

Revision using version: 1.5 with iOS 6.1

User Guide for iPhone & iPod Touch

Introduction iPhone 4 x iPhone 5 Main Menu **Data Files** Importing from Other Apps Unit Systems Well Configuration Main View **Circulation Options** Timer / Pause Set/Reset Alarms **Graph Options Drilling Simulation** Restart Send Screenshot by Email About

Panel with the following parameters: pump pressure, mud pump speed, strokes totalizer, flow rate, mud weight, bit depth, rotary speed, hookload and weight on the bit;
Instruments with pointers to the parameters: pump pressure, hookload, weight on the bit and rotary torque;
Geolograph with parameters: drillpipe pressure, choke pressure, active volume, hookload, weight on the bit, length drilled, flow in, flow out, percent of flow, rotary torque, rotary speed and drilling rate.

Menu

- 4) Panel with alarms: pump failure, vol high, flow high, bop failure, bop status and choke status;
- 5) Toolbar with buttons: Well Config, Circulation Options, Set Alarms, Graph Limits, X-times faster, Pause/Continue, Restart, Send by email, about;
- 6) set drillstring with drillpipe1, drillpipe2, heavy-weight, drillcollar1 and drillcollar2;
- 7) Select floating rig or land rig;
- 8) Select unit systems: International, field1 (imperial) and field2 (mix);
- 9) set fluid parameters: mud weight, plastic viscosity, yield point and initial gel;
- 10) Select rheological models: Power or Bingham;
- 11) Set gradients: absorption, fracture and temperature;
- 12) Set jet nozzles or fixed TFA;
- 13) Set choke parameters and BOP test pressure;
- 14) Set Surface circulation volume;
- 15) Set surface circulation equipments (mud pump and lines);
- 16) Set four formations to drilling (height, pore gradient, fluid density and sof/hard);
- 17) Save configuration to data files and share by iCloud;
- 18) Select circulation options: drillpipe -> Riser, Kill -> Riser, and Close BOP;
- 19) Set alarms: pit gain, flow rate out, max pump pressure and max pump power;
- 20) Register the kill line losses and pump pressure at the kill speed;
- 21) show the well with drillstring and the drillbit on rotating;
- 22) Show schematic of well with drillstring, kick and neutral point (%);
- 23) Adjust pump speed, weight on the bit and rotary speed to drilling until kick detection;
- 24) Shut-in the well using hard method;
- 25) Register shut-in drillpipe pressure (SIDPP) and choke pressure (SICP) and gain volume;
- 26) behavior of the kick: keeping the well closed and keeping the well opened;
- 27) Simulations: Drilling, Kick detection, Shut-In, Underground Blowout at shoe and blowout with failure of bop;
- 28) Capacities and Volumes calculations;
- 29) Hydrostatic and critical pressures calculations;
- 30) Hydraulics calculations;

Note: This Drilling Simulator NOT allows to control the well after the kick detection and shut-in. The simulation ends after the simulations of underground blowout and blowout to surface. Use other apps for:

iPhone 4

iPhone 5

iPhone 4

iPhone 5

Menu

Hydraulic Choke & Bop

Data Files Interface iCloud Settings Data Files on iCloud Creating a New Data File Saving the New Data File **Default Surface Stack** Default Subsea Stack Opening a Data File Saving a Data File Removing a Data File Sending a Data File by Email

<u>Menu</u>

It's recommended first create a data file for work with this app => The "Save" button is enabled on views. But this is unnecessary because this app uses data in the ram memory. The data can be saved on any time.

First, use the Local Option for create data files for better performance and later to save it on iCloud.

Check iCloud Configuration: **Settings => iCloud**

Documents & Data must be ON

If iCloud is available on iPhone:

After create any data file in iCloud: Settings => Storage & Backup => Manage Storage

iPod 奈	23:00		9 62)	
Storage & Backu	Manag	e Storag	e	
Documents	& Data	219.5 N	ИΒ	
🤗 Keynot	e	140.5 MB	>	
💋 Pages		31.2 MB	>	
Numbe	rs	20.3 MB	>	
Well Co	ontrol Sim	. 12.7 MB	>	
iPhoto		8 MB	>	
Drilling	Simulator	3.5 MB	>	>
i Previev	v	1.4 MB	>	
Directio	onal Survey	1.1 MB	>	
Eeak O	ff Test Si	555.1 KB	>	
Well Co	ontrol	125.6 KB	>	
8,3 GB avail	able of 15,0 G	B on iCloud		

This application needs a complete well to work. For create a new Data File, select a default well on buttons "**Default Surface**" or "**Default Subsea**"

File extension:

This application uses the file extension *.dsdf (Drilling Simulator Data File). The user does not need to edit this extension.

The data file is saved with the default name (ex. **Default Subsea Stack**) on **iCloud** or **On My Device** according to the selected option.

Save the data file with other name. Input the file name and Tap on "**Save**" button

The new data file is saved on **iCloud** or **On Ny Device** according to the selected option.

Well Configuration **Drill String Drill Bit Bit TFA** Back Liner Weight Email Back By Email Confi... Vertical Length Directional Length O.D. I.D. 0.3313 Casing ID Fixed 8.7550 in Nozzles TFA sq.in in in m 2985.56 5.0000 4.2760 DP1 0.9500 8.5000 in (1/32) in Hole size Coeff cm 5.0000 4.2760 DP2 0.00 2296.59 ft Csg shoe 9.5250 Qty. Size 12 1 328.08 5.0000 3.0000 HW 3937.01 ft Well depth 6.2500 2.8125 459.32 DC1 Length Volume * Cap Int 9.5250 6.7500 2.8125 164.04 1 12 DC2 bbl/ft ft bbl 2296.59 0.0745 156.03 Casing 2297 Cas Liner Hole Steel Riser Int Liner 2297 0.0702 1640.42 85.65 Hole 1 9.5250 12 Cap Length Volume 241.68 bbl/ft w/o steel w/ steel ft bbl 2986 Total 0.0459 688.98 31.63 DP1 3314 Surface to Bit 630 2986 0.0459 DP2 Strokes w/ 0.0000 660 Bit to Shoe 328.08 0.0459 15.06 0 HW 0 MP 2 MP 1 3314 3773 Bit to Surface 1817 0.0322 459.32 14.81 DC1 3937 3937 164.04 4.25 DC2 0.0259 3773 **Drill String** Bit Grad Mud Forms Total 1640.42 65.75 937 101

Note: screenshots with iPhone 4

Mud Pumps		Surface Connections			Elevation System	
Configura Mud P	ump 1 Pumps 2/3	Configuration SU	face	Email	Configuration Elevation Email	
Liner diameter	6.5000 in	Connections	Length ft	I.D in	Drilling Elevation System Weight	
Max Pressure	4200 psi	Standpipe	49.21	4.0000	FO king	
Piston Length	10.00 in	Mud Hose	59.06	3.0000	50 kips	
Piston diameter	2.0000 in		6.6	2,0000		
Power	1600 hp	Swiver / TD	0.0	3.0000	Drill String Nominal Weight 129 55 kins	
Efficiency	97.0 %	Kelly / Stands	42.7	4.0000	w/ Buoyancy 110.56 kips	
Туре	plex Duplex	Volume *	2.00	bbl	Hook Lood 160 56 kins	
Discharge volume 0.0996 bbl/stk		* Volume included on dri	II string strokes	calculations.	HOOK LOAU 100.50 Kips	
(true pump output)	4.1827 gal/stk					
Maximum Speed	120 spm					
	•					

14

Drill String

Liner

Well Configuration

Note: screenshots with iPhone 5

Mud Pumps

Surface Connections

Elevation System

Mud Pump 1 Surface Elevation Email Configuration Pumps 2/3 Configuration Configura... Length I.D Liner diameter 6.5000 in Connections **Drilling Elevation System Weight** in ft Max Pressure psi 4200 Standpipe 4.0000 49.21 120 kips **Piston Length** 12.00 in Mud Hose 59.06 3.0000 in 2.0000 Piston diameter Swivel / TD 6.6 3.0000 1300 hp Power **Drill String Nominal Weight** 257.05 kips Kelly / Stands 4.0000 42.7 97.0 % w/ Buoyancy 219.38 kips Efficiency 2.00 bbl Volume * Туре Triplex Duplex kips Hook Load 339.38 * Volume included on drill string strokes calculations. 0.1195 Discharge volume bbl/stk (true pump output) gal/stk 5.0192 Maximum Speed 120 spm

17

Email

iCloud On My Device

When TAP on "**Open**" button, the data that is on the Data File Highlighted on Wheel is loaded in the RAM memory and can be saved with other file name.

Method to transfer data file between iCloud and Local:

The user can open a data file on **Local** (**On My Device**) and after save it on iCloud or the opposite.

iCloud Message:

On the first time that the user taps on "**Open**" button, the download of the data file is started from the iCloud to a local address with internal access only. When the download is completed, it's possible open the data file.

The user must tap again on the "**Open**" button for checking. When OK, the data file is loaded in RAM memory and shown on the well schematic.

When TAP on "**Save**" button the data that are loaded in the RAM memory is saved to the data file named with the content of the File Name TextBox.

The data file is created in **iCloud** or **Local (On My Device)** according to the selected option.

Recommendation

Save your exercise with different filenames at the points of interest for analyzes later.

When the status is "No File": "#", the data loaded not been saved but remain in ram memory.

No File: #

Menu

Select the data file and Tap on "**Remove**" button.

Configuration	iCloud	On My Device				
Import f	rom other App	on iCloud				
Default Subsea	Kick 3	Save				
Default Sub	sea Kick	1				
Default Sub	sea Kick	2				
Default Sub	Default Subsea Kick 3					
Default Subsea Stack						
Local: Default Subs	ea Kick 3.dsd	K				
Remove	Email	Open				
Default Surface	Defa	ault Subsea				

Attention:

Menu

When a data file is removed, the data is lost.

Select the data file and TAP on "Email" button.

In the email view, fill the fields of the email header and edit the email text if necessary. Tap on "**Send**" or "**Cancel**" button.

In this time, the follow apps can to share the same well data and also some operational parameters.

Notes:

- The well data is common for the 6 apps (Well Control Methods, Kick Tolerance, Drilling Hydraulics, Drilling Simulator, Well Control Simulator and Leak-Off Test Simulator).
- The Drilling Simulator and Well Control Simulator have the same parameters. They have some exclusive parameters (drill string pipe weight, etc).
- The Drilling Hydraulics has exclusively the parameters: mup pumps #3 and #4 and drilling motor.
- The Well Control Worksheets only import data from other apps to fill the kill sheets.

In this example, we will import data from Drilling Hydraulics App. Tap on "Import from Other Apps on iCloud" button.

The apps on the User iCloud are listed on the data wheel. Select the App to list the data files.

Pod 穼	08:17	0 🖿
Back	Drilling Simulator	
	Apps on iCloud	
Drilli	ng Hydraulics	
Kick	Tolerance	1
Leak	-Off Test Simulator	
Well	Control Methods	+
Well	Control Simulator	
	Select App	

Select the App to list the data files. Move the wheel up/down to select the data file and Tap on "Import" button.

iPod ᅙ	08:33	0 52
Back	Drilling Simulator	
	Apps on iCloud	
Drilli	ng Hydraulics	
Kick	Tolerance	
Leak	-Off Test Simulator	
(Select App	

After to import, the data file is saved with the same filename (*.dsdf) on iCloud or On My Device according to the selected option.

Tap on "Show Apps on iCloud" to select other app or Tap on "Import from Other Apps on iCloud" button to close the popup view

Select the 'Unit System' option:

Back	Metric	SI	Imperial	Mix
Plastic Visc	mPa.s	mPa.s	cP	сР
Yield Point	kg/m2	N/m2	lb/100ft2	lb/100ft2
Power	kw	kw	hp	hp
Force	kgf	daN	lbf	lbf
Jet Velocity	m/s	m/s	ft/s	ft/s
Weight Ind	ton	ton	kips	ton
Pipe Weight	kg/m	kg/m	lb/ft	lb/ft

On Main View, tap on "Well" button on toolbar to edit the Well Configuration.

Home Configu	uration			
	#			
Surface Stack	Subsea Stack			
Data Files				
Unit System				
Well Configuration				
Mud Pumps 1, 2 and 3				
Surface Connections				
Elevation System				
Hydraulic Choke	& Bop			

Well Configuration Interface Well Types: Vertical x Directional Well with Liner Stack Types: Surface x Subsea **Drill String Capacities & Volumes** Drill Bit Gradients Drilling Fluid (Mud) Mud Volume Surface Circulation Volume Formations to Drill Mud Pumps Surface Connections **Elevation System** Hydraulics Choke and BOP

<u>Menu</u>

On Main View, tap on "Well Configuration" option to edit the Well Configuration.

<u>Menu</u>

30

Stack Types: Surface x Subsea

Menu

Menu

Section Internal Volume

Length

DP1

DP2

HW

DC1

DC2

Int

DP1

DP2

HW

DC1

DC2

Total

336

5906

Z546

Length

4265.09

4593.18

328.08

492.13

164.04

Steel Riser

Cap

bbl/ft

0.0408

0.0459

0.0459

0.0322

0.0259

Drill String Weight

w/ Buoyancy

Hook Load

Nominal

Weight

O.D.

in

5.5000

5.0000

5.0000

6.2500

6.7500

ft

1312.34

328.08

492.13

164.04

2296.59

257.05

219.38

339.38

well depth: 9842.52

Length Volume

bbl

60.24

15.06

15.87

4.25

95.42

kips

kips

kips

Email

I.D.

in

Internal Volume (just volume of fluid) Calculated without the steel volume (drill string)

Total Internal Volume (volume of fluid + volume of steel)

				Well bore ← ID
strokes	Cap Int bbl/ft	Length ft	Volume * bbl	
CL/KL	0.0087	3362.86	29.40	
Riser	0.3415	3362.86	1148.55	
Casing	0.1497	2214.57	331.60	
Liner	0.0745	1968.50	146.58	
Hole	0.0702	2296.59	161.20	
Total	w/o stee	w/ steel	846.74	

strokes

cap/vol	Strokes w/	MP	1	MP 2	2
	Surface to I	Bit	1	557	
	Bit to Shoe		7	'98	
	Riser Annu	lar	8	784	
1	Bit to BOP		3	911	
	Choke Line		2	46	
	Bit to Choke	e	4	157	

Strokes with Mud Pump #1

Strokes with Mud Pump #2

Tap on "Nozzles" option to edit the coefficient and to set until 4 types of nozzles x until 10 units per type to calculate the TFA

Bit TFA Back By Email 0.3313 Nozzles Fixed TFA sq.in 0.9500 (1/32) in Coefficient Coeff cm Qty. Size 9.5250 12 9.5250 12 9.5250 12 1 0.0000 0 0

Select "**Fixed**" option to edit the TFA = Total Flow Area

Email

301.1 K

277.1 K

°C

°F

Κ

R

54.4

129.9

327.5

589.6

Back Grad. Email Temperature	Grad. Temp Gradient
ρ _{absorption} 12.0 ppg 0.6234 psi/ft	Temp grad 1.400 F/100ft
ρ _{fracture} 12.0 ppg 0.6234 psi/ft	Surf Temp 28.0 °C 82.4 °F
Porosity 35.0 %	Sea Temp 4.0 °C 39.2 °F
Permeability 300 md	
	Bottom Hole Temperature 5
	12
Shoe Depth Hydrost. 1145.3 psi	32
Absorption Pressure 1431.6 psi	58
Fracture Pressure 1431.6 psi	

For use with this "Drilling Simulator" app, normally:

Absorption Gradient = Fracture Gradient

This parameter is used just for compatibility with the apps "Well Control Simulator" and "LOT Simulator".

This app works just with the parameters used in the hydraulics calculations:

Mud Weight, Plastic Viscosity, Yield Point and Initial Gel

Edit the Active Pit Volume. This parameter is shown on graph on Main View.

The Choke parameters are used just for compatibility with the app "Well Control Simulator".

Note: This simulator does not allows circulation through the choke.

Back	Mud Volur	ne ву	Email
Active F	Pit Volume	500.00	bbl
Surface	Circulation Vo	olume:	
by flowlir	ne @ 100 spm	30.00	bbl
by choke	@ 40 spm	7.00	bbl
CONTRACTOR OF STREET, STRE	The second s	other day and the same line of	No. of Concession, Name

About the Surface Circulation Volume (SCV):

Surface Circulation Volume = Volume of the flow line, pipes, etc when circulating at the surface.

When occur a kick on the drilling, the driller stops the mud pump and the "Surface Circulation Volume" return to tank.

The calculation of the real volume of the kick = Static Vol. after shut-in the well - Dynamic Volume on drilling - Surface Circulation Volume.

SPM = 0 (mud pump stopped) Active Volume = 100 bbl SCV = 0 bbl

SPM = 100 Dynamic Volume = 70 bbl SCV = 30 bbl

Surface Circulation Volume: by flowline @ 100 spm 30.00 bbl

Example: Static Volume (mud pump stopped) = 100 bbl Drilling with mud pump @ 100 spm => Dynamic Volume = 70 bbl

- Surface Circulation Volume @ 100 spm = 30 bbl
- Shut-in the well => pit volume = 110 bbl
- Kick Volume = 110 70 30 = 10 bbl

SPM = 0 Static Volume = 100 bbl SCV = 0 bbl

SPM = 80 Dynamic Volume = 76 bbl SCV = 24 bbl

Set 4 parameters for each formation:

- Height
- Pore Equivalent Weight
- Soft <--> Hard to drill
- Fluid Density in the formation

Note:

Fluid Density minimum = 8.50 ppg to the formations 1, 2 and 3

Only to the formation #4:

Fluid Density >= 1.0 ppg

Use mud pumps 1 and 2 to align to drill string

Mud Pump #3:

The same parameters of the mud pump #2. It is used to **Booster Line** of the riser (Subsea only).

<u>Menu</u>

Edit the length and ID parameters for Standpipe, Mud Hose, Swivel/TD and Kelly/Stands

Edit the parameter "Elevation System Weight". The "Drill string Nominal Weight" is calculated with the drill string parameters.

Hook Load = "Drill string nominal weight with buoyancy" + "Elevation System Weight"

The Choke parameters are used just for compatibility with the app "Well Control Simulator".

Note: This simulator does not allows circulation through the choke.

Tap on "Options" button on toolbar to select a circulation option:

1) Drill pipe -> Flow line ("Riser" on subsea): circulation option for drilling

- 2) Kill Line -> Flow Line ("Riser" on subsea): circulation option for pressure losses in kill / choke lines
- 3) Close BOP: No Circulation: option to shut-in the well after to detect kick and to wait stabilization of the pressures (SIDPP and SICP)

Note: This simulator does not allows circulation through the choke.

It is possible to use two mud pumps in parallel (MP #1 and MP #2)

The MP #3 is used to **Booster Line** of the riser (Subsea only) during the drilling to to increase the flow in the riser.

Tap on "Options" button on toolbar to select a circulation option:

1) Drill pipe -> Flow line ("Riser" on subsea): circulation option for drilling

2) Kill Line -> Flow Line ("Riser" on subsea): circulation option for pressure losses in kill / choke lines

3) Close BOP: No Circulation: option to shut-in the well after to detect kick and to wait the stabilization of the pressures (SIDPP and SICP)

Note: This simulator does not allows circulation through the choke.

To register the pressure losses in kill / choke lines (subsea only), normally is circulated through the kill line returning by riser (flow line) with the mud pump in the kill rate speed.

Kill Pump Pressure => Pressure Loss in Choke line (normally this lines have the same ID) and the pressure losses in the riser are close to zero.

Tap on "Options" button on toolbar to select a circulation option:

- 1) Drill pipe -> Flow line ("Riser" on subsea): circulation option for drilling
- 2) Kill Line -> Flow Line ("Riser" on subsea): circulation option for pressure losses in kill / choke lines

3) Close BOP: No Circulation: option to shut-in the well after to detect kick and to wait the stabilization of the pressures (SIDPP and SICP)

Note: This simulator does not allows circulation through the choke.

SPM

3363

1000

4000

2710

Always shows the pump pressure of

the mud pumps #1 and #2 in parallel.

Booster Line (Mud Pump #3):

The pump pressure and pressure losses in booster line are not shown in this application.

50

Tap on "Timer" button to Pause and Set X times

Tap on "Set" button to set alarms for kick detection and to reset failure alarms like failure on mud pumps, bop or reset a kick

Reset Kick

Tap on "Set" button to set alarms for kick detection and to reset failure alarms like failure on mud pumps, bop or reset a kick

reset failure on mud pump #1

Tap on "Options" button

on toolbar and tap on "Graph Settings" button to set the maximum values for the geolograph

The graph shows 10 min on graph.

With iPhone on horizontal position, only iPhone 5 / iPod Touch 5 th gen.

Graph Historical:

This app works with the last 120 min of simulation. After 120 min, occurs a shift from begin.

Reset Graph:

Tap on "Reset Graph" button to reset just the graph.

Instrument Ranges:

Set "Maximum Manometer Pressure" and "Maximum value on Weight Indicator"

timer: 14 min

The "Shift to End" graph time option:

For a interval > 10 min of simulation, select time on Graph to "from Begin" to 10, 20, 40, 60 or 120 min

Menu

56

Set the instruments scale for **Pump Pressure Manometer** and **Weight Indicator**

Example:

Manometer: 0 to 3000 psi

Weight Indicator: 0 to 400 kips

Ins	Instrument Ranges						
	Max Manometer Pressure, psi						
	1000	2000	3000	5000	10000		
	Max on Weight Indicator, kips						
	200	400		800	1200		

Example:

Manometer: 0 to 5000 psi

Weight Indicator: 0 to 800 kips

Menu

Moving the Drill String Auto Driller Hydraulics and Neutral Line **Kick Detection** Shut-in the Well Stabilization of the Pressures Save on iCloud Importing by WC Simulator for iPhone Importing by WC Simulator for iPad The Driller's Method (on iPhone) The Wait and Weight Method (on iPhone) The Driller's Method (on iPad) The Wait and Weight Method (on iPad) Fracture on Shoe Depth **Underground Blowout** Blowout

Use the button [+] to move down the drill string. When the drill bit reaches on the bottom hole, the WOB (weight on bit) increases.

Use the button [-] to decrement the WOB. When WOB = 0, the drill string is moved to up (off the bottom)

Auto Driller:

Tap on "**auto driller**" button to activate or desactivate it.

Without:

It is necessary to tap on buttons - / + to maintain the **WOB** (weight on bit).

With:

The **WOB** (weight on bit) is constant. It changes automatically to Off if to tap on the buttons - / + Tap on "Hyd" button to show the Hydraulics View.

- Mud Pumps Informations
- Bottoms-up time
- Drill bit parameters
- System friction losses
- Hydrostatics and Critical Pressure on choke and BOP
- ECD on shoe depth and bottom hole
- Show critical density on shoe (fracture) and the bottom (influx)

Back		Hydra	ulics		By Email		
Pump Pr	ess 297	7 <mark>8.9</mark> psi	Botto -up ti	ms 1 me	29 min		
MP 1	100.0	spm Flo	ow 1 🚦	501.9	gpm		
MP 2	0.0	spm Flo	ow 2	0.0	gpm		
MP 3	0.0	spm Flo	ow 3	0.0	gpm		
Drill Bit	Flow	501.9	gpm	Surfac	ce		
Nozzles	Loss	2029.1	psi	27	7.4 psi		
Hydrauli	c Power	10.5	hp/ sa in	Drill st	tring		
% Nozzles Loss		68.1	%	Annul	7.2 psi		
Jet Velo	city	486.1	ft/s	11	5.2 psi		
Impact F	orce	1208.6	lbf	Total	Friction		
Nozzles	TFA	0.3313	sq.in	94	9.8 psi		
Drill string Hydrost 4908.5 psi BOP 1683.0 psi							
Choke F	ressure	5.9	psi 🛔	Max 89	92.3 psi		
	TVD ft	Hydrost psi	Frictior psi	n ECD ppg	Critical ppg		
Shoe	7545.9	3763.2	54.5	9.74	12.00		
Bottom	9842.5	4908.5	115.2	9.83	9.50		

- x 100

WOB -> length

BHA -> total length

Neutral Line = •

The following kick indications can be observed in the graph during the drilling:

- 1- Decrease in the pump pressure
- 2- Increase in the pit volume (active tank)
- 3- Increase in the percent of flow
- 4- Increase in the rotary torque
- 5- Increase in the drilling rate
- 6- Increase in the flow out

Menu

Visual indication with iPhone in horizontal position (visible in simulation only)

Check for the behavoir of curves of DP pressure and Choke Pressure on graph. On hydraulics view ECD = Critical Density on Bottom:

Back	ł	lydra	aulics	6	By B	Email
Pump Pre	ess 587	7.1 ps	i Bot -up	toms time		min
MP 1	0.0	spm Fl	low 1	0.0	gpn	n
MP 2	0.0	spm Fl	ow 2	0.0	gpn	n
MP 3	0.0	spm Fl	low 3	0.0	gpr	n
Drill Bit	Flow	0.0	gpm	Sur	face	
Nozzles	Loss	0.0	psi		0.0	psi
Hydrauli	c Power	0.0	hp/ sa.in	Drill	string	g
% Nozzl	es Loss	0.0	%	Ann	ulus	psi
Jet Velo	city	0.0	ft/s		0.0	psi
Impact F	orce	0.0	lbf	Tota	al Fric	tion
Nozzles	TFA	0.3313	3 sq.in		0.0	psi
Drill strin	g Hydros	st 4908	8.5 psi	BOP	2653.	0 psi
Choke P	ressure	975.	.9 psi	Max	1136.	8 psi
	TVD	Hvdros	t Frictio	on EC	D CI	ritical
	ft	psi	psi	pp	g	ppg
Shoe	7545.9	3763.2	0.0	120	10 1	2 50
Bottom	9842.5	4519.6	0.0	10.7	75 1	0.75
98. (1990) - Alexandra (1990) Alexandra (1990) - Alexandra (1990)						
		F	CD – 0	Critica	l Dei	nsitv d

Save after the stabilization of the pressures on iCloud to importing by the app "Well Control Simulation" for control.

Config 🛃 Set Hyd 📝 🧿	C
Home Configuration Save to File	DS
Surface Stack Subsea Stack	
Data Files	
Unit System	
Well Configuration	iClo
Mud Pumps 1, 2 and 3	
Surface Connections	
Elevation System	
Hydraulic Choke & Bop	

<u>Menu</u>

Open the "Well Control Simulator" app to Import from "Drilling Simulator" to apply a Method to control.

Menu

Move to "Drilling Simulator" and Tap on "Select App" button. Select the data file to import.

Open the "Well Control Simulator" app to Import from "Drilling Simulator" to apply a Method to control.

Example after importing from "Drilling Simulator".

<u>Menu</u>

Example of the Driller's method on "Well Control Simulator" app. Check "Well Control Methods".

Example of the Driller's method on "Well Control Simulator" app. Check "Well Control Methods".

Example of the Driller's method on "Well Control Simulator" app. Check "Well Control Methods" or "Well Control Worksheets" apps.

The Wait and Weight method on "Well Control Simulator" app. Check "Well Control Methods" or "Well Control Worksheets" apps.

Check for the **choke pressure** to reach the **maximum choke pressure**. On hydraulics view, ECD = Critical Density on Shoe Depth:

Menu

Back	ŀ	lydra	ulic	s	By	/ Email	
Pump Press 602.6 psi Bottoms - min							
MP 1	0.0	spm Flo	ow 1	0.0	g	pm	
MP 2	0.0	spm Flo	ow 2	0.0	g	pm	
MP 3	0.0	spm Flo	ow 3	0.0	g	pm	
Drill Bit	Flow	0.0	gpm	Sur	face)	
Nozzles Loss		0.0 psi 0.0 ^{hp/} sq.in 0.0 % 0.0 ft/s			0.0	psi	
Hydraulic Power				Dril	Drill string 0.0 psi Annulus 0.0 psi		
% Nozzles Loss				Anr			
Jet Velocity							
Impact Force		0.0 lbf Tot		al Fr	riction		
Nozzles TFA		0.3313	3 sq.in		0.0	psi	
Drill string Hydroet 4008 5 pci BOP 2663.1 psi							
Choke Pressure		986.	1 psi	Max	987	7.8 psi	
	TVD ft	Hydrost psi	Fricti psi	on EC	CD (Critical ppg	
Shoe	7545.9	3763.2	0.0	12.	12	12.12	
Bottom	9842.5	4525.0	0.0	10.	78	10.75	

Menu

Shows the expression "Underground Blowout" in the graph with iPhone on vertical. Flashing until gas to reach on the shoe depth.

<u>Menu</u>

Shows the expression "Underground Blowout" in the graph. Flashing until gas to reach on the shoe depth.

With Bop closed, set RPM = 5 to occur failure on the BOP.

Same if RPM = 0 again, the failure on the BOP remains.

Menu

Blowout

When the gas reach to BOP, shows the expression "Blowout" flashing in the graph.

In blowout, when the Gas reach on surface, the simulation end. Tap on "Restart for New Simulation" button in "Options" view

ductory le

0:17:37 x

Flow high

Vol hig

Pump f

RPM

0

Menu

Menu

Drilling Simulator for iPhone & iPod Touch

About

This app was developed based on my experience.

There was no comparison with any other software.

Our goal was to create a low-cost application with the help of experts to share with drilling engineers, technicians, drillers and students.

You can contribute with suggestions for improvements, correcting the translation to english, reporting bugs and spreading it to your friends.

Please visit our support url and see other applications for Oil & Gas for iPhone, iPod Touch, iPad and Mac OS X.

Contact: contact@wellcontrol.com.br

Support URL: http://www.wellcontrol.com.br

On App Store: Oil & Gas Apps for iPhone and iPad

A Message to Our Customers

Our app suite sales are impressing us by each day, with satisfied customers buying a product for several devices, trying new ones, recommending to their co-workers and college friends, giving feedback with compliments and suggesting improvements.

We work hard to always bring to you the best experience.

Thank you very much, and welcome!

About Us

We are a team of specialists in petroleum engineering with over 24 years of expertise in oil wells drilling and workover operations. We have in our portfolio Well Control Simulators for training and Monitoring Systems for the oil industry.

Our mission is to bring petroleum specialists and students innovative tools which will provide safety and efficiency to their work.

Enjoy our Apps!

News 🔊

>> Update for Well Control Methods for IPad 2.4 now available on the App Store

>> Directional Drilling Survey for IPhone, IPod Touch and IPad 2.2 now available on the App Store

>> Directional Drilling Survey for IPad: Single Well Survey (User Guide)

>> Directional Drilling Survey for iPad: Well Planning (User Guide)

>> Directional Drilling Survey for IPad: Load/Save Data File (User Guide)

>> Directional Drilling Survey 2.1 now available on the App Store: Sharing data files with iCloud

Share

Receive our Newsletter

Well Control Apps for iPhone, iPod Touch, iPad and Mac OS X

Drilling Hydraulics

for Mac OS X

Applications

Well Control Methods

Drilling Hydraulics

Directional Survey

Drilling Simulator

Knowledge

Methods and Concepts

Highlights

Directional Drilling

for Mac OS X

Kick Tolerance

Drilling Cost

Others

Worksheets IPad | Mac OS X

IPhone | IPad

Phone Apps Video

Drilling Cost iPhone | iPad Phone | Pad Mac OS X

Mac OS X

