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The paper presents a new complex adaptive non-linear system with one input and one output (SISO) 

which is based on dynamic inversion. The system consists of a dynamic compensator, an adaptive 

controller and a reference model. Linear dynamic compensator makes the stabilization command of 

the linearised system using as input the difference between closed loop system‟s output and the 

reference model‟s output. The state vector of the linear dynamic compensator, the output and other 

state variables of the control system are used for adaptive control law‟s obtaining; this law is modeled 

by a neural network. The aim of the adaptive command is to compensate the dynamic inversion error. 

Thus, the command law has two components: the command given by the linear dynamic compensator 

and the adaptive command given by the neural network. As control system one chooses the non-linear 

model of helicopter‟s dynamics in longitudinal plain. The reference model is linear. One obtains the 

structure of the adaptive control system of the pitch angle and Matlab/Simulink models of the 

adaptive command system‟s subsystems. Thus, characteristics that describe the adaptive command 

system‟s dynamics with linear or non-linear actuator are obtained.  
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1. INTRODUCTION 

The complexity and incertitude that appear in the non-linear and instable phenomena are the main 

reasons that require the projecting of non-linear adaptive structures for control and stabilization; in these 

cases the linear models are far from a good description of the flying objects‟ dynamic. Another reason is the 

non-linear character of the actuators. The observers must be easily adaptable and their project algorithms 

must allow the state‟s estimation of the flying object even in the case of their failure or no use of the 

damaged sensors‟ signals. In these situations, it‟s good to use the real time adaptive control based on neural 

networks and dynamic inversion of the unknown or partial known nonlinearities from the dynamic model of 

the flying object [1]. The neural network‟s training is based on the signals from state observers; these 

observers get information about the control system‟s error [2], [3], [4].   

2. ADAPTIVE COMMAND BASED ON DYNAMIC INVERSION 

Let‟s consider the dynamic system (A) with single input and single output described by the equations 

   ),(,, xhyuxfx   (1) 

with   ,1nx   n  known, f  and h  unknown non-linear functions, u  and y  measurable. 

One projects an adaptive control law v  in rapport with the output using a neural network (NN); NN 

models a function that depends on the values of input and output of the system (A) at different time moments 

so that  ty  follows the bordered signal  .ty  The feedback‟s linearization may be made by transformation [5] 

   ,uy,hv r
ˆ   (2) 

where v  is the pseudo-command signal and ),(ˆ uyhr  the best approximation of    .u,yxhu)(x,h rr   The 
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equation (2) is equivalent with the following one 

   .vy,hu 1
r
 ˆ  (3) 

If ,ˆ
rr hh   one yields ;)( vy r   otherwise  rr hh ˆ  

 ;)(  vy r  (4) 

      uyhuxhux rr ,ˆ,,   (5) 

is the approximation of function rh  (inversion‟s error). Assessing y  to follow ,y  v  has the form [5], [6], [7] 

 ,)( vvvyv apd
r   (6) 

where pdv  is the output of the dynamic linear compensator for stabilization, used for the liniarised dynamic 

(4), with  avε ,0  the adaptive command that must compensate   and v  has, for example, the form [8], [9] 

   ,kZZkv v
F

z EE
E

E
 ˆˆ  (7) 

with 0, vz kk  gain constants, 
F

Ẑ  the Frobenius norm of matrix Z,Ẑ  the ideal matrix of the neural 

network and ,BPEE ˆ  with BP,  matrices and Ê  vector. The derivative )(ry  is introduced for the 

conditioning of the dynamic error y.yy ~  This derivative is given by a reference model (command filter) 

[5]. )(ry  may be cumulated with other signals and it results the component rv  of form (11).  

 Let‟s consider   sdH  the transfer function of the linear subsystem of A (flying object) with the input 

nu  and the output ,y  having to the numerator a p  order polynomial and at the denominator a r  order 

polynomial; .1 rp  For this system the paper‟s authors propose the command structure from fig. 1, with 

the linear part described by the equations (8)   (10). 

 

Fig. 1. The block diagram of the adaptive command system based on dynamic inversion 

Considering 

            ,,,, 10110
)()1(

p
T

r
TpTrT bbbbvvvZyyyY   

  (8) 

with  1,0,,,0, rjpib ji
 the coefficients of the transfer function‟s numerator and denominator for 

the system with input nu  and output y,  the linear system with input v  and output y  is described by equation  

 .)(  ZbYy TTr  (9) 

If ,0p  then 0bbv,Z   and the previous equation becomes 

 .0
)(  vbYy Tr  (10) 

In the particular case ,)()( rr yy   one obtains  
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   .
1 )(

0

Yy
b

v Tr
r   (11) 

The compensator may be described by the state equations 

 ,, edcvebA ccpdcc   (12) 

where   has at least the dimension   ,1r  

     .0001,~
1

)1(T
r

r ceee,cye


  ee  (13) 

The state equation of the linear subsystem with the input  v  and the output y  from fig. 1 is 

   ,, vvvvvbxAx apd   (14) 
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 The stable state  0 vxx   verifies the equation 0xA  and, taking into account equation (14), 

leads to the equation of the error vector ,~ xxx e  

  . vvbbvA apdee  (16) 

 Introducing in the block diagram from fig. 1 a linear dynamic compensator, a reference model and a 

non-linear adaptive controller with neural network, one obtains the block diagram from fig. 2, equivalent 

with the one from [5]. 

 

Fig. 2. Automatic control system with non-linear adaptive controller 

With notations 
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where I  is the identity matrix, one obtains 

   ;, EEE CzvvbA a   (18) 

cccc dcbA ,,,  from (12) are calculated so that A  is a Hurwitz matrix.  

 For the estimation of the vector ,E  the paper‟s authors propose the introducing in the linear dynamic 

compensator‟s structure of a linear state observer of order  12 r  described by equations (see fig. 3) 

   ,ˆˆ,ˆˆˆ EEE CzzzLA 


 (19) 

with the gain matrix L  calculated so that matrix  CLAA 
~

 is stable. Considering w  the sensor‟s 

error, my  the measured value of ,y  then wyyyy mm  ~~  and the compensator‟s equations become 

           ., HwCzGwvvbA a  EEE  (20) 

with    .,01 cc
TT bbdGH   If the state   of the compensator is known, one uses a reduced order 

observer for estimation of the vector e  [10] 
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   .ˆ,ˆˆˆ
111 eee czzzLA r   (21) 

The gain matrix rL  is obtained so that the matrix  cLAA r
~

 is stable. With vectors ê  and   the 

vector   eE ˆˆ T  is obtained. The signal bPTEE ˆ  is used for the neural network‟s training; the weights 

Ŵ  and V̂  are obtained with equations [11] 

                ,ˆˆˆˆ2ˆ,ˆˆˆˆˆˆ2ˆ
00 VVkBPVWWkBPVW T

V
TT

W  EE


 (22) 

where the role of B  is played by .b  In (22)   is, for example, the sigmoid function [12], [13] 

     ,1
1 azez  (23) 

0
dz

)(ˆd
ˆ

zz

z




  is the Jacobian of vector 0

ˆ,ˆ W  and 0V̂  the initial values of weights ,ˆ,ˆ VW  ,0,  VW  

,
~

,,2 21121

2
2
1

2
1 BPBPkBPkkBPkk 





   P  and P

~
 the solutions of Liapunov equations 

 .
~~~~~

, QAPPAQAPPA TT   (24) 

P  from the signal used for the neural network‟s training is the solution of first equation (24) with 

 .bcdAA c  The programs for the numerical calculus of function (23) and for the solutions‟ obtaining 

of the equations (22) and (24) are presented in [4]. Second output of the compensator  ay~  is used for obtai-

ning of an error signal that is useful for training of the neural network. From (4) and (6) one yields 

 ,)()(  vvvyy apd
rr  (25) 

 .~ )(  vvvy apd
r  (26) 

Error   may be approximated with the output of a linear neural network NN [5], [14] 

     ,, * TW  (27) 

where W  is the weights‟ matrix for the connections between the hidden layer and the output layer (NN has 2 

layers and one hidden layer),     the reconstruction error of the function and   the input vector of NN 

   ,)()(1
TT

d
T
d tytv  (28) 

                  ,1)()(,1)()( 11
TT

d
TT

d dntydtytytydrntvdtvtvtv    (29) 

with  nn 1  and ;0d  with Ŵ  is the estimation of avW ,  is projected so that 

  .ˆ  T
a Wv  (30) 

3. ADAPTIVE SYSTEM FOR THE COMMAND OF HELICOPTERS’ PITCH ANGLE 

Lets‟ consider the case of non-linear dynamic of an experimental helicopter R – 50 with one input and 

one output (SISO); its dynamic is given by the equation (1) with  

   ,,,  yuVVx zyx
T  (31) 

where zx VV ,  are the advance velocity, respectively the vertical velocity,   and  y  the pitch angle and the 

pitch angular velocity,   the longitudinal control angle of the main rotor,   the cyclic longitudinal input. 

Choosing the linearised model of helicopter [15] and, annexing the actuator‟s equation 

 ,c  (32) 

the input equation ,cu   the output equation ,y  the system‟s state equation is obtained 
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From (33) one yields 

 .,   MVMMMVMyy zwqxuy
  (34) 

The second equation (34) must be completed with a non-linear term  

       .
d

d
,,,,, )(

r

r

rr
r

crr
t

h
hurhyxhuxh



  (35) 

 The relative degree of the system being 2r  in (8), the output of the reference model has the form 

                 .rad/s10,7.0,
s2s

002
000

2

2
0 




 rc

rr

r yy  (36) 

 From the analysis of equations (34), one notices that  sdH  from fig. 1 has the terms 2s  and s1  in the 

denominator and the term 0b  in the numerator. Choosing ,
01

b  one gets the transfer function of the system 

with output y  

                   
 

.
ss

)s(
0

0

b

b
H d


  (37) 

 Equation (10) becomes 

  .01  vbyy   (38) 

By elimination of  y  between the equation  

   MVMMMVMy zwqxu
  (39) 

and the equation (38), one yields  

         ;01   vbMVMMMVM zwqxu
  (40) 

From this, one identifies ),(ˆ  xhv r
 and  ;;  Tx  one gets  

     ,,ˆˆ
10   xhMMvb rq
  (41) 

For the calculus of c  and ,  equation (33) may be written  
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One obtains 

       ;,ˆˆ
ˆ

1 1
10 vxhMvb

M
rqc




   (43) 

  .zwxu VMMVM    (44) 

 The component rv  has the form  

   yby
b

vr


0

0

1
  (45) 

and the control laws (6) and (26) become 

   ;~~~,
1~~
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  (46) 

the equation of the closed loop system (the equation of the error‟s dynamic) is 

   .
1

0
~

~10

~

~

000 



































vbvb

y

y

kk
b

y

y
a

dp



 (47) 

 The characteristic equation of this system is 

  .0ss 00
2  pd kbkb  (48) 

Using the notations ,,2 2
0000  pd kbkb  setting 7.0  and ,rad/s100   one obtains .1;, 0 bkk dp   

 One considers     eyzcCyy
T

 ~,01,~~ eE  and -ez Ê;ˆˆ   the observer state (19). The 

gain matrix L  is calculated so that matrix  LCAA 
~

 is stable; A  is the matrix of system from equation 
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(47). The component av  has the form 

   ,ˆˆ  TT
a VWv  (49) 

with   of form (23), with    ,4.05.06.07.08.09.01a  of form (28), ;05.0,51  dnn Ŵ  and V̂  

are the solutions of equations (22); 

   .)()()3()2()()(1 dtytydtvdtvdtvtvT   (50) 

,115.0,5.12,23  kvw P  and P
~

 are calculated with (24). 

 One obtains v  using (7), where .50,7.0,8.0  Zkk vz The values of the coefficients from (33) are 
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 (51)  

The block diagram of the system for automatic command of the pitch angle is presented in fig. 3. This 

structure of the system from fig. 3 and its project represents one of the authors‟ contributions in this paper. 

 

Fig. 3. Block diagram of the system for automatic command of the pitch angle 

 Actuators‟ characteristics (time delays, nonlinearities with saturation zone) lead to neural network„s 

training difficulties. This is why a block “PCH” is introduced; it limits the adaptive pseudo-control av  and  

v  by the mean of one component which represents an estimation of the actuator‟s dynamic (PCH  – Pseudo 

control Hedging). PCH “moves back the reference model” introducing a correction of the reference model‟s 

response; it depends on actuator‟s position [3], [15]. Because the dependence between   and c  is expressed 

by a non-linear function ,ah  one yields ;)ˆ,(ˆ),(ˆ  xhxh rcr
 it results a difference between two functions 

  .)ˆ,(ˆ,ˆ  xhxhv rcrh
 Taking into account that      ,,ˆ,ˆ,ˆ 1 vvxhxhxh rrcr    function 

hv  becomes 

 .)ˆ,(ˆ  xhvv rh  (52) 

 

Fig. 4. The model of the non-linear actuator 

 This signal is introduced in the reference model as an additional input [3]; one compares it with )(ry  
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inside the reference model and, after integration, it leads to the modify of the signals y  and .~y  The block 

diagram of the subsystem formed by (52) and actuator is presented in fig. 4. 

  

Fig. 5. The Matlab/Simulink model for the structure from fig. 3 

 

 

 

 

 

 

 

              

  Fig. 6. Time characteristics in the case of linear actuator‟s use                 Fig. 7. Time characteristics in the case of non-linear actuator‟s use  

In the case of non-linear actuator for the case of the longitudinal movement of the helicopter (equation 

(33)), the system from fig. 3 includes the model of non-linear actuator (fig. 4), in which ; x  the block of 

calculus for (32) is replaced with the subsystem from fig. 4. One chooses sec03.0T  and the control limits 

in position and speed of the actuators ,deg5  respectively deg/sec50  [15]. In fig. 5, the Matlab/Simulink 

model for the structure from fig. 3 is presented; one has chosen grd.5c  Each subsystem of the system 

from fig. 5 represents a complex Matlab/Simulink model. 

In fig. 6 the functions   )(),(ˆ),(ˆ),(,),( tttvttt a   and )(tv  (  ˆ,,  with blue color, continuous line 

and  ,ˆ, av  with red color, dashed line) are presented. If the actuator is a linear one  av̂,  (the 

adaptive component of the command compensates the approximation‟s error rh ),  ˆ  and .0v  If the 

actuator is non-linear, one obtains the time characteristics from fig. 7; additionally, the characteristics )(tvh  
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and    appear. When 0hv  the actuator is in the saturation state and it works in the linear zone when 

.0hv  The characteristic    (phase portrait of the system) shows that the non-linear system tends to a 

stable limit cycle. The project of the structure from fig. 5 and of its subsystems and the obtained graphical 

time characteristics represent contributions of this paper‟s authors.  

4. CONCLUSIONS 

The aim of the adaptive command is to compensate the dynamic inversion error. Thus, the command 

law has two components: the command given by the linear dynamic compensator and the adaptive command 

given by the neural network. As control system one chooses the non-linear model of helicopter‟s dynamics in 

longitudinal plain. The reference model is linear. One obtains the structure of the adaptive control system of 

the pitch angle and Matlab/Simulink models of the adaptive command system‟s subsystems. Using these, 

some characteristics families are obtained; these describe the adaptive command system‟s dynamics with 

linear or non-linear actuator. 

The authors‟ contributions in this paper are: 1) the structural block diagram of the adaptive command 

system from fig. 1, with the linear part described by equations (8)   (10); 2) the block diagram from fig. 2, 

equivalent with the one from [5], where the linear dynamic model has the structure from fig. 1; the structural 

block diagram from fig. 3 and its project; 4) the Matlab/Simulink models of the subsystems of the structure 

from fig. 6; the graphical characteristics from fig. 6 (for the linear actuator case) and from fig. 7 (non-linear 

actuator case with the model from fig. 5) which describe time evolution of the helicopter‟s pitch angle, time 

evolution of the command law‟s components and offer information regarding the quality and the stability of 

the non-linear model‟s dynamic processes for the adaptive command system of the helicopters‟ pitch angle. 
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