of translation of a SWN model
the subdirectoryetnameprod.srchas to be created - if not already existent - where these files have to be

move to.

Alternatively, if the user wants to give a different name from the one assigned by default to the translated net, the
following command has to be used:
prod-translator nethame myprodnet

wherenetnamds the name of th&reatSPN2.0.2nodel to be translated amdyprodneis the desired name
for the translated PROD model. So the following files will be generated:

myprodnet.net — myprodnet.macro — myprodisetz.c — myprodnefiunz.h

6.1.2.1 Nets with inhibitor arcs

Since the PROD tool doesn't allow to define inhibitor arcs, additional information are required to the user if the
GreatSPN2.0.2nodel contains inhibitor arcs in order to carry out a properly translation of such arcs into test arcs

1The GreatSPN2.0.2et definition filesetname.dedndnetname.netave to be stored both in the same directory

109

on the complementary places. During the translation of a GSPN model with inhibitor arcs, if thetfitene.bnd

does not exist in the current directory, the user has to give the upper bound, i.e. maximum capacity, of each place
having an outgoing inhibitor arc. For example, if the plagdeof a GSPN model has an outgoing inhibitor arc,

then there will be following request:

Please, introduce bound for place < pl >: 5 2

If the bound of a place is unknown, we suggest to set the value 255 that is the maximum bound allowed for a
place in aGreatSPN2.0.2nodel. In case of a SWN model, then the user has to provide:

¢ the initial marking of the complementary place of an inhibitor place, and
¢ the function to be assigned to the test arc that connects the complementary place to the inhibited transition;

both of these information have to be given using 8reatSPN2.0.3yntax. Let us consider the net of FigL

<X>

Figure 6.1: SWN net with an inhibitor arc

during the translation execution, the following requests will be displayed:

Please, introduce initial marking for the dual place of p4
domain of place p4: C
MO (p4) =0
Use ’'e’ for empty initial marking : <S>

Please, introduce arc_function for inhibitor_arc <S-y>
between place p4 and transition t4

function for input/output arc: <S-y>

It is possible to define an empty initial marking using tBeatSPN2.0.2xpressiori<s> or simply thee

2From here until the end of this chapter the underlined character represents the input given by the user.

110

letter. If we add an arc froré to p4 with arc function< x > in the net of Fig6.1and the guardx <> y| to the
transitiont4, then the following requests will be displayed:

Please, introduce arc_function for inhibitor_arc <S-y>
between place p4 and transition t4
(there is also an output arc from t4 to p4 with function <x>)
function for input arc: <S-y>

function for output arc: <S-y-x>

6.1.2.2 SWN nets with symbolic markings

When a SWN net contains a symbolic marking, then only one of the possible assignments is considered in the
translation into the corresponding PROD net. Hence, the reachability graph of the PROD net will be reduced
with respect to the one obtained from tli@eatSPN2.0.2nodel. For example, let's consider the following
GreatSPN2.0.8ymbolic marking:

M2:<M1>, M1:(C:2), C:uCl, Cl=al,a2,a3

it corresponds to the following different PROD ordinary markings:

<.al.a2. >, <.a2..a3. >, <.al.>+<.a3. >

So if only one of the above assignments is considered then the reachability graph of the PROD net is 1/3 of
the one obtained for th@reatSPN2.0.2ne.

6.1.2.3 The script ExploreRG

Once theGreatSPN2.0.2et has been translated into the PROD net it is then possible to perform model-checking
using the PROD tool. To investigate the reachability graph (RG) of the PROBetietmeprod the following
command have to be executed:

prod netname_prod.init
netname_prod
strong netname_prod

probe -1 netname_prod.macro netname_prod

that perform the corresponding actions:

111

preprocessing aietnameprod

RG generation ofetnameprod

computation of the strongly connected components of the R@wfameprod
activation of the analyzer of the RG nbmereteprod

After the last command has been launched, the interactive RG analyzes is running (it is in prompt state
0#); it is then possible to submit queries to investigate the RG of the net. Besides the basic queries of the PROD
syntax, the user can exploit the predefined macros contained in thetiilameprod.macrahat can be displayed
from theprobe prompt with the commandefs.
Alternatively to the command
probe -1 netname_prod.macro netname_prod

the commandsrobe netname_prod andload netname_prod.macro have to be launched.
The commandjuit causes the termination of theobe session and hence the ending of the RG inspection.
Afterwards, we suggest to execute the command:

prod netname_prod.clean
that removes all the files produced during the RG generation. The sequence of commands listed at the beginning
of this paragraph included this last command is summarized in the scripkfileorerG that defines a macro
command to be used as follows:

ExploreRG netname_prod
this command generates the RG of the PROD net definedthame prod, allows to inspect the RG through
queries, included the ones predefined in theddename_prod.macro and finally, removes all the files created
during the RG generation.

6.1.2.4 The pre-defined macros

All the predefined macros generated by the PROD translator are stored in thetfilene prod.macro: they

can be used during the inspection of the RG of thenathameprod through the interactive analyzerobe.

Besides the macro definitions, the definitions of the marking parameters and of the coloured tokens of the net are
also listed. Some macros takes account of the characteristics of the translated net, others are independent of the
structure of the net. Moreover, some macros are sirajidys of someprobe commands such as:

#define gqv query verbose
#define gn query node
#define gmn query mute node

#define gvn query verbose node

Let us consider a net with the following subsets of transitions:

112

e T1, T2, T3 timed transitions (exponential);
e t4, t6timed transitions (deterministic);

e t5, t7immediate transitions with prioritg1;
e t38, t9 immediate transitions with prioritg2;

a first group of macros consists of a list of definitions of the above subsets of transitions:

#define TEMP_CLASS (\ exponential timed

T1(1) || T2(1) || T3(1)) transitions subset
#define DET_CLASS (\ deterministic timed

td (1) || t6(l)) transitions subset
#define G1_CLASS (\ immediate transitions with
t5(1) || t7(1)) priority G1 subset
#define G2_CLASS (\ immediate transitions with
t8(1) || t9(1)) priority G2 subset
#define IMM_CLASS (\ immediate transitions
G1_CLASS || G2_CLASS) subset

The second group of macros consists of a set of queries to be used as a command framdipeompt, the
probe’s answer will be of type:

8 PATH

built set %12

that means that either 8 paths or 8 markings, satisfy the submitted query and the result of the query is saved into
a set denoted &sl2.

During the queries it is possible to “jump” from a node of the RG to another through the comymanch
where n is the number that identifies a node of the RG.

In the following the second group of macros is listed:

1. TangMark
detects the set of tangible markings of the net, deadlock markings are not included;

2. VanMark
detects the set of vanishing markings of the net;

3. MOpathTO (markSet)
detects and displays the set of paths P suchRhat |Ji; P whereR is the shortest path fromdy to M;,
M; € markSet and markSe{M.,..,Mp};

113

10.

11.

12.

13.

14.

. PathTO (markSet)

detects and displays the set of paths P suchRhat | i, P wherePR is the shortest path from the current
marking toM;, M; € markSet and markSefMs,..,My};

. Deadlock

detects the set of deadlock markings;

. MOpathTOdeadlock

detects and displays the set of the shortest paths flgtio each deadlock marking;

. PathTOdeadlock

detects and displays the set of the shortest paths from the current marking to each deadlock marking;

. Livelock

displays all the livelocks of the net;

. MOpathTOlivelock (1ivelockSet)

detects and displays the set of the shortest paths Winto each marking belonging to the livelock
livelockSet, wherelivelockSet is a set of the forntsn where n is its identifier numbér

PathTOlivelock (livelockSet)
detects and displays the set of the shortest paths from the current marking to each of the markings belonging
to livelockSet, such set have to be of the forsan where n is its identifier number;

AllMarkEnabOnly (lastset,transSet)
detects and displays the set of markings in which only transitions belonging to theagsetet are en-
abled,;

ExistPathMltoM2 (lastset,markl,mark?2)
detects and displays the shortest path from markisgk1 to the markingmark2, if no path is found
between the two markings the answer to this query FTH;

AllPathMltoM2 (lastset,markl,mark?2)
detects and displays all the paths, without loops, fiamrk1 tomark2, if no path is found between the two
markings the answer to this querylisPATH;

MarkingSetEnab (trans)
detects and displays the set of markings that enable transition
ttrans;

3In probe the strongly connected components of RG, hence the livelocks, are denoted as %%n.

114

15.

16.

17.

18.

19.

20.

21.

22.

TransEnab (mark)

detects and displays the set of transitions enabled in maikini

Successor (mark, trans)

detects and displays the markilly reached from markingark after the firing ofcrans, i.e.:

Enable (mark, trans)

verifies if the markingnark enables the transitiotrans;

Mark (node)
displays the marking identified by the numberie;

MarkSetEnabOR (setTl, setT2)
detects and displays the following set of markings:

markSet= {M;| MtV Mty Wheret, € setT1 Aty € setT2}

i.e the set of markings that enable at least either a transition of thetset or a transition of the setet T2;

MarkSetEnabAND (lastset, setTl, setT2)
detects and displays the following set of markings:

markSet= {M;| M;[ty A Mi[ty Wheret, € setT1 Aty € setT2}

i.s. the set of markings that enable at least a transition of the=get and at least a transition of the set
setT?2;

MarkBelongSet (lastset,mark, markSet)
verifies if the markingnark belongs to the set of markingarkset;

LogicCond (formula)

detects and displays the set of markings that satisfy condition expressedry a.

We emphasize the form of the parameters appeared in some macros of the previous list and not explicitly de-

scribed:

e lastset hasto be the number of the last set computedidape, usually the one obtained as a result from

the last submitted query;

e transSet is a set of transitions, it has to be expressed with the same syntax used for the definition of the

SetsTEMP_CLASS andIMM_CLASS, that is:

115

Transnamel(1) Transname2(1))

e mark is a marking that corresponds to a node of RG, it has to be expressedhas is the number that
identifies the node of RG, for example:

TransEnab (5)

wheres represents a marking of RG.

e markSet is a set of markings and it has to be expressethashere n is the number that identifies the set
containing the considered markings; it can be either a basic set definetbby or a set obtained as a
result of a query, for example:

MarkBelongIns (4,10, %2)

wherei is the last set created Iy obe, 10 represents a marking ard is a set of markings.

e formula is a formula that can be expressed using the PROD grammar

formula = (formulg) | not formula| formulaand formula|
formulaor formula| expr

expr = simpleexpr| mark==mark| mark!= mark|
mark >= mark| mark <= mark| mark < mark|
mark > mark| op1 expr| expr op2 expr
simple.expr = card(mark) | (expr) | digits
mark = simplemark| mark+ mark| simple expr simplemark
simplemark := placename| empty | < .rangelist > |

< ..> | (mark)
Non terminal symbolepl andop2 are respectively the unary and the binary operators used in the expres-
sions of the C programming language. Let us consider some examples of formulae accepted by the PROD
grammar:

card (pl)>=card(p2) the total number of tokens in plage

is equal to the total number of tokens in place
card(pl)==N the total number of tokens in plage

is equal to the value of the parameter
pl==p2 the marking in place1 is equal to the marking in plage®.

4t is worth to notice that in general the sets generategrape are sets of paths, the markings are considered as paths of zero length.
5 The grammar described in the following is simplified, for a full description see the PROD reference f@nual[

116

pl<N p2 the marking in place1 is less than the marking in plage
multiplied by the value of the parametef.

Let us see some example on the usage of the macro 22, that accept as a input parameter a formula:

O#LogicCond(card(pl)==2 and p2==empty)
detects the set of markings in which the placds marked with 2 tokens and the plageis empty;

O#LogicCond(pl==(<.al,pl.>+<.a2,p2.>))
detects the set of markings in which the marking of plates the one specified by the query.
Symbolsal,pl,a2,p2 are numeric constants that represent coloured tokens.

Figure 6.2: GSPN net with a livelock

Macros 9 and 10 do not guarantee that the paths found are the shortest paths that brings to a livelock, really
it should be verified that every path does not contain more than one node belonging to the livelock.
Let us consider the net of Figj2the following queries can be submitted:

O#livelock

Component %%

0#MOpathTOlivelock (%$%0)
PATH
Node 0, belongs to strongly connected component %%1

Pl: <..>

6The number of occurrences of a single coloured token is compared in the two markings.
"The markingip2 is obtained from the marking of the plage by multiplying the occurrences of each coloured tokdimes.

117

Arrow 0: transition t3, precedence class 0
Node 1, belongs to strongly connected component %%0

P3: <..>

PATH

Node 0, belongs to strongly connected component %%1
Pl: <..>

Arrow 0: transition t3, precedence class 0

Node 1, belongs to strongly connected component %%0
P3: <..>

Arrow 0: transition t4, precedence class 0

Node 3, belongs to strongly connected component %%0

Pd: <..>

2 paths
Built set %1

Two paths have been detected, but only the first one is the shortest path that brings the net to the livelock. We
can then select the shortest path by means of the query:
FxistPathMltoM2 (1 8 ,0,1).

6.2 Kronecker solutions: APNN translator

The APNN translator transforms th8reatSPN2.0.21et description files into a corresponding APNN notation:
the GreatSPN2.0.2ayers are interpreted as a partition of the net into subnets which synchronize over transitions
(Superposed GSPNS), for a subsequent application of Kronecker based solution methods.

6.3 Tgif translator

The gspn2tgif program translates a model definedGneatSPN2.0.2ormat into aTgif [9] .obj file: each net
object is translated into &gif graphical object so that the graphical appearance of the converted GSPN/SWN
model can then be modified using thgif GUI.

6.4 Fluid nets translator

Thenet2fspntranslator provided with thESPNEditsoftware package, transforms timet files saved byGreat-
SPN2.0.2nto the.fspn files required by the solution components of the FSPN analysis tool. User can then add

8This is the identifier number of the set obtained with the previous query.

118

fluid places and continuous arcs to the generated files and analyze them using the tools provide& BiNtEeit
package. In particular the generated FSPN may be solved either by simulation (using the software component
FSPNSsim) or by numerical analysis (usirfgSPNsolv8.

6.5 Refinement of SWN performance indexes: PERFSWN

This text has been written by Serge Haddad, Patrice Moreaux, and M. Sene

PERFSWN is a set of tools providing an interactive framework to define, compute and present to the user
steady state performance indices of SWN insofar as these indices relate only to static subclasses of the SWN.
These tools compleme@reatSPN2.0.#20 exploit the SRG and the steady state probability vector of the SWN. In
addition toGreatSPN2.0.2PERFSWN leans on several Perl scripts that we have developed and on the interactive
numerical environment Scilab (available at http://www-rocq.inria.fr/scilab).

The user environmentis composed of several working sessions. GReatSPN2.0.Zession is dedicated to
SWN definition and computation of performance indices available in the tool. A Scilab session supplements
GreatSPN2.0.20 compute various performance indices and to provide graphical presentations of data (plots,
graphs, etc). Beside these two sessions, the user can enter commands into a terminal session to run the interface
software which extracts results and compute new ones GaratSPN2.0.2esults.

A typical sequence of operation in PERFSWN is the following. The user defines its SWN with the graphical
interface ofGreatSPN2.0.2 Next, he ask&reatSPN2.0.2for the computation of the Symbolic Reachability
(SRG) with output into an ASCII file, alone, or together with the solution of the aggregated Markov chain of
the SWN. Under the terminal session, the user can now process the Tangible Symbolic Reachability Set (TSRS)
and obtain a Scilab script version of the solution veatéor the TSRS. If no change is done to the structure of
the SWN, the TSRS does not need to be reloaded when new stochastic parameters are given. Then he begins its
Scilab session by loading the TSRS anfi.e. running our corresponding scripts). Consequently, the user works
with data from the TSRS and the vectointo the Scilab session. If needed, the user asks for specific symbolic
firings in the terminal session. He can now compute the throughput of these transition firings into theScilab
session by calling interactively functions of our libraries.

PERFSWN benefits from all features of Scilab for the definition of high level functions (for instance reward
functions based on the static partitio ns of the symbolic markings), as well as for the management of the working
session (save and restore of sessions, batch execution, etc.).

Computation of performance indices(in steady state) is based on the (colored) token distributions, the through-
put of transitions and the response times of subnets. The general method to obtain a performance iajlex (say
is to define a reward function giving, for each tangible marking TRS a reward value(m) contributing to

a. Thenwe hava=E(r) = S nerrsf (M)T(M). PERFSWN is able to compute these indices, provided that they

119

relate to the number of tokens per static subclasses only. PERFSWN extracts the TSRS with the static partitions
of all tangible symbolic markings (the canonical representations are discarded) into a Scilab session. Moreover,
firings instances of a given transition are retrieved from the SRG based on a boolean expressionbuediais
formula The syntax of bindings formulae is the classical combination of logic (or, and, not) with basic boolean
expressions giving the static subclass of the instantiation of a variable of the transition.

PERFSWN provides two basic Scilab libraries for performance indices computatiensci is dedicated
to specific SWN functions (for instance, display symbolic markings, find markings with specific property, define
and compute reward functions). In addition to performance computations, the user can in this way, examine
several qualitative properties of the system. The second libsary,.sci, is a set of general purpose functions
useful in the area of performance evaluation. It provides the user with mean reward computation from a user
defined reward function (for instance over symbolic markings), distribution computation, like tokens distribution
in one or several places, plot of cumulative distributions functions, etc. Obviously this library could be easily
extended by any user.

120

Appendix A

Net description files

The GreatSPN2.0.2et description is stored in two ASCII files calledtname .net andnetname.def respec-
tively.

The .net description file contains the description of the structure Gf@atSPN2.0.2nodel according to the
following Backus-Naur Form (BNF) format. Capital keywords are non-terminals, while terminals are represented
as C language strings. The following special terminals are usggly indicates void fieldsstring indicates
any non-empty character string not containing blank characigss;e indicates any sequence of blank and tab
characterspatural indicates a non-negative integet;nt indicates a positive integesreal indicates a positive
real; coords indicates a pair of non-negative real number representing object coordinates with a space between
them. The notatiort (xx) ... denotes the repetition of the string in braces for a number of times derived by
interpreting the stringx as a natural number. Moreover we used C-like notatiorcomments */ to comment
some lines.

The *.def description file contains the description of additional information GfraatSPN2.0.2nodel. In
particular:

e definition of the coloured part (SWN models only) according to the SWN BNF grammar given infdble

o definition of rate parameters according to the Marking-Dependent Rate Definition BNF grammar given in
TableA.2;

e definition of (no default) results, to be computed using either markovian or simulator solvers, according to
the Result Definition BNF grammar given in Tal#les.

In addition to the special terminal keywords adopted previously, in the definition of the file, we use also the
following ones: special terminal keywordissign> to indicate a marking dependent rate parameter definition;
<result> to indicate a result definitionsfun_def> to indicate a coloured definition.

121

A.1 Format of the .net file

NETFILE = COMMENT NOOBJS MARKS PLACES RATES GROUPS TRANS LAYERS

COMMENT ::= "|0|\n" COMHEAD "|\n"

COMHEAD = empty "|[\n" | "Comment on this GSPN:\n" { COMLINE "\n" }

COMLINE = space | string | empty | COMLINE space | COMLINE string

NOOBJS ::= "f" space NM space NP space NR space NT space NG

space "0" space NL space "\n"

NM ::= natural /* number of marking parameters */

NP ::= natural /* number of places */

NR ::= natural /* number of rate parameters */

NT ::= natural /* number of transitions */

NG ::= natural /* number of groups */

NL ::= natural /* number of layers */

MARKS ::= #(NM) { NAME space MVAL space coords LEVELS "\n" }

NAME 1= string

MVAL 1= pint

LEVELS ::= space "0" | space pint LEVELS

PLACES ::= #(NP) {NAME space PMARK space coords space coords LEVELS COL "\n" }

PMARK ::= natural | "-" MPINDX

MPINDX ::= pint /* 0 < #(MPINDX) <= #(NM) in case of GSPN */

COL ::= empty | coords string

RATES ::= #(NR){ NAME space RVAL space coords LEVELS "\n" }

RVAL 1:= preal

GROUPS ::= #(NG) {NAME space coords space PRI "\n" }

PRI 1= pint /* priority */

TRANS ::= #(NT) {NAME space TRATE space TSERV space TKND space TINP space
TROT space coords space coords space coords LEVELS COL "\n"
LDCOEFFS TIARCS TOUT TOARCS TINH THARCS }

TRATE ::= preal | "-" RPINDX | MDRATE

RPINDX ::= pint /* 0 < #(RPINDX) <= #(NR) */

MDRATE ::= "-510" /* A MD rate is defined in file .def */

TSERV ::= natural | "-" LDPOP

LDPOP 1= pint /* max population of LD equivalent server */

TKND ::= EXPT | DETT | IMMT

122

EXPT ci= "O"

DETT = "127"

IMMT ::= pint /* priority level group s.t. 0 < #(IMMT) < #(NG) */
TINP ::= natural /* No. Input Arcs */

TROT o= "Q" | "1™ | "2" | "3" /* rotation coefficient */
LDCOEFF'S = (#(LDPOP) - 1){ preal "\n" }

TIARCS = #(TINP){ AMULT space APLACE space APOINTS LEVELS
COL "\n" APLIST }
AMULT ::= pint /* arc multiplicity */
APLACE 1= pint /* place index s.t. 0 < #(APLACE) <= #(NP) */
APOINTS ::= natural /* No. intermediate points for broken arcs */
APLIST ::= # (APOINTS) { coords "\n" }
TOUT ::= natural "\n" /* No. Output Arcs */
TOARCS ::= #(TOUT) {AMULT space APLACE space APOINTS LEVELS
COL "\n" APLIST }
TINH ::= natural "\n" /* No. Inhibitor Arcs */
THARCS ::= #(TINH) {AMULT space APLACE space APOINTS LEVELS
COL "\n" APLIST }
LAYERS = { NAME "\n" } /* list of Layer names

one per layer used in objects */

A.2 Format of the .def file

DEFMD = "|" TI "\n" RATE_DEF "\n"

TI s pint /* transition relative position inside ".net" */
RATE_DEF ::= <assign>

RESULT ::= RES RESULT | "[\n"

RES = "|" NAME space coords space ":" space RES_DEF "\n"

NAME ti= string

RES DEF ::= <result>

COLOR 1= COL COLOR | empty

COL D= " (" NAME space CT space coords space "(@" CT "\n"

<fun_def> "\n))"

C’I‘ te= IIC" ‘ "f" | "m"

123

A.3 Grammars

The SWN syntax (Tablé.1), the marking-dependent rate definition grammar (Tab® and the performance
result definition grammar (Tabke.3) are given according to the following BNF format.

All the terminal keywords are represented as C-language strings in quotation marks except for the following
terms: <real_.number> indicates a positive real numbetjnteger> indicates a non negative integer number,
<string > indicates any non-empty character string not containing blank characterseandty> indicates
void fields. Concerning thecolor_classtype > keyword it can assume either “0” or “u” values which stand for
“ordered” and “unordered” respectively.

<fundef> = <color_classdescription> |

< static subsclassiescription> |

<initial_marking description> |

<dynamicsubclassdescription>
<color_classdescription> = <color_classtype> <static subclassesist >
<static subclassedist > = <staticsubclassname> |

<static subclassedist > “)” <static subclassname>

<color_classtype > = 0" |fu
< static subclassdescription> = <string > “{” <integer> — <integer> “}"
“{" <objectslist > “}”
<objectslist > = <objectname> | <objectslist > “,” <objectname>
<placecolor.domaindescription> := <color_classedist > | <empty>
<color_classedist > = <color_classname> |

<color_classname> “” <color_classedist >
<arc_functiondescription> = <empty> | <coefficient> “ID” |

<ordinary_function>
<ordinary_function> = <coefficient>

[<predicate> | “<” <functionlist > “>" |

<ordinary_function> <sumop > <coefficient>

[<predicate> | “<” <functionlist > *>"
<functionlist > = <functionkernel> |

<functionkernel> “" <functionlist >
<functionkernel> = <term> | <functionkernel> <sumop > <term>
<term> ::= <synchronizatiorterm > | <projectionterm> |

<successaterm > | <predecessaterm >
<synchronizatiorterm > = <coefficient> “S”

124

<projectionterm>
<successaterm>
<predecessaterm >

<initial _markingdescription>

<coefficient> “S” <static subclasshame>
<coefficient> <functionname>
<coefficient> “I” <functionname>

w~n

<coefficient> <functionname>

<shortmarking> | <ordinary_marking>

<shortmarking > = <coefficient> “S”
<ordinary_marking> = <coefficient> *<” <markinglist > “>”"

<ordinary_marking> <sumop >
<coefficient> “ <" <markinglist > *>"

<markinglist > = <markingitem> | <markinglist > “” <markingitem >

<markingitem > = <dynamicsubclassname> | “S” <static subclassname> |
“S” | <objectname>

<cardinality > = <integer> |

“I" <color_classname>"." <static.subclasshname> “|”

“ ”

<color_classname> *“

<objectname> = <string >

<dynamicsubclassdescription> = (" <staticsubclassname> “” <cardinality > [“:” <integer> | “)"
<predicate> = <predicate> “or” <pterm> | <pterm>

<pterm> = <pterm> “and” <pfatt> | <pfatt >

<pfatt > m= (" <predicate>)"

“d”“(" <string>*“)" <eqop> <d_operand>
| <string > <eqop> <str_.operand>

<d_operand> n= o "d”f(" <string >)" | <static subclassname>
<str_.operand> n= <string> | “I" <string > | 7" <string >
<color_classname> = <string >
<functionname> = <string >
<static subclassname> = <string >
<dynamicsubclassname> = <string >
<coefficient> = <integer> |
“|” <color_classname>"." <static subclassname> “|”
“|" <color_classname> “|" | <empty>
<sumop > B
<eqgop> n=E

Table A.1: SWN syntax for th&reatSPN2.0.package.

125

<assign> = {"when” <logic_.cond> “:" <value> *“;"}
“ever” <value> ;"

<logic_cond> = <compare> | “~" <logic_.cond> | “(" <logic_.cond> “)" |
<logic_cond> “&" <logic_cond> | <logic_cond> “0” <logic_.cond>

<compare> = <marking> <compoper> <integ const>

<marking> = “#" <placename>

<placename> := <string>

<compoper> = U= [YET ST T | > | <=

<integconst> = <integer> | <markpar > | <marking>

<mark par > = <string>

<value> n= <realval > | “(" <value>*)" | <value> <arithm.op > <value>

<real_val > = <real_number> | <marking> | <rate_par >

<rate_par > = <string >

<arithm.op > R S i e

Table A.2: BNF of the marking-dependent rate definition grammar.

<result> n= <sum>
<sum> = <item> | <item> "“+" <sum> | <item> “-" <sum>
<item> = [<realval >]"“p{" <logic_cond> “}" | [<real_.val >]“P{” <logic_cond> “}"

[<real.val >]“e{” <marking> “}" | [<real.val >]“E{" <marking> “}" |
[<realval >]“e{” <marking> “/" <logic.cond> “}" |
[<real.val >]“E{" <marking> “/" <logic_.cond> “}"

<real_val > = <real_number> | <rate_par >

<rate_par > = <string >

<logic.cond> = <compare>|“"" <logic.cond> | “(" <logic.cond>")" |
<logic_cond> “&” <logic_.cond> | <logic_.cond> “0” <logic_.cond>

<compare> = <marking> <compoper> <integ.const>

<marking> n= # <placename>

<placename> := <string>

<compoper> = U= ET US| | > | <=

<integconst> 1= <integer> | <markpar > | <marking>

<markpar > = <string >

Table A.3: BNF of the performance result definition grammar.

126

A.4 Extended SWN grammar

The SWN grammar has been extended to allow the definition of the refined performance indices. In particular,
the extended grammar allows to define four main categories of performance indices:

¢ linear combinations of mean number of token in places and probabilities;

linear combinations of throughputs;

average crossing times;

multiple results.

TableA.4 formalizes the extension according to the following BNF format. All the terminal keywords are
represented as C-language strings in quotation marks except for the following tematnumber> indicates
a positive real numbekinteger> indicates a non negative integer numbestring > indicates any non-empty
character string not containing blank characters.

<result> D= <sum> 7| <sumt > 47

<itemfam>*" | <sum>“/" <sumt >*“;"
<sum> = <item> | <item> “+” <sum> | <item> “-" <sum>
<item> = [<realval >]“P{" <logic.cond> “}"

[<realval >]“E{” <marking> “}"

[<real.val >]“E{” <marking> “/" <logic_cond> “}”

<marking> = “#” <placename> | “#” <placename> “[" <pred> ‘"
<sumt > n= o <itemt > | <itemt > “+” <sumt > | <itemt > “-" <sumt >
<itemt > = [<realval >]“X{” <markingt > “}"

[<realval >]“X {" <markingt > “/" <logic_.cond> “}"
<markingt > = “#" <transitionname> |

“#" <transitionname> “[" <pred> “]"
<item.fam > = [<realval >]“E{” <markingfam> “}"

[<real.val >]“E{” <markingfam> “/" <logic_cond> “}"

[<real.val >1“X {" <markingfam> “}" |

[<realval >]“X {” <markingfam> “/" <logic.cond> “}"
<marking fam > = "#” <obj_name> “(*)" |

“#” <obj_name> “(*) | SEL=[" <pred > “]"

“#" <obj_name> “(*) | SEL=[" <pred>"], COND=[" <pred> “]" |

“#” <obj_name> “(*) | COND=[" <pred >‘]" |

127

<placename>

<transition.name>

<obj_list >
<obj_name>
<real_val >
<rate par >
<logic_cond>

<compare>

<compoper >
<integ const>
<multiset>
<multisetdef>

<multisetconst>

<classlist >
<classname>
<mark par >
<pred >
<comparep >
<rel_op >
<subclass>

“#” <obj_name> “(” <obj_list >*)" |

SEL=[" <pred> 7" |

“#” <obj_name> “(” <obj_list >*)| SEL=[" <pred > “], COND=[" <pred> “]" |
COND=[" <pred> ‘"

“#" <obj_name> “(" <obj_list >*)

“#" <obj_name> “(" <obj_list >*)

<string >

<string >

<obj_.name> | <objlist > “” <obj.name>
<string >

<real_number> | <rate_par >

<string >

<compare> | “~” <logic_cond>

“(" <logic_.cond> “)" |
<logic_cond> “and” <logic_cond> | <logic_cond> “or” <logic_cond>
<marking> <compoper> <integ.const> |

<multisetdef> <compoper> <multiset>

<relop>|“>" |“<" | “>=" | “<="

<integer> | <mark par > | <marking>

<multisetconst> | <multisetdef>

“#" <placename> “(*)" | “#" <placename> “(" <classlist > *)" |
“#" <placename> “(*)[" <pred> 7"

“#" <placename> “(" <classlist > “)[" <pred>"]"

“[" <real_.number>"] <" <objlist > “> |

“I" <real.Lnumber> “] <” <obj list > “> +" <multisetconst>
<classname> | <classlist > “” <classname>

<string >

<string >

<comparep > | “(" <pred>"*)" | <pred> “and” <pred> | <pred> “or” <pred>

“d(” <obj_name>)" <rel_op > <subclass>

<>
<string >

Table A.4: SWN extended syntax for colored performance indices
definition.

128

Appendix B

Known bugs and Warnings

A lot of bugs presented in the previous versiorzméatSPN2.0.have been discovered and eliminated. However
some of “known” bugs still remain in the current version and a list of them follows, in the next section a summary

of warnings is given.

1. Simulation of GSPN models: to terminate correctly the simulation without provoke an infinite loop when
the “Timed interactive” option of th&imulationwindow is chosen together with the “Auto” mode it it is
good choice to press the “Stop” button first and then to click on the “Done” button, instead of pressing
directly the “Done” button.

2. Places with the same tag: it may occur that when places are copied by usiigléutand Add options
from theAction menu, the new added places are created with the same tags of the copied ones.

3. SWN syntax is not checked at editor level.

4. transitions rates of order of magnitude less than®1@re cut off (i.e. only the first six decimals are
considered) when saved from GUI into the net definition file.

5. It may occur that when transitions with different priorities are renamed the priority groups are not updated
once the net is saved or different priority groups are saved with the same name.

6. syntax error in the warning text appearing in the window that pops-up whekRilifte:RemoveResults
option is chosen.

7. TheView—Overviewdoes not work correctly.

8. TheFile—Mergeoption has not been implemented.

129

B.1 Warnings

1.

10.

11.

Before launching &reatSPN2.0.8olver be sure that the hostname set in the “Hostname:” left area of the
File—Optionswindow is the name of the machine on which the Control Panel has been started.

. Rescaling is completely different from zooming the net: "zoom” operation affects only the editor view of

the net while "rescale” operation affects the actual coordinates of the objects of the net.

. The interactive simulation does not work properly on some GSPN models: to use simulation techniques

on a GSPN model is better to transform it into an equivalent SWN model, i.e., with the same state space,
and to launch the ordinary simulation available for SWN models.

. Performance bound solver: the case of conflict with race policy and with enabling memory policy for timed

transitions is not properly handled. The net description is assumed not to contain such cases.

. Performance bound solver: to obtain correct results in case of computation of performance bounds for

transition throughputs, launch the solver on a place first.

. The maximum capacity of each placeMsAX = 255 even though this constraint is not signalled when an

analytic module is launched from the GUI.

. If the net is characterized by an initial dead marking, the launch of an analytic solver provokes a segmen-
tation fault.
. Reachability graph generator does not produce the RG in case of nets with all immediate transitions.

. SWN simulation: the results computed from a simulation run are basically the mean number of token in

places and throughputs of transitions and they are all independent from the color classes. Refined results
- color class dependent and, in general, user defined results - can be obtained by using the extended SWN
simulation (see Sectidnb).

SWN simulation in case of models with GEN transitions: when constructing the SWN model via GUI,
all the GEN transitions have to be specified as they were negative exponential distributed, i.e. white-box
transitions also in case of deterministic transitions.

Multiple experiments: MultiSolve does not perform exhaustive check of the parameters provided by the
user. The parameters are checked only in a syntactic manner. Hence, in order to control if the desired
experiments are possible on the chosen net, it is always suggested to perform some computations using
GreatSPN2.0.2&self before using MultiSolve.

130

Appendix C

Installation

The GreatSPN2.0.Dackage has been successfully compiled on various Linux distribution (Mandrake, Slack-
ware, Red Hat) coming with OpenMotif as well as SunOS5.x systems. In particular the following “combinations”
of machines and environment are the one that have been tested at our site:

Sun0OS 4.1.3 Sun0S 5.5,5.6,5.7,5.8 (SPARC) Sun0S 5.5.1,5.6 (INTEL)
gcc 2.5.8 gcc 2.7.2 gcc 2.7.2

Motif 1.2 Motif 1.2 Motif 1.2

X11R5 X11R5 X11R5

Linux Redhat 4.1, Slackware,Mandrake,SuSE 7.1 (INTEL)
gcc

Motif 2.0

X11R6

You can try other combinations, but please remember that some featuBgsaiSPN2.0.210 make use of
interprocess communication, so that recompilation for whatever Unix/Linux system may not work.

C.1 System requirements for compiling the tool

- the following utilities should be available at the command line prompt (modifyptiiei environment
variable if not):

make GNU make, which is different from the classi¢alin/make command;
gcc GNU C-compiler;

lex & yacc (or flex & bison) lexical analyser and parser generator;

131

sh standard shell and command interpreter;

rsh remote shell (in case the user wants to lau@ebhatSPN2.0.2&0lvers on remote machines): it must
work without asking password, that is to say if M is a remote machine on which you have an account,
thersh M command should not ask for a password; if this is not the case, ask your system manager
about, or you will get misterious error at run time, saying that you do not have privilige to execute
solution programs;

- X11 and Motif runtime environments: in particul&@reatSPN2.0.2nakes use of Matif librariedrm and
Xm), thus to compile the tool you need tKkeéandMotif development environments being installed on your
system;

- the user-interface-language (uil) compiler: it is used to define the widgets dbrgtSPN2.0.25UI
(comes with Motif distribution but often is not included in the default installation).

WARNING! If the which uil command does not find it, ask your system manager to find it for you or
to install it if it is not already there. If you are using the Lesstif clone of Motif be sure that it works.

C.2 Compiling and installing the tool

To compile and install th&reatSPN2.0.package go through the following steps:
- get the zipped archivgreatspn-2.1-src.tar.gz;
- create a new directory - the install directory - where you want to locate the tool/€sg@/1ocal/Great SPN/;

- umcompress and extract the archive into the install directory by using the commands
gunzip greatspn-2.0.2-src.tar.gz

tar -xvf greatspn-2.0.2-src.tar /usr/local/GreatSPN/

- move to the subdirectoryoURCE, where the source code and the makefiles are placed:
cd /usr/local/GreatSPN/SOURCES/

- Currently two makefiles are given, one for SunOS platforms and the other for Linux platforms; according
to the system your machine is running, edit the appropriate makefile. Only the first lines of the makefile
closed between the #-filled lines have to be changed: you will find some examples of common settings
placed in the commented lines. Check your system and make the right modifications;

- return to the shell prompt and type the command:

make -f Makefile.<platform> <target>

132

where <platform> is the name of the installation platform, i.e., SunOS5.x or Linux-OpenMotif, and
<target> has to be replaced with the desired installation options. If you want to install the overall package
omit <target>, otherwise type any combination of the optiogseatspn, algebra andmultisolve;

- if everything goes right you will find in the current directory two new subdirectories:
/usr/local/GreatSPN/bin and/usr/local/GreatSPN/<platform>
the former contains the executable (they are all shell-scripts) and the latter the binaries of the tool;

- to launch theGreatSPN2.0.Z5Ul type the commandjreatspn. To launch the MultiSolve GUI type the

commandmultisolve, see sec#.6 (chaptd) for information about how to use it. To launch thlgebra
composition module type the commandigebra, see chaph.for information about how to use it.

C.3 Setting the environment

To runGreatSPN2.0.8% necessary to set tligreatSPN2.0.2nvironment variables, in particular:
- the/usr/local/GreatSPN/bin directory has to be added to the useth environment variable;

- the uselL.D_LIBRARY_PATH environment variable has to be set appropriately before rurdiagtSPN2.0.2
. This variable has to contain the paths to the Motif and X11 libraries and if it is not set at all, errors of
the typecan't find xyzappears, while when it is not set to the right path a segmentation fault error usually
occurs. The path us dufferent under Solaris, SunOS and Linux; in our environment, the command to set
the appropriate values are:

- For SunOS4 (non Solaris):

setenv LD_LIBRARY_PATH "/usr/local/X11R5/1lib:/usr/lib"

- For SunOS5 (Solaris):

setenv LD_LIBRARY_PATH "/usr/openwin/lib:/usr/lib"

- For Solaris on PCsetenv LD_LIBRARY_PATH "/usr/dt/lib"

but they may be different on your system;

- the GreatSPN2.0.2nvironment variableSPN2LPSOLVE has to be set equal to the pathname of the exe-
cutablelp_solve, i.e.,GSPN2LPSOLVE = /usr/local/GreatSPN/bin/lp_solve.

WARNING! Currently, theGreatSPN2.0.2nstallation procedure does not include the installation of the
Ip_solvepackage: you have to install the package separately, §ge[download it (version 3.2).

133

- theMULTISOLVE_AWK environment variable has to be set with the path ofatvé& utility, i.e.,

MULTISOLVE_ AWK = /usr/xpg4/bin/awk.
The following GreatSPN2.0.2nvironment variables:

GSPNDEFAULT _PRINTER, containing the name of the default printer;

GSPNNET_DIRECTORY, containing the path directory of the net description files;

GSPNPSDIRECTORY, containing the path directory of the printout of the nets in raw PostScript format;

GSPNEPSDIRECTORY, containing the path directory of the printout of the nets in EncapsulatedPostcript
format;

are set at the moment tiig&reatSPN2.0.Z5UI is launched for the first time: a window pops-up in which it is
asked to the user to fill in the areas corresponding to the above environment variables if he/she want to change
the default ones. Default options are:

GSPN_DEFAULT_PRINTER= "lpr"
GSPN_NET_DIRECTORY= "S$SHOME/nets"
GSPN_PS_DIRECTORY= "S$HOME/ps"
GSPN_EPS_DIRECTORY= "$SHOME/eps"

and they are saved in tB&0OME/ . great spn file.

And finally.... We hope that you have been able to build and in&a#latSPN2.0.2vith litle cost in patience
and time. If you can’t make your way through it, you can contact us at the following e-mail address:
greatspn@di.unito.it

Moreover any comment and suggestion on the installation procedure will be highly appreciated.

Good luck,
the PE group of the University of Torino.

134

Bibliography

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

J. R. Agre and S. K. Tripathi. Approximate solution to multichain queueing networks with state dependent
service ratesPerformance Evaluatiqrb(1):45-55, February 1985.

M. Ajmone Marsan, G. Balbo, G. Chiola, and G. Conte. Generalized stochastic Petri nets revisited: Ran-
dom switches and priorities. IAroc. Int. Workshop on Petri Nets and Performance Modedgies 44-53,
Madison, WI, USA, August 1987. IEEE-CS Press.

M. Ajmone Marsan, G. Balbo, and G. Conte. A class of generalized stochastic Petri nets for the performance
analysis of multiprocessor systemfCM Transactions on Computer Syste@(4.), May 1984.

M. Ajmone Marsan, G. Balbo, G. Conte, S. Donatelli, and G. Franceschuslelling with Generalized
Stochastic Petri Netslohn Wiley, 1995.

M. Ajmone Marsan and G. Chiola. On Petri nets with deterministic and exponentially distributed firing
times. InProc. 7" European Workshop on Application and Theory of Petri Netgjes 151-165, Oxford,
England, June 1986. reprinted in G. Rozenberg, ed., Advances on Petri Nets '87, LNCS 266, pp.132-145,
Springer Verlag, 1987.

M. Ajmone Marsan, S. Donatelli, and F. Neri. GSPN models of Markovian multiserver multiqueue systems.
Performance Evaluatigril(4):227-240, 1990.

G. Balbo and G. Chiola. Stochastic Petri net simulation.Pfac. 1989 Winter Simulation Conference
Washington D.C., December 1989.

G. Balbo, G. Chiola, G. Franceschinis, and G. Molinar Roet. On the efficient construction of the tangible
reachability graph of generalized stochastic Petri netBrde. Int. Workshop on Petri Nets and Performance
Models Madison, WI, USA, August 1987. IEEE-CS Press.

W.C. Cheng. Tgif's Home Pagéittp://bourbon.cs.umd.edu:8001/tgif/

G. Chiola. A software package for the analysis of generalized stochastic Petri net modeiec.lint.
Workshop on Timed Petri Netorino, Italy, July 1985. IEEE-CS Press.

135

http://bourbon.cs.umd.edu:8001/tgif/

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

G. Chiola. A graphical Petri net tool for performance analysisPioc. 3 Int. Workshop on Modeling
Techniques and Performance Evaluati®aris, France, March 1987. AFCET.

G. Chiola. Structural analysis for generalized stochastic Petri nets: Some results and prospectssith
European Workshop on Application and Theory of Petri Neages 317-332, Zaragoza, Spain, June 1987.

G. Chiola. Compiling techniques for the analysis of stochastic Petri nets. In R. Puigjaner and D. Potier,
editors,Proc. 41" Int. Conf. Modeling Techniques and Tools for Computer Performance Evaly&ima
de Mallorca, Spain, September 1988. Plenum Press, New York.

G. Chiola. GreatSPN 1.5 software architecturePtac. 5" Int. Conf. Modeling Techniques and Tools for
Computer Performance Evaluatiphorino, Italy, February 1991.

G. Chiola, M. Ajmone Marsan, G. Balbo, and G. Conte. Generalized Stochastic Petri Nets: A Definition at
the Net Level and its ImplicationdEEE Transactions on Software Engineerid®(2):89-107, February
1993.

G. Chiola, J. Campos, J.M. Colom, M. Silva, and C. Anglano. Operational analysis of timed Petri nets and
applications to the computation of performance boundsPrtre. 5th Intern. Workshop on Petri Nets and
Performance Mode|gages 128-137, Toulouse, France, October 1993. IEEE-CS Society Press.

G. Chiola and S. Donatelli. A framework for studying sets of related Petri net models. Technical Report
90/51, Universi Paris 6, 4 Place Jussieu, 75252 Paris Cedex 05, France, July 1990. IBP Tech. Report.

G. Chiola, S. Donatelli, and G. Franceschinis. GSPN versus SPN: what is the actual role of immediate
transitions? IrProc. 4th Intern. Workshop on Petri Nets and Performance Mogelges 20-31, Melbourne,
Australia, December 1991. IEEE-CS Press.

G. Chiola, C. Dutheillet, G. Franceschinis, and S. Haddad. On well-formed coloured nets and their sym-
bolic reachability graph. I®roc. 111" International Conference on Application and Theory of Petri Nets
Paris, France, June 1990. ReprintedHigh-Level Petri Nets. Theory and Applicatiod. Jensen and G.
Rozenberg (editors), Springer Verlag, 1991.

G. Chiola, C. Dutheillet, G. Franceschinis, and S. Haddad. Stochastic well-formed coloured nets and
multiprocessor modelling applications. In K. Jensen and G. Rozenberg, ediigtsLevel Petri Nets.
Theory and ApplicationSpringer Verlag, 1991.

G. Chiola, C. Dutheillet, G. Franceschinis, and S. Haddad. Stochastic well-formed coloured nets for sym-
metric modelling applicationdEEE Transactions on Compute#2(11):1343-1360, November 1993.

136

[22] G. Chiola and A. Ferscha. Distributed simulation of Petri nelBarallel and Distributed Technology
1(3):33-50, August 1993.

[23] G. Chiola, R. Gaeta, and M. Ribaudo. Designing an efficient tool for Stochastic Well-Formed Coloured Petri
Nets. In R. Pooley and J. Hillston, editoRypc. 6" Int. Conference on Modelling Techniques and Tools for
Computer Performance Evaluatippages 391-395, Edinburg, UK, September 1992. Antony Rowe Ltd.

[24] S. Donatelli. Superposed generalized stochastic Petri nets: definition and efficient solutyoc.Ih5"
International Conference on Application and Theory of Petri Né&sagoza, Spain, June 1994.

[25] Gnuplot centralhttp://www.gnuplot.org

[26] W.H. Harrod and R.J. Plemmons. Comparison of Some Direct Methods for Computing Stationary Distri-
butions of Markov ChainsSIAM Journal Sci. Stat. Compub, June 1984.

[27] S.S. Lavenberg. Statistical Analysis of Simulation Outputs. Technical report, IBM Research Report, 1980.
Yorktown Heights, NY.

[28] Ip_solve: library for solving linear programming problems. http://www.cpan.org/modules/by-
category/11String Lang Text. Proc/Number/WIMV/

[29] J. Martinez and M. Silva. A simple and fast algorithm to obtain all invariants of a generalized Petri net.
In Proc. 2"4 European Workshop on Application and Theory of Petri NBd Honnef, West Germany,
September 1981. Springer Verlag.

[30] M. K. Molloy. Performance analysis using stochastic Petri netEEE Transaction on Computers
31(9):913-917, September 1982.

[31] M.K. Molloy. On the Integration of Delay and Throughput Measures in Distributed Processing Models
PhD thesis, UCLA, Los Angeles, CA, 1981. Ph.D. Thesis.

[32] M.K. Molloy. Fast bounds for stochastic Petri nets. Rroc. Int. Workshop on Timed Petri NefRorino,
Italy, July 1985. IEEE-CS Press.

[33] M.K. Molloy. Balanced stochastic Petri nets. Technical report, Carnagie-Mellon University, Pittsburgh, PA,
USA, November 1986. Dept. of Computer Science Report.

[34] C.A. Petri. Communication with automata. Technical Report RADC-TR-65-377, Rome Air Dev. Center,
New York, NY, 1966. Tech. Rep. RADC-TR-65-377.

[35] M. Silva. Las Redes de Petri en la Automatica y la Informatial. AC, Madrid, Spain, 1985. in Spanish.

137

http://www.gnuplot.org
http://www.cpan.org/modules/by-category/11protect unhbox voidb@x kern .06emvbox {hrule width.3em}Stringprotect unhbox voidb@x kern .06emvbox {hrule width.3em}Langprotect unhbox voidb@x kern .06emvbox {hrule width.3em}Textprotect unhbox voidb@x kern .06emvbox {hrule width.3em}Proc/Number/WIMV/
http://www.cpan.org/modules/by-category/11protect unhbox voidb@x kern .06emvbox {hrule width.3em}Stringprotect unhbox voidb@x kern .06emvbox {hrule width.3em}Langprotect unhbox voidb@x kern .06emvbox {hrule width.3em}Textprotect unhbox voidb@x kern .06emvbox {hrule width.3em}Proc/Number/WIMV/

[36] K. Varpaaniemi, J. Halme, K. Hiekkanen, and T. Pyssysalo. PROD reference manual. Technical Report
Series B, number 13, Helsinki University of Technology, August 1988://www.tcs.hut.fi/prod/

138

http://www.tcs.hut.fi/prod/

	Informal introduction to the formalisms
	History of GreatSPN
	Petri Nets
	Stochastic Petri Nets
	Generalized Stochastic Petri Nets
	A GSPN example

	Stochastic Well Formed Nets
	A SWN example

	Getting started
	The Readers--Writers GSPN model
	Starting GreatSPN
	Creating the Readers--Writers model
	Saving and printing the model
	Analysis of the Readers-Writers model
	Colored version of the Readers-Writers model
	Analysis of the SWN Readers-Writers model

	GUI in depth
	The Menu Bar
	File Menu
	Edit Menu
	View Menu
	Grid Menu
	Zoom Menu
	Rescale Menu
	GSPN Menu
	SWN Menu
	E-GSPN Menu
	Help Menu

	The Object bar
	Places
	Transitions
	Arcs
	Marking parameters
	Rate parameters
	Result definitions
	Changing place/transition tags
	Colour definition

	Solvers
	Structural analyzers
	Invariants
	Modules
	Result files structure

	Minimal deadlocks and traps
	Module
	Result files structure

	Implicit places
	Module
	Result file structure

	ECS-Confusion-ME-SC-CC
	Module
	Result files structure

	Structural boundedness
	Module
	Result files structure

	Performance bounds solver
	Modules
	Result file structure

	Analytic solvers
	GSPN solvers
	Reachability Graph generator
	TRG structure analyzer
	Markov Chain generator
	Steady State solver
	Transient solver

	SWN solvers

	Simulators
	GSPN simulation
	Modules
	Result file structure

	SWN simulation
	Modules
	Result file structure

	Extended SWN features
	Transient analysis of SWN models
	Simulation of SWN models with GEN transitions
	Rescheduling/descheduling policies
	Firing time distributions of the GEN transitions

	Refined perfomance results
	Mean number of tokens in a place
	Transition throughput
	Probability

	The result .stat file
	Number of batches in a simulation run
	Inclusion of ``reset'' transitions

	Multiple experiments

	Compositionality in GreatSPN
	Composition of two labelled SWNs
	The algebra package
	Composition module
	Remove module

	Export to other tools
	Model checking: PROD translator
	Installation
	Use of the PROD translator
	Nets with inhibitor arcs
	SWN nets with symbolic markings
	The script ExploreRG
	The pre-defined macros

	Kronecker solutions: APNN translator
	Tgif translator
	Fluid nets translator
	Refinement of SWN performance indexes: PERFSWN

	Net description files
	Format of the .net file
	Format of the .def file
	Grammars
	Extended SWN grammar

	Known bugs and Warnings
	Warnings

	Installation
	System requirements for compiling the tool
	Compiling and installing the tool
	Setting the environment

