
User’s Manual
(version 2.0.2)

Performance Evaluation group

Dipartimento di Informatica
Universit̀a di Torino (Italy)

Contents

1 Informal introduction to the formalisms 6

1.1 History of GreatSPN. 6

1.2 Petri Nets . 8

1.3 Stochastic Petri Nets. 10

1.4 Generalized Stochastic Petri Nets. 11

1.4.1 A GSPN example. 12

1.5 Stochastic Well Formed Nets. 14

1.5.1 A SWN example. 15

2 Getting started 17

2.1 The Readers–Writers GSPN model. 17

2.2 Starting GreatSPN. 18

2.3 Creating the Readers–Writers model. 18

2.4 Saving and printing the model. 23

2.5 Analysis of the Readers-Writers model. 25

2.6 Colored version of the Readers-Writers model. 29

2.7 Analysis of the SWN Readers-Writers model. 33

3 GUI in depth 35

3.1 The Menu Bar. 37

3.1.1 File Menu. 37

3.1.2 Edit Menu . 40

3.1.3 View Menu . 47

3.1.4 Grid Menu . 47

3.1.5 Zoom Menu. 48

3.1.6 Rescale Menu. 48

3.1.7 GSPN Menu . 48

3.1.8 SWN Menu. 51

2

3.1.9 E-GSPN Menu. 53

3.1.10 Help Menu . 53

3.2 The Object bar . 54

3.2.1 Places. 54

3.2.2 Transitions . 57

3.2.3 Arcs. 63

3.2.4 Marking parameters. 64

3.2.5 Rate parameters. 66

3.2.6 Result definitions. 67

3.2.7 Changing place/transition tags. 69

3.2.8 Colour definition. 69

4 Solvers 74

4.1 Structural analyzers. 74

4.1.1 Invariants. 76

4.1.1.1 Modules. 76

4.1.1.2 Result files structure. 77

4.1.2 Minimal deadlocks and traps. 77

4.1.2.1 Module. 77

4.1.2.2 Result files structure. 77

4.1.3 Implicit places . 78

4.1.3.1 Module. 78

4.1.3.2 Result file structure. 78

4.1.4 ECS-Confusion-ME-SC-CC. 79

4.1.4.1 Module. 79

4.1.4.2 Result files structure. 79

4.1.5 Structural boundedness. 80

4.1.5.1 Module. 80

4.1.5.2 Result files structure. 80

4.2 Performance bounds solver. 81

4.2.1 Modules . 81

4.2.2 Result file structure. 81

4.3 Analytic solvers. 82

4.3.1 GSPN solvers. 82

4.3.1.1 Reachability Graph generator. 82

4.3.1.2 TRG structure analyzer. 84

3

4.3.1.3 Markov Chain generator. 84

4.3.1.4 Steady State solver. 84

4.3.1.5 Transient solver. 85

4.3.2 SWN solvers. 85

4.4 Simulators. .86

4.4.1 GSPN simulation. 86

4.4.1.1 Modules. 86

4.4.1.2 Result file structure. 86

4.4.2 SWN simulation . 87

4.4.2.1 Modules. 87

4.4.2.2 Result file structure. 87

4.5 Extended SWN features. 88

4.5.1 Transient analysis of SWN models. 88

4.5.2 Simulation of SWN models with GEN transitions. 88

4.5.2.1 Rescheduling/descheduling policies. 88

4.5.2.2 Firing time distributions of the GEN transitions. 89

4.5.3 Refined perfomance results. 90

4.5.3.1 Mean number of tokens in a place. 90

4.5.3.2 Transition throughput. 93

4.5.3.3 Probability. 95

4.5.4 The result .stat file. 96

4.5.5 Number of batches in a simulation run. 96

4.5.6 Inclusion of “reset” transitions. 97

4.6 Multiple experiments. 97

5 Compositionality in GreatSPN 102

5.1 Composition of two labelled SWNs. .102

5.2 The algebra package. .104

5.2.1 Composition module. .104

5.2.2 Remove module. .107

6 Export to other tools 108

6.1 Model checking: PROD translator. .108

6.1.1 Installation .108

6.1.2 Use of the PROD translator. .109

6.1.2.1 Nets with inhibitor arcs. .109

4

6.1.2.2 SWN nets with symbolic markings. 111

6.1.2.3 The script ExploreRG. .111

6.1.2.4 The pre-defined macros. .112

6.2 Kronecker solutions: APNN translator. .118

6.3 Tgif translator. .118

6.4 Fluid nets translator. .118

6.5 Refinement of SWN performance indexes: PERFSWN. 119

A Net description files 121

A.1 Format of the .net file. .122

A.2 Format of the .def file. .123

A.3 Grammars. .124

A.4 Extended SWN grammar. .127

B Known bugs and Warnings 129

B.1 Warnings .130

C Installation 131

C.1 System requirements for compiling the tool. .131

C.2 Compiling and installing the tool. .132

C.3 Setting the environment. .133

5

Chapter 1

Informal introduction to the formalisms

This chapter contains a brief history ofGreatSPNand recalls part of the background material necessary to use the

package. The Petri net formalism and some stochastic extensions are briefly described in the following sections.

The descriptions are very concise and the reader may find major details about these formalisms in the book [4].

1.1 History of GreatSPN

The first impulse to the development of theGreatSPNpackage stemmed from the research pursued by the Torino

group on generalized stochastic Petri nets (GSPN). GSPNs were initially developed as a tool for the specifica-

tion and performance evaluation of computer architectures at the Dipartimento di Elettronica of the Politecnico

di Torino and at the Dipartimento di Informatica of the Università di Torino [3], in the frame of the Progetto

Finalizzato Informatica of the Italian Consiglio Nazionale delle Ricerche, MUMICRO project. The development

of GSPNs was stimulated by the results on SPNs described in the Ph.D. thesis of M. K. Molloy [31]. In GSPNs

a new class of transitions (calledimmediate) that fire in zero time with priority over timed transitions was in-

troduced. A solution algorithm that exploits the reduction of the size of the Reachability Set (RS) due to the

presence of immediate transitions was first described in [3].

Several computer programs were developed as part of PhD thesis to implement the steady-state numerical

solution of GSPN models, eventually leading to the first documented software package for their analysis. This

package allowed one to experiment with the new modeling tool and gain insight into the memory and CPU

time requirements of the solution algorithms as functions of the size of GSPN models. The weak points of this

package were poor portability and flexibility of the programs, and the lack of a graphical interface, which is the

most natural type of support for the definition of GSPN models. Subsequent efforts were devoted to designing

a package with the following characteristics: (1) user friendliness – in particular the availability of a graphical

interface for model definition was considered a must to satisfy this requirement –, (2) portability, (3) modularity

and easy upgradability, and (4) efficiency of the analysis modules.

The first step in this direction was the implementation of the software tool described in [10]. A decomposition

6

was pursued both of the software tool and of the analysis steps. Several intermediate results were identified and

stored in the form of separate files. Several independent programs cooperate to the production of final result

files by taking as input intermediate result files produced by running other modules of the tool. Thanks to

this modular software architecture [14], the tool was easily upgraded and adapted to different uses as soon as

new theoretical results provided new analysis algorithms. From the functional point of view, earlier versions of

GreatSPNincluded a graphical interface (based on the SunView package and on the PixRect utilities for basic

graphics), all the algorithms for the generation and steady-state or transient solution of the “underlying Markov

chain” of a GSPN, and a new algorithm for the analysis of a class of models containing a mix of exponentially

distributed and deterministic timed transitions (DSPN) [5]. A Monte Carlo simulation program with confidence

interval estimation was also introduced for two main reasons: (1) to provide a tool for performance evaluation in

the general case of Timed Transitions Petri Nets (TTPN) that are not analytically solvable and (2) to provide a tool

for the validation of models when numerical solutions cannot be implemented due to the size of the Reachability

Graph (RG), which is equal to the number of states of the underlying Markov chain1.

GreatSPNstarted to become an interesting and useful support tool for performance modeling, and many re-

search and education institutions asked for permission to have it, so that the Dipartimento di Informatica of the

Universit̀a di Torino began its free distribution. Using the package on increasingly larger and more complex mod-

els, we soon realised the need for some model validation and “debugging” tool. From this need, the Torino group

started to look more carefully at the traditional techniques and algorithms used in the classical Petri net theory for

the study of qualitative structural and behavioral properties. Major improvements in the validation capabilities of

the package were achieved with the implementation of algorithms for the computation of Place- and Transition-

invariants, that allowed an easy check of structurally necessary or sufficient conditions for boundedness and er-

godicity before the exhaustive enumeration of the state space. More specific and powerful structural analysis

techniques were also proposed for the qualitative validation of GSPNs [15] and included inGreatSPN. A major

check-point was undertaken with the release 1.3 [11], which included all the structural analysis techniques for

the validation of the underlying Petri net structure of a GSPN model. Major improvements in the validation ca-

pabilities of the package were achieved with the implementation of algorithms for the computation of Place- and

Transition- invariants, and of the specific structural analysis techniques for the qualitative validation of GSPNs

proposed in [15].

At this point the weakest part of the package was the simulation feature, which used a very straightforward

(and inefficient) Monte Carlo non event-driven technique for the generation of the sample paths. The same

structural properties computed for the model validation were then reconsidered from a different perspective: they

were used for the optimization of the data structures of the analysis and simulation programs [13]. This idea

led to a completely new set of solution and simulation programs, and eventually to the implementation of the

interactive simulation facilities [7] of GreatSPN1.4.
1 In any case simulation usually requires costly and long computations.

7

One of the drawbacks of versions 1.3 and 1.4 was that they comprised both modules written in Pascal and

modules written in C. In versionGreatSPN1.5 all the Pascal modules were rewritten in C in order to increase

portability. Moreover, new algorithms and techniques were implemented for the efficient and direct construction

of the Tangible Reachability Graph (TRG) [18, 8], further reducing the space and time requirements of this phase

with respect to the technique proposed in [13]. In this version the possibility of general marking dependence

for transition rates has been restricted: immediate transition weights are now constants, while in the case of

timed transition the preferred way of expressing marking dependency is through the degree of enabling; general

marking dependency for timed transitions is still possible, but its implementation is less efficient than that of

enabling dependence. In version 1.6, the graphical interface was rewritten based on XView, a public domain

toolkit (included in the MIT distribution tape of X11R5). The basic structure and features of the graphical

interface ofGreatSPN1.3 were retained. Minor changes were introduced in order to present the control items in

a more rational way. Some features have been added in a straightforward way in order to allow the visualization

of the new structural, behavioral, and performance results obtained by the new analysis modules.

GreatSPN1.7 represents a new major check-point for the package. New algorithms have been added for

the fast computation of performance bounds based on linear programming techniques [16], working at a purely

structural level. The computed bounds depend only on the average firing delay of the transitions while they do

not depend on the p.d.f. of such delays. Algorithms have also been added for the analysis of high-level Petri net

models providing the user with the possibility of designing models of complex systems in a more compact way.

The chosen high-level formalism is Stochastic Well-Formed nets (SWNs), for which efficient algorithms have

been defined, that automatically generate a compact RG (called Symbolic RG) exploiting the model symmetries

[19, 23, 21]. The major objective ofGreatSPN1.7 was thus a consolidation of the package to allow an easier

distribution, as well as a broader application scope, with more emphasis on the validation and the simulation of

models and on the derivation of fast performance bounds.

Research is still going on, and will eventually produce new implementations to be introduced inGreatSPN

on hierarchical modeling [17] and on the exploitation of parallel processing techniques for the efficient analysis

of large models [22, 24]. Concerning the graphical interface, porting under OSF/Motif is being considered.

1.2 Petri Nets

Introduced for the first time in the sixties [34], Petri nets (PN) are a graphical and mathematical modeling tool

for describing concurrent systems. A PN is a 5-tuple(P,T, I ,O,H), whereP is the set of places,T is the set of

transitions, andI , O, H, are functions that defines weighted input, output and inhibitor arcs between places and

transitions. PNs incorporate a notion of (distributed) state which is denoted by a functionM : P→ IN, called

marking.

A PN systemis given by aPN structure plus aninitial markingand it is defined as a 6-tuple(P,T, I ,O,H,M0)

8

whereM0 represents the initial distribution of tokens in the places of the net.

PN have an associated graphical representation, where places are circles, transitions are bars, input and output

functions are weighted arrows, and inhibitor function are circle headed arrows. The marking is represented by

inscribing placep with M(p) tokens, represented as black dots.

Transitions describe events that may modify the system state and thefiring rule defines the dynamic behaviour

of PN models. For example, in the net below, transitiont is enabledif M(p1)≥ n, M(p2)≥m, and M(p3)< h.

Once enabled, transitiont can fire consumingn tokens from placep1, m from p2 and depositingu tokens intop4

andv into p5.

Figure 1.1: Example of enabling and firing.

An important consideration is that the enabling and firing rules for a generic transitiont are “local”: indeed,

only local information (i.e. input, inhibitor and output places) need to be considered to establish whethert can fire

and to compute the change of marking. This justifies the assertion that the PN marking is intrinsically distributed.

A markingM′ is said to beimmediately reachablefrom M if M′ can be obtained by firing a transition enabled

in M. The set of transitions enabled in the markingM is denoted withE(M) and the firing of a transitiont is

denoted withM[t 〉M′.
Two transitions are said to be inconflict if they share input places and the firing of one transition disables the

other by removing the token in the common input places.

Starting from the initial markingM0 it is possible to compute the set of all the reachable markings, the so

calledReachability Set(RS) of the model. The RS does not contain information about the transition sequences

fired to reach each marking. This information is captured by theReachability Graph(RG) whose nodes are

labelled with the reachable markings and whose arcs are labelled with the transitions that the system has to fire

to move from state to state.

PN models can be used for the (qualitative) analysis oflogical properties of systems. Classical analysis

techniques are structural (graph-based) analysis and reachability analysis which investigate, for example, the

boundedness of the model or the presence of deadlocks.

9

1.3 Stochastic Petri Nets

Classical PN models include no notion of time and for this reason they have been traditionally used for the qual-

itative analysis oflogical properties of systems. Several authors have proposed augmented PN models which

include temporal specifications, so that a quantitative performance analysis of systems is possible. The introduc-

tion of temporal specifications in a PN has been done mostly by associating a delay with transitions. Stochastic

Petri Nets (SPN) [30] are PN in which transition firing delays are exponentially distributed random variables:

each transitionti is associated with a random firing delay whose probability density function is a negative expo-

nential with rateλi . Syntactically this extension amounts to adding a functionW : T → IR+ such that the delay

associated to a transitiont is a random variable, distributed as a negative exponential, of rateW(t). Thus a SPN

system is defined as a 7-tuple(P,T, I ,O,H,W,M0) whereP,T, I ,O,H,M0 are defined as in PNs andW specifies

the rates to be associated with transitions.

The semantics of SPNs is described by arace model. When a marking simultaneously enables several

(conflicting and/or concurrent) transitions, all activities associated with these transitions are assumed to execute

in parallel, so that the next marking change is due to the transition whose firing delay in the present marking is

minimum, i.e., to the transition that wins the race. The firing of the winning transition implies that the activity

associated with it in the model is completed. The behaviour of the losing transitions can be specified in different

ways. Indeed, it is possible for these transitions to either remember the time during which they have already been

enabled (and thus worked), or not. However, the use of exponential distributions for the definition of temporal

specifications makes unnecessary the distinction between the distribution of the delay itself, and the distribution

of the remaining delay after a change of state, thus avoiding the need for the specification of the behaviour of the

transitions that do not fire in a given marking.

When the set of enabled transitionsE(M) contains more than one element, the probability that transitionti is

the one that actually fires can be obtained from the temporal specifications as

P{ti |M}=
W(ti)

∑
t j∈E(M)

W(t j)
=

λi

∑
t j∈E(M)

λ j

The definitions of the RS and the RG are still valid for SPNs but in this case the arcs of the RG are labelled with

transition names and transition rates.

Molloy [31] showed that, due to the memoryless property of the exponential distribution of firing delays,

SPN are isomorphic to continuous-time Markov chains (CTMC) in which

1. the states of the CTMC are in one-to-one correspondence with the SPN markings (Mi ↔ i);

2. the transition rate from statei (corresponding to markingMi) to statej (M j) of the CTMC is equal to the

sum of the rates of the transitions that connect the corresponding markings in the RG of the net.

10

The translation of a SPN model into a CTMC is thus conceptually very simple. The RS of the SPN is generated,

and the firing rates of enabled transitions are used to construct the state transition rate matrixQ of the CTMC.

If the CTMC is ergodic, it is possible to compute the steady state probability distribution of the markings

solving the matrix equation

πQ = 0

with the additional constraint

∑
i

πi = 1

whereπ is the vector of the steady state probabilities. From the steady state distribution it is possible to obtain

quantitative estimates of the behaviour of the SPN.

Difficulties may arise due to the computational complexity of the algorithm for this solution, when the number

of reachable markings grows. This is the main problem associated with the utilisation of SPN which are otherwise

very easy to employ, even for inexperienced users.

1.4 Generalized Stochastic Petri Nets

Sometimes it is not desirable to associate a random time with each transition of a model, since one would rather

associate times only with the events that are believed to have the largest impact on system performance. For

instance, the time required to test the condition to enter in awhile loop can be considered negligible with respect

to the time required to execute thebodyof the loop.

SPN models in which logical actions are represented by transitions whose firings take no time are known by

the name ofgeneralizedSPN (GSPN) [3, 15]. Transitions that fire in zero time are calledimmediate(represented

as black bars) to be distinguished from the transitions whose associated delays are exponentially distributed,

which are calledtimed(represented as rectangular boxes).

Immediate transitions fire with priority over timed transitions and it is assumed that different priority levels

can be defined over immediate transitions. Priorities equal to zero are associated with timed transitions, priorities

equal or greater than one are associated with immediate transitions. Syntactically, this extension amounts to

adding a priority functionπ : T → IN which assigns a natural number to each transition. A GSPN system is

defined as a 8-tuple(P,T, I ,O,H,W,π,M0).

In GSPN the delay associated with a timed transitiont is a random variable, distributed as a negative expo-

nential, of rateW(t). In the case of an immediate transitiont instead, the valueW(t) specifies a weight.

When two or more timed transitionsti are in conflict, the selection of the one that fires first is done according

to the race policy. When two or more immediate transitionsti are in conflict the selection of the one that fires first

is done using the weightsW(ti), normalised in such a way as to obtain a discrete probability distribution function.

Due to the presence of immediate transitions, the RS of a GSPN model contains two different types of

markings that are classified astangibleandvanishing. A tangible marking is a state in which no immediate

11

transitions are enabled and therefore the system spends some time in that state, while a vanishing marking is a

state in which at least an immediate transition is enabled and therefore the time spent in a vanishing marking is

equal to zero.

The execution of a GSPN model is not identical to a sample function of a Markov process, due to the existence

of multiple discontinuities at the time instants corresponding to the entrance into vanishing markings. It is

however possible to remove these markings from the analysis, since they do not contribute to the measurable

behaviour of the model. The performance of a GSPN model can thus be analyzed by examining its evolution

through the set of tangible markings only. It has been shown [3, 15] that there is a correspondence between GSPN

models and CTMCs. Performance indices such as, for example, transition throughputs and the mean number of

tokens in a place, can be associated with a GSPN model. They are computed starting from either the transient or

the steady state probabilities of the associated CTMC.

Another extension that has been introduced by some authors is the possibility of defining marking dependent

rates: the rate of the transition is therefore a function of the state of the system. If the dependence is only from

the input and output place of the transition we still preserve the inherent distribution of the state proper of Petri

nets, if we allow instead any type of dependence, then the locality of the firing of transition can be completely

destroyed.

1.4.1 A GSPN example

To give an idea of the GSPN formalism we briefly describe an example that will be also used in Section1.5.1to

describe the coloured formalism of Stochastic Well Formed nets. All the details about the construction and the

analysis of GSPN models will be discussed in the next chapters.

The example, taken from the telecommunication area, is a multiple server cyclic polling system [6] compris-

ing a set of waiting lines in which customers that arrive from the external world queue up waiting for service. A

set of servers cyclically visit the queues providing service to the waiting customers. Upon service completion a

customer departs from the system and the server proceeds to the next queue.

The net in Figure1.2(a) shows the GSPN model of a generic queuei: placep(i)
a represents the number of

free positions in the queue, whose maximum capacity is equal toK as specified by its initial marking. Timed

transitionT(i)
a models the customer arrival process; customers waiting for a server are queued in placep(i)

q .

Immediate transitiont(i)
s models the start of a service and it can fire only when a customer is waiting in placep(i)

q

and no other customers are currently served, i.e. when placep(i)
s , (representing customers being served) is empty.

Finally the firing of timed transitionT(i)
s represents the service completion.

The GSPN model of the servers behaviour when polling queuei, is depicted in Figure1.2(b): a token in

placep(i)
p represents the presence of a server at queuei. The two immediate transitionst(i)

s andt(i)
w have priority

2 and 1 respectively. Transitiont(i)
s should fire if a waiting customer is found in queuei so that service can be

provided. If no customers are waiting, the server bypasses the queue (firing of transitionst(i)
w) and walks towards

12

Figure 1.2: GSPN representations of a queue and a server.

the next queue (firing of timed transitionT(i)
w). The reason for assigning a higher priority to transitiont(i)

s is

to force the fact that a server can bypass a queue only if there is no possibility for it to provide service. Place

busy(i) represents the condition“server busy serving a customer at queue i”and transitionT(i)
s represents the

corresponding ongoing service. Notice that both models in Figure1.2include immediate transitiont(i)
s and timed

transitionT(i)
s ; the transitions with common names represent the same events in the two submodels.

The GSPN model of a polling system with four queues can be obtained by composition of four copies the

submodelN (i)
q representing theith queue and four copies of the submodelN (i)

s representing the behaviour of a

Figure 1.3: GSPN representation of a cyclic polling system.

13

server at queuei (i = 0,1,2,3). SubmodelN (i)
q can be composed with submodelN (i)

s by merging the transitions

with same label (that is, immediate transitiont(i)
s and timed transitionT(i)

s). On the other hand, the ring topology is

obtained by superposition of places with the same name belonging to submodels2 N (i)
s andN (i+1)

s . The resulting

model is depicted in Figure1.3. The number of servers is parametric and it is modelled by assigningN tokens to

placep(0)
w in the initial marking. Also the queues capacityK is parametric and is specified by the initial markings

of placesp(i)
a (i = 0,1,2,3).

1.5 Stochastic Well Formed Nets

Stochastic Well Formed Nets (SWN) [21] are a coloured extension of SPNs that allows one to build a more

compact and parametric representation of a symmetric system byfoldingsimilar subnets. In this way it is possible

to represent very concisely systems that would have required a huge uncoloured net. When similar subnets are

folded, some additional annotation is needed to distinguish tokens that end up being in the same folded place.

These annotations constitute thecolour structureof the net.

Tokens are no longer indistinguishable: each token can be regarded as an instance of a data structure whose

meaning depends on the place to which the token belongs. The placecolour domain(denotedC(p)) is defined

as the Cartesian product ofbasic colour classes, possibly with repetitions of the same basic colour class. Each

basic colour class is a finite set of basic objects and it is usually defined by enumeration of its elements (e.g.

C = {c1,c2, . . .cn}). Colour classes may beorderedand may be partitioned into disjoint subsets calledstatic

subclasses.

Transitions’ colour domains (denotedC(t)) are defined analogously to places’ colour domains. Transitions

can be seen as procedures with formal parameters, the parameters being determined by the corresponding domain.

The enabling check of a transition and the state change caused by its firing depend on thearc functionsthat

label the arcs connecting the transition to input, inhibitor and output places.

Arc functions are formal sums of tuples structured according to the corresponding place colour domain. If

the place colour domain is the Cartesian product ofk basic colour classes, then the corresponding arc function

is a weighted sum ofk-tuples. Thej th element in eachk-tuple is a weighted sum of three basic functions, the

identityfunction (denoted by a variable), thesuccessorfunction (“!”), and thesynchronisationfunction (“S”).

The weights of the sum may be numbers orpredicates. Predicates are logical expressions used to test either

equality of pairs of basic objects, selected by some identity/successor function, or to check the membership of a

selected basic object in a given static subclass.

A major interest of SWNs is that they provide a modeling framework in which the intrinsic symmetries are

automatically detected and used naturally as a way for reducing the size of the underlying state space. The reduc-

tion is obtained thanks to the original concept ofsymbolic marking. Informally a symbolic marking corresponds
2The incrementi +1 is modulo 4.

14

to an equivalence class representing a set of ordinary markings characterised by a common future behaviour.

These ordinary markings in fact enable the same transitions whose firings lead to new ordinary states which are

still equivalent, i.e. belong to the same symbolic marking. Symbolic markings are obtained by disregarding the

identities of the objects within the places of the net and considering only their number. Colour classes are par-

titioned intodynamic subclassesand the only relevant information is the cardinality of these subclasses (i.e. the

number of objects they contain). This shows how many elements in the net have the same behaviour at the same

time.

This type of partitioning varies from one marking to another, hence it must not be confused with the static

subclass partitioning which is part of the colour class definition.

With the introduction of dynamic subclasses places no longer contain coloured tokens but symbolic tokens

whose components are expressed in terms of dynamic subclasses. All the ordinary markings which can be

obtained by assigning identities to the objects of the dynamic subclasses belong to the same symbolic marking.

A symbolic enabling ruleand asymbolic firing rule, which operate directly on the symbolic marking repre-

sentation, and an efficient algorithm for the generation of an aggregated state space calledsymbolic reachability

graph (SRG) have been defined [21] and implemented [?]. The SRG describes the evolution of a SWN model

through a set of macro-states, the symbolic markings, that represent sets of more detailed states which are equiv-

alent.

Several properties valid for the SRG have been introduced. For example, the equivalence between the SRG

and the RG from the point of view of the reachability of the markings ensures that no information is lost by

analysing the SRG instead of the RG. Formulae have been defined to compute both the number of ordinary mark-

ings belonging to the same equivalence class and the number of ordinary firings represented by each symbolic

firing.

The SRG corresponds to a lumped version of the complete RG and this aggregation is reflected also at the

level of the underlying Markov process. In [20] it has been proved that the SRG is isomorphic to an aggregated

Markov process that can be used to compute the same performance estimates that can be computed from the

general technique based on the RG, but with a lower computational cost.

1.5.1 A SWN example

Figure1.4shows the SWN model of the polling system example that has been obtained by folding all the replicas

of the submodelsN (i)
q andN (i)

s forming the GSPN model in Figure1.3, into a single net structure.

The tokens carry information to distinguish the customers associated with different queues. We thus need

one colour class defined asQ = {q1,q2, . . . ,qM} that represents theM queues.

In the polling system the ring connection induces a circular order relation among queues, characterised by

the “next queue” relation.Q is thus defined to be anorderedcolour class with the possibility of applying the

successor function to any of its element (i.e., !qi = q(i+1)modM).

15

The initial marking of placepa is K · 〈S〉 whereK represents the maximum capacity of each queue and

〈S〉 is a special symbol denotingall the coloured tokens belonging to the place colour domain, i.e.K · 〈S〉 =

K · 〈q1〉+ . . .+ K · 〈qM〉; the initial marking of placepw represents the initial position of theN servers and it is

equal toN · 〈q1〉 as we are assuming that all servers are initially polling the first queue of the ring.

The identity function〈x〉 labelling the arcs binds any elementq j ∈Q to the variablex. For example, transition

Ta has a parameterx of typeQ and acoloured transition instanceis obtained assigning actual basic objects to this

parameter. The coloured transition instance ofTa that assignsq2 to parameterx is enabled in the initial marking.

Its firing removes the coloured token〈q2〉 from placepa and adds it in placepq thus modeling an arrival to

the second queue. This is due to the fact that the same variablex labels both the input and output arcs ofTa,

actually denoting the same coloured token. When one of theN servers polls the second queue (i.e., when place

pp contains the coloured token〈q2〉) the service can be provided and the immediate coloured transition instance

of ts binding the parameterx to q2 can fire.

The inhibitor arc connectingts andps prevents the enabling of transitionts for any coloured token〈q j〉 present

in placeps. A server that polls a queue in which another server is working will bypass that queue (i.e., transition

tw will fire) because in the modeled system only one customer can be served in each queue. A server moving to

the next queue is modeled by means of the combined presence of the identity function〈x〉 and successor function

〈!x〉 labelling the input and the output arcs of transitionTw.

Figure 1.4: SWN representation of the cyclic polling system.

The SWN model in Figure1.4is parametric in the queue capacities (K), in the number of servers (N) and also

in the number of queues in the system (|Q|). An important feature of this coloured model is that the service policy

may be easily modified; for example it is possible to model a random service policy instead of the cyclic one, by

simply replacing the successor function labelling the output arc of transitionTw with an identity function〈y〉 plus

the predicate[x 6= y] to model the movement of a server to a different queue. Observe that such a variation in the

GSPN model would require much more complex structure manipulation.

16

Chapter 2

Getting started

After GreatSPN2.0.2has been installed and the user environment has been set up according to the directions given

in the AppendixC, the user can start the package and build and analyze his/her models. The aim of this chapter

is to quickly introduce the user to (modeling) usingGreatSPN2.0.2. By following this tutorial, the user will be

able to construct a Petri Net model and to analyze it by means of theGreatSPN2.0.2graphical interface. The

reader interested in a more in-depth presentation of the variousGreatSPN2.0.2features may refer to Chapter3.

Throughout this chapter we shall use as an example the model of the well-known multiple-reader-single-writer

problem in the access of a shared data base.

2.1 The Readers–Writers GSPN model

Let us consider a set of “processes” concurrently accessing a shared data base. When a process issues an access

request, it declares whether a read or a write operation is required. Read operations may proceed concurrently

with each other, while write operations require an exclusive access in order to maintain the consistency of the

data base. A GSPN model of this system is depicted in Figure2.1. A token in placethink represents a process

performing some local activity. After a random amount of time, a data base access request is issued (timed

transitionarrival fires). The type of request (read or write) is randomly chosen with equal probability (immediate

transitionsisreadand iswrite have the same weight). If the operation is a read, then the access is granted if no

other process is performing a write operation on the data base (placenowrite is marked), otherwise the process

waits in placeRqueueuntil the access can be performed safely. The beginning of a read operation is represented

by the firing of transitionStartR, that has two effects. First, placenowrite is marked, meaning that other readers

can access the data base. Second, placereadingis marked, forbidding therefore the access to any writer process

(there is an inhibitor arc from placereadingto transitionStartW). After the firing of the timed transitionEndR,

the status of the process is reset to “thinking”.

Conversely, if the requested operation is a write, the process waits (in placeWqueue) until access can be

granted, i.e. when no other process is performing a write access (placenowrite is marked) and no other process

17

P= 5

think
P

writing

reading

Wqueue

Rqueue

choice

nowrite

isw=0.200000
isr=0.800000

wr=0.500000
rr=2.000000
arr=1.000000

arrival

EndW

EndR

StartW

iswrite

isread

StartR

Equeue

Figure 2.1: The Readers–Writers GSPN model

is performing a read access (placereadingis empty). At the completion of the write operation, modeled by the

firing of transitionEndW, the absence of write access is signaled to other processes by marking placenowrite,

and the status of the process is reset to “thinking”.

2.2 Starting GreatSPN

GreatSPN2.0.2is started by typinggreatspn on the command line and pressing<Return>. After a few seconds

the Control Panel, depicted in Fig.2.2, pops up and the user can start a work session.

WARNING! WhenGreatSPN2.0.2GUI is launched for the first time a window is displayed before the Control

Panel pops-up in which it is asked to the user to fill in the corresponding areas if he/she desires to change the

default setting for some environment variables (see chapt.3 for a more detailed description of this window). The

user has to press the “OK” button to confirm either the modification made in the window areas or the default

settings: the information contained in this window are saved into the$HOME/.greatspn file.

To create a new model, the user has just to start creating places and transitions (as discussed in Section2.3),

while if the user desires to modify an already created model, he/she can retrieve it by using theFile menu.

2.3 Creating the Readers–Writers model

To create (or to modify) a model, the user selects theaction to be performed and theobject type(e.g. places,

immediate transitions, place markings, etc.) on which the action will be applied. The general principle of

18

Menu bar

Object bar

Canvas

Status bar

Scrollbars

Figure 2.2: TheGreatSPN2.0.2Control Panel

behavior of theGreatSPN2.0.2graphical interface is that the action selected by the user from theAction menu

(shown in Fig.2.3) becomes the default action until a new one is chosen, and such action affects only objects

of the type currently selected. The current action is displayed in thestatus baron the right. TheAction pop-up

menu is activated by pressing the right mouse button on any position of theGreatSPN2.0.2working area. To

select an action, the user has to click with the left mouse button over the desired pull-down option1. An object

type is selected by moving the mouse cursor on one of the icons of theobjects bar(see Figure2.2) and by clicking

over it with the left mouse button. The object currently selected remains highlighted until another object type is

chosen. Themouse helpwindow, activated by selectingHelp→Mouse Help, displays the action associated with

each mouse button. Let us start the creation of the Readers–Writers GSPN model by creating the set of places

first. To create places, we set the type of object to “place” by selecting theplaceicon in theobject bar(indicated

by a circle), and after this operation the shape of the mouse cursor is changed into a circle. After the selection of

theAction→Addoption, we can move the mouse cursor within the working area and start laying down the places

of the net by clicking the left mouse button in the proper position, in order to obtain the screen image shown in

Figure2.4. TheGreatSPN2.0.2graphical interface displays only a window on the real working area, that can be
1 In the rest of this manual we shall use the notationMenu Item→Option to denote an option in a specific menu item of themenu

bar. For example,Action→Createdenotes theCreateoption of theAction menu.

19

Figure 2.3: TheGreatSPN2.0.2action menu

scrolled in all the directions by using thescrollbarsplaced on the right and bottom sides of the Control Panel.

To create the transitions we proceed as for places, that is by first choosing one of the three transition icons

available, i.e. deterministic (represented by a thick black box), exponential (represented by a white box), and

immediate (represented by a thin black box), and then by creating them. Note that we don’t need to select the

Action→Add action again, since we didn’t change the selection done when places were created. The screen

situation after the addition of transitions looks like Figure2.5. Note that we have created transitions having

Figure 2.4: Place layout of the Readers–Writers model

of Fig. 2.1

Figure 2.5: Place and transition layout of the Readers–

Writers model

different orientations. To change the orientation of a transition, we can use the middle mouse button (each time

this button is clicked, the transition rotates of 45 degrees clockwise) before clicking the left button to actually

create the transition itself.

20

After a place or a transition has been placed on the working area, it can be moved by selecting theAction→Move

option. An object can be dragged on thecanvasby clicking on it with the left mouse button, by moving the cursor

on its new position and by clicking the left button again.

The editor assigns default names (“tags”) to places (Px) and transitions (Tx for timed andtx for immediate)

wherex is an integer representing the objects creation order. Such tags are displayed if theView→Tag option

has been selected. Tags overlapping other objects of the net can be moved around in the same way as places or

transitions, that is by selecting theAction→Moveoption after clicking on thetag icon, and by clicking on the

place or transition to which the tag is associated.

Now that we have created the nodes of our Petri net, we are ready to connect them with arcs. This can be

accomplished by choosing thearc icon in theobject bar(indicated by an upward arrow). Again, if we didn’t

redefine the default action, we don’t need to re-select theAction→Addoption. To create an input arc from place

P1 to transitionT1 (see Figure2.6), we have to click the leftmost button of the mouse twice: first over placeP1,

and then over transitionT1. The output arc connecting transitionT1 to placeP2 can be created by clicking the

left mouse button first overT1, and then overP2. The inhibitor arc connecting placeP6 to transitiont5 is created

Figure 2.6: Creating arcs

by first clicking overP6 with themiddlemouse button, and then overt5 with the left button. In the case of the

output arc connecting transitionT7 to placeP1, for aesthetical reasons we want to put two intermediate points

21

between the place and the transition, rather then connecting them with a straight line. Intermediate points are

added by just clicking the left mouse button over the desired position, provided that it is not too close to a node

of the net.

In Petri nets it is forbidden to draw arcs connecting either places to places or transitions to transitions.Great-

SPN2.0.2enforces this rule by forbidding the creation of such arcs. Note that once one has started the drawing

of an arc, there is no way to interrupt the action, so if we realize that we started to draw an arc that we shouldn’t,

the only way to get out is to complete the arc and to delete it afterwards. To delete an arc (or, more generally, an

instance of the currently–selected object), we have to click over the object we want to delete after the selection

of theAction→Deleteoption.

Now the topology of the network is complete, and we may proceed defining the initial marking. Place

marking can defined either directly, by associating an integer number of tokens with the place, or by means of a

rate parameter which has been previously defined. In either case, the association of an initial marking with a place

is performed by clicking with the left mouse button over the place we want to consider after theAction→Change

option and theplaceicon have been selected. To create amarking parameterthe user has to click over thetoken

icon (graphically represented as a black dot) and to select theAction→Add option. After that, the user has to

move the cursor in an emptycanvasregion and click the left mouse button. A dialog box (see Fig.2.7will pop-

up, and will ask us to enter the name of a marking parameter (in our case the name is ”P”) and the corresponding

numerical value (a positive integer).

Figure 2.7: Dialog box for the creation of marking parameters

After clicking on the button “Ok” of the above dialog box, the definition of the marking parameter (“P=5”)

will appear on the chosencanvasposition. Starting from this moment, the name “P” can be used as initial

marking specification for any place in the net. In our example, two places hold a non-null initial marking, and

we can define that by clicking the left mouse button on each of them. TheChange Place Propertieswindow (see

Fig.2.8) will pop up, so that the place marking can be changed by specifing the initial value in the “Marking:”

area.

22

Figure 2.8: Dialog box for changing place properties.

Alternatively, the same action can be performed by selecting thetokenicon. The initial marking of a place can

be specified either as a nonnegative integer value or by using the name of an already-defined marking parameter.

As the network specification is complete, we may display a “nicer” version with rounded arcs by selecting

theView→Splineoption. This produces a net looking like the one depicted in Fig.2.9.

So far we have retained the default names given by the editor at the moment of the object creation. Although

this is useful to speed up the editing procedure, it may yield to a poor model readability, that can be improved

by giving meaningful names to places and transitions. Tags can be modified by selecting the “tag” object, by

choosing theAction→Changeoption and by pointing and clicking the left mouse button on the corresponding

place or transition. A dialog box will pop up and will ask the user to specify the new object tag.

2.4 Saving and printing the model

After the model definition has been completed, we can save its description and/or print it using several different

formats, by means of theFile menu. A model is saved by selecting theFile→Saveoption. If the model had

been previously saved, this operation will cause the old description to be overwritten. If one wants to keep

the old description, he/she can use theFile→Save Asoption of the above menu to specify a new name for

the net. The net description files are saved in the user directory defined by setting the environment variable

GSPNNET DIRECTORY (as specified in the $HOME/.greatspn file of the user: see the Appendix C for details).

GreatSPN2.0.2provides the possibility of specify comments, which are saved with the net description and which

can be subsequently re-edited. To add a comment, simply selectFile→Commentoption, and use theEdit Net

Commentdialog box which pops-up. To create printouts of a model, or Encapsulated PostScript (EPS) files

suitable for inclusion in LATEXdocuments, we have to select theFile→Print option. This option affects only that

portion of the model that is included in the currently-definedprint area, that is displayed as surrounded by a

dotted line if theView→Print Areaoption is selected (see Fig.2.9). To define the print area, we have to:

1. select theAction→Define Print Areaoption (the cursor shape will be changed into a cross);

23

Figure 2.9: Print area used for the Readers-Writers model

2. click with the left mouse button over thecanvaspoint corresponding to the upper-left corner of the print

area;

3. move the mouse cursor on the lower-right corner of the desired print area and click either the left or the

middle mouse button.

After the above operations have been completed, theFile→Print command must be selected to cause thePrint

dialog box (shown in Fig.2.10) to pop up. In the window contained in the leftmost part of thePrint dialog box,

GreatSPN2.0.2shows an overview of the entire working area (remember that only a window on a portion of the

working area is shown in the Control Panel). The print area is surrounded by a thin black frame, that can be

adjusted (allowing the redefinition of the print area) by positioning the mouse cursor over the lower-right corner

(indicated by a small black square) and dragging it by clicking with the left mouse buttonwithout releasingthe

mouse button.

The six icons displayed just below the above window allow us to set:

• the format of the output , that can be chosen between raw PostScript (by clicking on thePS icon) and

Encapsulated PostScript (by clicking on theTeXicon);

24

Figure 2.10:GreatSPN2.0.2 Printdialog box

• the destination of the output, that can be either a file (Disketteicon) or a PostScript printer (Printer icon):

if the EPS format is chosen then only a printout on a file is allowed;

• the orientation of the output, that can be either portrait or landscape (the twoA icons).

The right part of thePrint dialog box contains a window that shows the page layout (an a A4 size sheet is

assumed). The placement of the print area over the sheet can be changed either by dragging the thin black

rectangle or by clicking over one of the three icons placed at the right of the window (that allow centering the

picture on either dimension). Finally, the printout with the desired options is performed by clicking with the

left mouse button on the “Print” button. If we decided to save the printout on a file,GreatSPN2.0.2will ask the

user (by means of a suitable dialog box) to enter a file name that will be placed either in the default PostScript

(PS) or Encapsulated Postscript (EPS) directory. The default PS and EPS directories can be set by means of the

environment variables GSPNPSDIRECTORY and GSPNEPSDIRECTORY in the$HOME/.greatspnfile (see

Appendix C).

2.5 Analysis of the Readers-Writers model

Once we have defined both the net structure and the initial marking of the Readers–Writers model we can have

a first understanding of its dynamic behavior by playing the “token game”.GreatSPN2.0.2provides the user

of an interactive token game that can be started by selecting theGSPN→Simulation...option. TheSimulation

window pops up and all the transitions of the model that are enabled in the initial marking become blinking (see

Fig. 2.11). To simulate a possible behavior of the modeled system we have simply to click with the leftmost

25

button of the mouse over the enabled (i.e. blinking) transition we want it to fire. In our running example, only

transitionarrival is enabled in the initial marking; by clicking on it, the firing action is executed, i.e. a token is

removed from the input placethink and a token is added to the output placechoice. The new reached marking

enables the two immediate transitionsisread, iswrite: we can choose to fire one of them and to simulate the

corresponding firing action (and so on). By default the “Untimed” and the “Forward” options of theSimulation

window are set to play the forward token game: it is possible to play the backward token game by setting the

“Backward” option in theSimulationdialog box.

Figure 2.11: Token game of the Readers–Writers model.

GreatSPN2.0.2provides the user with a set of structural analysis algorithms that can be used to validate the

models. The user can access the above algorithms by selecting theGSPN→Structoption.2 For example, the com-

putation of minimal-support, canonical Place Invariants (by means of a modified Martinez–Silva algorithm [29])

can be accomplished by means of the optionGSPN→Struct→P invariants. GreatSPN2.0.2will visualize the

Consolewindow (shown in Fig.2.12), allowing one to start the P–invariant computation by clicking with the left

mouse button over the “Start” button. At the end of the above computation, theConsolewindow will contain the

results, as displayed in Fig.2.13.

After a GSPN model has been constructed and validated, it can be analyzed by means of the different perfor-
2 WARNING! Before launching aGreatSPN2.0.2solver be sure that the hostname set in the “Hostname:” left area of the

File→Optionswindow is the name of the machine on which the Control Panel has been started.

26

Figure 2.12:GreatSPN2.0.2Console Figure 2.13: Results of P–invariant computation

for the Readers–Writers model

mance evaluation techniques provided byGreatSPN2.0.2. Before starting the performance analysis of a given

GSPN model, its performance–related parameters must be defined. The default rates associated with transitions

can be displayed on the screen by selecting theView→Rateoption. Rates overlapping some other object of the

net can be moved around in the same way as tags, by selecting theAction→Moveaction after the icon corre-

sponding to rates (indicated by a clock close to a timed transition) has been selected. Transition rates may be

defined as positive real numbers, name of rate parameters, or marking–dependent expressions, governed by a

context–free grammar (described in Appendix A). In this example we will only use rate parameter specifications,

that are created much in the same way as marking parameter, by choosing theAction→Addaction together with

the rate icon. A dialog box (see Fig.2.14) will pop up, allowing us to specify the name and the definition of

rate parameters. We will define three rate parameters for transition rates:arr = 1.0, rr = 2.0, andwr = 0.5;

and two rate parameters for choice probabilities between conflicting immediate transitions:isr = 0.8, andisw =

0.2. After their definition, the above parameters can be used to specify the transition rates (weights) by choosing

Figure 2.14: Dialog box for the creation of rate parameters

27

theAction→Changeaction with the exponential (immediate) transition type selected, by clicking with the left

mouse button over the appropriate transitions and by filling theRate or Rate Parameter(Weight) field of the

correspondingChange Transition Propertieswindow (see Fig.2.15).

(A) (B)

Figure 2.15: Windows for defining/changing properties of timed (A) and immediate (B) transitions.

The same window, depicted in Fig.2.15(A), allows the specification of the enabling dependence. The default

enabling dependence for timed transition is of the “infinite server” type, but it can be changed by choosing the ap-

propriate option (Infinite, Marking Dependent, 1-Server, andLoad Dependent). In our example, only thearrival

and theendRtransitions are of the “infinite server” type, so the enabling dependence of all the other ones must

be changed to1-Server. To change the priorities of immediate transitions, use the scrollbar on the bottom-left

of theChange Transition Propertieswindow (Fig.2.15(B)) of the corresponding transitions to increase/decrease

their priorities.

With the specification of transition rates and probabilities as shown in Fig.2.16, we have completed the spec-

ification of the behavior of the model.GreatSPN2.0.2provides three different performance analysis methods,

namely computation of bounds for the throughput of transitions, Markovian solution and simulation. In this chap-

ter we present an example of the Markovian solution of the Readers–Writers GSPN model, while the other tech-

niques will be covered in Chapter4. The Steady–State solution of the Embedded Markov Chain corresponding to

the GSPN model of the Readers–Writers system of Fig.2.16is obtained by selecting theGSPN→Solve→GSPN

Solution→Steady Stateoption. TheConsolewindow will pop-up again, and after we click with the left button

on the “Start” button,GreatSPN2.0.2will start the analysis phase. At the end of the analysis,GreatSPN2.0.2

28

P= 5

writing

reading

Wqueue

Rqueue

choice
think

P

nowrite

arr=1.000000
rr=2.000000
wr=0.500000

isr=0.800000
isw=0.200000

EndW

wr

EndR

inf-server
rr

arrival

inf-server
arr

StartW1.000000

iswrite
isw

isread
isr

StartR
1.000000

Figure 2.16: The Readers–Writers model with transition rate/probability specification

will show on the screen the values of the throughput of the various timed and immediate transitions, as well

as the values of the defined performance indices (see Figure2.17). We can visualize the distributions of token

into places by selecting theAction→Showaction together with theresult icon, and by clicking on the place of

interest. In Fig.2.18it is shown the token distribution for placeWqueue.

2.6 Colored version of the Readers-Writers model

Let us suppose that the processes which are concurrently accessing to the shared data base have different be-

haviors; in particular, a group of them access to the data base only to perform a write operation, while another

group can issue either a writing or a reading request. In this section we describe how to obtain the coloredGreat-

SPN2.0.2version of readers-writers model (see Fig.2.19) that captures the different behavior of the two kinds of

processes. Starting from the previous non-colored model of the readers-writers system we first need to define the

basic color classes representing the two kinds of processes. To create (or to modify) a basic color class definition

simply click with the left mouse button on thecolor icon (indicated by a palette and a paintbrush) of theobject

bar and pop-up theAction menu, using the right mouse button, in order to select the “Add” option as the current

action. After these operations, choose a place in thecanvasto locate the definition of the class and click with

the left mouse button: theCreate Color Definitionwindow pops-up (see Fig.2.20). The top left area named as

“Label:” has to be filled with the name of the color class. The “Colorset” toggle, by default, is already switched

on (a black dot is displayed in the circle near the toggle), indicating that the current definition is a definition of a

29

Figure 2.17:GreatSPN2.0.2 canvasafter the Readers–Writers GSPN model has been solved

Figure 2.18: Token distribution in placeWqueue

basic color class. In the “Definition:” area, the definition of the basic color class is written using the SWN syntax

(see Appendix A): in the example the classP is the unordered union of two static subclassesP1 andP2. These

two colored subclasses have to be defined as well, following the same procedure described above for the color

class definition, i.e., by recalling and filling the areas of theCreate Color Definitionwindow for each of them

(see Fig.2.21). In our example, we have used two different alternatives of the SWN syntax to express the subsets

of colorsP1 andP2: the color subclassP1 is defined as the set of two elementsp1, p2while the color subclass

P2 is a set of three elementsc1, c2, c3. Once the basic color classes has been defined, we proceed as follows:

• add color domains to places that may contain colored tokens. To modify place attributes, click on theplace

icon and select from theAction menu theChangeoption; place color domainP has to be written on the

30

think

P
M0

writing

P

reading

P

Wqueue

P

Rqueue

P

choice
P

nowrite

arr=1.000000
rr=2.000000
wr=0.500000

isr=0.800000
isw=0.200000

arrival

EndW

EndR

iswrite

[d(x)=P2]

StartW

isread

StartR
<x><x>

<x>

<x>
<S>

<x><x>

<x>

<x>

<x> <x>

<x>

<x>

<x><x>

Equeue

P2:c

M0:m

P1:c
P:c

Figure 2.19: SWN model of the Readers-Writers system.

Figure 2.20: Create Color Definition window.

“Color label:” area of theChange Place Propertieswindow (see Fig.2.8). In the model of Fig.2.19, all the

places have color domains, except for placenowrite;

• add color attributes to the corresponding input/output arcs. To modify arc attributes, press thearc icon

(we don’t need to select again theAction→Changeoption since it is the current action), and click on the

interested arc with the left mouse button; theChange Arc Propertieswindow of Fig.2.22pops-up. Press the

“Color” toggle to set the right area into “Color” mode and then add in the area the color function according

to the SWN syntax. In the model of Fig.2.19, all the arcs are characterized by the identity function〈x〉,
except for the input/output arcs of the non colored place and for the inhibitor arc connecting placereading

31

Figure 2.21: Definition of static subclasses.

to the transitionStartWthat is labeled with thewhole place color domainfunction〈S〉;

• add a guard to the transitioniswrite. A way to model the constraint that only the processes belonging

to the static subclassP2 are allowed to issue a writing request to the data base is to add a guard to the

transitioniswrite. To modify transition attributes, press one of thetransition icons and select the interested

transition: one of theChange Transition Propertieswindows of Fig.2.15pops-up, depending on the type of

transition, allowing to fill in the “Color Label:” area the guard according to the SWN syntax. In the model

of Fig.2.19, transitioniswrite can fire only when its input place contains a colored token〈x〉 belonging to

the static subclassP2.

Figure 2.22: Change Arc Properties window.

32

Finally, we define the colored marking parameterM0 of the SWN model of Fig.2.19by pressing thecolor

icon of theobject barand by selecting theAction→Addoption. TheChange Color Definitionwindow pops up

again by clicking with the left mouse button on a location in thecanvas. To define a colored marking parameter

switch on the “Marking” toggle and then fill in the “Label:” and the “Definition:” areas with the name of the

parameter (M0) and its definition (〈S P1〉+ 〈S P2〉) respectively. The initial marking of the SWN model of

Fig.2.19, is then set by adding to the “Marking:” area of theChange Place Propertieswindow related to the

placethink the colored marking parameterM0.

2.7 Analysis of the SWN Readers-Writers model

Concerning the analysis of SWN models,GreatSPN2.0.2supports the reachability graph generation (both or-

dinary and symbolic) with the corresponding Markovian solution, both in steady state and transient, and the

simulation: in this section we will describe how to obtain the symbolic reachability graph (SRG) of the Readers-

Writers model of Fig.2.19 and its corresponding Markovian solution, for a depth description of the different

analysis techniques see Chapt.4.

Once the SWN model has been saved, we can compute the symbolic reachability graph by choosing from

the Swn→Symbolicsub-menu theCompute RGoption. In case last modifications of the current loaded model

have not been saved before launching aGreatSPN2.0.2solver a warning window will pop-up asking to the user

for saving or aborting the request. The request of computing the symbolic reachability graph of the SWN model

will cause theConsolewindow of Fig.2.12to pop-up; it is then possible to obtain a verbose description of the

symbolic reachability graph by setting on the “Verbose Show” toggle of theSWN Symbolic RG Optionswindow

(see Fig.2.23) which appears after the “Start” button of theConsolewindow has been pressed.

Figure 2.23: SWN Symbolic RG Options window.

Finally, choose “OK” button of theSWN Symbolic RG Optionswindow to launch theGreatSPN2.0.2solver.

The execution is displayed on theConsolewindow and the results are visualized in theGreatSPN2.0.2canvas: the

SWN model of Fig.2.19is characterized by 45 Tangible Symbolic Markings (which correpond to 209 Tangible

Ordinary markings) and no deadlocks are found. Results are saved in different files: the symbolic reachability

33

graph is saved in filenetname.srgP5, transition throughputs and performance indices defined by the user are

contained instead innetname.sta file.

34

Chapter 3

GUI in depth

This chapter is a reference guide containing a detailed description of the various options provided by the Control

Panel (CP). The CP is a unified graphical interface used for model specification and analysis. It is based on the

X-windows systems and exploits the Motif libraries. The CP provides a graphical editor for Petri Net models

(both colored and uncolored), as well as a set of pull-down menus providing access to the solver modules of the

package.

Figure 3.1: The initial window that appears when the tool is invoked for the first time after the installation.

Starting GreatSPN2.0.2 After theGreatSPN2.0.2package has been installed correctly (see Appendix C), to

invoke the CP, typegreatspn followed by a carriage return. WhenGreatSPN2.0.2GUI is launched for the first

time after the installation a previous window (Fig.3.1) pops-up in which it is asked to the user either to confirm

or to change the default settings of the followingGreatSPN2.0.2environment variables:

35

• GSPNDEFAULT PRINTER, containing the name of the default printer;

• GSPNNET DIRECTORY, containing the path directory of the net description files;

• GSPNPSDIRECTORY, containing the path directory of the printout of the nets in raw PostScript format;

• GSPNEPSDIRECTORY, containing the path directory of the printout of the nets in EncapsulatedPostcript

format.

If the “OK” button is chosen then the settings are saved into the$HOME/.greatspn file and the CP window

(Fig.3.2) appears on the user’s terminal.

Menu bar

Object bar

Canvas

Status bar

Scrollbars

Figure 3.2: TheGreatSPN2.0.2Control Panel

Control Panel Description As seen from Fig.3.2, the top portion of the window contains 10 menu items, each

of them has a pull-down menu that provides several options. The menu items and their options allow to specify

and solve the current loaded Petri net model. Theobject baris just below themenu barand it contains 10 icons

which allow to perform operations, such as add/delete/change etc., on a specific object of the model. Petri net

models are displayed in thecanvas. The CP window shows only a part of the wholecanvasandscrollbars,

36

located on the right and on the bottom of the CP, allow to show different parts of it. Finally, on the bottom part

of the CP there is thestatus bar, in which appropriate status messages and/or error messages are displayed.

3.1 The Menu Bar

To access the menus, position the cursor (which appears as an arrow) on the desired menu item. Press the left

mouse button and hold it down (which highlights the particular option chosen) to walk through the menu options.

Click (i.e., release the left mouse button) on a particular option to select it.

In the following we list and describe the possible options offered by each menu item. The notationMenu

Item→Option is used to denote an option within a specific menu item.

3.1.1 File Menu

The File menu contains the following options:

File→New to edit a new model. The previous loaded one is discarded: if its last modifications performed have

not been saved,GreatSPN2.0.2prompts the user with a message asking if a save action is desired before editing

a new model.

File→Open to load a previously-saved model. A window pops up (Fig.3.3) allowing to navigate within direc-

tories selected by the filter and to choose the model to be loaded. By default, the filter is set on the user directory

defined by the environment variable GSPNNET DIRECTORY.

File→Merge to merge a Petri Net model previously defined to the current loaded model. This option is not

available in the current version ofGreatSPN. Merging of twoGreatSPN2.0.2models can be performed using the

Compositionmodule, described in detail in chapt.5.

File→Save to save the current model using the corresponding name. If the model is new,GreatSPN2.0.2will

ask the user to provide a name.

File→Save As... either to save the current model with a name, if the model is new, or to save it under a different

name (i.e., to make a copy of it).

File→Remove Resultsto remove all the result files created during the analysis of the current loaded model.

File→Remove All to remove all the files related to the current loaded model, included the net definition files.

37

Figure 3.3:GreatSPN2.0.2 Opendialog box.

Figure 3.4: Comment editor display

Figure 3.5: Options display

File→Comment... to specify a comment which is saved as part of the net description. The window of Fig.3.4

pops up, allowing to edit the comment. To save the edited comment click with the left mouse button on the “OK”

button. To abort the action, click on the “Cancel” button.

File→Options... to specify the machine on which the solution programs will be executed. TheOption win-

dow of Fig. 3.5 pops up; the “Hostname:” right button is labeled with the name of the machine on which

GreatSPN2.0.2has been started, while in the “Hostname:” left box appears the name of the machine on which

38

GreatSPN2.0.2has been launched the last time.

WARNING! The “Hostname” left box has to be updated with the name of the machine on whichGreatSPN2.0.2

has been launched in order to ensure thatGreatSPN2.0.2solvers work properly: therefore simply press on the

“Hostname:” button, then the name written on the button will be automatically copied into the “Hostname:” left

box.

The “Verbose Show” option allows the user to require a verbose output during the execution of the analysis

programs.

File→Print... to print the current loaded model. This option affects only that portion of the current loaded

model that is included in the currently-defined print area, that is displayed as surrounded by a dotted line if the

View→Print Areaoption is selected. To define the print area, we have to:

1. activate theAction menu (Fig.3.7) by pressing the right mouse button on any position of thecanvasand

select theAction→Define Print Areaoption (the cursor shape will be changed into a cross);

2. click with the left mouse button over thecanvaspoint corresponding to the upper-left corner of the print

area;

3. move the mouse cursor on the lower-right corner of the desired print area and click either the left or the

middle mouse button.

TheFile→Print... option causes thePrint dialog box (shown in Fig.3.6) to pop up. In the window contained in

Figure 3.6:GreatSPN2.0.2 Printdialog box

the leftmost part of thePrint dialog box,GreatSPN2.0.2shows an overview of the entire working area (remember

that only a window on a portion of the working area is shown in the CP). The print area is surrounded by a thin

39

black frame, that can be adjusted (allowing the redefinition of the print area) by positioning the mouse cursor

over the lower-right corner (indicated by a small black square) and dragging it by clicking with the left mouse

button without releasing the mouse button. The six icons displayed just below the above window allow us to set:

• the format of the output, that can be chosen between raw PostScript (by clicking on the “PS” icon) and

Encapsulated PostScript (by clicking on the “TeX” icon);

• the destination of the output, that can be either a file (“Diskette” icon) or a PostScript printer (“Printer”

icon): if the EPS format is chosen then only a printout on a file is allowed;

• the orientation of the output, that can be either portrait or landscape (the two “A” icons).

The right part of thePrint dialog box contains a window that shows the page layout (an A4 size sheet is assumed).

The placement of the print area over the sheet can be changed either by dragging the thin black rectangle or by

clicking over one of the three icons placed at the right of the window (that allow centering the picture on either

dimension). Finally, the printout with the desired options is performed by clicking with the left mouse button on

the “Print” button. If we decided to save the printout on a file,GreatSPN2.0.2will ask the user (by means of a

suitable dialog box) to enter a file name that will be placed either in the default PostScript (PS) or Encapsulated

Postscript (EPS) directory. The default PS and EPS directories are the ones specified by the environment variables

GSPNPSDIRECTORY and GSPNEPSDIRECTORY, respectively, which are located in the$HOME/.greatspn

file.

File→Exit to terminateGreatSPN2.0.2session. If the current loaded model has not been saved since its last

modification,GreatSPN2.0.2will prompt a message asking the user if he/she wishes to save it.

3.1.2 Edit Menu

The Edit menu allows to graphically edit portions of the model; some of the options of the Edit menu are available

only if a portion of the model has been selected. The model portion affected by the Edit options can be selected

in the following way. First, activate theAction menu (Fig.3.7) and choose theAction→Selectoption. Then,

position the mouse pointer on the upper left corner of the desired area, click and hold down the middle mouse

button, move the mouse pointer on the lower right corner of the above area, and then release it by clicking with

the left mouse button. The Edit menu contains the following options:

Edit→Undo to undo the effects of the last modification performed on the layout of the model. This option is

not available when theSelectaction is active.

40

Figure 3.7:Action menu options.

Edit→Add to make a copy of the objects, i.e., places, transitions and subnets, located in the selected area. The

copied objects can be dragged around following the movements of the mouse cursor and eventually placed on

the desired location by clicking the left mouse button. Arcs connecting the selected object are also copied and

the added places/transitions are renamed. Same operation can be performed by activating theAddoption of the

Action menu. To terminate theAddoption, set theEnd Selectionoption selected either from the Edit menu or

from theAction menu.

Edit→Delete to delete all the items placed on the selected area.

Edit→End Selection to disactivate the selected area.

Edit→Move to move on thecanvasthe objects contained in the selected area. The starting and terminating

nodes of arcs are not changed.

Edit→Modify to modify the layout of currently-selected area. Allowed transformations are:

• clockwise rotation of a multiple of 45 degrees;

• flip X-axis: change the sign of the x coordinates of the selected objects obtaining a vertical mirror trans-

formation;

• flip Y-axis: change the sign of the y coordinates of the selected objects obtaining a horizontal mirror

transformation;

41

Figure 3.8: Edit layer window.

• mirror: the vertical and the horizontal lines crossing at the current mouse position in thecanvasrepresent

traces of two mirrors with respect to which an image copy of the selected subnet may be created by clicking

the left (or middle) mouse button.

Edit→Layers... to edit the layers of the current loaded net. Layers can be set visible or not, independently

of each other. ThisGreatSPN2.0.2feature can be effectively exploited to develop “dense” nets with numerous

crossing arcs, as in the case of places representing global states of a system that must be tested by many logically

distinct subnets. When this option is selected theEdit Layerswindow of Fig.3.8 pops-up, allowing to create,

destroy, rename and set visible or not layers of the net. When aGreatSPN2.0.2model is created “The Whole

Net” layer, representing the whole model, is automatically generated and, by default, is set visible.

In order to describe how to generate layers of a current loaded model, let us consider the example of a fault-

tolerant multiprocessor system in which processors may access a common memory through a bus. The basic

fault-free behavior has been modeled by the net shown in Fig.3.9. Placerunning contains tokens representing

processors running on their own private memory. Transitionmemreqmodels the time necessary for a processor

to issue a shared memory access request. Immediate transitionstartaccrepresents the start of a shared memory

access using the bus. Timed transitionaccessmodels the time needed to complete a shared memory access and to

release the bus. The net of Fig.3.9is our starting point in the construction of a more complex model including not

only the normal system operation, but also the activities related to fault detection and recovery. This initial net

can be thought of as the first layer of the more complex model. Our first modeling step will be the definition of

two layers, which will be calledrun andrepair, representing the normal operation of the system and the activities

related to reconfigurations and repairs of faulty processors, respectively. After loading our initial net description,

42

P= 2

busaccess

wait

running
P

memreq

access

startacc

Figure 3.9: Fault-free multiprocessor system model.

Figure 3.10: Edit layer window after the newly

added layer.
Figure 3.11: View layer window.

the first operation is to open theEdit Layerswindow, by selecting theEdit→Layers...option, that appears as the

one of Fig.3.8since no layers have already been added. Click on the “Add” button to activate the box located at

the left bottom of the window and write in that box the name of the new layer (run) to be created. Click on the

“OK” button to confirm the previous operation: the new layerrun has been added to the list of the current layers

of the net, shown on the main box of the window (see Fig.3.10). When we click the “View” button theView Layer

43

window pops-up, see Fig.3.11: this window allows to set a layer visible (with the associated box checked) or not

(with the associated box empty) by simply clicking on the corresponding box. In order to notify the editor that

the objects already defined in the net must belong to therun layer, we have to perform the following operations:

• select the objects: 1) setAction→Selectoption from theAction menu (Fig.3.7) 2) click with the middle

mouse button over thecanvaspoint corresponding to the upper-left corner of the select area 3) move the

mouse cursor on the lower-right corner of the desired select area and 4) click either the left or the middle

mouse button;

• switch off the “The Whole Net” layer in theView Layerswindow (Fig.3.11);

• choose theAction→Addoption from theAction menu (Fig.3.7).

In this way the content of the selected subnet is added to therun layer. Now we may proceed to the definition of a

new layer; click on the “Add” button of theEdit Layerwindow and define the new layerrepair. Note that after this

action, the newly added layer as well the “The Whole Net” layer are both switched on in theView layerwindow,

while the other layers (in the current example, the layerrun) are all switched off. In this situation, any object

created is automatically added both to the net description and to therepair layer. We can then start to add objects

in the usual way, until the net depicted in Fig.3.12 is obtained. The subnet corresponding to this newrepair

P= 2

busaccess

wait

running
P

recfail

repair

waitbus

recrep

memreq

access recrep

repair

recfail

startacc

getbus

Figure 3.12: The first two layers of the fault-tolerant system example.

layer has its particular meaning: transitionrecfail represents the reconfiguration of the system needed after the

detection of a processor failure. Placerepair models the faulty processor held off-line. Transitionrepair models

the time needed to repair or substitute the faulty processor. Transitionrecrep represents the reconfiguration

needed after the repair or substitution of the faulty processor in order to put it on-line again.

44

Note that placesrunningandbusshould belong to bothrepair andrun layers. We can include them in the

new layerrepair by selecting them, switching off the “The Whole Net” layer, and by choosing theAction→Add

option from theAction menu. Unfortunately, as shown in Fig.3.13, this operation has included intorepair layer

not only the two places, but also the two arcs connected to them. These arcs can be removed from the layer by:

• choosing theAction→Deleteoption from theAction menu (Fig.3.7),

• activating thearc icon from theobject bar,

• picking the arcs in excess with the left button of the mouse.

Figure 3.13: Inclusion of places ‘running’ and ‘bus’ into ‘repair’ layer.

Similarly, we should define two more layers as depicted in Fig.3.14, representing the failure detection and

the priority given to recovery procedures over normal operation, respectively.

Fig.3.15 shows the appearance of the complete net with all the layers switched on. Compare the level of

readability of this last figure, with that of the sequence of the four layers shown separately. Note also that the

last two layers are not easily recognized as ‘proper’ subnets, and would not be easily managed by tools based on

hierarchical decomposition concepts.

45

(A) (B)

Figure 3.14: The ‘fail’ (A) and the ‘priority’ (B) layers.

P= 2

recrep

waitbus

recfail

seizebus

busaccess

wait

running
P

repair

memreq

recrep

repair

recfail
failacc

failwait

failrun

access

startacc

preempt

getbus

seizebus

Figure 3.15: The complete net with all the layers switched on.

In fact, different layers can be associated with different hierarchical views of the system, but in general the

use of layers is not limited to hierarchy; they can be used to partition a complex ‘flat’ model just in ‘slices’ among

which no hierarchy is defined, as in our example.

46

3.1.3 View Menu

This menu allows to set several options concerning the graphical display of the current loaded Petri net model.

Options remain set until they are deactivated. The View menu contains the following options:

View→Spline to display arcs with splines. Splines are slower to draw, but often result in nets easier to under-

stand.

View→Tag to show/hide the names of the net objects.

View→Rate to show/hide the transition rates.

View→Overview to show/hide net overview.

View→Find... this option is not available in the current version of the package.

View→Print Area to show/hide the print area. When theView→Print Areaoption is set the current print area

is surrounded by a thin broken frame. To change print area definition, choose theAction→Define Print Area

from theAction menu (Fig.3.7), the cursor shape will be changed into a cross; click with the left mouse button

over thecanvaspoint corresponding to the upper-left corner of the desired print area; move the mouse cursor on

the lower-right corner of the desired print area and click either the left or the middle mouse button.

View→Layers... to pop-up theView Layerdialog box (Fig.3.11): the layers of the loaded net are listed in the

left box; each layer can be set visible (the associated check-box checked) or not visible (the associated check-box

empty) by clicking on its corresponding check-box. To close theView Layerdialog box click on the “Done”

button; to set visible all the defined layers click on the “Select All” button; to set not visible all the defined layers

click on the “Unselect All” button. The “Edit” button located on the bottom-right of the dialog box allows to

pop-up theEdit Layerwindow (see Fig.3.8).

3.1.4 Grid Menu

The Grid menu allows to set grid in thecanvasin order to simplify a regular layout of the net. The size of the

gap between points in the grid ranges from one pixel to 50 pixels (the default gap size is one pixel which mean

the “None” option is set). When a grid is set, objects are added and moved in the nearest point of the grid with

respect to the mouse cursor position.

47

3.1.5 Zoom Menu

The Zoom menu allows to show the objects of the current loaded net at five different ”zoom” levels, by selecting

the proper zooming factor (1, 3/2, 2, 1/2, 3/4). “Zoom” operation causes the resizing of all the objects contained

in the canvasduring aGreatSPN2.0.2session, however it doesn’t affect the actual dimension of the objects of

the net. The default zoom factor of the editor is 1.

3.1.6 Rescale Menu

Net coordinates of the current net can be rescaled by selecting the Rescale menu which contains sixteen different

rescale factors ranging from0.5 to 2. Choosing one of the rescaling factors, the coordinates of all the objects

contained in thecanvasare multiplied by that coefficient.

WARNING! Rescaling is completely different from zooming the net: “zoom” operation affects only the editor

view of the net while “rescale” operation affects the actual coordinates of the objects of the net.

The following three subsections give a short explanation of theGSPNof theSWN and of theE-GSPNmenus

respectively; a depth description of theGreatSPN2.0.2solvers is given in Chapt.4.

The choice of launching either a structural (GSPN→Structsubmenu) or a numerical analyzer (GSPN→Solve

submenu) for GSPN models, as well as the choice of carrying out either a numerical analysis or a simulation run

on a SWN model (SWN menu) - or on a E-GSPN model (E-GSPN menu) - causes theConsolewindow of

Fig.3.16 to pop-up: to launch the corresponding execution module press the “Start” button. When a solution

module is launched, then the “Interrupt” button becomes active: press it to interrupt the execution of the current

solution module.

WARNING! In some cases, the “Interrupt” action actually does not kill the launched process but only some

sub-processes originated by the former: then it is better to check from a terminal if the process is still alive or

not.

When the “Clear” button is pressed then a previous computed solution is removed. Finally the “OK” button

allows to close theConsolewindow.

3.1.7 GSPN Menu

The GSPN menu contains the options that allows to launchGreatSPN2.0.2solvers for GSPN models.

GSPN→Struct to compute the structural properties of the current loaded GSPN model. It pops-up a sub-menu

which contains in turns the following options:

• P-invariants: to compute the minimal-support non-negative place invariants;

48

Figure 3.16:GreatSPN2.0.2Console

• T-invariants : to compute the minimal support transition invariants;

• Minimal deadlocks: to compute the minimal deadlocks, i.e., the sets of places that once emptied cannot

be marked anymore;

• Minimal traps : to compute the minimal traps, i.e., the sets of places that once marked cannot loose tokens

anymore;

• ECS Confusion ME SC CC: to compute the ECS, Extended Conflict Sets of immediate transitions, Con-

fusion between transitions (non free-choice conflicts), ME, structural and marking Mutual Exclusion be-

tween transitions, SC, Structural Conflicts between non-mutually exclusive transitions, and CC, structural

Causal Connection between transitions.

• Structural boundedness: to verify the structural boundedness and, in case of unbounded nets, to compute

the transition sequences that can arbitrarily increase the marking of some place.

The computation of the above structural properties requires that the net description is saved on a file.

GSPN→Solve to carry out analysis of the current loaded GSPN model, in particular:

• Compute TRG: to generate the Tangible Reachability Graph;

• Compute EMC: to compute the Embedded Markov Chain, that is the CTMC associated to the TRG;

• GSPN solution: to compute the CTMC solution, i.e., the probability distribution of the number of tokens

in each place and the performance results. GSPN solution can be obtained both insteadystate and in

transientstate.

49

In case of transient solution request, when the “Start” button of theConsolewindow (Fig.3.16) is pressed,

the Input window of Fig.3.17appears. The value (positive real) of the time instant at which the transient

solution will be computed has to be inserted in the corresponding boxtransient time

Figure 3.17:GreatSPN2.0.2Input window

GSPN→Simulation... to play the interactive token-game and to launch the interactive simulation. When this

option is chosen theSimulationwindow pops-up (Fig.3.18) and all the transitions of the current loaded model

that are enabled in the initial marking become blinking.

Token game.To simulate a possible behavior of the current loaded GSPN model simply click with the leftmost

button of the mouse over the enabled (i.e. blinking) transition you want to fire it. By default the “Untimed” and

the “Forward” options of theSimulationwindow are set to play the forward token game: it is possible to play the

backward token game by setting the “Untimed” and “Backward” options in theSimulationdialog box.

“Moves” area allows to set the slowness of the token flow from the input places of the firing transition to its

output places: higher is the value filled in this area slower is the token flow.

Figure 3.18:GreatSPN2.0.2Simulation window

Simulation. To activate the interactive simulation of the current loaded GSPN model set the “Timed Interactive”

option: when this option is set, then the “Step”, “Fire”, “Auto”, “Set time”, “Stop” and “Breakpoint” buttons

become available. To simulate the behavior step-by-step press the “Step” button: the area located below this

50

button allows to set the number of automatic firings, e.g., if you fill in the value 2, then two successive firings are

displayed. Press the “Auto” button to start the simulation run: the firing sequences are displayed in the canvas

automatically until an interruption command is given by the user. To interrupt the execution press the “Stop”

button, the transition throughputs computed up to the interruption (transient results) are visualized in the canvas

and they are saved in thenetname.sta file. To restart the simulation from the interrupted point press the “Auto”

button again. To terminate the simulation execution press the “Stop” button first, and then the “Done” button.

WARNING! The interactive simulation does not work properly on some GSPN models: to use simulation tech-

niques on a GSPN model in order to obtain performance results is better to use the simulation solvers available

from theE-GSPNmenu.

3.1.8 SWN Menu

The SWN menu contains the following options:

SWN→Symbolic to compute solution of SWN models. In particular:

• Simulation: to launch the simulation for colored models using an abstract representation of markings, i.e.,

symbolic markings;

• Compute RG: to compute the Symbolic Reachability Graph of the model and to obtain performance

indices in steady state;

• Transient: to compute the Symbolic Reachability Graph of the model and to obtain performance indices

in transient state.

SWN→Ordinary

• Simulation: to launch the simulator for colored models using ordinary markings;

• Compute RG: to compute the Reachability Graph of the model and to obtain performance indices in steady

state;

• Transient: to compute the Reachability Graph of the model and to obtain performance indices in transient

state.

SWN Reachability Graph computation The launch of a Reachability Graph solver - either symbolic or ordi-

nary - is carried out by pressing the “Start” button of theConsolewindow (Fig.3.16) and it causes aRG Options

window (see Fig.3.19) to appear. It is possible to obtain a verbose description of the symbolic (or ordinary)

reachability graph by setting on the “Verbose Show” toggle of this window an by choosing the “OK” button. The

execution is displayed on theConsolewindow and the results are visualized in theGreatSPN2.0.2canvas.

51

Figure 3.19: SWN Reachability Graph Options window.

SWN simulation The launch of a SWN simulation - either symbolic or ordinary - is carried out by pressing the

“Start” button of theConsolewindow (Fig.3.16) and it causes aSimulation Optionswindow (see Fig.3.19) to

appear. Through this window, the user can modify the default values of the simulation parameters, in particular:

• “Initial Transitory”: the length of initial transitory period that has not to be taken into account for the

computation of the performance measures;

• “Batch Spacing”: the length of evolution phase between batches that has to be discarted;

• “Minimum Batch Length”: the dimension of the minimum batch;

• “Maximum Batch Length”: the dimension of the maximum batch;

• “Seed”: the seed of the random number generator;

• “Accuracy”: the precision of the approximation in the parameters estimation;

• “Confidence Level”: the confidence level in the parameters estimation.

All these parameters, except for the confidence level, can be modified by typing directly in the corresponding

area of theSimulation Optionswindow. The “Confidence Level” can be changed instead by choosing the desired

value from the pull-down menu that pops up when the corresponding toggle is clicked. To obtain a verbose

description of the simulation results set the “Verbose Show” toggle of this window.

Click on the “OK” button to confirm the settings: the simulation execution is displayed on theConsole

window and the results are visualized in theGreatSPN2.0.2canvas.

SWN transient The launch of a SWN transient solver - either symbolic or ordinary - is carried out by pressing

the “Start” button of theConsolewindow (Fig.3.16) and it causes theInput window of Fig.3.17) to appear. As

is the case of GSPN transient solutions, thetransient time...area of this window has to be filled in with the value

(positive real) of the time instant at which the SWN transient solution will be computed.

52

Figure 3.20: SWN Simulation Options window.

3.1.9 E-GSPN Menu

The E-GSPN menu concerns the Extended-GSPN models, that is GSPN models in which firing times of timed

transitions can have more general distributions than the negative exponential. TheE-GSPNmenu contains the

following options:

E-GSPN→Simulation to launch the simulation;

E-GSPN→Compute RG to compute the Reachability Graph of the model and to obtain the performance indices

in steady state;

E-GSPN→Transient to compute the Reachability Graph of the model and to obtain performance indices in

transient state.

All the solvers launched from theE-GSPN menu come from the same source files used for producing the

SWN solvers and they have the same functionalities of the latters.

WARNING! Note that the solvers lauched from theE-GSPNmenu work also if the filenetname.dis, used for

the general temporal specifications of the timed transitions, has not been created (or it is not located in the same

directory where the net definition files of the current model are saved).

3.1.10 Help Menu

The Help menu, located on the right of themenu bar, contains the following options:

53

Help→Mouse Help to display information about the use of the mouse buttons; theMouse Helpwindow pos-up

(Fig.3.21) describing the current functions of the mouse buttons. To remove theMouse Helpwindow, deactivate

theHelp→MouseHelpoption.

Figure 3.21: Mouse help window.

Help→About when this option is chosen a window displaying the current release ofGreaSPNpops-up: to

remove the window, click on the “OK” button.

3.2 The Object bar

Theobject bar, located just below themenu baron theGreatSPN2.0.2Control Panel (see Fig.3.2), contains 10

icons which allow to perform operations - add/delete/change... - on a specific object of the PN model. To execute

an operation on a specific object:

• activate theAction menu (see Fig.3.7) by pressing the right mouse button on any position in thecanvas;

• click with the left mouse button over the desired action: the selected action is displayed on thestatus bar

of the CP and it becomes the default action until a new one is chosen;

• select the object type by clicking on the corresponding icon button of theobject bar: the default action will

affect only the objects of the type currently selected.

Depending on the type of action activated and of the type of selected object, different windows will pop-up; in

the following, going from the left to the right, each icon of theobject baris described, together with the possible

actions that can be carried out on the corresponding object type.

3.2.1 Places

It is the first icon of theobject barand it is depicted as a circle.

Add: add a new placeoperation causes the shape of the mouse cursor to change into a circle: to locate the new

place in thecanvas, move the mouse cursor and click the left mouse button in the desired position.

54

Figure 3.22: Dialog box for changing place properties.

Change: change place propertiesoperation causes the dialog box of Fig.3.22to pop-up.

This dialog box is characterized by the “Tag:” area, that contains the name of the place, the “Color Label:”

area, that contains the color domain definition in case of colored places (SWN models) and the “Marking:”

area, that contains either a non negative number or a marking parameter which indicates the initial marking

of the place. To change one of the above mentioned place properties (either place name or color domain

or initial marking), click with the left (middle) mouse button over the corresponding area of theChange

Place Propertiesdialog box in order to activate it and write the proper definition.

Renaming of places via GUI is subject to the constraint that places of a model must to have distincts tags

(i.e., names); the attempt of renaming a place with an existing tag (i.e., with a string corresponding to the

name of another place of the current model) provokes an error message window to pop-up. This constraint

has been introduced to avoid problems in the computation of performance results, in particular performance

indices that are functions of the places with the same name. However, if the modeler wants to define places

with the same tag, then he/she has to modify directly the net definition file of the model.

WARNING! The assignment of an undefined initial marking parameter to a place provokes an error

message window to pop-up. This type of control is not carried out for the color domain definition: be

careful then to assign a correct color domain to a place, i.e., both by following the SWN grammar (see

TableA.1 of Appendix A) and by defining basic color classes before.

Select: select a placeoperation allows to select a specific place of the current loaded model by clicking over

the place with the left mouse button; this action causes a broken rectangle to surround the place. Selection

operation is normally used along with other operations, e.g., with theAdd action to make a copy of the

place together with its input and output sets. To reset theSelectoperation, choose in theAction menu

theEnd Selectionoption (the broken rectangle that surrounds the selected area, in this case a place, will

disappear).

Move: move a placeoperation causes the shape of the mouse cursor to change into a cross; to move a place

55

simply click with the left mouse button over the place to be moved, move the mouse cursor to choose the

desired location in thecanvasto put the place and click again to fix the place in the desired location.

Delete: delete a placeoperation allows to delete a place present in thecanvas; to delete an existing place click

over the place to be removed with the left mouse button.

Show: show a placeoperation allows to visualize place properties; to choose the property of a place to be

displayed click with the right mouse button over the place to pop-up thePlace Propertymenu and then

click with the left mouse button over the corresponding option to set the desired property. ThePlace

Propertymenu contains the following options:

P-invariants To display P-invariants the place belongs to: all the places belonging to the same P-invariant

start blinking and aShowmenu pops-up in which the algebraic expression of the current P-invariant is

visualized (this expression is also visualized on thestatus bar).

Minimal deadlocks To display minimal deadlocks the place belongs to: all the places belonging to the

same minimal deadlock start blinking and aShowmenu pops-up in which the algebraic expression of the

current minimal deadlock is visualized (this expression is also visualized on thestatus bar).

Minimal traps to display minimal traps the place belongs to: all the places belonging to the same mini-

mal trap start blinking and aShowmenu pops-up in which the algebraic expression of the current minimal

trap is visualized (this expression is also visualized on thestatus bar).

WARNING! To visualize the above properties, i.e., P-invariants, minimal deadlocks and minimal traps it

is necessary to launch the corresponding structural solvers before, by choosing the related options on the

GSPN→Structsubmenu, otherwise a window will pop-up displaying a warning message of type:Sorry,

no up-to-date place invariants (or deadlocks or traps) available.

Implicit places To display pairs of implicit places : the couple of implicit places start blinking and a

Showmenu pops-up in which the implication is visualized (it is also visualized on thestatus bar).

Absolute Marking Bounds To display the structural bounds on the number of tokens in a place. To

compute the upper bound click with the left mouse button over the place, while to compute the lower

bound click with the left-right (or middle) mouse buttons; bounds are visualized both on theShowwindow

which pops-up and on thestatus bar. In case of unboundedness, a message will be displayed.

56

Average Marking Bounds To display the bounds for the steady state mean of a place. Bounds are

obtained from the net structure, the initial marking and the transition rates by solving a linear programming

problem. To compute the upper bound click with the left mouse button over the place, while to compute the

lower bound click with the left-right (or middle) mouse buttons; bounds are visualized both on theShow

window which pops-up and on thestatus bar. In case of unboundedness, a message will be displayed.

WARNING! Absolute and average marking bounds can be computed only if thelp solve package[28],

used for solving linear programming problems, has been installed and theGreatSPN2.0.2environment

variable GSPN2LPSOLVE has been set with the path-name of the executable.

End Show To reset theShowoption.

3.2.2 Transitions

There are three icons corresponding to a transition object: theIMM icon, depicted as a thin black bar, theEXP

icon, depicted as a thick white bar, and theDET icon, depicted as a thick black bar. These icons correspond,

respectively, to an immediate transition object, an exponentially distributed timed transition object and a deter-

ministic distributed timed transition object.

Add: add a transitionoperation causes the shape of the mouse cursor to change into the corresponding transition

icon - IMM, EXPor DET - depending on the type of transition selected. To locate the new transition in the

canvas, move the mouse cursor and click the left mouse button in the desired position.

Change: change a transition propertiesoperation causes a dialog box to pop-up.

Timed transitions.

The dialog box in this case is the one of Fig.3.23(A) in which theEXP icon, located on the top of the win-

dow, is pressed. In caseDET icon is pressed, i.e., it is theChange Transition Propertiesfor a deterministic

transition, the bottom part of the dialog box, which concerns the type of server semantics to be set, is not

present. The common areas of the dialog box for exponentially distributed transitions and for deterministic

distributed transitions are the followings:

- “Tag:” it contains the name of the transition. By default, names of timed transitions are of typeT#,

where# is a number given in progressive order with respect to the transition creation.

- “Color Label:” it contains the guard definition of the transition (SWN models). No syntactical control

is carried out for the guard of its definition.

- “Rate or Rate Parameter:” for exponentially distributed transitions, it contains either the value of

the rate or the name of a rate parameter. In the latter case the rate parameter has to be previously

57

(A) (B)

Figure 3.23: Windows for defining/changing properties of timed (A) and immediate (B) transitions.

defined, otherwise an error message will be displayed. For deterministic distributed transitions, values

assigned in this area are considered as delays. By default, the rate (delay) value assigned is 1.0.

WARNING! In case of timed transition, a zero value as transition rate is accepted even though this

assignment will cause a segmentation fault when launching the solutions. Transition rates assigned from

GUI, are stored in the net definition file with at most six decimal digits, i.e., if you assign a value lower

than 10E−6 to a transition rate then the value will be truncated at the 6th decimal digit in the.net file.

To change one of the above mentioned transition properties (either transition name or guard or rate), click

with the left (middle) mouse button over the corresponding area of theChange Transition Propertiesdialog

box in order to activate it and write the proper definition.

For exponentially distributed transitions,GreatSPN2.0.2allows the user to define different server seman-

tics. Let µ(M) be the marking dependent parameter of the negative exponential distributionF(x,M) =

Pr{X ≤ x} = 1− e−µ(M)x associated to a timed transitiont, and letED(t,M) be the enabling degree of

t in markingM, then depending on the semantics adopted for the timed transition, a different marking

dependent firing rateµ(M) is assigned.

Infinite Every enabling set of tokens is processed as soon as it forms in the input places of the transition. Its

corresponding firing delay is generated at this time, and the timers associated with all these enabling

sets run down to zero concurrently. Multiple enabling sets of tokens are thus processed in parallel.

58

The firing rate oft is given by the functionµ(M) = ED(t,M)µ, whereµ is the value set in the “Rate

or Rate Parameter:” area of theChange Transition Propertieswindow. This semantics is the default

option, i.e., the “Infinite” toggle of theChange Transition Propertiesdialog box is switched on.

Marking Dependent Firing rate oft is function of the marking of a subset of places of the net; this subset

of places is not necessary equal to the set of input and inhibitor places of the transition. To choose this

option, click with the left (left-right) mouse button over the “Marking Dependent” toggle to switch

it on and to define the functionµ(M) in the “Marking Dependent Definition” area, follow the syntax

given in TableA.3 of Appendix A. It is possible to display the grammar on line by clicking over the

“MD Grammar Help ...” button.

K-Server In case of single server semantics, i.e.,K = 1, random firing delay is set when the transition

becomes first enabled, new delays are generated upon transition firing if the transition is still enabled

in the new marking. This means that enabling sets of tokens are processed serially and that the

temporal specification associated with the transition is independent of the enabling degree, i.e., the

firing rate of transitiont is given by the (constant) functionµ(M) = µ, whereµ is the value set in

the “Rate or Rate Parameter:” area of theChange Transition Propertieswindow. In case of multiple

server semantics, i.e.,K ∈ {2, ...,127}, enabling sets of tokens are processed as soon as they form in

the input places of the transition up to the maximum degree of parallelismK. For larger values of the

enabling degree, the timers associated with new enabling sets of tokens are set only when the number

of concurrently running timers decreases below the valueK. The firing rate of transitiont is given by

the functionµ(M) = min(ED(t,M),K)µ. To choose this option, click with the left (left-right) mouse

button over the “1-Server” toggle to switch it on: the scrollbar located at the bottom left of the dialog

box becomes active. In case of K-Servers semantics, withK > 1 move the scrollbar by keeping the

mouse button pressed to fix the desired value forK. The “1-Server” toggle will be changed into

“K-Server” toggle automatically when the mouse button will be released.

Load Dependent Firing rate of t is a function, given in tabular form, of its enabling degreeµ(M) =

f (ED(t,M)). This semantics is a particular case of marking dependent semantics in which the firing

rate oft whenED(t,M) = K corresponds to the the throughput of a short-circuited queueing network

in which exactlyK jobs are circulating in it (i.e.,t represents the load-dependent equivalent server).

To choose the load dependent server semantics switch on the “Load Dependent” toggle to activate

the scrollbar, then move the scrollbar by keeping the mouse button pressed to fix the desired value

MAX (it corresponds to the maximum population of the short-circuited queueing network). When

the mouse button is released,MAX lines are added in the area located above the scrollbar and they

appear as follows:

Rate --> 1.000000

59

2 --> 1.000000

3 --> 1.000000

...

MAX --> 1.000000

Each line is of type# --> ratevalue, apart from the first one in which the stringRate replaces the

number1, whereratevalue corresponds to the value assigned to the firing rate when the enabling

degree of the transition is equal to#. By default, all theratevalue are equal to 1.000000. To change

one of theratevalue, click with the left mouse button over the corresponding line: automatically,

theratevalue appears on the “Rate or Rate Parameter (Weight)” area. Type the desired value and

then press<Return> command: the new value for theratevalue will be set and the corresponding

line in the area above the scrollbar will be updated.

Immediate transitions.

The dialog box in this case is the one of Fig.3.23(B) in which theIMM icon, located on the top of the

window, is pressed. It is characterized by the following areas:

- “Tag:” it contains the name of the transition. By default, names of immediate transitions are of type

t#, where# is a number given in progressive order with respect to the transition creation.

- “Color Label:” it contains the guard definition of the transition (SWN models). No syntactical control

is carried out for the guard at the moment of its definition.

- “Weight:” it contains the weight of the transition. By default the weight value assigned is 1.0.

Admissible values are non-negative real numbers, in case of conflict among different immediate

transitions a normalization of the weight is performed when the solution are launched.

To change one of the above mentioned transition properties (either transition name or guard or weight),

click with the left (middle) mouse button over the corresponding area of theChange Transition Properties

dialog box in order to activate it and write the proper definition.

Finally, on the bottom-left part of theChange Transition Propertiesdialog box, there is a scrollbar that

allows to assign a priority level to the transition. By default, the priority level is one; the admissible

priority levels range from 1 to 126. To change the priority level of the current immediate transition, simply

click with the mouse button over the scrollbar and move it by keeping the mouse button pressed until you

find the desired value.

WARNING! Renaming of transitions via GUI is subject to the constraint that transitions of a model must

to have distincts tags (i.e., names); the attempt of renaming a transition with an existing tag (i.e., with a

string corresponding to the name of another transition of the same type) provokes an error message window

60

to pop-up. This constraint has been introduced to avoid problems in the computation of performance

results, in particular performance indices that are functions of the transitions with the same name. However,

if the modeler wants to define transitions with the same tag, then he/she has to modify directly the net

definition file of the model.

Select: select a transitionoperation allows to select a specific transition of the current loaded model by clicking

over the transition with the left mouse button; this action causes a broken rectangle to surround the transi-

tion. Selection operation is normally used along with other operations, e.g., with theAddaction to make

a copy of the transition together with its input and output sets. To reset theSelectoperation, choose in the

Action menu theEnd Selectionoption (the broken rectangle that surrounds the selected area, in this case a

transition, will disappear).

Move: move a transitionoperation causes the shape of the mouse cursor to change into a cross; to move a

transition simply click with the left mouse button over the transition to be moved, move the mouse cursor

to choose the desired location in thecanvasto put the transition and click again to fix the transition in the

desired location.

Delete: delete a transitionoperation allows to delete a transition present in thecanvas; to delete an existing

transition click over the transition to be removed with the left mouse button.

Rotate: rotate a transitionoperation causes the shape of the mouse cursor to change into a transition icon

(eitherIMM or EXPor DET icon depending on which transition icon is set on theobject bar); to rotate a

transition click over the transition with the left mouse button: each “click” of the mouse button will rotate

the transition clockwise of a multiple of 45 degrees.

Show: show a transitionoperation allows to visualize transition properties; to choose the property of a transition

to be displayed click with the right mouse button over the transition to pop-up theTransition Property

menu and then click with the left mouse button over the corresponding option to set the desired property.

TheTransition Propertymenu contains the following options:

T-invariants To display T-invariants the transition belongs to: all the transitions belonging to the same

T-invariant start blinking and aShowmenu pops-up in which the algebraic expression of the current T-

invariant is visualized (this expression is also visualized on thestatus bar).

ECS To display the Extended Conflict Sets (ECS) of the set of immediate transitions: all the immediate

transitions belonging to the same ECS start blinking and aShowmenu pops-up in which the algebraic

expression of the current ECS is visualized (this expression is also visualized on thestatus bar).

61

WARNING! Since the ECSs are computed only on the subset of immediate transitions, then to visualize

them it is necessary that theIMM icon of theobject bar is set. Otherwise, if another transition icon

(eitherEXPof DET) is set, theshow ECSoperation causes a warning message to pop-up (i.e.,“Sorry, NO

Ext.Conflict Sets is computed for timed transitions”) although the request has been carried out by clicking

on a specific immediate transition.

ME To display the pairs of transitions that are structurally mutually exclusive.

SC To display the pair of transitions that are in structural conflict relation.

CC To display the pair of transitions that are in causal connection relation.

Unbounded Sequences To display the firing sequences of transition that add tokens to an unbounded

place. Click over the unbounded place, the place and the unbounded firing sequence start blinking alter-

nately and the algebraic expression of the firing sequence is displayed in theShowwindow that pops-up; to

visualize all the unbounded firing sequences, click repeatedly over the same unbounded place, each click

of the mouse allows, in turn, to show a unbounded firing sequence.

WARNING! To visualize the above properties, i.e., T-invariants, ECS, ME, SC, CC, and Unbounded

Sequences it is necessary to launch the corresponding structural solvers before, by choosing the related

options on theGSPN→Structsubmenu, otherwise a window will pop-up displaying a warning message of

type: “Sorry, no up-to-date transition invariants (or conflict sets or ...) available”.

Actual liveness Bounds To display the actual liveness bounds of a transition.

LP liveness Bounds To display the liveness bounds of a transition.

LP throughput Bounds To display the bounds for the steady state throughput of a transition. Bounds are

obtained from the net structure, the initial marking and the transition rates by solving a linear programming

problem. To compute the upper bound click with the left mouse button over the transition, while to compute

the lower bound click with the left-right (or middle) mouse buttons; bounds are visualized both on theShow

window which pops-up and on thestatus bar. In case of unboundedness, a message will be displayed.

End Show To reset theShowoption.

62

3.2.3 Arcs

It is the fifth icon of theobject barand it is depicted as an arrow.

Add: add an arcoperation causes the shape of the mouse cursor to change into an arrow: to connect a place

(transition) to a transition (place) click with the left mouse button over the place (transition) first, and then

click over the transition (place) with the left mouse button. To add an inhibitor arc click with the middle

mouse button over the inhibitor place (inhibited transition) first and them click over the inhibited transition

(inhibitor place) with the left mouse button.

WARNING! Since, by definition of PNs, it is not possible to have an arc connecting two objects of the

same type,GreatSPN2.0.2does not allow to connect either two transitions or two places with an arc. In

case, you have clicked on the first object and then you realize that this was not you intended to do, it is

better to continue and to terminate theadd arcoperation and then to delete the just added wrong arc than

to suspend the operation by activating another action since a suspended arc provokes a segmentation fault.

Change: change an arcoperation causes the dialog box of Fig.3.24 to pop-up. The upper part of the dialog

Figure 3.24: Change Arc Properties window.

box contains three icons. Always, only one of them is active and it indicates the current type of arc; in

particular, going from the left to the right, the first icon represents an input arc, the second represents an

output arc and the third one represents an inhibitor arc with respect to the transition. The tags of the place

and of the transition connected with the arc are displayed in the bottom part of the dialog box. For example,

the dialog box of Fig.3.24displays the properties of the output arc which connects transitionisreadto the

placeRqueue. Below the three icons, there are two toggles: the “Broken Arc” toggle and the “Color”

toggle.

63

• “Broken Arc”: when it is not set, i.e., the corresponding rectangle is white, then the arc is fully

displayed in thecanvas; when it is set, i.e., the corresponding rectangle is black, then the arc is

partially displayed in thecanvas, this means that only the ending parts of the broken line representing

the arc are displayed.

WARNING! To draw a broken arc it is necessary to break the line representing the arc with at least

two intermediate points first, then to set the “Broken Arc” toggle.

• “Color”: it is related with the area located on the right of the toggle. When it is not set, i.e., the cor-

responding rectangle is white, then the “Multiplicity” area contains the multiplicity value associated

to the arc. When it is set (in case of SWN models), i.e., the corresponding rectangle is black, then the

“Color:” area contains the arc function associated to the arc. Arc function definitions are given in the

SWN definition grammar of TableA.1 of Appendix A.

By default, the two toggles described above are not set and the arc multiplicity is equal to one.

Move: move an arcoperation allows to draw the arc as a broken line by adding some intermediate points. To

add an intermediate point just click with the left mouse button over the arc and move the mouse cursor in

thecanvasto choose the point as intermediate one, then fix the point by clicking again with the left mouse

button. To change the source (destination) of an arc, click with the middle mouse button over the source

(destination) object and then click with the left mouse button over the new source (destination) object.

Delete: delete an arcoperation allows to delete an arc present in thecanvas; to delete an existing arc click over

the arc to be removed with the left mouse button.

3.2.4 Marking parameters

It is the sixth icon of theobject barand it is depicted as a token.

Add: add a marking parameteroperation is used to create a new marking parameter that will be used as initial

marking of the GSPN system when solutions are launched. When this action is active, the shape of the

mouse cursor is an arrow, click on a free location of thecanvasto fix the position of the marking parameter

that is going to be defined: this action causes the dialog box of Fig.3.25to pop-up.

The dialog box is characterized by two areas: the “Label:” area, that has to be filled with the name of the

marking parameter, and the “Marking:” area, that has to be filled with a non negative integer. To fill in the

areas of theCreate Marking Parameterdialog box click over the corresponding areas to activate them and

then type the related name or value. Finally, either click over the “OK” button to confirm the settings or

click over the “Cancel” button to do not confirm.

The attempt to insert a negative value in the “Marking:” area causes a warning message to be displayed.

The name of the marking parameter has to be unique in the current loaded model.

64

Figure 3.25: Create Marking Parameter dialog box.

Change: change a marking parameterallows to change specification of an existing marking parameter. To

change the specifications of an existing marking parameter click over the marking parameter located some-

where in thecanvas: this action causes a dialog box similar to the one of Fig.3.25to pop-up1.

To change the values in the areas of theChange Marking Parameterdialog box click over the corresponding

areas to activate them and then overwrite the old values with the new ones. Finally, either click over the

“OK” button to confirm the changes or click over the “Cancel” button to keep the old settings.

Select: select a marking parameteroperation allows to select a specific marking parameter of the current loaded

model by clicking over the marking parameter with the left mouse button; this action causes a broken rect-

angle to replace the marking parameter. Selection operation is normally used along with other operations,

e.g., with theMoveaction to move the marking parameter in a different location of thecanvas. To reset the

Selectoperation, choose in theAction menu theEnd Selectionoption (the broken rectangle that replaces

the selected marking parameter, will disappear).

Move: move a marking parameteroperation causes the shape of the mouse cursor to change into an arrow;

to move a marking parameter simply click with the left mouse button over the marking parameter to be

moved, move the mouse cursor to choose the desired location in thecanvasto put the marking parameter

and click again to fix the marking parameter in the desired location.

Delete: delete a marking parameteroperation allows to delete a marking parameter present in thecanvas; to

delete an existing marking parameter click over the marking parameter to be removed with the left mouse

button.
1Actually, the dialog box differs only for the title that in case of change action isChange Marking Parameter.

65

3.2.5 Rate parameters

It is the seventh icon of theobject barand it is depicted with a clock and a transition.

Add: add a rate parameteroperation is used to create a new rate parameter that will be used in the temporal

specifications of one or more timed transitions of the GSPN system. When this action is active, the shape of

the mouse cursor is an arrow, click on a free location of thecanvasto fix the position of the rate parameter

that is going to be defined: this action causes a dialog box similar to the one of of Fig.3.26to pop-up2.

The dialog box is characterized by two areas: the “Label:” area, that has to be filled with the name of the

rate parameter, and the “Rate:” area, that has to be filled with a non negative integer. To fill in the areas

of theCreate Rate Parameterdialog box click over the corresponding areas to activate them and then type

the related name or value. Finally, either click over the “OK” button to confirm the settings or click over

the “Cancel” button to do not confirm.

The attempt to insert a negative value in the “Rate:” area causes a warning message to be displayed. The

name of the rate parameter has to be unique in the current loaded model.

Change: change a rate parameterallows to change specification of an existing rate parameter. To change the

specifications of an existing rate parameter click over the rate parameter located somewhere in thecanvas:

this action causes the dialog box of Fig.3.26to pop-up.

Figure 3.26: Change Rate Parameter dialog box.

To change the values in the areas of theChange Rate Parameterdialog box click over the corresponding

areas to activate them and then overwrite the old values with the new ones. Finally, either click over the

“OK” button to confirm the changes or click over the “Cancel” button to keep the old settings.

Select: select a rate parameteroperation allows to select a specific rate parameter of the current loaded model

by clicking over the rate parameter with the left mouse button; this action causes a broken rectangle to
2Actually, the dialog box differs only for the title that in case of create action isCreate Rate Parameter.

66

replace the rate parameter. Selection operation is normally used along with other operations, e.g., with the

Moveaction to move the rate parameter in a different location of thecanvas. To reset theSelectoperation,

choose in theAction menu theEnd Selectionoption (the broken rectangle that replaces the selected rate

parameter, will disappear).

Move: move a rate parameteroperation causes the shape of the mouse cursor to change into an arrow; to move

a rate parameter simply click with the left mouse button over the rate parameter to be moved, move the

mouse cursor to choose the desired location in thecanvasto put the rate parameter and click again to fix

the rate parameter in the desired location.

Delete: delete a rate parameteroperation allows to delete a rate parameter present in thecanvas; to delete an

existing rate parameter click over the rate parameter to be removed with the left mouse button.

Show: show rate parametersoperation allows to visualize the rates/rate parameters associated to the timed

transitions as well as the weight associated to the immediate transitions of the current loaded model; this

action causes theView→Rateoption to be switched on.

End Show: To reset theShowoption.

3.2.6 Result definitions

It is the eighth icon of theobject barand it is depicted with a bar diagram.

Add: add a resultoperation is used to create a user-defined performance result by following the grammar syntax

of Tab.A.3. When this action is active, the shape of the mouse cursor is an arrow, click on a free location

of the canvasto fix the position of the performance result name that is going to be defined: this action

causes a dialog box similar to the one of Fig.3.27 to pop-up. The dialog box is characterized by two

areas: the “Label:” area that has to be filled with the name of the performance result, e.g., in Fig.3.27the

nameEqueue has been assigned; and the “Definition:” area that has to be filled with the definition of the

performance result, e.g., in Fig.3.27, the performance result has been defined as the sum of the steady state

number of tokens in placeRqueue and of the steady state number of tokens in placeWqueue. It is possible

to display the grammar on line by clicking over the “Res Grammar Help...” button.

WARNING! In case of steady state solutions, both the capital and the small lettersE,e (P,p) can be used

to define the mean (the probability). In case of transient solutions, instead, the small letter has to be used.

Change: change a resultoperation allows to change specifications of an existing user-defined performance re-

sult. To change a previous definition of a given performance result, click over its name located somewhere

in thecanvas: this action causes the dialog-box of Fig.3.27to pop-up. To change the values in the areas of

67

Figure 3.27: Change Result Definition dialog box.

theChange Result Definitiondialog box click over the corresponding areas to activate them and then over-

write the old values with the new ones. Finally, either click over the “OK” button to confirm the changes

or click over the “Cancel” button to keep the old settings.

Select: select a resultoperation allows to select a specific user-defined performance result of the current loaded

model by clicking over the performance result name with the left mouse button; this action causes a broken

rectangle to superpose the performance result name. Selection operation is normally used along with other

operations, e.g., with theMoveaction to move the performance result name in a different location of the

canvas. To reset theSelectoperation, choose in theAction menu theEnd Selectionoption (the broken

rectangle that superposes the selected performance result name, will disappear).

Move: move a resultoperation causes the shape of the mouse cursor to change into an arrow; to move a perfor-

mance result simply click with the left mouse button over the performance result to be moved, move the

mouse cursor to choose the desired location in thecanvasto put the performance result and click again to

fix it in the desired location.

Delete: delete a resultoperation allows to delete a performance result present in thecanvas; to delete an existing

performance result click over the performance result to be removed with the left mouse button.

Show: show resultoperation allows either to visualize the definition of the performance result or, in case of

GSPN models, to display the token distribution in places. In the first case, just click with the left mouse

button over the interested performance result name: aShowwindow will pop-up displaying the current def-

inition of the result. In the second case, instead, click with the left mouse button over the interested place:

a window similar to the one of Fig.3.28will pop-up displaying the token distribution of the place, either

68

steady state or transient depending on which solver has been launched last. To quit aToken distribution

window, click with the left mouse button over it.

Figure 3.28: Token distribution dialog box

3.2.7 Changing place/transition tags

It is the ninth icon of theobject barand it is depicted as a label.

Change: change tagoperation allows to change the label of an object (i.e., place, transition, marking parame-

ter,...) of the current loaded model. To change the label of a given object click over it with the left mouse

button: the correspondingChange ...window will pop-up.

Move: move tagoperation allows to move the label of a transition (place): to move the label of a given transition

(place) click with the left mouse button over the label, move the mouse cursor to choose the desired location

in thecanvasto put it and click again to fix the label in the desired location.

3.2.8 Colour definition

It is the tenth icon of theobject barand it is depicted with a palette and a paintbrush.

Add: create a color definitionoperation allows to define basic color classes, static subclasses, initial colored

markings (ordinary and symbolic) and colored functions (i.e., guards and color domain). When this action

is active, the shape of the mouse cursor is an arrow, click on a free location of thecanvasto fix the position

of the colored object that is going to be defined: this action causes theCreate Color Definitiondialog to

pop-up (see Fig.3.29). The dialog box is characterized by the following areas: the “Label:” area that

has to be filled with the name of the colored object, e.g., in Fig.3.29 the nameP has been assigned to a

colored class; and the “Definition:” area that has to be filled with the definition of the colored object, e.g.,

in Fig. 3.29, the colored class has been defined as the unordered union of two static subsclasses named as

P1 andP2 (see the SWN grammar of TableA.1). The type of the colored object is indicated by switching

on one of the three toggles that are located on the top-right part of the dialog box:

• “Colorset”: to define either a colored class or a colored static subclass;

69

Figure 3.29: Create Color Definition window.

• “Marking”: to define an initial colored marking, either ordinary or symbolic;

• “Function”: to define a guard or a color domain.

To switch on a toggle, click over the empty circle located near the name of the toggle with the left mouse

button.

Examples of static subclass definition In Fig. 3.30examples of static subclass definition is given: in

both theCreate Color Definitiondialog boxes, the toggle “Colorset” is switched on; the name of the

subclassesP1 andP2, respectively, are filled in the corresponding “Label” areas. Static subclassP1 is

defined as the set containing two colorsp1 andp2. Static subclassP2, instead, is defined as a set of three

colorsc1,c2 andc3. Both the definitions are correct in theGreatSPN2.0.2syntax.

Figure 3.30: Definition of static subclasses.

70

Examples of initial marking definition In Fig.3.31examples of initial ordinary (colored) marking def-

inition is given:

Figure 3.31: Definition of initial ordinary colored markings.

the toggle “Marking” is switched on; the name of the initial markingsMpos andm0, respectively, are filled

in the corresponding “Label” areas. Initial markingMpos has to be assigned to a place that has a color

domain defined as the cartesian product of two colored classes sayX andY respectively.Mpos is the set

containing all the combinations of pairs of colors in which the first element belongs to the classX (the first

component of the place color domain) and the second element belongs to one of the static subclasses tt

first, sec, last of the colored classY. Initial markingm0 has to be assigned to a place that has a color domain

defined as a single colored class; it is the set of all the elements belonging to the place color domain.

In the SWN syntax<S> is the standard notation for the whole place color domain.

In Fig.3.32an example of initial symbolic marking definition is given. Symbolic initial markings contain

Figure 3.32: Definition of initial symbolic colored markings.

71

dynamic subclasses and they are used when it is necessary to initialize a place of the net with a fixed number

of elements belonging to the place color domain independently from their identity. The left dialog box of

Fig. 3.32shows the definition of the dynamic subclassDyn sub: it is a colored object of type “Marking”

defined as a set containing a single element drawn from the static subclassSV. The right dialog box of

Fig. 3.32shows the definition of the symbolic initial marking for a place whose color domain contains the

static subclassSV: the initial marking is simply defined as the dynamic subclassDyn sub.

WARNING! SWN models in which symbolic initial marking are used can be analyzed only with symbolic

solver.

Example of function definition In Fig.3.33examples of colored function definition is given:

Figure 3.33: Definition of colored functions.

the toggle “Function” is switched on; the name of the functionscond andIVOF, respectively, are filled

in the corresponding “Label” areas. Functioncond is a macro defined as the guard[s1 = s2 and s2 =

s3] that has to be assigned to a color label of a transition; functionIVOF, instead, is a macro defined as the

cartesian product of the following colored classesIde,Vds,OK andFlag that has to be assigned to a place

color domain.

Change: change coloroperation allows to modify the colored definitions and the color attribute of the objects

(place/transition/arc). To change a previous specification of a given colored definition (or a colored attribute

of an object), click over the colored definition name (the object) located somewhere in thecanvas: this

action causes the correspondingChangedialog-box to pop-up. For example, in case of modification of a

colored definition, to change the values in the areas of theChange Color Definitiondialog box click over

the corresponding areas to activate them and then overwrite the old values with the new ones. Finally,

either click over the “OK” button to confirm the changes or click over the “Cancel” button to keep the old

72

settings.

Select: select a color definitionoperation allows to select a specific color definition of the current loaded model

by clicking over the color definition name with the left mouse button; this action causes a broken rectangle

to superpose the color definition name. Selection operation is normally used along with other operations,

e.g., with theMoveaction to move the color definition name in a different location of thecanvas. To

reset theSelectoperation, choose in theAction menu theEnd Selectionoption (the broken rectangle that

superposes the selected color definition name, will disappear).

Move: move a coloroperation causes the shape of the mouse cursor to change into an arrow; to move a either

a color definition or a color label (place color domain, guard, arc expression) simply click with the left

mouse button over the colored item to be moved, move the mouse cursor to choose the desired location in

thecanvasto put it and click again to fix it in the desired location.

Delete: delete a coloroperation allows to delete a color definition present in thecanvas; to delete an existing

color definition click over the color definition result to be removed with the left mouse button.

Show: show a color definitionoperation allows to visualize the definition of the colored item.

73

Chapter 4

Solvers

GreatSPN2.0.2is composed of many separate programs that cooperate in the costruction and analysis of PN

models by sharing files. Using network file system capabilities, different analysis modules can be run on different

machines in a distributed computing environment.

All solution modules use special storage techniques to save memory both for intermediate result files and

for program data structures. The more restrictive constraints are on the Reachability Graph construction phases;

the current practical limit depends on the specific model, but indicatively ranges from few hundred thousands

up to few millions markings on Pentium III PCs with 256 MB of memory. The current modular structure of

GreatSPN2.0.2is shown in Figure4.1, in which rectangles represent program modules while ovals represent both

the intermediate and the result files generated by the modules. In this chapter we will describe theGreatSPN2.0.2

modules and result files related to the analysis of a GSPN/SWN model, while the compositionality aspect and

the links to other tools will be dealt in chapters5 and6 respectively.

Elimination of result files The elimination of all the files resulting from the solvers execution can be performed

either through the GUI (seeFile→Remove Resultsoption in Chapt.3) or by typing the following command:

> RMNET [-n] netdirectory/netname

wherenetdirectoryis the directory in which the GSPN model has been saved andnetnameis the name of the net

(without extensions). If the-n option is used then also the net definition files are removed.

4.1 Structural analyzers

The structural analysis portion of theGreatSPN2.0.2package implements most of the classical structural analysis

techniques for the analysis of Place/Transition nets, plus the ad-hoc techniques proposed by our group for the

detection of conflicts, mutual exclusion and confusion in the framework of nets with priorities and inhibitor

arcs. All the modules that support the structural analysis of a GSPN model read the net description files (see

74

TRG and TRS files

Information on
model liveness

EMC generation

EMC files

 Results

Structural properties
files

MC solution

Transient Steady state

 Computation of
performance indices

Marking probability
distribution

Analysis of TRG structure

Deadlock and
home states

Liveness

GSPN simulation

Engine Measurer Statistics

SRG and EMC
 generation

SRG

SWN simulation

Colored Symbolic

GreatSPN2.0.2
GUI

MultiSolve
GUI

Bounds Net
description files

 Results

Results
collector

Nets description
files (instances)

Tgif
translator

APNN
translator

PROD
translator

 APNNnet

 Tgifnet

table files

 Plot
generator

Fluid net
translator

GNUplot
files

Generation of information
for efficient marking coding

 Information for
marking encoding

TRG and TRS generation

Non-markovian
PNs simulation

algebra

PRODnet,
PROBEmacros

 Fluid net

export to
CPN-AMI

Structural analysis

P-inv
T-inv

ecs,cc,sc,
me,bnd,
unb,sub

deadlock
 trap

implicit
places

Figure 4.1: Graphical representation of the modular structure ofGreatSPN2.0.2.

75

the appendix A for their format definition) and produce one or more intermediate result files in ASCII form. A

complete list is given in table4.1. They are all independent of each other apart fromstruct.c which depends

on the result file produced by modulepinvar.c (since the mutual exclusion property is computed based on the

knowledge of the elementary P-invariant as well as the net structure). Result files contain sequences of either sets

or bags of transitions and/or places, according to the following descriptions.

extension format description

.bnd N pairs upper and lower bound for tokens in places

.cc T pairs causal connection

.ecs T sets ECS and confusion structures

.impl P bags implicant places for implicit place

.mdead P sets minimal deadlocks

.me T pairs mutual exclusion

.mtrap P sets minimal traps

.pin P bags place invariants

.sc T pairs structural conflict

.sub T sets immediate subnet partition

.tin T bags transition invariants

.unb T bags structurally unbounded places and transition sequences

Table 4.1: List of structural result files.

4.1.1 Invariants

4.1.1.1 Modules

pinvar.c,tinvar.c: compute minimal-support, canonical Place and Transition invariants, respectively, with

a modified Martinez-Silva algorithm [29]. P(T)-invariants modules can be launched either through theGreat-

SPN2.0.2GUI (see Chapt.3) or from a terminal. In the latter case the following commands have to be used:

> pinv netdirectory/netnamefor P-invariant computation and

> tinv netdirectory/netnamefor T-invariant computation,

wherenetnameis the name of theGreatSPN2.0.2net andnetdirectoryis the directory containingnetname. The

commands compute and display the P(T)-invariant of the model.

76

4.1.1.2 Result files structure

.pin file: contains a list of Bags of places to be interpreted as the P-invariants computed on the net description

contained in the corresponding.net file.

First line: integer containing the total number of bags in the file.

Subsequent lines (one per P-invariant): integer containing the number of non-null entries of the bag, followed on

the same line by one pair of integers per non-null entry: the first integer of the pair represents the multiplicity;

the second integer of the pair represent the ordinal number of the place (position of the place in the list of places

as contained in the.net file).

Last Line: always 0 as a first integer of the line (a null Bag).

.tin file: contains a list of Bags of transitions to be interpreted as the T-invariants computed on the net description

contained in the corresponding.net file.

First line: integer containing the total number of bags in the file.

Subsequent lines (one per T-invariant): integer containing the number of non-null entries of the bag, followed on

the same line by one pair of integers per non-null entry: the first integer of the pair represents the multiplicity;

the second integer of the pair represent the ordinal number of the transition (position of the transition in the list

of transitions as contained in the.net file).

Last line: always 0 as a first integer of the line (a null Bag).

4.1.2 Minimal deadlocks and traps

4.1.2.1 Module

deadlock.c: compute minimal Deadlocks or Traps with a modified Alaiwan-Toudic algorithm [1]. Minimal

deadlocks and traps computation and visualization can be obtained either by choosing the corresponding options

in theNet→Structmenu of theGreatSPN2.0.2GUI (see Chapt.3) or by launching the following commands from

a terminal:

> deadl netdirectory/netnamefor minimal deadlocks computation and

> traps netdirectory/netnamefor traps computation,

wherenetnameis the name of theGreatSPN2.0.2net andnetdirectoryis the directory containingnetname.

4.1.2.2 Result files structure

.mdead file: contains a list of Sets of places to be interpreted as the minimal deadlocks computed on the net

description contained in the corresponding.net file.

First line: integer containing the total number of sets in the file.

77

Subsequent lines (one per minimal deadlock): integer containing the number of non-null entries of the set,

followed on the same line by one integer per non-null entry representing the ordinal number of the place (position

of the place in the list of places as contained in the.net file).

Last line: always 0 as a first integer of the line (a null Set).

.mtrap file: contains a list of Sets of places to be interpreted as the minimal traps computed on the net description

contained in the corresponding.net file.

First line: integer containing the total number of sets in the file.

Subsequent lines (one per minimal trap): integer containing the number of non-null entries of the set, followed

on the same line by one integer per non-null entry representing the ordinal number of the place (position of the

place in the list of places as contained in the.net file).

Last line: always 0 as a first integer of the line (a null Set).

4.1.3 Implicit places

4.1.3.1 Module

implp.c: verifies structurally implicit places with Silva’s algorithm [35]. Implicit place verification can be

checked either through theGreatSPN2.0.2GUI (see Chapt.3) or by launching the following command from a

terminal:

> implp netdirectory/netname placenumber

wherenetnameis the name of theGreatSPN2.0.2net, netdirectoryis the directory containingnetnameand

placenumberis the number of the place of the net to be tested as appears in the net definition filenetname.net.

4.1.3.2 Result file structure

.impl file: contains a list of bags of places containing the implicant places of a given places tested for the

property of being implicit. The place is not implicit if no bag of implicant places is found.

First line: an integer containing the number of bags of implicant places, listed in the following of the file, one

bag per line.

Each implicant places line: first integer containing the numberN≥ 2 of non-null entries of the bag, followed on

the same line by one pair of integers per non-null entry: the first integer of the pair represents the multiplicity;

the second integer of the pair represent the ordinal number of the place. The last entry of the bag represents the

implicit place itself.

Last line: always 0 as a first integer of the line (a null Bag).

78

4.1.4 ECS-Confusion-ME-SC-CC

4.1.4.1 Module

struct.c computes structural token bounds for places and structural conflict, mutual exclusion, causal con-

nection, extended conflict sets, structural confusion, and subnets of independent higher priority transitions, for

priority nets with inhibitor arcs, as described in [12, 33, 2].

4.1.4.2 Result files structure

.cc file: contains a description of the causal connection relations (CC) holding for each transition. One line is

listed per transition, thei-th line referring to thei-th transition (transition in positioni in the list of transition as

contained in the.net file).

Each line: contains the set of transition inCC relation with the current one. The first integer tell the number of

non-null entries of the set; then one integer follows per non-null element, with the ordinal number of the transi-

tion.

.ecs file: contains both a description of the Extended Conflict Sets of immediate transitions (ECSs), and the

possible confusion relations. These two results are stored as two subsequent lists, each one terminated by a0

character on a separate line.

One line perECS: an integer representing the number of transitions in the currentECS, followed on the same

line by one integer per non-null item of the set representing the ordinal number of an immediate transition (i.e.

the position of the immediate transition in the list of transitions as contained in the.net file).

Last line of theECSlist: One integer value = 0 used as a list terminator.

One line per confusion relation: a first integer representing the ordinal number of the confusedECS, i.e. the

position of theECSdescription line in the above list; a second integer containing the numberN≥ 3 of transitions

in confusion relation; two integers containing the ordinal numbers of two transitions of the currentECSthat are in

confusion relation with each other; a possible list of integers (as many asN−3) representing the ordinal number

of the transition originating the confusion.

Last line of the confusion list: one integer value = 0 used as a list terminator.

.me file: contains a description of the mutual exclusion relations (ME) holding between transition pairs. One line

is listed per transition pair inME relation.

Each line: contains two integers with the ordinal numbers of the transitions inME relation (i.e. their position in

the list of transitions as contained in the.net file).

Last line: one integer value = 0 used as a list terminator.

79

.sc file: contains a description of the structural conflict relationsSC holding for each transition. One line is

listed per transition, thei-th line referring to thei-th transition (transition in positioni in the list of transitions as

contained in the.net file).

Each line: contains the set of transition inSCrelation with the current one. The first integer tell the number of

non-null entries of the set; then one integer follows per non-null element, with the ordinal number of the transi-

tion.

.sub file: contains the partition of the net in subnets of independent immediate transitions.

First line: an integer containing the numberN ≥ 1 of subnets in which the net is partitioned. The first subnet

contains all timed transitions, while the following ones contain independent sets of immediate transitions.

After the first line the file is organized in two subsequent lists of subnet description lines. The first list contains

two consecutive lines per subnet. The second list contains one line per subnet.

Each of the followingn = 1, . . . ,N pairs of consecutive lines: First line of the pair: set of places of then-th,

stored as a first integer with the number of non-null entries of the set, followed by one integer number per entry

containing the ordinal number of the place.

Second line of the pair: set of transitions of then-th subnet, stored as a first integer with the number of non-null

entries of the set, followed by one integer number per entry containing the ordinal number of the transition.

Each of the following 2N+n lines(n = 1, . . . ,N) set of input/inhibition places of then-th subnet, stored as a first

integer with the number of non-null entries of the set , followed by one integer number per entry containing the

ordinal number of the place.

4.1.5 Structural boundedness

4.1.5.1 Module

unbound.c: verifies the structural unboundedness and associated unbounded transition sequences with a modi-

fied version of Molloy’s method [32];

4.1.5.2 Result files structure

.bnd file: contains a description of the upper and lower bounds on the number of tokens in each place of the net.

One line is listed per place, thei-th line referring to thei-th (place in positioni in the list of places as contained

in the.net file).

Each line: contains a pair of integers. The first integer tells the lower bound for the number of tokens in the cor-

responding current place. The second integer tells the upper bound for the number of tokens in the corresponding

current place.

80

.unb file: contains a list of sets of unbounded places together with the transitions bags that, if fireable as transition

sequences, make them unbounded. One line is used to store one set of unbounde places and their corresponding

transition bag. The list is terminated by a line containing only the integer value 0.

Each line: first integer containing the number of non-null entries of the set of unbounded places, followed on the

same line by one integer per non-null entry representing the ordinal number of the place (position of the place

in the list of places as contained in the.net file). Always on the same line, one integer follows containing the

number of non-null entry: the first integer of the pair represents the multiplicity; the second integer of the pair

represent the ordinal number of the transition.

Last line: always 0 as a first integer of the line (a null Set).

4.2 Performance bounds solver

GreatSPN2.0.2package includes modules for the computation of the performance structural bounds of both

places and transitions of the net. Bounds are obtained from the net structure, the initial marking and the transition

rates by solving a linear programming problem (LPP) presented in[16].

4.2.1 Modules

disab lp.c: 1) decomposes the marking vector in disabling components for each immediate transition with more

than one input/inhibition arcs; 2) produces the reachability constraints; 3) produces the throughput flow balance

constraints for every place; 4) detects the vanishing places; 5) produces the Extended Free Choice throughput

constraints; 6) produces the inequalities for Persistent or Age Memory or Preselection Timed Transitions. Struc-

tural conflicts of immediate transitions are optimized.

WARNING! The case of conflict with race policy and with enabling memory policy for timed transitions is not

properly handled. The net description is assumed not to contain such cases.

flow lp.c: produces equations of type:∀p∈ P : ∑t∈•pxtW(t, p) ≥ ∑t∈p• xtW(p, t), i.e., the throughput flow

balance constraints for all places.

mark lp.c: produces equations of typeM = M0 +Cσ, i.e., the reachability constraints, for a predefined list of

marking vectors.

4.2.2 Result file structure

The performance bound modules produce the list of result files given in Table4.2 in ASCII format.

WARNING! In order to obtain correct results, to compute performance bounds of a transition, launch the

performance bound solver on a place first.

81

extension format description

.lp disab ascii list of all the constraints of the LPP

.lp in ascii place/transition name whose bounds are computed and list of all the constraints of the LPP

.lp mark ascii linear programming equations

.lp out ascii solution of the LPP

Table 4.2: List of performance bounds result files.

4.3 Analytic solvers

Analytic solvers produce the list of intermediate and result files given in Table4.3. Sets are described in ASCII

files as lists of either place or transition ordinal numbers1. Bags are described in ASCII files as lists of pairs of

natural numbers representing the multiplicity and the ordinal number of either places or transitions.

Unsigned compacts in the range[0,222−1] are stored in non-ASCII files using a compact coding in one, two,

or three bytes2

WARNING!

1. The maximum capacity of each place isMAX = 255 even though this constraint is not signalled when an

analytic module is launched from the GUI.

2. If the net is characterized by an initial dead marking, the launch of an analytic solver provokes a segmen-

tation fault.

3. Reachability graph generator does not produce the RG in case of nets with all immediate transitions.

4.3.1 GSPN solvers

4.3.1.1 Reachability Graph generator

Modulesgrg.c, grg prep.c, grg stndrd.c perform the Reachability Graph expansion of a GSPN model

by reading the net description files. The algorithm begins by putting the initial marking into the Reachability

Set, then all the enabled transitions in newly found markings are fired. Timed transition firing proceeds using a

breadth-first policy, while immediate transition paths are followed depth-first until a tangible marking is reached.
1As ordinal number we mean the number of line in the net definition file that describes the place or the transition
2Numbers in the range[0,127] are encoded in a single byte, with the most significant bit set to 0; numbers in the range[128,214−1]

are encoded in two bytes, with the two most significant bits of the first byte set to 10; numbers in the range[214,222−1] are encoded in

three bytes, with the two most significant bits of the first byte set to 11. Since most of the information is recorded using small integers

(falling in the range[0,127], this coding technique allows the use of only one byte for each piece of information most of the times.

82

extension format description

GSPN models

.grg ascii data structure description for reachability graph

.aecs T sets actual conflicts sets found in the reachability graph

.rgr aux ascii auxiliary information on reachability graph

.crgr special code coded tangible reachability graph

.ctrs uns. bytes coded tangible reachability set

.livlck uns. comp. terminal strongly connected components of the RG

.liveness N lists enabling and liveness bounds for transitions

.gmt ascii data structure description for EMC construction

.doubles C doubles floating point numbers contained in the EMC

.emc special code compact coded EMC state transition matrix

.epd and .mpd C doubles marking probability distribution vectors

.gst ascii data structure description for performance result computation

.tpd C doubles token probability distributions in places

.sta ascii output performance results

Table 4.3: List of analytical result files.

The ordering of the markings in the Reachability Set resulting from this firing policy is exploited by the following

modules of the package to implement a very efficient reduction of vanishing markings in the case that no-zero

time loop is present. In the program data structure, markings are lexicographically ordered by means of a balanced

binary tree in order to improve the efficiency of the search procedures. GSPN Reachability Graph generator can

be launched either through theGreatSPN2.0.2GUI (see Chapt.3) or by typing the following command from a

terminal:

> newRG netdirectory/netname

wherenetdirectoryis the directory in which the GSPN model has been saved andnetnameis the name of the net

(without extensions).

Moduleshow stndrd.c displays the Tangible Reachability Graph (TRG) of a GSPN model without net-dependent

files compilation. To display the TRG of a GSPN model already generated use the following command from a

terminal:

> showRG netdirectory/netname[opt]

wherenetdirectoryis the directory in which the GSPN model has been saved andnetnameis the name of the net

(without extensions). Possible display options[opt] are:

83

-s to show the Tangible Reachability Set;

-t to show the Tangible Reachability Graph (default option);

-r to show the Reverse Tangible Reachability Graph.

4.3.1.2 TRG structure analyzer

Modulestrong con.c computes the livelocks and the deadlock states of the TRG of a GSPN model.

Moduleliveness.c computes transition enabling and liveness bounds of a GSPN model: in particular, it takes

the TRG and its associated livelock description as inputs and computes the actual bounds for infinite server timed

transitions.

To launch the reachability graph generator and the structure analyzer of the created TRG of a GSPN model

from a terminal, use the following command:

> checkRG netdirectory/netname

wherenetdirectoryis the name of the directory in which the GSPN model has been saved andnetnameis the

name of the net without extensions.

4.3.1.3 Markov Chain generator

Modulesgmt prep.c, gmt stndrd.c: converts the Tangible Reachability Graph of a GSPN model into the

corresponding Continuous Time Markov Chain (CTMC) without net-dependent files compilation. The module

uses a depth-first algorithm to follow the immediate transition tangible to tangible paths and keep tracks of the

resulting probabilities of already followed paths to achieve a higher computational efficiency. To launch the

Reachability Graph generator and the CTMC generator from a terminal use the following command:

newMT netdirectory/netname

wherenetdirectoryis the name of the directory in which the GSPN model has been saved andnetnameis the

name of the net without extensions.

To display the infinitesimal generator matrix, type the following command:

shownmtx netdirectory/netname

wherenetdirectoryis the name of the directory in which the GSPN model has been saved andnetnameis the

name of the net without extensions.

4.3.1.4 Steady State solver

ggsc.c: computes the steady-state solution of the CTMC underlying a GSPN model. The solver has been

implemented using standard sparse matrix computation algorithms, adapted to the solution of a set of linearly

84

dependent equations augmented with the probability normalization condition. The Gauss elimination (actually a

modified L-U direct decomposition) proceeds without pivoting to preserve the sparse band-diagonal structure of

the matrix resulting from the breadth-first firing of the Reachability Graph. Indeed, row or column permutation

would determine a large fill-in during the elimination phase, thus making impractical the analysis of large ma-

trices. Despite this simplification the algorithm exhibits a very good numerical stability, due to the fact that the

diagonal elements used as pivot, actually are (by definition) partial pivots, since they are made equal to the sum of

all the other elements in the row as proved in[26]. Indeed it is possible to use this method even in case of “stiff”

problems with matrix entries differing up to eight orders of magnitude on machines with 64 bit floating-point

representation. The size of the matrix to be solved can range up to 1023×1023. In case of larger matrices it is

necessary to resort the Gauss-Seidel iterative method. In the present implementation, sparse matrices of order up

to 32000-64000 can be solved, but the convergence is badly affected by ill-conditioned or “stiff” problems. To

launch the Steady State solver from a terminal use the following command:

newSO netdirectory/netname

wherenetdirectoryis the name of the directory in which the GSPN model has been saved andnetnameis the

name of the net without extensions.

To display the state probability vector, type the following command from a terminal:

showprob netdirectory/netname

wherenetdirectoryis the name of the directory in which the GSPN model has been saved andnetnameis the

name of the net without extensions.

4.3.1.5 Transient solver

gtrc.c: computes the transient solution of the CTMC underlying a GSPN model using a matrix exponentiation

algorithm. The major problem in this case is a “good” choice of the time integration step: large integration steps,

depending on the matrix eigenvalues, can result in large round-off errors and poor numerical stability; on the

other hand, steps that are too small may involve unnecessary row by column matrix products. In our program

an initial estimate of the optimal integration step is made according to the maximum transition rate found in the

matrix; then the step is dynamically adjusted in order to keep it as large as possible, without incurring in too large

round-off errors during vector addition.

4.3.2 SWN solvers

to be completed

85

4.4 Simulators

4.4.1 GSPN simulation

GSPN simulator uses a “Natural Regeneration” method mechanism[27] to provide point of estimates of the aver-

age number of tokens in each place together with their confidence intervals, as well as to collect the user defined

statistical results. Machine-independent congruent pseudo-random sequence generators are used to implement

stochastic transition timings. This program provides a bypass to other solution modules, and can be effectively

exploited to obtain results in case of analytically untractable models. GSPN simulator can be launched through

theGreatSPN2.0.2GUI (see Chapt.3).

4.4.1.1 Modules

engine control.c: simulation control and communication module for the simulation engine.

engine event.c: event-driven simulation kernel for simulation engine ofGreatSPN2.0.2package. The program

allows both normal (forward) and reversed (backward) simulation. Periodic checkpoints are stored on file in order

to allow both extended backtracking and possibility of continuation and resume of previous runs.

engine pn.c: PN routines for the simulation engine. No marking dependency is allowed for immediate tran-

sitions. This module is derived from “grgstndrd.c ” and it uses similar data structures and the same type of

optimization techniques.

measure checkpoint.c: checkpoint routines for measurer module ofGreatSPN2.0.2.

measure pn.c: module for the definition of measurement of performance indices for GSPN simulation.

4.4.1.2 Result file structure

In this part the files resulting from the launch of a GSPN simulator are described.

extension format description

.etrace ascii

.mtrace ascii

.strace ascii

.tpd C doubles token probability distributions in places

.sta ascii output performance results

Table 4.4: List of GSPN simulation result files.

86

4.4.2 SWN simulation

4.4.2.1 Modules

SWN simulators can be launched either through theGreatSPN2.0.2GUI (see Chapt.3) or by typing the following

commands from a terminal:

> swn ord sim [opt] netdirectory/netname

for ordinary simulation and

> swn sym sim [opt] netdirectory/netname

for symbolic simulation[], wherenetdirectoryis the name of the directory in which the net definition files are

located andnetnameis the name of the net model without extensions.[opt] represents the following list of

options that allow to set the parameters for a simulation run:

-f first tr length to set the length of evolution phase between batchs that must be discarded;

-t tr length to set the length of initialization phase;

-m min btc to set the dimension of the minimum batch;

-M maxbtc to set the dimension of maximum batch dimension;

-a approx to set the precision of the approximation in the parameters estimation;

-c conf level to set the confidence level in the parameters estimation;

-s seed to set the seed for the random numbers generation;

-o start to set the starting time for debug output.

WARNING! The results computed from a simulation run are basically the mean number of token in places

and throughputs of transitions and they are all independent from the color classes. Refined results - color class

dependent - and, in general, user defined results can be obtained by using the extended SWN ordinary simulation

(see Section4.5).

4.4.2.2 Result file structure

In this part the files resulting from the launch of a SWN simulator are described.

extension format description

.simresCl1n1Cl2n2 . . .Clnnn ascii output performance results

.sta ascii output performance results

Table 4.5: List of SWN simulation result files.

87

4.5 Extended SWN features

Several extensions have been developed for the SWN analysis modules; in the following we will describe the

most important new added features.

4.5.1 Transient analysis of SWN models

The SWN reachability analysis prototypes have been interfaced with the transient analysis software developed

for the GSPN models (implementing a numerical approach based on a randomization technique).

4.5.2 Simulation of SWN models with GEN transitions

The simulation of SWN models with ordinary marking has been extended to include generally distributed firing

time transitions (GEN transitions), diferent memory policies and several policies for the disabling and re-enabling

of firing instances.

Temporal specifications of GEN transitions have to be defined in a file named asnetname.dis, wherenetname

is the name of the SWN model constructed withGreatSPN2.0.2, and located in the same directory of the net

specification files.netmame.disis an ASCII form file, in which each row represents the temporal specification of

a GEN transition of the corresponding SWN model. Table4.6shows the line syntax, expressed in BNF format,

to be used for the temporal specifications of GEN transitions. All the terminal keywords are represented as C-

language strings within quotation marks except for the following terms:<real number>, indicates a positive

real number, and<integer>, indicates a non negative integer number. Notation#(XX){...} denotes the repetition

of the string in braces for a number of times derived by interpreting the stringXXas a natural number.

4.5.2.1 Rescheduling/descheduling policies

Rescheduling and descheduling policies need to be defined in case of GEN transitions characterized by multi-

ple/infinite server semantics. Rescheduling policy defines which transition instance of a multiple enabled GEN

transition previously suspended has to be inserted again in the event list. Descheduling policy defines, instead,

which transition instance of a multiple enabled GEN transition which decreases its enabling degree has to be

removed from the event list. Possible choices are:

RANDOM : the transition instance is chosen randomly;

FIRST DRAWN : the transition instance among those suspended/enabled that was first generated;

LAST DRAWN : the transition instance among those suspended/enabled that was last generated;

FIRST SCHED : in case of descheduling, the enabled transition instance with the least scheduling time. In

case of rescheduling, the suspended transition instance with the least value of the timer;

88

<row> ::= <tr name> <firing pol> <reschedulepol> <deschedulepol> <distrib>

<firing pol> ::= “AGE” | “ENABLING”

<reschedulepol> ::= <pol>

<deschedulepol> ::= <pol>

<pol> ::= “RANDOM” | “FIRST DRAWN” | “LAST DRAWN” |
“FIRST SCHED” | “LAST SCHED”

<distrib> ::= “DET” | “ERL” <n stage>|
“IPO” <n stage> #(<n stage>) { <rate> } |
“IPER” <n stage> #(<n stage>) { <prob> <rate> }|
“UNIF” <lower> <upper> | “NORM” <mean> <devstd> |
“BAR” <n unif> #(<n unif>) { <lower> <upper> <prob> }

<n stage> ::= <integer>

<n unif> ::= <integer>

<rate> ::= <real number>

<prob> ::= <real number>

<lower> ::= <real number>

<upper> ::= <real number>

<mean> ::= <real number>

<devstd> ::= <real number>

Table 4.6: BNF format of a line of the.disfile

LAST SCHED : in case of descheduling, the enabled transition instance with the greatest scheduling time. In

case of rescheduling, the suspended transition instance with the greatest value of the timer.

4.5.2.2 Firing time distributions of the GEN transitions

SWN simulator allows to specify for each GEN transition of the model one the following types of distributions:

DET Deterministic distributionD[τ]: no further parameter needs to be specified. The delay valueτ is read

from the net definition file.net and it corresponds to the value associated either to the rate or to the rate

parameter of the transition. Rate/rate parameter has to be defined during the model specification via the

GreatSPN2.0.2GUI.

ERL Erlang distributionErl [k,λ]: the number of stagesk must be specified as parameter. The stage rateλ is

read from the net definition file.net file and it corresponds to the value associated either to the rate or to

the rate parameter of the transition.

IPO Ipo-exponential distributionI po[k,λ1, . . . ,λk]: the number of stagesk and the stage rates{λi}i=1,...,k must

be specified as parameters list.

89

IPER Hyper-exponential distributionHyp[k,(α1,λ1), . . . ,(αk,λk)]: the number of stagesk and the pairs de-

scribing the probability and the rate of each stage{(αi ,λi)}i=1,...,k, must be specified as parameters list.

UNIF Uniform distributionU [l ,u]: the lowerl and upperu bounds must be specified as parameters.

NORM Normal distributionN (µ,σ): the mean valueµ and the standard deviationσ must be specified as pa-

rameters.

BAR Composition of Uniform Distributions∑k
i=1 piU [l i ,ui]: the number of uniform distributionsk and, for each

uniform distributionUi , the lower boundl i , the upper boundui and the associated probabilitypi must be

specified as parameters list.

WARNING! When constructing the SWN model via GUI, all the GEN transitions have to be specified as they

were negative exponential distributed, i.e. white-box transitionsalso in case of deterministic transitions.

How to launch the simulation Launch the SWN ordinary simulator (see command4.4.2.1) from a terminal

together with the desired simulation options. Assuming the executable moduleswn ord sim is located in the

directory./experiment, then the SWN model has to be saved in the subdirectory./experiment/nets.

4.5.3 Refined perfomance results

The statistical analysis module of SWN ordinary simulation has been extended to estimate structured performance

indexes. Besides the aggregated mean number of tokens and transition throughput, it is possible to estimate the

mean number of tokens that satisfy criteria based on the place color domain as well as the estimation of transition

throughput when the firing instances satisfy a given predicate.

4.5.3.1 Mean number of tokens in a place

GreatSPN2.0.2allows to define the mean number of tokens in a place at the following levels of detail:

1. mean number of tokens with no color distinction (simple performance index);

2. mean number of tokens for each element of the static partition the place color domain is made of. It

is a structured performance index consisting ofn different values wheren is the cardinality of the static

partition of the place color domain (maximum refinement);

3. mean number of tokens that satisfy a given predicate on the place color domain (intermediate refinement).

Example 1 Let us assume that a placep has been characterized by the following place color domain:

90

CD(p) = Cl1×Cl1×Cl2

Cl1 = sub1cl1∪sub2cl1∪sub3cl1

Cl2 = sub1cl2∪sub2cl2

Then a color consists of a triplet〈Cl1 1,Cl1 2,Cl2 1〉 whereCl1 1 ∈ subicl1, Cl1 2 ∈ sub jcl1, andCl2 1 ∈
subkcl2, for i, j ∈ {1,2,3},k∈ {1,2}.

1. Case of simple performance index. InGreatSPN2.0.2syntax has to be defined as:

E{ #p }
We obtain a unique performance result that represents the mean number of tokens in placep and it is com-

puted considering tokens without identities.

2. Case of maximum refinement. In theGreatSPN2.0.2syntax has to be defined as:

E{#p(*)}
We get a result for each element of the static partition of the place color domain that represents the mean

number of tokens whose colors belong to the element. In case of ex.1, we obtain 18 results of type

p[subicl1,sub jcl1,subkcl2] = mi jk , i, j ∈ {1,2,3},k ∈ {1,2}, wheremi jk is the mean number of tokens

whose colors belong to the element〈subicl1,sub jcl1,subkclk〉 of the static partition of the place color

domain.

3. Case of intermediate refinement. Between the two previous level of details, there are different types of

means number of tokens in placep that can be obtained; we have classified them with respect to their

granularity inprojection, selectionandgeneral predicatemeans.

Projection. This type of results are obtained by performing a projection with respect to those component

classes of the place color domain we are interested in. In ex.1, we can choose to project the color domain

of placep with respect to the second and the third component classes, inGreatSPN2.0.2syntax:

E{#p(Cl1 2,Cl2)}
whereCl1 2 indicates the second repetition of the colored classCl13, obtaining for each subsetCl1×
sub jcl1×subkcl2 j ∈ {1,2,3},k∈ {1,2} of the static partition of the place color domain, the mean num-

ber of tokensmpjk, whose colors belong to that subset. Geometrically, the color domain of placep can be

represented by a parallelepiped: its projection with respect to the second and the third component classes

results in the rectangle highlighted in Fig.4.2 lying on the planeCl1 2×Cl2.
3The third component, since it is a unique repetition of the colored classCl2, is referred by using the name of the class without

specifying its repetition, i.e.,Cl2 1 = Cl2.

91

Cl1_2

Cl2

Cl1_1

sub1cl1 sub2cl1 sub3cl1

sub1cl1

sub2cl1

sub3cl1

s
u
b
1
c
l
2

s
u
b
2
c
l
2

Figure 4.2: Projection of the color domain of placep.

The following relations hold among these means and the ones obtained in case of maximum refinement:

mpjk =
3

∑
i=1

mi jk , j ∈ {1,2,3},k∈ {1,2}.

Selection.This type of results are obtained by performing a selection among the set of means got from

projection operation. The selection operation allows to extract the means number of tokens whose colors

belong to a specific element of the static partition of the place color domain we are interested in. In ex.1,

among the six meansmpjk we can choose to compute only the two meansmp2k,k∈ {1,2} by defining the

following structured result:

E{#p(Cl1 2,Cl2) | SEL = [d(Cl1 2) = sub2cl1] }

WARNING! The selection operation can contain only predicates that specify the membership (or not

membership) of a color belonging to the defined projection of the place color domain.

General predicate.This type of results are obtained by extracting specific elements of the place color

domain when its component classes are made of subclasses containing more than one element. General

predicates are applied after a projection operation and, in case, a selection operation have been performed.

In ex.1, the structured result:

E{#p(Cl1_2,Cl2) |

SEL = [d(Cl1_2) = sub2cl1)], COND = [d(Cl1_1) <> sub1cl1 and Cl1_1 <> Cl1_2] }

92

consists of two means and it is obtained by giving two constraints over the elements of the place color

domain: 1) the first component of a color do not have to belong to the static subclasssub1cl1 of the color

classCl1; 2) the firsts two components of a color have to be different as well in case they belong to the

same static subclass. For example, let us assume that the static subclasses are defined as the following sets

of elements:

sub1cl1 = {a}
sub2cl1 = {b,c}
sub3cl3 = {d}
sub1cl2 = {e, f}
sub1cl2 = {g,h, l}

and, in a given reachable marking of the net, the placep contains tokens with the following colors:

〈c,d,e〉, 〈a,b,e〉, 〈b,b,h〉, 〈d,b,e〉, 〈c,b,g〉
Then, in the computation of the two means, tokens in placep characterized by one of the first three colors

will not be considered (color〈c,d,e〉 is eliminated by theselectionpredicate, color〈a,b,e〉 is eliminated

by the first part of theCOND predicate, while color〈b,b,h〉 is eliminated by the second part of theCOND

predicate). Instead, tokens characterized by one of the last two colors will contribute to the computation of

the two meansmp21,mp22.

4.5.3.2 Transition throughput

Similarly to the mean number of tokens in a place, in case of transition throughput as well,GreatSPN2.0.2allows

to define results at the following levels of details:

1. transition throughput with no color distinction of the firing instances (simple performance index);

2. transition throughput for each element of the static partition of transition color domain is made of. It

is a structured performance index consisting ofn different values wheren is the cardinality of the static

partition of the transition color domain (maximum refinement);

3. transition throughput for those colored instances that satisfy a given predicate on the transition color do-

main (intermediate refinement).

The only difference with respect to the mean number of tokens in a place is the notation: for the computation

of transition throughputs we can use directly the variables appearing on the input/output arcs of the transition

instead of using the notationClassName i to indicate thei(th) component, belonging to the classClassName, of

a variable.

Example 2 Let us have a transitionT, depicted in Fig.4.3, with two input places and an output place. All

the arcs are characterized by the identity function: the variables of the two input arcs are equal to〈x〉 and〈y〉,

93

Cl1 Cl1

Cl2

T

<x> <y>

<z>

Figure 4.3: Domain of transitionT.

respectively, and the variable of the output arc is equal to〈z〉. Input places have color domains equal toCl1

and the output place has color domain equal toCl2, whereCl1,Cl2 are defined in ex.1, then the transition color

domain is defined asCl1×Cl1×Cl2.

1. Case of simple performance index. InGreatSPN2.0.2syntax has to be defined as:

X{ #T }
We obtain a unique performance result that represents the mean throughput of transitionT and it is com-

puted considering firing instances without identities.

2. Case of maximum refinement. In theGreatSPN2.0.2syntax has to be defined as:

X{#T(*)}
We get a result for each element of the static partition of the transition color domain that represents the

mean throughputs of the firing instances whose colors belong to the element. In case of ex.2, we obtain

18 results of typeT[subicl1,sub jcl1,subkcl2] = Xi jk , i, j ∈ {1,2,3},k ∈ {1,2}, whereXi jk is the mean

throughput of the firing instances whose colors belong to the element〈subicl1,sub jcl1,subkclk〉 of the

static partition of the transition color domain.

3. Case of intermediate refinement. Between the two previous level of details, there are different types of

(mean) throughputs of transitionT that can be obtained; as is the case of the mean number of tokens in a

place, we have classified the results with respect to their granularity inprojection, selectionandgeneral

predicatemean throughputs.

Projection. This type of results are obtained by performing a projection with respect to those component

classes of the transition color domain we are interested in. In ex.2, we can choose to project the color do-

main of transitionT with respect to the second and the third component classes, inGreatSPN2.0.2syntax:

E{#T(y,z)}

94

wherey is the variable belonging to the second repetition of the colored classCl1 andz is the variable be-

longing to the colored classCl2, obtaining for each subsetCl1×sub jcl1×subkcl2 j ∈ {1,2,3},k∈ {1,2}
of the static partition of the transition color domain, the mean throughputsX pjk of the firing instances

whose colors belong to that subset. The following relations hold among these mean throughputs and the

ones obtained in case of maximum refinement:

X pjk =
3

∑
i=1

Xi jk , j ∈ {1,2,3},k∈ {1,2}.

Selection.This type of results are obtained by performing a selection among the set of means got from pro-

jection operation. The selection operation allows to extract the mean throughputs of firing instances whose

colors belong to a specific element of the static partition of the transition color domain we are interested

in. In ex.2, among the six meansX pjk we can choose to compute only the two meansX p2k,k∈ {1,2} by

defining the following structured result:

E{#T(y,z) | SEL = [d(y) = sub2cl1] }

General predicate.This type of results are obtained by extracting specific elements of the transition color

domain when its component classes are made of subclasses containing more than one element. General

predicates are applied after a projection operation and, in case, a selection operation have been performed.

In ex.2, the structured result:

E{#T(y,z) |

SEL = [d(y) = sub2cl1)], COND = [d(x) <> sub1cl1 and x <> y] }

consists of two mean throughputs and it is obtained by giving two constraints over the elements of the

transition color domain: 1) the first component of a color do not have to belong to the static subclass

sub1cl1 of the color classCl1; 2) the firsts two components of a color have to be different as well in case

they belong to the same static subclass.

4.5.3.3 Probability

In GreatSPN2.0.2it is also possible to specify as performance result to compute the probability that a certain

logic condition be satisfied. Logic conditions are expressed in terms of place markings and, as in cases of mean

computations, they may be either color-independent or color-dependent: in the last case structured probability

results will be obtained. InGreatSPN2.0.2syntax to compute a probability result the keywordP is used instead

of the keywordE (see the SWN extended grammar of Appendix A).

95

<row> ::= <user index> | <tr name> | <placename>

<user index> ::= <indexname> “NOPRIORITY” | <indexname> “ACC” <approxval>

<tr name> ::= <string>

<placename> ::= <string>

<indexname> ::= <string>

<approxval> ::= <real number>

Table 4.7: BNF format of a row of the.statfile

4.5.4 The result .stat file

The.statfile contains, for each row, these kinds of information:

• a place (transition) name, in this case during a simulation run of a SWN model the mean number of

tokens (transition throughput) will be computed without taking into account the colors (simple performance

indices).

• a user-defined performance index name along with one of the following keywords: 1) “NOPRIORITY”, in

this case the index will not considered in the test of convergence during a simulation run; 2) “ACC”, in this

case the default value assigned to the approximation parameter of the simulator is replaced for this index

by the value that follows the keyword.

The row syntax of the.stat file, expressed in BNF format, is shown in Table4.7. All the terminal keywords

are represented as C-language strings within quotation marks except for the following terms:<real number>,

indicates a positive real number, and<string>, indicates any non-empty character string not containing blank

characters.

WARNING! If the .statfile does not exist, then all the performance indices (both the user-defined and the default

ones) are computed. Viceversa, if the.statfile exists, the default indices (not colored mean number of tokens in

places and not colored transition throughputs) are computed only if a row with the corresponding object name

(place/transition) appears. Instead, the user-defined performance indices, if they are not specified in a different

manner in the.statfile, they are always computed (i.e., they have priority).

4.5.5 Number of batches in a simulation run

The option-e has been added to the SWN simulator option-list, it allows to set the maximum number of batches

during a simulation run.

96

4.5.6 Inclusion of “reset” transitions

The SWN model specification has been enriched by using a special transition, namedreset transition, with the

following semantics: when a reset transition is enabled its firing brings the model back to the initial marking. A

further generalization (not yet implemented) is the possibility of specifying any marking to be reached through

the firing of a reset transition; this extension has been introduced to ease the modeling task in several application

field (e.g., in system availability analysis).

4.6 Multiple experiments

MultiSolve is a simple graphical interface to the solution algorithms ofGreatSPN2.0.2. It allows to perform

multiple experiments with different parameters and to create figures depicting the results of the experiments.

SW Requirements In order to run correctly, MultiSolve requires the following software to be installed:

• Java(version 1.2.2 or higher);

• GreatSPN2.0.2package;

• Gnuplot(version 3.7 or higher). To download it visit[25]).

Starting MultiSolve To invoke MultiSolve simply typemultisolve followed by a carriage return. This causes

a window as shown in Fig.4.4to appear on the user’s terminal.

How to launch a set of experiments We describe how to use MultiSolve by means of an example. Let us

suppose we have constructed the simple net depicted in Fig.4.5by usingGreatSPN2.0.2package.

The net is characterized by the rate parameterr1 which has been assigned to transitionsT1 andT3 and by

the two measuresres1 = p{#P1 = 1}; andres2 = p{#P3 = 1};.
The first step is to load the net to work with on MultiSolve. This can be done either by clicking on the button

labeled asChoose a netplaced in the upper left corner of the window, or by typing directly the name of the net

without extension into the uppermost text field.

The second step is to define the parameters that are used in the experiments. Since MultiSolve is designed

for creating figures containing multiple curves that reflect measures, we have to define

1. the parameters of the individual curves,

2. the parameter that corresponds to the x-axis of the figure,

3. the measures that corresponds to the y-axis of the figure.

97

Figure 4.4: MultiSolve

The parameters of the individual curves are defined in the left upper panel of the window. A list of names of

parameters may be given in the text-field labeledNames. The entries of the list are separated by spaces. Each

entry may be the name of a transition, a rate parameter, or a marking parameter. In the other three text-fields of

the panel the user defines the set of values the parameters take. These three text-fields contain lists with as many

entries as many parameters were chosen. In the case of the example given in Fig.4.4 the rate parameterr1 takes

the values 1 and 2, while the rate of transitionT3 takes the values 2 and 4. The experiments will be carried out

considering all the 4 different combinations. The text-fields of this panel may remain empty.

Parameters of the x-axis are defined in the middle upper panel. In case of transient analysis one has to define

the lower and the upper limit of the transient time, and the step-size that will be used to step ahead in time. If

steady-state analysis is performed the variable that corresponds to the x-axis has to be given as well. As before,

this variable may be the name of a transition, a rate parameter, or a marking parameter.

98

m= 1

P2

P4

P1

P3

r1=1.000000

T3

T1

T4

T2

res1
res2

Figure 4.5: A simple example

The measures that will be computed have to be given in the text-field calledResults to calculate. This text-

field contains a list separated by spaces in which an entry is either a measure already defined in the net or the

name of a transition. If the name of a transition is given then the throughput of the transition is computed. In case

of our example the two measures and a transition name compose the set of results to calculate.

Having defined the parameters of the figure, we have to choose the type of analysis to perform. One has

define the type of net to work with. A net may be a GSPN or a SWN, a SWN may be ordinary or symmetric.

In case of steady-state analysis the user may choose between exact (analytic) or simulative solution. The above

choices can be made by selecting appropriately among the options represented by the check-buttons namedType

of net, Type of SWNandCalculation. In case of simulation the parameters of the simulation can be modified

in the right upper panel of the window.

The calculations are performed by clicking on the button namedPerform calculations. The results of the

0

0.2

0.4

0.6

0.8

1

0 0.5 1 1.5 2 2.5 3

Time

res1,r1=1,T3=2
res2,r1=1,T3=4

Figure 4.6: Example I

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0 0.5 1 1.5 2 2.5 3 3.5 4

T
hr

ou
gh

pu
t

Time

T4, case I
T4, case II
T4, case III
T4, case IV

Figure 4.7: Example II

99

calculations are saved in a file in table format. The name of the file is composed by the name of the net and

the extensionresults. The first column of the file contains the values along the x-axis. The other columns

corresponds to a measure with a combination of parameters. In the case of the example in Fig.4.4, the file contains

13 columns: the first describes the transient time, while the other 12 correspond to the 4×3 parameter-measure

combinations. For example, the second column of the file gives the value of the measureres1 for different values

of transient time in case ofr1 = 1,T3 = 1. The first line of the file gives the description of each column.

Having performed the calculations it is possible to create figures. Parameters of the figure are set on the three

panels under the titleParameters to create.... One can set the minimum and maximum values along the axises

(or let gnuplot to determine it automatically), define the position of the legend and the style of the curve. The set

of possible curves are listed in the bottom left side of the window. By clicking on the entries of the list the user

chooses which curves will be part of the figure (multiple selection is possible by holding downCTRL or SHIFT).

By clicking on the buttonCreate plot file a file is created with gnuplot commands; the file is loaded into the

text-areaGnuplot file. The user may modify the gnuplot commands (to learn more aboutGnuplot see manual

at [25]) and then by clickingMake postscript the commands in the text-area are executed.

Fig.4.6 was created by the settings shown in Figure4.4 not modifying the text-area. The maximum of the

x-axis is set to 3, the position of the legend is top right, the curves are plotted by lines. Another example is given

in Fig.4.7. In this case the throughput of transitionT4 is depicted. The position of the legend is changed, the

style of the curve is “lines and points”. The titles of the curves are changed by modifying the gnuplot commands.

Moreover, a title is given to the y-axis by the commandset ylabel ’Throughput’.

Example of steady state analysis is shown in Fig.4.8. The steady-state value of the throughput of transition

T4 is depicted as a function of the rate of transitionT3 for 4 different values of the parameterr1. The four

text-fields describing the x-axis are set toT3, 0.2, 6, 0.6 from top to bottom. Grid is added to the figure by

adding the commandset grid to the gnuplot text-area.

WARNING! It is important to note that MultiSolve does not perform exhaustive check of the parameters

provided by the user. The parameters are checked only in a syntactic manner. Hence, in order to control if the

desired experiments are possible on the chosen net, it is always suggested to perform some computations using

GreatSPN2.0.2itself before using MultiSolve.

100

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0 1 2 3 4 5 6

T3

T4,r1=2
T4,r1=6
T4,r1=10
T4,r1=14

Figure 4.8: Example III

101

Chapter 5

Compositionality in GreatSPN

The composition of two labelled GSPNs/SWNs is performed by means of the superposition of either (1) transi-

tions or (2) places of matching labels or by applying both kinds of superposition simultaneously.

Both the nets involved in the operation may have non-injective labelling, i.e. the same label may appear

connected to two or more transitions or places.

Constraints

1. Only one of the two nets may be multilabelled, i.e. one net (from now on we assume that the 1st operand)

may contain places, transitions with multiple labels. This constraint is motivated by the fact that having

two multilabelled operands the definition of the operators is a non-trivial task.

2. Concerning SWN models, the colour domains of those places which are to be superposed have to be

identical.

In the next section, we give an informal description of composition of two labelled SWNs implemented in

theGreatSPN2.0.2package, similar considerations can be done for labelled GSPNs.

5.1 Composition of two labelled SWNs

In the following, instead of giving a rigorous definition, the functioning of the operators will be described. First,

we concentrate on the case in which only transitions are superposed.

Let’s us consider the labelled SWNN = 〈P,T,Pre,Post, Inh ,pri ,C ,cd,w,λ〉 obtained by the composition

of N1 andN2 in which:

• the set of places in the resulting net is simply the union of the sets of places, i.e.P = P1
⋃

P2 (renaming of

place names may be necessary in order to avoid matching names). The colour domain functioncd gives

cd1(p) if p ∈ P1, cd2(p) otherwise.

102

P1
A,B

� � � � ��� � �
t1

P3P2
A A,B

< x,y >

< !x,y >< x >

[d(x)=d1]

���

P4
A

� �
t2

< x >

[d(x)=d2]

�
	

P5
A

< x >

P6
B

� �
t3

< x >

P7
B

< !x >

P8
A

� �
t4

< x >

P9
A

< !x >

P1
A,B

� � � � ��� � �

P3P2
A A,B

< x,y >

< !x,y >
< x >

 [d(x)=d1] and [d(x1)=d2]

� P4
A

P5
A

P6
B

P7
B

P8
A

P9
A

� � � � ��� � �t12

< x,y >
< x1 >

[d(x)=d1]t11

< x >

< !x,y >
< x1 >

< !x1 >

< x1 >

< x2 >

< !x2 >
< !x2 >

< x2 >

Figure 5.1: A multilabelled, non-injective example

• The unlabelled transitions are considered non-observable with respect to the composition, and those whose

labels do not appear in the other operand, are not involved in superposition. These transitions are simply

copied intoT (as for places, renaming may be necessary). To show how the operation proceeds to super-

pose transitions let us assume thatN1 is multilabelled, whileN2 is not, and the labelling is non-injective.

Let T2(l) denote the set of transitionst′ of T2 with l ∈ λ(t′), whereλ(t) gives the set of labels oft. In N

there will be a replica oft ∈ T1 for each element in
⊗

l∈λ(t),T2(l)6= /0 T2(l), where
⊗

is the cartesian product.

An example is shown in Fig.5.1, for transitiont1: λ(t1) = {l1, l2, l3} and the above defined cartesian

product has the elements{t2, t4} and{t3, t4}. In the composed nett11 (t12) is obtained by superposing

t1,t2 andt4 (t1,t3 andt4).

If two arcs connected to different transitions that are involved in the same superposition have identical

variable names in their arc expression, then these variables are renamed in the arc expression of all the

arcs connected to one of the two transitions. If these variables appear in the guard of the transition whose

arcs’ expressions are changed, the renaming is performed in the guard as well. As an example, in Fig.5.1,

103

during the superposition oft1, t2 andt4 the variablex of the arcs and guard function connected tot2 is

renamed tox1. (As it will be mentioned in Section5.2the implemented version of the algorithm allows the

user to override the above described renaming rule to “unify” values of the nets.) When two superposed

transitions have both a guard function these guard functions are joined with logicalandrelation.

• The matricesPre,Post, Inh describing the arc structure ofN are built in the following way: the arcs ofN1

andN2 connected to transitions that are not involved in superposition are simply copied intoN . An arc

connected to a transition involved in superpositions will have as many instances as the times the transition

is superposed. In our example the arcP1-t1 has two instances in the composed net:P1-t11 andP1-t12.

• The priority functionpri gives the same value as before for the transitions that are not involved in super-

position. A transition resulting from superposition inherits the priority value from the involved transition

of N1. The labelling functionsλ andw are handled similarly to the priority one. We assume that there are

not marking dependent rates and weights, and we basically leave the user the task of redefiningpri andw

for the final net1.

• The set of basic colour classesC and their definitions are assumed to be common forN1 andN2.

The operation to superpose places is the direct counterpart of the operation described above. However to

superpose places is less complicated as it does not require renaming of arc or guard expressions and we are

assuming that places to be superposed have the same colour domain.

The simultaneous application of superposing places and transitions has two features that were not shown in

the above description. First, having an arc whose place (transition) is involved innp (nt) superpositions, there will

benp ·nt instances of the arc in the composed net connecting all the instances of its place with all the instances of

its transition. Second, having two arcs whose places and transitions are superposed, the arc expressions of these

two arcs are added. An example for the latter is shown in Fig.5.2where the arc expressions of the arcsP1− t1

andP3− t2 are summed.

5.2 The algebra package

The GreatSPN2.0.2packagealgebra consists of theComposition and theRemovemodules; in the following

we will give a description of the usage of both of them.

5.2.1 Composition module

The Composition module allows to perform the composition of two GSPNs/SWNs by using and producing

GreatSPN format. The modeler may build the component nets using the graphical interface ofGreatSPN2.0.2.
1To find a more sophisticated and compositional way to handlepri andw is an open question, attempts to address this problem may

be found in the literature.

104

P1
A

� �
t1

< x >

[d(x)=d2]

���

P2
A

< !x >

P3
A

� �
t2

< x >

P4
A

< x >

P5
A

� �
t3

< x >

P6
A

< !x >

���

P1
A

� �
t11

< x > + < x1 >

[d(x)=d2]

�

P2
A

< !x >

P4
A

P5
A

� �
t12

< x 1>

P6
A

< !x1 >

< x1 >
< !x >

< x >

� �� �� �

[d(x)=d2]

Figure 5.2: Superposition of places and transitions

Labels are encoded in the name of the transitions and places, so both transition and place names have the structure

tag|label1|label2..., wheretag is the name of the transition or place followed by its labels separated by bars.

The user may define the set of labels to be used for subnets composition. This feature may be useful when

composition involves more than two nets and hence is performed in several steps: in this case the modeler can

select which labels are to be considered at each stage of the composition.

The Composition module creates a graphical representation of the composed net in which the “shape” of

the original components is maintained: in case of transitions (or places) with multiple instances in the resulting

net, the additional instances are placed around the position of the originating place/transition, moreover the arcs

that connect places and transitions belonging to different subnets are drawn as “broken arcs” in the resulting

net, to improve its readability. The user has some options to control the layout of the final net by indicating the

placement of each component.

A small example for the output of the tool is given in Fig.5.32: the example demonstrates another feature of

the tool: if a variable name starts with the character#, it is not renamed during the superposition. This allows the

modeler to use the same variables in different components, so as to “unify” values.

TheCompositionmodule is launched from the prompt of a console window by typing the commandalgebra

followed by a list of input parameters. When it is launched without parameters the complete synopsis is diplayed:

Usage:

algebra [switches] net1 net2 operator restfile resultname [placement shiftx shifty]

Switches: -no_ba: no broken arcs will be used between subnets

-rs number: result will be rescaled by number

Operators: ’t’: Superposition Over Transitions

’p’: Superposition Over Places

2Note thatGreatSPN2.0.2does not draw arc expressions on broken arcs, so those in the figure are written “by hand”.

105

P3
B

P4

B

P6

A

P5
A

T3|l1

<x>

<x>

T2|l1

<#y>

<#y>

N2

P2

A,B

P1

A

T1|l1

<x>

<!x,#y>

N1

P2
A,B

P1

A

P3

B

P4
B

P6
A

P5

A

T2|l1

<x> T1|l1
P5

<y>

<!x,y>

T1|l1

P6 <y>

T1|l1

T2|l1P3

<x1>

<x>

T2|l1

<x1>

<!x,y>
P4

N

Figure 5.3: Superposition using SWN

’b’: Superposition Over Places & Transitions

restfile: contains the labels to be used for synchronization

placement: 1 ---> net1 net2

2 ---> net1

net2

3 ---> net2 is shifted by (shiftx,shifty)

The two operandsnet1 andnet2 are theGreatSPN2.0.2names (without extensions) of the two nets that have

to be composed3, the resulting composed GSPN/SWN is saved inresultname. The first operandnet1 may

be multilabelled. The operator is defined byoperator and may bet to superpose transitions,p to superpose

places orb to superpose both places and transitions. The set of labels over which the superposition will be

performed may be restricted to a given subset of labels, these subsets are listed in the filerestfile, this file has

the following format:

transition={tl1|tl2}

place={pl1|pl2|pl3}

The labels that are not given in this file are not considered during the operation. If the file does not exist all

labels are considered. The last three arguments may be used to define the placement of the components: if the

parameterplacement is 1 (2) the two nets are placed next to each other horizontally (vertically), if it is 3 the

second net is shifted by (shiftx,shifty) with respect to the first net. Further options that can be set launching

the command:

• -no ba to visualize all the arcs in the composed net; by default, the arcs connecting objects belonging to

different components are not entirely displayed, i.e., they are broken;
3If the nets to be composed are saved in a directory different from the current one, the complete path is required

106

• -rs number to rescale the composed net by a factor given bynumber.

Merging of two models Compositionmodule can be use also to merge two no-labelledGreatSPN2.0.2models.

Let us assumemodel1 andmodel2 be the names of two models, then the command:

algebra model1 model2 t nolabel model1 2 [placement shiftx shifty]

where the filenolabel contains the following line:

transition={}

merges the two models saving the result in file names asmodel1 2.

5.2.2 Remove module

Together with theCompositionmodule, the packagealgebra includes also theRemovemodule that has been im-

plemented to eliminate labels and the character# from the nets. Typing the commandremovewithout parameters

the following output is displayed:

Usage:

remove net1 net2 function [labelfile]

net1: Net to work on

net2: Resulting Net

Functions: ’l’: Remove labels

’#’: Remove ’#’-s

’b’: Do both

labelfile: contains the labels to be removed

(if not given all labels are removed)

net1 is the name (without extensions) of the input net whilenet2 is the name of the output one. As functionl,

or b may be given to eliminate labels, the characters# or both, respectively. The set of labels to be deleted may

be a subset of the set of all the labels, and these subsets may be defined the same way as described forrestfile

in case of thealgebracommand.

107

Chapter 6

Export to other tools

6.1 Model checking: PROD translator

The PROD translator module is an interface to the PROD tool[36], it translates a GSPN/SWN model defined

in GreatSPN2.0.2format into the corresponding model described in PROD format. The PROD translator also

produces a file containing a list of useful macros to be used during model-checking performed by means of

queries during aprobe session.

6.1.1 Installation

Source files are all stored into the tar-zipped filePRODtranslDDMMYY.tar.gz, where DDMMYY is a date

(DD=day,MM=month,YY=year). To install the PROD translator the C compilatorgcc, the lexical and syn-

tactic analyzerslex andyaccare required. The installation procedure consists in the execution of the following

commands:

gunzip PRODtransl.tar.gz

tar xvf PRODtransl.tar

cd PRODtransl

install-transl

As result of such execution a directoryPRODtransl is created. This directory contains the following subdi-

rectories:

• SOURCE: contains the source files of the translator;

• DOCS: contains the documentation related to the translator;

• bin: contains the executable filesprod-translator andExploreRG.

108

prod-translator is the module that allows to translate a GSPN/SWN model defined inGreatSPN2.0.2for-

mat to the corresponding PROD model; whileExploreRG is a script file that contains the sequence of commands

the user have to execute to perfom pre-processing of the translated net, to generate its reachability graph (RG),

to compute the strongly connected components of RG, to launch the interactive programprobe and, finally, to

remove all the files created during the RG generation once the analysis of the model has been finished and the

probe session has been closed.

6.1.2 Use of the PROD translator

Once the installation procedure has been performed it is possible to translate aGreatSPN2.0.2model through the

command:

prod-translator netname

wherenetnameis the name of a GSPN/SWN model created withGreatSPN2.0.2without extensions1. The

translation procedure produces the following output files:

• netnameprod.net: that contains the PROD net description;

• netnameprod.macro: that contains a list of macros to be used during the model checking performed

through the interactive programprobe;

• netnameprod funz.c, netnameprod funz.h: these files are generated only in case of SWN models and

contain information related to the coloured definitions of the net. In case of translation of a SWN model

the subdirectorynetnameprod.srchas to be created - if not already existent - where these files have to be

move to.

Alternatively, if the user wants to give a different name from the one assigned by default to the translated net, the

following command has to be used:

prod-translator netname myprodnet

wherenetnameis the name of theGreatSPN2.0.2model to be translated andmyprodnetis the desired name

for the translated PROD model. So the following files will be generated:

myprodnet.net – myprodnet.macro – myprodnetfunz.c – myprodnetfunz.h

6.1.2.1 Nets with inhibitor arcs

Since the PROD tool doesn’t allow to define inhibitor arcs, additional information are required to the user if the

GreatSPN2.0.2model contains inhibitor arcs in order to carry out a properly translation of such arcs into test arcs
1TheGreatSPN2.0.2net definition filesnetname.defandnetname.nethave to be stored both in the same directory

109

on the complementary places. During the translation of a GSPN model with inhibitor arcs, if the filenetname.bnd

does not exist in the current directory, the user has to give the upper bound, i.e. maximum capacity, of each place

having an outgoing inhibitor arc. For example, if the placep1 of a GSPN model has an outgoing inhibitor arc,

then there will be following request:

Please, introduce bound for place < p1 >: 5 2

If the bound of a place is unknown, we suggest to set the value 255 that is the maximum bound allowed for a

place in aGreatSPN2.0.2model. In case of a SWN model, then the user has to provide:

• the initial marking of the complementary place of an inhibitor place, and

• the function to be assigned to the test arc that connects the complementary place to the inhibited transition;

both of these information have to be given using theGreatSPN2.0.2syntax. Let us consider the net of Fig.6.1:

P4

C

P2

C S

P3
CS

P5
C

t4
t3

<x>

<x>

<S-y> <y>

<y>

S:m

C:c

C1:c

Figure 6.1: SWN net with an inhibitor arc

during the translation execution, the following requests will be displayed:

Please, introduce initial marking for the dual place of p4

domain of place p4: C

M0(p4) = 0

Use ’e’ for empty initial marking : <S>

Please, introduce arc function for inhibitor arc <S-y>

between place p4 and transition t4

function for input/output arc: <S-y>

It is possible to define an empty initial marking using theGreatSPN2.0.2expression0<S> or simply thee
2From here until the end of this chapter the underlined character represents the input given by the user.

110

letter. If we add an arc fromt4 to p4 with arc function< x> in the net of Fig.6.1and the guard[x<> y] to the

transitiont4, then the following requests will be displayed:

Please, introduce arc function for inhibitor arc <S-y>

between place p4 and transition t4

(there is also an output arc from t4 to p4 with function <x>)

function for input arc: <S-y>

function for output arc: <S-y-x>

6.1.2.2 SWN nets with symbolic markings

When a SWN net contains a symbolic marking, then only one of the possible assignments is considered in the

translation into the corresponding PROD net. Hence, the reachability graph of the PROD net will be reduced

with respect to the one obtained from theGreatSPN2.0.2model. For example, let’s consider the following

GreatSPN2.0.2symbolic marking:

M2 : <M1>, M1 : (C:2), C : u C1, C1 = a1,a2,a3

it corresponds to the following different PROD ordinary markings:

< .a1..a2. >, < .a2..a3. >, < .a1. >+< .a3. >

So if only one of the above assignments is considered then the reachability graph of the PROD net is 1/3 of

the one obtained for theGreatSPN2.0.2one.

6.1.2.3 The script ExploreRG

Once theGreatSPN2.0.2net has been translated into the PROD net it is then possible to perform model-checking

using the PROD tool. To investigate the reachability graph (RG) of the PROD netnetnameprod the following

command have to be executed:

prod netname prod.init

netname prod

strong netname prod

probe -l netname prod.macro netname prod

that perform the corresponding actions:

111

preprocessing ofnetnameprod

RG generation ofnetnameprod

computation of the strongly connected components of the RG ofnetnameprod

activation of the analyzer of the RG ofnomereteprod

After the last command has been launched, the interactive RG analyzerprobe is running (it is in prompt state

0#); it is then possible to submit queries to investigate the RG of the net. Besides the basic queries of the PROD

syntax, the user can exploit the predefined macros contained in the filenetnameprod.macrothat can be displayed

from theprobe prompt with the commanddefs.

Alternatively to the command

probe -l netname prod.macro netname prod

the commandsprobe netname prod andload netname prod.macro have to be launched.

The commandquit causes the termination of theprobe session and hence the ending of the RG inspection.

Afterwards, we suggest to execute the command:

prod netname prod.clean

that removes all the files produced during the RG generation. The sequence of commands listed at the beginning

of this paragraph included this last command is summarized in the script fileExploreRG that defines a macro

command to be used as follows:

ExploreRG netname prod

this command generates the RG of the PROD net defined innetname prod, allows to inspect the RG through

queries, included the ones predefined in the filenetname prod.macro and finally, removes all the files created

during the RG generation.

6.1.2.4 The pre-defined macros

All the predefined macros generated by the PROD translator are stored in the filenetname prod.macro: they

can be used during the inspection of the RG of the netnetnameprod through the interactive analyzerprobe.

Besides the macro definitions, the definitions of the marking parameters and of the coloured tokens of the net are

also listed. Some macros takes account of the characteristics of the translated net, others are independent of the

structure of the net. Moreover, some macros are simplyaliasof someprobe commands such as:

#define qv query verbose

#define qn query node

#define qmn query mute node

#define qvn query verbose node

Let us consider a net with the following subsets of transitions:

112

• T1, T2, T3 timed transitions (exponential);

• t4, t6 timed transitions (deterministic);

• t5, t7 immediate transitions with priorityG1;

• t8, t9 immediate transitions with priorityG2;

a first group of macros consists of a list of definitions of the above subsets of transitions:

#define TEMP CLASS (\ exponential timed

T1(1) || T2(1) || T3(1)) transitions subset

#define DET CLASS (\ deterministic timed

t4(1) || t6(1)) transitions subset

#define G1 CLASS (\ immediate transitions with

t5(1) || t7(1)) priority G1 subset

#define G2 CLASS (\ immediate transitions with

t8(1) || t9(1)) priority G2 subset

#define IMM CLASS (\ immediate transitions

G1 CLASS || G2 CLASS) subset

The second group of macros consists of a set of queries to be used as a command from theprobe prompt, the

probe’s answer will be of type:

8 PATH

built set %12

that means that either 8 paths or 8 markings, satisfy the submitted query and the result of the query is saved into

a set denoted as%12.

During the queries it is possible to “jump” from a node of the RG to another through the commandgoto n

where n is the number that identifies a node of the RG.

In the following the second group of macros is listed:

1. TangMark

detects the set of tangible markings of the net, deadlock markings are not included;

2. VanMark

detects the set of vanishing markings of the net;

3. M0pathTO(markSet)

detects and displays the set of paths P such thatP =
⋃n

i=1Pi wherePi is the shortest path fromM0 to Mi ,

Mi ∈markSet and markSet={M1, ..,Mn};

113

4. PathTO(markSet)

detects and displays the set of paths P such thatP =
⋃n

i=1Pi wherePi is the shortest path from the current

marking toMi , Mi ∈markSet and markSet={M1, ..,Mn};

5. Deadlock

detects the set of deadlock markings;

6. M0pathTOdeadlock

detects and displays the set of the shortest paths fromM0 to each deadlock marking;

7. PathTOdeadlock

detects and displays the set of the shortest paths from the current marking to each deadlock marking;

8. Livelock

displays all the livelocks of the net;

9. M0pathTOlivelock(livelockSet)

detects and displays the set of the shortest paths fromM0 to each marking belonging to the livelock

livelockSet, wherelivelockSet is a set of the form%%n where n is its identifier number3;

10. PathTOlivelock(livelockSet)

detects and displays the set of the shortest paths from the current marking to each of the markings belonging

to livelockSet, such set have to be of the form%%n where n is its identifier number;

11. AllMarkEnabOnly(lastset,transSet)

detects and displays the set of markings in which only transitions belonging to the settransSet are en-

abled;

12. ExistPathM1toM2(lastset,mark1,mark2)

detects and displays the shortest path from markingmark1 to the markingmark2, if no path is found

between the two markings the answer to this query is0 PATH;

13. AllPathM1toM2(lastset,mark1,mark2)

detects and displays all the paths, without loops, frommark1 to mark2, if no path is found between the two

markings the answer to this query is0 PATH;

14. MarkingSetEnab(trans)

detects and displays the set of markings that enable transition

t trans;
3In probe the strongly connected components of RG, hence the livelocks, are denoted as %%n.

114

15. TransEnab(mark)

detects and displays the set of transitions enabled in markingmark;

16. Successor(mark, trans)

detects and displays the markingM1 reached from markingmark after the firing oftrans, i.e.: mark[trans>M1

17. Enable(mark,trans)

verifies if the markingmark enables the transitiontrans;

18. Mark(node)

displays the marking identified by the numbernode;

19. MarkSetEnabOR(setT1,setT2)

detects and displays the following set of markings:

markSet= {Mi | Mi [tv∨Mi [tw wheretv ∈ setT1∧ tw ∈ setT2}

i.e the set of markings that enable at least either a transition of the setsetT1 or a transition of the setsetT2;

20. MarkSetEnabAND(lastset,setT1,setT2)

detects and displays the following set of markings:

markSet= {Mi | Mi [tv∧Mi [tw wheretv ∈ setT1∧ tw ∈ setT2}

i.s. the set of markings that enable at least a transition of the setsetT1 and at least a transition of the set

setT2;

21. MarkBelongSet(lastset,mark,markSet)

verifies if the markingmark belongs to the set of markingsmarkSet;

22. LogicCond(formula)

detects and displays the set of markings that satisfy condition expressed byformula.

We emphasize the form of the parameters appeared in some macros of the previous list and not explicitly de-

scribed:

• lastset has to be the number of the last set computed byprobe, usually the one obtained as a result from

the last submitted query;

• transSet is a set of transitions, it has to be expressed with the same syntax used for the definition of the

setsTEMP CLASS andIMM CLASS, that is:

115

Transname1(1)|| Transname2(1)||

• mark is a marking that corresponds to a node of RG, it has to be expressed asn, that is the number that

identifies the node of RG, for example:

TransEnab(5)

where5 represents a marking of RG.

• markSet is a set of markings and it has to be expressed as%n where n is the number that identifies the set

containing the considered markings; it can be either a basic set defined byprobe or a set obtained as a

result of a query4, for example:

MarkBelongIns(4,10,%2)

where4 is the last set created byprobe, 10 represents a marking and%2 is a set of markings.

• formula is a formula that can be expressed using the PROD grammar5:

formula ::= (formula) | not formula| formulaand formula|
formulaor formula| expr

expr ::= simpleexpr|mark== mark|mark!= mark|
mark>= mark|mark<= mark|mark< mark|
mark> mark| op1 expr| expr op2 expr

simpleexpr ::= card(mark) | (expr) | digits

mark ::= simplemark|mark+ mark| simpleexpr simplemark

simplemark ::= placename| empty | < . rangelist. > |
< .. > | (mark)

Non terminal symbolsop1 andop2 are respectively the unary and the binary operators used in the expres-

sions of the C programming language. Let us consider some examples of formulae accepted by the PROD

grammar:

card(p1)>=card(p2) the total number of tokens in placep1

is equal to the total number of tokens in placep2

card(p1)==N the total number of tokens in placep1

is equal to the value of the parameterN

p1==p2 the marking in placep1 is equal to the marking in placep26.
4It is worth to notice that in general the sets generated byprobe are sets of paths, the markings are considered as paths of zero length.
5 The grammar described in the following is simplified, for a full description see the PROD reference manual[36]

116

p1<N p2 the marking in placep1 is less than the marking in placep2

multiplied by the value of the parameterN7.

Let us see some example on the usage of the macro 22, that accept as a input parameter a formula:

0#LogicCond(card(p1)==2 and p2==empty)

detects the set of markings in which the placep1 is marked with 2 tokens and the placep2 is empty;

0#LogicCond(p1==(<.a1,p1.>+<.a2,p2.>))

detects the set of markings in which the marking of placep1 is the one specified by the query.

Symbolsa1,p1,a2,p2 are numeric constants that represent coloured tokens.

P1

P2 P3

P4

t4t5

t3

t2t1

Figure 6.2: GSPN net with a livelock

Macros 9 and 10 do not guarantee that the paths found are the shortest paths that brings to a livelock, really

it should be verified that every path does not contain more than one node belonging to the livelock.

Let us consider the net of Fig.6.2the following queries can be submitted:

0#livelock

Component %%0

--

1, 3

%%0 has 2 nodes

--

1 nontrivial terminal strongly connected components

--

0#M0pathTOlivelock(%%0)

PATH

Node 0, belongs to strongly connected component %%1

P1: <..>

6The number of occurrences of a single coloured token is compared in the two markings.
7The markingNp2 is obtained from the marking of the placep2 by multiplying the occurrences of each coloured tokenN times.

117

Arrow 0: transition t3, precedence class 0

Node 1, belongs to strongly connected component %%0

P3: <..>

--

PATH

Node 0, belongs to strongly connected component %%1

P1: <..>

Arrow 0: transition t3, precedence class 0

Node 1, belongs to strongly connected component %%0

P3: <..>

Arrow 0: transition t4, precedence class 0

Node 3, belongs to strongly connected component %%0

P4: <..>

--

2 paths

Built set %1

--

Two paths have been detected, but only the first one is the shortest path that brings the net to the livelock. We

can then select the shortest path by means of the query:

ExistPathM1toM2(1 8 ,0,1).

6.2 Kronecker solutions: APNN translator

TheAPNN translator transforms theGreatSPN2.0.2net description files into a corresponding APNN notation:

theGreatSPN2.0.2layers are interpreted as a partition of the net into subnets which synchronize over transitions

(Superposed GSPNS), for a subsequent application of Kronecker based solution methods.

6.3 Tgif translator

The gspn2tgif program translates a model defined inGreatSPN2.0.2format into aTgif [9] .obj file: each net

object is translated into aTgif graphical object so that the graphical appearance of the converted GSPN/SWN

model can then be modified using theTgif GUI.

6.4 Fluid nets translator

Thenet2fspntranslator provided with theFSPNEditsoftware package, transforms the.net files saved byGreat-

SPN2.0.2into the.fspn files required by the solution components of the FSPN analysis tool. User can then add
8This is the identifier number of the set obtained with the previous query.

118

fluid places and continuous arcs to the generated files and analyze them using the tools provided by theFSPNEdit

package. In particular the generated FSPN may be solved either by simulation (using the software component

FSPNsim) or by numerical analysis (usingFSPNsolve).

6.5 Refinement of SWN performance indexes: PERFSWN

This text has been written by Serge Haddad, Patrice Moreaux, and M. Sene

PERFSWN is a set of tools providing an interactive framework to define, compute and present to the user

steady state performance indices of SWN insofar as these indices relate only to static subclasses of the SWN.

These tools complementGreatSPN2.0.2to exploit the SRG and the steady state probability vector of the SWN. In

addition toGreatSPN2.0.2, PERFSWN leans on several Perl scripts that we have developed and on the interactive

numerical environment Scilab (available at http://www-rocq.inria.fr/scilab).

The user environment is composed of several working sessions. AGreatSPN2.0.2session is dedicated to

SWN definition and computation of performance indices available in the tool. A Scilab session supplements

GreatSPN2.0.2to compute various performance indices and to provide graphical presentations of data (plots,

graphs, etc). Beside these two sessions, the user can enter commands into a terminal session to run the interface

software which extracts results and compute new ones fromGreatSPN2.0.2results.

A typical sequence of operation in PERFSWN is the following. The user defines its SWN with the graphical

interface ofGreatSPN2.0.2. Next, he asksGreatSPN2.0.2for the computation of the Symbolic Reachability

(SRG) with output into an ASCII file, alone, or together with the solution of the aggregated Markov chain of

the SWN. Under the terminal session, the user can now process the Tangible Symbolic Reachability Set (TSRS)

and obtain a Scilab script version of the solution vectorπ̂ for the TSRS. If no change is done to the structure of

the SWN, the TSRS does not need to be reloaded when new stochastic parameters are given. Then he begins its

Scilab session by loading the TSRS andπ̂ (i.e. running our corresponding scripts). Consequently, the user works

with data from the TSRS and the vectorπ̂ into the Scilab session. If needed, the user asks for specific symbolic

firings in the terminal session. He can now compute the throughput of these transition firings into theScilab

session by calling interactively functions of our libraries.

PERFSWN benefits from all features of Scilab for the definition of high level functions (for instance reward

functions based on the static partitio ns of the symbolic markings), as well as for the management of the working

session (save and restore of sessions, batch execution, etc.).

Computation of performance indices(in steady state) is based on the (colored) token distributions, the through-

put of transitions and the response times of subnets. The general method to obtain a performance index (saya)

is to define a reward function giving, for each tangible markingm ∈ TRS, a reward valuer(m) contributing to

a. Then we havea = E(r) = ∑m∈TRSr(m)π(m). PERFSWN is able to compute these indices, provided that they

119

relate to the number of tokens per static subclasses only. PERFSWN extracts the TSRS with the static partitions

of all tangible symbolic markings (the canonical representations are discarded) into a Scilab session. Moreover,

firings instances of a given transition are retrieved from the SRG based on a boolean expression we call abindings

formula. The syntax of bindings formulae is the classical combination of logic (or, and, not) with basic boolean

expressions giving the static subclass of the instantiation of a variable of the transition.

PERFSWN provides two basic Scilab libraries for performance indices computation.swn.sci is dedicated

to specific SWN functions (for instance, display symbolic markings, find markings with specific property, define

and compute reward functions). In addition to performance computations, the user can in this way, examine

several qualitative properties of the system. The second library,perf.sci, is a set of general purpose functions

useful in the area of performance evaluation. It provides the user with mean reward computation from a user

defined reward function (for instance over symbolic markings), distribution computation, like tokens distribution

in one or several places, plot of cumulative distributions functions, etc. Obviously this library could be easily

extended by any user.

120

Appendix A

Net description files

TheGreatSPN2.0.2net description is stored in two ASCII files callednetname.net andnetname.def respec-

tively.

The.net description file contains the description of the structure of aGreatSPN2.0.2model according to the

following Backus-Naur Form (BNF) format. Capital keywords are non-terminals, while terminals are represented

as C language strings. The following special terminals are used:empty indicates void fields;string indicates

any non-empty character string not containing blank characters;space indicates any sequence of blank and tab

characters;natural indicates a non-negative integer;pint indicates a positive integer;preal indicates a positive

real;coords indicates a pair of non-negative real number representing object coordinates with a space between

them. The notation#(XX)... denotes the repetition of the string in braces for a number of times derived by

interpreting the stringXX as a natural number. Moreover we used C-like notation/* comments */ to comment

some lines.

The*.def description file contains the description of additional information of aGreatSPN2.0.2model. In

particular:

• definition of the coloured part (SWN models only) according to the SWN BNF grammar given in TableA.1;

• definition of rate parameters according to the Marking-Dependent Rate Definition BNF grammar given in

TableA.2;

• definition of (no default) results, to be computed using either markovian or simulator solvers, according to

the Result Definition BNF grammar given in TableA.3.

In addition to the special terminal keywords adopted previously, in the definition of the*.net file, we use also the

following ones: special terminal keyword<assign> to indicate a marking dependent rate parameter definition;

<result> to indicate a result definition;<fun def> to indicate a coloured definition.

121

A.1 Format of the .net file

NETFILE ::= COMMENT NOOBJS MARKS PLACES RATES GROUPS TRANS LAYERS

COMMENT ::= "|0|\n" COMHEAD "|\n"

COMHEAD ::= empty "|\n" | "Comment on this GSPN:\n" { COMLINE "\n" }

COMLINE ::= space | string | empty | COMLINE space | COMLINE string

NOOBJS ::= "f" space NM space NP space NR space NT space NG

space "0" space NL space "\n"

NM ::= natural /* number of marking parameters */

NP ::= natural /* number of places */

NR ::= natural /* number of rate parameters */

NT ::= natural /* number of transitions */

NG ::= natural /* number of groups */

NL ::= natural /* number of layers */

MARKS ::= #(NM) { NAME space MVAL space coords LEVELS "\n" }

NAME ::= string

MVAL ::= pint

LEVELS ::= space "0" | space pint LEVELS

PLACES ::= #(NP) {NAME space PMARK space coords space coords LEVELS COL "\n" }

PMARK ::= natural | "-" MPINDX

MPINDX ::= pint /* 0 < #(MPINDX) <= #(NM) in case of GSPN */

COL ::= empty | coords string

RATES ::= #(NR){ NAME space RVAL space coords LEVELS "\n" }

RVAL ::= preal

GROUPS ::= #(NG){NAME space coords space PRI "\n" }

PRI ::= pint /* priority */

TRANS ::= #(NT){NAME space TRATE space TSERV space TKND space TINP space

TROT space coords space coords space coords LEVELS COL "\n"

LDCOEFFS TIARCS TOUT TOARCS TINH THARCS }

TRATE ::= preal | "-" RPINDX | MDRATE

RPINDX ::= pint /* 0 < #(RPINDX) <= #(NR) */

MDRATE ::= "-510" /* A MD rate is defined in file .def */

TSERV ::= natural | "-" LDPOP

LDPOP ::= pint /* max population of LD equivalent server */

TKND ::= EXPT | DETT | IMMT

122

EXPT ::= "0"

DETT ::= "127"

IMMT ::= pint /* priority level group s.t. 0 < #(IMMT) < #(NG) */

TINP ::= natural /* No. Input Arcs */

TROT ::= "0" | "1" | "2" | "3" /* rotation coefficient */

LDCOEFFS ::= (#(LDPOP) - 1){ preal "\n" }

TIARCS ::= #(TINP){ AMULT space APLACE space APOINTS LEVELS

COL "\n" APLIST }

AMULT ::= pint /* arc multiplicity */

APLACE ::= pint /* place index s.t. 0 < #(APLACE) <= #(NP) */

APOINTS ::= natural /* No. intermediate points for broken arcs */

APLIST ::= #(APOINTS){ coords "\n" }

TOUT ::= natural "\n" /* No. Output Arcs */

TOARCS ::= #(TOUT){AMULT space APLACE space APOINTS LEVELS

COL "\n" APLIST }

TINH ::= natural "\n" /* No. Inhibitor Arcs */

THARCS ::= #(TINH){AMULT space APLACE space APOINTS LEVELS

COL "\n" APLIST }

LAYERS ::= { NAME "\n" } /* list of Layer names

one per layer used in objects */

A.2 Format of the .def file

DEFMD ::= "|" TI "\n" RATE_DEF "\n"

TI ::= pint /* transition relative position inside ".net" */

RATE_DEF ::= <assign>

RESULT ::= RES RESULT | "|\n"

RES ::= "|" NAME space coords space ":" space RES_DEF "\n"

NAME ::= string

RES_DEF ::= <result>

COLOR ::= COL COLOR | empty

COL ::= "(" NAME space CT space coords space "(@" CT "\n"

<fun_def> "\n))"

CT ::= "c" | "f" | "m"

123

A.3 Grammars

The SWN syntax (TableA.1), the marking-dependent rate definition grammar (TableA.2) and the performance

result definition grammar (TableA.3) are given according to the following BNF format.

All the terminal keywords are represented as C-language strings in quotation marks except for the following

terms:<real number> indicates a positive real number,<integer> indicates a non negative integer number,

<string > indicates any non-empty character string not containing blank characters and<empty> indicates

void fields. Concerning the<color classtype> keyword it can assume either “o” or “u” values which stand for

“ordered” and “unordered” respectively.

<fun def> ::= <color classdescription> |
<static subsclassdescription> |
<initial markingdescription> |
<dynamicsubclassdescription>

<color classdescription> ::= <color classtype> <static subclasseslist >

<static subclasseslist > ::= <static subclassname> |
<static subclasseslist > “,” <static subclassname>

<color classtype> ::= “o” | “u”

<static subclassdescription> ::= <string> “{” <integer> –<integer> “}” |
“{” <objectslist > “}”

<objectslist > ::= <objectname> | <objectslist > “,” <objectname>

<placecolor domaindescription> ::= <color classeslist > | <empty>

<color classeslist > ::= <color classname> |
<color classname> “,” <color classeslist >

<arc functiondescription> ::= <empty> | <coefficient> “ID” |
<ordinary function>

<ordinary function> ::= <coefficient>

[<predicate>] “<” <function list > “>” |
<ordinary function> <sumop> <coefficient>

[<predicate>] “<” <function list > “>”

<function list > ::= <functionkernel> |
<functionkernel> “,” <function list >

<functionkernel> ::= <term> | <functionkernel> <sumop> <term>

<term> ::= <synchronizationterm> | <projection term> |
<successorterm> | <predecessorterm>

<synchronizationterm> ::= <coefficient> “S” |

124

<coefficient> “S” <static subclassname>

<projection term> ::= <coefficient> <functionname>

<successorterm> ::= <coefficient> “!” <functionname>

<predecessorterm> ::= <coefficient> “ˆ” <functionname>

<initial markingdescription> ::= <short marking> | <ordinary marking>

<short marking> ::= <coefficient> “S”

<ordinary marking> ::= <coefficient> “<” <marking list > “>” |
<ordinary marking> <sumop>

<coefficient> “<” <marking list > “>”

<marking list > ::= <marking item> | <marking list > “,” <marking item>

<marking item> ::= <dynamicsubclassname> | “S” <static subclassname> |
“S” | <objectname>

<cardinality> ::= <integer> |
“ |” <color classname>“.”<static subclassname> “ |” |
“ | <color classname> “ |”

<objectname> ::= <string>

<dynamicsubclassdescription> ::= “(” <static subclassname> “:” <cardinality> [“:” <integer>] “)”

<predicate> ::= <predicate> “or” <pterm> | <pterm>

<pterm> ::= <pterm> “and” <pfatt> | <pfatt>

<pfatt> ::= “(” <predicate> “)” |
“d” “(” <string> “)” <eqop> <d operand>

| <string> <eqop> <str operand>

<d operand> ::= “d” “(” <string> “)” | <static subclassname>

<str operand> ::= <string> | “!” <string> | “ˆ” <string>

<color classname> ::= <string>

<functionname> ::= <string>

<static subclassname> ::= <string>

<dynamicsubclassname> ::= <string>

<coefficient> ::= <integer> |
“ |” <color classname>“.”<static subclassname> “ |” |
“ |” <color classname> “ |” | <empty>

<sumop> ::= “+” | “–”

<eqop> ::= “=” | “<>”

Table A.1: SWN syntax for theGreatSPN2.0.2package.

125

<assign> ::= { “when” <logic cond> “:” <value> “;” }
“ever” <value> “;”

<logic cond> ::= <compare> | “ ˜ ” <logic cond> | “(” <logic cond> “)” |
<logic cond> “&” <logic cond> | <logic cond> “o” <logic cond>

<compare> ::= <marking> <compoper> <integ const>

<marking> ::= “#” <placename>

<placename> ::= <string>

<compoper> ::= “=” | “/=” | “>” | “<” | “>=” | “<=”

<integ const> ::= <integer> | <mark par> | <marking>

<mark par> ::= <string>

<value> ::= <real val> | “(” <value> “)” | <value> <arithm op> <value>

<real val> ::= <real number> | <marking> | <rate par>

<rate par> ::= <string>

<arithm op> ::= “+” | “–” | “*” | “/”

Table A.2: BNF of the marking-dependent rate definition grammar.

<result> ::= <sum> “;”

<sum> ::= <item> | <item> “+” <sum> | <item> “–” <sum>

<item> ::= [<real val>] “p{” <logic cond> “}” | [<real val>] “P{” <logic cond> “}” |
[<real val>] “e{” <marking> “}” | [<real val>] “E{” <marking> “}” |
[<real val>] “e{” <marking> “/” <logic cond> “}” |
[<real val>] “E{” <marking> “/” <logic cond> “}”

<real val> ::= <real number> | <rate par>

<rate par> ::= <string>

<logic cond> ::= <compare> | “ ˜ ” <logic cond> | “(” <logic cond> ”)” |
<logic cond> “&” <logic cond> | <logic cond> “o” <logic cond>

<compare> ::= <marking> <compoper> <integ const>

<marking> ::= “#” <placename>

<placename> ::= <string>

<compoper> ::= “=” | “/=” | “>” | “<” | “>=” | “<=”

<integ const> ::= <integer> | <mark par> | <marking>

<mark par> ::= <string>

Table A.3: BNF of the performance result definition grammar.

126

A.4 Extended SWN grammar

The SWN grammar has been extended to allow the definition of the refined performance indices. In particular,

the extended grammar allows to define four main categories of performance indices:

• linear combinations of mean number of token in places and probabilities;

• linear combinations of throughputs;

• average crossing times;

• multiple results.

TableA.4 formalizes the extension according to the following BNF format. All the terminal keywords are

represented as C-language strings in quotation marks except for the following terms:<real number> indicates

a positive real number,<integer> indicates a non negative integer number,<string> indicates any non-empty

character string not containing blank characters.

<result> ::= <sum> “;” | <sumt > “;” |
<item fam> “;” | <sum> “/” <sumt > “;”

<sum> ::= <item> | <item> “+” <sum> | <item> “-” <sum>

<item> ::= [<real val>] “P{” <logic cond> “}” |
[<real val>] “E{” <marking> “}” |
[<real val>] “E{” <marking> “/” <logic cond> “}”

<marking> ::= “#” <placename> | “#” <placename> “[” <pred> “]”

<sumt > ::= <item t > | <item t > “+” <sumt > | <item t > “-” <sumt >

<item t > ::= [<real val>] “X {” <marking t > “}” |
[<real val>] “X {” <marking t > “/” <logic cond> “}”

<marking t > ::= “#” <transition name> |
“#” <transition name> “[” <pred> “]”

<item fam> ::= [<real val>] “E{” <marking fam> “}” |
[<real val>] “E{” <marking fam> “/” <logic cond> “}” |
[<real val>] “X {” <marking fam> “}” |
[<real val>] “X {” <marking fam> “/” <logic cond> “}”

<marking fam> ::= “#” <obj name> “(*)” |
“#” <obj name> “(*) | SEL=[” <pred> “]” |
“#” <obj name> “(*) | SEL=[” <pred>“], COND=[” <pred> “]” |
“#” <obj name> “(*) | COND=[” <pred>“]” |

127

“#” <obj name> “(”<obj list >“)” |
“#” <obj name> “(”<obj list >“) | SEL=[” <pred> “]” |
“#” <obj name> “(”<obj list >“) | SEL=[” <pred> “], COND=[” <pred> “]” |
“#” <obj name> “(”<obj list >“) | COND=[” <pred> “]”

<placename> ::= <string>

<transition name> ::= <string>

<obj list > ::= <obj name> | <obj list > “,” <obj name>

<obj name> ::= <string>

<real val> ::= <real number> | <rate par>

<rate par> ::= <string>

<logic cond> ::= <compare> | “ ˜ ” <logic cond> | “(” <logic cond> “)” |
<logic cond> “and” <logic cond> | <logic cond> “or” <logic cond>

<compare> ::= <marking> <compoper> <integ const> |
<multisetdef> <compoper> <multiset>

<compoper> ::= <rel op> | “>” | “<” | “>=” | “<=”

<integ const> ::= <integer> | <mark par> | <marking>

<multiset> ::= <multisetconst> | <multisetdef>

<multisetdef> ::= “#” <placename> “(*)” | “#” <placename> “(” <classlist > “)” |
“#” <placename> “(*)[” <pred> “]” |
“#” <placename> “(” <classlist > “)[” <pred>“]”

<multisetconst> ::= “[” <real number>“] <” <obj list > “> |
“[” <real number> “]<” <obj list > “> +” <multisetconst>

<classlist > ::= <classname> | <classlist > “,” <classname>

<classname> ::= <string>

<mark par> ::= <string>

<pred> ::= <comparep> | “(” <pred> “)” | <pred> “and” <pred> | <pred> “or” <pred>

<comparep> ::= “d(” <obj name> “)” <rel op> <subclass>

<rel op> ::= “=” | “<>”

<subclass> ::= <string>

Table A.4: SWN extended syntax for colored performance indices

definition.

128

Appendix B

Known bugs and Warnings

A lot of bugs presented in the previous version ofGreatSPN2.0.2have been discovered and eliminated. However

some of “known” bugs still remain in the current version and a list of them follows, in the next section a summary

of warnings is given.

1. Simulation of GSPN models: to terminate correctly the simulation without provoke an infinite loop when

the “Timed interactive” option of theSimulationwindow is chosen together with the “Auto” mode it it is

good choice to press the “Stop” button first and then to click on the “Done” button, instead of pressing

directly the “Done” button.

2. Places with the same tag: it may occur that when places are copied by using theSelectandAddoptions

from theAction menu, the new added places are created with the same tags of the copied ones.

3. SWN syntax is not checked at editor level.

4. transitions rates of order of magnitude less than 10−6 are cut off (i.e. only the first six decimals are

considered) when saved from GUI into the net definition file.

5. It may occur that when transitions with different priorities are renamed the priority groups are not updated

once the net is saved or different priority groups are saved with the same name.

6. syntax error in the warning text appearing in the window that pops-up when theFile→RemoveResults

option is chosen.

7. TheView→Overviewdoes not work correctly.

8. TheFile→Mergeoption has not been implemented.

129

B.1 Warnings

1. Before launching aGreatSPN2.0.2solver be sure that the hostname set in the “Hostname:” left area of the

File→Optionswindow is the name of the machine on which the Control Panel has been started.

2. Rescaling is completely different from zooming the net: ”zoom” operation affects only the editor view of

the net while ”rescale” operation affects the actual coordinates of the objects of the net.

3. The interactive simulation does not work properly on some GSPN models: to use simulation techniques

on a GSPN model is better to transform it into an equivalent SWN model, i.e., with the same state space,

and to launch the ordinary simulation available for SWN models.

4. Performance bound solver: the case of conflict with race policy and with enabling memory policy for timed

transitions is not properly handled. The net description is assumed not to contain such cases.

5. Performance bound solver: to obtain correct results in case of computation of performance bounds for

transition throughputs, launch the solver on a place first.

6. The maximum capacity of each place isMAX = 255 even though this constraint is not signalled when an

analytic module is launched from the GUI.

7. If the net is characterized by an initial dead marking, the launch of an analytic solver provokes a segmen-

tation fault.

8. Reachability graph generator does not produce the RG in case of nets with all immediate transitions.

9. SWN simulation: the results computed from a simulation run are basically the mean number of token in

places and throughputs of transitions and they are all independent from the color classes. Refined results

- color class dependent and, in general, user defined results - can be obtained by using the extended SWN

simulation (see Section4.5).

10. SWN simulation in case of models with GEN transitions: when constructing the SWN model via GUI,

all the GEN transitions have to be specified as they were negative exponential distributed, i.e. white-box

transitions also in case of deterministic transitions.

11. Multiple experiments: MultiSolve does not perform exhaustive check of the parameters provided by the

user. The parameters are checked only in a syntactic manner. Hence, in order to control if the desired

experiments are possible on the chosen net, it is always suggested to perform some computations using

GreatSPN2.0.2itself before using MultiSolve.

130

Appendix C

Installation

The GreatSPN2.0.2package has been successfully compiled on various Linux distribution (Mandrake, Slack-

ware, Red Hat) coming with OpenMotif as well as SunOS5.x systems. In particular the following “combinations”

of machines and environment are the one that have been tested at our site:

SunOS 4.1.3 SunOS 5.5,5.6,5.7,5.8 (SPARC) SunOS 5.5.1,5.6 (INTEL)

gcc 2.5.8 gcc 2.7.2 gcc 2.7.2

Motif 1.2 Motif 1.2 Motif 1.2

X11R5 X11R5 X11R5

Linux Redhat 4.1,Slackware,Mandrake,SuSE 7.1 (INTEL)

gcc

Motif 2.0

X11R6

You can try other combinations, but please remember that some features ofGreatSPN2.0.2do make use of

interprocess communication, so that recompilation for whatever Unix/Linux system may not work.

C.1 System requirements for compiling the tool

- the following utilities should be available at the command line prompt (modify thePATH environment

variable if not):

make GNU make, which is different from the classical/bin/make command;

gcc GNU C-compiler;

lex & yacc (or flex & bison) lexical analyser and parser generator;

131

sh standard shell and command interpreter;

rsh remote shell (in case the user wants to launchGreatSPN2.0.2solvers on remote machines): it must

work without asking password, that is to say if M is a remote machine on which you have an account,

thersh M command should not ask for a password; if this is not the case, ask your system manager

about, or you will get misterious error at run time, saying that you do not have privilige to execute

solution programs;

- X11 and Motif runtime environments: in particular,GreatSPN2.0.2makes use of Motif libraries (Mrm and

Xm), thus to compile the tool you need theXt andMotif development environments being installed on your

system;

- the user-interface-language (uil) compiler: it is used to define the widgets of theGreatSPN2.0.2GUI

(comes with Motif distribution but often is not included in the default installation).

WARNING! If the which uil command does not find it, ask your system manager to find it for you or

to install it if it is not already there. If you are using the Lesstif clone of Motif be sure that it works.

C.2 Compiling and installing the tool

To compile and install theGreatSPN2.0.2package go through the following steps:

- get the zipped archivegreatspn-2.1-src.tar.gz;

- create a new directory - the install directory - where you want to locate the tool, e.g.,/usr/local/GreatSPN/;

- umcompress and extract the archive into the install directory by using the commands

gunzip greatspn-2.0.2-src.tar.gz

tar -xvf greatspn-2.0.2-src.tar /usr/local/GreatSPN/

- move to the subdirectorySOURCE, where the source code and the makefiles are placed:

cd /usr/local/GreatSPN/SOURCES/

- Currently two makefiles are given, one for SunOS platforms and the other for Linux platforms; according

to the system your machine is running, edit the appropriate makefile. Only the first lines of the makefile

closed between the #-filled lines have to be changed: you will find some examples of common settings

placed in the commented lines. Check your system and make the right modifications;

- return to the shell prompt and type the command:

make -f Makefile.<platform> <target>

132

where<platform> is the name of the installation platform, i.e., SunOS5.x or Linux-OpenMotif, and

<target> has to be replaced with the desired installation options. If you want to install the overall package

omit <target>, otherwise type any combination of the options:greatspn, algebra andmultisolve;

- if everything goes right you will find in the current directory two new subdirectories:

/usr/local/GreatSPN/bin and/usr/local/GreatSPN/<platform>

the former contains the executable (they are all shell-scripts) and the latter the binaries of the tool;

- to launch theGreatSPN2.0.2GUI type the command:greatspn. To launch the MultiSolve GUI type the

command:multisolve, see sect.4.6(chapt.4) for information about how to use it. To launch thealgebra

composition module type the command:algebra, see chapt.5 for information about how to use it.

C.3 Setting the environment

To runGreatSPN2.0.2is necessary to set theGreatSPN2.0.2environment variables, in particular:

- the/usr/local/GreatSPN/bin directory has to be added to the userpath environment variable;

- the userLD LIBRARY PATH environment variable has to be set appropriately before runningGreatSPN2.0.2

. This variable has to contain the paths to the Motif and X11 libraries and if it is not set at all, errors of

the typecan’t find xyzappears, while when it is not set to the right path a segmentation fault error usually

occurs. The path us dufferent under Solaris, SunOS and Linux; in our environment, the command to set

the appropriate values are:

- For SunOS4 (non Solaris):

setenv LD LIBRARY PATH "/usr/local/X11R5/lib:/usr/lib"

- For SunOS5 (Solaris):

setenv LD LIBRARY PATH "/usr/openwin/lib:/usr/lib"

- For Solaris on PC:setenv LD LIBRARY PATH "/usr/dt/lib"

but they may be different on your system;

- the GreatSPN2.0.2environment variableGSPN2LPSOLVE has to be set equal to the pathname of the exe-

cutablelp solve, i.e.,GSPN2LPSOLVE = /usr/local/GreatSPN/bin/lp solve.

WARNING! Currently, theGreatSPN2.0.2installation procedure does not include the installation of the

lp solvepackage: you have to install the package separately, see[28] to download it (version 3.2).

133

- theMULTISOLVE AWK environment variable has to be set with the path of theawk utility, i.e.,

MULTISOLVE AWK = /usr/xpg4/bin/awk.

The followingGreatSPN2.0.2environment variables:

• GSPNDEFAULT PRINTER, containing the name of the default printer;

• GSPNNET DIRECTORY, containing the path directory of the net description files;

• GSPNPSDIRECTORY, containing the path directory of the printout of the nets in raw PostScript format;

• GSPNEPSDIRECTORY, containing the path directory of the printout of the nets in EncapsulatedPostcript

format;

are set at the moment theGreatSPN2.0.2GUI is launched for the first time: a window pops-up in which it is

asked to the user to fill in the areas corresponding to the above environment variables if he/she want to change

the default ones. Default options are:

GSPN_DEFAULT_PRINTER= "lpr"

GSPN_NET_DIRECTORY= "$HOME/nets"

GSPN_PS_DIRECTORY= "$HOME/ps"

GSPN_EPS_DIRECTORY= "$HOME/eps"

and they are saved in the$HOME/.greatspn file.

And finally.... We hope that you have been able to build and installGreatSPN2.0.2with litle cost in patience

and time. If you can’t make your way through it, you can contact us at the following e-mail address:

greatspn@di.unito.it

Moreover any comment and suggestion on the installation procedure will be highly appreciated.

Good luck,

the PE group of the University of Torino.

134

Bibliography

[1] J. R. Agre and S. K. Tripathi. Approximate solution to multichain queueing networks with state dependent

service rates.Performance Evaluation, 5(1):45–55, February 1985.

[2] M. Ajmone Marsan, G. Balbo, G. Chiola, and G. Conte. Generalized stochastic Petri nets revisited: Ran-

dom switches and priorities. InProc. Int. Workshop on Petri Nets and Performance Models, pages 44–53,

Madison, WI, USA, August 1987. IEEE-CS Press.

[3] M. Ajmone Marsan, G. Balbo, and G. Conte. A class of generalized stochastic Petri nets for the performance

analysis of multiprocessor systems.ACM Transactions on Computer Systems, 2(1), May 1984.

[4] M. Ajmone Marsan, G. Balbo, G. Conte, S. Donatelli, and G. Franceschinis.Modelling with Generalized

Stochastic Petri Nets. John Wiley, 1995.

[5] M. Ajmone Marsan and G. Chiola. On Petri nets with deterministic and exponentially distributed firing

times. InProc. 7th European Workshop on Application and Theory of Petri Nets, pages 151–165, Oxford,

England, June 1986. reprinted in G. Rozenberg, ed., Advances on Petri Nets ’87, LNCS 266, pp.132–145,

Springer Verlag, 1987.

[6] M. Ajmone Marsan, S. Donatelli, and F. Neri. GSPN models of Markovian multiserver multiqueue systems.

Performance Evaluation, 11(4):227–240, 1990.

[7] G. Balbo and G. Chiola. Stochastic Petri net simulation. InProc. 1989 Winter Simulation Conference,

Washington D.C., December 1989.

[8] G. Balbo, G. Chiola, G. Franceschinis, and G. Molinar Roet. On the efficient construction of the tangible

reachability graph of generalized stochastic Petri nets. InProc. Int. Workshop on Petri Nets and Performance

Models, Madison, WI, USA, August 1987. IEEE-CS Press.

[9] W.C. Cheng. Tgif’s Home Page.http://bourbon.cs.umd.edu:8001/tgif/.

[10] G. Chiola. A software package for the analysis of generalized stochastic Petri net models. InProc. Int.

Workshop on Timed Petri Nets, Torino, Italy, July 1985. IEEE-CS Press.

135

http://bourbon.cs.umd.edu:8001/tgif/

[11] G. Chiola. A graphical Petri net tool for performance analysis. InProc. 3rd Int. Workshop on Modeling

Techniques and Performance Evaluation, Paris, France, March 1987. AFCET.

[12] G. Chiola. Structural analysis for generalized stochastic Petri nets: Some results and prospects. InProc.8th

European Workshop on Application and Theory of Petri Nets, pages 317–332, Zaragoza, Spain, June 1987.

[13] G. Chiola. Compiling techniques for the analysis of stochastic Petri nets. In R. Puigjaner and D. Potier,

editors,Proc.4th Int. Conf. Modeling Techniques and Tools for Computer Performance Evaluation, Palma

de Mallorca, Spain, September 1988. Plenum Press, New York.

[14] G. Chiola. GreatSPN 1.5 software architecture. InProc.5th Int. Conf. Modeling Techniques and Tools for

Computer Performance Evaluation, Torino, Italy, February 1991.

[15] G. Chiola, M. Ajmone Marsan, G. Balbo, and G. Conte. Generalized Stochastic Petri Nets: A Definition at

the Net Level and its Implications.IEEE Transactions on Software Engineering, 19(2):89–107, February

1993.

[16] G. Chiola, J. Campos, J.M. Colom, M. Silva, and C. Anglano. Operational analysis of timed Petri nets and

applications to the computation of performance bounds. InProc. 5th Intern. Workshop on Petri Nets and

Performance Models, pages 128–137, Toulouse, France, October 1993. IEEE-CS Society Press.

[17] G. Chiola and S. Donatelli. A framework for studying sets of related Petri net models. Technical Report

90/51, Universit́e Paris 6, 4 Place Jussieu, 75252 Paris Cedex 05, France, July 1990. IBP Tech. Report.

[18] G. Chiola, S. Donatelli, and G. Franceschinis. GSPN versus SPN: what is the actual role of immediate

transitions? InProc. 4th Intern. Workshop on Petri Nets and Performance Models, pages 20–31, Melbourne,

Australia, December 1991. IEEE-CS Press.

[19] G. Chiola, C. Dutheillet, G. Franceschinis, and S. Haddad. On well-formed coloured nets and their sym-

bolic reachability graph. InProc. 11th International Conference on Application and Theory of Petri Nets,

Paris, France, June 1990. Reprinted inHigh-Level Petri Nets. Theory and Application, K. Jensen and G.

Rozenberg (editors), Springer Verlag, 1991.

[20] G. Chiola, C. Dutheillet, G. Franceschinis, and S. Haddad. Stochastic well-formed coloured nets and

multiprocessor modelling applications. In K. Jensen and G. Rozenberg, editors,High-Level Petri Nets.

Theory and Application. Springer Verlag, 1991.

[21] G. Chiola, C. Dutheillet, G. Franceschinis, and S. Haddad. Stochastic well-formed coloured nets for sym-

metric modelling applications.IEEE Transactions on Computers, 42(11):1343–1360, November 1993.

136

[22] G. Chiola and A. Ferscha. Distributed simulation of Petri nets.Parallel and Distributed Technology,

1(3):33–50, August 1993.

[23] G. Chiola, R. Gaeta, and M. Ribaudo. Designing an efficient tool for Stochastic Well-Formed Coloured Petri

Nets. In R. Pooley and J. Hillston, editors,Proc.6th Int. Conference on Modelling Techniques and Tools for

Computer Performance Evaluation, pages 391–395, Edinburg, UK, September 1992. Antony Rowe Ltd.

[24] S. Donatelli. Superposed generalized stochastic Petri nets: definition and efficient solution. InProc. 15th

International Conference on Application and Theory of Petri Nets, Zaragoza, Spain, June 1994.

[25] Gnuplot central.http://www.gnuplot.org.

[26] W.H. Harrod and R.J. Plemmons. Comparison of Some Direct Methods for Computing Stationary Distri-

butions of Markov Chains.SIAM Journal Sci. Stat. Comput., 5, June 1984.

[27] S.S. Lavenberg. Statistical Analysis of Simulation Outputs. Technical report, IBM Research Report, 1980.

Yorktown Heights, NY.

[28] lp solve: library for solving linear programming problems. http://www.cpan.org/modules/by-

category/11String Lang Text Proc/Number/WIMV/.

[29] J. Martinez and M. Silva. A simple and fast algorithm to obtain all invariants of a generalized Petri net.

In Proc. 2nd European Workshop on Application and Theory of Petri Nets, Bad Honnef, West Germany,

September 1981. Springer Verlag.

[30] M. K. Molloy. Performance analysis using stochastic Petri nets.IEEE Transaction on Computers,

31(9):913–917, September 1982.

[31] M.K. Molloy. On the Integration of Delay and Throughput Measures in Distributed Processing Models.

PhD thesis, UCLA, Los Angeles, CA, 1981. Ph.D. Thesis.

[32] M.K. Molloy. Fast bounds for stochastic Petri nets. InProc. Int. Workshop on Timed Petri Nets, Torino,

Italy, July 1985. IEEE-CS Press.

[33] M.K. Molloy. Balanced stochastic Petri nets. Technical report, Carnagie-Mellon University, Pittsburgh, PA,

USA, November 1986. Dept. of Computer Science Report.

[34] C.A. Petri. Communication with automata. Technical Report RADC-TR-65-377, Rome Air Dev. Center,

New York, NY, 1966. Tech. Rep. RADC-TR-65-377.

[35] M. Silva. Las Redes de Petri en la Automatica y la Informatica. Ed. AC, Madrid, Spain, 1985. in Spanish.

137

http://www.gnuplot.org
http://www.cpan.org/modules/by-category/11protect unhbox voidb@x kern .06emvbox {hrule width.3em}Stringprotect unhbox voidb@x kern .06emvbox {hrule width.3em}Langprotect unhbox voidb@x kern .06emvbox {hrule width.3em}Textprotect unhbox voidb@x kern .06emvbox {hrule width.3em}Proc/Number/WIMV/
http://www.cpan.org/modules/by-category/11protect unhbox voidb@x kern .06emvbox {hrule width.3em}Stringprotect unhbox voidb@x kern .06emvbox {hrule width.3em}Langprotect unhbox voidb@x kern .06emvbox {hrule width.3em}Textprotect unhbox voidb@x kern .06emvbox {hrule width.3em}Proc/Number/WIMV/

[36] K. Varpaaniemi, J. Halme, K. Hiekkanen, and T. Pyssysalo. PROD reference manual. Technical Report

Series B, number 13, Helsinki University of Technology, August 1995.http://www.tcs.hut.fi/prod/.

138

http://www.tcs.hut.fi/prod/

	Informal introduction to the formalisms
	History of GreatSPN
	Petri Nets
	Stochastic Petri Nets
	Generalized Stochastic Petri Nets
	A GSPN example

	Stochastic Well Formed Nets
	A SWN example

	Getting started
	The Readers--Writers GSPN model
	Starting GreatSPN
	Creating the Readers--Writers model
	Saving and printing the model
	Analysis of the Readers-Writers model
	Colored version of the Readers-Writers model
	Analysis of the SWN Readers-Writers model

	GUI in depth
	The Menu Bar
	File Menu
	Edit Menu
	View Menu
	Grid Menu
	Zoom Menu
	Rescale Menu
	GSPN Menu
	SWN Menu
	E-GSPN Menu
	Help Menu

	The Object bar
	Places
	Transitions
	Arcs
	Marking parameters
	Rate parameters
	Result definitions
	Changing place/transition tags
	Colour definition

	Solvers
	Structural analyzers
	Invariants
	Modules
	Result files structure

	Minimal deadlocks and traps
	Module
	Result files structure

	Implicit places
	Module
	Result file structure

	ECS-Confusion-ME-SC-CC
	Module
	Result files structure

	Structural boundedness
	Module
	Result files structure

	Performance bounds solver
	Modules
	Result file structure

	Analytic solvers
	GSPN solvers
	Reachability Graph generator
	TRG structure analyzer
	Markov Chain generator
	Steady State solver
	Transient solver

	SWN solvers

	Simulators
	GSPN simulation
	Modules
	Result file structure

	SWN simulation
	Modules
	Result file structure

	Extended SWN features
	Transient analysis of SWN models
	Simulation of SWN models with GEN transitions
	Rescheduling/descheduling policies
	Firing time distributions of the GEN transitions

	Refined perfomance results
	Mean number of tokens in a place
	Transition throughput
	Probability

	The result .stat file
	Number of batches in a simulation run
	Inclusion of ``reset'' transitions

	Multiple experiments

	Compositionality in GreatSPN
	Composition of two labelled SWNs
	The algebra package
	Composition module
	Remove module

	Export to other tools
	Model checking: PROD translator
	Installation
	Use of the PROD translator
	Nets with inhibitor arcs
	SWN nets with symbolic markings
	The script ExploreRG
	The pre-defined macros

	Kronecker solutions: APNN translator
	Tgif translator
	Fluid nets translator
	Refinement of SWN performance indexes: PERFSWN

	Net description files
	Format of the .net file
	Format of the .def file
	Grammars
	Extended SWN grammar

	Known bugs and Warnings
	Warnings

	Installation
	System requirements for compiling the tool
	Compiling and installing the tool
	Setting the environment

