
The Common Framework Initiative
for algebraic specification and development

Michel Bidoit and Peter D. Mosses

User Manual

— FIRST PUBLIC DRAFT

September 17, 2003

Springer

Berlin Heidelberg NewYork
HongKong London
Milan Paris Tokyo

http://www.cofi.info




Preface

Casl, the Common Algebraic Specification Language, has been designed by
CoFI, the Common Framework Initiative for algebraic specification and de-
velopment. It is an expressive language for specifying requirements and design
for conventional software. It is algebraic in the sense that models of Casl
specifications are algebras; the axioms can be arbitrary first-order formulae.

From Casl, simpler languages (e.g., with axioms restricted to conditional
equations, for interfacing with existing tools) are obtained by restriction, and
Casl is also extended in more advanced languages (e.g., higher-order). Casl
strikes a happy balance between simplicity and expressiveness.

This User Manual illustrates and discusses how to write Casl speci-
fications.

Content

This Casl User Manual introduces the potential user to the features of Casl
mainly by means of illustrative examples. It presents and discusses the typical
ways in which the language concepts and constructs are expected to be used
in the course of building system specifications. Thus, the presentation focuses
on what the constructs and concepts of Casl are for, and how they should
(and should not) be used. We try to make these points as clear as possible
by referring to simple examples, and by discussing both the general ideas and
some details of Casl specifications.

We hope that this will give the reader a sufficient feel of the formalism,
and enough understanding, to look through the presentation of a basic library
of Casl specifications in App. B, to follow the case study in App. C, and to



VI Preface

start experimenting with the use of Casl for writing specifications – perhaps
employing the support tools presented in Chap. 10.

By no means, however, should this User Manual be regarded as a com-
plete presentation of the Casl specification formalism – this is given in the
accompanying volume, the Casl Reference Manual [Mos03].

Structure

Chapter 1 describes the origins of Casl: how CoFI was formed in response
to the proliferation of algebraic specification languages in the preceding two
decades, and the aims and scope that were formulated for this international
initiative.

For the benefit of readers not already familiar with other algebraic spec-
ification languages, Chap. 2 will review the main concepts of algebraic spec-
ification, explaining standard terminology regarding specification language
constructs and models (i.e., algebras).

Chapter 3 shows how total, many-sorted specifications in Casl may be
written essentially as in many other algebraic specification languages. Loose,
generated, and free specifications are discussed in turn, with illustrative ex-
amples and advice on the use of the different specification styles.

Partial functions arise naturally. Chapter 4 explains how Casl supports
specification of partial functions, drawing attention to where special care is
needed compared to specifications involving only total functions.

Subsorts and supersorts are often useful in Casl specifications. Chapter 5
illustrates how they can be declared and defined, and that they can sometimes
avoid the need for partial functions.

The examples given so far make use of named and structured specifica-
tions in a simple and natural way. Chapter 6 takes a much closer look at the
constructs Casl provides for structuring specifications, explaining how large
and complex specifications are easily built out of simpler ones by means of a
small number of specification-building operations.

Chapter 7 shows how making a specification generic (when appropriate)
improves its reusability. It also introduces the constructs for expressing so-
called views between specifications, and explains their relationship to proof
obligations.

While specification-building operations are useful to structure the text of
large specifications, architectural specifications are meant for imposing struc-
ture on models. Chapter 8 will discuss and illustrate the role of architectural
specifications, and show how to express them in Casl.

Chapter 9 will explain and illustrate how libraries of named specifications
can be formed, and made available over the Internet, to encourage widespread
reuse and evolution of specifications. Version control is of crucial importance
here.

Page: VI *** FIRST PUBLIC DRAFT *** 17-Sep-2003/17:54



Preface VII

Tool support is vital for efficient use of formal specifications in connection
with practical software design and development. Chapter 10 presents the main
tools that have been implemented so far; several of them allow use of Casl
specifications in connection with tools that were originally developed for other
specification languages, showing how Casl provides tool interoperability.

Chapter 11 gives a detailed overview of the foundations of Casl, which
are established in the accompanying Casl Reference Manual [Mos03].

This User Manual is completed by three appendices: App. A provides an
compact overview of all Casl constructs, for quick reference; App. B intro-
duces a few of the many specifications that are available in the Casl libraries
of basic datatypes at Bremen; and finally, App. C will give a realistic case-
study of the use of Casl in practice, in connection with the design of software
for a Steam-Boiler.

Organization

All the main points are highlighted like this.

The material in the User Manual is organized in a tutorial fashion.1 Each
point is usually accompanied by an illustrative example of a complete Casl
specification; the names of these specifications are listed (both in order of
presentation and alphabetically) at the end of the book.

Readers who are familiar with previous algebraic specification languages,
and especially those who have been following or participating in the design
and development of Casl, may prefer to skip lightly through Chaps. 1 and 2.
Chapter 3, however, is mandatory, since it is there that we introduce many
Casl features that will be needed to understand the subsequent chapters.

In contrast, Chaps. 4 and 5 can be skipped at first reading if the reader
is not so much interested in these features (with the proviso though that
there are some references to the examples given in these chapters from later
chapters).

Chapters 6 and 7 present mainstream material, and until one feels com-
fortable with all the main points and examples, it is advisable to wait with
proceeding to Chap. 8. Chapter 9 is however quite orthogonal to the other
chapters, and can be read when desired. Part of the introduction to Casl
support tools in Chap. 10 assumes familiarity with concepts introduced in
Chap. 7. Chapter 11 is primarily for those who will want to follow up on
this User Manual with a more detailed study of the language, based on the
Reference Manual.
1 It should be possible to use it as the basis for an interactive tutorial, but this is

not yet available.

Page: VII *** FIRST PUBLIC DRAFT *** 17-Sep-2003/17:54



VIII Preface

Acknowledgements

Chapter 10 was written by Till Mossakowski, who also provided App. B,
based on joint work with Markus Roggenbach and Lutz Schröder. Chapter 11
was written by Donald Sannella and Andrzej Tarlecki. Comments on previous
drafts of Chaps. 3–6 from CoFI participants have been very helpful.

Draft Status

Many of the main chapters are close to a final draft. However, some of the
less central chapters (Chaps. 1, 2, and 9) have been given lower priority, and
are still at the outline stage. A full draft of Chapter 8 is expected to become
available by the beginning of August, followed by Appendix C.

We look forward to all comments based on the present draft of the User
Manual, either addressed personally to the authors, or (preferably) submitted
to the (moderated) CoFI discussion mailing list, cofi-discuss@cofi.info.

Michel Bidoit and Peter D. Mosses
15 July, 2003

Page: VIII *** FIRST PUBLIC DRAFT *** 17-Sep-2003/17:54

mailto:cofi-discuss@cofi.info
http://www.lsv.ens-cachan.fr/~bidoit/
http://www.brics.dk/~pdm/


Contents

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 CoFI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Casl . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

2 Underlying Concepts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.1 Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.2 Algebras . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

3 Total, Many-Sorted Specifications . . . . . . . . . . . . . . . . . . . . . . . . . 5
3.1 Loose Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
3.2 Generated Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.3 Free Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

4 Partial Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
4.1 Declaring Partial Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
4.2 Specifying Domains of Definition . . . . . . . . . . . . . . . . . . . . . . . . . . 29
4.3 Partial Selectors and Constructors . . . . . . . . . . . . . . . . . . . . . . . . . 33
4.4 Existential equality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

5 Subsorting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
5.1 Subsort Declarations and Definitions . . . . . . . . . . . . . . . . . . . . . . . 37
5.2 Subsorts and Overloading . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
5.3 Subsorts and Partiality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

6 Structuring Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
6.1 Union and Extension . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
6.2 Renaming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
6.3 Hiding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
6.4 Local Symbols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
6.5 Named Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55



X Contents

7 Generic Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
7.1 Parameters and Instantiation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
7.2 Compound Symbols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
7.3 Parameters with ‘Fixed’ Parts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
7.4 Views . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

8 Specifying Architectural Structure . . . . . . . . . . . . . . . . . . . . . . . . . 201
8.1 Architectural Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203
8.2 Explicit Generic Components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 206
8.3 Writing Meaningful Architectural Specifications . . . . . . . . . . . . . 213

9 Libraries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217
9.1 Local Libraries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 218
9.2 Distributed Libraries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 223
9.3 Version control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 226

10 Tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
10.1 The Heterogeneous Tool Set (Hets) . . . . . . . . . . . . . . . . . . . . . . . . 75
10.2 The CASL Tool Set and the Development Graph Manager

MAYA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
10.3 HOL-CASL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
10.4 ELAN-Casl . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
10.5 ASF+SDF Parser and Structure Editor for Casl . . . . . . . . . . . . 85
10.6 Other tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

11 Foundations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

Appendices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

A Casl Quick Reference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
A.1 Basic Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

A.1.1 Declarations and Definitions . . . . . . . . . . . . . . . . . . . . . . . . 96
A.1.2 Variables and Axioms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
A.1.3 Symbols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
A.1.4 Comments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
A.1.5 Annotations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

A.2 Structured Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
A.2.1 Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
A.2.2 Named and Generic Specifications . . . . . . . . . . . . . . . . . . . 101
A.2.3 Named and Parametrized Views . . . . . . . . . . . . . . . . . . . . . 101
A.2.4 Symbol Lists and Maps . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

A.3 Architectural Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
A.3.1 Named Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
A.3.2 Architectural Specifications . . . . . . . . . . . . . . . . . . . . . . . . . 102
A.3.3 Unit Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
A.3.4 Unit Declarations and Definitions . . . . . . . . . . . . . . . . . . . 102

Page: X *** FIRST PUBLIC DRAFT *** 17-Sep-2003/17:54



Contents XI

A.3.5 Unit Expressions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
A.3.6 Unit Terms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

A.4 Libraries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
A.4.1 Downloadings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
A.4.2 Library Names . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

B Basic Library . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
B.1 Library Basic/Numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
B.2 Library Basic/StructuredDatatypes . . . . . . . . . . . . . . . . . . . . . . . . 108

C Case Study: The Steam-Boiler Control System . . . . . . . . . . . . 115
C.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
C.2 Getting Started . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
C.3 Carrying On . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
C.4 Specifying the Mode of Operation . . . . . . . . . . . . . . . . . . . . . . . . . 123
C.5 Specifying the Detection of Equipment Failures . . . . . . . . . . . . . . 126

C.5.1 Understanding the Detection of Equipment Failures . . . . 126
C.5.2 Keeping Track of the Status of the Physical Units . . . . . 128
C.5.3 Detection of the Message Transmission System Failures 129
C.5.4 Detection of the Pump and Pump Controller Failures . . 131
C.5.5 Detection of the Steam and Water Level Measurement

Device Failures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
C.5.6 Summing Up . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

C.6 Predicting the Behaviour of the Steam-Boiler . . . . . . . . . . . . . . . 134
C.6.1 Predicting the Output of Steam and the Water Level . . 136
C.6.2 Predicting the Pump and Pump Controller States . . . . . 139

C.7 Specifying the Messages to Send . . . . . . . . . . . . . . . . . . . . . . . . . . . 141
C.8 The Steam-Boiler Control System Specification . . . . . . . . . . . . . . 142
C.9 Validation of the CASL Requirements Specification . . . . . . . . . . 143
C.10 Designing the Architecture of the Steam-Boiler Control System145
C.11 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148
C.12 The Steam-Boiler Control Specification Problem. . . . . . . . . . . . . 148

C.12.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148
C.12.2 Physical environment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149
C.12.3 The overall operation of the program . . . . . . . . . . . . . . . . 151
C.12.4 Operation modes of the program . . . . . . . . . . . . . . . . . . . . 152
C.12.5 Messages sent by the program. . . . . . . . . . . . . . . . . . . . . . . 154
C.12.6 Messages received by the program . . . . . . . . . . . . . . . . . . . 155
C.12.7 Detection of equipment failures . . . . . . . . . . . . . . . . . . . . . 156

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157

Index of Library and Specification Names . . . . . . . . . . . . . . . . . . . . . 165

Page: XI *** FIRST PUBLIC DRAFT *** 17-Sep-2003/17:54





1

Introduction

1.1 CoFI

CoFI is an initiative to provide a common framework for algebraic
specification and development.

• Background

• Aims

• Status

1.2 Casl

Casl has been designed by CoFI as a general-purpose algebraic spec-
ification language, subsuming many existing languages.

• General features

• Major parts

• Specific features





2

Underlying Concepts

2.1 Specifications

• Symbols

• Declarations

• Axioms

• Structure

• Architecture

• Libraries

2.2 Algebras

• Signatures

• Models

• Classes of models





3

Total, Many-Sorted Specifications

Total, many-sorted specifications in Casl may be written essentially
as in many other algebraic specification languages.

The simplest kind of algebraic specification is when each specified opera-
tion is to be interpreted as an ordinary total mathematical function: it takes
values of particular types as arguments, and always returns a well-defined
value. Total functions correspond to software whose execution always termi-
nates normally. The types of values are distinguished by simple symbols called
sorts.

In practice, a realistic software specification involves partial as well as total
functions. However, it may well be formed from simpler specifications, some
of which involve only total functions. This chapter explains how to express
such total specifications in Casl, illustrating various features of Casl.

Total many-sorted specifications can also be expressed in many previous
specification languages; it is usually straightforward to reformulate them in
Casl. Readers who know other specification languages will probably recognize
some familiar examples among the illustrations given in this chapter.

Casl provides also useful abbreviations.

The technique of algebraic specification by axioms is generally well-
suited to expressing properties of functions. However, when functions have
commonly-occurring mathematical properties, it can be tedious to give the
corresponding axioms explicitly. Casl provides some useful abbreviations for
such cases. For instance, so-called free datatype declarations allow sorts and
value constructors to be specified much as in functional programming lan-
guages, using a concise and suggestive notation.



6 3 Total, Many-Sorted Specifications

Casl allows loose, generated and free specifications.

The models of a loose specification include all those where the declared
functions have the specified properties, without any restrictions on the sets
of values corresponding to the various sorts. In models of a generated speci-
fication, in contrast, it is required that all values can be expressed by terms
formed from the specified functions, i.e. unreachable values are prohibited. In
models of free specifications, it is required that values of terms are distinct
except when their equality follows from the specified axioms: the possibility
of unintended coincidence between them is prohibited.

Section 3.1 below focusses on loose specifications; Sect. 3.2 discusses the
use of generated specifications, and Sect. 3.3 does the same for free specifi-
cations. Loose, generated, and free specifications are often used together in
Casl: each style has its advantages in particular circumstances, as explained
below in connection with the illustrative examples.

3.1 Loose Specifications

Casl syntax for declarations and axioms involves familiar notation,
and is mostly self-explanatory.

spec Strict Partial Order =
%% Let’s start with a simple example !

sort Elem
pred < : Elem × Elem %% pred abbreviates predicate

∀x , y , z : Elem
• ¬(x < x ) %(strict)%

• x < y ⇒ ¬(y < x ) %(asymmetric)%

• x < y ∧ y < z ⇒ x < z %(transitive)%

%{ Note that there may exist x, y such that
neither x < y nor y < x. }%

end
The above (basic) specification, named Strict Partial Order, intro-

duces a sort Elem and a binary infix predicate symbol ‘<’. Note that Casl
allows so-called mixfix notation,1 i.e., the specifier is free to indicate, using ‘ ’
(pairs of underscores) as place-holders, how to place arguments when building
terms (single underscores are treated as letters in identifiers). Using mixfix

1 Mixfix notation is so-called because it generalizes infix, prefix, and postfix nota-
tion to allow arbitrary mixing of argument positions and identifier tokens.

Page: 6 *** FIRST PUBLIC DRAFT *** 17-Sep-2003/17:54



3.1 Loose Specifications 7

notation generally allows the use of familiar mathematical and programming
notations, which contributes substantially to the readability of specifications.

The interpretation of the binary predicate symbol ‘<’ is then constrained
by three axioms. A set of axioms is generally presented as a ‘bulleted’ list of
formulae, preceded by the universally quantified declaration of the relevant
variables, together with their respective sorts, as shown in the above example.
In Casl, axioms are written in first-order logic with equality, using quantifiers
and the usual logical connectives. The universal quantification preceding a list
of axioms applies to the entire list. Axioms can be annotated by labels written
%(. . . )%, which is convenient for proper reference in explanations or by tools.

Note that ‘∀’ is input as ‘forall’, and that ‘ • ’ is input as ‘.’ or ‘·’. The
usual logical connectives ‘⇒’, ‘⇔’, ‘∧’, ‘∨’, and ‘¬’, are input as ‘=>’, ‘<=>’,
‘/\’, ‘\/’, and ‘not’, respectively; ‘¬’ can also be input directly as an ISO
Latin-1 character. The existential quantifier ‘∃’ is input as ‘exists’.

It is advisable to comment as appropriate the various elements introduced
in a specification. The syntax for end-of-line and grouped multi-line comments
is illustrated in the above example.

The above Strict Partial Order specification is loose in the sense it
has many (non-isomorphic) models, among which models where ‘<’ is inter-
preted by a total ordering relation and models where it is interpreted by a
partial one.

Specifications can easily be extended by new declarations and axioms.

spec Total Order =
Strict Partial Order

then ∀x , y : Elem • x < y ∨ y < x ∨ x = y %(total)%

end
Extensions, introduced by the keyword ‘then’, may specify new symbols,

possibly constrained by some axioms, or merely require further properties of
old ones, as in the above Total Order example, or more generally do both
at the same time. In Total Order, we further constrain the interpretation
of the predicate symbol ‘<’ by requiring it to be a total ordering relation.

All symbols introduced in a specification are by default exported by it and
visible in its extensions. This is for instance the case here for the sort Elem and
the predicate symbol ‘<’, which are introduced in Strict Partial Order,
exported by it, and therefore available in Total Order.2

2 See Chap. 6 for constructs allowing the explicit restriction of the set of symbols
exported by a specification.

Page: 7 *** FIRST PUBLIC DRAFT *** 17-Sep-2003/17:54



8 3 Total, Many-Sorted Specifications

In simple cases, an operation (or a predicate) symbol may be declared
and its intended interpretation defined at the same time.

spec Total Order With MinMax =
Total Order

then ops min(x , y : Elem) : Elem = x when x < y else y ;
max (x , y : Elem) : Elem = y when min(x , y) = x else x

end
Total Order With MinMax extends Total Order by introducing

two binary operation symbols min and max , for which a functional notation
is to be used, so no place-holders are given. The intended interpretation of
the symbol min is defined simultaneously with its declaration, and the same
is done for max . For instance,

op min(x , y : Elem) : Elem = x when x < y else y
abbreviates:

op min : Elem × Elem → Elem
∀x , y : Elem • min(x , y) = x when x < y else y

(and similarly for max ).
The ‘. . . when . . . else . . .’ construct used above is itself an abbrevia-

tion. Indeed, min(x , y) = x when x < y else y abbreviates (x < y ⇒
min(x , y) = x ) ∧ (¬(x < y) ⇒ min(x , y) = y).

In Casl specifications, visibility is linear, i.e., any symbol must be declared
before being used. In the above example, min should be declared before being
used to define max .

Linear visibility does not imply, however, that a fixed scheme is to be
used when writing specifications: the specifier is free to present the required
declarations and axioms in any order, as long as the linear visibility rule is re-
spected. For instance, one may prefer to declare first all sorts and all operation
or predicate symbols needed, and then specify their properties by the relevant
axioms. Or, in contrast, one may prefer to have each operation or predicate
symbol declaration immediately followed by the axioms constraining its inter-
pretations. Both styles are equally fine, and can even be mixed if desired. This
flexibility is illustrated in the following variant of the Total Order With
MinMax specification, where for explanatory purposes we refrain from using
the useful abbreviations explained above.
spec Variant Of Total Order With MinMax =

Total Order
then vars x , y : Elem

op min : Elem × Elem → Elem
• x < y ⇒ min(x , y) = x
• ¬(x < y) ⇒ min(x , y) = y

Page: 8 *** FIRST PUBLIC DRAFT *** 17-Sep-2003/17:54



3.1 Loose Specifications 9

op max : Elem × Elem → Elem
• x < y ⇒ max (x , y) = y
• ¬(x < y) ⇒ max (x , y) = x

end
Note that in order to avoid the tedious repetition of the declaration of the

variables x and y for each list of axioms, we have used here a global variable
declaration which introduces x and y for the rest of the specification. Variable
declarations are of course not exported across specification extensions: the
variables x and y declared in Variant Of Total Order With MinMax
are not visible in any of its extensions.

Symbols may be conveniently displayed as usual mathematical symbols
by means of %display annotations.

%display leq %LATEX ≤
spec Partial Order =

Strict Partial Order
then pred ≤ (x , y : Elem) ⇔ (x < y ∨ x = y)
end

The above example relies on a %display annotation: while, for obvious
reasons, the specification text should be input using the ISO Latin-1 char-
acter set, it is often convenient to display some symbols differently, e.g., as
mathematical symbols. This is the case here where the ‘leq’ predicate symbol
is more conveniently displayed as ‘≤’. Display annotations, as any other Casl
annotations, are auxiliary parts of a specification, for use by tools, and do not
affect the semantics of the specification.3

In the above example, we have again used the facility of simultaneously
declaring and defining a symbol (here, the predicate symbol ‘≤’) in order to
obtain a more concise specification.

The %implies annotation is used to indicate that some axioms are
supposed to be consequences of others.

spec Partial Order 1 =
Partial Order

then %implies

∀x , y , z : Elem • x ≤ y ∧ y ≤ z ⇒ x ≤ z %(transitive)%

end
3 Display annotations should be provided at the beginning of a library, see Chap. 9.

Page: 9 *** FIRST PUBLIC DRAFT *** 17-Sep-2003/17:54



10 3 Total, Many-Sorted Specifications

The %implies annotation above is used to emphasize that the transitivity
of ‘≤’ should follow from the other axioms, or, in other words, that the model
class of Partial Order 1 is exactly the same as the model class of Partial
Order.

Note however that an annotation does not affect the semantics of a specifi-
cation (hence removing the %implies annotation does not change the seman-
tics of the above specification), but merely provides useful proof obligations.
The sole aim of an %implies annotation is to stress the specifier’s intentions,
and it will also help readers confirm their understanding. Some tools may
of course use such annotations to generate corresponding proof obligations
(here, the proof obligation is Partial Order |= ∀x , y , z : Elem • x ≤ y ∧
y ≤ z ⇒ x ≤ z ). Discharging these proof obligations increases the trustwor-
thiness of a specification.

To fully understand that an %implies annotation has no effect on the
semantics, the best is to consider an example where the corresponding proof
obligation cannot be discharged, as shown below.
spec Implies Does Not Hold =

Partial Order
then %implies

∀x , y : Elem • x < y ∨ y < x ∨ x = y %(total)%

end
Since the loose specification Partial Order has models where ‘<’ is in-

terpreted by a partial ordering relation, the proof obligation corresponding
to the above %implies annotation cannot be discharged. However, since an-
notations have no impact on the semantics, the specification Implies Does
Not Hold is not inconsistent, it just constrains the interpretation of ‘<’ to
be a total ordering relation.

Attributes may be used to abbreviate axioms for associativity, commu-
tativity, idempotency, and unit properties.

spec Monoid =
sort Monoid
ops 1 : Monoid ;

∗ : Monoid ×Monoid → Monoid , assoc, unit 1
end

The above example introduces a constant symbol 1 of sort Monoid , then
a binary operation symbol ‘∗’, which is asserted to be associative and to have
1 as unit element.

The assoc attribute abbreviates, as expected, the following axiom:
∀x , y , z : Monoid • (x ∗ y) ∗ z = x ∗ (y ∗ z )

The ‘unit 1 ’ attribute abbreviates:
∀x : Monoid • (x ∗ 1 = x ) ∧ (1 ∗ x = x )

Page: 10 *** FIRST PUBLIC DRAFT *** 17-Sep-2003/17:54



3.1 Loose Specifications 11

Note that to make the use of ‘unit 1 ’ legal, it is necessary to have previously
declared the constant 1 , to respect the linear visibility rule.

Other available attributes are comm, which abbreviates the obvious axiom
stating that a binary operation is commutative, and idem, which can be used
to assert the idempotency of a binary operation f (i.e., that f (x , x ) = x ).

Asserting ‘∗’ to be associative using the attribute assoc makes the term
x ∗ y ∗ z well-formed (assuming x , y , z of the right sort), while otherwise
grouping parentheses would be required. Moreover, it is expected that some
tools (e.g., systems based on rewriting) may use the assoc attribute, so it is
generally advisable to use this attribute instead of stating the same property
by an axiom (the same applies to the other attributes).

Genericity of specifications can be made explicit using parameters.

spec Generic Monoid [ sort Elem ] =
sort Monoid
ops inj : Elem → Monoid ;

1 : Monoid ;
∗ : Monoid ×Monoid → Monoid , assoc, unit 1

∀x , y : Elem • inj (x ) = inj (y) ⇒ x = y
end

The above example describes monoids built over arbitrary elements (of sort
Elem). The intention here is to reuse the specification Generic Monoid to
derive from it specifications of monoids built over, say, characters, symbols,
etc. In such cases, it is appropriate to emphasize the intended genericity of the
specification by making explicit, in a distinguished parameter part (here, [ sort
Elem ]), the piece of specification that is intended to vary in the derived spec-
ifications. In these, it will then be possible to instantiate the parameter part
as desired in order to specialize the specification as appropriate (to obtain,
e.g., a specification of monoids built over characters). A named specification
with one or more parameter(s) is called generic.

The body of the generic specification Generic Monoid is an extension
of what is specified in the parameter part. Hence an alternative to the above
generic specification Generic Monoid is the following, less elegant, non-
generic specification (which cannot be specialized by instantiation):
spec Non Generic Monoid =

sort Elem
then sort Monoid

ops inj : Elem → Monoid ;
1 : Monoid ;
∗ : Monoid ×Monoid → Monoid , assoc, unit 1

∀x , y : Elem • inj (x ) = inj (y) ⇒ x = y
end

Page: 11 *** FIRST PUBLIC DRAFT *** 17-Sep-2003/17:54



12 3 Total, Many-Sorted Specifications

A generic specification may have more than one parameter, and parame-
ters can be arbitrary specifications, named or not. When reused by reference to
its name, a generic specification must be instantiated. Generic specifications
and how to instantiate them are discussed in detail later in Chap. 7. Using
generic specifications when appropriate improves the reusability of specifica-
tion definitions.

References to generic specifications always instantiate the parameters.

spec Generic Commutative Monoid [ sort Elem ] =
Generic Monoid [ sort Elem ]

then ∀x , y : Monoid • x ∗ y = y ∗ x
end

The above (generic) specification Generic Commutative Monoid is de-
fined as an extension of Generic Monoid, which should therefore be instan-
tiated, as explained above. Instantiating a generic specification is done by pro-
viding an argument specification that ‘fits’ the parameter part of the generic
specification to be instantiated.

It is however quite frequent that the instantiation is ‘trivial’, i.e., the ar-
gument specification is identical to the parameter one. This is the case for the
above example, where the generic specification Generic Monoid is instanti-
ated by providing the same argument specification ‘sort Elem’ as the original
parameter.
spec Generic Commutative Monoid 1 [ sort Elem ] =

Generic Monoid [ sort Elem ]
then op ∗ : Monoid ×Monoid → Monoid , comm
end

Generic Commutative Monoid 1 is an alternative version of the for-
mer specification where, instead of requiring explicitly with an axiom the
commutativity of the operation ‘∗’, we require it using the attribute comm.
As explained before, it is in general better to describe such requirements using
attributes rather than explicit axioms, since it is expected that some tools will
rely on these attributes for specialized algorithms (e.g., ACI-unification).

This example illustrates also an important feature of Casl, the ‘same
name, same thing’ principle. The operation symbol ‘∗’ is indeed declared
twice, with the same profile, first in Generic Monoid and then again in
Generic Commutative Monoid 1 (the second declaration being enriched
by the attribute comm). This is perfectly fine and defines only one binary
operation symbol ‘∗’ with the corresponding arity, according to the ‘same
name, same thing’ principle. This principle applies to sorts, as well as to
operation and predicate symbols. It applies both to symbols defined locally
and to symbols imported from an extended specification, as it is the case
here for ‘∗’. Of course, it does not apply between named specifications, i.e.,

Page: 12 *** FIRST PUBLIC DRAFT *** 17-Sep-2003/17:54



3.1 Loose Specifications 13

the same symbol may be used in different named specifications with entirely
different interpretations.

Note that for operation and predicate symbols, the ‘same name, same
thing’ principle is a little more subtle than for sorts: the ‘name’ of an operation
(or of a predicate) includes its profile of argument and result sorts, so two
operations defined with the same symbol but with different profiles do not have
the same ‘name’, the symbol is just overloaded. When an overloaded symbol is
used, the intended profile is to be determined by the context (e.g., the sorts of
the arguments to which the symbol is applied). Explicit disambiguation can be
used when needed, by specifying the profile (or result sort) in an application.4

Note that overloaded constants are allowed in Casl (e.g., empty may be
declared to be a constant of various sorts of collections).

Datatype declarations may be used to abbreviate declarations of sorts
and constructors.

spec Container [ sort Elem ] =
type Container ::= empty | insert(Elem; Container)
pred is in : Elem × Container
∀e, e ′ : Elem; C : Container
• ¬(e is in empty)
• e is in insert(e ′,C ) ⇔ (e = e ′ ∨ e is in C )

end
Specifications of ‘datatypes’ with constructors are frequently needed. Casl

provides special constructs for datatype declarations to abbreviate the corre-
sponding rather tedious declarations. For instance, the above datatype decla-
ration:

type Container ::= empty | insert(Elem; Container)
abbreviates:

sort Container
ops empty : Container ;

insert : Elem × Container → Container
A datatype declaration looks like a context-free grammar in a variant

of BNF. It declares the symbols on the left of ‘::=’ as sorts, and for each
alternative on the right it declares a constructor.

A datatype declaration as the one above is loose since it does not imply
any constraint on the values of the declared sorts: there may be some values
of sort Container that are not built by any of the declared constructors, and
the same value may be built by different applications of the constructors to
some arguments.
4 For instance, depending on the context, the term t1 ∗ t2 can be disambiguated by

writing (op ∗ : Monoid×Monoid → Monoid)(t1 , t2 ), or just (t1 : Monoid)∗(t2 :
Monoid), or even (t1 ∗ t2 ) : Monoid .

Page: 13 *** FIRST PUBLIC DRAFT *** 17-Sep-2003/17:54



14 3 Total, Many-Sorted Specifications

Datatype declarations may also be specified as generated (see Sect. 3.2) or
free (see Sect. 3.3). Moreover, selectors, which are usually partial operations,
may be specified for each component (see Chap. 4).

As a last minor remark, note that while placeholders are specified with
pairs of underscores ‘ ’, a single underscore is a valid character in an identifier,
as illustrated in the above specification by the predicate symbol is in.

Loose datatype declarations are appropriate when further constructors
may be added in extensions.

spec Marking Container [ sort Elem ] =
Container [ sort Elem ]

then type Container ::= mark insert(Elem; Container)
pred is marked in : Elem × Container
∀e, e ′ : Elem; C : Container
• e is in mark insert(e ′,C ) ⇔ (e = e ′ ∨ e is in C )
• ¬(e is marked in empty)
• e is marked in insert(e ′,C ) ⇔ e is marked in C
• e is marked in mark insert(e ′,C ) ⇔ (e = e ′ ∨ e is marked in C )

end
The above specification extends Container (trivially instantiated) by

introducing another constructor mark insert for the sort Container (hence,
values added to a container may now be ‘marked’ or not). Note that we
heavily rely on the ‘same name, same thing’ principle here, since it ensures
that the sort Container introduced by the datatype declaration of Container
and the sort Container introduced by the datatype declaration of Marking
Container are the same sort, which implies that the combination of both
datatype declarations is equivalent to:

type Container ::= empty | insert(Elem; Container)
| mark insert(Elem; Container)

Note that since ‘new’ values may be constructed by mark insert , it is
necessary to extend the specification of the predicate symbol is in by an
extra axiom taking care of the newly introduced constructor.

Page: 14 *** FIRST PUBLIC DRAFT *** 17-Sep-2003/17:54



3.2 Generated Specifications 15

3.2 Generated Specifications

Sorts may be specified as generated by their constructors.

spec Generated Container [ sort Elem ] =
generated type Container ::= empty | insert(Elem; Container)
pred is in : Elem × Container
∀e, e ′ : Elem; C : Container
• ¬(e is in empty)
• e is in insert(e ′,C ) ⇔ (e = e ′ ∨ e is in C )

end
When a datatype is declared as generated, as in the above example, the

corresponding sort is constrained to be generated by the declared constructors,
which means that any value of this sort is built by some constructor applica-
tion. This constraint is sometimes referred to as the ‘no junk’ principle. For
instance, in the above example, having declared the datatype Container to be
generated entails that in any model of Generated Container, any value of
sort Container is denotable by a term built with empty , insert , and variables
of sort Elem only.

As a consequence, properties of values of sort Container can be proved
by induction on the declared constructors. A major benefit of generated
datatypes is indeed that induction on the declared constructors is a sound
proof principle.

The construct ‘generated type . . . ’ used above is just an abbreviation
for ‘generated { type . . . }’, and ‘generated’ can be used around arbitrary
signature declarations, enclosed in ‘{’ and ‘}’.

Generated specifications are in general loose.

spec Generated Container Merge [ sort Elem ] =
Generated Container [ sort Elem ]

then op merge : Container × Container → Container
∀e : Elem; C ,C ′ : Container
• e is in (C merge C ′) ⇔ (e is in C ∨ e is in C ′)

end
A generated specification is in general loose. For instance, Generated

Container is loose since, although all values of sort Container are specified
to be generated by empty and insert , the behaviour of the insert constructor
is still loosely specified (nothing is said about the case where an element is
inserted to a container which already contains this element). Hence Gener-
ated Container admits several non-isomorphic models.

Page: 15 *** FIRST PUBLIC DRAFT *** 17-Sep-2003/17:54



16 3 Total, Many-Sorted Specifications

Generated Container Merge is as loose as Generated Container
in what concerns insert , and in addition, the newly introduced operation
symbol merge is also loosely specified: nothing is said about what happens
when merging two containers which share some elements.

It is important to understand that looseness of a specification is not a prob-
lem, but on the contrary avoids unnecessary overspecification. In particular,
loose specifications are in general well-suited to capture requirements.

The fact that merge is loosely specified does not mean that it can pro-
duce new values of the sort Container . On the contrary, since this sort has
been specified as being generated by empty and insert , it follows that any
value denotable by a term of the form merge(. . . , . . .) can also be denoted by
a term built with empty and insert (and no merge). Hence, for the specifi-
cation Generated Container Merge, proofs by induction on Container
only need to consider empty and insert , and not merge, as was the case for
Generated Container.

Generated specifications need not be loose.

spec Generated Set [ sort Elem ] =
generated type Set ::= empty | insert(Elem; Set)
pred is in : Elem × Set
ops { }(e : Elem) : Set = insert(e, empty);

∪ : Set × Set → Set ;
remove : Elem × Set → Set

∀e, e ′ : Elem; S ,S ′ : Set
• ¬(e is in empty)
• e is in insert(e ′,S ) ⇔ (e = e ′ ∨ e is in S )
• S = S ′ ⇔ (∀x : Elem • x is in S ⇔ x is in S ′) %(equal sets)%

• e is in (S ∪ S ′) ⇔ (e is in S ∨ e is in S ′)
• e is in remove(e ′,S ) ⇔ (¬(e = e ′) ∧ e is in S )

then %implies

∀e, e ′ : Elem; S : Set
• insert(e, insert(e,S )) = insert(e,S )
• insert(e, insert(e ′,S )) = insert(e ′, insert(e,S ))
generated type Set ::= empty | { }(Elem) | ∪ (Set ; Set)
op ∪ : Set × Set → Set , assoc, comm, idem, unit empty

end
Although generated specifications are in general loose, they need not be so,

as illustrated by the above Generated Set specification, where the axiom
%(equal sets)%, combined with the axioms defining is in, fully constrains the
interpretations of the sort Set and of the constructors empty and insert , once
an interpretation for the sort Elem is chosen.

Page: 16 *** FIRST PUBLIC DRAFT *** 17-Sep-2003/17:54



3.2 Generated Specifications 17

Note also that this example displays the power of the annotation %implies,
which is used here not only to stress that the usual properties of insert are
expected to follow from the preceding declarations and axioms, but also that
an alternative induction scheme, based on empty , { } and ∪ , can be
used for sets. Moreover, it asserts that ∪ is expected to be associative,
commutative, idempotent (i.e., S ∪ S = S ), and to have empty for unit. Note
again that this %implies part heavily relies on the ‘same name, same meaning’
principle.

Generated types may need to be declared together.

The following specification fragment illustrates what may go wrong:
sort Node
generated type Tree ::= mktree(Node; Forest)
generated type Forest ::= empty | add(Tree; Forest)

The above is both incorrect, due to the linear visibility rule,5 and wrong,
since the corresponding semantics is not what a naive reader may expect.
One may expect that only the minimal fixpoint interpretation of the above
mutually recursive definitions of the datatypes Tree and Forest is acceptable,
but indeed any fixpoint interpretation is, which means that, for instance, a
model with both a junk tree (obtained from a node and a junk forest by
mktree) and a junk forest (obtained from a junk tree and an empty forest by
add) fulfills the above declarations. Hence, one must write instead:

sort Node
generated types Tree ::= mktree(Node; Forest);

Forest ::= empty | add(Tree; Forest)
Here, the mutually recursive datatypes Tree and Forest are correctly de-

fined simultaneously within the same generated types construct, and the
resulting semantics is the expected one (without junk values for trees and
forests). Note that therefore, the linear visibility rule is not applicable within
a generated types construct (to allow such mutually recursive definitions),
but that this is the only exception to the linear visibility principle. Only
mutually recursive generated datatypes need to be declared together; in sim-
pler cases, it makes no difference to have a sequence of successive generated
datatype declarations or just one introducing all the desired datatypes.6

5 This can easily be fixed by replacing ‘sort Node’ by ‘sorts Node,Tree,Forest ’.
6 The same explanations apply to free datatypes, introduced in the next subsection.

Page: 17 *** FIRST PUBLIC DRAFT *** 17-Sep-2003/17:54



18 3 Total, Many-Sorted Specifications

3.3 Free Specifications

Free specifications provide initial semantics and avoid the need for
explicit negation.

spec Natural = free type Nat ::= 0 | suc(Nat) end
A free datatype declaration corresponds to the so-called ‘no junk, no

confusion’ principle: there are no other values of sort Nat than those denoted
by the constructor terms built with 0 and suc, and all distinct constructor
terms denote different values.

Hence, a free datatype declaration as the one above has exactly the same
effect as the similar generated datatype declaration, together with axioms
stating that suc is injective, and that 0 cannot be the successor of a natural
number. An alternative to the above ‘free type Nat ::= 0 | suc(Nat)’ is
therefore:

generated type Nat ::= 0 | suc(Nat)
∀x , y : Nat • suc(x ) = suc(y) ⇒ x = y
∀x : Nat • ¬(0 = suc(x ))

Free datatype declarations are particularly convenient for defining enu-
merated datatypes.

spec Colour =
free type RGB ::= Red | Green | Blue
free type CMYK ::= Cyan | Magenta | Yellow | Black

end
Using ‘free’ instead of ‘generated’ for defining enumerated datatypes

saves the writing of many explicit distinctness assertions (e.g., ¬(Red =
Green), ¬(Red = Blue), . . . ).

Free specifications can also be used when the constructors are related
by some axioms.

spec Integer =
free { type Int ::= 0 | suc(Int) | pre(Int)

∀x , y : Int
• suc(pre(x )) = x
• pre(suc(x )) = x }

end

Page: 18 *** FIRST PUBLIC DRAFT *** 17-Sep-2003/17:54



3.3 Free Specifications 19

When some relations are to be imposed between the constructors (as is the
case here for suc and pre which are inverses of each other), a free datatype
declaration cannot be used, since the contradiction between the ‘no confu-
sion’ principle and the axioms imposed on the constructors would lead to an
inconsistent specification. Instead, one should impose a ‘freeness constraint ’
around the datatype declaration followed by the required axioms. A freeness
constraint, expressed by the keyword free, can be imposed around any spec-
ification.

In the case of the above Integer specification, the freeness constraint im-
poses that the semantics of the specification is the quotient of the constructor
terms by (the minimal congruence induced by) the given axioms, and hence
provides exactly the desired semantics. More generally, a freeness constraint
around a specification indicates its initial model, which may of course not
exist. It is however well-known that initial models of basic specifications with
axioms restricted to Horn clauses always exist. Remember also that equality
holds minimally in initial models of equational specifications.

Predicates hold minimally in models of free specifications.

spec Natural Order =
Natural

then free { pred < : Nat ×Nat
∀x , y : Nat
• 0 < suc(x )
• x < y ⇒ suc(x ) < suc(y) }

end
A freeness constraint imposed around a predicate declaration followed by

some defining axioms has the effect that the predicate only holds when this
follows from the given axioms, and does not hold otherwise. For instance, in
the above example, it is not necessary to explicitly state that ‘¬(0 < 0 )’,
since this will follow from the imposed freeness constraint. Hence, in such
cases a freeness constraint has exactly the same effect as the so-called ‘nega-
tion by default ’ or ‘closed world assumption’ principles in logic programming.
More generally, it is often convenient to define a predicate within a freeness
constraint, since by doing so, one has to specify the ‘positive’ cases only.

Page: 19 *** FIRST PUBLIC DRAFT *** 17-Sep-2003/17:54



20 3 Total, Many-Sorted Specifications

Operations may be safely defined by induction on the constructors of
a free datatype declaration.

spec Natural Arithmetic =
Natural Order

then ops 1 : Nat = suc(0 );
+ : Nat ×Nat → Nat , assoc, comm, unit 0 ;
∗ : Nat ×Nat → Nat , assoc, comm, unit 1

∀x , y : Nat
• x + suc(y) = suc(x + y)
• x ∗ 0 = 0
• x ∗ suc(y) = x + (x ∗ y)

end
To define some operation on a free datatype, it is generally recommended

to make a case distinction with respect to the various constructors defined.
This is illustrated by the above definitions of ‘+’ and ‘∗’ (although for the
‘+’ operation, the case for the constructor 0 is already taken care of by the
attribute ‘unit 0 ’).7

More care may be needed when defining operations on free datatypes
with axioms relating the constructors.

spec Integer Arithmetic =
Integer

then ops 1 : Int = suc(0 );
+ : Int × Int → Int , assoc, comm, unit 0 ;
− : Int × Int → Int ;
∗ : Int × Int → Int , assoc, comm, unit 1

∀x , y : Int
• x + suc(y) = suc(x + y)
• x + pre(y) = pre(x + y)
• x − 0 = x
• x − suc(y) = pre(x − y)
• x − pre(y) = suc(x − y)
• x ∗ 0 = 0
• x ∗ suc(y) = (x ∗ y) + x
• x ∗ pre(y) = (x ∗ y)− x

end
7 In specification libraries, ordinary decimal notation for natural numbers can be

provided by use of so-called literal syntax annotations, see Chap. 9.

Page: 20 *** FIRST PUBLIC DRAFT *** 17-Sep-2003/17:54



3.3 Free Specifications 21

While a case distinction with respect to the constructors of a free datatype
is harmless, this may not be the case for a datatype defined within a freeness
constraint, since, due to the axioms relating the constructors to each other,
some cases may overlap. This does not mean, however, that one cannot use
the case distinction, but just that more attention should be paid than for a
free datatype. For instance, in the above example no problem arises. But one
should be more careful with the next one, since a negative integer can be of
the form suc(x ), hence asserting, e.g., 0 ≤ suc(x ), would of course be wrong.
spec Integer Arithmetic Order =

Integer Arithmetic
then preds ≤ , ≥ , < , > : Int × Int

∀x , y : Int
• 0 ≤ 0
• ¬(0 ≤ pre(0 ))
• 0 ≤ x ⇒ 0 ≤ suc(x )
• ¬(0 ≤ x ) ⇒ ¬(0 ≤ pre(x ))
• suc(x ) ≤ y ⇔ x ≤ pre(y)
• pre(x ) ≤ y ⇔ x ≤ suc(y)
• x ≥ y ⇔ y ≤ x
• x < y ⇔ (x ≤ y ∧ ¬(x = y))
• x > y ⇔ y < x

end

Generic specifications often involve free extensions of (loose) parame-
ters.

spec List [ sort Elem ] =
free type List ::= empty | cons(Elem; List)

end
The parameter of a generic specification should be loose to cope with the

various expected instantiations. On the other hand, it is a frequent situation
that the body of the generic specification should have a free, initial interpre-
tation. This is illustrated by the above example, where we want to combine a
loose interpretation for the sort Elem with a free interpretation for lists. The
following example is similar in spirit.
spec Set [ sort Elem ] =

free { type Set ::= empty | insert(Elem; Set)
pred is in : Elem × Set
∀e, e ′ : Elem; S : Set
• insert(e, insert(e,S )) = insert(e,S )
• insert(e, insert(e ′,S )) = insert(e ′, insert(e,S ))

Page: 21 *** FIRST PUBLIC DRAFT *** 17-Sep-2003/17:54



22 3 Total, Many-Sorted Specifications

• ¬(e is in empty)
• e is in insert(e,S )
• e is in insert(e ′,S ) if e is in S }

end
As for the List example, we want to have a loose interpretation for the

sort Elem and a free interpretation for sets. Since some axioms are required to
hold for the Set constructors empty and insert , we cannot use a free datatype
declaration, hence we use a freeness constraint.

Note that since, as already explained, predicates hold minimally in models
of free specifications, it would have been enough, in the above example, to
define the predicate is in by the sole axiom e is in insert(e,S ).8 However,
doing so would have decreased the comprehensibility of the specification and
this is the reason why we have preferred a more verbose axiomatization of the
predicate is in.

Note also the use of the keyword ‘if ’ to write an implication in the re-
verse order: e is in insert(e ′,S ) if e is in S is equivalent to e is in S ⇒
e is in insert(e ′,S ).

The following example specifies the transitive closure of an arbitrary binary
relation R on some sort Elem (both provided by the parameter).
spec Transitive Closure [ sort Elem pred R : Elem × Elem ] =

free { pred R+ : Elem × Elem
∀x , y , z : Elem
• x R y ⇒ x R+y
• x R+y ∧ y R+z ⇒ x R+z }

end
In the above example, it is crucial that predicates hold minimally in models

of free specifications, since this property ensures that what we define as ‘R+’
is actually the smallest transitive relation including R. Without requiring
the freeness constraint, one would allow arbitrary relations containing the
transitive closure of R (and these undesired relations cannot be eliminated
merely by specifying further axioms).

Loose extensions of free specifications can avoid overspecification.

spec Natural With Bound =
Natural Arithmetic

then op max size : Nat axiom 0 < max size end
The above example shows another benefit of mixing loose and initial se-

mantics. Assume that at this stage we want to introduce some bound, of sort
8 If an element e belongs to a set S ′, then this set S ′ can always be denoted by

a constructor term of the form insert(e,S), due to the axioms constraining the
constructor insert .

Page: 22 *** FIRST PUBLIC DRAFT *** 17-Sep-2003/17:54



3.3 Free Specifications 23

Nat , without fixing its value yet (this value is likely to be fixed later in some
refinements, and all that we need for now is the existence of some bound).
This is provided by the above specification Natural With Bound, where
we mix an initial interpretation for the sort Nat (defined using a free datatype
declaration in Natural) and a loose interpretation for the constant max size.
Each model of Natural With Bound will provide a fixed interpretation of
the constant max size, and all these models are captured by Natural With
Bound, which is in this sense loose. Using such loose extensions is in general
appropriate to avoid unnecessary overspecification.
spec Set Choose [ sort Elem ] =

Set [ sort Elem ]
then op choose : Set → Elem

∀S : Set • ¬(S = empty) ⇒ choose(S ) is in S
end

This example shows again the benefit of mixing initial and loose seman-
tics. Here, we want to extend sets, defined using a free constraint in Set, by a
loosely specified operation choose.9 At this stage, the only property required
for choose is to provide some element belonging to the set to which it is ap-
plied, and we do not want to specify more precisely which specific element is
to be chosen. Note that each model of Set Choose will provide a function
implementing some specific choice strategy, and that since all these interpreta-
tions of choose have to be functions, they are necessarily ‘deterministic’ (e.g.,
applied twice to the same set argument, they return the same result).

Datatypes with observer operations can be specified as generated in-
stead of free.

spec Set Generated [ sort Elem ] =
generated type Set ::= empty | insert(Elem; Set)
pred is in : Elem × Set
∀e, e ′ : Elem; S ,S ′ : Set
• ¬(e is in empty)
• e is in insert(e ′,S ) ⇔ (e = e ′ ∨ e is in S )
• S = S ′ ⇔ (∀x : Elem • x is in S ⇔ x is in S ′)

end
The above specification is an alternative to the specification Set given

on p. 21. Both Set and Set Generated define exactly the same class of
models. The former specification relies on a freeness constraint, while Set
Generated relies on the observer is in to specify when two sets are equal.
9 For the purpose of this example, we disregard the fact that choose should be un-

defined on the empty set, and we just leave this case unspecified. Partial functions
are discussed in Chap. 4.

Page: 23 *** FIRST PUBLIC DRAFT *** 17-Sep-2003/17:54



24 3 Total, Many-Sorted Specifications

Indeed, the last axiom of Set Generated expresses directly that two sets
having exactly the same elements are equal values. This axiom, together with
the first two axioms defining is in, will entail as well the expected properties
on the constructor insert (see Generated Set on p. 16). Note also that
since, in Set Generated, the predicate is in is not defined within a freeness
constraint, we specify when it holds using ‘⇔’ rather than a 1-way implication.

While a freeness constraint may be unavoidable to define a predicate, as
illustrated by Transitive Closure, the choice between relying on a free-
ness constraint to define a datatype such as Set , or using instead a generated
datatype declaration together with some observers to unambiguously deter-
mine the values of interest, is largely a matter of convenience. One may argue
that Set is more suitable for prototyping tools based on term rewriting, while
Set Generated is more suitable for theorem-proving tools.

The %def annotation is useful to indicate that some operations or
predicates are uniquely defined.

spec Set Union [ sort Elem ] =
Set [ sort Elem ]

then %def

ops ∪ : Set × Set → Set , assoc, comm, idem, unit empty ;
remove : Elem × Set → Set

∀e, e ′ : Elem; S ,S ′ : Set
• S ∪ insert(e ′,S ′) = insert(e ′,S ∪ S ′)
• remove(e, empty) = empty
• remove(e, insert(e,S )) = remove(e,S )
• remove(e, insert(e ′,S )) = insert(e ′, remove(e,S )) if ¬(e = e ′)

end
The annotation %def expresses that Set Union is a definitional extension

of Set, i.e., that each model of Set can be uniquely extended to a model of
Set Union, which means that the operations introduced in Set Union are
uniquely defined. As the %implies annotation, the %def annotation has no
impact on the semantics but merely provides useful proof obligations. The
%def annotation is especially useful to stress that the specifier’s intention is
to impose a unique interpretation of what is defined within the scope of this
annotation (once an interpretation for the part which is extended has been
chosen).

Page: 24 *** FIRST PUBLIC DRAFT *** 17-Sep-2003/17:54



3.3 Free Specifications 25

Operations can be defined by axioms involving observer operations,
instead of inductively on constructors.

spec Set Union 1 [ sort Elem ] =
Set Generated [ sort Elem ]

then %def

ops ∪ : Set × Set → Set , assoc, comm, idem, unit empty ;
remove : Elem × Set → Set

∀e, e ′ : Elem; S ,S ′ : Set
• e is in (S ∪ S ′) ⇔ (e is in S ∨ e is in S ′)
• e is in remove(e ′,S ) ⇔ (¬(e = e ′) ∧ e is in S )

end
The specification Set Union 1 is an alternative to Set Union and de-

fines exactly the same model class. While an inductive definition style was cho-
sen for the operations ‘∪’ and remove in Set Union, in Set Union 1 these
operations are defined ‘implicitly’ by characterizing their results through the
observer is in. Note that this ‘observer’ style does not prevent us providing a
unique definition of both operations, as claimed by the %def annotation.

Similarly to the discussion on the respective merits of Set and of Set
Generated, the choice between an inductive definition style and an ‘ob-
server’ definition style is partly a matter of taste. One may argue that the
‘observer’ definition style is more abstract in the sense that there is no hint
to any algorithmic computation of the so-defined operations, while the induc-
tive definition style mimics a recursive definition in a functional programming
language. Again, the inductive definition style may be more suitable for pro-
totyping tools based on term rewriting, while the ‘observer’ definition style
may be more suitable for theorem-proving tools.

Sorts declared in free specifications are not necessarily generated by
their constructors.

spec UnNatural =
free { type UnNat ::= 0 | suc(UnNat)

op + : UnNat ×UnNat → UnNat ,
assoc, comm, unit 0

∀x , y : UnNat • x + suc(y) = suc(x + y)
∀x : UnNat • ∃y : UnNat • x + y = 0 }

end
This rather peculiar example illustrates the fact that a sort defined within

a freeness constraint need not be generated by its constructors. The (unique
up to isomorphism) model of UnNatural corresponds to integers (and not

Page: 25 *** FIRST PUBLIC DRAFT *** 17-Sep-2003/17:54



26 3 Total, Many-Sorted Specifications

natural numbers as one may expect) due to the last axiom. This example
points out why in general datatypes defined using freeness constraints can
be more difficult to understand than datatypes defined using generatedness
constraints. However, the reader should be aware that the specification Un-
Natural uses a proper first-order formula with an existential quantifier in
the axioms. The specification UnNatural is provided here for explanatory
purposes only, and clearly the writing of similar specifications should be dis-
couraged. When only Horn clauses are used as axioms in a freeness constraint,
then the datatype will indeed be generated by its constructors.

Page: 26 *** FIRST PUBLIC DRAFT *** 17-Sep-2003/17:54



4

Partial Functions

Partial functions arise naturally.

Partial functions arise in a number of systems. Casl provides means for the
declaration of partial functions, the specification of their domains of definition,
and more generally the specification of system properties involving partial
functions. The aim of this chapter is to discuss and illustrate how to handle
partial functions in Casl specifications.

4.1 Declaring Partial Functions

Partial functions are declared differently from total functions.

spec Set Partial Choose [ sort Elem ] =
Generated Set [ sort Elem ]

then op choose : Set →? Elem
end

The choose function on sets is naturally a partial function, expected to be
undefined on the empty set. In Casl, a partial function is declared similarly
to a total one, but for the question mark ‘?’ following the arrow in the profile.
It is therefore quite easy to distinguish the functions declared to be total from
the ones declared to be partial.

A function declared to be partial may happen to be total in some of
the models of the specification. For instance, the above specification Set
Partial Choose does not exclude models where the function symbol choose
is interpreted by a total function, defined on all set values. Axioms will be



28 4 Partial Functions

used to specify the domain of definition of a partial function, and how to do
this is detailed later in this chapter.

A constant may also be declared to be partial, allowing its value to be
undefined in some models. Variables, however, range only over defined values.

Terms containing partial functions may be undefined, i.e., they may
not denote any value.

For instance, the (value of the) term choose(empty) may be undefined.1

Functions, even total ones, propagate undefinedness.

If the term choose(S ) is undefined for some value of S , then the term
insert(choose(S ),S ′) is undefined as well for this value of S , although insert
is a total function.

Predicates do not hold on undefined arguments.

Casl is based on classical two-valued logic. A predicate symbol is inter-
preted by a relation, and when the value of some argument term is undefined,
the application of a predicate to this term does not hold. For instance, if the
term choose(S ) is undefined, then the atomic formula choose(S ) is in S does
not hold.

Equations hold when both terms are undefined.

In Casl, equations are by default strong, which means that they hold
not only when both sides denote equal values, but also when both sides are
simultaneously undefined. For instance, let us consider the equation:

insert(choose(S ), insert(choose(S ), empty)) = insert(choose(S ), empty) .
Either choose(S ) is defined and then both sides are defined and denote equal
values due to the axioms on insert , or choose(S ) is undefined and then both
sides are undefined, and the strong equation ‘holds trivially’.
1 Note that the term choose(empty) is well-formed and therefore is a ‘correct term’.

It is its value which may be undefined. To avoid unnecessary pedantry, in the
following we will simply write that a term is undefined to mean that its value
is so. Obviously, a term with variables may be defined for some values of the
variables and undefined for other values.

Page: 28 *** FIRST PUBLIC DRAFT *** 17-Sep-2003/17:54



4.2 Specifying Domains of Definition 29

Casl provides also so-called existential equations, explained at the end of
this chapter.

Special care is needed in specifications involving partial functions.

Partial functions are intrinsically more difficult to understand and specify
than total ones. This is why special care is needed when writing the axioms
of specifications involving partial functions. The point is that an axiom may
imply the definedness of terms containing partial functions, and as a conse-
quence that these functions are total, which may not be what the specifier
intended. There are three typical cases of such situations:

• Asserting choose(S ) is in S as an axiom implies that choose(S ) is defined,
for any S . The point here is that since predicates applied to an undefined
term do not hold, in any model satisfying choose(S ) is in S , the function
choose must be total (i.e., always defined).

• Asserting remove(choose(S ), insert(choose(S ), empty)) = empty as an ax-
iom implies that choose(S ) is defined for any S , since the term empty
is always defined. To understand this, assume that choose is undefined
for some set value of S ; then the above equation cannot hold for this
value, since the undefinedness of choose(S ) implies the undefinedness of
remove(choose(S ), insert(choose(S ), empty)), giving a contradiction with
the definedness of empty . Hence, an equation between a term involving a
partial function PF and a term involving total functions only may imply
that the partial function PF is always defined.

• Asserting insert(choose(S ),S ) = S as an axiom implies that choose(S ) is
defined for any S , since a variable always denotes a defined value. This
case is indeed similar to the previous one, the only difference being that
now the right-hand side of the equation is a variable (instead of a term
involving total functions only).

Moreover, the ‘same name, same thing’ principle has a subtle side-effect re-
garding partial operations: if an operation is declared both as a total operation
and as a partial operation with the same profile (i.e. the same argument sorts
and the same result sort) then it is interpreted as a total operation in all
models of the specification.

4.2 Specifying Domains of Definition

The definedness of a term can be checked or asserted.

Page: 29 *** FIRST PUBLIC DRAFT *** 17-Sep-2003/17:54



30 4 Partial Functions

spec Set Partial Choose 1 [ sort Elem ] =
Set Partial Choose [ sort Elem ]

then • ¬(def choose(empty))
∀S : Set • def choose(S ) ⇒ choose(S ) is in S

end
A definedness assertion, written ‘def t ’, where t is a term, is a special kind

of atomic formula: it holds if and only if the value of the term t is defined.
For instance, in the above example, ¬(def choose(empty)) explicitly asserts
that choose is undefined when applied to empty . Note that this axiom does
not say anything about the definedness of choose applied to values other than
empty , which means that choose may well be undefined on those values too.
The second axiom of the above example asserts choose(S ) is in S under the
condition def choose(S ), to avoid undesired definedness induced by axioms,
as explained above.

Note that if the two axioms of the above example were to be replaced by
∀S : Set • ¬(S = empty) ⇒ choose(S ) is in S , then we could conclude that
choose(S ) is defined when S is not equal to empty , but nothing about the
undefinedness of choose(empty).

The domains of definition of partial functions can be specified exactly.

spec Set Partial Choose 2 [ sort Elem ] =
Set Partial Choose [ sort Elem ]

then ∀S : Set • def choose(S ) ⇔ ¬(S = empty)
∀S : Set • def choose(S ) ⇒ choose(S ) is in S

end
In the above example, the domain of definition of the partial function

choose is exactly specified by the axiom def choose(S ) ⇔ ¬(S = empty).

Loosely specified domains of definition may be useful.

spec Natural With Bound And Addition =
Natural With Bound

then op +? : Nat ×Nat →? Nat
∀x , y : Nat
• def (x+?y) if x + y < max size
%{ x + y < max size implies both

x < max size and y < max size }%

• def (x+?y) ⇒ x+?y = x + y
end

Page: 30 *** FIRST PUBLIC DRAFT *** 17-Sep-2003/17:54



4.2 Specifying Domains of Definition 31

In some cases, it is useful to loosely specify the domain of definition of a
partial function, as illustrated in the above example for ‘+?’, which is required
to be defined for all arguments x and y such that x + y < max size, but
may well be defined on larger natural numbers as well. The point in loose
specifications of definition domains is to avoid unnecessary constraints on the
models of the specification. For instance, the above example does not exclude a
model where ‘+?’ is interpreted by a total function (which would then coincide
with ‘+’).2

Indeed, in some cases, specifying exactly domains of definition can be con-
sidered as overspecification. In most specifications, however, one would expect
an exact specification of domains of definition, even for otherwise loosely spec-
ified functions (see, e.g., choose in Set Partial Choose 2).

Domains of definition can be specified more or less explicitly.

spec Set Partial Choose 3 [ sort Elem ] =
Set Partial Choose [ sort Elem ]

then • ¬(def choose(empty))
∀S : Set • ¬(S = empty) ⇒ choose(S ) is in S

end
Set Partial Choose 3 specifies exactly the domain of definition of

choose, but does this too implicitly, since some reasoning is needed to con-
clude that the above specification entails def choose(S ) ⇔ ¬(S = empty).
To improve the clarity of specifications, it is in general advisable to specify
definition domains as explicitly as possible, and Set Partial Choose 2 is
somehow easier to understand than Set Partial Choose 3 (both specifica-
tions define the same class of models).
spec Natural Partial Pre =

Natural Arithmetic
then op pre : Nat →? Nat

∀x , y : Nat
• ¬ def pre(0 )
• pre(suc(x )) = x

end
In the above example, one can consider that the domain of definition of pre

is (exactly) specified in an explicit enough way, since the first axiom states
exactly that pre(0 ) is undefined while the second one implies that pre is
defined for all natural numbers of the form suc(x ).
2 In this example, it is essential to choose a new name ‘+?’ for our partial addi-

tion operation. Otherwise, since ‘+’ is (rightly) declared as a total operation in
Natural With Bound, the declaration op + : Nat × Nat →? Nat would
be useless: the same name, same thing principle would lead to models with just
one, total, addition operation.

Page: 31 *** FIRST PUBLIC DRAFT *** 17-Sep-2003/17:54



32 4 Partial Functions

spec Natural Partial Subtraction =
Natural Partial Pre

then op − : Nat ×Nat →? Nat
∀x , y : Nat
• x − 0 = x
• x − suc(y) = pre(x − y)

end
The above specification is perfect from a mathematical point of view, but

is clearly not explicit enough, since there is no easy way to infer when x −y is
defined. From a methodological point of view, the following alternative version
is much better.
spec Natural Partial Subtraction 1 =

Natural Partial Pre
then op − : Nat ×Nat →? Nat

∀x , y : Nat
• def (x − y) ⇔ (y < x ∨ y = x )
• x − 0 = x
• x − suc(y) = pre(x − y)

end
The above examples clearly demonstrate why the explicit specification of

definition domains is generally advisable from a methodological point of view.
However, they also indicate that this recommendation should not be applied
in too strict a way, and that deciding whether a specification is explicit enough
or not is to some extent a matter of taste.

Partial functions are minimally defined by default in free specifica-
tions.

spec List Selectors 1 [ sort Elem ] =
List [ sort Elem ]

then free { ops head : List →? Elem;
tail : List →? List

∀e : Elem; L : List
• head(cons(e,L)) = e
• tail(cons(e,L)) = L }

end
In the above example, the given axioms imply that head and tail are de-

fined on lists of the form cons(e,L). The freeness constraint implies that these
functions are minimally defined. Since the terms head(empty) and tail(empty)
are not equated to any other term, the freeness constraint implies that these
terms are undefined, and hence that the functions head and tail are unde-
fined on empty . The situation here is similar to the fact that predicates hold
minimally in models of free specifications (see Chap. 3, p. 19).

Page: 32 *** FIRST PUBLIC DRAFT *** 17-Sep-2003/17:54



4.3 Partial Selectors and Constructors 33

spec List Selectors 2 [ sort Elem ] =
List [ sort Elem ]

then ops head : List →? Elem;
tail : List →? List

∀e : Elem; L : List
• ¬ def head(empty)
• ¬ def tail(empty)
• head(cons(e,L)) = e
• tail(cons(e,L)) = L

end
The above specification List Selectors 2 is an alternative to List

Selectors 1, both specifications define exactly the same class of models.
However, List Selectors 2 is clearly easier to understand and can be con-
sidered as technically simpler, since it involves no freeness constraint.

Operations like head and tail are usually called selectors, and Casl pro-
vides abbreviations to specify selectors in a very concise way, as we see next.

4.3 Partial Selectors and Constructors

Selectors can be specified concisely in datatype declarations, and are
usually partial.

spec List Selectors [ sort Elem ] =
free type List ::= empty | cons(head :? Elem; tail :? List)

end
The above free datatype declaration introduces, in addition to the con-

structors empty and cons, two partial selectors head and tail yielding the
respective arguments of the constructor cons. Hence, this free datatype decla-
ration with selectors has exactly the same effect as the ordinary free datatype
declaration free type List ::= empty | cons(Elem; List), together with
the operation declarations and axioms of List Selectors 2 (i.e., List
Selectors and List Selectors 2 define exactly the same class of models).
The following example is similar in spirit.
spec Natural Suc Pre =

free type Nat ::= 0 | suc(pre :? Nat)
end

Page: 33 *** FIRST PUBLIC DRAFT *** 17-Sep-2003/17:54



34 4 Partial Functions

Selectors are usually total when there is only one constructor.

spec Pair [ sort Elem1 ] [ sort Elem2 ] =
free type Pair ::= pair(first : Elem1 ; second : Elem2 )

end
While selectors are usually partial operations when there is more than one

alternative in the corresponding datatype declaration, they can be total, and
this is generally the case when there is only one constructor, as in the above
example. The free datatype declaration entails in particular axioms asserting
that first and second yield the respective arguments of the constructor pair
(i.e., first(pair(e1 , e2 )) = e1 and second(pair(e1 , e2 )) = e2 ).

Constructors may be partial.

spec Part Container [ sort Elem ] =
generated type

P Container ::= empty | insert(Elem; P Container)?
pred addable : Elem × P Container
vars e, e ′ : Elem; C : P Container
• def insert(e,C ) ⇔ addable(e,C )
pred is in : Elem × P Container
• ¬(e is in empty)
• (e is in insert(e ′,C ) ⇔ (e = e ′ ∨ e is in C )) if addable(e ′,C )

end
The intention in the above example is to define a reusable specification of

partial containers. The insert constructor is specified as a partial operation,
defined if some condition on both the element e to be added and the container
C to which the element is to be added holds. This condition is abstracted
here in a predicate addable, so far left unspecified. Later on, instantiations
of the Part Container specification can be adapted to specific purposes by
extending them with axioms defining addable.

The above generated datatype declaration abbreviates as usual the dec-
laration of a sort P Container , a constant constructor empty , and a partial
constructor insert : Elem ×P Container →? P Container . It also entails the
corresponding generatedness constraint.

Page: 34 *** FIRST PUBLIC DRAFT *** 17-Sep-2003/17:54



4.4 Existential equality 35

4.4 Existential equality

Existential equality involves the definedness of both terms as well as
their equality.

spec Natural Partial Subtraction 2 =
Natural Partial Subtraction 1

then ∀x , y : Nat • y − x e= z − x ⇒ y = z
%{ y − x = z − x ⇒ y = z would be wrong,

def (y − x) ∧ def (z − x) ∧ y − x = z − x ⇒ y = z
is correct, but better abbreviated in the above axiom }%

end
An existential equation t1 e= t2 is equivalent to def (t1 ) ∧ def (t2 ) ∧

t1 = t2 , so it holds if and only if both terms t1 and t2 are defined and denote
the same value.

Note that while a trivial strong equation of the form t = t always holds,
this is not the case for existential equations. For instance, the trivial existential
equation x −y e= x −y does not hold, since the term x −y may be undefined.

In general consequences of undefinedness are undesirable. Hence a con-
ditional equation of the form t1 = t2 ⇒ t3 = t4 is often wrong if t1 and
t2 may be undefined, because the equality t3 = t4 would be implied when
both t1 and t2 are undefined (since then the strong equation t1 = t2 would
hold). The above specification provides a typical example of such a situation:
y − x = z − x ⇒ y = z would be wrong, since it would entail that any two
arbitrary values y and z are equal (it is enough to choose an x greater than
y and z to make y − x and z − x both undefined).

Therefore, to avoid such undesirable consequences of undefinedness, it
is advisable to use existential equations instead of strong equations in the
premises of conditional equations involving partial operations. An alternative
is to add the relevant definedness assertions explicitly to the equations in the
premises.

Page: 35 *** FIRST PUBLIC DRAFT *** 17-Sep-2003/17:54





5

Subsorting

Subsorts and supersorts are often useful in Casl specifications.

Many examples naturally involve subsorts and supersorts. Casl provides
means for the declaration of a sort as a subsort of another one when the values
of the subsort are regarded a special case of those in the other sort. The aim of
this chapter is to discuss and illustrate how to handle subsorts and supersorts
in Casl specifications.

5.1 Subsort Declarations and Definitions

Subsort declarations directly express relationships between carrier sets.

spec Generic Monoid 1 [ sort Elem ] =
sorts Elem < Monoid
ops 1 : Monoid ;

∗ : Monoid ×Monoid → Monoid , assoc, unit 1
end

The above example declares the sort Elem to be a subsort of Monoid , or,
symmetrically, the sort Monoid to be a supersort of Elem. Hence the spec-
ification Generic Monoid 1 is quite similar to the specification Generic
Monoid given in Chap. 3, p. 11, the only difference being the use of a subsort-
ing relation between Elem and Monoid instead of an explicit inj operation to
embed values of sort Elem into values of sort Monoid .

In contrast to most other algebraic specification languages providing sub-
sorting facilities, subsorts in Casl are interpreted by arbitrary embeddings



38 5 Subsorting

between the corresponding carrier sets. In the above example, the subsort
declaration Elem < Monoid induces an implicit (unnamed) embedding from
the carrier of the sort Elem into the carrier of the sort Monoid . Thus the
main difference between Generic Monoid and Generic Monoid 1 is that
the embedding is explicit and named inj in Generic Monoid while it is
implicit in Generic Monoid 1.

Note that interpreting subsorting relations by embeddings rather than
inclusions does not exclude models where the (carrier of the) subsort hap-
pens to be a subset of (the carrier of) the supersort, and the embedding a
proper inclusion. Embeddings are just slightly more general than inclusions,
and technically not much more complex.

Operations declared on some sort are automatically inherited by its
subsorts.

spec Vehicle =
Natural

then sorts Car ,Bicycle < Vehicle
ops max speed : Vehicle → Nat ;

weight : Vehicle → Nat ;
engine capacity : Car → Nat

end
The above example introduces three sorts, Car , Bicycle and Vehicle, and

declares both Car and Bicycle to be subsorts of Vehicle. A subsort declaration
entails that any term of a subsort is also a term of the supersort, so here, any
term of sort Car is also a term of sort Vehicle, and we can apply the operations
max speed and weight to it (and similarly for a term of sort Bicycle).

In other words, with the single declaration max speed : Vehicle → Nat ,
we get the effect of having declared also two other operations, max speed :
Car → Nat and max speed : Bicycle → Nat .1

Obviously, operations that are only meaningful for some subsort should
be defined at the appropriate level. This is the case here for the operation
engine capacity , which is only relevant for cars, and therefore defined with
the appropriate profile exploiting the subsort Car .

Inheritance applies also for subsorts that are declared afterwards.

spec More Vehicle = Vehicle then sorts Boat < Vehicle end

1 Strictly speaking, there is just one max speed operation in the signature of Ve-
hicle.

Page: 38 *** FIRST PUBLIC DRAFT *** 17-Sep-2003/17:54



5.1 Subsort Declarations and Definitions 39

The order in which a subsort and an operation on the supersort are de-
clared is irrelevant. In More Vehicle, we introduce a further subsort Boat
of Vehicle, and as a consequence, we again get the effect of having both
max speed and weight available for boats, as it was already the case for cars
and bikes.

Subsort membership can be checked or asserted.

spec Speed Regulation =
Vehicle

then ops speed limit : Vehicle → Nat ;
car speed limit , bike speed limit : Nat

∀v : Vehicle
• v ∈ Car ⇒ speed limit(v) = car speed limit
• v ∈ Bicycle ⇒ speed limit(v) = bike speed limit

end
A subsort membership assertion, written ‘t ∈ s’, where t is a term and s

is a sort, is a special kind of atomic formula: it holds if and only if the value
of the term t is the embedding of some value of sort s. For instance, in the
above example, v ∈ Car holds if and only if v denotes a vehicle which is the
embedding of a car value. Note that ‘∈’ is input as ‘in’, but displayed as ‘∈’.

Datatype declarations can involve subsort declarations.

The specification:
sorts Car , Bicycle, Boat
type Vehicle ::= sort Car | sort Bicycle | sort Boat

is equivalent to the declaration sorts Car ,Bicycle,Boat < Vehicle. There
may be some values of sort Vehicle which are not the embedding of any value
of sort Car , Bicycle, or Boat . Intuitively, the above datatype declaration just
means that Vehicle ‘contains’ the union (which may not be disjoint) of Car ,
Bicycle and Boat . Note that the subsorts used in the datatype declaration
must already be declared beforehand.

The specification:
sorts Car , Bicycle, Boat
generated type Vehicle ::= sort Car | sort Bicycle | sort Boat

is more restrictive, since the generatedness constraint implies that any value
of the supersort Vehicle must be the embedding of some value of the declared
subsorts Car , Bicycle and Boat . Intuitively, the above datatype declaration
means that Vehicle ‘is exactly’ the union (which again may not be disjoint)
of Car , Bicycle and Boat . In particular, this declaration prevents subsequent

Page: 39 *** FIRST PUBLIC DRAFT *** 17-Sep-2003/17:54



40 5 Subsorting

introduction of further subsorts (unless the values of the new subsorts are
intended to correspond to some values of the already declared subsorts). For
instance, if we were now to extend the above specification with sorts Plane <
Vehicle, all values of sort Plane would have to correspond to Car , Bicycle or
Boat values (which is presumably not what we were intending).

The specification:
sorts Car , Bicycle, Boat
free type Vehicle ::= sort Car | sort Bicycle | sort Boat

entails the same generatedness constraint as in the previous example, and,
moreover, the freeness constraint requires that there is no ‘common’ value in
the subsorts of Vehicle. Intuitively, the above declaration means that Vehicle
‘is exactly’ the disjoint union of Car , Bicycle and Boat . This means in par-
ticular that the introduction of a further common subsort of both Car and
Boat (say, sorts Amphibious < Car ,Boat) is impossible.

Subsorts may also arise as classifications of previously specified values,
and their values can be explicitly defined.

spec Natural Subsorts =
Natural Arithmetic

then pred even : Nat
• even(0 )
• ¬ even(1 )
∀n : Nat • even(suc(suc(n))) ⇔ even(n)
sort Even = {x : Nat • even(x )}
sort Prime = {x : Nat • ∀y , z : Nat • x = y ∗ z ⇒ y = 1 ∨ z = 1}

end
The subsort definition sort Even = {x : Nat • even(x )} is equivalent to

the declaration of a subsort Even of Nat (i.e., sorts Even < Nat) together
with the assertion ∀x : Nat • x ∈ Even ⇔ even(x ).

The main advantage of defining the subsort Even in addition to the predi-
cate even is that we may then use the subsort when declaring operations (e.g.,
op times2 : Nat → Even) and variables.

The subsort definition for Prime above illustrates that it is not always
necessary to introduce and define an explicit predicate characterizing the val-
ues of the subsort: the formula used in a subsort definition is not restricted
to predicate applications. In fact whenever a (unary) predicate p on a sort s
could be defined by pred p(x : s) ⇔ f for some formula f , we may instead
define sort P = {x : s • f }, and use sort membership assertions t ∈ P in-
stead of predicate applications p(t), avoiding the introduction of the predicate
p altogether.

The following example is a further illustration of subsort definitions. We
declare a subsort Pos of Nat and ensure that values of Pos correspond to

Page: 40 *** FIRST PUBLIC DRAFT *** 17-Sep-2003/17:54



5.2 Subsorts and Overloading 41

non-zero values of Nat . (Several alternative ways of specifying the sort Pos
will be considered later in this section.)
spec Positive =

Natural Partial Pre
then sort Pos = {x : Nat • ¬(x = 0 )} end

5.2 Subsorts and Overloading

It may be useful to redeclare previously defined operations, using the
new subsorts introduced.

spec Positive Arithmetic =
Positive

then ops 1 : Pos;
suc : Nat → Pos;

+ , ∗ : Pos × Pos → Pos;
+ : Pos ×Nat → Pos;
+ : Nat × Pos → Pos

end
Since, in Positive, we have defined Pos as a subsort of Nat , all operations

defined on natural numbers, like suc, ‘+’ and ‘∗’ (see Natural Arithmetic
in Chap. 3, p. 20, which is extended into Natural Partial Pre in Chap. 4,
p. 31), are automatically inherited by Pos and can be applied to terms of sort
Pos. However, according to their declarations, these operations, when applied
to terms of sort Pos, yield results of sort Nat . To indicate that these results
always correspond to values in the subsort Pos, it is necessary to explicitly
overload these operations by similar ones with the appropriate profiles. This is
the aim of the first three lines of operation declarations in the above example.
The last two operation declarations further overload ‘+’ to specify that ‘+’
also yields a result of sort Pos as soon as one of its arguments is a term of
sort Pos.

It is quite important to understand that the above overloading declarations
are enough to achieve the desired effect, and that no axioms are necessary.
The fundamental rule is that, in models of Casl specifications with subsort-
ing, embedding and overloading have to be compatible: embeddings commute
with overloaded operations. This can be rephrased into the following intuitive
statement: If terms look the same, then they have the same value in the same
sort. Thus, in our example, the value of ‘1 + 1 ’ is the same in Nat whatever
the combination of the overloaded constant ‘1 ’ and operation ‘+’ is chosen,
and there is no need for any axiom to ensure this, since this is implicit in the
semantics of subsorting.

Page: 41 *** FIRST PUBLIC DRAFT *** 17-Sep-2003/17:54



42 5 Subsorting

5.3 Subsorts and Partiality

A subsort may correspond to the definition domain of a partial func-
tion.

spec Positive Pre =
Positive Arithmetic

then op pre : Pos → Nat end
Since we have introduced the subsort Pos of non-zero natural numbers, it

makes sense to overload the partial pre operation on Nat by a total one on Pos,
as illustrated above, to emphasize the fact that indeed pre is a total operation
on its definition domain. Note again that no further axiom is necessary, and
that the semantics of subsorting will ensure that both the partial and total
pre operations will give the same value when applied to the same non-zero
value.2

Using subsorts may avoid the need for partial functions.

spec Natural Positive Arithmetic =
free types Nat ::= 0 | sort Pos;

Pos ::= suc(pre : Nat)
ops 1 : Pos = suc(0 );

+ : Nat ×Nat → Nat , assoc, comm, unit 0 ;
∗ : Nat ×Nat → Nat , assoc, comm, unit 1 ;
+ , ∗ : Pos × Pos → Pos;
+ : Pos ×Nat → Pos;
+ : Nat × Pos → Pos

∀x , y : Nat
• x + suc(y) = suc(x + y)
• x ∗ 0 = 0
• x ∗ suc(y) = x + (x ∗ y)

end
It is indeed tempting to exploit subsorting to avoid the declaration of par-

tial functions, as illustrated by the above Natural Positive Arithmetic
specification, which is an alternative to Positive Pre and avoids the intro-
duction of the partial predecessor operation. Note that in the above example,
we have fully used the facilities for defining free datatypes with subsorts, and
2 This should not be confused with the same name, same meaning principle, which

does not apply here: the total pre and the partial one have different profiles, and
hence are just overloaded.

Page: 42 *** FIRST PUBLIC DRAFT *** 17-Sep-2003/17:54



5.3 Subsorts and Partiality 43

in particular non-linear visibility for the declared sorts, which allows us to
refer to the subsort Pos in the first line before defining it in the second one.

Avoiding the introduction of the partial predecessor operation has some
drawbacks, since some previously well-formed terms (with defined values) have
now become ill-formed, e.g., pre(pre(suc(1 ))), where pre(suc(1 )) is a (well-
formed) term of sort Nat but pre expects an argument of sort Pos. (The fact
that pre(suc(1 )) = 1 is a consequence of the specified axioms and that 1 is
of sort Pos does not of course entail that pre(suc(1 )) is of sort Pos too, since
axioms are disregarded when checking for well-formedness.) See below for
possible workarounds using explicit casts. Moreover, it is not always possible,
or easy, to avoid the declaration of partial operations by using appropriate
subsorts—just consider, e.g., subtraction on natural numbers.

As a last remark on this issue, the reader should be aware of the fact that,
while overloading a partial operation on a supersort (say, pre on Nat) with a
total one on a subsort (pre on Pos) is fine, overloading a total operation on
a supersort with a partial one on a subsort forces the partial operation to be
total, and hence, the latter would be better declared as total too.3

Casting a term from a supersort to a subsort is explicit and the value
of the cast may be undefined.

In Casl, a term of a subsort can always be considered as a term of any
supersort, and embeddings are implicit. On the contrary, casting a term from
a supersort to a subsort is explicit, and since casting is essentially a partial op-
eration, the resulting casted term may not denote any value. Casting a term t
to a sort s is written t as s. Consider the term pre( pre(suc(1 )) as Pos ) which
is well-formed in the context of the Natural Positive Arithmetic speci-
fication. This term does indeed denote a value, but the value is not a positive
natural number, so the value of the term pre( pre(suc(1 )) as Pos ) as Pos is
undefined.

Note that def (t as s) is equivalent to t ∈ s, for a well-formed term t of a
supersort of s.

3 Overloading a total cons on List with a partial cons on the subsort OrderedList
would either lead to a total cons operation on OrderedList , or to an inconsis-
tent specification, depending on how the definition domain of the partial cons is
specified.

Page: 43 *** FIRST PUBLIC DRAFT *** 17-Sep-2003/17:54



44 5 Subsorting

Supersorts may be useful when generalizing previously specified sorts.

spec Integer Arithmetic 1 =
Natural Positive Arithmetic

then free type Int ::= sort Nat | − (Pos)
ops + : Int × Int → Int , assoc, comm, unit 0 ;

− : Int × Int → Int ;
∗ : Int × Int → Int , assoc, comm, unit 1 ;

abs : Int → Nat
∀x , y : Int ; n : Nat ; p, q : Pos
• suc(n) + (−1 ) = n
• suc(n) + (−suc(q)) = n + (−q)
• (−p) + (−q) = −(p + q)
• x − 0 = x
• x − p = x + (−p)
• x − (−q) = x + q
• n ∗ (−q) = −(n ∗ q)
• (−p) ∗ (−q) = p ∗ q
• abs(n) = n
• abs(−p) = p

end
The specification Integer Arithmetic 1 extends Natural Positive

Arithmetic and defines the sort Int as a supersort of the sort Nat . As
a consequence, terms which have two parses in sort Int , such as suc(0 ), are
required by the semantics of subsorting to have the same value for both parses,
and they can therefore be used without explicit disambiguation.

The situation would be quite different if one would be using a combination
of Natural Arithmetic and Integer Arithmetic (see Chap. 3), say by
extending both in a structured specification (see the next chapter for more
details on structured specifications). In such a combination, a term such as
suc(0 ) would have two parses, one in sort Nat and one in sort Int ; in the
absence of any subsort declaration relating Nat and Int , and hence of any
implicit embedding, this term would then be ambiguous, and would require
explicit disambiguation to become a well-formed term.

Page: 44 *** FIRST PUBLIC DRAFT *** 17-Sep-2003/17:54



5.3 Subsorts and Partiality 45

Supersorts may also be used for extending the intended values by new
values representing errors or exceptions.

spec Set Error Choose [ sort Elem ] =
Generated Set [ sort Elem ]

then sorts Elem < ElemError
op choose : Set → ElemError
pred is in : ElemError × Set
∀S : Set • ¬(S = empty) ⇒ choose(S ) ∈ Elem ∧ choose(S ) is in S

end
The above specification Set Error Choose is another variant of the

various specifications of sets equipped with a partial choose function given in
Chap. 4. This variant avoids the declaration of a partial function choose by
using instead a supersort of Elem, namely ElemError , as the target sort of
choose. The idea here is that values of ElemError which are not (embeddings
of) values of Elem represent errors, e.g., the application of choose to the
empty set. Note that to obtain the desired effect, it is necessary to explicitly
state that choose(S ) ∈ Elem when S is not the empty set; moreover, to make
the term choose(S ) is in S well-formed, we have to explicitly overload the
predicate is in : Elem × Set provided by Generated Set by a predicate

is in : ElemError × Set as shown above. This example demonstrates that
avoiding partial functions by the use of ‘error supersorts’ is not as innocuous
as it may seem, since in general one would need to enlarge the signatures
considerably by adding all required overloadings.
spec Set Error Choose 1 [ sort Elem ] =

Generated Set [ sort Elem ]
then sorts Elem < ElemError

op choose : Set → ElemError
∀S : Set • ¬(S = empty) ⇒ (choose(S ) as Elem) is in S

end
The specification Set Error Choose 1 above is a last attempt to avoid

the use of partial functions; again, we introduce a supersort ElemError as
in Set Error Choose, but to avoid the need for overloading the predicate
is in, we explicitly cast the term choose(S ) in (choose(S ) as Elem) is in S .
Note that when, for some value of S , (choose(S ) as Elem) is in S holds, this
implies that choose(S ) as Elem is defined, and hence that choose(S ) ∈ Elem
holds as well. This last version may seem preferable to the previous one.
However, one should be aware that here, despite our attempt to avoid the use
of partial functions, we rely on explicit casts, hence on terms that may not
denote values: partiality has not been eliminated, the partial functions have
merely been factorized as compositions of total functions with casting.

Page: 45 *** FIRST PUBLIC DRAFT *** 17-Sep-2003/17:54





6

Structuring Specifications

Large and complex specifications are easily built out of simpler ones
by means of (a small number of) specification-building operations.

In the previous chapters, we have focussed attention on basic specifications
and detailed how to use the various constructs of Casl to write meaningful,
but relatively simple, specifications. The aim of this chapter is to discuss and
illustrate how to assemble simple pieces of specifications into more complex,
structured ones. In particular we explain how to extend specifications, make
the union of several specifications, as well as how to rename or hide symbols
when assembling specifications. Parametrization and instantiation of generic
specifications are explained in the next chapter.

6.1 Union and Extension

Union and extension can be used to structure specifications.

spec List Set [ sort Elem ] =
List Selectors [ sort Elem ] and
Generated Set [ sort Elem ]

then op elements of : List → Set
∀e : Elem; L : List
• elements of empty = empty
• elements of cons(e,L) = {e} ∪ elements of L

end



48 6 Structuring Specifications

The above example shows how to make the union (expressed by ‘and’) of
two specifications List Selectors (see Chap. 4, p. 33) and Generated Set
(see Chap. 3, p. 16), and then further extend this union by some operation and
axioms (using ‘then’). Union and extension are the most used specification-
building operations. In contrast with extension, whose purpose is to extend
a given piece of specification by new symbols and axioms, union is generally
used to combine two self-contained specifications. Union of specifications is
obviously an associative and commutative operation.

All symbols introduced by a specification are by default exported by it
and visible in its extensions or in its unions with other specifications. (Vari-
ables are not considered as symbols, and never exported.) Remember also the
‘same name, same thing ’ principle: in the above List Set specification, it is
therefore the same sort Elem which is used to construct both lists and sets.

Arbitrary parts of specifications can have initial semantics.

spec List Choose [ sort Elem ] =
List Selectors [ sort Elem ] and
Set Partial Choose 2 [ sort Elem ]

then ops elements of : List → Set ;
choose : List →? Elem

∀e : Elem; L : List
• elements of empty = empty
• elements of cons(e,L) = {e} ∪ elements of L
• def choose(L) ⇔ ¬(L = empty)
• choose(L) = choose(elements of L)

end

spec Set to List [ sort Elem ] =
List Set [ sort Elem ]

then op list of : Set → List
∀S : Set • elements of (list of S ) = S

end
The specification List Choose is built as an extension of the union of

List Selectors and Set Partial Choose 2 (see Chap. 4, p. 30). This
extension introduces an operation elements of (as in List Set) and a partial
operation choose, which are defined by some axioms. In List Selectors,
lists are defined by a free datatype construct (with selectors), hence have a
free interpretation. Set Partial Choose 2 is itself an extension of (Set
Partial Choose which is an extension of) Generated Set, where sets are
defined by a generated datatype construct. However, note that as discussed in
Chap. 3, p. 16, the apparently loose specification Generated Set is in fact
not so. Moreover, the choose partial function on sets is loosely defined in Set
Partial Choose 2, and so is therefore also the choose partial function on

Page: 48 *** FIRST PUBLIC DRAFT *** 17-Sep-2003/17:54



6.2 Renaming 49

lists defined in List Choose. It is easy to see that the operation elements of
is uniquely defined. The sort Elem has of course a loose interpretation.

Thus the specification List Choose combines parts with a free interpre-
tation, parts with a generated interpretation, and parts with a loose interpre-
tation. The situation is similar to that with List Set (and Set to List),
where the operation list of is loosely defined with the help of the operation
elements of .

6.2 Renaming

Renaming may be used to avoid unintended name clashes, or to adjust
names of sorts and change notations for operations and predicates.

spec Stack [ sort Elem ] =
List Selectors [ sort Elem ] with sort List 7→ Stack ,

ops cons 7→ push onto ,
head 7→ top,
tail 7→ pop

end
While the ‘same name, same thing’ principle has proven to be appropri-

ate in numerous examples given in the previous chapters and above, it may
still happen that, when combining specifications, this principle leads to unin-
tended name clashes. An unintended name clash arises for instance when one
combines two specifications that both export the same symbol (with the same
profile in case of an operation or a predicate), while this symbol is not intended
to denote the same ‘thing’ in the combination. In such cases, it is necessary
to explicitly rename some of the symbols exported by the specifications put
together in order to avoid the unintended name clashes.

When reusing a named specification, it may be convenient to rename some
of its symbols; moreover, in the case of operation or predicate symbols, one
may also change the style of notation. This is illustrated in the specifica-
tion Stack above which is obtained as a renaming of the specification List
Selectors. First, the sort List is renamed into Stack , then the operation
cons is renamed into a mixfix operation push onto , and finally the selec-
tors head and tail are renamed into top and pop, respectively. Note that ‘ 7→’
is input as ‘|->’.

The user only needs to indicate how symbols provided by the renamed
specification are mapped to new symbols. A signature morphism is auto-
matically deduced from this ‘symbol map’. For instance, the signature mor-
phism inferred from the symbol map specified in Stack maps the operation
symbol cons : Elem × List → List to the operation symbol push onto :

Page: 49 *** FIRST PUBLIC DRAFT *** 17-Sep-2003/17:54



50 6 Structuring Specifications

Elem × Stack → Stack : not only the operation name is changed, but also its
profile according to the renaming of List into Stack .

In a symbol map, one can qualify the symbol to be renamed by its kind,
using the keywords sort, op, and pred (or their plural forms), as appropriate;
this is illustrated in Stack above. Qualification in symbol maps is generally
recommended since it improves their readability.

While it is possible to change the syntax of an operation or predicate
symbol, as illustrated above for cons mapped to push onto , it is not possible
to change the order of the arguments of the renamed operation or predicate.

In general, one does not need to rename all the symbols provided by the
specification to be renamed. In the symbol map describing the intended re-
naming, it is indeed enough to mention only the symbols that change. By
default, any symbol not explicitly mentioned is left unchanged (although its
profile may be updated according to the renaming specified for some sorts).
This is illustrated here in Stack where there is no need to rename the constant
empty , which will therefore have the same name for both lists and stacks. How-
ever, the induced signature morphism maps the constant symbol empty : List
into the constant symbol empty : Stack .

One can also explicitly rename a symbol to itself, say by writing ‘empty 7→
empty ’, or just mention it without providing a new name, as in ‘with empty ’,
which is equivalent to ‘with empty 7→ empty ’.

By default, overloaded symbols are renamed simultaneously. For instance,
in Integer Arithmetic 1 with + 7→ plus, all the five overloaded infix
‘+’ operations exported by Integer Arithmetic 1 (see Chap. 5, p. 44) are
renamed into five plus operations, with a functional syntax and the appropri-
ate profiles.

It is possible as well to reduce the overloading, or to specifically rename
one of the overloaded symbols, by specifying its profile in the symbol map. For
instance, in Integer Arithmetic 1 with + : Pos×Pos → Pos 7→ plus,
only the addition of two positive natural numbers is renamed into plus.

When combining specifications, origins of symbols can be indicated.

spec List Set 1 [ sort Elem ] =
List Selectors [ sort Elem ] with empty , cons

and Generated Set [ sort Elem ] with empty , { }, ∪
then op elements of : List → Set

∀e : Elem; L : List
• elements of empty = empty
• elements of cons(e,L) = {e} ∪ elements of L

end
Since, as explained above, ‘with empty , cons’ means ‘with empty 7→

empty , cons 7→ cons’, identity renaming can be used just to emphasize the

Page: 50 *** FIRST PUBLIC DRAFT *** 17-Sep-2003/17:54



6.3 Hiding 51

fact that a given specification exports some symbols. This is illustrated in
the specification List Set 1 above, which is quite similar to List Set, but
for the fact that here we emphasize that List Selectors exports in partic-
ular the operations empty and cons, and that Generated Set exports in
particular the operations empty , ‘{ }’, and ‘∪’.

6.3 Hiding

Auxiliary symbols used in structured specifications can be hidden.

spec Natural Partial Subtraction 3 =
Natural Partial Subtraction 1 hide suc, pre

end

spec Natural Partial Subtraction 4 =
Natural Partial Subtraction 1
reveal Nat , 0 , 1 , + , − , ∗ , <

end
When writing large specifications, it is quite frequent to rely on auxiliary

operations (and predicates) to specify the operations (and predicates) of in-
terest. Once these are defined, the auxiliary operations are no longer needed,
and are better removed from the exported signature of the specification, which
should include only the symbols that were required to be specified. This is the
purpose of the hide construct.

Consider for instance the specification Natural Partial Subtraction
1 given in Chap. 4, p. 32. Once addition and subtraction are defined, the
two basic operations suc and pre are no longer needed (since suc(x ) is more
conveniently written x + 1 , and similarly pre(x ) is expressed by x − 1 ), and
can therefore be hidden. This is illustrated by the specification Natural
Partial Subtraction 3 given above.

Depending on the relative proportion of symbols to be hidden or not, in
some cases it may be more convenient to explicitly list the symbols to be
exported by a specification rather than those to be hidden. The construct
‘reveal’ can be used for that purpose, and ‘hide’ and ‘reveal’ are just two
symmetric constructs to achieve the same effect. The use of ‘reveal’ is il-
lustrated in Natural Partial Subtraction 4 above, and the reader can
convince himself that both Natural Partial Subtraction 3 and Natu-
ral Partial Subtraction 4 export exactly the same symbols. However,
in this case the first specification is clearly more concise. A more convincing
example of the use of ‘reveal’ is provided by the following example:
spec Partial Order 2 = Partial Order reveal pred ≤ end

Page: 51 *** FIRST PUBLIC DRAFT *** 17-Sep-2003/17:54



52 6 Structuring Specifications

Similar rules to the ones explained for renaming apply to the hide and
reveal constructs. One can qualify a symbol to be hidden or revealed by its
kind (sort, op or pred), and by default, overloaded symbols are hidden (or
revealed) simultaneously.

Note that hiding a sort entails hiding all the operations or predicates that
use it in their profile. Similarly, revealing an operation or a predicate entails
revealing all the sorts involved in its profile. For instance, in the specification
Partial Order 2 above, revealing the predicate ‘≤’ entails revealing also
the sort Elem.

As a consequence, hiding sorts should be used with care in the presence
of subsorts. For instance, hiding the sort Nat in the specification Positive
given in Chap. 5, p. 41, leads to a specification of positive natural numbers
with a sort Pos which has the expected carrier set, but without any operation
or predicate available on it. Hiding the sort Nat in the specification Posi-
tive Arithmetic (see Chap. 5, p. 41) may seem more appropriate, but one
should still note that the predicate ‘<’ is no longer available in Positive
Arithmetic hide sort Nat .

As a last remark, note that when convenient, reveal can be combined
with a renaming of (some of) the exported symbols. For instance, in the
above Partial Order 2 specification, we could have written ‘reveal pred
≤ 7→ leq ’ if, in addition to a restriction of the signature of Partial

Order, we wanted to rename the infix predicate ‘ ≤ ’ into a predicate leq
with a functional notation.

6.4 Local Symbols

Auxiliary symbols can be made local when they do not need to be ex-
ported.

spec List Order [Total Order with sort Elem, pred < ] =
List Selectors [ sort Elem ]

then local op insert : Elem × List → List
∀e, e ′ : Elem; L : List
• insert(e, empty) = cons(e, empty)
• insert(e, cons(e ′,L)) = cons(e ′, insert(e,L)) when e ′ < e

else cons(e, cons(e ′,L))
within op order : List → List

∀e : Elem; L : List
• order(empty) = empty
• order(cons(e,L)) = insert(e, order(L))

end

Page: 52 *** FIRST PUBLIC DRAFT *** 17-Sep-2003/17:54



6.4 Local Symbols 53

In many cases, auxiliary symbols are introduced for immediate use, and
they do not need to be exported by the specification where they are declared.
Then the best is to limit the scope of the declarations of such auxiliary symbols
by using the ‘local . . . within . . . ’ construct. This is illustrated in the above
specification List Order, where the insert operation is introduced only for
the purpose of the axiomatization of order . The operation insert has its scope
limited to the part that follows ‘within’, and is therefore not exported by the
specification List Order.

It is generally advisable to ensure that auxiliary symbols are declared in
local parts of specifications.

Care is needed with local sort declarations.

spec List Order Sorted
[Total Order with sort Elem, pred < ] =
List Selectors [ sort Elem ]

then local pred is sorted : List
∀e, e ′ : Elem; L : List
• empty is sorted
• cons(e, empty) is sorted
• cons(e, cons(e ′,L)) is sorted ⇔

(cons(e ′,L) is sorted ∧ ¬(e ′ < e))
within op order : List → List

∀L : List • order(L) is sorted
end

The specification List Order Sorted above is a variant of the specifi-
cation List Order illustrating again the use of the ‘local . . . within . . . ’
construct – this time to declare an auxiliary predicate. (Actually, the two
specifications are not equivalent, since List Order Sorted is much looser
and only requires that order(L) is a sorted list, but perhaps not with the same
elements as L.)
spec Wrong List Order Sorted

[Total Order with sort Elem, pred < ] =
List Selectors [ sort Elem ]

then local pred is sorted : List
sort SortedList = {L : List • is sorted(L)}
∀e, e ′ : Elem; L : List
• empty is sorted
• cons(e, empty) is sorted
• cons(e, cons(e ′,L)) is sorted ⇔

(cons(e ′,L) is sorted ∧ ¬(e ′ < e))
within op order : List → SortedList

end

Page: 53 *** FIRST PUBLIC DRAFT *** 17-Sep-2003/17:54



54 6 Structuring Specifications

Note that the above specification Wrong List Order Sorted, which
may at first glance be considered as a slight variant of List Order Sorted,
is illegal : order is exported by Wrong List Order Sorted, and hence all
sorts occurring in its profile should also be exported, which cannot be, since
the sort SortedList is auxiliary. So, if the specifier really intends to insist
that the result sort of order is SortedList , this subsort should be exported, as
shown below.
spec List Order Sorted 2

[Total Order with sort Elem, pred < ] =
List Selectors [ sort Elem ]

then local pred is sorted : List
∀e, e ′ : Elem; L : List
• empty is sorted
• cons(e, empty) is sorted
• cons(e, cons(e ′,L)) is sorted ⇔

(cons(e ′,L) is sorted ∧ ¬(e ′ < e))
within sort SortedList = {L : List • is sorted(L)}

op order : List → SortedList
end

In fact the ‘local . . . within . . . ’ construct abbreviates a combination of
extension and explicit hiding. In List Order Sorted 2 above, for instance,
it abbreviates:
. . . { pred is sorted : List

∀e, e ′ : Elem; L : List
• empty is sorted
• cons(e, empty) is sorted
• cons(e, cons(e ′,L)) is sorted ⇔

(cons(e ′,L) is sorted ∧ ¬(e ′ < e))
then sort SortedList = {L : List • is sorted(L)}

op order : List → SortedList
}
hide is sorted

The main advantage of using the ‘local . . . within . . . ’ construct is that
the symbol(s) to be hidden are left implicit. The convenience of this generally
outweighs the danger of overlooking a locally-declared sort that is needed for
the profile of an exported symbol. In any case, Casl allows both styles, and
users can simply choose the one they prefer.

Page: 54 *** FIRST PUBLIC DRAFT *** 17-Sep-2003/17:54



6.5 Named Specifications 55

6.5 Named Specifications

Naming a specification allows its reuse.

It is in general advisable to define as many named specifications as felt
appropriate, since this improves the reusability of specifications: a named
specification can easily be reused by referring to its name.

Not only do the names serve as abbreviations when writing specifications,
they also make it easy for readers to notice reuse. Moreover, when the name
of a specification is aptly chosen, e.g., Natural Arithmetic, readers may
well be able to guess its signature – and perhaps even the specified axioms –
from the name itself. (In Chap. 9, we shall see how named specifications and
other items can be collected in libraries, and particular versions of them made
available for use over the Internet.)

References to named specifications are particularly convenient for specifi-
cations structured using unions and extensions, where verbatim insertion of
un-named specifications would tend to obscure the structure. When needed,
the signature of a referenced specification can be adjusted through appropri-
ate combinations of renaming and hiding (although this should not often be
necessary, provided that auxiliary symbols are made local, as explained in the
previous section).

Page: 55 *** FIRST PUBLIC DRAFT *** 17-Sep-2003/17:54





7

Generic Specifications

Making a specification generic (when appropriate) improves its
reusability.

As mentioned in the previous chapter, naming specifications is a good
idea. In many cases, however, datatypes are naturally generic, having sorts,
operations, and/or predicates that are deliberately left loosely specified, to be
determined when the datatype is used. For instance, datatypes of lists and
sets are generic regarding the sort of elements. Generic specifications allow the
genericity of a datatype to be made explicit by declaring parameters when the
specification is named: in the case of lists and sets, there is a single parameter
that simply declares the sort Elem.1 A fitting argument specification has
to be provided for each parameter of a generic specification whenever it is
referenced; this is called instantiation of the generic specification.

The aim of this chapter is to discuss and illustrate how to define generic
specifications and instantiate them. We have seen plenty of simple examples
of generic specifications and instantiations in the previous chapters. In more
complicated cases, however, explicit fitting symbol maps may be required
to determine the exact relationship between parameters and arguments in
instantiations, and so-called imports should be separated from the bodies of
generic specifications.
1 Generic specifications are also useful to ensure loose coupling between several

named specifications (of the same system), replacing an explicit extension by a
parameter including only the necessary symbols and their required properties.
This cannot however easily be illustrated in the framework of this User Manual.



58 7 Generic Specifications

7.1 Parameters and Instantiation

Parameters are arbitrary specifications.

Any specification, named or not, can be used as the parameter of a generic
specification. Commonly, the parameter is a rather trivial specification con-
sisting merely of a single sort declaration, as in most of the examples given in
the previous chapters, e.g.:
spec List Selectors [ sort Elem ] = . . .

However, the parameter can also be a more complex, possibly structured,
specification, as in:
spec List Order [Total Order with sort Elem, pred < ] = . . .

Recall that ‘with’ requires the signature of the specification to include the
listed symbols; here, in fact, the signature of Total Order does not contain
any further symbols, so those are all the symbols that have to be supplied
when instantiating List Order.

In instantiations, the fitting of parameter symbols to identical argu-
ment symbols can be left implicit.

spec Generic Commutative Monoid [ sort Elem ] =
Generic Monoid [ sort Elem ]

then . . .
When the parameter and the argument have symbols in common, these

parameter symbols are implicitly taken to fit directly to the corresponding ar-
gument symbols. Thus it is never necessary to make explicit that a symbol is
mapped identically. In the above example, for instance, the parameter specifi-
cation of Generic Monoid is exactly the same as the argument specification
in its instantiation, so the fitting can be left implicit.

The fitting of parameter sorts to unique argument sorts can also be
left implicit.

spec Nat Word =
Generic Monoid [Natural ]

end

Page: 58 *** FIRST PUBLIC DRAFT *** 17-Sep-2003/17:54



7.1 Parameters and Instantiation 59

When the argument specification has only a single sort, the fitting of all
parameter sorts to that sort is obvious, and can again be left implicit. Of
course, this does not apply the other way round: if the parameter has a single
sort (which is often the case in practice) but the argument specification has
more than one sort, the parameter sort could be mapped to any of the argu-
ment sorts, so the fitting symbol map has to be made explicit – except when
the parameter sort is identical to one of the argument sorts, as previously
explained.

Fitting symbol maps determine fitting morphisms.

A (fitting) signature morphism from the signature of the parameter part to
the signature of the argument specification is automatically deduced, taking
into account the explicitly specified fitting symbol map if any (the situation
here is quite similar to a renaming, where a signature morphism is deduced
from a symbol map). The instantiation is defined if all models of the argument
specification, when reduced along the induced fitting signature morphism,
provide models of the parameter part. In particular the symbols provided
by the argument specification must have the properties, if any, specified in
the parameter for their counterparts. When this is the case, we get not only
a signature morphism, but also a (fitting) specification morphism from the
argument specification to the parameter specification.

In the above Nat Word example, since the parameter of Generic
Monoid is trivial, it is obvious that the instantiation is defined.

The effect of the instantiation is to make the union of the argument spec-
ification and of the (non generic equivalent of the) generic specification, re-
named according to the induced fitting signature morphism. In particular, a
side-effect of the instantiation is to rename the symbols of the generic specifica-
tion according to the fitting signature morphism induced by the instantiation.
In our Nat Word example, the operation symbol inj : Elem → Monoid is
renamed into inj : Nat → Monoid , while the operation symbols ‘1 ’ and ‘∗’
are left unchanged (as well as the sort Monoid). Thus, the specification Nat
Word abbreviates the following specification:
Natural and { Non Generic Monoid with Elem 7→ Nat }.

When convenient, the instantiation can be completed by a renaming, as
illustrated in the following variant of Nat Word:
spec Nat Word 1 =

Generic Monoid [Natural ]
with Monoid 7→ Nat Word

end

Page: 59 *** FIRST PUBLIC DRAFT *** 17-Sep-2003/17:54



60 7 Generic Specifications

Fitting of operations and predications can sometimes be left implicit
too, and can imply fitting of sorts.

spec List Order Nat =
List Order [Natural Order ]

end
In the above example, the fitting of both symbols of the parameter of List

Order (the sort Elem and the binary predicate < ) can be left implicit
in the instantiation because the argument Natural Order has only single
symbols of the right kind. (The coincidence of the predicate symbol in the
parameter and argument is irrelevant here.)

Fitting of function and predicate symbols can imply fitting of sorts. For in-
stance, when a parameter predicate symbol is fitted to an argument predicate
symbol whose profile involves different sorts, this implies that the parameter
sorts involved have to be fitted to the corresponding sorts in the argument
specification.

Note also that in the above example, checking the definedness of the in-
stantiation corresponds to a non trivial proof obligation. The instantiation
is defined since the predicate ‘<’ provided by Natural Order is indeed a
total ordering relation, hence the properties required by Total Order are
fulfilled, even if there is no syntactic correspondence between the axioms given
in Total Order and those in Natural Order.

As may be clear by now, the exact rules for when the fitting between pa-
rameter and argument symbols can be left implicit are quite sophisticated. It
seems best to make the intended fitting explicit whenever it is not completely
obvious, using the notation for fitting arguments illustrated in the following
examples.

The intended fitting of the parameter symbols to the argument symbols
may have to be specified explicitly.

spec Nat Word 2 =
Generic Monoid [Natural Subsorts fit Elem 7→ Nat ]

end
The correspondence between the symbols required by the parameter and

those provided by the argument specification can be made explicit using so-
called fitting symbol maps. For instance, the above Nat Word 2 specifica-
tion, which differs from Nat Word only regarding the presence of subsorts of
Nat , is obtained as an instantiation of Generic Monoid, fitting the param-
eter part ‘sort Elem’ to the Natural Subsorts specification. The mapping

Page: 60 *** FIRST PUBLIC DRAFT *** 17-Sep-2003/17:54



7.1 Parameters and Instantiation 61

between the parameter sort Elem and the sort Nat provided by Natural
Subsorts is described by the fitting symbol map ‘fit Elem 7→ Nat ’.

A generic specification may have more than one parameter.

spec Pair [ sort Elem1 ] [ sort Elem2 ] = . . .
Using several parameters is merely a notational convenience, since they

are equivalent to their union. For instance, the above Pair specification could
as well have been defined as follows:
spec Pair 1 [ sorts Elem1 ,Elem2 ] = . . .

Note that writing:
spec Homogeneous Pair 1 [ sort Elem ] [ sort Elem ] =

free type Pair ::= pair(first : Elem; second : Elem)
end
merely defines pairs of values of the same sort, and Homogeneous Pair 1
is (equivalent to and) better defined as follows:
spec Homogeneous Pair [ sort Elem ] =

free type Pair ::= pair(first : Elem; second : Elem)
end
since the two parameters in Homogeneous Pair 1 are equivalent to just one
‘sort Elem’ parameter.

From a methodological point of view, it is generally advisable to use as
many parameters as convenient: the part of the specification that is intended
to be specialized at instantiation time is better split into logically coherent
units, each one corresponding to a parameter. Consider for instance:
spec Symbol Table [ sort Symbol ] [ sort Attribute ] = . . .

Here, using two parameters in Symbol Table emphasizes that Symbol
and Attribute are logically distinct entities which can be specialized as desired
independently of each other.

Instantiation of generic specifications with several parameters is sim-
ilar to the case of just one parameter.

spec Pair Natural Colour =
Pair [Natural Arithmetic ] [Colour fit Elem2 7→ RGB ]

end
In the above example, the first parameter ‘sort Elem1 ’ of Pair is instan-

tiated by Natural Arithmetic, which exports only one sort Nat , hence
no explicit fitting map is necessary. The second parameter ‘sort Elem2 ’ of

Page: 61 *** FIRST PUBLIC DRAFT *** 17-Sep-2003/17:54



62 7 Generic Specifications

Pair is instantiated by Colour: in this case a fitting symbol map must be
provided, since Colour exports two sorts, RGB and CMYK .

Using the specification Pair 1 would require us to write:
spec Pair Natural Colour 1 =

Pair 1 [Natural Arithmetic and Colour
fit Elem1 7→ Nat , Elem2 7→ RGB ]

end
which clearly demonstrates the benefit of using two parameters as in Pair
instead of just one as in Pair 1.

When parameters are trivial ones (i.e., just one sort), one can always avoid
explicit fitting maps. Consider for instance the following alternative to Pair
Natural Colour:
spec Pair Natural Colour 2 =

Pair [ sort Nat ] [ sort RGB ]
and Natural Arithmetic and Colour
end

This is particularly convenient when the argument specification exports
several sorts. Compare for instance:
spec Pair Pos =

Homogeneous Pair [ sort Pos] and Integer Arithmetic 1
end
and
spec Pair Pos 1 =

Homogeneous Pair [ Integer Arithmetic 1 fit Elem 7→ Pos ]
end

Note that the instantiation:
Homogeneous Pair 1 [Natural ] [Colour fit Elem 7→ RGB ]
is ill-formed, since it entails mapping the sort Elem to both Nat and RGB .

More generally, care is needed when the several parameters of a generic
specification share some symbols, which in general is not advisable.

As a last remark, note that it is easy to specialize a generic specification
with several parameters, as in the following version of Symbol Table:
spec My Symbol Table [ sort Symbol ] =

Symbol Table [ sort Symbol ] [Natural Arithmetic ]
end
where we still have a parameter for symbols, but decide that the attributes
are natural numbers.

Page: 62 *** FIRST PUBLIC DRAFT *** 17-Sep-2003/17:54



7.2 Compound Symbols 63

Composition of generic specifications is expressed using instantiation.

spec Set of List [ sort Elem ] =
Generated Set [List Selectors [ sort Elem ] fit Elem 7→ List ]

end
The above generic specification Set of List describes sets of lists of ar-

bitrary elements, and is obtained by an instantiation of the generic specifi-
cation Generated Set, whose parameter ‘sort Elem’ is instantiated by the
specification List Selectors, itself trivially instantiated. Since the (trivially
instantiated) specification List Selectors exports two sorts Elem and List ,
it is of course necessary to specify, in the instantiation of Generated Set,
the fitting map from the parameter sort Elem to the argument sort List .

Note that the following specification:
spec Mistake [ sort Elem ] =

Generated Set [List Selectors [ sort Elem ] ]
end
just provides sets of arbitrary elements and lists of arbitrary elements, since
the absence of explicit symbol map entails that the generic specification Gen-
erated Set is instantiated by the identity fitting map Elem 7→ Elem.2 If this
was indeed the desired effect, one should rather write instead:
spec Set and List [ sort Elem ] =

Generated Set [ sort Elem ] and List Selectors [ sort Elem ]
end

As illustrated by Set of List, composition of generic specifications is
fairly easy in Casl. Note however that this composition is achieved by means
of appropriate instantiations (some possibly trivial), and that Casl does not
provide higher-order genericity in its current version.

7.2 Compound Symbols

Compound sorts introduced by a generic specification get automatically
renamed on instantiation, which avoids name clashes.

2 However, the situation would be different if the parameter of Generated Set
would have been, e.g., ‘sort Val ’, since then the absence of an explicit fitting
symbol map would have led to an ambiguity: in that case the specifier would
have been forced to specify whether the sort Val is to be mapped to Elem or to
List .

Page: 63 *** FIRST PUBLIC DRAFT *** 17-Sep-2003/17:54



64 7 Generic Specifications

spec List Rev [ sort Elem ] =
free type List [Elem] ::= empty |

cons(head :? Elem; tail :? List [Elem])
ops ++ : List [Elem]× List [Elem] → List [Elem],

assoc, unit empty ;
reverse : List [Elem] → List [Elem]

∀e : Elem; L,L1 ,L2 : List [Elem]
• cons(e,L1 ) ++ L2 = cons(e,L1 ++ L2 )
• reverse(empty) = empty
• reverse(cons(e,L)) = reverse(L) ++ [e]

end

spec List Rev Nat = List Rev [Natural ] end
In the specification List Rev, we introduce a compound sort List [Elem]

to denote lists (of arbitrary elements). When the specification List Rev is
instantiated as in List Rev Nat, the translation induced by the (implicit)
fitting symbol map is applied to the component Elem also where it occurs in
List [Elem], providing a sort List [Nat ]. Thus, compound sorts can be seen as
a convenient way of implicitly completing the instantiation by an appropriate
renaming of the (compound) sorts introduced by the generic specification.
spec Two Lists =

List Rev [Natural ] %% Provides the sort List [Nat ]

and List Rev [ Integer ] %% Provides the sort List [Int ]

end
Using a compound sort List [Elem] proves particularly useful in the above

example Two Lists, where we make the union of two distinct instantiations
of List Rev. If we would have used an ordinary sort List , then an uninten-
tional name clash would have arisen,3 and we would have to complete each
instantiation by an explicit renaming of the sort List .

Note that in the specification Two Lists, we have two sorts List [Nat ]
and List [Int ], hence two overloaded constants empty (one of each sort), which
may need disambiguation when used in terms. (How to disambiguate terms
is explained in Chap. 3, p. 13.)

Similarly, we have overloaded operation symbols cons, head , tail , ++,
and reverse, but in general their context of use in terms will be enough to
disambiguate which one is meant.
spec Two Lists 1 =

List Rev [ Integer Arithmetic 1 fit Elem 7→ Nat ]
and List Rev [ Integer Arithmetic 1 fit Elem 7→ Int ]
end
3 And the specification Two Lists would have been inconsistent, due to the same

name, same thing principle and the fact that List is defined by a free type con-
struct.

Page: 64 *** FIRST PUBLIC DRAFT *** 17-Sep-2003/17:54



7.2 Compound Symbols 65

Since the specification Integer Arithmetic 1 provides three sorts Nat ,
Pos, and Int , an explicit fitting symbol map is needed in the above instantia-
tions, which provide the sorts List [Nat ] and List [Int ]. Note that the subsorting
relation Nat < Int does not entail List [Nat ] < List [Int ], but of course this
can be added if desired in an extension by a subsorting declaration.

Compound symbols can also be used for operations and predicates.

spec List Rev Order [Total Order ] =
List Rev [ sort Elem ]

then local op insert : Elem × List [Elem] → List [Elem]
∀e, e ′ : Elem; L : List [Elem]
• insert(e, empty) = cons(e, empty)
• insert(e, cons(e ′,L)) = cons(e ′, insert(e,L)) when e ′ < e

else cons(e, cons(e ′,L))
within op order [ < ] : List [Elem] → List [Elem]

∀e : Elem; L : List [Elem]
• order [ < ](empty) = empty
• order [ < ](cons(e,L)) = insert(e, order [ < ](L))

end

spec List Rev with Two Orders =
List Rev Order

[ Integer Arithmetic Order fit Elem 7→ Int , < 7→ < ]
%% Provides the sort List [Int ] and the operation order [ < ]

and List Rev Order
[ Integer Arithmetic Order fit Elem 7→ Int , < 7→ > ]

%% Provides the sort List [Int ] and the operation order [ > ]

then %implies

∀L : List [Int ] • order [ < ](L) = reverse(order [ > ](L))
end

The above example illustrates the use of compound identifiers for operation
symbols, and the same rules apply to predicate symbols. While in most cases
using compound identifiers for sorts will be sufficient, in some situations it
is also convenient to use them for operation or predicate symbols, as done
here for order [ < ]. When List Rev Order is instantiated, not only
the sort List [Elem] gets renamed (here, in List [Int ]), but also the operation
symbol order [ < ], according to the fitting symbol map corresponding to
the instantiation. If we would not have used a compound identifier for the
order operation, then an unintentional name clash would have arisen. Note
that on the other hand we rely on the same name, same thing principle to
ensure that the sorts List [Int ] provided by each of the two instantiations are
the same, which indeed is what we want for this example.

Page: 65 *** FIRST PUBLIC DRAFT *** 17-Sep-2003/17:54



66 7 Generic Specifications

Of course we do not bother to use a compound identifier for the insert
operation symbol. This operation being local, it is not exported by List
Rev Order and cannot be the source of unintentional name clashes in in-
stantiations.

7.3 Parameters with ‘Fixed’ Parts
Tentative section title

Parameters should be distinguished from references to fixed specifica-
tions that are not intended to be instantiated.

spec List Weighted Elem [ sort Elem op weight : Elem → Nat ]
given Natural Arithmetic =

List Rev [ sort Elem ]
then op weight : List [Elem] → Nat

∀e : Elem; L : List [Elem]
• weight(empty) = 0
• weight(cons(e,L)) = weight(e) + weight(L)

end
In the above example, we specialize lists of arbitrary elements to lists of

elements equipped with a weight operation, which is then overloaded by a
weight operation on lists. Therefore we specify that the generic specification
List Weighted Elem has for parameter a specification extending the given
specification Natural Arithmetic by a sort Elem and an operation sym-
bol weight . Thereby the intention is to emphasize the fact that only the sort
Elem and the operation weight are intended to be specialized when the spec-
ification List Weighted Elem will be instantiated, and not the ‘fixed part’
Natural Arithmetic. One could have written also:
spec List Weighted Elem

[Natural Arithmetic then sort Elem op weight : Elem → Nat ]
= . . .

but the latter, which is correct, misses the essential distinction between the
part which is intended to be specialized and the part which is ‘fixed’ (since,
by definition, the parameter is the part which has to be specialized).

Note also that omitting the ‘given Natural Arithmetic’ clause would
make the declaration:
spec List Weighted Elem [ sort Elem op weight : Elem → Nat ] = . . .
ill-formed, since the sort Nat is not available.

To summarize, the given construct is useful to distinguish the ‘true’ pa-
rameter from the part which is ‘fixed’. Both the parameter and the body of
the generic specification extend what is provided by the given part, whose
exported symbols are therefore available.

Page: 66 *** FIRST PUBLIC DRAFT *** 17-Sep-2003/17:54



7.3 Parameters with ‘Fixed’ Parts 67

Argument specifications are always implicitly regarded as extension of
the imports.

spec List Weighted Pair Natural Colour =
List Weighted Elem [Pair Natural Colour fit Elem 7→ Pair ,

weight 7→ first ]
end

The instantiation specified in List Weighted Pair Natural Colour
is correct since the fitting map is the identity on all the symbols exported by
the ‘fixed’ part Natural Arithmetic (which happens here to be included
in the argument specification Pair Natural Colour). More generally, the
argument specification is always regarded as an extension of the given ‘fixed’
part, and the fitting map should be the identity on all symbols this ‘fixed’
part exports. This is illustrated in the next example:
spec List Weighted Instantiated =

List Weighted Elem [ sort Value op weight : Value → Nat ]
end
Here we rely on a rather trivial instantiation (whose purpose is merely to
illustrate our point) where the fitting symbol map can be omitted since no
ambiguity arises and where the argument specification ‘sort Value op weight :
Value → Nat ’ is well-formed because it is regarded as an extension of the
given Natural Arithmetic ‘fixed’ part of List Weighted Elem, which
implies the sort Nat is available.

Imports are also useful to prevent ill-formed instantiations.

spec List Length [ sort Elem ] given Natural Arithmetic =
List Rev [ sort Elem ]

then op length : List [Elem] → Nat
∀e : Elem; L : List [Elem]
• length(empty) = 0
• length(cons(e,L)) = length(L) + 1

then %implies

∀L : List [Elem] • length(reverse(L)) = length(L)
end

The specification List Length needs the sort Nat and the usual arith-
metic operations provided by Natural Arithmetic to specify the length
operation. In this case it is clear that the given part has nothing to do with
the (trivial) parameter of List Length. The reason to specify Natural
Arithmetic as a given ‘fixed’ part is that this will make instantiations of
List Length similar to the following one well-formed.

Page: 67 *** FIRST PUBLIC DRAFT *** 17-Sep-2003/17:54



68 7 Generic Specifications

spec List Length Natural =
List Length [Natural Arithmetic ]

end
To understand this point, consider the following variant of List Length:

spec Wrong List Length [ sort Elem ] =
Natural Arithmetic and List Rev [ sort Elem ]

then . . .
end

The specification Wrong List Length is fine as long as one does not
need to instantiate it with Natural Arithmetic as argument specifica-
tion. The instantiation Wrong List Length [Natural Arithmetic ] is
ill-formed since some symbols of the argument specification are shared with
some symbols of the body (and not already occurring in the parameter) of the
instantiated generic specification, which is illegal. Of course the same problem
will occur with any argument specification which provides, e.g., the sort Nat .

As a consequence, one should remember two essential points. First, an
instantiation is ill-formed as soon as there are some shared symbols between
the argument specification and the body of the generic specification. There-
fore, when designing a generic specification, it is generally advisable to turn
auxiliary required specifications (such as Natural Arithmetic for List
Length) into given ‘fixed’ parts.

7.4 Views

Views are named fitting maps, and can be defined along with specifi-
cations.

view Integer as Total Order :
Total Order to Integer Arithmetic Order =
Elem 7→ Int , < 7→ <

end
view Integer as Reverse Total Order :

Total Order to Integer Arithmetic Order =
Elem 7→ Int , < 7→ >

end

spec List Rev with Two Orders 1 =
List Rev Order [view Integer as Total Order ]

and List Rev Order [view Integer as Reverse Total Order ]
then %implies

∀L : List [Int ] • order [ < ](L) = reverse(order [ > ](L))
end

Page: 68 *** FIRST PUBLIC DRAFT *** 17-Sep-2003/17:54



7.4 Views 69

A view is nothing but a convenient way to name a specification morphism
(induced by a symbol map) from a (parameter) specification to an (argu-
ment) specification. This proves particularly useful when the same instantia-
tion (with the same fitting symbol map) is intended to be used several times:
naming it once for all makes its reuse easier. Once a view is defined, as e.g. In-
teger as Total Order above, it can be referenced in instantiations as in
List Rev Order [view Integer as Total Order ], where the keyword
‘view’ makes it clear that the argument is not merely a named specification
with an implicit fitting map, which would be written differently. The rules
regarding the omission of ‘evident’ symbol maps in explicit fittings apply to
named specification morphisms too.

Since a view is defined only when the given symbol map induces a spec-
ification morphism (i.e., all models of the target specification, when reduced
along the signature morphism induced by the given symbol map, provide
models of the source specification), it may be convenient to use views just
to explicitly document the existence of some specification morphisms, even
when these are not intended to be used in any instantiation. For instance,
the view Integer as Total Order can be seen as the requirement that
Integer Arithmetic Order indeed specifies ‘<’ to be a total ordering re-
lation, and would therefore make sense even without being used later on in
instantiations.

Views can also be generic.

view List as Monoid [ sort Elem ] :
Monoid to List Rev [ sort Elem ] =
Monoid 7→ List [Elem], 1 7→ empty , ∗ 7→ + +

end
The above example illustrates again the use of a view as a ‘proof obliga-

tion’, since for the moment we do not have examples of generic specifications
with Monoid as parameter.

Page: 69 *** FIRST PUBLIC DRAFT *** 17-Sep-2003/17:54





8

Specifying Architectural Structure

Architectural specifications are meant for imposing structure on im-
plementations, whereas specification-building operations only structure
the text of specifications.

As explained in the previous chapters, the specification of a complex sys-
tem may be fairly large and should be structured into coherent, easy to grasp,
pieces. Casl provides a number of (powerful) specification-building opera-
tions to achieve this, as detailed in Chap. 6. Moreover, generic specifications,
described in Chap. 7, provide pieces of specification that are easy to reuse in
several contexts, where they can be adapted as desired by instantiating them.

Specification-building operations and generic specifications are useful to
structure the text of the specification of the system under consideration. How-
ever, the models of a structured specification have no more structure than do
those of a flat, unstructured, specification. Indeed, most examples given in
the previous chapters could have been structured differently, with the same
meaning (i.e., with the same models). Structured specifications are usually ad-
equate at the requirements stage, where the focus is on the expected overall
properties of the system under consideration.

In contrast, the aim of architectural specifications is to prescribe the in-
tended architecture of the implementation of the system. Architectural speci-
fications provide the means for specifying the various components from which
the system will be built, and describing how these components have to be
assembled to provide an implementation of the system of interest. At the
same time, they allow the task of implementing a system to be split into in-
dependent, clearly-specified sub-tasks. Thus, architectural specifications are
essential at the design stage, where the focus is on how to factor the imple-
mentation of the system into components glued together.

The aim of this chapter is to discuss and illustrate both the rôle of archi-
tectural specifications and how to express them in Casl.



202 8 Specifying Architectural Structure

The idea underlying architectural specifications is that eventually in the
process of systematic development of modular software from specifications,
components are implemented as software modules in some chosen program-
ming language. However, this step is beyond the scope of specification for-
malisms, so in Casl and in this chapter we identify components with models
(and with functions from models to models, in the case of generic components).
The modular structure of the software under development, as described by an
architectural specification, is therefore captured here simply as an explicit,
structural way to build Casl models.

The illustrations in this chapter are artificially simple.

Architectural specifications, and more generally component-oriented ap-
proaches, are intended for relatively large systems. In this chapter, however,
we have to rely on simple small examples to illustrate and explain Casl ar-
chitectural specification concepts and constructs. After reading this chapter,
the reader is encouraged to study App. C, which provides realistic examples
of the use of architectural specifications.

The following structured specifications will be referred to later in this
chapter when illustrating Casl architectural specifications:
spec Natural = %{ As defined in Chap. 3, page 18 }%

spec Colour = %{ As defined in Chap. 3, page 18 }%

spec Natural Arithmetic = %{ As defined in Chap. 3, page 20 }%

spec Elem = sort Elem

spec Cont [Elem ] =
%{ Similar to Generated Container in Chap. 3, page 15,

but with a compound sort Cont[Elem] }%

generated type Cont [Elem] ::= empty | insert(Elem; Cont [Elem])
pred is in : Elem × Cont [Elem]
∀e, e ′ : Elem; C : Cont [Elem]
• ¬(e is in empty)
• e is in insert(e ′,C ) ⇔ (e = e ′ ∨ e is in C )

end

spec Cont Del [Elem ] =
Cont [Elem ]

then op delete : Elem × Cont [Elem] → Cont [Elem]
∀e, e ′ : Elem; C : Cont [Elem]
• e is in delete(e ′,C ) ⇔ ((e is in C ) ∧ ¬(e = e ′))

end

Page: 202 *** FIRST PUBLIC DRAFT *** 17-Sep-2003/17:54



8.1 Architectural Specifications 203

spec Req = Cont Del [Natural ]

spec Flat Req =
free type Nat ::= 0 | suc(Nat)
generated type Cont [Elem] ::= empty | insert(Nat ; Cont [Elem])
pred is in : Nat × Cont [Elem]
op delete : Nat × Cont [Elem] → Cont [Elem]
∀x , y : Nat ; C : Cont [Elem]
• ¬(x is in empty)
• x is in insert(y ,C ) ⇔ (x = y ∨ x is in C )
• x is in delete(y ,C ) ⇔ ((x is in C ) ∧ ¬(x = y))

end

8.1 Architectural Specifications

Let’s assume in the following that Req describes our requirements about the
system to be implemented. First, note that both Req and Flat Req have
the same models, which illustrates our point about the fact that the Casl
specification-building operations are merely facilities to structure the text of
specifications into coherent units.

An architectural specification consists of a list of unit declarations,
specifying the required components, followed by a result part indicating
how these components are to be combined.

arch spec System =
units N : Natural;

C : Cont [Natural ] given N ;
D : Cont Del [Natural ] given C

result D
The System architectural specification is intended to prescribe a specific

architecture for implementing the system specified by Req.
The first part, introduced by the keyword units, indicates that we require

the implementation of our system to be made of three components N , C , and
D . The second part, introduced by the keyword result, indicates that the
component D provides the desired implementation.

Each component is provided with its specification. The line:
N : Natural

declares a component N specified by Natural, which means simply that N
should be a model of Natural.

Page: 203 *** FIRST PUBLIC DRAFT *** 17-Sep-2003/17:54



204 8 Specifying Architectural Structure

The line:
C : Cont [Natural ] given N

declares a component C which, given the previously declared component N ,
provides a model of Cont [Natural ]. It is essential to understand that
the component C must expand the assumed component N into a model of
Cont [Natural ], which means that C reduced to the signature of Natural
must be equal to N . This property reflects the fact that a software module is
supposed to use what it is given exactly as supplied, without altering it.

Similarly, the line:
D : Cont Del [Natural ] given C

declares a component D which, given the component C , expands it into a
model of Cont Del [Natural ].

The final result is therefore simply D . (More complex examples of result
expressions will be illustrated in examples below.)

As in the rest of Casl, visibility is linear in architectural specifications,
meaning that any component must be declared before being used (e.g., the
component N should be declared before being referred to by ‘given N ’ in the
declaration of the component C in the architectural specification System).
Component names (such as N , C , and D in System) are local to the ar-
chitectural specification where they are declared, and are not visible outside
it.

There can be several distinct architectural choices for the same re-
quirements specification.

For instance, the following architectural specification corresponds to a dif-
ferent architectural choice for implementing our Req specification.
arch spec System 1 =
units N : Natural;

CD : Cont Del [Natural ] given N
result CD

The architectural specifications System and System 1 both provide mod-
els of Req. However, the former insists on an implementation made of three
components, while the latter insists on an implementation made of two com-
ponents.

Each unit declaration listed in an architectural specification corre-
sponds to a separate implementation task, independent from the other
ones.

For instance, in the architectural specification System, the task of provid-
ing a component D expanding C and implementing Cont Del [Natural ]

Page: 204 *** FIRST PUBLIC DRAFT *** 17-Sep-2003/17:54



8.1 Architectural Specifications 205

is independent from the tasks of providing implementations N of Natural
and C of Cont [Natural ]. Hence, when providing the component D , one
cannot make any further assumption on how the component C is (or will be)
implemented, besides what is expressly ensured by its specification.

To understand this, let us consider again the requirements specification
Req (or its variant Flat Req). Among its models, there is one where con-
tainers are implemented by lists without repetitions, and in this model we can
choose to implement delete by just removing the first found occurrence of the
element to be deleted. In this model, however, we rely on the knowledge about
the implementation of containers to decide how to implement delete – which
is fine, since both are simultaneously implemented in the same model. In con-
trast, in the architectural specification System, we request that containers
are to be implemented in the component C while delete is to be provided
by a separate component D . Imposing that the component D can be devel-
oped independently of the component C means that for D it is no longer
possible to implement delete as sketched above, since this specific implemen-
tation choice may not be compatible with an independently chosen realization
for C (where containers may be implemented by bags, for instance). In the
case of the architectural specification System 1, since both containers and
the delete operation are implemented in the same component CD , we can of
course decide to implement containers by lists without repetitions and delete
as sketched above.

Thus the component D should expand any given implementation C of
Cont [Natural ] and provide an implementation of Cont Del [Natural ],
which is tantamount to providing a generic implementation G of Cont Del
[Natural ] which takes the particular implementation of Cont [Natural ]
as a parameter to be expanded. Then we obtain D by simply applying G to
C .

Genericity here arises from the independence of the developments of C and
D , rather than from the desire to build multiple implementations of Cont
Del [Natural ] using different implementations of Cont [Natural ]. This
is reflected by the fact that G is left implicit in the architectural specification
System.

A unit can be implemented only if its specification is a persistent ex-
tension of the specifications of its given units.

For instance, the component D can exist only if the specification Cont
Del [Natural ] is a persistent extension of Cont [Natural ], i.e., if any
model of the latter specification can be expanded into a model of the former
one, which is indeed the case here. Similarly, the component C can exist since
Cont [Natural ] is a persistent extension of Natural.

Consider now the following variant of Cont Del and the associated vari-
ant of the architectural specification System:

Page: 205 *** FIRST PUBLIC DRAFT *** 17-Sep-2003/17:54



206 8 Specifying Architectural Structure

spec Cont Del V [Elem ] =
Cont [Elem ]

then op delete : Elem × Cont [Elem] → Cont [Elem]
∀e, e ′ : Elem; C : Cont [Elem]
• delete(e, empty) = empty
• delete(e, insert(e ′,C )) = C when e = e ′

else insert(e ′, delete(e,C ))
• e is in delete(e ′,C ) ⇔ ((e is in C ) ∧ ¬(e = e ′))

end

arch spec Inconsistent =
units N : Natural;

C : Cont [Natural ] given N ;
D : Cont Del V [Natural ] given C

result D
The specification Cont Del V [Natural ] is consistent (has some mod-

els), but is not a persistent extension of Cont [Natural ] (since, for instance,
a model of Cont [Natural ] where containers are realized by arbitrary lists,
possibly with repetitions, cannot be expanded into a model of Cont Del V
[Natural ]). As a consequence, in the architectural specification Inconsis-
tent, the specification of the component D is inconsistent, since no compo-
nent can expand all implementations C of Cont [Natural ] into models of
Cont Del V [Natural ]. The architectural specification Inconsistent is
therefore itself inconsistent.

To summarize, architectural specifications not only prescribe the intended
architecture of the implementation of the system, but they also ensure that
the specified components can be developed independently of each other (which
imposes a certain degree of genericity for these components).

8.2 Explicit Generic Components

Genericity of components can be made explicit in architectural speci-
fications.

arch spec System G =
units N : Natural;

F : Natural → Cont [Natural ];
G : Cont [Natural ] → Cont Del [Natural ]

result G [F [N ]]
The architectural specification System G is a variant of System; here

we choose to specify the second and third components as explicit generic
components.

Page: 206 *** FIRST PUBLIC DRAFT *** 17-Sep-2003/17:54



8.2 Explicit Generic Components 207

The line:
F : Natural → Cont [Natural ]

declares a generic component F . Given any component implementing (i.e.,
model of) Natural, F should expand it into an implementation of Cont
[Natural ]. The models of the generic-component specification Natural →
Cont [Natural ] are functions that map any model of Natural to a model
of Cont [Natural ]. These functions are required to be persistent, meaning
that the result model expands the argument model.

The third component G is also specified as a generic component: given
any implementation of Cont [Natural ], G should expand it into an imple-
mentation of Cont Del [Natural ].

Hence the whole system is obtained by the composition of applications
G [F [N ]], as described in the result part. In Casl, such compositions are
called unit terms.

The component C of System corresponds to the application F [N ] in
System G, and similarly the component D in System corresponds to G [C ],
i.e., to G [F [N ]] in System G.

A specification of the form SP1 → SP2 defines generic components GC
that should always expand their argument into a model of the target speci-
fication. This makes only sense as long as the signature of the target speci-
fication contains the signature of SP1 . This is why in Casl, SP2 is always
considered as an implicit extension of SP1 , and SP1 → SP2 abbreviates
SP1 → { SP1 then SP2 }.1 Moreover, since the generic component GC
should expand any model of SP1 , the specification SP1 → SP2 is consis-
tent (i.e., has some models) if and only if the specification SP1 then SP2 is a
persistent extension of SP1 . Forgetting this fact is a potential source of incon-
sistent specifications of generic components in architectural specifications. For
instance, the specification Cont [Natural ] → Cont Del V [Natural ]
is inconsistent, for the reasons explained at the end of the previous section.

A generic component may be applied to an argument richer than re-
quired by its specification.

arch spec System V =
units NA : Natural Arithmetic;

F : Natural → Cont [Natural ];
G : Cont [Natural ] → Cont Del [Natural ]

result G [F [NA]]
The above architectural specification System V is a variant of System

G. Here we require a component NA implementing the specification Nat-
ural Arithmetic, instead of a component N implementing Natural as
1 When SP2 is already defined as an extension of SP1 , as it is the case for instance

here for Cont Del [Natural ], SP2 is equivalent to SP1 then SP2 .

Page: 207 *** FIRST PUBLIC DRAFT *** 17-Sep-2003/17:54



208 8 Specifying Architectural Structure

in System G (perhaps because we know that such a component is already
available in some collection of previously-implemented components.)

The generic component F requires a component fulfilling the specification
Natural, but can of course be applied to a richer argument, as in F [NA]. A
similar reasoning applies to G .

More generally, a generic component can be applied to any component (or
to any unit term) that can be reduced along some morphism to an argument
of the required ‘type’ (i.e., to a model of the required specification). When
necessary, a fitting symbol map can be used to describe the correspondence
between the symbols provided by the argument and those expected by the
generic component. We do not detail here the technicalities related to these
fitting symbol maps, since they are quite similar to those used in instantiations
of generic specifications and the notations are the same.

As a last remark, note that, similarly to what happens when instantiating a
generic specification by an argument specification, when a generic component
is applied to an argument richer than required, the extra symbols are kept in
the result. Hence the result of the above architectural specification System
V contains also the interpretations of the arithmetic and ordering operations
on natural numbers, as they are provided by the component NA. This means
in particular that the implementation described by System V has a larger
signature than the one described by System G.

Specifications of components can be named for further reuse.

unit spec Cont Comp = Elem → Cont [Elem ]

unit spec Del Comp = Cont [Elem ] → Cont Del [Elem ]

arch spec System G1 =
units N : Natural;

F : Cont Comp;
G : Del Comp

result G [F [N ]]
In the above example, we name Cont Comp the specification (of generic

components) Elem → Cont [Elem ]. Similarly, we name Del Comp the
specification Cont [Elem ] → Cont Del [Elem ]. Then both named spec-
ifications can be reused in the architectural specification System G1 which
is essentially the same as the architectural specification System G.

Generic specifications naturally give rise to specifications of generic com-
ponents, which can be named for later reuse, as illustrated above by Cont
Comp. However, the reader should not confuse a generic specification (which
is nothing else than a piece of specification that can easily be adapted by in-
stantiation) with the corresponding specification of a generic component: the

Page: 208 *** FIRST PUBLIC DRAFT *** 17-Sep-2003/17:54



8.2 Explicit Generic Components 209

latter cannot be instantiated, it is the specified generic component which gets
applied to suitable components.

Persistent extensions of the form ‘spec SP2 = SP1 then SP ’ also natu-
rally give rise to specifications of generic components of the form SP1 → SP2 ,
as illustrated by Del Comp.

In the architectural specification System G1, we use again the fact that
the generic component F can be applied to richer arguments than models
of Elem (and similarly for G). Since Elem is more general (has more mod-
els) than Natural, there are potentially fewer possibilities for implementing
the generic component specified by Cont Comp (which should be compat-
ible with any model of Elem) than there are for implementing the generic
component specified by Natural → Cont [Natural ] (which only needs to
be compatible with models of Natural; a similar argument holds for Del
Comp). As a consequence, the variant System G1 is not equivalent to the
architectural specification System G.

So far we have always used named (structured) specifications to specify
components. Un-named specifications can be used as well, as illustrated below.
unit spec Del Comp1 =

Cont [Elem ] → { op delete : Elem × Cont [Elem] → Cont [Elem]
∀e, e ′ : Elem; C : Cont [Elem]
• e is in delete(e ′,C ) ⇔

((e is in C ) ∧ ¬(e = e ′)) }
end

Del Comp1 is a variant of Del Comp, where for the sake of the exam-
ple we directly specify the delete operation instead of referring to the named
specification Cont Del. Remember that in a specification of a generic com-
ponent of the form SP1 → SP2 , SP2 is always considered as an implicit
extension of SP1 , which explains why the above example is well-formed.

A generic component may be applied more than once in the same
architectural specification.

arch spec Other System =
units N : Natural;

C : Colour;
F : Cont Comp

result F [N ] and F [C fit Elem 7→ RGB ]
The above architectural specification requires a component N specified by

Natural, a component C specified by Colour, and a generic component
F specified by Cont Comp. Then, as described by the result part, the de-
sired system is obtained by applying F to N , applying F to C (in this case,
an explicit fitting symbol map is necessary, since Colour exports two sorts

Page: 209 *** FIRST PUBLIC DRAFT *** 17-Sep-2003/17:54



210 8 Specifying Architectural Structure

RGB and CMYK ). Finally both application results are combined, which is
expressed by and.

Apart from free, all specification-building operations for structured spec-
ifications have natural counterparts at the level of components, which are
expressed using the same keywords.2 The reader should remember that
specification-building operations work with specifications defining classes of
models (e.g., union of specifications, denoted by and), while in architectural
specifications we work with individual models (corresponding to components,
as is the case here in Other System where and denotes the combination of
two components.)

Similarly to union, renaming and hiding have natural counterparts at the
level of components. For instance, remember that the implementation de-
scribed by System V has a larger signature than the implementation de-
scribed by System G. It is however easy to modify the result part of Sys-
tem V if what we really want is an implementation with the same signature
as the implementation described by System G: one has just to hide the extra
symbols resulting from the component NA as follows:
result G [F [NA]] hide < , 1 , + , ∗
or:
result G [F [NA hide < , 1 , + , ∗ ]]

Symbol maps used in renaming and hiding at the level of components
follow the same rules as symbol maps used in renaming and hiding at the
level of structured specifications (see Chap. 6).

Several applications of the same generic component is different from
applications of several generic components with similar specifications.

arch spec Other System 1 =
units N : Natural;

C : Colour;
FN : Natural → Cont [Natural ];
FC : Colour → Cont [Colour fit Elem 7→ RGB ]

result FN [N ] and FC [C ]
The above architectural specification Other System 1 is a variant of

Other System. However, in Other System, we insist on choosing one im-
plementation for containers in the generic component F , and then we apply
it twice, first to a component N implementing Natural, and then to a com-
ponent C implementing Colour. In contrast, in Other System 1, we may
2 The situation is however a bit different with specification extensions, which lead

to specifications of generic components, as explained above, or to specifications of
components expanding a given component, as illustrated in the previous section.

Page: 210 *** FIRST PUBLIC DRAFT *** 17-Sep-2003/17:54



8.2 Explicit Generic Components 211

choose two different implementations for containers, one for containers of nat-
ural numbers in the component FN and another one for containers of colours
in the component FC .

The architectural specifications Other System and Other System 1
are therefore similar but clearly different. Neither is better than the other:
each corresponds to a different architectural decision, and selecting one rather
than the other is a matter of architectural design. Components that are more
widely reusable tend to have less-efficient implementations, in general.

Generic components may have more than one argument.

unit spec Set Comp = Elem → Generated Set [Elem ]

spec Cont2Set [Elem ] =
Cont [Elem ] and Generated Set [Elem ]

then op elements of : Cont [Elem] → Set
∀e : Elem; C : Cont [Elem]
• elements of empty = empty
• elements of insert(e,C ) = {e} ∪ elements of C

end

arch spec Arch Cont2Set Nat =
units N : Natural;

C : Cont Comp;
S : Set Comp;
F : Cont [Elem ] × Generated Set [Elem ]

→ Cont2Set [Elem ]
result F [C [N ]] [S [N ]]

The architectural specification Arch Cont2Set Nat requires a compo-
nent N implementing Natural, a generic component C implementing Cont
Comp, i.e., containers, and a generic component S implementing Set Comp,
i.e., sets. Then it further requires a generic component F that, given any
pair of compatible models X of Cont [Elem ] and Y of Generated Set
[Elem ], expands them into a model of Cont2Set [Elem ].

Models X and Y are said to be compatible if they share a common interpre-
tation for all symbols they have in common.3 Here the only symbol they have
in common is the sort Elem, so the compatibility condition means that X and
Y have the same carrier set for Elem. Compatibility is a natural condition,
since it is obviously necessary that X and Y have a common interpretation
of their common symbols, otherwise they cannot be both expandable to the
same more complex component.
3 The compatibility condition is a bit more subtle in the presence of subsorts, for

more details see [Mos03, Secs. III:3.1.2, III:5.1].

Page: 211 *** FIRST PUBLIC DRAFT *** 17-Sep-2003/17:54



212 8 Specifying Architectural Structure

The result is then obtained by applying F to the pair obtained by applying
C to N and S to N . Here the pair of arguments C [N ] and S [N ] are obviously
compatible, since their common symbols (the sort Nat equipped with the
operations 0 and suc) all come from the same component N which provides
their interpretation, which is expanded (hence cannot be modified) in C [N ]
and in S [N ], thus compatibility is guaranteed.

Open systems can be described by architectural specifications using
generic unit expressions in the result part.

arch spec Arch Cont2Set =
units C : Cont Comp;

S : Set Comp;
F : Cont [Elem ] × Generated Set [Elem ]

→ Cont2Set [Elem ]
result λX : Elem • F [C [X ]] [S [X ]]

arch spec Arch Cont2Set Used =
units N : Natural;

CSF : arch spec Arch Cont2Set
result CSF [N ]

So far our example architectural specifications have described ‘closed’,
stand-alone systems where all components necessary to built the desired sys-
tem were declared in the architectural specification of interest. In Casl, it is
however possible to describe ‘open’ systems, i.e., systems made of some com-
ponents that would require further components to provide a ‘closed’ system.
This is illustrated by the architectural specification Arch Cont2Set which
describes a system with a generic component C implementing containers, a
generic component S implementing sets, and a generic component F that ex-
pands them to provide an implementation of the operation elements of . The
result part is therefore a generic structured component, i.e., an ‘open’ sys-
tem, which, given any component X implementing Elem, provides a system
built by applying F to the pair made of the applications of C to X and of S
to X .

As illustrated by Arch Cont2Set Used, we can then describe a ‘closed’
system made of a component N implementing Natural, and of an ‘open’
system CSF specified by Arch Cont2Set, which is then applied to N in
the result part.

Page: 212 *** FIRST PUBLIC DRAFT *** 17-Sep-2003/17:54



8.3 Writing Meaningful Architectural Specifications 213

8.3 Writing Meaningful Architectural Specifications

In the previous sections we have already pointed out potential sources of in-
consistent specifications of components. Another issue which deserves some
attention when designing an architectural specification is compatibility be-
tween components (or, more generally, unit terms) that are to be combined
together, either by and, or by fitting them to a generic component with mul-
tiple arguments.

In an architectural specification, it is advisable to ensure that any
shared symbol between two components or unit terms that are to be
combined can be traced to a single non-generic component.

arch spec Arch Cont2Set Nat V =
units N : Natural;

C : Cont Comp;
S : Set Comp;
G : { Cont [Elem ] and Generated Set [Elem ] }

→ Cont2Set [Elem ]
result G [C [N ] and S [N ]]

The architectural specification Arch Cont2Set Nat V is a variant of
Arch Cont2Set Nat where, instead of declaring a generic component F
with two arguments, we now declare a generic component G with a single
argument, which must be a model of the specification { Cont [Elem ] and
Generated Set [Elem ] }, obtained as the union of the two (trivially in-
stantiated) specifications of containers and sets.4

As a consequence, to obtain the desired system, in the result part we
apply the generic component G to the combination (denoted by and) of C
applied to N and of S applied to N . This combination makes sense only if both
C [N ] and S [N ] share the same interpretation of their common symbols. Here
their common symbols (the sort Nat equipped with the operations 0 and suc)
all come from the same component N which provides their interpretation,
which is expanded (hence cannot be modified) in C [N ] and in S [N ], thus
compatibility is guaranteed.

There is a clear analogy here between the application of the generic com-
ponent F with multiple arguments in Arch Cont2Set Nat and the com-
bination of C [N ] and S [N ] in Arch Cont2Set Nat V: in both cases the
result is meaningful because we can trace shared symbols like the sort Nat
and the operations 0 and suc to a single component N introducing them.

Let us emphasize again that compatibility is a natural requirement: since
each unit declaration corresponds to a separate implementation task (and
4 The braces ‘{’ and ‘}’ are not really necessary and are used to emphasize that G

has a single argument.

Page: 213 *** FIRST PUBLIC DRAFT *** 17-Sep-2003/17:54



214 8 Specifying Architectural Structure

hence each unit subterm to an independently developed subsystem), obviously
the combination of components or unit terms makes sense only when some
compatibility conditions are fulfilled.

Let us now consider an example where the compatibility condition is vio-
lated:
arch spec Wrong Arch Spec =
units CN : Cont [Natural ];

SN : Generated Set [Natural ];
F : Cont [Elem ] × Generated Set [Elem ]

→ Cont2Set [Elem ]
result F [CN ] [SN ]

The architectural specification Wrong Arch Spec is a variant of Arch
Cont2Set Nat where, instead of requiring a component N implementing
Natural and two generic components implementing containers and sets re-
spectively, we just require a component CN implementing containers of nat-
ural numbers and a component SN implementing sets of natural numbers.
However, then the application F [CN ] [SN ] makes no sense since there is no
way to ensure that the common symbols of CN and SN have the same inter-
pretation. It may indeed be the case that natural numbers are interpreted in
some way in CN and in a different way in SN , which makes the application
of F impossible.

Let us now consider a more complex example:
arch spec Badly Structured Arch Spec =
units N : Natural;

A : Natural → Natural Arithmetic;
C : Cont Comp;
S : Set Comp;
F : Cont [Elem ] × Generated Set [Elem ]

→ Cont2Set [Elem ]
result F [C [A [N ]]] [S [A [N ]]]

The architectural specification Badly Structured Arch Spec is a vari-
ant of Arch Cont2Set Nat where, in addition to the component N imple-
menting Natural, we require a generic component A which is used to expand
N into an implementation of Natural Arithmetic. In the architectural
specification Arch Cont2Set Nat, the compatibility condition in the ap-
plication F [C [N ]] [S [N ]] was easy to discharge. Here, in the result unit
term F [C [A [N ]]] [S [A [N ]]] of Badly Structured Arch Spec, we apply
F to the pair made of C [A [N ]] and S [A [N ]]. In this case only a semantic
analysis can ensure that these two arguments are compatible, since the com-
mon symbols cannot be traced to the same non-generic component, but only
to two applications of the same generic component A to similar arguments.

It is advisable to use unit terms where compatibility can be checked by
a simple static analysis. Casl provides additional constructs which make it
easy to follow this recommendation, as explained below.

Page: 214 *** FIRST PUBLIC DRAFT *** 17-Sep-2003/17:54



8.3 Writing Meaningful Architectural Specifications 215

Auxiliary unit definitions or local unit definitions may be used to avoid
repetition of generic unit applications.

arch spec Well Structured Arch Spec =
units N : Natural;

A : Natural → Natural Arithmetic;
AN = A [N ];
C : Cont Comp;
S : Set Comp;
F : Cont [Elem ] × Generated Set [Elem ]

→ Cont2Set [Elem ]
result F [C [AN ]] [S [AN ]]

arch spec Another Well Structured Arch Spec =
units N : Natural;

A : Natural → Natural Arithmetic;
C : Cont Comp;
S : Set Comp;
F : Cont [Elem ] × Generated Set [Elem ]

→ Cont2Set [Elem ]
result local AN = A [N ] within F [C [AN ]] [S [AN ]]

The problem illustrated in Badly Structured Arch Spec can be fixed
easily. An auxiliary unit definition may be used to avoid the repetition of
some generic unit applications, such as ‘AN = A [N ]’ in Well Structured
Arch Spec. An alternative is to make the definition of AN local to the re-
sult unit term, as illustrated in Another Well Structured Arch Spec.
In both case common symbols can be traced to a non-generic unit, and com-
patibility can be checked by an easy static analysis.

Page: 215 *** FIRST PUBLIC DRAFT *** 17-Sep-2003/17:54





9

Libraries

Libraries are named collections of named specifications.

In the foregoing chapters, we have seen many examples of named specifica-
tions, and of references to them in later specifications. This chapter explains
how a collection of named specifications can itself be named, as a library. The
creation of libraries facilitates the reuse of specifications. For practical appli-
cations, it is important to be able to reuse (at least) existing specifications of
basic datatypes, such as those described in App. B.

Local libraries are self-contained.

A library is called local when it is self-contained, i.e., for each reference to a
specification name in the library, the library includes a specification with that
name. Local libraries might appear at first sight to be all that we need, but
actually they provide poor support for reuse of specifications. The problem
is that when a specification from one local library is reused in another, it
has to be repeated verbatim. There is no formal link between the original
specification and the copy, despite them having the same name: the names
used in a library can be chosen freely, and different libraries could use the
same name for completely different specifications.

Distributed libraries support reuse.

Distributed libraries allow duplication of specifications to be avoided al-
together. Instead of making an explicit copy of a named specification from



218 9 Libraries

one library for use in another, the second library merely indicates that the
specification concerned can be downloaded from the first one.

To maximize reuse, each specification should be given only once, in a single
library. In practice, however, libraries could be developed in parallel, without
collaboration, and it might happen that a specification in one library is very
similar to a (perhaps differently-named) specification in another library. When
such duplication is noticed, and the specification concerned is appropriate for
general use, the developers will be encouraged (but not required) to agree
on using a common, uniquely-named specification, defined in only one of the
libraries.

Different versions of the same library are distinguished by hierarchical
version numbers.

In practice, specifications evolve, e.g., to provide further operations or
predicates on the specified sorts, or to define new subsorts. The libraries
containing the specifications can evolve too, by adding or removing named
specifications. Without some form of version control, even a trifling change in
one library might cause specifications in other libraries to become ill-formed,
or affect their classes of models. Casl allows different versions of the same
library to coexist (distinguishing them by hierarchical version numbers), and
allows downloadings in a library to indicate that a particular version of an-
other library is required.

Creation of new libraries is essential in connection with larger specification
projects, and projects of any scale can benefit from reuse of specifications
from existing libraries. The rest of this chapter illustrates the constructs used
to specify local libraries, distributed libraries, and versions, and gives some
advice on the organization of libraries.

9.1 Local Libraries

Local libraries are self-contained collections of specifications.

library UserManual/Examples
. . .
spec Natural = . . .
. . .
spec Natural Order = Natural then . . .
. . .

Page: 218 *** FIRST PUBLIC DRAFT *** 17-Sep-2003/17:54



9.1 Local Libraries 219

The collection of all the illustrative examples given in the foregoing chap-
ters is self-contained, so it could be made into a local library and named
UserManual/Examples, as outlined above. It would also be possible to
divide our illustrative examples into local libraries according to a general
classification of datatypes: ordering relations, numbers, lists, sets, etc. (with a
further library for miscellaneous datatypes such as that of vehicles). This or-
ganization would facilitate browsing the illustrative specifications concerned
with particular kinds of datatypes. However, some duplication of specifica-
tions would be required (e.g., natural numbers are needed in connection with
both lists and vehicles).

The ‘same name, same thing’ principle of Casl applies only within specifi-
cations, and it is possible for a library to include alternative specifications for
the same symbols (e.g., using different sets of axioms). However, when such
alternative specifications are both extended (perhaps indirectly) in the same
specification, the principle does apply, and inconsistency might then arise.

Thus in general, it is advisable for the developers of a library to respect
the ‘same name, same thing’ principle when choosing symbols throughout the
library. In any case, this is obviously helpful to those who might later browse
the library. Alternative specifications for the same symbols should therefore
be given in separate libraries.1

Specifications can refer to previous items in the same library.

library UserManual/Examples
. . .
spec Strict Partial Order = . . .
. . .
spec Total Order = Strict Partial Order then . . .
. . .
spec Partial Order = Strict Partial Order then . . .
. . .

Although we may often regard libraries as sets of named specifications,
they are actually sequences, and the order in which the specifications occur is
significant.

Specification names have linear visibility: each specification can refer only
to the names of the specifications that precede it. Thus a series of extensions
has to be presented in a bottom-up fashion, starting with a specification that
is entirely self-contained, containing no references to other specifications at
all. Each specification name in a library has a unique defining occurrence, so
overriding cannot arise. Extensions that do not refer to each other may be
1 If we intended our comprehensive UserManual/Examples library for general

use, we would remove all the illustrative alternative specifications.

Page: 219 *** FIRST PUBLIC DRAFT *** 17-Sep-2003/17:54



220 9 Libraries

given in any order (e.g., Partial Order above could be given after Total
Order).

Mutual recursion between specifications is prohibited. When two specifi-
cations each make use of symbols declared in the other, the declarations of
those symbols have to be duplicated, or moved to a preceding specification
that can then be referenced by them both.

All kinds of named specifications can be included in libraries.

library UserManual/Examples
. . .
spec Strict Partial Order = . . .
. . .
spec Generic Monoid [ sort Elem ] = . . .
. . .
view Integer as Total Order : . . .
. . .
view List as Monoid [ sort Elem ] : . . .
. . .
arch spec System = . . .
. . .
unit spec Cont Comp = . . .
. . .

Items in libraries can be any kind of named specification, as illustrated
above: simple named specifications, generic specifications, named view defini-
tions, generic view definitions, and architectural and unit specifications. We
shall henceforth refer to them generally as library items.

Libraries themselves never include anonymous specifications, such as dec-
larations of sorts and operations. Moreover, the symbols declared by a library
item are not automatically available for use in subsequent items: an explicit
reference to the name of the library item is required to “import” the item.

Technically, each library item is said to be closed, being interpreted without
any pre-declared symbols at all. This facilitates reordering library items, and
(more importantly) copying items between libraries.

Page: 220 *** FIRST PUBLIC DRAFT *** 17-Sep-2003/17:54



9.1 Local Libraries 221

Display, parsing, and literal syntax annotations apply to entire li-
braries.

library UserManual/Examples
. . .
%display <= %LATEX ≤
%display >= %LATEX ≥
%display union %LATEX ∪ This is consistent with the display

annotations given in the basic libraries.%prec { + , − } < { ∗ }
%left assoc + , ∗
. . .
spec Strict Partial Order = . . .
. . .
spec Partial Order = Strict Partial Order then . . .≤. . .
. . .
spec Generated Set [ sort Elem ] = . . .∪. . .
. . .
spec Integer Arithmetic Order = . . .≤. . .≥. . .
. . .

Annotations affecting the way terms are written or displayed apply only to
an entire library, and have to be collected at the beginning of the library. These
annotations include display and precedence annotations, illustrated above.

Recall that various reserved words and symbols in Casl specifications are
input in ASCII, but displayed as mathematical signs (e.g., universal quantifi-
cation is input as ‘forall’, and displayed as ‘∀’ when this sign is available in
the current display format). Display annotations provide analogous flexibility
for declared symbols. For example, the display annotations illustrated above
determine how infix symbols input as <=, >=, and union are displayed when
using LATEX to format the specification. Note that a display annotation applies
to all occurrences of the input symbol in the library, regardless of overloading.

Display annotations can give alternative displays for different formats:
apart from LATEX, both RTF and HTML are presently supported. The display Should HTML be replaced by XHTML?

of the annotation itself shows only the input syntax of the symbol and the
result produced by the current formatter. The input form of one of the above
annotations might be as follows:

%display __union__ %HTML __<sup>U</sup> %LATEX __\cup__

When no display annotation is given for a particular format, the input format
itself is displayed. Thus the symbol displayed as ∪ in the present LATEX version
of this User Manual would be displayed as union in an RTF version, unless
the above annotation were to be extended with an RTF part.

Parsing annotations allow omission of grouping parentheses when terms
are input. A single annotation can indicate the relative precedence or the

Page: 221 *** FIRST PUBLIC DRAFT *** 17-Sep-2003/17:54



222 9 Libraries

associativity (left or right) of a group of operation symbols. The precedence
annotation for infix arithmetic operations given above allows a term such
as a + (b ∗ c) to be input (and hence also displayed) as a + b ∗ c. The left-
associativity annotation for + and ∗ allows (a +b)+c to be input as a +b+c,
and similarly for ∗; but the parentheses cannot be omitted in (a + b)− c (not
even if − were to be included in the same left-associativity annotation).

When an operation symbol is declared with the associativity attribute
assoc, a (left-)associativity annotation for that symbol is provided automati-
cally. Thus in practice, explicit associativity annotations are needed only for
non-associative operations such as subtraction and division.

Libraries and library items can have author and date annotations.

library UserManual/Examples
. . .
%authors( Michel Bidoit <bidoit@lsv.ens-cachan.fr>,

Peter D. Mosses <pdmosses@brics.dk> )%
%dates 15 Oct 2003, 1 Apr 2000

. . .
spec Strict Partial Order = . . .
. . .
%authors Michel Bidoit <bidoit@lsv.ens-cachan.fr>

%dates 10 July 2003

spec Integer Arithmetic Order =
. . .

An author annotation at the beginning of a library indicates the collec-
tive authorship of the entire library; one preceding an individual library item
indicates its specific authorship.

A date annotation at the beginning of a library should indicate the release
date of the current version of the library. It may also give the release dates of
previous major versions, including that of the original version. A date anno-
tation on an individual library item should indicate when that item was last
changed, and (optionally) the dates of previous changes.

Page: 222 *** FIRST PUBLIC DRAFT *** 17-Sep-2003/17:54

<bidoit@lsv.ens-cachan.fr>
<pdmosses@brics.dk>
<bidoit@lsv.ens-cachan.fr>


9.2 Distributed Libraries 223

9.2 Distributed Libraries

Libraries can be installed on the Internet for remote access.

library Basic/Numbers
. . .
%left assoc @@

%number @@

%floating ::: , E

%prec { E } < { ::: }
. . .
spec Nat =

free type Nat ::= 0 | suc(Nat)
. . .
ops 1 : Nat = suc(0 ); . . . ; 9 : Nat = suc(8 );

@@ (m,n : Nat) : Nat = (m ∗ suc(9 )) + n. . .
. . .
spec Int = Nat then . . .
. . .
spec Rat = Int then . . .
. . .
spec DecimalFraction = Rat then

. . .
ops ::: : Nat ×Nat → Rat ;

E : Rat × Int → Rat. . .
The above example is an extract from one of the Casl libraries of basic

datatypes, described in App. B and available on the Internet. It illustrates the
overall structure of a library intended for general use, as well as some helpful
annotations concerning literal syntax for numbers, which are explained below.

Casl libraries are identified by hierarchical path names. For instance, all
the Casl libraries of basic datatypes have names starting with ‘Basic/’, and
path names starting with ‘Casl/’ are reserved for libraries connected with
the Casl language itself (e.g., the specification of the abstract syntax of Casl
in Casl).

CoFI is to maintain a register of validated libraries. The validation of a
library ensures not only that it is well-formed, but also that the specifica-
tions and views are consistent, and that all proof obligations (corresponding
to semantic annotations in the library) have been verified. Moreover, some
methodological guidelines concerning the style of names have been provided,
to facilitate the combined use of specifications taken from different libraries
(see [Mos03, Part VI] for further details).

Page: 223 *** FIRST PUBLIC DRAFT *** 17-Sep-2003/17:54



224 9 Libraries

Validated libraries can be located via the CoFI web pages, and are to be
mirrored at several sites, to ensure their accessibility.

It is likely that new versions of existing libraries will be produced, e.g.,
providing further operations whose usefulness was not realized beforehand.
Although the assignment and use of library version numbers allows users to
protect their specifications from changes due to new versions (see Sec. 9.3), at
least the names used in an installed library should not change much between
versions.

Libraries should include appropriate annotations. In particular, parsing
and display annotations can be provided. The above example illustrates a
further kind of annotation, used to provide literal syntax for numbers in Casl.
The effect of the annotation is that, when using the appropriate specifications
from the library Basic/Numbers, conventional decimal notation can be used
for integers and decimal fractions, e.g., 42 , 2 .718 , 10E−12 .

Libraries can include items downloaded from other libraries.

library Basic/StructuredDatatypes
. . .
from Basic/Numbers get Nat, Int
. . .
spec List [ sort Elem ] given Nat = . . .
. . .
spec Array . . . given Int = . . .
. . .

Individual specifications and other items can be downloaded from other li-
braries. For example, as indicated above, the library Basic/StructuredDatatypes
does not itself provide the specifications of natural numbers and integers that
are needed in the specifications of List and Array, but instead downloads
Nat and Int from the Basic/Numbers library.

The names of the items to be downloaded from a library have to be listed
explicitly: one cannot request the downloading of all the items that happen to
be provided by a library. However, although the name of each item provided
by a downloading is always explicit, no indication is given of its kind (i.e.,
whether it is an ordinary, generic, or architectural specification, or a view) nor
of what symbols it declares. Thus the well-formedness of a library depends on
what items are actually downloaded from other libraries.

The item ‘from . . .get . . . ’ above has the effect of downloading the spec-
ifications that are named Nat and Int in Basic/Numbers, preserving their
names. It is also possible to give downloaded specifications different names,
e.g., to avoid clashes with names that are already in use locally:
from Basic/Numbers get Nat 7→ Natural, Int 7→ Integer

Page: 224 *** FIRST PUBLIC DRAFT *** 17-Sep-2003/17:54



9.2 Distributed Libraries 225

Items that are referenced by downloaded items are not themselves auto-
matically downloaded, e.g., downloading Int does not entail the downloading
of Nat. This is because downloading involves the semantics of the named
items, not their text. The semantics of Int consists of a signature and a class
of models, and is a self-contained entity – recall from Chap. 8 that the models
of a structured specification have no more structure than do those of a flat,
unstructured specification. Thus downloading Int gives exactly the same re-
sult as if the reference to Nat in its text had been replaced by the text of
Nat. For the same reason, the presence of another item with the name Nat
in the current library makes no difference to the result of downloading Int.
In terms of software packages, downloading from Casl libraries is analogous
to installing from binaries, not from sources.

Downloading any item from another library B in a library A causes all the
parsing and display annotations of B to be inserted at the beginning of A.
(Conflicting annotations from different libraries are ignored altogether, and
local annotations override conflicting downloaded annotations.) The copied
annotations allow terms to be written and displayed in A in the same way as
in B.

Substantial libraries of basic datatypes are already available.

The organization of the following libraries of basic datatypes is explained
in App. B:

Basic/Numbers: natural numbers, integers, and rationals.
Basic/RelationsAndOrders: reflexive, symmetric, and transitive rela-

tions, equivalence relations, partial and total orders, boolean algebras.
Basic/Algebra 1: monoids, groups, rings, integral domains, and fields.
Basic/SimpleDatatypes: booleans, characters.
Basic/StructuredDatatypes: sets, lists, strings, maps, bags, arrays, trees.
Basic/Graphs: directed graphs, paths, reachability, connectedness, coloura-

bility, and planarity.
Basic/Algebra II: monoid and group actions on a space, euclidean and

factorial rings, polynomials, free monoids, and free commutative monoids.
Basic/LinearAlgebra I: vector spaces, bases, and matrices.
Basic/LinearAlgebra II: algebras over a field.
Basic/MachineNumbers: bounded subtypes of naturals and integers.

Page: 225 *** FIRST PUBLIC DRAFT *** 17-Sep-2003/17:54



226 9 Libraries

Libraries need not be registered for public access

library http://www.brics.dk/~pdm/CASL/Test/Security
. . .
from http://casl:password@www.brics.dk/~pdm/CASL/RSA get Key
. . .
spec Decrypt = Key then . . .
. . .

Libraries under development, and libraries provided for restricted groups
of users, are named and accessed by their URLs. This allows the Casl library
constructs to be fully exploited for libraries that are not yet – and perhaps
never will be – registered for public access. Moreover, validation of libraries can
be a demanding and time-consuming process, and getting a library approved
and registered is appropriate only when it provides specifications that are
likely to be found useful by persons not directly involved it its development.

The primary Internet access protocols HTTP and FTP both support pass-
word protection of specifications, and the insertion of usernames and pass-
words in URLs allows downloading between protected specifications. (With
HTTP, the username and password can be unrelated to those used for the
host file system.)Does FTP also allow for artificial users?

9.3 Version control

Libraries always have version numbers

library Basic/Numbers version 1.0
. . .
spec Nat = . . .
. . .
spec Int = Nat then . . .
. . .
spec Rat = Int then . . .
. . .

As illustrated above, a library can be assigned an explicit version num-
ber, allowing it to be distinguished from previous and future versions of the
same library. Casl allows conventional hierarchical version numbers, familiar
from version numbers of software packages: the initial digits indicate a major
version, digits after a dot indicate sub-versions, and digits after a further dot
indicate patches to correct bugs. (Distinctions between alpha, beta, and other
pre-release versions are not supported.)

Page: 226 *** FIRST PUBLIC DRAFT *** 17-Sep-2003/17:54

http://www.brics.dk/~pdm/CASL/Test/Security
http://casl:password@www.brics.dk/~pdm/CASL/RSA


9.3 Version control 227

The smallest version number is written simply ‘0’, and can be omitted
when specifying the initial version of a library. However, the first installed
version of a library could have any version number at all. The numbers of suc-
cessively installed versions do not have to be contiguous, nor even increasing:
e.g., a patched version 0.99.1 could be installed after version 1.0.

Individual library items do not have separate version numbers. Date anno-
tations can be used to indicate which items have changed between two versions
of a library.

Libraries can refer to specific versions of other libraries.

library Basic/StructuredDatatypes version 1.0
. . .
from Basic/Numbers version 1.0 get Nat, Int
. . .
spec List [ sort Elem ] given Nat = . . .
. . .
spec Array . . . given Int = . . .
. . .

Downloading items from particular versions of libraries is necessary if one
wants to ensure coherence between libraries. For example, as illustrated above,
version 1.0 of Basic/StructuredDatatypes downloads Nat and Int from
version 1.0 of Basic/Numbers. Omitting the version number when down-
loading gives implicitly the current version of the library, which may of course
change. Even though the developers of libraries may try to ensure backwards
compatibility between versions, it could happen that symbols introduced in a
new version of a downloaded specification clash with symbols already in use
in the library that specified the downloading, causing ill-formedness or incon-
sistency. So for safety, it is advisable to give explicit version numbers when
downloading (also when downloading from version ‘0’ of another library). If
one subsequently wants to use symbols that are introduced only in some later
version of another library, all that is needed is to change the version number
in the downloading(s).

An alternative strategy is to ensure consistency with the current versions
of all libraries from which specifications are downloaded, by observing the
changes in the new versions and adapting the downloading library accord-
ingly. For instance, one might download Int from the current version of Ba-
sic/Numbers, instead of from version 1.0 of that library. This may involve
extra work when a new version of Basic/Numbers appears, but it has sev-
eral advantages over the more cautious approach. Casl leaves the choice to
the user, although registered libraries will generally be required to use explicit
version numbers when downloading from other libraries.

Page: 227 *** FIRST PUBLIC DRAFT *** 17-Sep-2003/17:54



228 9 Libraries

By the way, the current version of a library is not necessarily the one most
recently installed: it is the one with the largest version number. As previously
mentioned, a patched version 0.99.1 could be installed after version 1.0, but
a downloading without an explicit version number would still refer to version
1.0.

Previous versions of libraries are to remain accessible for ever . . . at least
in principle. In practice, however, older versions of libraries can be made inac-
cessible after checking that no (accessible) versions of other libraries download
anything from them.

Page: 228 *** FIRST PUBLIC DRAFT *** 17-Sep-2003/17:54



10

Tools

Till Mossakowski

10.1 The Heterogeneous Tool Set (Hets)

The Heterogeneous Tool Set (Hets) is the central analysis tool for
Casl

Hets is a tool set for the analysis and encoding of specifications written in
Casl, its extensions and sublanguages — hence the name “heterogeneous”.
The latest version can be obtained under http://www.tzi.de/cofi. The in-
stallation is easy just follow the instructions.1

Consider the first example in this User Manual:
spec Strict Partial Order =

%% Let’s start with a simple example !

sort Elem
pred < : Elem × Elem %% pred abbreviates predicate

∀x , y , z : Elem
• ¬(x < x ) %(strict)%

• x < y ⇒ ¬(y < x ) %(asymmetric)%

• x < y ∧ y < z ⇒ x < z %(transitive)%

%{ Note that there may exist x, y such that
neither x < y nor y < x. }%

end

1 Hets also is available on the CD coming with the Casl reference manual.

http://www.tzi.de/cofi


76 10 Tools

Hets can be used for checking static well-formedness of specifications

Let us assume that the example is written to a file named Order.casl
(actually, this file is provided on the web and on the CD). Then you can
check the well-formedness of the specification by typing in

hets Order.casl

Hets both checks the correctness with respect to the Casl syntax, as
well as the static semantics correctness (e.g. whether all identifiers have been
declared before they are used, whether the sorting is correct, whether the use
of overloaded symbols is unambiguous, and so on).

Now the natural numbers form a strict partial order, which can be ex-
pressed by a view as follows:
spec Natural = free type Nat ::= 0 | suc(Nat) end

spec Natural Order II =
Natural

then pred < : Nat ×Nat
∀x , y : Nat
• 0 < suc(x )
• ¬x < 0
• suc(x ) < suc(y) ⇔ x < y

end

view v1 : Strict Partial Order to Natural Order II =
Elem 7→ Nat

end
Again, these specifications can be checked with Hets. However, this check-

ing does only encompass syntactic and static semantic well-formedness — it is
not checked whether the naturals actually are a strict partial order. Checking
this requires theorem proving, which will be covered later.

Hets also displays and manages proof obligations, using development
graphs

However, even without theorem proving, it is interesting to inspect the
proof obligations arising from a specification. This can be done with

hets -g Order.casl

Hets now displays a so-called development graph (which is just an overview
graph showing the overall structure of the specifications in the library), see
Fig. 10.1.

Page: 76 *** FIRST PUBLIC DRAFT *** 17-Sep-2003/17:54



10.1 The Heterogeneous Tool Set (Hets) 77

Natural

Natural_Order_II

Strict_Partial_Order

Fig. 10.1. Sample development graph.

Nodes in a development graph correspond to Casl specifications. Ar-
rows show how basic specification are linked through the structuring
constructs

The solid arrow denotes an ordinary import of specifications (caused by
the then), while the dashed arrow denotes a proof obligation (caused by the
view). This proof obligation needs to be discharged in order to show that the
view is well-formed.

As a more complex example, consider the following loose specification of
an ordering function, taken from Chapter 6:
spec List Order Sorted

[Total Order with sort Elem, pred < ] =
List Selectors [ sort Elem ]

then local pred is sorted : List
∀e, e ′ : Elem; L : List
• empty is sorted
• cons(e, empty) is sorted
• cons(e, cons(e ′,L)) is sorted ⇔

(cons(e ′,L) is sorted ∧ ¬(e ′ < e))
within op order : List → List

∀L : List • order(L) is sorted
end

The following specification of insert sort also is taken from Chapter 6:

Page: 77 *** FIRST PUBLIC DRAFT *** 17-Sep-2003/17:54



78 10 Tools

spec List Order [Total Order with sort Elem, pred < ] =
List Selectors [ sort Elem ]

then local op insert : Elem × List → List
∀e, e ′ : Elem; L : List
• insert(e, empty) = cons(e, empty)
• insert(e, cons(e ′,L)) = cons(e ′, insert(e,L)) when e ′ < e

else cons(e, cons(e ′,L))
within op order : List → List

∀e : Elem; L : List
• order(empty) = empty
• order(cons(e,L)) = insert(e, order(L))

end
Both specifications are related. To see this, we first inspect their signatures.

This is possible with

hets -g Sorting.casl

Hets now displays a more complex development graph, see Fig. 10.2.
Here, we have two types of nodes. The named ones correspond to named

specifications, but there are also unnamed nodes corresponding to anonymous
basic specifications like the above declaration of the insert operation above.

Again, the simple solid arrows denote an ordinary import of specifications
(caused by the then and and keywords in the specifications), while the double
arrows denote hiding (caused by the local. . . then . . . parts in the specifica-
tions).

By klicking on the nodes, one can inspect their signatures. In this way,
we can see that both List Order Sorted and List Order have the same
signature. Hence, it is legal to write a view:
view v2 [Total Order] : List Order Sorted[Total Order] to List

Order[Total Order]
end

By again typing

hets -g Sorting.casl

we now get the following development graph shown in Fig. 10.3.

Internal nodes in a development graph correspond to unnamed parts
of a structured specification

In comparison with Fig. 10.2, there are now two new internal nodes,
corresponding to the instantiations of both List Order Sorted and List
Order with Total Order. For each of the instantiations, a proof obligation
is generated, which here is a dashed arrow from Total Order to itself, since
Total Order is simultaneously the formal and the actual parameter.

Page: 78 *** FIRST PUBLIC DRAFT *** 17-Sep-2003/17:54



10.1 The Heterogeneous Tool Set (Hets) 79

Total_OrderList_Selectors

List_Order List_Order_Sorted

Fig. 10.2. Development graph for the two sorting specifications.

Proof obligations can be discharged in various ways

A trivial proof obligation as the above one can be discharged by Hets alone
using the ??? menu. The interesting proof obligation in Fig. 10.3 is the lower The menu structure of Hets will be clear in

September, hopefully before.dashed arrow between the new nodes. It states that insert sort acutally has
the properties of a sorting algorithm. It can be tackeled with the ??? menu.
Here, one can choose a theorem prover that shall be used the proof obligation,
or just state that one conjectures the obligation to be true.

Page: 79 *** FIRST PUBLIC DRAFT *** 17-Sep-2003/17:54



80 10 Tools

2* Total_OrderList_Selectors

List_Order_SortedList_Order

Fig. 10.3. Development graph for the two sorting specifications, with view

Page: 80 *** FIRST PUBLIC DRAFT *** 17-Sep-2003/17:54



10.3 HOL-CASL 81

10.2 The CASL Tool Set and the Development Graph
Manager MAYA

Cats is needed as long as Hets does not support architectural specifi-
cations

The Casl Tool Set (Cats) [Mos00] is a precursor of Hets. It comes with
roughly the same analysis tools as Hets, but does neither support extensions
nor identify sublanguages of Casl. The management of development graphs
is not integrated in this tool, but is provided with a different tool called Maya
[AM02] (which only supports part of Casl’s structuring constructs).

Cats can be obtained under http://www.tzi.de/cofi, while Maya is
available under http://www.dfki.de/~inka/maya.html.

Cats and Maya are mainly important because currently, Hets does not
support Casl architectural specifications yet. However, support of architec-
tural specifications is expected to be available within Hets in the near future.

10.3 HOL-Casl

HOL-Casl is an interactive theorem prover for Casl, based on the
tactic prover Isabelle

The HOL-Casl system [Mos00] provides an interface between Casl and
the theorem proving system Isabelle/HOL [Pau94]. We have chosen Isabelle
because it has a very small core guaranteeing correctness, and its provers like
the simplifier or the tableaux prover are built on top of this core. Furthermore,
there is over ten years of experience with it (several mathematical textbooks
have partially been verified with Isabelle).

Isabelle is a tactic based theorem prover implemented in standard ML. The
main Isabelle logic (called Pure) is some weak intuitionistic type theory with
polymorphism. The logic Pure is used to represent a variety of logics within
Isabelle; one of them being HOL (higher-order logic). For example, logical
implication in Pure (written ==>, also called meta-implication), is different
from logical implication in HOL (written -->, also called object implication).

Casl now is in turn represented in Isabelle/HOL. Since subsorting and
partiality are present in Casl but not in Isabelle/HOL, we have to encode
them out, follwoing the lines of [Mos02]. This means that theorem proving is
not done in the Casl logic directly, but in the logic HOL (for higher-order
logic) of Isabelle. HOL-Casl tries to make user’s life easy by

Page: 81 *** FIRST PUBLIC DRAFT *** 17-Sep-2003/17:54

http://www.tzi.de/cofi
http://www.dfki.de/~inka/maya.html


82 10 Tools

• choosing a shallow embedding of Casl into HOL, e.g. Casl’s logical im-
plication => is mapped directly to Isabelle/HOL’s logical implication -->
(and the same holds for other logical connectives and quantifiers), and

• adapting Isabelle/HOL’s syntax to be conform with the Casl syntax, e.g.
Isabelle/HOL’s --> is displayed as =>, as in Casl.

However, it is essential to be aware of the fact that the Isabelle/HOL logic is
different from the Casl logic. Therefore, the formulas appearing in subgoals
of proofs with HOL-Casl will not fully conform to the Casl syntax: they
may use features of Isabelle/HOL such as higher-order functions that are not
present in Casl, and moreover, they also may contain syntax from the meta-
logic Pure (e.g. meta-implication ==>, meta universal quantification !! and
meta-variables ?x).

HOL-Casl can be obtained under http://www.tzi.de/cofi.
To start the HOL-Casl system, follow the installation instructions, and

then type

HOL-CASL

You can load the above specification file Order.casl by typing

use_casl "Order";

Lets try to prove part of the view v1 above. To prepare proving in the
target specification of the view, Natural Order II, type in:

CASL_context Natural_Order_II.casl;

AddsimpAll();

The first command just selects the specification as current proving context;
the second one adds all the axioms of the specification to Isabelle’s simplifier
(a rewriting engine). Note that here we rely on the axioms being terminating.

To prove the first property expressed by the view, we first have to type
in the goal. Then we chose to induct over the variable x , and the rest can be
done with automatic simplification. Finally, we name the theorem for later
reference:

Goal "forall x:Nat . not x<x";
by (induct_tac "x" 1);
by Auto_tac;
qed "Nat_irreflexive";

Both Hets and Maya also provide an interface to HOL-Casl, such that
proof obligations arising in development graphs can be discharged using HOL-
Casl.Hets will provide this in the future,

hopefully in September — if so, some more
words should be added here, otherwise, Hets
has to be removed here.

Page: 82 *** FIRST PUBLIC DRAFT *** 17-Sep-2003/17:54

http://www.tzi.de/cofi


10.4 ELAN-Casl 83

10.4 ELAN-Casl

ELAN-Casl is a rewriting engine for the Horn= sublanguage Casl

Is this correct? Or is it FOL= without
quantifiers?ELAN-Casl [KR00] is based on a translation of the Horn= sublanguage

Casl to the input language of the rewriting engine ELAN. It can be obtained
under http://www.loria.fr/equipes/protheo/SOFTWARES/ELAN/.

The required inputs for ELAN are:

• A rewrite program including a signature, a set of rules and a set of strate-
gies.

• A query term expressed in the signature of the rewrite program.

The ELAN outputs are the normal forms of the query term, with respect to
the rewrite program. Note that because the set of rules is not required to be
terminating nor confluent, a query term may have several normal forms, or
may not terminate.

ELAN can be called either as interpreter or as complier.

Here is an example of how the ELAN interpreter is called:

> fenv2elan GT_pred.fenv -sort=bool -interp
To Efix ...
To REF ...
warning: the query sort is bool, index= 428

******** ELAN version 3.4 (03/12/99.19:39) ********

(c) LORIA (CNRS, INPL, INRIA, UHP, U-Nancy 2), 1994 - 1999

Import form file GT_pred

Importing Identifiers
Importing Sorts
Importing Modules
Importing RuleNames
Importing StrategyNames

enter query term finished by the key word ’end’:
s(s(zero)) > s(zero) end

[] start with term :

Page: 83 *** FIRST PUBLIC DRAFT *** 17-Sep-2003/17:54

http://www.loria.fr/equipes/protheo/SOFTWARES/ELAN/


84 10 Tools

s(s(zero))>s(zero)

[] result term:
true

[] end

enter query term finished by the key word ’end’:
s(zero) > s(s(zero)) end

[] start with term :
s(zero)>s(s(zero))

[] result term:
false

[] end

Here is an example of how the ELAN compiler is called:

> fenv2elan GT_pred.fenv -sort=bool -compil -nosplit
To Efix ...
To REF ...
warning: the query sort is bool, index= 428
Reduce ELAN Machine v.2.1

(c) LORIA (CNRS, INPL, INRIA, UHP, U-Nancy 2), 1998, 1999, 2000
Author: P.-E. Moreau
Reduce ELAN Machine. Reading from file ./GT_pred.ref . . .
Parsing...........***
*** The compiled query is not ground
***
.
Compiling nonamed rules..
Compiling strategies
execute the following line to build your program

gmake --file ./GT_pred.make

Then the generated C code is compiled with the following command:

> gmake --file ./GT_pred.make

Finally, we get an executable file called a.out. This program computes
the normal form of any query term:

> a.out

Enter a query term of sort ’bool’

Page: 84 *** FIRST PUBLIC DRAFT *** 17-Sep-2003/17:54



10.6 Other tools 85

s(s(zero)) > s(zero) end

result = true

10.5 ASF+SDF Parser and Structure Editor for Casl

ASF+SDF was used to prototype the Casl syntax.

The algebraic specification formalism ASF+SDF [DHK96] and the ASF+SDF
Meta-Environment [BDH+01] have been deployed to prototype Casl’s con-
crete syntax, and to develop a mapping for the concrete syntax to an abstract
syntax representation as ATerms [BJKO00]. The user-defined (also known as
mixfix) syntax of Casl calls for a two-pass approach. In the first pass, the
skeleton of a Casl specification is derived, in order to extract user-defined
syntax rules. In a second pass, these syntax rules are used to parse the expres-
sions that using the mixfix notation. Currently, only the first pass is realized
in SDF, and the parsing is performed based on the underlying Scannerless
Generalized LR parsing technology [BSVV02]. A prototype of the mapping
from the concrete to abstract representation is written in ASF rewrite rules.

The ASF+SDF Meta-Environment provides syntax-directed editing of
Casl specifications.

Given the concrete syntax definition of Casl in SDF, syntax-directed ed-
itors within the ASF+SDF Meta-Environment come for free. Recent devel-
opments in the Meta-Environment [BMV03] allow even the development of a
Casl programming environment. Such an environment would include syntax
directed editors for Casl and an open archictecture based on a software coor-
dination architecture (ToolBus) [BK98] in order to communicate with other
Casl tools, such as the ELAN-Casl toolset.

10.6 Other tools

The following tools could be added, provided until early September there is a
stable version available:

• The Casl consistency checker. With the CCC, one can interactively check
whether a Casl specification is consistent.

• Translation Casl to OCAML developed at Paris/Poitiers.
• Translation Casl to Haskell developed in Bremen.

Page: 85 *** FIRST PUBLIC DRAFT *** 17-Sep-2003/17:54





11

Foundations

Donald Sannella and Andrzej Tarlecki

A complete presentation of Casl is in the Casl Reference Manual.

This Casl User Manual has introduced the potential user to the features
of Casl mainly by means of illustrative examples. It has presented and dis-
cussed the typical ways in which the language concepts and constructs are
expected to be used in the course of building system specifications. Thus, the
presentation in Chaps. 1–9 focused on what the constructs and concepts of
Casl are for, and how they should (and should not) be used. We tried to
make these points as clear as possible by referring to simple examples, and
by discussing both the general ideas and some details of Casl specifications.
We hope that this has given the reader a sufficient feel of the formalism, and
enough understanding, to look through the presentation of a basic library of
Casl specifications in App. B, to follow the case study in App. C, and to
start experimenting with the use of Casl for writing specifications – perhaps
employing the support tools presented in Chap. 10.

By no means, however, should this User Manual be regarded as a com-
plete presentation of the Casl specification formalism – this is given in the
accompanying volume, the Casl Reference Manual [Mos03].

Casl has a definitive summary.

Part I of the Casl Reference Manual offers a definitive summary of the en-
tire Casl language: all the language constructs are listed there systematically,
together with the syntax used to write them down and a detailed explanation
of their intended meaning. However, although it tries to be precise and com-
plete, the Casl Summary still relies on natural language to present Casl.



88 11 Foundations

This inherently leaves some room for interpretation and ambiguity in vari-
ous corners of the language, for example where details of different constructs
interact.

Casl has a complete formal definition.

A key aim of the entire CoFI initiative is to avoid any potential ambi-
guities by providing a complete formal definition for Casl, and sound math-
ematical foundations for the advocated methodology of its use in software
specification and development.

Abstract and concrete syntax of Casl are defined formally.

We begin by giving a formal definition of the syntax of Casl in Part II of
the Reference Manual. Abstract syntax is given, where each phrase is written
in a way that directly indicates its components, thus making evident its inter-
nal structure. In essence, the use of each construct of the language is explicitly
labeled here. This is convenient for formal manipulation and analysis, but is
not so readable. Therefore, the so-called concrete syntax of Casl (as used
for instance in the examples throughout this User Manual) is given as well,
retaining a direct correspondence with the abstract syntax. This offers to the
user of Casl a convenient and readable way of writing down Casl specifi-
cations, in a way that makes clear the formal structure of the phrases and
constructs used to build them. As usual, the syntax is given as a context-free
grammar, using a variant of the BNF notation, relying on well-established
theory to give its formal meaning, and on a variety of tools and techniques
available for syntactic analysis of languages presented in such a style.

Casl has a complete formal semantics.

The ultimate definition of the meaning of Casl specifications is provided
by the semantics of Casl in Part III of the Reference Manual. The semantics
first defines mathematical entities that formally model the intended meaning
of various concepts underlying Casl, as already hinted at in Chap. 2, and
further introduced and discussed throughout the summary (Part I).

The key concepts here are that of Casl signature, model and formula,
together with the satisfaction relation between models and formulae over a
common signature; see Chaps. III.2–III.3. In fact, these are variants of the
standard algebraic and logical notions, thus linking work on Casl to well-
established mathematical theories and ideas.

Page: 88 *** FIRST PUBLIC DRAFT *** 17-Sep-2003/17:54



11 Foundations 89

In a more or less standard way, we use these concepts to build the semantic
domains which the meanings of phrases in various syntactic categories of Casl
inhabit. We have chosen to give the semantics in the form of so-called natural
semantics, with formal deduction rules to derive judgments concerning the
meaning of each Casl phrase from the meanings of its constituent parts. Not
only is this a mathematically well-established formalism with an unambiguous
interpretation, but we also hope that this makes the semantics itself more
readable, with details easier to follow than in some other approaches.

The overall semantics of Casl consists of two parts. The static semantics
captures a form of static analysis of Casl specifications, in which they are
checked for well-formedness – for example, that axioms are well-typed, and
references to named entities are in scope. Then the model semantics takes a
well-formed Casl specification and assigns a model-theoretic meaning to it.

Casl specifications denote classes of models.

In Casl, well-formed specifications denote signatures (static semantics)
and classes of models (model semantics). Basic specifications, which in essence
present a signature and a set of axioms over this signature, denote the class
of models that satisfy all the axioms. The semantics of basic specifications
is split into two parts: first many-sorted basic specifications are described
(Chap. III.2) and then features for defining and using subsorts are added
(Chap. III.3).

The semantics is largely institution-independent.

A few more concepts are needed to explicate the semantics of structured
specifications (Chap. III.4). Key here is the notion of signature morphism,
and the model reducts and translation of sentences that signature morphisms
induce. Having introduced those, we obtain the institution [GB92] of Casl.
One important point of the semantics is that all the layers of the semantics
“above” basic specifications are institution-independent, i.e., well-defined for
any institution chosen to build basic specifications (as long as the institu-
tion comes with a bit of extra structure concerned with forming unions of
signatures and defining signature morphisms – see Sect. III.4.1).

Next, we have the semantics of architectural specifications (Chap. III.5),
which relies on a formal counterpart of the concept of a unit (module) of a
system to be developed: self-contained units are viewed simply as models of
the underlying institution, and parametrized units as functions mapping such
parameter models to result models. Architectural specifications provide a way
of specifying the component units of a system and indicating how the overall

Page: 89 *** FIRST PUBLIC DRAFT *** 17-Sep-2003/17:54



90 11 Foundations

system is built by putting these units together. This intuition is captured by
the semantics of architectural specifications, which denote a class of permitted
unit bindings and a function that maps each such environment to a result unit.

Finally, the libraries layer of Casl is given a rather standard description
with libraries modeled as environments giving names to the entities introduced
(specifications, architectural specifications, etc.), see Chap. III.6.

The semantics is the ultimate reference for the meanings of all Casl
constructs.

Overall, the formal mathematical semantics is crucial in the understanding
of Casl specifications. It provides their unambiguous meaning, and thus gives
the ultimate reference point for all questions concerning the interpretation of
any Casl phrase in any context.

We have already experienced how important such a formal semantics may
be in the design of Casl itself. In many cases, the intended semantics was
prominent in internal discussions on the details of the constructs under con-
sideration, and provided guidelines for many choices in the design of Casl.
Indeed, the concrete syntax of Casl was designed only after the semantics
was settled.

Proof systems for various layers of Casl are provided.

The semantics is also a necessary prerequisite for the development of mech-
anisms for formal reasoning about Casl specifications. This is dealt with in
Part IV of the Reference Manual, where proof calculi that support reason-
ing about the various layers of Casl are presented. The starting point is a
formal system of deduction rules which determines a proof-theoretic counter-
part of the consequence relation between sets of formulae, thus providing a
way for deriving consequences of sets of axioms in Casl specifications. This
is then extended to systems of rules for deriving consequences of structured
specifications and for proving inclusions between classes of models of such
specifications. These systems are also used in rules for formal verification of
the internal correctness of system designs as captured by architectural spec-
ifications. For all these systems, their soundness is proved and completeness
discussed by reference to the formal semantics of Casl.

One point of interest is that, again, the extension of the basic proof system
for consequences between sets of formulae to structured and architectural
specifications does not really rely on the specifics of the underlying institution,
but just reflects the way in which the structuring and architectural constructs
are defined for an arbitrary institution.

Page: 90 *** FIRST PUBLIC DRAFT *** 17-Sep-2003/17:54



11 Foundations 91

A formal refinement concept for Casl specifications is introduced.

As a basis for the Casl methodology of systematic development of software
systems, in Part V of the Reference Manual we provide a formal concept of
a correct refinement step, leading from one Casl specification to another,
presumably more detailed and closer to the final realization of the system
under development. The proof systems mentioned above may be applied here
for proving correctness of such development steps.

The foundations of our Casl are rock-solid!

All this work on the mathematical underpinnings of Casl and related
specification and development methodology, as documented in the Reference
Manual, should make it exceptionally trustworthy – at least in the sense that
it provides a formal point of reference against which all the claims may (and
should) be checked.

Page: 91 *** FIRST PUBLIC DRAFT *** 17-Sep-2003/17:54





Appendices





A

Casl Quick Reference

Casl consists of several major parts, which are quite independent and may
be understood (and used) separately:

Basic specifications

• Denote classes of partial first-order structures: algebras where the func-
tions are partial or total, and where also predicates are allowed.

• Subsorts are interpreted as embeddings.
• Axioms are first-order formulae built from definedness assertions and both

strong and existential equations. Sort generation constraints can be stated.
• Datatype declarations are provided for concise specification of sorts equipped

with some constructors and (optional) selectors, including enumerations
and products.

Structured specifications

• Allow translation, reduction, union, and extension of specifications.
• Extensions may be required to be conservative and/or free; initiality con-

straints are a special case.
• A simple form of generic (parameterized) specifications is provided, to-

gether with instantiation involving parameter-fitting translations.

Architectural specifications

• Express that the specified software is to be composed from separately-
developed, reusable units with clear interfaces.

Libraries

• Allow the distributed storage and retrieval of (particular versions of)
named specifications.



96 A Casl Quick Reference

A.1 Basic Specifications

. . . %% in any order (but declaration before use):

sorts . . . %% sort declarations and definitions

ops . . . %% operation declarations and definitions

preds . . . %% predicate declarations and definitions

types . . . %% datatype declarations and definitions

generated { . . .} %% sort generation constraint

vars . . . %% global variable declarations

∀. . . %% universal quantification on lists of axioms

• F1 %% lists of axioms

. . .
• Fn

A.1.1 Declarations and Definitions

A.1.1.1 Sort Declarations and Definitions

sort s %% sort declaration

sorts s1 , . . . , sn %% sorts declaration

sorts s < s ′ %% subsort declaration

sorts s1 , . . . , sn < s ′ %% subsorts and supersort declaration

sorts s < s1 ; . . . ; s < sn %% subsort and supersorts declaration

sorts s1 = . . . = sn %% isomorphic sorts declaration

sort s = {v : s ′ • F} %% subsort definition

A.1.1.2 Function Declarations and Definitions

op f : s1 × . . .× sn → s %% total function declaration

op f : s1 × . . .× sn →? s %% partial function declaration

op f : s × s → s, assoc %% associative binary function

op f : s × s → s ′, comm %% commutative binary function

op f : s × s → s, idem %% idempotent binary function

op f : s × s → s, unit T %% unit term for binary function

op f : s × s → s, . . . , . . . %% multiple function attributes

ops f1 , . . . , fn : . . . %% functions declaration

op f (v1 : s1 ; . . . ; vn : sn) : s = T %% total function definition

op f (v1 : s1 ; . . . ; vn : sn) :?s = T %% partial function definition

op f (. . . vi1 , . . . , vim : si . . .) . . . %% abbreviated arguments

ops . . . ; . . . %% multiple declarations/definitions

Page: 96 *** FIRST PUBLIC DRAFT *** 17-Sep-2003/17:54



A.1 Basic Specifications 97

A.1.1.3 Constant Declarations and Definitions

op c : s %% constant declaration

op c :?s %% partial constant declaration

op c1 , . . . , cn : s %% constants declaration

op c : s = T %% constant definition

op c :?s = T %% partial constant definition

ops . . . ; . . . %% multiple declarations/definitions

A.1.1.4 Predicate Declarations and Definitions

pred p : s1 × . . .× sn %% predicate declaration

pred p : ( ) %% constant predicate declaration

preds p1 , . . . , pn : . . . %% predicates declaration

pred p(v1 : s1 ; . . . ; vn : sn) ⇔ F %% predicate definition

pred ⇔ F %% constant predicate definition

pred p(. . . vi1 , . . . , vim : si . . .) . . . %% abbreviated arguments

preds . . . ; . . . %% multiple declarations/definitions

A.1.1.5 Datatype Declarations

type s ::= A %% datatype declaration with alternatives

types s1 ::= A1 ;
. . . ;
sn ::= An

%% multi-sorted datatype declaration

generated types . . . %% generated datatype declaration

free types . . . %% free datatype declaration

Alternatives (A)

f (s1 ′; . . . ; sk ′) %% total constructor function

f (s1 ′; . . . ; sk ′)? %% partial constructor function

f (. . . f i : si . . .) %% total constructor and selector functions

f (. . . f i :?si . . .) %% total constructor, partial selector functions

f (. . . f i1 , . . . , f im : si . . .) %% abbreviated selectors

c %% constant constructor value

sort s %% subsort

sorts s1 ′, . . . , sk ′ %% subsorts

A1 | . . . | Am %% multiple alternatives

A.1.1.6 Sort Generation Constraint

generated { sorts . . . %% generated sorts

ops . . . %% generating operations

preds . . .
types . . . %% generated sorts and generating constructors

}

Page: 97 *** FIRST PUBLIC DRAFT *** 17-Sep-2003/17:54



98 A Casl Quick Reference

A.1.2 Variables and Axioms

var v : s %% global variable declaration

vars v1 : s1 ; . . . ; vn : sn %% global variables declaration

vars . . . v1 , . . . , vn : sn . . . %% abbreviated variables declaration

vars . . . ; . . . %% multiple global variable declarations

∀v : s • F1 . . . • Fn %% universal quantification on axiom lists

∀v1 : s1 ; . . . ; vn : sn • . . . %% universal quantifications on axiom lists

∀. . . v1 , . . . , vn : sn . . . • . . . %% abbreviated quantifications

∀. . . ; . . . • . . . %% multiple quantifications on axiom lists

• F1 . . . • Fn %% unquantified axiom lists

A.1.2.1 Formulae F

∀ . . . • F %% universal quantification on formula

∃ . . . • F %% existential quantification

∃! . . . • F %% unique-existential quantification

F1 ∧ . . . ∧ Fn %% conjunction

F1 ∨ . . . ∨ Fn %% disjunction

F ⇒ F ′ %% implication

F ′ if F %% reverse implication

F ⇔ F ′ %% equivalence

¬F %% negation

true %% truth

false %% falsity

p(T1 , . . . ,Tn) %% predicate application

t0 T1 t1 . . .Tn tn %% mixfix predicate application

q %% constant predicate

T = T ′ %% ordinary (strong) equality

T e= T ′ %% existential equality

T ∈ s %% subsort membership

A.1.2.2 Terms T

f (T1 , . . . ,Tn) %% application

t0 T1 t1 . . .Tn tn %% mixfix application

t0 T1 , . . . ,Tn t1 %% literal syntax

c %% constant

T : s %% sorted term

T as s %% projection to subsort

T when F else T ′ %% conditional choice

Page: 98 *** FIRST PUBLIC DRAFT *** 17-Sep-2003/17:54



A.1 Basic Specifications 99

A.1.3 Symbols

Character set: ASCII (with optional use of ISO Latin-1).

Key Words and Signs

Reserved key words (always lowercase):

and arch as assoc axiom axioms closed comm def else end exists
false fit forall free from generated get given hide idem if in lambda
library local not op ops pred preds result reveal sort sorts spec then to
true type types unit units var vars version view when with within

Reserved key signs:

: :? ::= = => <=> ¬ . · | |−> \/ /\

Unreserved key signs:

< ∗ × −> ? !

Key words representing mathematical signs:

forall exists not in lambda
∀ ∃ ¬ ∈ λ

Key signs representing mathematical signs:

−> => <=> . · |−> /\ \/
→ ⇒ ⇔ • • 7→ ∧ ∨

Identifiers

Sorts and variables are simple words (with digits, primes, and single under-
scores):

x Y1 Z2 ′ A Rather Long Identifier .select 1

Operations and predicates can also be sequences of signs (unreserved, and
with any brackets [ ]{} balanced):

+−∗/\&=<>[ ]{}!?:.$@#ˆ˜ ¡¿×÷£ c©±¶§1 2 3 ·6c◦¬µ|

or single decimal digits 1234567890 , or single quoted characters ′c′.
The signs ( )[ ]; ,‘ ”% are not allowed in identifiers, nor are the ISO Latin-1

signs for general currency, yen, broken vertical bar, registered trade mark,
masculine and feminine ordinals, left and right angle quotes, fractions, soft
hyphen, acute accent, cedilla, macron, and umlaut.

Function and predicate identifiers can also be infixes, prefixes, postfixes,
and general mixfixes, formed from words and/or sequences of signs separated
by double underscores (indicating the positions of the arguments), with any
brackets [ ]{} balanced:

Page: 99 *** FIRST PUBLIC DRAFT *** 17-Sep-2003/17:54



100 A Casl Quick Reference

++ || || {[ ]} Push onto

Invisible mixfix identifiers (such as ) with two or more arguments are
allowed. (Subsort embeddings give the effect of invisible unary functions.)

A sort, operation, or predicate identifier can be compound, with a list of
identifiers appended to its final token.

Literal Strings and Numbers

”this is a string” 42 3 .14159 1E − 9 27 .3e6

Library Identifiers

Names of libraries are either paths, e.g.:

Basic/Numbers Basic/Algebra II

or URLs formed from A. . . Za. . . z0. . . 9$- @.&+!*”’(),˜ and
hexadecimal codes %xx, and prefixed by http://, ftp://, or file:///.

Version numbers of libraries are hierarchical: 0, 0.999, 1.0.2.

A.1.4 Comments

%% This is a comment at the end of a line. . .

. . .%{ This is an in-line comment }% . . .

. . .%{ This a comment that might take
several lines }%

%[ This is for commenting-out text
%{ including other kinds of comment }% ]%

A.1.5 Annotations

A label is of the form %(text)%.

An end-of-line annotation is of the general form %word s . . .

with a space following the word s.

A possibly multi-line annotation is of the general form %word( . . . )%

with no space preceding the ‘(’.

Page: 100 *** FIRST PUBLIC DRAFT *** 17-Sep-2003/17:54



A.2 Structured Specifications 101

A.2 Structured Specifications

A.2.1 Specifications (SP)

SP with SM %% symbol translation

SP hide SL %% hiding listed symbols

SP reveal SM %% revealing/translating symbols

SP1 and . . .and SPn %% union

SP1 then . . . then SPn %% extension

free SP %% free or initial

local SP within SP ′ %% implicit hiding of local symbols

closed SP %% non-extension

SN %% reference to named specification

SN [FA1 ]. . . [FAn] %% instantiation of generic specification

A.2.2 Named and Generic Specifications

spec SN = SP end %% named specification (end optional)

spec SN [SP1 ]. . . [SPn] = SP %% generic specification

spec SN [SP1 ]. . . [SPn]
given SP1 ′′,. . . ,SPm ′′ =
SP

%% generic with imports

A.2.2.1 Fitting Arguments (FA)

SP ′ fit SM %% fitting by symbol map

SP ′ %% implicit fitting

FV %% fitting view

A.2.3 Named and Parametrized Views

view VN : SP to SP ′ =
SM end

%% named view (end optional)

view VN [SP1 ]. . . [SPn]
: SP to SP ′ =
SM

%% generic view

view VN [SP1 ]. . . [SPn]
given SP1 ′′,. . . ,SPm ′′

: SP to SP ′ =
SM

%% generic view with imports

A.2.3.1 Fitting Views (FV )

view VN %% reference to named view

view VN [FA1 ]. . . [FAn] %% instantiation of generic view

Page: 101 *** FIRST PUBLIC DRAFT *** 17-Sep-2003/17:54



102 A Casl Quick Reference

A.2.4 Symbol Lists (SL) and Maps (SM )

SY1 , . . . ,SYn %% lists (maybe with sorts, ops, preds)

SY1 7→ SY1 ′, . . . ,SYn 7→ SYn ′ %% maps (maybe with sorts, ops, preds)

. . . ,SYi , . . . %% abbreviates . . . ,SYi 7→ SYi , . . .

A.3 Architectural Specifications

A.3.1 Named Specifications

arch spec ASN = ASP end %% named arch. spec.

unit spec SN = USP end %% named unit spec.

A.3.2 Architectural Specifications (ASP)

ASN %% arch. spec. name

units UD1 ; . . . ; UDn result UE %% basic arch. spec.

A.3.3 Unit Specifications (USP)

SP %% unit type

SP1 × . . .× SPnto SP %% functional unit type

closed USP %% non-extension

arch spec ASP %% models of arch. spec.

A.3.4 Unit Declarations and Definitions (UD)

UN : USP %% unit declaration

UN : USP given UT1 , . . . ,UTn %% importing unit declaration

UN = UE %% unit definition

A.3.5 Unit Expressions (UE)

UT %% unit term

λUN1 : SP1 ; . . . ; UNn : SPn • UT %% unit composition

A.3.6 Unit Terms (UT)

UT with SM %% symbol translation

UT hide SL %% hiding listed symbols

UT reveal SM %% revealing/translating symbols

UT1 and . . .and UTn %% amalgamation

local UD1 ; . . . ; UDn within UT %% local units

UN %% unit name

UN [UT1 fit SM1 ]. . . [UTn fit SMn] %% functional unit application

Page: 102 *** FIRST PUBLIC DRAFT *** 17-Sep-2003/17:54



A.4 Libraries 103

A.4 Libraries

library LN . . . %% named library of downloadings, specifications, views

A.4.1 Downloadings

from LN get IN1 ,. . . , INn end %% downloads listed items

from LN get . . . IN 7→ IN ′ . . . end %% renames downloaded items

A.4.2 Library Names (LN )

Basic/Numbers %% greatest version installed

Basic/Algebra II version 0 .999 %% specified version installed

http://. . . %% greatest version uninstalled

http://. . . version 1 .0 .2 %% specified version uninstalled

Page: 103 *** FIRST PUBLIC DRAFT *** 17-Sep-2003/17:54





B

Basic Library

Markus Roggenbach, Till Mossakowski, and Lutz Schröder

The Casl Basic Library consist of specifications of often-needed datatypes
and view among them, freeing the specifier from re-inventing well-know things.
This can be compared to standard libraries in programming languages. While
this user manual often discusses several styles of specifying with Casl, the
basic datatypes consistently follow a certain style described in [Mos03, VI.12].

We here describe two of the libraries (cf. the overview in Fig. B.1): the
library of numbers and of structured datatypes. We also provide stripped-
down versions of the libraries themselves, with some of the specification and
all axioms and annotations removed. This stripped-down version can serve for
getting a first overview over the signatures of the specified datatypes.

The full Casl Basic Library is printed in the Casl Reference Manual
[Mos03, VI]. The latest version is available at

http://www.tzi.de/cofi
Possibly also in the CD coming with this
user manual, if there is one?The Hets tool described in Chap. 10 allows you to obtain a graphical

overview over the specifications in the libraries and also inspect their signa-
tures. We recommend to do this in order to get a better overview, and also
for answering specific questions that arise when using the basic datatypes.

B.1 Library Basic/Numbers

This library provides monomorphic specifications of natural numbers, inte-
gers, rational numbers, and rational numbers.

In the specification Nat, the natural numbers are specified as a free type,
together with a bunch of predicates and operations over the sort Nat of natural
numbers.

Note that the names for the partial operations subtraction −? and
division /? include a question mark. This is to avoid overloading with the
total operations − on integers and / on rationals, which would lead to



106 B Basic Library

Numbers

RelationsAndOrders

Algebra_I SimpleDatatypes MachineNumbers

StructuredDatatypes

Algebra_II Graphs

LinearAlgebra_I

LinearAlgebra_II

Fig. B.1. Dependency graph of the libraries of basic datatypes.

inconsistencies as both these specifications import the specification of natural
numbers.

The introduction of the subsort Pos, consisting of the positive naturals,
gives rise to certain new operations, e.g.

∗ : Pos × Pos → Pos,

whose semantics is completely determined by overloading.
The specification Int of integers is built on top of the specification of

naturals: integers are defined as equivalence classes of pairs of naturals written
as differences — the axioms (which are omitted in the specification below)

Page: 106 *** FIRST PUBLIC DRAFT *** 17-Sep-2003/17:54



B.1 Library Basic/Numbers 107

specify that two parts are equivalent if their differences are equal. The sort
Nat is then declared to be a subsort of Int .

Besides the division operator /? , the specification Int also provides
the function pairs div/mod and quot/rem, respectively, as constructs for di-
vision — behaving differently on the negative numbers, see [Mos03, VI.2] for
a discussion.

The specification Rat of rational numbers follows the same scheme as the
specification of integers discussed above. This time, the specification Int is
imported. The rationals are then defined as equivalence classes of pairs con-
sisting of an integer and a positive number written as quotients. The sort Int
is then declared to be a subsort of Rat . Note that thanks to Casl subsorting,
the declaration of the operation

/ : Rat × Rat →? Rat ;

allows writing rationals also as pairs x/y of arbitrary integers x and y 6= 0 .
Again, the definition of the predicates and operations on rationals usually

covers the whole domain of rationals, i.e. concerning consistency one has to
show that they do not contradict to the axioms for naturals and integers, to
which they are related by overloading.

library Basic/Numbers

%{ This library provides specifications of naturals, integers, and

rationals. Concerning the rationals, the specification Rat includes

the datatype proper, while the specification DecimalFraction adds the

notions needed to represent rationals as decimal fractions. }%

spec Nat =
free type Nat ::= 0 | suc(pre:?Nat)
preds ≤ , ≥ , < , > : Nat × Nat ;

even, odd : Nat
ops ! : Nat→ Nat ;

+ , ∗ , ˆ , min, max, −! : Nat × Nat→ Nat ;
−? , /? , div , mod , gcd : Nat × Nat →? Nat

%% Operations to represent natural numbers with digits:

ops 1 : Nat = suc(0 ); %(1 def Nat)%

2 : Nat = suc(1 ); %(2 def Nat)%

3 : Nat = suc(2 ); %(3 def Nat)%

4 : Nat = suc(3 ); %(4 def Nat)%

5 : Nat = suc(4 ); %(5 def Nat)%

6 : Nat = suc(5 ); %(6 def Nat)%

7 : Nat = suc(6 ); %(7 def Nat)%

8 : Nat = suc(7 ); %(8 def Nat)%

9 : Nat = suc(8 ); %(9 def Nat)%

Page: 107 *** FIRST PUBLIC DRAFT *** 17-Sep-2003/17:54



108 B Basic Library

@@ (m: Nat ; n: Nat): Nat = (m ∗ suc(9 )) + n %(decimal def)%

sort Pos = {p: Nat • p > 0}
ops 1 : Pos = suc(0 ); %(1 as Pos def)%

∗ : Pos × Pos→ Pos;
+ : Pos × Nat→ Pos;
+ : Nat × Pos→ Pos;

suc : Nat→ Pos
end

spec Int =
Nat

then
generated type Int ::= − (Nat ; Nat)
sort Nat < Int

%% a system of representatives for sort Int is

%% a - 0 and 0 - p, where a: Nat and p: Pos

preds ≤ , ≥ , < , > : Int × Int ;
even, odd : Int

ops − , sign : Int→ Int ;
abs : Int→ Nat ;

+ , ∗ , − , min, max : Int × Int→ Int ;
ˆ : Int × Nat→ Int ;
/? , div , quot , rem : Int × Int →? Int ;
mod : Int × Int →? Nat

end

spec Rat =
Int

then
generated type Rat ::= / (Int ; Pos)
sort Int < Rat
preds ≤ , < , ≥ , > : Rat × Rat
ops − , abs : Rat→ Rat ;

+ , − , ∗ , min, max : Rat × Rat→ Rat ;
/ : Rat × Rat →? Rat ;
ˆ : Rat × Int→ Rat

end

B.2 Library Basic/StructuredDatatypes

This library provides specifications which formalize structuring concepts of
data as used e.g. for the design of algorithms or within programming lan-
guages. Its main focus are advanced concepts as e.g. (finite) sets, lists, strings,

Page: 108 *** FIRST PUBLIC DRAFT *** 17-Sep-2003/17:54



B.2 Library Basic/StructuredDatatypes 109

(finite) maps, (finite) bags, arrays, and various kinds of trees. But is also cov-
ers some elementary constructions like the encapsulation of data within a
‘maybe’-type or arranging data as pairs. Common to all these concepts is
that they are generic. Consequently, all specifications of this library are pa-
rameterized.

Finite sets, finite maps and finite bags are specified in terms of observers:
given a generated sort, an operation or predicate is introduced in order
to define equality on this sort. Concerning finite sets, equality on the sort
FinSet [Elem] is characterized using the predicate eps (displayed as ε) in
the specification GenerateFinSet. Finite maps, i.e. elements of the sort
FinMap[S ,T ], are considered to be identical, if their evaluation under the
operation eval yields the same result, c.f. the specification GenerateFin-
Map. In the specification GenerateBag, those elements of sort Bag [Elem]
are identified that show the same frequency (observed by the operation freq)
for all entries.

Lists are specified in terms of a free datatype. In the specification Gen-
erateList, lists are built up from the empty list by adding elements in front.
The usual list operations are provided. first and last select the first or last
element of a list, while rest or front select the remaining list. # counts the
number of elements in a list. take takes the first n elements of a list, while
drop drops them.

The specification Array includes the condition min <= max as an
axiom in its first parameter. This ensures a non-empty index set. Arrays are
defined as finite maps from the sort Index to the sort Elem, where the typical
array operations evaluation and assignment are introduced in terms of finite
map operations. Finally, revealing the essential signature elements yields the
desired datatype.

The library concludes with several specifications concerning trees. There
are specifications covering binary trees (BinTree, BinTree2), k -branching
trees (KTree), and trees with a possibly different branching at each node
(NTree). Each of these branching structures can be equipped with data in
different ways: Either all nodes of a tree carry data (as it is the case in Bin-
Tree, KTree, and NTree), or just the leaves of a tree have a data entry
(as in BinTree2).

library Basic/StructuredDatatypes

from Basic/Numbers version 1.0 get Nat, Int

spec Maybe [sort S ] = %mono

free type Maybe[S ] ::= ⊥ | just(val :?S )
end

spec Pair [sort S ] [sort T ] = %mono

free type Pair [S,T ] ::= pair(first :S ; second :T )

Page: 109 *** FIRST PUBLIC DRAFT *** 17-Sep-2003/17:54



110 B Basic Library

end
spec GenerateFinSet [sort Elem] = %mono

generated type FinSet [Elem] ::= {} | + (FinSet [Elem]; Elem)
pred ε : Elem × FinSet [Elem]

%% a system of representatives for sort FinSet[Elem] is

%%

%% {} and {} + x 1 + x 2 + ... + x n

%%

%% where x 1 <= x 2 <= ... <= x n, n >= 1, x i of type Elem,

%% for an arbitrary total order <= on Elem.

end

spec FinSet [sort Elem] given Nat = %mono

GenerateFinSet [sort Elem]
then %def

preds isNonEmpty : FinSet [Elem];
⊆ : FinSet [Elem] × FinSet [Elem]

ops { } : Elem→ FinSet [Elem];
] : FinSet [Elem]→ Nat ;

+ : Elem × FinSet [Elem]→ FinSet [Elem];
− : FinSet [Elem] × Elem→ FinSet [Elem];
∩ , ∪ , − , symDif :

FinSet [Elem] × FinSet [Elem]→ FinSet [Elem]
end

spec GenerateList [sort Elem] =
free type List [Elem] ::= [] | :: (first :?Elem; rest :?List [Elem])

end

spec List [sort Elem] given Nat =
GenerateList [sort Elem]

then
preds isEmpty : List [Elem];

ε : Elem × List [Elem]
ops + : List [Elem] × Elem→ List [Elem];

first, last : List [Elem] →? Elem;
front, rest : List [Elem] →? List [Elem];
] : List [Elem]→ Nat ;

++ : List [Elem] × List [Elem]→ List [Elem];
reverse : List [Elem]→ List [Elem];

! : List [Elem] × Nat →? Elem;
take, drop : Nat × List [Elem] →? List [Elem];
freq : List [Elem] × Elem→ Nat

end

Page: 110 *** FIRST PUBLIC DRAFT *** 17-Sep-2003/17:54



B.2 Library Basic/StructuredDatatypes 111

spec GenerateFinMap [sort S ] [sort T ] = %mono

generated type
FinMap[S,T ] ::= empty | [ / ](FinMap[S,T ]; T ; S )

op eval : S × FinMap[S,T ] →? T
end

spec FinMap [sort S ] [sort T ] given Nat = %mono

GenerateFinMap [sort S ] [sort T ]
and

FinSet [sort S fit Elem 7→ S ]
and

FinSet [sort T fit Elem 7→ T ]
then %def

free type Entry [S,T ] ::= [ / ](target :T ; source:S )
preds isEmpty : FinMap[S,T ];

ε : Entry [S,T ] × FinMap[S,T ];
:: − > : FinMap[S,T ] × FinSet [S ] × FinSet [T ]

ops + , − : FinMap[S,T ] × Entry [S,T ]→ FinMap[S,T ];
− : FinMap[S,T ] × S→ FinMap[S,T ];
− : FinMap[S,T ] × T→ FinMap[S,T ];

dom : FinMap[S,T ]→ FinSet [S ];
range : FinMap[S,T ]→ FinSet [T ];
∪ : FinMap[S,T ] × FinMap[S,T ] →? FinMap[S,T ]

end

spec GenerateBag [sort Elem] given Nat = %mono

generated type Bag [Elem] ::= {} | + (Bag [Elem]; Elem)
op freq : Bag [Elem] × Elem→ Nat

end

spec Bag [sort Elem] given Nat = %mono

GenerateBag [sort Elem]
then

preds isEmpty : Bag [Elem];
ε : Elem × Bag [Elem];
⊆ : Bag [Elem] × Bag [Elem]

ops + : Elem × Bag [Elem]→ Bag [Elem];
− : Bag [Elem] × Elem→ Bag [Elem];
− , ∪ , ∩ : Bag [Elem] × Bag [Elem]→ Bag [Elem]

end

spec Array [ops min, max : Int
• min ≤ max %(Cond nonEmptyIndex)%]
[sort Elem]

Page: 111 *** FIRST PUBLIC DRAFT *** 17-Sep-2003/17:54



112 B Basic Library

given Int =
sort Index = {i : Int • min ≤ i ∧ i ≤ max}

then
{ FinMap [sort Index fit sort S 7→ Index ]

[sort Elem fit sort T 7→ Elem]
with sort FinMap[Index,Elem] 7→ Array [Elem], op empty 7→ init

then
ops ! := : Array [Elem] × Index × Elem→ Array [Elem];

! : Array [Elem] × Index →? Elem
}
reveal sort Array [Elem], ops init, ! , ! :=

end

spec GenerateBinTree [sort Elem] =
free type

BinTree[Elem] ::= nil
| binTree(entry :?Elem; left :?BinTree[Elem];

right :?BinTree[Elem])
end

spec BinTree [sort Elem] given Nat =
GenerateBinTree [sort Elem]

and
FinSet [sort Elem]

then
preds isEmpty, isLeaf : BinTree[Elem];

isCompoundTree : BinTree[Elem];
ε : Elem × BinTree[Elem]

ops height : BinTree[Elem]→ Nat ;
leaves : BinTree[Elem]→ FinSet [Elem]

end

spec GenerateBinTree2 [sort Elem] = %mono

free type
NonEmptyBinTree2 [Elem] ::= leaf (entry :?Elem)

| binTree(left :?NonEmptyBinTree2 [Elem];
right :?NonEmptyBinTree2 [Elem])

free type BinTree2 [Elem] ::= nil | sort NonEmptyBinTree2 [Elem]
end

spec BinTree2 [sort Elem] given Nat = %mono

GenerateBinTree2 [sort Elem]
and

FinSet [sort Elem]
then %def

Page: 112 *** FIRST PUBLIC DRAFT *** 17-Sep-2003/17:54



B.2 Library Basic/StructuredDatatypes 113

preds isEmpty, isLeaf : BinTree2 [Elem];
isCompoundTree : BinTree2 [Elem];

ε : Elem × BinTree2 [Elem]
ops height : BinTree2 [Elem]→ Nat ;

leaves : BinTree2 [Elem]→ FinSet [Elem]
end

spec GenerateKTree [op k : Int
• k ≥ 1 %(Cond nonEmptyBranching)%]
[sort Elem]

given Int =
Array [ops 1 : Int ;

k : Int
fit ops min : Int 7→ 1, max : Int 7→ k ]

[sort KTree[k,Elem] fit sort Elem 7→ KTree[k,Elem]]
then

free type
KTree[k,Elem] ::= nil

| kTree(entry :?Elem; branches:?Array [KTree[k,Elem]])
end

spec KTree [op k : Int
• k ≥ 1 %(Cond nonEmptyBranching)%]
[sort Elem]

given Int =
GenerateKTree [op k : Int ] [sort Elem]

and
FinSet [sort Elem]

then %def

preds isEmpty, isLeaf : KTree[k,Elem];
isCompoundTree : KTree[k,Elem];

ε : Elem × KTree[k,Elem]
ops height : KTree[k,Elem]→ Nat ;

maxHeight : Index × Array [KTree[k,Elem]]→ Nat ;
leaves : KTree[k,Elem]→ FinSet [Elem];
allLeaves : Index × Array [KTree[k,Elem]]→ FinSet [Elem]

end

spec GenerateNTree [sort Elem] =
List [sort NTree[Elem] fit sort Elem 7→ NTree[Elem]]

then
free type

NTree[Elem] ::= nil
| nTree(entry :?Elem; branches:?List [NTree[Elem]])

end

Page: 113 *** FIRST PUBLIC DRAFT *** 17-Sep-2003/17:54



114 B Basic Library

spec NTree [sort Elem] given Nat =
GenerateNTree [sort Elem]

and
FinSet [sort Elem]

then
preds isEmpty, isLeaf : NTree[Elem];

isCompoundTree : NTree[Elem];
ε : Elem × NTree[Elem]

ops height : NTree[Elem]→ Nat ;
maxHeight : List [NTree[Elem]]→ Nat ;
leaves : NTree[Elem]→ FinSet [Elem];
allLeaves : List [NTree[Elem]]→ FinSet [Elem]

end

Page: 114 *** FIRST PUBLIC DRAFT *** 17-Sep-2003/17:54



C

Case Study: The Steam-Boiler Control System

This is a preliminary draft, and various
parts of it still need to be checked and
polished. Suggestions for improvements are
most welcome, as well as detailed comments
on the specifications.

In this chapter we illustrate the use of Casl on a fairly large and complex
case study, the Steam-boiler control system. We describe how to derive a Casl
specification of the steam-boiler control system, starting from the informal re-
quirements provided to the participants of the Dagstuhl Meeting Methods for
Semantics and Specification, organized jointly by Jean-Raymond Abrial, Egon
Börger and Hans Langmaack in June 1995.1 The aim of this formalization
process is to analyze the informal requirements, to detect inconsistencies and
loose ends, and to translate the requirements into a formal, algebraic, Casl
specification. During this process we have to provide interpretations for the
unclear or missing parts. We explain how we can keep track of these additional
interpretations by localizing very precisely in the formal specification where
they lead to specific axioms, thereby taking care of the traceability issues.
We also explain how the Casl specification is obtained in a stepwise way by
successive analysis of various parts of the problem description. Emphasis is
put on how to specify the detection of the steam-boiler failures. Finally we
discuss validation of the Casl requirements specification resulting from the
formalization process, and in a last step we refine the requirements specifica-
tion in a sequence of architectural specifications that describe the intended
architecture of the implementation of the steam-boiler control system. Somewhere a mention of Bidoit & al. paper

in LNCS 1165 should be added.

C.1 Introduction

The aim of this chapter is to illustrate how one can solve the “Steam-boiler
control specification problem” (see Sec. C.12) with Casl. For this we provide
a Casl specification of the software system that controls the level of water in
the steam-boiler. Our work plan can be described as follows:
1 The steam-boiler control specification problem is reproduced in Sec. C.12.



116 C Case Study: The Steam-Boiler Control System

1. The main task is to derive from the informal requirements a requirements
specification, written in Casl, of the steam-boiler control system. In par-
ticular, this task involves the following activities:
a) We must proceed to an in-depth analysis of the informal requirements.

Obviously, this is necessary to gain a sufficient understanding of the
problem to be specified, and this preliminary task may not seem worth
mentioning. Let us stress, however, that the kind of preliminary anal-
ysis required for writing a formal specification proves especially useful
to detect discrepancies in the informal requirements that would other-
wise be very difficult to detect. Indeed, from our practical experience,
this step is usually very fruitful from an engineering point of view,
and one could argue that the benefits to be expected here are enough
in themselves to justify the use of formal methods, even if for lack of
time (or other resources) no full formal development of the system is
performed.

b) Once we have a sufficient understanding of the problem to be specified,
we must translate the informal requirements into a formal specifica-
tion. This step will require us to provide interpretations for the unclear
or missing parts of the informal requirements. Moreover, this formal-
ization process will also be helpful to further detect inconsistencies
and loose ends in the informal requirements. Here, a very important
issue is to keep track of the interpretations made during the formaliza-
tion process, in order to be able, later on, to take into account further
modifications and changes of the informal requirements.

c) When we have written the formal requirements specification, we must
carefully check its adequacy with respect to the informal requirements:
this part is called the validation of the formal specification.

In principle there should be some interaction between the specification
team and the team who has designed the informal requirements, in par-
ticular to check whether the suggested interpretations of the detected loose
ends are adequate. In the framework of this case study, however, such in-
teractions were not possible, and we can only use our intuition to assess
the well-foundedness of the interpretations made during the writing of the
formal specification.

2. Once a validated requirements specification is obtained, we can proceed
toward a program by a sequence of refinements. Here a crucial step is theIs a pointer to [Mos03, Part V] needed here?

choice of an architecture of the desired implementation, expressed by an
architectural specification as explained in Chap. 8. Each refinement step
leads to proof obligations which allow the correctness of the performed
refinement to be assessed. In a last step, a program is derived from the
final design specification.

Before starting to explain how to write a Casl requirements specifica-
tion of the steam-boiler control system, let us make a few comments on this
case study. First, note that, although in principle a hybrid system, the steam-

Page: 116 *** FIRST PUBLIC DRAFT *** 17-Sep-2003/17:54



C.2 Getting Started 117

boiler control system turns out to be merely a reactive (not even a “hard
real-time”) system (see e.g. the assumptions made in Sec. C.12.3). Moreover,
even if the whole system (i.e., the control program and its physical environ-
ment) is distributed, this is not the case (at least at the requirements level) for
the steam-boiler control system. Casl turns out to be especially well-suited
to capture the features of systems like the steam-boiler control system, where
data and control are equally important (in particular, here data play a promi-
nent role in failure detection). The various constructs provided by Casl allow
the specifications to be formulated straightforwardly and perspicuously – and
significantly more concisely than in other algebraic specification languages.

As a last remark we must make clear that for the sake of simplicity the
initialization phase of the steam-boiler control system (see Sec. C.12.4.1) is
not specified. However, it should be clear that it would be straightforward to
extend our specification so as to take the initialization phase into account,
following exactly the same methodology as for the rest of the case study.

This chapter is organized as follows. In Sec. C.2 we start by providing some
elementary specifications that will be useful for the rest of the case study. In
Sec. C.3 we explain how we will proceed to derive the Casl requirements
specification in a stepwise way. Then in Sec. C.4 we detail the specification
of the mode of operation of the steam-boiler control system. In Sec. C.5 we
specify the detection of the various equipment failures, and in Sec. C.6 we
explain how we can compute, at each cycle, some predicted values for the
messages to be received at the next cycle. In Sec. C.9 we explain how our Casl
requirements specification can be validated, and in Sec. C.10 we refine the
Casl requirements specification in a sequence of architectural specifications
that describe the intended architecture of the implementation of the steam-
boiler control system. Finally in Sec. C.11 we offer some concluding remarks.

C.2 Getting Started

As explained in Sec. C.12.3, in each cycle the steam-boiler control system
collects the messages received, performs some analysis of the information
contained in them, and then sends messages to the physical units. We will
therefore start with the specification of some elementary datatypes, such as
“received messages” and “sent messages”. To specify the messages sent and
received, we follow Secs. C.12.5 and C.12.6. Note that some messages have
parameters (e.g. pump number, pump state, pump controller state, mode of
operation), and we must therefore specify the corresponding datatypes as well.
For the sake of clarity, we group together all similar messages (e.g. all “re-
paired” messages, all “failure acknowledgement” messages) by introducing a
suitable parameter “physical unit”. A physical unit is either a pump, a pump
controller, the water level measuring device or the output of steam measuring
device. Remember that we do not specify the physical units as such, since we
do not specify the physical environment of the steam-boiler (we do not spec-

Page: 117 *** FIRST PUBLIC DRAFT *** 17-Sep-2003/17:54



118 C Case Study: The Steam-Boiler Control System

ify the steam-boiler either, we only specify the steam-boiler control system).
Hence the datatype “physical unit” is just an elementary datatype that says
that we have some pumps, some pump controllers, and the two measuring
devices.

Some messages have a value v as parameter. From the informal require-
ments we can infer that these values are (approximations of) real numbers,
but indeed it is not necessary at this level to make any decision about the
exact specification of these values. In our case study, we will therefore rely on
a very abstract (loose) specification Value, introducing a sort Value together
with some operations and predicates, which are left unspecified (we expect
of course that these operations and predicates will have the intuitive inter-
pretation suggested by their names). This means that we consider Value as
being a general parameter of our specification.2 This point is discussed again
in Sec. C.10. Note also that we will abstract from measuring units (such as
litre, litre/sec), since ensuring that these units are consistently used is a very
minor aspect of this particular case study.3

This first analysis leads to the following specifications: Value, Basics,
Messages Sent, and Messages Received.

from Basic/Numbers get Nat

spec Value =
%% At this level we don’t care about the exact specification of values.

Nat
then sorts Nat < Value

ops 0 , 1 : Nat ;
+ : Value ×Value → Value, assoc, comm, unit 0 ;
− : Value ×Value → Value;
× : Value ×Value → Value, assoc, comm, unit 1 ;
/2 , 2 : Value → Value;

min,max : Value ×Value → Value
preds < , ≤ : Value ×Value

end
2 We leave Value as an implicit parameter of our specifications, rather than us-

ing generic specifications taking Value as a parameter, since our specifications
are not to be instantiated by argument specifications describing several kinds
of values, but on the contrary should all refer to the same abstract datatype of
values.

3 It is of course possible to take measuring units into account, following for in-
stance the method described in [CRV03]. Appropriate Casl libraries supporting
measuring units are currently being developed.

Page: 118 *** FIRST PUBLIC DRAFT *** 17-Sep-2003/17:54



C.2 Getting Started 119

spec Basics =
free type PumpNumber ::= Pump1 | Pump2 | Pump3 | Pump4 ;
free type PumpState ::= Open | Closed ;
free type PumpControllerState ::= Flow | NoFlow ;
free type PhysicalUnit ::= Pump(PumpNumber)

| PumpController(PumpNumber)
| OutputOfSteam | WaterLevel ;

free type Mode ::= Initialization | Normal | Degraded
| Rescue | EmergencyStop;end

spec Messages Sent =
Basics

then free type
S Message ::= MODE (Mode) | PROGRAM READY | VALVE

| OPEN PUMP(PumpNumber)
| CLOSE PUMP(PumpNumber)
| FAILURE DETECTION (PhysicalUnit)
| REPAIRED ACKNOWLEDGEMENT (PhysicalUnit);

end

spec Messages Received =
Basics and Value

then free type
R Message ::= STOP | STEAM BOILER WAITING

| PHYSICAL UNITS READY
| PUMP STATE (PumpNumber ; PumpState)
| PUMP CONTROLLER STATE (PumpNumber ;

PumpControllerState)
| LEVEL(Value) | STEAM (Value)
| REPAIRED(PhysicalUnit)
| FAILURE ACKNOWLEDGEMENT (PhysicalUnit)
| junk ;

end
For the received messages, in addition to the messages specified in Sec. C.12.6,

we add an extra constant message junk . This message will represent any re-
ceived message which does not belong to the class of recognized messages. We
do not add a similar message to the messages sent, since we may assume that
the steam-boiler control system will only send proper messages. Obviously,
receiving a junk message will lead to the detection of a failure of the message
transmission system.

In the Sbcs Cst specification we describe the various constants that char-
acterize the Steam-Boiler (see Sec. C.12.2).

Page: 119 *** FIRST PUBLIC DRAFT *** 17-Sep-2003/17:54



120 C Case Study: The Steam-Boiler Control System

spec Sbcs Cst =
Value

then ops C ,M1 ,M2 ,N1 ,N2 ,W ,U1 ,U2 ,P : Value;
dt : Value %% Time duration between two cycles (5 sec.)

%% These constants must verify some obvious properties:

• 0 < M1 • M1 < N1 • N1 < N2 • N2 < M2 • M2 < C
• 0 < W • 0 < U1 • 0 < U2 • 0 < P

end
We will also specify the datatypes “set of received messages” and “set of

sent messages” since, as suggested at the end of Sec. C.12.3, all messages are
supposed to be received (or emitted) simultaneously at each cycle. The two
latter specifications are obtained by instantiation of a generic specification
FinSet of “sets of elements”. This generic specification FinSet is imported
from the library Basic/StructuredDatatypes.

This leads to the following Preliminary specification.

from Basic/StructuredDatatypes get FinSet

spec Preliminary =
FinSet [Messages Received fit Elem 7→ R Message ]

and FinSet [Messages Sent fit Elem 7→ S Message ]
and Sbcs Cst
end

C.3 Carrying On

As emphasized in Sec. C.12.3, the steam-boiler control system is a typical ex-
ample of a control-command system. The specification of such systems always
follows the same pattern:

• A preliminary set of specifications group all the basic information about
the system to be controlled, such as the specification of the various mes-
sages to be exchanged between the system and its environment, and the
specification of the various constants related to the system of interest.
This is indeed the aim of the specification Preliminary introduced in
the previous section.

• Then, the various states of the control system should be described. At this
stage, however, it would be much too early to determine which state vari-
ables are needed. Thus states will be represented by values of a (loosely
specified) sort State, equipped with some observers (corresponding to ac-
cess to state variables). During the requirements analysis and formalization
phase we may need further observers, to be introduced on a by-need basis.

• Then a (group of) specification(s) will take care of the analysis of the
received messages – here, of failure detection in particular. On the basis of

Page: 120 *** FIRST PUBLIC DRAFT *** 17-Sep-2003/17:54



C.3 Carrying On 121

this analysis, some actions should be taken, corresponding to the messages
to be sent to the environment. State variables are also updated according
to the result of the analysis of the received messages and the messages to
be sent.

• Finally a specification describes the overall control-command system as a
labeled transition system.

A very rough preliminary sketch of the steam-boiler control system speci-
fication looks therefore as follows:
library SBCS
from Basic/Numbers get Nat
from Basic/StructuredDatatypes get FinSet
%% Display annotations for half and square to be added here.

spec Preliminary = %{ See previous section. }%

spec Sbcs State =
Preliminary

then sort State
ops %% Needed state observers are introduced here.

%% E.g., we need an observer for the mode of operation:

mode : State → Mode;
. . .

end

spec Sbcs Analysis =
Sbcs State

then %% Analysis of received messages and in particular failure detection.

%% Computation of the messages to be sent.

op messages to send : State×FinSet [R Message] → FinSet [S Message];
%% Computation of the updates of the state variables.
%{ For each observer obs defined in Sbcs State,

we introduce an operation next obs that computes the
corresponding update according to the analysis of the messages
received in this round. For instance, we specify here an operation
next mode corresponding to the update of the observer mode. }%

ops next mode : State × FinSet [R Message] → Mode;
. . .

end

Page: 121 *** FIRST PUBLIC DRAFT *** 17-Sep-2003/17:54



122 C Case Study: The Steam-Boiler Control System

spec Steam Boiler Control System =
Sbcs Analysis

then op init : State
pred is step : State×FinSet [R Message]×FinSet [S Message]×State
%% Specification of the initial state init by means of the observers, e.g:

• mode(init) = Normal
• . . .
%{ Specification of is step by means of the observers

and of the updating operations, e.g.: }%

∀s, s ′ : State; msgs : FinSet [R Message]; Smsg : FinSet [S Message]
• is step(s,msgs,Smsg , s ′) ⇔

mode(s ′) = next mode(s,msgs) ∧ . . . ∧
Smsg = messages to send(s,msgs)

then %% Specification of the reachable states:

free { pred reach : State
∀s, s ′ : State; msgs : FinSet [R Message]; Smsg : FinSet [S Message]
• reach(init)
• reach(s) ∧ is step(s,msgs,Smsg , s ′) ⇒ reach(s ′) }

end
Of course the specification Sbcs Analysis is likely to be further struc-

tured into smaller pieces of specifications. Indeed, since the informal require-
ments are too complex to be handled as a whole, we will therefore succes-
sively concentrate on various parts of them. The study and formalization of
each chunk of requirements will lead to specifications that will later on be put
together to obtain the Sbcs Analysis specification. As already pointed out,
it is likely that when analyzing a chunk of requirements we will discover the
need for new observers on states (i.e., new state variables). This means that
the specification Sbcs State will be subject to iterated extensions where we
introduce the new observers that are needed.

For instance, in Sec. C.12.6 it is explained that when the STOP mes-
sage has been received three times in a row, the program must go into the
EmergencyStop mode. We need therefore an observer (i.e., a state variable) to
record the number of times we have successively received the STOP message.
So in the sequel we will start from the following specification of states:
spec Sbcs State 1 =

Preliminary
then sort State

ops mode : State → Mode;
nbSTOP : State → Nat

end
Introducing the new observer nbSTOP means that we will have to specify

a corresponding next nbSTOP operation in the Sbcs Analysis specification.

Page: 122 *** FIRST PUBLIC DRAFT *** 17-Sep-2003/17:54



C.4 Specifying the Mode of Operation 123

C.4 Specifying the Mode of Operation

Our next step is the specification of the various operating modes in which
the steam-boiler control system operates. (As explained in Sec. C.1 we do
not take into account the Initialization mode in this specification.) According
to Sec. C.12.4, the operating mode of the steam-boiler control system depends
on which failures have been detected (see e.g. “all physical units [are] operating
correctly”, “a failure of the water level measuring unit”, “detection of an
erroneous transmission”). It depends also on the expected evolution of the
water level (see “If the water level is risking. . . ”).

We will therefore assume that the specification Sbcs Analysis will pro-
vide the following predicates which, given a known state and newly received
messages, should reflect the failures detected by the steam-boiler control sys-
tem:4

• Transmission OK : State × FinSet [R Message]
should hold iff we rely on the message transmission system,

• PU OK : State × FinSet [R Message]× PhysicalUnit
should hold iff we rely on the corresponding physical unit,

• DangerousWaterLevel : State × FinSet [R Message]
should hold iff we estimate that the water level risks reaching the min
(M1 ) or max (M2 ) limits.

However, at this stage our understanding of the steam-boiler control system is
still quite preliminary, and it is therefore too early to attempt to specify these
predicates. Therefore, our specification Mode Evolution, where we specify
the new operating mode according to the previous one and the newly received
messages (i.e., the operation next mode), will be made generic w.r.t. these
predicates. Let us emphasize that here genericity is used to ensure a loose
coupling between the current specification of interest, Mode Evolution,
and other specifications expected to provide the needed predicates.

Let us now explain how to specify the new mode of operation. At first
glance the informal requirements (see Sec. C.12.4) look quite complicated,
mainly because they explain, for each operating mode, under which conditions
the steam-boiler control system should stay in the same operating mode or
switch to another one. However, things get simpler if we analyze under which
conditions the next mode is one of the specified operating modes. In particular,
a careful analysis of the requirements shows that, except for switching to
the EmergencyStop mode, we can determine the new operating mode (after
receiving some messages) without even taking into account the previous one.

To improve the legibility of our specification it is better to introduce some
auxiliary predicates (Everything OK , AskedToSop, SystemStillControllable,
4 It is important to make a subtle distinction between the actual failures, about

which we basically know nothing, and the failures detected by the steam-boiler
control system. In our specification, the behaviour of the steam-boiler control
system is induced by the failures detected, whatever the actual failures are.

Page: 123 *** FIRST PUBLIC DRAFT *** 17-Sep-2003/17:54



124 C Case Study: The Steam-Boiler Control System

and Emergency) that will facilitate the characterization of the conditions un-
der which the system switches from one mode to another:

• The aim of the predicate Everything OK is to express that we believe that
all physical units operate correctly, including the message transmission
system.

• The aim of the predicate AskedToSop is to determine if we have received
the STOP message three times in a row.

• The aim of the predicate SystemStillControllable is to characterize the
conditions under which the steam-boiler control system will operate in
Rescue mode. Let us point out that the corresponding part of the infor-
mal requirements (see Sec. C.12.4.4) is not totally clear, in particular the
exact meaning of the sentence “if one can rely upon the information which
comes from the units for controlling the pumps”. There is a double am-
biguity here: on the one hand it is unclear whether “the pumps” means
“all pumps” or “at least one pump”; on the other hand there are two
ways of “controlling” each pump (the information sent by the pump and
the information sent by the pump controller), and it is unclear whether
“controlling” refers to both of them or only to the pump controller. Our
interpretation will be as follows: we consider it is enough that at least
one pump is “correctly working”, and for us correctly working will mean
we rely on both the pump and the associated pump controller. As with
all interpretations made during the formalization process, we should in
principle interact with the designers of the informal requirements in order
to clarify what was the exact intended meaning and to check that our
interpretation is adequate. The important point is that our interpreta-
tion is entirely localized in the axiomatization of SystemStillControllable,
and it will therefore be fairly easy to change our specification in case of
misinterpretation.

• The aim of the predicate Emergency is to characterize when we should
switch to the EmergencyStop mode. In Sec. C.12.4.2, it is said that the
steam-boiler control system should switch from Normal mode to Rescue
mode as soon as a failure of the water level measuring unit is detected.
However, in Sec. C.12.4.4, it is explained that the steam-boiler control sys-
tem can only operate in Rescue mode if some additional conditions hold
(represented by our predicate SystemStillControllable). We decide there-
fore that when in Normal mode, if a failure of the water level measuring
unit is detected, the steam-boiler control system will switch to Rescue
mode only if SystemStillControllable holds, otherwise it will switch (di-
rectly) to EmergencyStop mode.5

5 If our interpretation is incorrect, then in some cases we may have replaced
a sequence Normal → Rescue → EmergencyStop by a sequence Normal →
EmergencyStop. Note that a sequence Normal → Rescue → Normal or Degraded
is not possible since several cycles are necessary between a failure detection and
the decision that the corresponding unit is again fully operational, see Sec. C.5,

Page: 124 *** FIRST PUBLIC DRAFT *** 17-Sep-2003/17:54



C.4 Specifying the Mode of Operation 125

The axiomatization of the next mode of operation is now both simple and
clear, as illustrated by the Mode Evolution specification.6

spec Mode Evolution
[preds Transmission OK : State × FinSet [R Message];

PU OK : State × FinSet [R Message]× PhysicalUnit ;
DangerousWaterLevel : State × FinSet [R Message] ]

given Sbcs State 1 =
local %% Auxiliary predicates to structure the specification of next mode.

preds Everything OK ,AskedToStop,SystemStillControllable,
Emergency : State × FinSet [R Message]

∀s : State; msgs : FinSet [R Message]
• Everything OK (s,msgs) ⇔

(Transmission OK (s,msgs) ∧
(∀pu : PhysicalUnit • PU OK (s,msgs, pu)))

• AskedToStop(s,msgs) ⇔ nbSTOP(s) = 2 ∧ STOP ε msgs
• SystemStillControllable(s,msgs) ⇔

(PU OK (s,msgs,OutputOfSteam) ∧
(∃pn : PumpNumber • PU OK (s,msgs,Pump(pn))

∧ PU OK (s,msgs,PumpController(pn))))
• Emergency(s,msgs) ⇔

( mode(s) = EmergencyStop ∨
AskedToStop(s,msgs) ∨
¬Transmission OK (s,msgs) ∨
DangerousWaterLevel(s,msgs) ∨
(¬PU OK (s,msgs,WaterLevel) ∧
¬SystemStillControllable(s,msgs)) )

within ops next mode : State × FinSet [R Message] → Mode;
next nbSTOP : State × FinSet [R Message] → Nat

∀s : State; msgs : FinSet [R Message]
%% Emergency stop mode:

• Emergency(s,msgs) ⇒ next mode(s,msgs) = EmergencyStop
%% Normal mode:

• ¬Emergency(s,msgs) ∧
Everything OK (s,msgs) ⇒ next mode(s,msgs) = Normal

i.e., we must have a sequence of the form Normal → Rescue → . . . → Rescue →
Normal or Degraded in such cases.

6 Note that once in the EmergencyStop mode, we specify that we stay in this mode
forever, rather than specifying that the steam-boiler control system actually stops.
Note also that we realize that the operation next nbSTOP is better specified in
this Mode Evolution specification.

Page: 125 *** FIRST PUBLIC DRAFT *** 17-Sep-2003/17:54



126 C Case Study: The Steam-Boiler Control System

%% Degraded mode:

• ¬Emergency(s,msgs) ∧
¬Everything OK (s,msgs) ∧
PU OK (s,msgs,WaterLevel) ∧
Transmission OK (s,msgs) ⇒ next mode(s,msgs) = Degraded

%% Rescue mode:

• ¬Emergency(s,msgs) ∧
¬PU OK (s,msgs,WaterLevel) ∧
SystemStillControllable(s,msgs) ∧
Transmission OK (s,msgs) ⇒ next mode(s,msgs) = Rescue

%% next nbSTOP :

• next nbSTOP(s,msgs) = nbSTOP(s) + 1 when STOP ε msgs
else 0

end
In the next step of our formalization process, we will specify the predicates

assumed by Mode Evolution, which amounts to specify the detection of
equipment failures. This will be the topic of the next section.

C.5 Specifying the Detection of Equipment Failures

The detection of equipment failures is described in Sec. C.12.7. It is quite clear
that this detection is the most difficult part to formalize, mainly because
both our intuition and the requirements (see e.g. “knows from elsewhere”,
“incompatible with the dynamics”) suggest that we should take into account
some inter-dependencies when detecting the various possible failures.

For instance, if we ask a pump to stop, and if in the next cycle the pump
state still indicates that the pump is open, we may in principle infer either
a failure of the message transmission system (e.g. the stop order was not
properly sent or was not received, or the message indicating the pump state
has been corrupted) or a failure of the pump (which was not able to execute
the stop order or which sends incorrect state messages). Our understanding
of the requirements is that in such a case we must conclude there has been
a failure of the pump, not of the message transmission system. Let us stress
again that it is important to distinguish between the actual failures of the
various pieces of equipment, and the diagnosis we will make. Only the latter
is relevant in our specification.

C.5.1 Understanding the Detection of Equipment Failures

Before starting to specify the detection of equipment failures, we must proceed
to a careful analysis of Sec. C.12.7, in order to clarify the inter-dependencies
mentioned above. Only then will we be able to understand how to structure
our specification of this crucial part of the problem.

Page: 126 *** FIRST PUBLIC DRAFT *** 17-Sep-2003/17:54



C.5 Specifying the Detection of Equipment Failures 127

A first rough analysis of the part of Sec. C.12.7, devoted to the description
of potential failures of the physical units (i.e. of the pumps, the pump con-
trollers and the two measuring devices) shows that these failures are detected
on the basis of the information contained in the received messages: we must
check that the received values are in accordance with some expected values
(according to the history of the system, i.e. according to the “dynamics of
the system” and to the messages previously sent by the steam-boiler control
system). In particular, the detection of failures of the physical units relies on
the fact that we have effectively received the necessary messages. If we have
not received these messages, then we should conclude there has been a failure
of the message transmission system (see below), and in these cases (see the
Mode Evolution specification), the steam-boiler control system switches
to the EmergencyStop mode. The further detection of failures of the physical
units (in addition to the already detected failure of the message transmission
system) is therefore irrelevant in such cases.

Let us now consider the message transmission system. The part of Sec. C.12.7
devoted to the description of potential failures of the message transmission
system is quite short. Basically, it tells us that we should check that the steam-
boiler control system has received all the messages it was expecting, and that
none of the messages received is aberrant. However, it is important to note
that the involved analysis of the received messages combines two aspects: on
the one hand, there is some “static” analysis of the received messages in or-
der to check that all messages that must be present in each transmission are
effectively present (see Sec. C.12.6). These messages are exactly the messages
required to proceed to the detection of the failures of the physical units. On
the other hand, the steam-boiler control system expects to receive (or, on the
contrary, not to receive) some specific messages according to the history of
the system (for instance, the steam-boiler control system expects to receive a
“failure acknowledgement” from a physical unit once it has detected a corre-
sponding failure and sent a “failure” message to this unit, but not before), and
here some “dynamic” analysis is required. Obviously, the “static” analysis of
the messages can be made on the basis of the received messages only, while
the “dynamic” analysis must take into account, in addition to the received
messages, the history of the system, and more precisely the history of the
failures detected so far and of the “failure acknowledgement” and “repaired”
messages received so far.

From this first analysis we draw the following conclusions on how to specify
the detection of equipment failures:

1. In a first step we should keep track of the failure status of the physical
units. This will lead to a new observer status on states, and to a specifica-
tion Status Evolution of how this status evolves, i.e., of a next status
operation.

2. Then we specify the detection of the message transmission system failures
(hence Transmission OK ) in the specification Message Transmission

Page: 127 *** FIRST PUBLIC DRAFT *** 17-Sep-2003/17:54



128 C Case Study: The Steam-Boiler Control System

System Failure. As explained above, in a first step we take care of the
“static” analysis of the received messages, and then in a second step we
take care of the “dynamic” analysis of the received messages, using how
we have kept track of the “status” of the physical units, i.e., using the
observer status.

3. Then, for each physical unit, we specify the detection of its failures by com-
paring the received message with the expected one. For this comparison
we can freely assume that the “static” analysis of the received messages
has been successful, i.e., that the message sent by the physical unit has
been received.

The corresponding specifications are described in the next subsections.

C.5.2 Keeping Track of the Status of the Physical Units

Remember that to perform the “dynamic” analysis of the received messages,
as explained above, we must check that we receive “failure acknowledgement”
and “repaired” messages when appropriate. In order to do this, we must keep
track of the failures detected and of the “failure acknowledgement” and “re-
paired” messages received. Since the same reasoning applies for all physical
units, we can do the analysis in a generic way. For each physical unit, we
will keep track of its status, which can be either OK , FailureWithoutAck or
FailureWithAck . The status of a physical unit will then be updated accord-
ingly to the detection of failures, and receipt of “failure acknowledgement”
and “repaired” messages.

Thus, in a first step we should extend the specification Sbcs State 1 to
add an observer related to the failure status of physical units:
spec Sbcs State 2 =

Sbcs State 1
then free type Status ::= OK | FailureWithoutAck | FailureWithAck

op status : State × PhysicalUnit → Status;
end

Now the specification of how the status of a physical unit evolves, i.e.,
of the operation next status in Status Evolution, is quite straightforward.
We rely again on the predicate PU OK .7

7 The reader may detect that the specification Status Evolution is not totally
correct. However, we prefer to give here the text of the specification as it was
originally written, and we will explain in Sec. C.9 how we detect, when validating
the specification of the steam-boiler control system, that something is not correct,
and how the problem can be fixed.

Page: 128 *** FIRST PUBLIC DRAFT *** 17-Sep-2003/17:54



C.5 Specifying the Detection of Equipment Failures 129

spec Status Evolution
[pred PU OK : State × FinSet [R Message]× PhysicalUnit ]
given Sbcs State 2 =
op next status : State × FinSet [R Message]× PhysicalUnit → Status
∀s : State; msgs : FinSet [R Message]; pu : PhysicalUnit
• status(s, pu) = OK ∧ PU OK (s,msgs, pu)

⇒ next status(s,msgs, pu) = OK
• status(s, pu) = OK ∧ ¬PU OK (s,msgs, pu)

⇒ next status(s,msgs, pu) = FailureWithoutAck
• status(s, pu) = FailureWithoutAck ∧

FAILURE ACKNOWLEDGEMENT (pu) ε msgs
⇒ next status(s,msgs, pu) = FailureWithAck

• status(s, pu) = FailureWithoutAck ∧
¬ (FAILURE ACKNOWLEDGEMENT (pu) ε msgs)
⇒ next status(s,msgs, pu) = FailureWithoutAck

• status(s, pu) = FailureWithAck ∧ REPAIRED(pu) ε msgs
⇒ next status(s,msgs, pu) = OK

• status(s, pu) = FailureWithAck ∧ ¬ (REPAIRED(pu) ε msgs)
⇒ next status(s,msgs, pu) = FailureWithAck

end

C.5.3 Detection of the Message Transmission System Failures

As explained above, we first specify the “static” analysis of the received mes-
sages, and then we specify the “dynamic” analysis of these messages.

To specify the “static” analysis of messages, it is necessary to check that all
“indispensable” messages are present. In addition, a set of received messages
is “acceptable” if there are no “duplicated” messages in this set. Since we have
specified the collection of received messages as a set, we cannot have several
occurrences of exactly the same message in this set. (Note that this means
that our choice of using “sets” instead of “bags”, for instance, is therefore
not totally innocent: either we assume that receiving several occurrences of
exactly the same message will never happen, and this is an assumption on the
environment, or we assume that this case should not lead to the detection of
a failure of the message transmission system, and this is an assumption on
the requirements.) However, specifying the collection of received messages as
a set does not imply that a set of received messages cannot contain several
LEVEL(v) messages, with distinct values (for instance). Hence we must check
this explicitly.

Remember that receiving “unknown” messages (i.e., messages that do not
belong to the list of messages as specified in Sec. C.12.6) is taken into ac-
count via the extra constant junk message (see the specification Messages
Received). We believe also that we cannot simultaneously receive a failure
acknowledgement and a repaired message for the same physical unit, i.e., that

Page: 129 *** FIRST PUBLIC DRAFT *** 17-Sep-2003/17:54



130 C Case Study: The Steam-Boiler Control System

at least one cycle is needed between acknowledging the failure and repairing
the unit. We will check this as well.8

We focus now on the “dynamic” analysis of the received messages. As
explained above, to perform this “dynamic” analysis, we check that we re-
ceive “failure acknowledgement” and “repaired” messages when appropriate,
according to the current status of each physical unit. We understand that for
each failure signaled by the steam-boiler control system, the corresponding
physical unit will send just one failure acknowledgement. Moreover, we will
specify the steam-boiler control system in such a way that when it receives
a “repaired” message, the steam-boiler control system acknowledges it imme-
diately. Hence, if there is no problem with the message transmission system,
and due to the fact that transmission time can be neglected, the steam-boiler
control system must in principle receive only one repaired message for a given
failure. Note that this is not contradictory with the “until. . . ” part of the sen-
tences describing the “repaired” messages in the informal requirements (cf.
Sec. C.12.6). To summarize, we consider we receive an unexpected message
when:

• the program receives initialization messages but is no longer in initializa-
tion mode, or

• the program receives for some physical unit a “failure acknowledgement”
without having previously sent the corresponding failure detection mes-
sage, or receives redundant failure acknowledgements, or

• the program receives for some physical unit a “repaired message”, but the
unit is OK or its failure is not yet acknowledged.

We now have all the ingredients required to specify the Transmission OK
predicate, taking into account both static and dynamic aspects, which leads
to the following Message Transmission System Failure specification.
8 We must confess that this belief is induced by our intuition about the behaviour

of the system. Indeed nothing in the requirements allows us to make either this
interpretation or the opposite one. Although not essential, this assumption will
simplify the axiomatization.

Page: 130 *** FIRST PUBLIC DRAFT *** 17-Sep-2003/17:54



C.5 Specifying the Detection of Equipment Failures 131

spec Message Transmission System Failure =
Sbcs State 2

then local %% Static analysis:

pred is static OK : FinSet [R Message]
∀msgs : FinSet [R Message]
• msgs is static OK ⇔

( ¬(junk ε msgs) ∧
(∃!v : Value • LEVEL(v) ε msgs) ∧
(∃!v : Value • STEAM (v) ε msgs) ∧
(∀pn : PumpNumber • ∃!ps : PumpState •

PUMP STATE (pn, ps) ε msgs) ∧
(∀pn : PumpNumber • ∃!pcs : PumpControllerState •

PUMP CONTROLLER STATE (pn, pcs) ε msgs) ∧
(∀pu : PhysicalUnit •

¬ (FAILURE ACKNOWLEDGEMENT (pu) ε msgs
∧ REPAIRED(pu) ε msgs)) )

%% Dynamic analysis:

pred is NOT dynamic OK for : FinSet [R Message]× State
∀s : State; msgs : FinSet [R Message]
• msgs is NOT dynamic OK for s ⇔

( ( ¬(mode(s) = Initialization) ∧
( STEAM BOILER WAITING ε msgs ∨

PHYSICAL UNITS READY ε msgs ) )
∨ ( ∃pu : PhysicalUnit •

FAILURE ACKNOWLEDGEMENT (pu) ε msgs ∧
(status(s, pu) = OK ∨ status(s, pu) = FailureWithAck) )

∨ ( ∃pu : PhysicalUnit •
REPAIRED(pu) ε msgs ∧
(status(s, pu) = OK ∨ status(s, pu) = FailureWithoutAck) ))

within
pred Transmission OK : State × FinSet [R Message]
∀s : State; msgs : FinSet [R Message]
• Transmission OK (s,msgs) ⇔

(msgs is static OK ∧ ¬(msgs is NOT dynamic OK for s))
end

C.5.4 Detection of the Pump and Pump Controller Failures

We start by considering the detection of the failures of the pumps.
As explained in Sec C.5.1, we rely on the predicted pump state message.

Thus, in a first step we should extend the specification Sbcs State 2 to
add an observer related to the prediction of pump state messages. The pre-
diction (Open or Closed) can however only be made when the status of the
corresponding pump is OK . This is why we extend the sort PumpState to
introduce a constant Unknown PS :

Page: 131 *** FIRST PUBLIC DRAFT *** 17-Sep-2003/17:54



132 C Case Study: The Steam-Boiler Control System

spec Sbcs State 3 =
Sbcs State 2

then free type ExtendedPumpState ::= sort PumpState | Unknown PS
op PS predicted : State × PumpNumber → ExtendedPumpState;
%{ status(s, Pump(pn)) = OK ⇔

¬ (PS predicted(s, pn) = Unknown PS) }%
end

The specification of the detection of pump failures is now straightforward
and is given in the Pump Failure specification. Remember that the meaning
of Pump OK is only relevant when Transmission OK holds, which in partic-
ular implies that for each pump, there is only one PUMP STATE message for
it in msgs. Moreover, we check the received value only if the predicted value
is not Unknown PS .
spec Pump Failure =

Sbcs State 3
then pred Pump OK : State × FinSet [R Message]× PumpNumber

∀s : State; msgs : FinSet [R Message]; pn : PumpNumber
• Pump OK (s,msgs, pn) ⇔

PS predicted(s, pn) = Unknown PS ∨
PUMP STATE (pn,PS predicted(s, pn) as PumpState) ε msgs

end
Let us now consider the detection of the failures of the pump controllers.

Again we rely on the predicted pump state controller message. Here, we must
be a bit careful in order to reflect the fact that stopping a pump has an
instantaneous effect, while starting it takes five seconds (see Sec. C.12.2.3).
Since five seconds is, unfortunately, exactly the elapsed time between two
cycles, when we decide to activate a pump we may have to wait two cycles to
receive a corresponding Flow pump controller state. This is why, in addition
to the constant Unknown PCS , used for the cases where no prediction can be
made since the pump controller is not working correctly, we also introduce a
constant SoonFlow to be used for the prediction related to a just activated
pump:
spec Sbcs State 4 =

Sbcs State 3
then free type

ExtendedPumpControllerState ::= sort PumpControllerState
| SoonFlow | Unknown PCS

op PCS predicted : State × PumpNumber
→ ExtendedPumpControllerState;

%{ status(s, PumpController(pn)) = OK ⇒
¬ (PCS predicted(s, pn) = Unknown PCS) }%

end
The specification of the detection of pump controller failures is now

straightforward and is given in the Pump Controller Failure specifica-
tion. Remember that the meaning of Pump Controller OK is only relevant

Page: 132 *** FIRST PUBLIC DRAFT *** 17-Sep-2003/17:54



C.5 Specifying the Detection of Equipment Failures 133

when Transmission OK holds, which in particular implies that for each pump,
there is only one PUMP CONTROLLER STATE message for it in msgs.
Moreover, we check the received value only if the predicted value is either
Flow or NoFlow , since if it is SoonFlow or Unknown PCS we cannot con-
clude.
spec Pump Controller Failure =

Sbcs State 4
then pred Pump Controller OK : State×FinSet [R Message]×PumpNumber

∀s : State; msgs : FinSet [R Message]; pn : PumpNumber
• Pump Controller OK (s,msgs, pn) ⇔

PCS predicted(s, pn) = Unknown PCS
∨ PCS predicted(s, pn) = SoonFlow
∨ PUMP CONTROLLER STATE (pn,

PCS predicted(s, pn) as PumpControllerState) ε msgs
end

C.5.5 Detection of the Steam and Water Level Measurement
Device Failures

To specify the failures of the steam and water level measurement devices, we
must again rely on some predicted values. Here however we cannot predict
an exact value, but only an interval in which the received value should be
contained. This leads to the following extension of Sbcs State 4:
spec Sbcs State 5 =

Sbcs State 4
then free type Valpair ::= pair(low : Value; high : Value)

ops steam predicted , level predicted : State → Valpair ;
%{ low(steam predicted(s)) is the minimal output of steam predicted,

high(steam predicted(s)) is the maximal output of steam predicted,
and similarly for level predicted. }%

end
The specification of the failures of the measurement devices is again

straightforward and is given in the Steam Failure and Level Failure
specifications. Remember that the meaning of Steam OK (Level OK resp.) is
only relevant when Transmission OK holds, which in particular implies that
there is only one STEAM (v) (LEVEL(v) resp.) message in msgs (hence only
one possible v in the quantifications ∀v : Value . . . below). Note also that
here we assume that the predicted values will take care of the static limits (0
and W for the steam, 0 and C for the water level), thus we do not need to
check these static limits explicitly here.

Page: 133 *** FIRST PUBLIC DRAFT *** 17-Sep-2003/17:54



134 C Case Study: The Steam-Boiler Control System

spec Steam Failure =
Sbcs State 5

then pred Steam OK : State × FinSet [R Message]
∀s : State; msgs : FinSet [R Message]
• Steam OK (s,msgs) ⇔

(∀v : Value • STEAM (v) ε msgs ⇒
(low(steam predicted(s)) ≤ v) ∧
(v ≤ high(steam predicted(s))) )

end

spec Level Failure =
Sbcs State 5

then pred Level OK : State × FinSet [R Message]
∀s : State; msgs : FinSet [R Message]
• Level OK (s,msgs) ⇔

(∀v : Value • LEVEL(v) ε msgs ⇒
(low(level predicted(s)) ≤ v) ∧
(v ≤ high(level predicted(s))) )

end

C.5.6 Summing Up

We now have all the ingredients necessary for the specification of the predi-
cate PU OK . This is done in the Failure Detection specification, which
integrates together all the specifications related to failure detection.
spec Failure Detection =

Message Transmission System Failure
and Pump Failure and Pump Controller Failure
and Steam Failure and Level Failure
then pred PU OK : State × FinSet [R Message]× PhysicalUnit

∀s : State; msgs : FinSet [R Message]; pn : PumpNumber
• PU OK (s,msgs,Pump(pn)) ⇔ Pump OK (s,msgs, pn)
• PU OK (s,msgs,PumpController(pn)) ⇔

Pump Controller OK (s,msgs, pn)
• PU OK (s,msgs,OutputOfSteam) ⇔ Steam OK (s,msgs)
• PU OK (s,msgs,WaterLevel) ⇔ Level OK (s,msgs)

hide ops Pump OK , Pump Controller OK , Steam OK , Level OK
end

C.6 Predicting the Behaviour of the Steam-Boiler

In the previous section we have explained that failure detection was to a large
extent based on a comparison between the received messages and the expected

Page: 134 *** FIRST PUBLIC DRAFT *** 17-Sep-2003/17:54



C.6 Predicting the Behaviour of the Steam-Boiler 135

ones. For this purpose we have extended the specification Sbcs State by
several observers, which means we have assumed that each cycle, we record in
some state variables the information needed to compute the expected messages
at the next cycle. According to our explanations in Sec. C.3, we must now
specify, for each observer obs introduced, a corresponding next obs operation.
This is the aim of this section.

We have already defined the operation next mode in the generic specifica-
tion Mode Evolution (see Sec. C.4) and the operation next status in the
generic specification Status Evolution (see Sec. C.5.2). Thus what is left
is the specification of the operations next PS predicted , next PCS predicted ,
next steam predicted and next level predicted .

As explained in Sec. C.5, the informal requirements suggest that we should
take into account some inter-dependencies when predicting values to be re-
ceived at the next cycle. For instance, the water level in the steam-boiler
depends on how much steam is produced, but also on how much water is
poured into the steam boiler by the pumps which are open. The information
provided by the water level prediction is obviously crucial to decide whether
we should activate or stop some pumps. On the other hand, to predict the
pump state and pump controller state messages to be received at the next
cycle, we must know which pumps have been ordered to be activated or to be
stopped.

From this first analysis we draw the following conclusions on how to specify
the needed predictions:

1. In a first step we should predict the interval in which the output of steam
is expected to stay during the next cycle: this prediction relies only on the
just received value STEAM (v) (if we trust it) or on the previously pre-
dicted values for the steam production. This is because the production of
steam is expected to vary according to its maximum gradients of increase
and decrease, and nothing else.

2. In the next step we should decide whether some pumps have to be ordered
to activate or to stop. This decision, plus the knowledge about the current
state of the pumps (as much as we trust it), and the predicted evolution
of the steam production, should allow us to predict the evolution of the
water level.

3. Then, on the basis of the current states of the pumps and pump controllers,
together with the above made choice of pumps to be activated or stopped,
we can predict the states of the pumps and of the pump controllers at the
next cycle.

Of course all these predictions are only meaningful as long as no failure of the
message transmission system has been detected (but if this is not the case the
steam-boiler control system switches to the EmergencyStop mode and stops,
so no predictions are needed anyway). The corresponding specifications are
described in the next subsections.

Page: 135 *** FIRST PUBLIC DRAFT *** 17-Sep-2003/17:54



136 C Case Study: The Steam-Boiler Control System

C.6.1 Predicting the Output of Steam and the Water Level

To predict the intervals in which the output of steam and the water level are
expected to stay during the next cycle, we will proceed as follows:

1. Following the analysis sketched above, when we are in the state s and
have received the messages msgs, to predict the interval in which the out-
put of steam is expected to stay during the next cycle, we first should
compute the adjusted steam interval: this interval is either the (inter-
val reduced to the) received steam value if we can rely on it (i.e., if
PU OK (s,msgs,OutputOfSteam) holds), or the steam predicted interval
(stored in the state s at the previous cycle).

2. Then, we use the maximum gradients of increase and decrease (i.e., U1
and U2 ), to predict the interval in which the output of steam is expected
to stay during the next cycle. For this we use two auxiliary operations,
low predicted steam and high predicted steam, to compute the lower and
upper bounds of this interval.

3. We proceed similarly for the water level: first we compute the adjusted level
interval, which is either the (interval reduced to the) received level value
if we can rely on it (i.e., if PU OK (s,msgs,WaterLevel) holds), or the
level predicted interval (stored in the state s at the previous cycle).

4. Then we should consider broken pumps (the pumps pn for which neither
PU OK (s,msgs,Pump(pn) nor PU OK (s,msgs,PumpController(pn))
holds) and the reliable pumps, which are not broken and are therefore
known to be either Open or Closed .

5. At this point we must decide which pumps are ordered to activate or to
stop.
However, the specific control strategy for deciding which pumps should be
activated or stopped need not to be detailed in this requirements specifica-
tion: this can be left to a further refinement towards an implementation of
the steam-boiler control system. (Obviously the strategy should compare
the adjusted level with the recommended interval (N1 ,N2 ) and decide
accordingly.)
We will therefore rely on a loosely specified chosen pumps operation, for
which we just impose some soundness conditions (e.g., a pump ordered to
activate should be currently considered as “reliable” and Closed , a pump
ordered to stop should be currently considered as “reliable” and Open).

6. Now we can compute the minimal and maximal amounts of water that
will be poured into the steam-boiler during the next cycle. To compute
minimal pumped water , we consider that only the pumps which are “re-
liable” and already Open will pour some water in; the broken pumps, the
pumps which are just ordered to activate, and the pumps which are or-
dered to stop are all considered not pouring water in. Similarly, to compute
maximal pumped water , we consider that the pumps which are “reliable”
and already Open, the pumps which are just ordered to activate, as well as
all the broken pumps, may pour some water in; only the “reliable” pumps

Page: 136 *** FIRST PUBLIC DRAFT *** 17-Sep-2003/17:54



C.6 Predicting the Behaviour of the Steam-Boiler 137

just ordered to stop or already stopped are known not to be pouring any
water in.

7. Finally, we can predict the interval in which the water level is expected
to stay during the next cycle. For this we use two auxiliary operations,
low predicted level and high predicted level , to compute the lower and
upper bounds of this interval.

8. This prediction is the basis for deciding whether the water level risks to
reach a DangerousWaterLevel (i.e., below M1 or above M2 ).

Note that the intervals in which the output of steam and the water level are
expected to stay during the next cycle are predicted without considering the
next status of these devices. This is indeed necessary for the Degraded and
Rescue operating modes. This leads to the following Steam And Level
Prediction specification.
spec Steam And Level Prediction =

Failure Detection and FinSet [ sort PumpNumber ]
then local

ops received steam : State × FinSet [R Message] → Value;
adjusted steam : State × FinSet [R Message] → Valpair ;
low predicted steam, high predicted steam :

State × FinSet [R Message] → Value;
received level : State × FinSet [R Message] → Value;
adjusted level : State × FinSet [R Message] → Valpair ;
low predicted level , high predicted level :

State × FinSet [R Message] → Value;
broken pumps : State×FinSet [R Message] → FinSet [PumpNumber ];
reliable pumps :

State×FinSet [R Message]×PumpState → FinSet [PumpNumber ]
∀s : State; msgs : FinSet [R Message]; pn : PumpNumber ; ps : PumpState
%% Axioms for STEAM:

• Transmission OK (s,msgs) ⇒
STEAM (received steam(s,msgs)) ε msgs

• adjusted steam(s,msgs) =
pair(received steam(s,msgs), received steam(s,msgs))
when (Transmission OK (s,msgs) ∧ PU OK (s,msgs,OutputOfSteam))
else steam predicted(s)

%% Axioms for LEVEL:

• Transmission OK (s,msgs) ⇒
LEVEL(received level(s,msgs)) ε msgs

• adjusted level(s,msgs) =
pair(received level(s,msgs), received level(s,msgs))
when (Transmission OK (s,msgs) ∧ PU OK (s,msgs,WaterLevel))
else level predicted(s)

%% Axioms for auxiliary pumps operations:

Page: 137 *** FIRST PUBLIC DRAFT *** 17-Sep-2003/17:54



138 C Case Study: The Steam-Boiler Control System

• pn ε broken pumps(s,msgs) ⇔
¬ ( PU OK (s,msgs,Pump(pn)) ∧

PU OK (s,msgs,PumpController(pn)) )
• pn ε reliable pumps(s,msgs, ps) ⇔

¬ (pn ε broken pumps(s,msgs)) ∧
PUMP STATE (pn, ps) ε msgs

within
ops next steam predicted : State × FinSet [R Message] → Valpair ;

chosen pumps :
State×FinSet [R Message]×PumpState → FinSet [PumpNumber ];

%{ minimal pumped water and maximal pumped water cannot
be made local since their specification relies on
chosen pumps which must be exported. }%

minimal pumped water ,maximal pumped water :
State × FinSet [R Message] → Value;

next level predicted : State × FinSet [R Message] → Valpair
pred DangerousWaterLevel : State × FinSet [R Message]
%% Axioms for STEAM:

∀s : State; msgs : FinSet [R Message]; pn : PumpNumber
• low(next steam predicted(s,msgs)) =

max (0 , low(adjusted steam(s,msgs))− (U2 × dt))
• high(next steam predicted(s,msgs)) =

min(W , high(adjusted steam(s,msgs)) + (U1 × dt))
%% Axioms for PUMPS:

• pn ε chosen pumps(s,msgs,Open) ⇒
pn ε reliable pumps(s,msgs,Closed)

• pn ε chosen pumps(s,msgs,Closed) ⇒
pn ε reliable pumps(s,msgs,Open)

• minimal pumped water(s,msgs) =
dt × P × ](reliable pumps(s,msgs,Open)

− chosen pumps(s,msgs,Closed))
• maximal pumped water(s,msgs) =

dt × P × ]((reliable pumps(s,msgs,Open)
∪ chosen pumps(s,msgs,Open)
∪ broken pumps(s,msgs))
− chosen pumps(s,msgs,Closed))

%% Axioms for LEVEL:

• low(next level predicted(s,msgs)) =
max (0 , (low(adjusted level(s,msgs))

+ minimal pumped water(s,msgs))
− ( (dt2 ×U1/2 )

+ (dt × high(adjusted steam(s,msgs))) ) )

Page: 138 *** FIRST PUBLIC DRAFT *** 17-Sep-2003/17:54



C.6 Predicting the Behaviour of the Steam-Boiler 139

• high(next level predicted(s,msgs)) =
min(C , (high(adjusted level(s,msgs))

+ maximal pumped water(s,msgs))
− ( (dt2 ×U2/2 )

+ (dt × low(adjusted steam(s,msgs))) ) )
• DangerousWaterLevel(s,msgs) ⇔

(low(next level predicted(s,msgs)) ≤ M1 ) ∨
(M2 ≤ high(next level predicted(s,msgs)))

hide ops minimal pumped water , maximal pumped water
end

C.6.2 Predicting the Pump and Pump Controller States

Specifying the predicted state of each pump at the next cycle is almost trivial.
The next pump state is Unknown PS if the next status of the pump is not
OK , otherwise it should be Open if:

• it is Open now and the pump is not ordered to stop, or
• the pump is ordered to activate;

otherwise, it should be Closed since:

• it is Closed now and the pump is not ordered to activate, or
• it is ordered to stop.

This leads to the following Pump State Prediction specification. This
specification extends Steam And Level Prediction (since we rely on
chosen pumps for our predictions), and Status Evolution (which provides
next status) instantiated by Failure Detection (which provides the pred-
icate PU OK parameter of Failure Detection).
spec Pump State Prediction =

Status Evolution [Failure Detection ]
and Steam And Level Prediction

then op next PS predicted :
State×FinSet [R Message]×PumpNumber → ExtendedPumpState

∀s : State; msgs : FinSet [R Message]; pn : PumpNumber
• next PS predicted(s,msgs, pn) =

Unknown PS when ¬ (next status(s,msgs,Pump(pn)) = OK )
else Open when ( PUMP STATE (pn,Open) ε msgs ∧

¬ (pn ε chosen pumps(s,msgs,Closed)) )
else Closed

end
The reasoning to predict the pump controller state is similar, but we must

take into account that two cycles may be needed before a just activated pump
leads to a Flow state (provided the pump is not stopped meanwhile). Thus,
the next pump controller state is Unknown PCS if the next status of the

Page: 139 *** FIRST PUBLIC DRAFT *** 17-Sep-2003/17:54



140 C Case Study: The Steam-Boiler Control System

pump controller is not OK , or if the next status of the corresponding pump
is not OK , otherwise the predicted pump controller state value is:

• Flow when the pump is not ordered to stop and it is currently Flow , or it
is currently NoFlow but PCS predicted SoonFlow ;

• NoFlow if the pump is ordered to stop, or if it is currently NoFlow and is
not PCS predicted SoonFlow and the pump is not ordered to activate;

• SoonFlow otherwise.

This leads to the following Pump Controller State Prediction spec-
ification.
spec Pump Controller State Prediction =

Status Evolution [Failure Detection ]
and Steam And Level Prediction

then op next PCS predicted :
State × FinSet [R Message]× PumpNumber

→ ExtendedPumpControllerState
∀s : State; msgs : FinSet [R Message]; pn : PumpNumber
• next PCS predicted(s,msgs, pn) =

Unknown PCS when
¬ ( next status(s,msgs,PumpController(pn)) = OK ∧

next status(s,msgs,Pump(pn)) = OK )
else Flow when

( PUMP CONTROLLER STATE (pn,Flow) ε msgs ∨
( PUMP CONTROLLER STATE (pn,NoFlow) ε msgs ∧

PCS predicted(s, pn) = SoonFlow ) )
∧ ¬ (pn ε chosen pumps(s,msgs,Closed))

else NoFlow when
(pn ε chosen pumps(s,msgs,Closed))
∨ ( PUMP CONTROLLER STATE (pn,NoFlow) ε msgs ∧

¬ (PCS predicted(s, pn) = SoonFlow) ∧
¬ (pn ε chosen pumps(s,msgs,Open)) )

else SoonFlow
end

All our predictions are summarized in the following PU Prediction spec-
ification:
spec PU Prediction =

Pump State Prediction
and Pump Controller State Prediction
%{ Both specifications extend Status Evolution

(instantiated by Failure Detection)
and Steam And Level Prediction }%

end

Page: 140 *** FIRST PUBLIC DRAFT *** 17-Sep-2003/17:54



C.7 Specifying the Messages to Send 141

C.7 Specifying the Messages to Send

At this stage we are left with the specification of the messages to send at each
cycle. This is easily specified, following Sec. C.12.5, and leads to the following
Sbcs Analysis specification.

The specification Sbcs Analysis is obtained by instantiating the Mode
Evolution specification by PU Prediction, and extending the result by
the specification of the operation messages to send .
spec Sbcs Analysis =

Mode Evolution [PU Prediction ]
then local

ops PumpMessages,FailureDetectionMessages :
State × FinSet [R Message] → FinSet [S Message];

RepairedAcknowledgementMessages :
FinSet [R Message] → FinSet [S Message]

∀s : State; msgs : FinSet [R Message]; Smsg : S Message
• Smsg ε PumpMessages(s,msgs) ⇔

(∃pn : PumpNumber •
( pn ε chosen pumps(s,msgs,Open)
∧ Smsg = OPEN PUMP(pn) )

∨ ( pn ε chosen pumps(s,msgs,Closed)
∧ Smsg = CLOSE PUMP(pn) ) )

• Smsg ε FailureDetectionMessages(s,msgs) ⇔
(∃pu : PhysicalUnit •

Smsg = FAILURE DETECTION (pu) ∧
next status(s,msgs, pu) = FailureWithoutAck )

• Smsg ε RepairedAcknowledgementMessages(msgs) ⇔
(∃pu : PhysicalUnit •

Smsg = REPAIRED ACKNOWLEDGEMENT (pu) ∧
next status(s,msgs, pu) = FailureWithAck )

within
op messages to send : State×FinSet [R Message] → FinSet [S Message]
∀s : State; msgs : FinSet [R Message]
• messages to send(s,msgs) =

(PumpMessages(s,msgs) ∪
FailureDetectionMessages(s,msgs) ∪
RepairedAcknowledgementMessages(msgs))
+ MODE (next mode(s,msgs))

end

Page: 141 *** FIRST PUBLIC DRAFT *** 17-Sep-2003/17:54



142 C Case Study: The Steam-Boiler Control System

C.8 The Steam-Boiler Control System Specification

According to our work plan detailed in Sec. C.3, we have already specified
the main parts of our case study. First, let us display a basic (flat) specifica-
tion equivalent to Sbcs State 5 and where all the state observers are listed
together.
spec Sbcs State =

Preliminary
then sort State

free type Status ::= OK | FailureWithoutAck | FailureWithAck
free type ExtendedPumpState ::= sort PumpState | Unknown PS
free type

ExtendedPumpControllerState ::= sort PumpControllerState
| SoonFlow | Unknown PCS

free type Valpair ::= pair(low : Value; high : Value)
ops mode : State → Mode;

nbSTOP : State → Nat ;
status : State × PhysicalUnit → Status;
PS predicted : State × PumpNumber

→ ExtendedPumpState;
PCS predicted : State × PumpNumber

→ ExtendedPumpControllerState;
steam predicted , level predicted : State → Valpair

endPerhaps a better alternative is to choose
arbitrary values and not bother the reader
with this initialization phase.

We are now ready to provide the specification of the steam-boiler control
system, considered as a labeled transition system. We leave partly unspeci-
fied the initial state init , since in our specification this state represents the
state immediately following the receipt of the PHYSICAL UNITS READY
message. Hence intuitively the omitted axioms should take into account
the messages sent and received during the initialization phase (at least at
the end of it). It is therefore better to leave open for now the value of
nbSTOP(init), status(init), PS predicted(init , pn), PCS predicted(init , pn),
steam predicted(init), and level predicted(init), and to note that this would
have to be taken care of when specifying the initialization phase. The value
of mode(init) is specified according to the end of Sec. C.12.4.1.
spec Steam Boiler Control System =

Sbcs Analysis
then op init : State

pred is step : State×FinSet [R Message]×FinSet [S Message]×State
%% Specification of the initial state init :

• mode(init) = Normal ∨ mode(init) = Degraded

Page: 142 *** FIRST PUBLIC DRAFT *** 17-Sep-2003/17:54



C.9 Validation of the CASL Requirements Specification 143

%% Specification of is step:

∀s, s ′ : State; msgs : FinSet [R Message]; Smsg : FinSet [S Message]
• is step(s,msgs,Smsg , s ′) ⇔

mode(s ′) = next mode(s,msgs) ∧
nbSTOP(s ′) = next nbSTOP(s,msgs) ∧
(∀pu : PhysicalUnit • status(s ′, pu) = next status(s,msgs, pu)) ∧
(∀pn : PumpNumber •
PS predicted(s ′, pn) = next PS predicted(s,msgs, pn) ∧
PCS predicted(s ′, pn) = next PCS predicted(s,msgs, pn) ) ∧

steam predicted(s ′) = next steam predicted(s,msgs) ∧
level predicted(s ′) = next level predicted(s,msgs) ∧
Smsg = messages to send(s,msgs)

then %% Specification of the reachable states:

free { pred reach : State
∀s, s ′ : State; msgs : FinSet [R Message]; Smsg : FinSet [S Message]
• reach(init)
• reach(s) ∧ is step(s,msgs,Smsg , s ′) ⇒ reach(s ′) }

end

C.9 Validation of the CASL Requirements Specification

Once the formalization of the informal requirements is completed, we must
now face the following question: is our formal specification adequate ? Answer-
ing this question is a difficult issue since there is no formal way to establish
the adequacy of a formal specification w.r.t. informal requirements, i.e., we
cannot prove this adequacy. However, we can try to test it, by performing
various “experiments”. When these experiments are successful, we increase
our confidence in the formal specification. If some experiment fails, then we
can inspect the specification and try to understand the causes of the failure,
possibly detecting some flaw in the specification.

We will base our validation process on theorem proving, i.e., we will check
that some formulas are logical consequences of our requirements specifica-
tion Steam Boiler Control System. For this purpose we use the tools
described in Chap. 10. During this validation process we can consider two
kinds of proof obligations:

1. We can inspect the text of the specification and derive from this inspec-
tion some formulae that are expected to be logical consequences of our
specification. This can be considered as some kind of “internal validation”
of the formal specification.

2. We can check that some expected properties inferred from the informal
requirements are logical consequences of our specification (“external val-
idation”). To do this, we must first reanalyze the informal specification,
state some expected properties, translate them into formulas, and then

Page: 143 *** FIRST PUBLIC DRAFT *** 17-Sep-2003/17:54



144 C Case Study: The Steam-Boiler Control System

attempt to prove that these formulas are logical consequences of our spec-
ification. This task is not easy, since in general one has the feeling that
all expected properties were already detected and included in the axioms
during the formalization process.

The application of these principles to the requirements specification of the
steam-boiler control system leads to various proofs. Below we give only a few
illustrative examples.

For instance, let us consider the specification of next mode in Mode
Evolution: it is advisable to prove that all the cases considered in the spec-
ification of next mode are mutually exclusive, and that their disjunction is
equivalent to true. This is a typical example of “internal validation” of the
specification, since we just consider the text of the specification to decide
which proof attempt will be performed, without considering the informal re-
quirements again. We do not spell out the corresponding proofs here, but the
reader can easily check that indeed the operation next mode is well-defined
(i.e., all cases are mutually exclusive and their disjunction is equivalent to
true). In the same spirit we can prove that the same pump cannot be simul-
taneously be ordered to activate and to stop, that we never resignal a failure
which has already been signaled, that as long as the operating mode is not
set to EmergencyStop the water level is safe, etc.

Let us now consider an example of “external validation”. According to
our understanding of failure detection (see Sec. C.5), if we have detected a
failure of some physical unit pu (so PU OK does not hold for pu), then the
status of this physical unit should not be set to OK . The corresponding proof
obligation reads as follows:

Steam Boiler Control System |=
∀s : State; msgs : FinSet [R Message]; pu : PhysicalUnit
• Transmission OK (s,msgs) ∧ ¬PU OK (s,msgs, pu)

⇒ ¬ (next status(s,msgs, pu) = OK )
However here we are unable to discharge this proof obligation. A careful

analysis of the proof attempt shows that the proof fails since it could be
the case that, simultaneously with the receipt of a repaired message for the
physical unit pu, we nevertheless detect again a failure of the same unit. From
this analysis we conclude that the following axiom in Status Evolution is
not adequate:

• status(s, pu) = FailureWithAck ∧ REPAIRED(pu) is in msgs
⇒ next status(s,msgs, pu) = OK

This means we must fix the Status Evolution specification and replace
the above axiom by:

• status(s, pu) = FailureWithAck ∧ REPAIRED(pu) is in msgs
⇒ next status(s,msgs, pu) = OK when PU OK (s,msgs, pu)

else FailureWithoutAck
Once the specification Status Evolution is modified as explained above,

we can prove that the expected property holds.

Page: 144 *** FIRST PUBLIC DRAFT *** 17-Sep-2003/17:54



C.10 Designing the Architecture of the Steam-Boiler Control System 145

To conclude, the reader should keep in mind that the validation of the
specification is a very important task that deserves some serious attention. In
this section we have only briefly illustrated some typical proof attempts that
would naturally arise when validating the Steam Boiler Control System
specification, and obviously many other proof attempts are required to reach
a stage where we can trust our requirements specification of the steam-boiler
control system.

C.10 Designing the Architecture of the Steam-Boiler
Control System

We now have a validated requirements specification Steam Boiler Control
System of the steam-boiler control system. The next step is to refine it into
an architectural specification, thereby prescribing the intended architecture
of the implementation of the steam-boiler control system. Indeed, the expla-
nations given in Sec. C.3 suggest the following rather obvious architecture for
the steam-boiler control system:
arch spec Arch SBCS =
units P : Value → Preliminary;

S : Preliminary → Sbcs State;
A : Sbcs State → Sbcs Analysis;
C : Sbcs Analysis → Steam Boiler Control System

result λV : Value • C [A [S [P [V ]]]]
end

Note that we decide to describe the implementation of the steam-boiler
control system as an open system, relying on an external component V imple-
menting Value. This is consistent with our explanations in Sec. C.2: choosing
a specific implementation of Value is obviously orthogonal to designing the
implementation of the steam-boiler control system. This means in particu-
lar that the component V implementing Value will encapsulate the chosen
representation of natural numbers and values, together with operations and
predicates operating on them.

In a next step, we can refine the specification Value → Preliminary of
the component P into the following architectural specification:
arch spec Arch Preliminary =
units SET : { sort Elem} × Nat → FinSet [ sort Elem ];

B : Basics;
MS : Messages Sent given B ;
MR : Value → Messages Received given B ;
CST : Value → Sbcs Cst

result λV : Value • SET [MS fit Elem 7→ S Message] [V ]
and SET [MR [V ] fit Elem 7→ R Message] [V ]
and CST [V ]

end

Page: 145 *** FIRST PUBLIC DRAFT *** 17-Sep-2003/17:54



146 C Case Study: The Steam-Boiler Control System

Here we decide to implement (generic) sets in a component SET , reused
both for sets of messages received and sets of messages sent. Since the imple-
mentation of natural numbers is provided by the (external) component V , we
use V for the second argument of the generic component SET in the result
unit term.

The specification of the components C and S of Arch SBCS are simple
enough that they do not need to be further architecturally refined. However,
they are still not design specifications, and hence the development is not fin-
ished yet. For example, the specification of the component S (which implement
the states of the steam-boiler control system) can be refined into the following
specification, which provides a concrete implementation of states as a record
of all the observable values.

from Basic/StructuredDatatypes get FinMap

spec Sbcs State Impl =
Preliminary

then free type Status ::= OK | FailureWithoutAck | FailureWithAck
free type ExtendedPumpState ::= sort PumpState | Unknown PS
free type

ExtendedPumpControllerState ::= sort PumpControllerState
| SoonFlow | Unknown PCS

free type Valpair ::= pair(low : Value; high : Value)
then FinMap [Basics fit S 7→ PhysicalUnit ] [ sort Status ]
and FinMap [Basics fit S 7→ PumpNumber ] [ sort ExtendedPumpState ]
and FinMap [Basics fit S 7→ PumpNumber ]

[ sort ExtendedPumpControllerState ]
then free type ConcreteState ::=

state(mode : Mode;
nbSTOP : Nat ;
status map : TotalFinMap[PhysicalUnit ,Status];
PS predicted map : TotalFinMap[PumpNumber ,

ExtendedPumpState];
PCS predicted map : TotalFinMap[PumpNumber ,

ExtendedPumpControllerState];
steam predicted , level predicted : Valpair)

ops status(s : ConcreteState; pu : PhysicalUnit) : Status
= eval(pu, status map(s));

PS predicted(s : ConcreteState; pn : PumpNumber)
: ExtendedPumpState = eval(pn,PS predicted map(s));

PCS predicted(s : ConcreteState; pn : PumpNumber)
: ExtendedPumpControllerState
= eval(pn,PCS predicted map(s))

endWe need total finite maps here. The subsort
TotalFinMap should be added to the finite
map specification in the basic libraries. T.M.

Page: 146 *** FIRST PUBLIC DRAFT *** 17-Sep-2003/17:54



C.10 Designing the Architecture of the Steam-Boiler Control System 147

The specification Sbcs State → Sbcs Analysis of the component A of
Arch SBCS can be refined into the following architectural specification:
arch spec Arch Analysis =
units FD : Sbcs State → Failure Detection;

PR : Failure Detection → PU Prediction;
ME : PU Prediction → Mode Evolution [PU Prediction ];
MTS : Mode Evolution [PU Prediction ] → Sbcs Analysis

result λS : Sbcs State • MTS [ME [PR [FD [S ]]]]
end

In the above architectural specification Arch Analysis, the component
FD provides an implementation of failure detection, the component PR an
implementation of the predicted state variables for the next cycle, the compo-
nent ME provides an implementation of next mode (and of next nbSTOP),
and the component MTS provides an implementation of messages to send .

The specifications of the components ME and MTS are simple enough to
be directly implemented. The specifications of the components FD and PR
can be refined as follows.
arch spec Arch Failure Detection =
units MTSF : Sbcs State → Message Transmission System Failure;

PF : Sbcs State → Pump Failure;
PCF : Sbcs State → Pump Controller Failure;
SF : Sbcs State → Steam Failure;
LF : Sbcs State → Level Failure;
PU : Message Transmission System Failure

× Pump Failure × Pump Controller Failure
× Steam Failure × Level Failure

→ Failure Detection

result λS : Sbcs State •
PU [MTSF [S ]] [PF [S ]] [PCF [S ]] [SF [S ]] [LF [S ]]
hide Pump OK , Pump Controller OK , Steam OK , Level OK

end
The above architectural specification Arch Failure Detection refines

the specification Sbcs State → Failure Detection of the component FD
in Arch Analysis and introduces a component for each kind of failure de-
tection. Then the component PU implements PU OK , and in the result unit
expression we hide the auxiliary predicates provided by the components PF ,
PCF , SF , and LF .9

9 These auxiliary predicates are already hidden in the specification Failure
Detection. However, remember that in the specification of a generic component,
the target specification is always an implicit extension of the argument specifica-
tions. This is why it is needed to hide the auxiliary predicates at the level of the
result unit expression.

Page: 147 *** FIRST PUBLIC DRAFT *** 17-Sep-2003/17:54



148 C Case Study: The Steam-Boiler Control System

Finally we refine the specification Failure Detection→PU Prediction
of the component PR of the architectural specification Arch Analysis as fol-
lows:
arch spec Arch Prediction =
units SE : Failure Detection →

Status Evolution [Failure Detection ];
SLP : Failure Detection → Steam And Level Prediction;
PP : Status Evolution [Failure Detection ]

× Steam And Level Prediction
→ Pump State Prediction;

PCP : Status Evolution [Failure Detection ]
× Steam And Level Prediction

→ Pump Controller State Prediction

result λFD : Failure Detection •
local SEFD = SE [FD ]; SLPFD = SLP [FD ] within
PP [SEFD ] [SLPFD ] and PCP [SEFD ] [SLPFD ]

end
In the above architectural specification, the component SE provides an im-

plementation of next status. The component SLP provides an implementation
of next steam predicted , next level predicted , chosen pumps, and Dangerous-
WaterLevel . The component PP provides an implementation of next PS predicted ,
and the component PCP provides an implementation of next PCS predicted .

We are now left with specifications of components that are simple enough
to be directly implemented, and this concludes our case study.

C.11 Conclusion

Some concluding words will eventually be added here.

C.12 The Steam-Boiler Control Specification Problem

For completeness, the text describing the case study description, as originally
provided by Jean-Raymond Abrial, is reproduced here.Copyright to be clarified with Springer and

Abrial.

Important Note: The “Additional
Information” that was also provided is not
reproduced here, see LNCS 1165 page 507.

C.12.1 Introduction

This text constitutes an informal specification of a program which serves to
control the level of water in a steam-boiler. It is important that the program
works correctly because the quantity of water present when the steam-boiler
is working has to be neither too low nor to high; otherwise the steam-boiler
or the turbine sitting in front of it might be seriously affected.

Page: 148 *** FIRST PUBLIC DRAFT *** 17-Sep-2003/17:54



C.12 The Steam-Boiler Control Specification Problem 149

The proposed specification is derived fom an original text that has been
written by LtCol. J.C. Bauer for the Institute for Risk Research of the Uni-
versity of Waterloo, Ontario, Canada. The original text has been submitted
as a competition problem to be solved by the participants to the International
Software Safety Symposium organized by the Institute for Risk Research. It
has been given to us by the Institut de Protection et de Sûreté Nucléaire,
Fontenay-aux-Roses, France. We would like to thank the author, the Institute
for Risk Research, and the Institut de Protection et de Sûreté Nucléaire for
their kind permission to use their text.

The text to follow is severely biased to a particular implementation. This
is very often the case with industrial specifications that are rarely indepen-
dent from a certain implementation people have in mind. In that sense, this
specification is realistic. Your first formal specification steps could be much
more abstract if that seems important to you (in particular if your formalism
allows you to do so). In other words, you are encouraged to structure your
specification in a way that is not necessarily the same as the one proposed
in what follows. But in any case, you are asked to demonstrate that your
specification can be refined to an implementation that is close enough to the
functional requirements of the “specification” proposed below.

You might also judge that the specification contain some loose ends and
inconsistencies. Do not hesitate to point them out and to take yourself some
appropriate decisions. The idea, however, is that such inconsistencies should
be solely within the organization of the system and not within its physical
properties.

We are aware of the fact that the text to follow does not propose any precise
model of the physical evolution of the system, only elementary suggestions.
As a consequence, you may have to take some simple, even simplistic, abstract
decisions concerning such a physical model.

C.12.2 Physical environment

The system comprises the following units:

• the steam-boiler,
• a device to measure the quantity of water in the steam-boiler,
• four pumps to provide the steam-boiler with water,
• four devices to supervise the pumps (one controller for each pump),
• a device to measure the quantity of steam which comes out of the steam-

boiler,
• an operator desk,
• a message transmision system.

Page: 149 *** FIRST PUBLIC DRAFT *** 17-Sep-2003/17:54



150 C Case Study: The Steam-Boiler Control System

C.12.2.1 The steam-boiler

The steam-boiler is characterized by the following elements:

• A valve for evacuation of water. It serves only to empty the steam-boiler
in its initial phase.

• Its total capacity C (indicated in litres).
• The minimal limit quantity M1 of water (in litres). Below M1 the steam-

boiler would be in danger after five seconds, if the steam continued to come
out at its maximum quantity without supply of water from the pumps.

• The maximal limit quantity M2 of waters (in litres). Above M2 the steam-
boiler would be in danger after five seconds, if the pumps continued to
supply the steam-boiler with water without possibility to evacuate the
steam.

• The minimal normal quantity N1 of water in litres to be maintained in
the steam-boiler during regular operation (M1 < N1 ).

• The maximal normal quantity N2 of water (in litres) to be maintained in
the steam-boiler during regular operation (N2 < M2 ).

• The maximum quantity W of steam (in litres/sec) at the exit of the steam-
boiler.

• The maximum gradient U1 of increase of the quantity of steam (in
litres/sec/sec).

• The maximum gradient U2 of decrease of the quantity of steam (in
litres/sec/sec).

C.12.2.2 The water level measurement device

The device to measure the level of water in the steam-boiler provides the
following information:

• the quantity q (in litres) of water in the steam-boiler.

C.12.2.3 The pumps

Each pump is characterized by the following elements:

• Its capacity P (in litres/sec).
• Its functioning mode: on or off.
• It’s being started: after having been switched on, the pump needs five

seconds to start pouring water into the boiler (this is due to the fact that
the pump does not balance instantaneously the pressure of the steam-
boiler).

• It’s being stopped: with instantaneous effect.

Page: 150 *** FIRST PUBLIC DRAFT *** 17-Sep-2003/17:54



C.12 The Steam-Boiler Control Specification Problem 151

C.12.2.4 The pump control devices

Each pump controller provides the following information:

• the water circulates from the pump to the steam-boiler or, in the contrary,
it does not circulate.

C.12.2.5 The steam measurement device

The device to measure the quantity of steam which comes out of the steam-
boiler provides the following information:

• a quantity of steam v (in litres/sec).

C.12.2.6 Summary of constants and variables

The following table summarizes the various constants or physical variables of
the system:

Unit Comment
Quantity of water in the steam-boiler

C litre Maximal capacity
M1 litre Minimal limit
M2 litre Maximal limit
N1 litre Minimal normal
N2 litre Maximal normal

Outcome of steam at the exit of the steam-boiler
W litre/sec Maximal quantity
U1 litre/sec/sec Maximum gradient of increase
U2 litre/sec/sec Maximum gradient of decrease

Capacity of each pump
P litre/sec Nominal capacity

Current measures
q litre Quantity of water in the steam-boiler
p litre/sec Throughput of the pumps
v litre/sec Quantity of steam exiting the steam-boiler

C.12.3 The overall operation of the program

The program communicates with the physical units through messages which
are transmitted over a number of dedicated lines connecting each physical
unit with the control unit. In first approximation, the time for transmission
can be neglected.

The program follows a cycle and a priori does not terminate. This cycle
takes place each five seconds and consists of the following actions:

Page: 151 *** FIRST PUBLIC DRAFT *** 17-Sep-2003/17:54



152 C Case Study: The Steam-Boiler Control System

• Reception of messages coming from the physical units.
• Analysis of informations which have been received.
• Transmission of messages to the physical units.

To simplify matters, and in first approximation, all messages coming from (or
going to) the physical units are supposed to be received (emitted) simultane-
ously by the program at each cycle.

C.12.4 Operation modes of the program

The program operates in different modes, namely initialization, normal, de-
graded, rescue, emergency stop.

C.12.4.1 Initialization mode

The initialization mode is the mode to start with. The program enters a state
in which it waits for the message STEAM-BOILER WAITING to come from
the physical units. As soon as this message has been received the program
checks whether the quantity of steam coming out of the steam-boiler is really
zero. If the unit for detection of the level of steam is defective (that is, when v
is not equal to zero), the program enters the emergency stop mode. If the quan-
tity of water in the steam-boiler is above N2 the program activates the valve
of the steam-boiler in order to empty it. If the quantity of water in the steam-
boiler is below N1 then the program activates a pump to fill the steam-boiler.
If the program realizes a failure of the water level detection unit it enters the
emergency stop mode. As soon as a level of water between N1 and N2 has
been reached the program send continuously the signal PROGRAM READY
to the physical units until it receives the signal PHYSICAL UNITS READY
which must necessarily be emitted by the physical units. As soon as this sig-
nal has been received, the program enters either the mode normal if all the
physical units operate correctly or the mode degraded if any physical unit is
defective. A transmission failure puts the program into the mode emergency
stop.

C.12.4.2 Normal mode

The normal mode is the standard operating mode in which the program tries
to maintain the water level in the steam-boiler between N1 and N2 with all
physical units operating correctly. As soon as the water level is below N1 or
above N2 the level can be adjusted by the program by switching the pumps
on or off. The corresponding decision is taken on the basis of the information
which has been received from the physical units. As soon as the program
recognizes a failure of the water level measuring unit it goes into rescue mode.
Failure of any other physical unit puts the program into degraded mode. If
the water level is risking to reach one of the limit values M1 or M2 the

Page: 152 *** FIRST PUBLIC DRAFT *** 17-Sep-2003/17:54



C.12 The Steam-Boiler Control Specification Problem 153

program enters the mode emergency stop. This risk is evaluated on the basis
of a maximal behaviour of the physical units. A transmission failure puts the
program into emergency stop mode.

C.12.4.3 Degraded mode

The degraded mode is the mode in which the program tries to maintain a
satisfactory water level despite of the presence of failure of some physical
unit. It is assumed however that the water level measuring unit in the steam-
boiler is working correctly. The functionality is the same as in the preceding
case. Once all the units which were defective have been repaired, the program
comes back to normal mode. As soon as the program sees that the water
level measuring unit has a failure, the program goes into mode rescue. If the
water level is risking to reach one of the limit values M1 or M2 the program
enters the mode emergency stop. A transmission failure puts the program into
emergency stop mode.

C.12.4.4 Rescue mode

The rescue mode is the mode in which the program tries to maintain a sat-
isfactory water level despite of the failure of the water level measuring unit.
The water level is then estimated by a computation which is done taking
into account the maximum dynamics of the quantity of steam coming out
of the steam-boiler. For the sake of simplicity, this calculation can suppose
that exactly n liters of water, supplied by the pumps, do account for exactly
the same amount of boiler contents (no thermal expansion). This calculation
can however be done only if the unit which measures the quantity of steam
is itself working and if one can rely upon the information which comes from
the units for controlling the pumps. As soon as the water measuring unit is
repaired, the program returns into mode degraded or into mode normal. The
program goes into emergency stop mode if it realizes that one of the following
cases holds: the unit which measures the outcome of steam has a failure, or
the units which control the pumps have a failure, or the water level risks to
reach one of the two limit values. A transmission failure puts the program
into emergency stop mode.

C.12.4.5 Emergency stop mode

The emergency stop mode is the mode into which the program has to go, as
we have seen already, when either the vital units have a failure or when the
water level risks to reach one of its two limit values. This mode can also be
reached after detection of an erroneous transmission between the program and
the physical units. This mode can also be set directly from outside. Once the
program has reached the Emergency stop mode, the physical environment is
then responsible to take appropriate actions, and the program stops.

Page: 153 *** FIRST PUBLIC DRAFT *** 17-Sep-2003/17:54



154 C Case Study: The Steam-Boiler Control System

C.12.5 Messages sent by the program

The following messages can be sent by the program:

• MODE(m): The program sends, at each cycle, its current mode of opera-
tion to the physical units.

• PROGRAM READY: In initialization mode, as soon as the program as-
sumes to be ready, this message is continuously sent until the message
PHYSICAL UNITS READY coming from the physical units has been re-
ceived.

• VALVE: In initialization mode this message is sent to the physical units
to request opening and then closure of the valve for evacuation of water
from the steam-boiler.

• OPEN PUMP(n): This message is sent to the physical units to activate a
pump.

• CLOSE PUMP(n): This message is sent to the physical units to stop a
pump.

• PUMP FAILURE DETECTION(n): This message is sent (until receipt of
the corresponding acknowledgement) to indicate to the physical units that
the program has detected a pump failure.

• PUMP CONTROL FAILURE DETECTION(n): This message is sent (un-
til receipt of the corresponding acknowledgement) to indicate to the physi-
cal units that the program has detected a failure of the physical unit which
controls a pump.

• LEVEL FAILURE DETECTION: This message is sent (until receipt of
the corresponding acknowledgement) to indicate to the physical units that
the program has detected a failure of the water level measuring unit.

• STEAM FAILURE DETECTION: This message is sent (until receipt of
the corresponding acknowledgement) to indicate to the physical units that
the program has detected a failure of the physical unit which measures the
outcome of steam.

• PUMP REPAIRED ACKNOWLEDGEMENT(n): This message is sent
by the program to acknowledge a message coming from the physical units
and indicating that the corresponding pump has been repaired.

• PUMP CONTROL REPAIRED ACKNOWLEDGEMENT(n): This mes-
sage is sent by the program to acknowledge a message coming from the
physical units and indicating that the corresponding physical control unit
has been repaired.

• LEVEL REPAIRED ACKNOWLEDGEMENT: This message is sent by
the program to acknowledge a message coming from the physical units
and indicating that the water level measuring unit has been repaired.

• STEAM REPAIRED ACKNOWLEDGEMENT: This message is sent by
the program to acknowledge a message coming from the physical units and
indicating that the unit which measures the outcome of steam has been
repaired.

Page: 154 *** FIRST PUBLIC DRAFT *** 17-Sep-2003/17:54



C.12 The Steam-Boiler Control Specification Problem 155

C.12.6 Messages received by the program

The following messages can be received by the program:

• STOP: When the message has been received three times in a row by the
program, the program must go into emergency stop.

• STEAM BOILER WAITING: When this message is received in initializa-
tion mode it triggers the effective start of the program.

• PHYSICAL UNITS READY: This message when received in initialization
mode acknowledges the message PROGRAM READY which has been sent
previously by the program.

• PUMP STATE(n, b): This message indicates the state of pump n (open
or closed). This message must be present during each transmission.

• PUMP CONTROL STATE(n, b): This message gives the information which
comes from the control unit of pump n (there is flow of water or there is
no flow of water). This message must be present during each transmission.

• LEVEL(v): This message contains the information which comes from the
water level measuring unit. This message must be present during each
transmission.

• STEAM(v): This message contains the information which comes from the
unit which measures the outcome of steam. This message must be present
during each transmission.

• PUMP REPAIRED(n): This message indicates that the corresponding
pump has been repaired. It is sent by the physical units until a corre-
sponding acknowledgement message has been sent by the program and
received by the physical units.

• PUMP CONTROL REPAIRED(n): This message indicates that the cor-
responding control unit has been repaired. It is sent by the physical units
until a corresponding acknowledgement message has been sent by the pro-
gram and received by the physical units.

• LEVEL REPAIRED: This message indicates that the water level measur-
ing unit has been repaired. It is sent by the physical units until a cor-
responding acknowledgement message has been sent by the program and
received by the physical units.

• STEAM REPAIRED: This message indicates that the unit which mea-
sures the outcome of steam has been repaired. It is sent by the physical
units until a corresponding acknowledgement message has been sent by
the program and received by the physical units.

• PUMP FAILURE ACKNOWLEDGEMENT(n): By this message the phys-
ical units acknowledge the receipt of the corresponding failure detection
message which has been emitted previously by the program.

• PUMP CONTROL FAILURE ACKNOWLEDGEMENT(n): By this mes-
sage the physical units acknowledge the receipt of the corresponding failure
detection message which has been emitted previously by the program.

Page: 155 *** FIRST PUBLIC DRAFT *** 17-Sep-2003/17:54



156 C Case Study: The Steam-Boiler Control System

• LEVEL FAILURE ACKNOWLEDGEMENT: By this message the phys-
ical units acknowledge the receipt of the corresponding failure detection
message which has been emitted previously by the program.

• STEAM FAILURE ACKNOWLEDGEMENT: By this message the phys-
ical units acknowledge the receipt of the corresponding failure detection
message which has been emitted previously by the program.

C.12.7 Detection of equipment failures

The following erroneous kinds of behaviour are distinguished to decide whether
certain physical units have a failure:

• PUMP: (1) Assume that the program has sent a start or stop message to
a pump. The program detects that during the following transmission that
pump does not indicate its having effectively been started or stopped. (2)
The program detects that the pump changes its state spontaneously.

• PUMP CONTROLLER: (1) Assume that the program has sent a start
or stop message to a pump. The program detects that during the second
transmission after the start or stop message the pump does not indicate
that the water is flowing or is not flowing; this despite of the fact that
the program knows from elsewhere that the pump is working correctly. (2)
The program detects that the unit changes its state spontaneously.

• WATER LEVEL MEASURING UNIT: (1) The program detects that the
unit indicates a value which is out of the valid static limits (that is, between
0 and C ). (2) The program detects that the unit indicates a value which
is incompatible with the dynamics of the system.

• STEAM LEVEL MEASURING UNIT: (1) The program detects that the
unit indicates a value which is out of the valid static limits (that is, between
0 and W ). (2) The program detects that the unit indicates a value which
is incompatible with the dynamics of the system.

• TRANSMISSION: (1) The program receives a message whose presence is
aberrant. (2) The program does not receive a message whose presence is
indispensable.

Page: 156 *** FIRST PUBLIC DRAFT *** 17-Sep-2003/17:54



References

The bibliography style is to be numerical in the final version.

AM02. S. Autexier and T. Mossakowski. Integrating HOL-Casl into the de-
velopment graph manager Maya. In A. Armando, editor, Frontiers of
Combining Systems, 4th International Workshop, volume 2309 of Lecture
Notes in Computer Science, pages 2–17. Springer-Verlag, 2002.

BDH+01. M.G.J. van den Brand, A. van Deursen, J. Heering, H.A. de Jong, M.
de Jonge, T. Kuipers, P. Klint, L. Moonen, P. A. Olivier, J. Scheerder,
J.J. Vinju, E. Visser, and J. Visser. The ASF+SDF Meta-Environment:
a component-based language development environment. In R. Wilhelm,
editor, CC’01, volume 2027 of LNCS, pages 365–370. Springer-Verlag,
2001.

BJKO00. M.G.J. van den Brand, H.A. de Jong, P. Klint, and P. Olivier. Efficient
annotated terms. Software, Practice & Experience, 30:259–291, 2000.

BK98. J.A. Bergstra and P. Klint. The discrete time ToolBus – a software coordi-
nation architecture. Science of Computer Programming, 31(2-3):205–229,
July 1998.

BMV03. M.G.J. van den Brand, P.E. Moreau, and J.J. Vinju. Environments for
term rewriting engines for free! In R. Nieuwenhuis, editor, Proceedings of
the 14th International Conference on Rewriting Techniques and Applica-
tions (RTA’03), volume 2706 of LNCS, pages 424–435. Springer-Verlag,
2003.

BSVV02. M.G.J. van den Brand, J. Scheerder, J.J. Vinju, and E. Visser. Dis-
ambiguation filters for Scannerless Generalized LR parsers. In R. Nigel
Horspool, editor, Compiler Construction, volume 2304 of LNCS, pages
143–158. Springer-Verlag, 2002.

CoF. CoFI. The Common Framework Initiative for algebraic specification and
development, electronic archives. Notes and Documents accessible from
http://www.brics.dk/Projects/CoFI/.

CRV03. Feng Chen, Grigore Rosu, and Ram Prasad Venkatesan. Rule-based anal-
ysis of dimensional safety. In R. Nieuwenhuis, editor, Proceedings of the
14th International Conference on Rewriting Techniques and Applications
(RTA’03), volume 2706 of LNCS, pages 197–207. Springer-Verlag, 2003.

http://www.brics.dk/Projects/CoFI/


158 References

DHK96. A. van Deursen, J. Heering, and P. Klint, editors. Language Prototyp-
ing: An Algebraic Specification Approach, volume 5 of AMAST Series in
Computing. World Scientific, 1996.

GB92. Joseph A. Goguen and Rodney M. Burstall. Institutions: abstract model
theory for specification and programming. Journal of the ACM, 39(1):95–
146, 1992.

KR00. Hélène Kirchner and Christophe Ringeissen. Executing Casl equational
specifications with the ELAN rewrite engine. Note T-9 (revised version),
in [CoF], November 2000.

Mos00. Till Mossakowski. Casl: From semantics to tools. In S. Graf and
M. Schwartzbach, editors, TACAS 2000, volume 1785 of Lecture Notes in
Computer Science, pages 93–108. Springer-Verlag, 2000.

Mos02. Till Mossakowski. Relating Casl with other specification languages: the
institution level. Theoretical Computer Science, 286:367–475, 2002.

Mos03. Peter D. Mosses, editor. Casl Reference Manual. Lecture Notes in Com-
puter Science. Springer, 2003. To appear.

Pau94. L. C. Paulson. Isabelle – A Generic Theorem Prover. Number 828 in
LNCS. Springer Verlag, 1994.

Page: 158 *** FIRST PUBLIC DRAFT *** 17-Sep-2003/17:54

http://www.brics.dk/Projects/CoFI/Notes/T-9/index.html


List of Named Specifications

Strict Partial Order . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
Total Order . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
Total Order With MinMax . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
Variant Of Total Order With MinMax . . . . . . . . . . . . . . . . . . . . 8
Partial Order . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
Partial Order 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
Implies Does Not Hold . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
Monoid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
Generic Monoid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Non Generic Monoid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Generic Commutative Monoid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
Generic Commutative Monoid 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
Container . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
Marking Container . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
Generated Container . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Generated Container Merge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Generated Set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Natural . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
Colour . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
Integer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
Natural Order . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
Natural Arithmetic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
Integer Arithmetic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
Integer Arithmetic Order . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
List . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
Set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
Transitive Closure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
Natural With Bound . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
Set Choose . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
Set Generated . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
Set Union . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24



160 Named Specifications

Set Union 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
UnNatural . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
Set Partial Choose . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
Set Partial Choose 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
Set Partial Choose 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
Natural With Bound And Addition . . . . . . . . . . . . . . . . . . . . . . . . 30
Set Partial Choose 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
Natural Partial Pre . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
Natural Partial Subtraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
Natural Partial Subtraction 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
List Selectors 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
List Selectors 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
List Selectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
Natural Suc Pre . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
Pair . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
Part Container . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
Natural Partial Subtraction 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
Generic Monoid 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
Vehicle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
More Vehicle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
Speed Regulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
Natural Subsorts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
Positive . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
Positive Arithmetic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
Positive Pre . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
Natural Positive Arithmetic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
Integer Arithmetic 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
Set Error Choose . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
Set Error Choose 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
List Set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
List Choose . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
Set to List . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
Stack . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
List Set 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
Natural Partial Subtraction 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
Natural Partial Subtraction 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
Partial Order 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
List Order . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
List Order Sorted . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
Wrong List Order Sorted . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
List Order Sorted 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
Nat Word . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
Nat Word 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
Nat Word 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
Pair 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

Page: 160 *** FIRST PUBLIC DRAFT *** 17-Sep-2003/17:54



Named Specifications 161

Homogeneous Pair 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
Homogeneous Pair . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
Symbol Table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
Pair Natural Colour . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
Pair Natural Colour 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
Pair Natural Colour 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
Pair Pos . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
Pair Pos 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
My Symbol Table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
Set of List . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
Mistake . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
Set and List . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
List Rev . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
List Rev Nat . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
Two Lists . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
Two Lists 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
List Rev Order . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
List Rev with Two Orders . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
List Weighted Elem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
List Weighted Pair Natural Colour . . . . . . . . . . . . . . . . . . . . . . . 67
List Weighted Instantiated . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
List Length . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
List Length Natural . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
Integer as Total Order . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
Integer as Reverse Total Order . . . . . . . . . . . . . . . . . . . . . . . . . . 68
List Rev with Two Orders 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
List as Monoid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
Elem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202
Cont . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202
Cont Del . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202
Req . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203
Flat Req . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203
System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203
System 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204
Cont Del V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 206
Inconsistent . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 206
System G . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 206
System V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207
Cont Comp . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 208
Del Comp . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 208
System G1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 208
Del Comp1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209
Other System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209
Other System 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 210
Set Comp . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211

Page: 161 *** FIRST PUBLIC DRAFT *** 17-Sep-2003/17:54



162 Named Specifications

Cont2Set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211
Arch Cont2Set Nat . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211
Arch Cont2Set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 212
Arch Cont2Set Used . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 212
Arch Cont2Set Nat V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213
Wrong Arch Spec . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 214
Badly Structured Arch Spec . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 214
Well Structured Arch Spec . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215
Another Well Structured Arch Spec . . . . . . . . . . . . . . . . . . . . . 215
Natural Order II . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
v1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
v2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
Numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
Nat . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
Int . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
Rat . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
StructuredDatatypes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
GenerateFinSet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
GenerateFinMap . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
GenerateBag . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
GenerateList . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
Array . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
BinTree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
BinTree2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
KTree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
NTree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
Value . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
Basics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
Messages Sent . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
Messages Received . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
Sbcs Cst . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
Preliminary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
Sbcs State 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
Mode Evolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
Sbcs State 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
Status Evolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
Message Transmission System Failure . . . . . . . . . . . . . . . . . . . . . . 131
Sbcs State 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
Pump Failure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
Sbcs State 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
Pump Controller Failure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
Sbcs State 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
Steam Failure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134
Level Failure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134
Failure Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

Page: 162 *** FIRST PUBLIC DRAFT *** 17-Sep-2003/17:54



Named Specifications 163

Steam And Level Prediction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
Pump State Prediction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139
Pump Controller State Prediction . . . . . . . . . . . . . . . . . . . . . . . . 140
PU Prediction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140
Sbcs Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141
Sbcs State . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142
Steam Boiler Control System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142
Arch SBCS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145
Arch Preliminary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145
Sbcs State Impl . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146
Arch Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147
Arch Failure Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147
Arch Prediction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

Page: 163 *** FIRST PUBLIC DRAFT *** 17-Sep-2003/17:54





Index of Library and Specification Names

Another Well Structured Arch
Spec 215

Arch Analysis 147
Arch Cont2Set 212
Arch Cont2Set Nat 211
Arch Cont2Set Nat V 213
Arch Cont2Set Used 212
Arch Failure Detection 147
Arch Prediction 148
Arch Preliminary 145
Arch SBCS 145
Array 109, 111

Badly Structured Arch Spec 214
Bag 111
Basics 119
BinTree 109, 112
BinTree2 109, 112

Colour 18
Cont 202
Cont2Set 211
Cont Comp 208
Cont Del 202
Cont Del V 206
Container 13

Del Comp 208
Del Comp1 209

Elem 202

Failure Detection 134
FinMap 111

FinSet 110
Flat Req 203

GenerateBag 109, 111
GenerateBinTree 112
GenerateBinTree2 112
Generated Container 15
Generated Container Merge 15
Generated Set 16
GenerateFinMap 109, 111
GenerateFinSet 109, 110
GenerateKTree 113
GenerateList 109, 110
GenerateNTree 113
Generic Commutative Monoid 12
Generic Commutative Monoid 1

12
Generic Monoid 11
Generic Monoid 1 37

Homogeneous Pair 61
Homogeneous Pair 1 61

Implies Does Not Hold 10
Inconsistent 206
Int 106, 108
Integer 18
Integer Arithmetic 20
Integer Arithmetic 1 44
Integer Arithmetic Order 21
Integer as Reverse Total Order

68
Integer as Total Order 68



166 Index of Library and Specification Names

KTree 109, 113

Level Failure 134
List 21, 110
List as Monoid 69
List Choose 48
List Length 67
List Length Natural 68
List Order 52
List Order Sorted 53
List Order Sorted 2 54
List Rev 64
List Rev Nat 64
List Rev Order 65
List Rev with Two Orders 65
List Rev with Two Orders 1 68
List Selectors 33
List Selectors 1 32
List Selectors 2 33
List Set 47
List Set 1 50
List Weighted Elem 66
List Weighted Instantiated 67
List Weighted Pair Natural

Colour 67

Marking Container 14
Maybe 109
Message Transmission System

Failure 131
Messages Received 119
Messages Sent 119
Mistake 63
Mode Evolution 125
Monoid 10
More Vehicle 38
My Symbol Table 62

Nat 105, 107
Nat Word 58
Nat Word 1 59
Nat Word 2 60
Natural 18
Natural Arithmetic 20
Natural Order 19
Natural Order II 76
Natural Partial Pre 31
Natural Partial Subtraction 32

Natural Partial Subtraction 1
32

Natural Partial Subtraction 2
35

Natural Partial Subtraction 3
51

Natural Partial Subtraction 4
51

Natural Positive Arithmetic 42
Natural Subsorts 40
Natural Suc Pre 33
Natural With Bound 22
Natural With Bound And

Addition 30
Non Generic Monoid 11
NTree 109, 114
Numbers 105

Other System 209
Other System 1 210

Pair 34, 109
Pair 1 61
Pair Natural Colour 61
Pair Natural Colour 1 62
Pair Natural Colour 2 62
Pair Pos 62
Pair Pos 1 62
Part Container 34
Partial Order 9
Partial Order 1 9
Partial Order 2 51
Positive 41
Positive Arithmetic 41
Positive Pre 42
Preliminary 120
PU Prediction 140
Pump Controller Failure 133
Pump Controller State

Prediction 140
Pump Failure 132
Pump State Prediction 139

Rat 107, 108
Req 203

Sbcs Analysis 141
Sbcs Cst 120
Sbcs State 142

Page: 166 *** FIRST PUBLIC DRAFT *** 17-Sep-2003/17:54



Index of Library and Specification Names 167

Sbcs State 1 122

Sbcs State 2 128

Sbcs State 3 132

Sbcs State 4 132

Sbcs State 5 133

Sbcs State Impl 146

Set 21

Set and List 63

Set Choose 23

Set Comp 211

Set Error Choose 45

Set Error Choose 1 45

Set Generated 23

Set of List 63

Set Partial Choose 27

Set Partial Choose 1 30

Set Partial Choose 2 30

Set Partial Choose 3 31

Set to List 48

Set Union 24

Set Union 1 25

Speed Regulation 39

Stack 49

Status Evolution 129

Steam And Level Prediction 137

Steam Boiler Control System
142

Steam Failure 134
Strict Partial Order 6
StructuredDatatypes 108
Symbol Table 61
System 203
System 1 204
System G 206
System G1 208
System V 207

Total Order 7
Total Order With MinMax 8
Transitive Closure 22
Two Lists 64
Two Lists 1 64

UnNatural 25

v1 76
v2 78
Value 118
Variant Of Total Order With

MinMax 8
Vehicle 38

Well Structured Arch Spec 215
Wrong Arch Spec 214
Wrong List Order Sorted 53

Page: 167 *** FIRST PUBLIC DRAFT *** 17-Sep-2003/17:54


	Introduction
	CoFI
	Casl

	Underlying Concepts
	Specifications
	Algebras

	Total, Many-Sorted Specifications
	Loose Specifications
	Generated Specifications
	Free Specifications

	Partial Functions
	Declaring Partial Functions
	Specifying Domains of Definition
	Partial Selectors and Constructors
	Existential equality

	Subsorting
	Subsort Declarations and Definitions
	Subsorts and Overloading
	Subsorts and Partiality

	Structuring Specifications
	Union and Extension
	Renaming
	Hiding
	Local Symbols
	Named Specifications

	Generic Specifications
	Parameters and Instantiation
	Compound Symbols
	Parameters with `Fixed' Parts
	Views

	Specifying Architectural Structure
	Architectural Specifications
	Explicit Generic Components
	Writing Meaningful Architectural Specifications

	Libraries
	Local Libraries
	Distributed Libraries
	Version control

	Tools
	The Heterogeneous Tool Set (Hets)
	The CASL Tool Set and the Development Graph Manager MAYA
	HOL-CASL
	ELAN-Casl
	ASF+SDF Parser and Structure Editor for Casl
	Other tools

	Foundations
	Appendices
	Casl Quick Reference
	Basic Specifications
	Declarations and Definitions
	Variables and Axioms
	Symbols
	Comments
	Annotations

	Structured Specifications
	Specifications
	Named and Generic Specifications
	Named and Parametrized Views
	Symbol Lists and Maps

	Architectural Specifications
	Named Specifications
	Architectural Specifications
	Unit Specifications
	Unit Declarations and Definitions
	Unit Expressions
	Unit Terms

	Libraries
	Downloadings
	Library Names


	Basic Library
	Library Basic/Numbers
	Library Basic/StructuredDatatypes

	Case Study: The Steam-Boiler Control System
	Introduction
	Getting Started
	Carrying On
	Specifying the Mode of Operation
	Specifying the Detection of Equipment Failures
	Understanding the Detection of Equipment Failures
	Keeping Track of the Status of the Physical Units
	Detection of the Message Transmission System Failures
	Detection of the Pump and Pump Controller Failures
	Detection of the Steam and Water Level Measurement Device Failures
	Summing Up

	Predicting the Behaviour of the Steam-Boiler
	Predicting the Output of Steam and the Water Level
	Predicting the Pump and Pump Controller States

	Specifying the Messages to Send
	The Steam-Boiler Control System Specification
	Validation of the CASL Requirements Specification
	Designing the Architecture of the Steam-Boiler Control System
	Conclusion
	The Steam-Boiler Control Specification Problem
	Introduction
	Physical environment
	The overall operation of the program
	Operation modes of the program
	Messages sent by the program
	Messages received by the program
	Detection of equipment failures


	References
	Index of Library and Specification Names

