I]S“rl:ni“e (high performance PHP archive manipulator)

User Manual

Dsiirchine

User Manual

Copyright ©2006 Palos & Sons LTD.

version 0.1.2

Page 1/26

I]S“rl:ni“e (high performance PHP archive manipulator) User Manual

Table of Contents

1) Introduction

2) Features and requirements

3) Installing psArchive

4) Configuring psArchive for optimum performance

5) Function and class reference

6) Example scripts

7) Contact information

Page 2/26

I]S“rl:ni“e (high performance PHP archive manipulator) User Manual

1) Introduction

To begin with, psArchive is a PHP 5 extension designed to provide an easy-to-use interface
for manipulating all the most common archive files used in web projects. It is especially designed

for web applications that need to understand, to produce or even edit archives in order to function.

The applications of this extension can be of a wide variety: one could generate periodic
archives of logs, reports or documents, multiple files can be clustered together for easy transmittal

through the Internet etc.

It is true that on almost all desktop computers today one can find at least one kind of
compression software, however, when it comes to the fast growing PHP developer community all
there is to work with are a few scripts that are slow (due to parsing archives in pure PHP), limited
(they can handle only small workloads safely and none of the can properly edit an archive), rigid
(unable to configure themselves to optimize resource management for heavy solicited servers) and

many times even messy (memory management is left almost entirely on PHP’s shoulders). Well,

psArchive is a very affordable way to change all that... FREE!!!
A) First of all, it’s a PHP extension written in C which means a number of things:
« it’s fast and stable even at high workloads;
it eliminates the overhead of loading/including heavy PHP scripts;
- memory management is properly handled keeping resource loss at a minimum;

- it makes your code a lot cleaner, easier to write and to understand.

B) Secondly, this extension has all formats based on embedded code, thus not being
dependent on any other external library, therefore you don’t need to install other

packages/extensions in order to make use of it, unlike the PHP scripts mentioned earlier.

Page 3/26

I]S“rl:ni“e (high performance PHP archive manipulator) User Manual

C) psArchive currently supports the following formats: zip, gz, bz, bz2, tar, tar.gz, tar.bz,
tar.bz2, tgz, tbz, tbz2; also psArchive is sustained by a team of developers that is ready to

implement support for other archive formats on demand (with no extra fees).

D) psArchive supports standard ZIP encryption/decryption and even though this is not a
recommended way of protecting very important data due to it’s weak algorithm this feature may
prove to be extremely useful in situations in which you want either to encrypt an archive in a

moderately safe manner or simply that you wish to open a password protected file.

E) psArchive can be configured to store data either on hard disk (for extreme memory
preservation), in compressed memory (for a faster, low memory consumption way of handling files
when heavily multi-threaded) or in raw memory (for extreme speed of processing), leaving the

developer to decide which configuration option is best for the target application.

F) psArchive is extremely easy to use, given it’s Object Oriented architecture and clear
methods for manipulation one can practically start working with it as soon as he/she sees a list of

what those methods and functions are.

G) psArchive is designed to avoid creating the uncompressed archive into memory before
writing to disk so that precious RAM is not wasted pointlessly (this is especially true with tar

archives).

H) Many other things can be said about psArchive, for example that it comes along with two

extremely fast functions for data compression/decompression to be used in trivial situations.

In conclusion psArchive is an affordable, high performance PHP extension optimized for

server-side archive generation/editing/extraction etc.

Page 4/26

I]S“rl:ni“e (high performance PHP archive manipulator) User Manual

2) Features and requirements

Features:

Supports archive *editing*! You can add, remove, rename and copy files, you can

change file contents, attributes and modification time, you can create new files and

directories, *all* right inside the archive before output.
Supports the following archive formats:

1. ZIP (single volumes);

2. TAR (tarball - tape archive);

3. GZ (Gzip compressed format);

4. BZ, BZ2 (Bzip/Bzip2 compressed format);

5. TAR.GZ, TGZ (Gzipped Tarball);

6. TAR.BZ2, TAR.BZ, TBZ2, TBZ (Bzipped Tarball);

7. Other formats can be supported on demand, such as RAR or ACE support (since
these formats are uncommon in web environments we decided not to include them in

order to keep the extension size as small as possible);

Supports both reading from and writing to password encrypted ZIP files using

standard ZIP encryption;

Configurable buffer storage for optimized and threadsafe memory handling:

1. In raw memory (for optimized speed);
2. In compressed memory (normal operation);
3. On disk (for optimized memory consumption);

Supports wildcards for both reading files from disk as well as filtering the archive

Page 5/26

I]S“rl:ni“e (high performance PHP archive manipulator) User Manual

contents. Basically, wherever there is a possibility that wildcards could be used,

they actually can be!;

Provides 2 functions for extremely fast in-memory data compression-
decompression using LZF algorithm. These functions correctly

compress/decompress data blocks far greater than 1024 bytes;

An advanced as well as uniform archive manipulation design which enables you to
make all possible alterations to an archive (create, load, file manipulation,
extractions etc.) and then simply output the archive in all the desired formats

without re-reading files, or re-altering them;

« Supports object importing! Basically if you have two or more opened archives in
your script you can import files from one archive object into another directly. Also

you can filter the importing by using wildcards;

« Fully embedded! Needs no external libraries in order to function. All in just over

400 KB;

« Object Oriented Architecture! This library provides a total of two functions (the

LZF compress/decompress) and one class. It is extremely easy to use!
Requirements:

- PHPS;

A Linux-based web server (this version of psArchive is only compiled for Linux-based
platforms. We do not recommend the use of psArchive on a Windows server since file
security is weaker and much of the security is left to the script to handle. HOWEVER! If
you really need a Windows compiled version of this extensions contact us at
support@palos.ro and we shall provide you with both a DLL as well as installation

instructions at no extra fees), Apache is recommended,;

Page 6/26

mailto:support@palos.ro

I]S“rl:ni“e (high performance PHP archive manipulator) User Manual

3) Installing psArchive

This is the installation procedure for a Linux web-server (in case you need Windows support

please contact support@palos.ro).
First of all decompress the file archive containing psArchive:

For the tar.gz version do:

tar -zxvf psArchive-X tar.gz

For the tar.bz2 version do:
tar -jxvf psArchive-X tar.bz2

where X represents the version/revision numbers.

There are two ways to install psArchive. One is to use the provided binary ‘psArchive.so’. If

this works for you then this is the easier way. If not, simply compile psArchive.

To compile psArchive one would need to call (in this order):

.l _clean
A init
. __make

For everything to work fine you must have the 'phpize' executable an visible system-wide.
All should work just fine if you use GCC versions prior to 4.0. If not, you must force the compiler

to use GCC 3.x by issuing the following command at the command line before the ones above:
export CC=gcc32
An then continue with './__clean’', etc.

Afterwards, installing the PHP extension is a walk in the park, and for that you only need

the following:

Page 7/26

mailto:support@palos.ro

I]S“rl:ni“e (high performance PHP archive manipulator)

User Manual

1. psArchive.so

2. psArchive.ini

3. A web server restart.

4. Evrika, you’re set! Enjoy!

This file is located in the subdirectory modules.
Put the extension into the PHP extension
modules directory (commonly known as
[usr/1i b/ php/ nmodul es but may differ).
If you do not know what this path is you

may check the ext ensi on_di r directive

in your php.ini;

Put the ini file for loading the extension and
configuring it inside the /et c/ php. d directory.
This is the extension loading and configuration
directory for PHP 5 (it is possible to be a different

path in your server’s case).

Usually you can do this with the command:

letc/init.d/ httpd restart

Page 8/26

I]S“rl:ni“e (high performance PHP archive manipulator) User Manual

4) Configuring psArchive for optimum performance

This is one of the strong features of psArchive. The configuration of psArchive is done by
altering the two configuration directives in psArchive.ini (pSArchi ve. storage and
psSArchi ve. buf f er Si ze) as you see fit and after that restarting the webserver. Simple right?
Well it usually is, but sometimes the hard part is actually deciding on the settings that might be best

for you!

Basically one of the things psArchive does in order to maintain such a high level of
maneuverability is to keep the archive files temporarily stored into a “storage bin”. This storage bin

can be set to exist into three different environments. So here are the options:
Option psAr chi ve. storage = x
Where x is as follows...

O - This option means that the files are stored in pure RAM! While this option is the
fastest way to go, it consumes a lot of memory (basically you must have enough space in ram to
hold the complete, decompressed archives for all running threads). This option is recommended

only if you have a lot of ram and if you absolutely need extreme speed.

1 - This option means that the files are stored in compressed RAM! Basically it is the
same as option O but with a twist. The files are first compressed before putting into RAM using the
speedy LZF functions. This provides a dramatic decrease of memory consumption but with a slight

cost in speed. This is the default operation mode.

2 - This option means that the files are stored on disk thus preserving as much RAM as
possible! With this option you only need enough free RAM to hold the largest file in the archive in
uncompressed state. All archive objects created in one script run are stored into just one file which

is deleted at the end of the script execution. Also when deleting files from archives the empty

Page 9/26

I]S“rl:ni“e (high performance PHP archive manipulator) User Manual

spaces created in the storage bin are then reused. These tactics are used in order to minimize
fragmentation in heavy workload scenarios. This option should usually be slower than option 1 but
interestingly enough, using this option might even provide faster times when (and only when) not
running in heavy multi threaded situations. Why?, Simple, because the overhead of
compressing/decompressing a file from memory might be slightly greater then the overhead of
reading/writing it from disk (especially if you have a high speed HDD drive). However, in multi
threaded environments (or if the HDD is under heavy workload) this option will prove to be a bit

slower than option 1. This option is used when dealing with very large archives.
So, is it clear? If not, just follow these recommendations:

« If unsure what to do just leave option 1 selected;

If dealing with a highly multi threaded script handling archive at most a few (2~5)

MegaBytes in size then use option 0;
- If dealing with huge archive (tens or hundreds of megabytes) use option 2;

NOTE! A word of caution when dealing with very large archive files. Web browsers usually
have a timeout (for example 120 seconds) after which, if the script did not successfully provide
some kind of output, they simply reissue the HTTP request. This causes the web server to start a
new thread of the exactly same script with the exact same parameters before the initial thread
finished. This will in turn put a huge stress on you server! To avoid this try to output and flush
something to the web browser before starting to process the large archive/file. This will usually
convince the browser that there is no need to reissue the request since the server is processing the

script. This is how you do this:

echo “Starting to process the very large archive file...”;
flush();

Page 10/26

I]S“rl:ni“e (high performance PHP archive manipulator) User Manual

Option psAr chi ve. buffer Si ze = x

Where x is a number in bytes specifying the buffer size used for reading to and writing from
a file on disk. Basically, when psArchive reads/writes a file it does not request or send the whole
contents. It splits the data into smaller chunks and reads/writes them sequentially. This is a blessing
for slower servers that are heavily multi threaded! In these cases you should decrease this value to
get a improve the server’s processing. However, usually you should leave this setting to the default
(1048576 — meaning exactly 1 MegaByte). If you really want extreme speed you might increase this
value but be careful, since you might be walking on thin ice.

Option psArchi ve. tenmporaryDir = *XxX

Where xxx is a path on disk where you want psArchive to store temporary files. You could

set this to point to a directory located on a disk or partition that is especially built for such tasks.

Page 11/26

I]S“rl:ni“e (high performance PHP archive manipulator)

User Manual

5) Function and class reference

psACompressData()

psAUncompressData()

psArchive::

getCaps()

psArchive::

getMime()

psArchive:

AsEmpty()

psArchive:

:check()

psArchive:

:load()

psArchive::

add()

psArchive:

:import()

psArchive:

:newFile()

psArchive:

:newDirectory()

psArchive:

:extract()

psArchive:

:extractAll()

psArchive:

:remove()

psArchive:

:removeAll()

psArchive:

filter()

psArchive:

:copy()

psArchive:

:rename()

psArchive:

:isEntry()

psArchive:

:isFile()

psArchive:

:isDirectory()

psArchive::

getType()

psArchive::

getAttributes()

psArchive::

setAttributes()

psArchive::

getMTime()

psArchive::

setMTime()

psArchive::

getFileSize()

psArchive::

oetFileContents()

psArchive:

:putFileContents()

psArchive:

:toFile()

psArchive:

:toBrowser()

psArchive:

:toBuffer()

Page 12/26

I]S“rl:ni“e (high performance PHP archive manipulator) User Manual

string psAConpressData(string $prData)

This function takes the data contained in the string $prData and returns it’s compressed form. It uses the
high speed LZF algorithm and provides a slightly lower compression ratio than gzip level 1. It can support large
data blocks. In some extreme cases (such as very small data) it can provide an output that is 1-byte larger than the
input.

Parameters:
$prData — data string to compress

Returns:
string — compressed data

string psAUnconpressData(string $prData)

This function takes the data string $prData previously compressed with psACompress() and returns it
decompressed.

Parameters:
$prData — data string to decompress

Returns:
string — decompressed data

cl ass psArchive

This class contains all methods needed to manipulate an archive.

i nt psArchive::getCaps(string $prFornmat)

This method returns psArchive’s capability to handle the specified format.

Parameters:
$prFormat — specifies the format to inquire about. It must be an extension without the preceding dot (i.e.

‘zip’, ‘tar.gz’, ‘tbz’ etc.) and all letters must be lowercase.

Returns:
Returns one of the following constant integer values (defined by psArchive):

PSARCHIVE_CAN_READ = meaning that the archive format can be read
PSARCHIVE_CAN_WRITE = meaning that the archive format can be generated
PSARCHIVE_CAN_RW = PSARCHIVE_CAN_READ + PSARCHIVE_CAN_WRITE

Page 13/26

I]S“rl:ni“e (high performance PHP archive manipulator) User Manual

Note: this method can be called statically without the need to instantiate an object. Example:

var_dump(psArchive::getCaps(‘tgz’));

string psArchive::getMnme(string $prFormt)

This method returns the mime type corresponding to the specified format. For example if you want to
output the archive directly to the browser for instant download you must call the php header function prior to
calling the psArchive::toBrowser() method telling the browser what kind of file will be transmitted. You do this
like this:

header (‘ Content -type: XXXXXXX ;’');

Where xxxxxxx is the mime type specifying the file type (something similar to image/jpeg or text/html).
That is where this function comes in by returning the exact mime type needed to transmit the given format
through the web or through mail.

Parameters:
$prFormat — specifies the format to inquire about. It must be an extension without the preceding dot (i.e.

‘zip’, ‘tar.gz’, ‘tbz’ etc.) and all letters must be lowercase.

Returns:

string — mime type
Note: this method can be called statically without the need to instantiate an object. Example:

var_dump(psArchive::getMime(‘tgz’));

bool ean psArchive: :isEmpty()
Checks to see if the archive object is empty.

Returns:
TRUE - if archive object is empty
FALSE - if archive object is not empty

bool ean psArchive::check(string $prPath [, string $prFormat])

Checks to see if an existing file is a valid archive. Note that this function generates an error if used to
check files of different formats than those supported by psArchive.

Parameters:

$prPath — the file given for checking.

$prFormat — manually specify the file format in case it has a different extension. If this parameter is not
specified then the format is guessed from the file extension.

Page 14/26

I]S“rl:ni“e (high performance PHP archive manipulator) User Manual

Returns:
TRUE - file is a valid archive
FALSE — file is not a valid archive

bool ean psArchive::load(string $prPath
[, string $prFornat
[, boolean $prOverwite
[, string $prPassword]]])

Loads the contents(files and directories) of an existing archive file into the current archive object. If file is

invalid an error is generated.

Parameters:
$prPath — the file given for loading.
$prFormat — manually specify the file format in case it has a different extension. If this parameter is not

specified then the format is guessed from the file extension.

file)

$prOverwrite — specifies if to overwrite duplicate entries found or not; this is true by default

$prPassword — the password needed to open the archive (currently it is ignored if the file is not a ZIP

Returns:
TRUE - if archive was successfully loaded into memory

FALSE — if no file was loaded or an error occurred

bool ean psArchive::add(string $prPath
[, bool ean $prOverwite
[, bool ean $prRecursive]])

Adds a number of files and directories to the archive object.

Parameters:
$prPath — the path to search for file addition; wildcards can be used (i.e. “foo*/foobar.?xt”)!

$prOverwrite — specifies if to overwrite duplicate entries found or not; this is true by default

$prRecursive — specifies if directories are to be added in depth (including contained files and directories)

or not; this is true by default

Returns:
TRUE - if files were successfully loaded into memory

FALSE — if no file was added or an error occurred

Page 15/26

I]S“rl:ni“e (high performance PHP archive manipulator) User Manual

default

bool ean psArchive::inport(object $prArchive, string $prPath
[, bool ean $prOverwite
[, bool ean $prRecursive]])

Imports files directly from another psArchive object into the current one.

Parameters:
$prArchive — the psArchive object to import from.
$prPath — the path to search for file import; wildcards can be used (i.e. “foo*/foobar.?xt”)!

$prOverwrite — specifies if to overwrite duplicate entries found or not; this is true by default

$prRecursive — specifies if directories are to be imported along with their contents or not; this is true by

Returns:
TRUE - if files were successfully imported

FALSE - if no file was imported or an error occurred

bool ean psArchive::newFil e(string $prPath
[, string $prData])

Creates a new file into the archive.

Parameters:
$prPath — file name to use

$prData — the data to put into the file; if not specified the file will be empty

Returns:
TRUE - if the file was successfully created
FALSE - if the name already exists or an error occurred

bool ean psArchive::newbDirectory(string $prPath)

Creates a new directory entry into the archive. You do not need to do this in order to add files into a new

directory. For example in an empty archive, to add the file “foo/foobar.txt” you only need to call

newFile(‘foo/foobar.txt’,”foo foo foo’) or any other file addition command for that matter.

Parameters:

$prPath — directory name to use

Returns:
TRUE - if the directory entry was successfully created

FALSE - if the name already exists or an error occurred

Page 16/26

I]S“rl:ni“e (high performance PHP archive manipulator) User Manual

default

default.

bool ean psArchive::extract(string $prPath, string $prQutPath
[, bool ean $prRecursive])

Extracts files from the archive to the disk.

Parameters:

$prPath — the path to search for extraction; wildcards can be used (i.e. “foo*/foobar.?xt”)!

$prOutPath — specifies the path in which to extract the files

$prRecursive — specifies if directories are to be extracted along with their contents or not; this is true by

Returns:
TRUE - if files were successfully extracted

FALSE — if an error occurred

bool ean psArchive::extractAll (string $prQutPath)
Extracts all files and directories from the archive to the disk.

Parameters:

$prOutPath — specifies the path in which to extract the files

Returns:
TRUE - if files were successfully extracted
FALSE - if an error occurred

bool ean psArchive::renmove(string $prPath
[, bool ean $prRecursive])

Removes files from the archive.

Parameters:
$prPath — the path to search for extraction; wildcards can be used (i.e. “foo*/foobar.?xt”)!

$prRecursive — specifies if directories are to be removed along with their contents or not; this is true by

The archive file names are memorized with their full path as a list (not as a tree like on the HDD)

therefore a directory entry may be erased but it’s files can remain afterwards. If you need further clarification
please contact support@palos.ro.

Returns:
TRUE - if files were successfully removed
FALSE — if an error occurred

Page 17/26

mailto:support@palos.ro

I]S“rl:ni“e (high performance PHP archive manipulator) User Manual

bool ean psArchive::renoveA |l ()
Removes all files and directories from the archive leaving the archive totally empty.

Returns:
TRUE - if files were successfully removed

FALSE — if an error occurred

array psArchive:;:filter(string $prPath
[, bool ean $prRecursive])

Filters the file list of the current archive and returns the matched files as an array. If you want all files to
be listed just pass “*’ as $prPath.

Parameters:

$prPath — the path to search for matching; wildcards can be used (i.e. “foo*/foobar.?xt”)!

$prRecursive — specifies if directories are to be listed along with their contents or not; this is true by
default; note that this does not mean that the search pattern will be applied to all files in the structure (like the
shell would do). For example if you have the following files in the archive:

/f 00. bar

/f oo. bar/ f oobar. t xt

/f oo. bar/ dunmy. t xt

The command $object->filter(‘*.bar’) would return all three files because the $prRecursive parameter
tells the function to return the entire contents of the directories matched (from the beginning of the path), in this
case / f 00. bar.

Returns:
array() — list of files from the archive that matched the search pattern

FALSE — if an error occurred

bool ean psArchive::copy(string $prPath, string $prNewPat h
[, bool ean $prRecursive])

Copies a file or directory under a new name in the archive.

Parameters:

$prPath — the existing file or directory name

$prNewPath — the new file or directory name

$prRecursive — specifies if directories are to be copied along with their contents or not; this is true by
default

Returns:
TRUE - if files were copied successfully
FALSE - if an error occurred

Page 18/26

I]S“rl:ni“e (high performance PHP archive manipulator) User Manual

bool ean psArchive::renane(string $prPath, string $prNewPat h
[, bool ean $prRecursive])

Renames (or moves) a file or directory to a new path in the archive.

Parameters:
$prPath — the existing file or directory name
$prNewPath — the new file or directory name

$prRecursive — specifies if directories contents should be renamed also or not; this is true by default

If renaming a directory that contains other files and/or directories you must know that the $prRecursive
parameter will determine if all files and directories under the given directory will be renamed too. This is because
the files are stored into memory as a list of absolute paths rather than as a tree. So you can rename a directory
entry but all the files and directories it used to contain mai remain untouched. For example:

If at one time the archive contains the following:

/ f 00 — directory
/ f oo/ f oobar . t xt -file

Let’s say you want to rename directory /foo with /blog. If you specify false as the $prRecursive parameter
then the archive will contain the following:

/ bl og - directory

/ f oo/ f oobar . t xt -file

However if you specify true as the $prRecursive parameter then the archive will contain the following:

/ bl og - directory
/ bl og/ f oobar . t xt - file
If you need further clarification please contact support@palos.ro.

Returns:
TRUE - if files were renamed successfully
FALSE - if an error occurred

bool ean psArchive::isEntry(string $prPath)

Checks if the specified entry (file or directory) exists in the archive. Note that this has to be a distinct
entry, meaning that if you check for ‘foo’ and all you have in the archive is the file ‘foo/foobar.txt’ the function
will return false.

Parameters:

$prPath — the file name to search for

Returns:
TRUE - if entry exists
FALSE - if entry does not exist

Page 19/26

mailto:support@palos.ro

I]S“rl:ni“e (high performance PHP archive manipulator) User Manual

bool ean psArchive::isFile(string $prPath)
Checks if the specified entry exists in the archive and if it is a file.

Parameters:
$prPath — the file name to search for

Returns:
TRUE - if entry exists and is a file
FALSE - if entry does not exist or is a directory

bool ean psArchive::isDrectory(string $prPath)

Checks if the specified entry exists in the archive and if it is a directory. Note that this has to be a distinct
entry, meaning that if you check for ‘foo’ and all you have in the archive is the file ‘foo/foobar.txt’ the function

will return false.

Parameters:

$prPath — the directory name to search for

Returns:
TRUE - if entry exists and is a directory
FALSE - if entry does not exist or is a file

int psArchive::get Type(string $prPath)

Returns the type of the specified entry (directory or file).

Parameters:
$prPath — the file name to search for

Returns:
Returns one of the following constant integer values (defined by psArchive):

PSARCHIVE_FILE = meaning that the entry is a file
PSARCHIVE_DIR = meaning that the entry is a directory

FALSE - if entry does not exist

int psArchive::getAttributes(string $prPath)

Returns the permission attributes of the specifies entry (file or directory) in Unix octal format as a string
(i.e. ‘0644°).

Page 20/26

I]S“rl:ni“e (high performance PHP archive manipulator) User Manual

Parameters:

$prPath — the file name to search for

Returns:

string — the file permission attributes in Unix octal format
bool ean psArchive::setAttributes(string $prPath, string $prAttr)

Sets the permission attributes for the given entry (file or directory).

Parameters:
$prPath — the file name to search for

$prAttr — the permission attributes to apply

Returns:
TRUE - if the attributes were applied successfully
FALSE - if the entry does not exist

i nt psArchive::get Ml me(string $prPath)

Returns the last modification time of the given entry as a Unix timestamp.

Parameters:

$prPath — the file name to search for

Returns:

int — the file last modification time as a Unix timestamp

bool ean psArchive::set Ml me(string $prPath, string $prMine)

Sets the last modification time for the given entry.

Parameters:
$prPath — the file name to search for

$prMTime — last modification time as a Unix timestamp.

Returns:
TRUE - if the time was applied successfully
FALSE - if the entry does not exist

Page 21/26

I]S“rl:ni“e (high performance PHP archive manipulator) User Manual

int psArchive::getFileSize(string $prPath)

Returns the size of a file inside the archive.

Parameters:

$prPath — the file name to search for

Returns:
int — the file size

FALSE - if file does not exist or is a directory

string psArchive::getFileContents(string $prPath)

Returns the contents of a file inside the archive.

Parameters:

$prPath — the file name to search for

Returns:
string — the file contents

FALSE - if file does not exist or is a sirectory

bool ean psArchive:: putFil eContents(string $prPath, string $prData)

Changes the contents for a file inside the archive.

Parameters:
$prPath — the file name to search for
$prData — new data to put inside the specified file.

Returns:
TRUE - if the data was changed successfully
FALSE - if the file does not exist or is a directory

bool ean psArchive::toFile(string $prPath
[, string $prFormat
[, string $prPassword]])

Generates the archive file and saves it under the name $prPath.

Page 22/26

I]S“rl:ni“e (high performance PHP archive manipulator) User Manual

Parameters:

$prPath — the file name of the generated archive

$prFormat — the archive file format to use for generation; if not specified it will be guessed from the file
extension. This must be an extension (i.e. ‘zip’) and all letters must be lowercase.

$prPassword — the password to encrypt the file with; this is currently ignored unless the archive is ZIP.

Returns:
TRUE - if the archive was generated successfully

FALSE — if an error occurred

bool ean psArchive::toBrowser(string $prFor mat
[, string $prPassword])

Generates the archive file and sends it directly to the browser for download.

Parameters:
$prFormat — the archive file format to use for generation. This must be an extension (i.e. ‘zip’) and all
letters must be lowercase.

$prPassword — the password to encrypt the file with; this is currently ignored unless the archive is ZIP.

Returns:
TRUE - if the archive was generated successfully
FALSE - if an error occurred

string psArchive::toBuffer(string $prFormat
[, string $prPassword])

Generates the archive file and returns it as a string.

Parameters:
$prFormat — the archive file format to use for generation. This must be an extension (i.e. ‘zip’) and all
letters must be lowercase.

$prPassword — the password to encrypt the file with; this is currently ignored unless the archive is ZIP.

Returns:
string — the generated archive file

FALSE — if an error occurred

Page 23/26

I]S“rl:ni“e (high performance PHP archive manipulator) User Manual

6) Example scripts

1) Creating an archive on-the-fly...

$arc =& new psArchive();
$ar c->newFi | e(' foo/ f oobar. txt',

"The little brown fox junped over the |lazy dog.');
$arc->toFile('/tnp/testing.zip', fal se,' superman');

2) Loading an archive and viewing it’s contents...

$arc =& new psArchive();
$arc->l oad(' foo.tar.gz');
/!l var_dunp is a php construct that shows the contents of any variable

/1l in the browser, but of course, you knewthat... :)
var_dunp(S$arc->filter(“*"));

3) Extracting all the JPG files from an archive into the directory foo/output...

$arc =& new psArchive();
$arc->l oad(' i mages.tgz');
$arc->extract (' *.jpg', ' foo/output');

4) Importing a directory from another pArchive object...

$arc =& new psArchive();
$arc->l oad('inmages.tgz');
$arc2 =& new psArchive();
$ar c2- >l oad(' sounds.tgz');

$arc->i nport ($arc2, ' ballads/*');
/1 show me what happened
var_dunp(S$arc->filter(“*”));

5) Loading an archive file of a different extension...

$arc =& new psArchive();
/1l odt is the text docunent extension of CpenOfice but it is actually

/1l a zip archive containing the files needed for the docunent

$arc->l oad(' My Big Bocunent.odt',’zip');
/1 show nme the contents
var_dunp($arc->filter(“*"));

Page 24/26

I]S“rl:ni“e (high performance PHP archive manipulator) User Manual

6) Single-file archives...

$arc =& new psArchive();

$arc->newFi | e(' foo/foobar.txt','This is the file contents!');

/1l if the archive only has one file we can save it in sinple gz format
$arc->toFile(‘singlef.gz');

/1 or bz2 fornmat

$arc->toFil e(‘singlef.bz2");

7) Editing an archive an generating it in multiple formats...

$arc =& new psArchive();
$arc- >l oad('i mages.tgz');

/] set afile’'s nodification tine to now

$arc->set MTIi me(‘ i mage_l ogo.jpg’ ,time());

/1 change the file s nane

$ar c- >renane(‘i nage_l 0go. j pg’, "' bi g_conpany_I ogo. JPG);

/! duplicate the file under a new name

$ar c- >copy(' bi g_conpany_| ogo. JPG , ' sane_bi g_conpany_I| ogo. JPG) ;

$arc->toFile(‘first_try.thz');
$arc->toFil e(* bonberman. tar.gz’);
$arc->toFil e(‘encrypted. zip');
$arc->toFil e(‘ super.tgz’);

8) More archive strain...

$arc =& new psArchive();

/1 add sone files and | oad sone archives
$arc->add('/etc/httpd');
$arc->l oad(' i mages.tgz');

$ar c- >l oad(' sounds. tar.bz2");

$arc->l oad('license.gz');

$arc->add(' /var/ww/ htm ') ;

/1l do sonme danmge

$arc->renane(‘ fol k/ romanian’, 'ethnic_nusic’');
$ar c- >renane(‘' | andscapes/ danube’, 'nice_pictures’);
$arc->renane(‘etc’, 'configuration’);

/1l sone nore...
$arc->copy(‘var’', 'websites’);

/! send to browser and downl oad

header (* Content-type: '.$arc->getMne(‘zip’));

header (‘ Content -di sposition: attachment; filename="test.zip";’);
$arc->t oBrowser (‘' zi p’, nother’);

Page 25/26

I]S“rl:ni“e (high performance PHP archive manipulator) User Manual

7) Contact information

For contact and information about developing with psArchive contact support@palos.ro or

valeriu @palos.ro.

Page 26/26

mailto:valeriu@palos.ro
mailto:support@palos.ro

