
Ski IA-64 Simulator Reference Manual

Rev. 1.0L (26 Apr 00)

Copyright © 2000 Hewlett-Packard Co.

Ski IA-64 Simulator Reference Manual 1.0L

nection

ment
ackard.

-
l

Notice

The information in this document is subject to change without notice.

HEWLETT-PACKARD MAKES NO WARRANTY OF ANY KIND WITH REGARD TO THIS MATERIAL, INCLUD-
ING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
PARTICULAR PURPOSE.

Hewlett-Packard shall not be liable for errors contained herein or for incidental or consequential damages in con
with furnishing, performance, or use of this material.

This document contains information which is protected by copyright. All rights are reserved. No part of this docu
may be photocopied, reproduced, or translated to another language without the prior written consent of Hewlett-P

Copyright © 2000 by HEWLETT-PACKARD COMPANY.

Printing History

• First Edition: Revision 1.0L, April, 2000

Trademarks

Linux is a registered trademark of Linus Torvalds.MS-DOSandWindowsare registered trademarks of Microsoft Corpora
tion. UNIX is a trademark or registered trademark of the Santa Cruz Operation.Intel is a registered trademark of the Inte
Corporation.
ii Notice Copyright © 2000 Hewlett-Packard Co.

Ski IA-64 Simulator Reference Manual 1.0L

of the
ulator

i to do
s HP’s

covered

f

of Ski’s

page, a

ppendix
Preface

This document is the Ski IA-64 Simulator Reference Manual. The goal of this document is to provide a description
features, commands, and simulation environment provided by the Ski IA-64 simulator. The version of the sim
described here is Version 0.873l.

How to Use This Manual

The first chapter of this manual is a quick-start tutorial. Using only the first chapter, you can learn enough about Sk
useful work. If you are using Ski to simulate an IA-64 application program and are familiar with debuggers such a
xdb, the first chapter and Appendix A, “Command Reference” may be all you need to read.

The remaining chapters provide information about Ski in depth. Use these chapters to learn about commands not
in the tutorial and to learn more about how Ski operates.

Use Appendix A, “Command Reference” and the on-linehelp command to find a list of all Ski commands and a brie
description of each command.

Use Appendix D, “Simulator Status and Error Messages” to understand the causes and possible solutions for each
error messages.

Font Conventions

In this manual, fonts are used as described below. Depending on how you are viewing this document (paper, a web
PDF file, etc.), some distinctions may not be visible.

italic

is used for optional text including operand fields such ascount, and for the names of bitfields such aspsr.be.

light italic

is used for graphical button names such asRun.

fixed-width bold

is used for literal text including commands such asdbndl , and for examples such asbski -icnt foo <bar >baz .

SMALL UPPERCASE

is used for processor instructions such asBREAK.

fixed-width regular

is used for directories and filenames such ashello , and for web URL’s such ashttp://www.hp.com .

Syntax Conventions

In this manual, symbols are used as described below.

[italic]

Square brackets surrounding optional argument(s) indicate that the argument(s) can be omitted, as in the A
A, “Command Reference” description of thedj command:dj [address].
Copyright © 2000 Hewlett-Packard Co. Preface iii

Ski IA-64 Simulator Reference Manual 1.0L

Appen-

zero or
italic+

A plus sign applied to an argument indicates that the argument must be supplied one or more times, as in the
dix A, “Command Reference” description of theeval command:eval expression_without_spaces+.

[italic]+

A plus sign applied to optional argument(s) in square brackets indicates that the argument(s) can be supplied
more times, as in the Appendix A, “Command Reference” description of theload command:load filename[args]+.
iv Syntax Conventions Copyright © 2000 Hewlett-Packard Co.

Ski IA-64 Simulator Reference Manual 1.0

. . 1-9

1

 . 2-2

. 3-5
 . 3-

 . . 3-9

 . 3-11

. 3-1
Table of Contents

1 Getting Started: A Ski Tutorial . 1-1
1.1 The Ski Simulator . 1-1
1.2 How to Run an IA-64 Application Program . 1-1

1.2.1 Startingxski . 1-1
1.2.2 Exiting Ski . 1-3
1.2.3 Loading Your Program . 1-3
1.2.4 Inspecting Data . 1-5
1.2.5 Viewing Data in ASCII . 1-8
1.2.6 Looking at Code . 1-8
1.2.7 Viewing Source Code Mixed In with Assembly Code .
1.2.8 Controlling Breakpoints . 1-10
1.2.9 Running a Program . 1-11
1.2.10 Single-stepping a Program . 1-12
1.2.11 Changing Registers and Memory . 1-13
1.2.12 Getting Help . 1-17
1.2.13 Next Steps . 1-17

2 Overview . 2-
2.1 Introduction. . 2-1

2.1.1 Ski’s Strengths. . 2-1
2.1.2 Ski’s Scope . 2-1

2.2 What You Need to Know to Use This Manual. . 2-1
2.3 Defects and Defect Reporting . 2-1
2.4 Ski Variations . 2-2

2.4.1 Usingbski for Batch Simulations .
2.5 Starting Ski . 2-4

2.5.1 Command Line Flags . 2-4
2.5.2 TheXSki File . 2-5

2.6 Quitting Ski. . 2-6
2.6.1 Summary of the Quit Command. . 2-6

3 Screen Presentation . 3-1
3.1 Ski’s Use of Windows . 3-1
3.2 The Register Window . 3-1

3.2.1 The User Registers Pane. . 3-2
3.2.2 The General Registers Pane . 3-3
3.2.3 The Floating Point Registers Pane . 3-3
3.2.4 The System Registers Pane . 3-4
3.2.5 The IA-32 Registers Pane . 3-4

3.3 Resizing Register Window Panes withxski .
3.4 The Register Window andski .5
3.5 The Program Window . 3-6

3.5.1 IA-64 Instruction Display . 3-6
3.5.2 IA-32 Instruction Display . 3-8
3.5.3 Changing the Range of Locations Shown in the Program Window.
3.5.4 Invalid Code and the Program Window . 3-9

3.6 The Data Window . 3-10
3.6.1 Changing the Range of Locations Shown in the Data Window.
3.6.2 Invalid Code and the Data Window . 3-12

3.7 The Command/Main Window . 3-12
3.7.1 Thexski Main Window. .3-12
3.7.2 Theski Command Window. 3

3.8 Other Windows. . 3-14
4 Command Language. . 4-1
Copyright © 2000 Hewlett-Packard Co. Table of Contents v

Ski IA-64 Simulator Reference Manual 1.0

. . 4

. .

. . 5

.

 . .

 . . 6

 .

. 8-4

 . . 8

 .

 .
4.1 Command Entry . 4-1
4.2 Command Arguments . 4-1
4.3 Command Sequences, Repetition, and Abbreviation . 4-1
4.4 Argument Specification . 4-2

4.4.1 Numeric Arguments . 4-2
4.4.2 Symbolic Arguments . 4-4
4.4.3 Resolving Ambiguous Symbols and Numbers . -5

5 Screen Manipulation Commands. . 5-1
5.1 Register Window Commands . 5-1

5.1.1 Summary of Register Window Commands . 5-1
5.2 Program Window Commands. . 5-2

5.2.1 Summary of Program Window Commands . -2
5.3 Data Window Commands. . 5-5

5.3.1 Summary of Data Window Commands . . 5-5
6 Program Simulation . 6-1

6.1 Application-Mode and System-Mode Simulation . 6-1
6.2 Ski Support for Application-Mode Programs. . 6-1

6.2.1 Application-Mode IA-64 Programs . 6-1
6.2.2 Application-Mode IA-32 Programs . 6-1

6.3 Ski Support for System-Mode Programs . 6-1
6.3.1 System-Mode IA-64 Programs. . 6-2
6.3.2 System-Mode IA-32 Programs. . 6-2
6.3.3 System-Mode TLB Simulation. . 6-2

6.4 Misaligned Data Access Trap . 6-3
6.5 Program Loading . 6-3

6.5.1 How to Load a Program . 6-3
6.5.2 Summary of Program Loading Commands . 6-4
6.5.3 Notes about Program Loading . 6-4

6.6 Program Execution . 6-5
6.6.1 Summary of Program Execution Commands . -5

7 Linux and MS-DOS ABI Emulation . 7-1
7.1 Interruptions. . 7-1
7.2 Linux Application Environment . 7-1
7.3 MS-DOS Application Environment. . 7-3
7.4 Program I/O . 7-3

8 Debugging . 8-1
8.1 Changing Registers and Memory with Assignment Commands .. 8-1

8.1.1 Summary of Assignment Commands . . . 8-1
8.1.2 Examples of Assignment Commands . 8-1
8.1.3 Notes on Assignment. . 8-3

8.2 Evaluating Formulas and Formatting Data . 8-4
8.2.1 Summary of Theeval Command .

8.3 Program Breakpoints . 8-4
8.3.1 Setting Program Breakpoints. . 8-4
8.3.2 Deleting Program Breakpoints . 8-5
8.3.3 Listing Program Breakpoints. . 8-5
8.3.4 Notes on Program Breakpoints. . 8-6
8.3.5 Summary of Program Breakpoint Commands . -6

8.4 Data Breakpoints . 8-7
8.4.1 Setting Data Breakpoints . 8-7
8.4.2 Deleting Data Breakpoints . 8-7
8.4.3 Listing Data Breakpoints . 8-7
8.4.4 Summary of Data Breakpoint Commands . 8-7

8.5 Dumping Registers and Memory to a File . 8-8
8.6 Saving and Restoring the Simulator State . 8-8

8.6.1 Summary of Save and Restore Commands .. 8-8
8.7 Symbol Table Commands. . 8-8
vi Table of Contents Copyright © 2000 Hewlett-Packard Co.

Ski IA-64 Simulator Reference Manual 1.0

 . . 9-1
8.7.1 Summary of Symbol Commands . 8-8
9 Command Files . 9-1

9.1 Initialization File . 9-1
9.2 Labels and Control Flow in Command Files. . 9-1

9.2.1 Thegoto Command and Labels .
9.2.2 Theif Command . 9-2

9.3 Comments in Command Files . 9-2
9.4 An Example Command File . 9-2
9.5 Summary of Command File Commands . 9-3

A Command Reference . A-1
B Register Names .B-1

B.1 IA-64 Registers. .B-1
C Internal Variable Names. .C-1

C.1 Internal Variables. .C-1
D Simulator Status and Error Messages . D-1
Copyright © 2000 Hewlett-Packard Co. Table of Contents vii

Ski IA-64 Simulator Reference Manual 1.0
viii Table of Contents Copyright © 2000 Hewlett-Packard Co.

Ski IA-64 Simulator Reference Manual 1.0L

. . 1-2
 . 1-3
 . 1-4

1-6
1-7
 . . 1-7
-8

 .

-12
-12

4
-15

1-16
-16
-17
 . 2-2
2-3

 . 2-4
 . 3-2

.
 .
.

 . . 3-5

. 3-7
 . 3-8
 . 3-9

3-10
. 3-10
. 3-11
. 3-11

. . 5-3
 . 5-4
. . 5-4
 .
. . 5-6
.

 . 6-3
List of Figures

Figure 1-1. Startingxski From the Command Line .
Figure 1-2. The Four Primaryxski Windows. .
Figure 1-3. Loading the “hello ” Program .
Figure 1-4. Thexski Program Window. . 1-4
Figure 1-5. Thexski Data Window . 1-5
Figure 1-6. Thexski Register Window . 1-5
Figure 1-7. Changing the Data Window Display . 1-6
Figure 1-8. The Data Window Showing theargv andenvp Vectors. .
Figure 1-9. The Data Window Showingargv andenvp Strings in Hexadecimal
Figure 1-10. The Main Window Showing Commands in the Command History
Figure 1-11. The Data Window Showingargv andenvp Strings in ASCII . 1
Figure 1-12. Jumping the Program Window to the Beginning of main(). . 1-9
Figure 1-13. The Program Window Showing Code at the Beginning of main() 1-9
Figure 1-14. The Program Window Showing a Breakpoint at main() . 1-10
Figure 1-15. The Breakpoint List Window . 1-11
Figure 1-16. The Terminal Window After the “hello ” Program is Run . 1
Figure 1-17. Thexski Main Window after the “hello ” Program is Run . 1
Figure 1-18. The Main Window After Reaching the Breakpoint at main+10 1-13
Figure 1-19. Thexski Register Window After Stopping at a Breakpoint atmain +10. 1-1
Figure 1-20. Thexski Register Window After Changing theip Register . 1
Figure 1-21. Thexski Data Window Widened to Show ASCII .
Figure 1-22. Thexski Data Window After Changing the “Hello, world” String 1
Figure 1-23. Thexski Main Window Showing aneval Command and Its Result 1
Figure 2-1. The Curses-basedski Interface . .
Figure 2-2. The X Window System, Motif-basedxski Interface . .
Figure 2-3. The Command-Linebski Interface. .
Figure 3-1. The Register Window inxski .
Figure 3-2. Thexski User Registers Pane . 3-3
Figure 3-3. Thexski General Registers Pane . . . 3-3
Figure 3-4. Thexski Floating Point Registers Pane . . 3-4
Figure 3-5. Thexski System Registers Pane . . . 3-4
Figure 3-6. Thexski IA-32 Registers Pane . 3-5
Figure 3-7. Anxski Pane Resizer: The Small Box Between the Scrollbars
Figure 3-8. Theski Register Window (at Top) . 3-6
Figure 3-9. xski ’s Program Window Showing Part of an IA-64 “hello world” Program
Figure 3-10. xski ’s Program Window Showing IA-64 Predication and Breakpoints
Figure 3-11. xski ’s Program Window Showing IA-32 Code, the Instruction Pointer, and a Breakpoint
Figure 3-12. xski ’s Program Window Showing Illegal Instructions. .
Figure 3-13. xski ’s Program Window Showing Unallocated Space or No Translation
Figure 3-14. xski ’s Data Window Showing Unallocated Space Followed by Data
Figure 3-15. xski ’s Data Window Showing Data Interpreted as Instruction Bundles
Figure 3-16. xski ’s Main (Command) Window . 3-13
Figure 3-17. ski ’s Command Window (at Bottom) . 3-14
Figure 3-18. xski ’s Symbol List Window . 3-15
Figure 4-1. xski Evaluating Expressions . 4-3
Figure 4-2. xski ’s Symbol List Window . 4-4
Figure 5-1. xski ’s Program Window Showing IA-64 Assembly Language Code
Figure 5-2. xski ’s Program Window Showing Intermixed C and IA-64 Assembly Code
Figure 5-3. xski ’s Assembly Language Dump Window .
Figure 5-4. xski Showing Data as Instruction Bundles . . 5-5
Figure 5-5. xski Showing Data in Raw Hexadecimal and ASCII .
Figure 5-6. xski ’s Hexadecimal Dump Window . . 5-6
Figure 6-1. Example Code to Simulate an External Interrupt . 6-2
Figure 6-2. sdt Command Output inxski .
Copyright © 2000 Hewlett-Packard Co. List of Figures ix

Ski IA-64 Simulator Reference Manual 1.0L

8-2
8-3
-5
8-6
8-9

 . . 9
Figure 8-1. The Original Program Loaded inski .
Figure 8-2. The Program After Assigning a String inski .
Figure 8-3. Three Breakpoints, 0, 2, and 1, Visible inxski ’s Program Window 8
Figure 8-4. xski ’s Breakpoint List Window Showing IA-64 and IA-32 Breakpoints.
Figure 8-5. Thesymlist Output fromxski . .
Figure 9-1. An Example Command File to Compute Fibonacci Numbers -3
x List of Figures Copyright © 2000 Hewlett-Packard Co.

Ski IA-64 Simulator Reference Manual 1.0L

List of Tables

Table 4-1. Ski Simulator Arithmetic and Logic Operators . 4-3
Table 7-1. Linux System Calls Supported by Ski . 7-2
Table 7-2. Linux System Calls Accepted but Ignored by Ski . 7-2
Table 7-3. MS-DOS System Calls (in Hexadecimal) Supported by Ski 7-3
Copyright © 2000 Hewlett-Packard Co. List of Tables xi

Ski IA-64 Simulator Reference Manual 1.0L
xii List of Tables Copyright © 2000 Hewlett-Packard Co.

Ski IA-64 Simulator Reference Manual 1.0L

re to
pre-

Linux
ommon

.

pi-
ssic

notes
ing

in
t vari-

ept

ow are
 zero.
1 Getting Started: A Ski Tutorial

In this chapter, you learn how to use Ski by executing a brief tutorial. At the end of the tutorial, you will learn whe
look in this manual for detailed descriptions of Ski’s operation and commands. Introductory information on Ski is
sented in Chapter 2, “Overview”.

1.1 The Ski Simulator
Ski simulates the IA-64 architecture and also has limited support for simulating IA-32 programs. Ski runs on IA-32
host systems. You can use Ski for many purposes, as described in Section 2.1, “Introduction”. One of the most c
uses of Ski is to test an IA-64 program in a Linux environment, and in this chapter, you will learn how to usexski , the X
Window System version of Ski, by “walking through” a sample session, in about ten minutes. Ok, twenty minutes

You should already be familiar with the IA-64 architecture and the C programming language, havexski installed on your
Linux system, and have theXSki file in your home directory or in your X Window System app-defaults directory, ty
cally /usr/lib/X11/app-defaults . You will also need to have an executable Linux IA-64 program such as the cla
“hello world ” program.

1.2 How to Run an IA-64 Application Program
Ski provides a Linux application environment in which an IA-64 program you provide can be simulated. The release
provide the most up-to-date information on Ski’s support for the Linux Application Binary Interface (ABI). The follow
sections provide a short tutorial which leads you through an IA-64 program session withxski . You will learn how to use
the most common Ski commands.

1.2.1 Starting xski

As shown in Figure 1-1, startxski by typing its name to the Linux shell, just like any other Linux program, as shown
Figure 1-1. When running inside the IA-64 Linux Native User Environment (NUE), make sure that the environmen
able DISPLAY is set to a string of the formhostname : display (e.g., ‘‘myhost:0 ’’, values such as ‘‘unix:0 ’’ or ‘‘ :0 ’’
won’t work) before invokingxski . If you have never run the simulator before, it will first prompt you to read and acc
the software license it is distributed under. After accepting the license, the four primaryxski windows will be displayed
on your screen, as shown in Figure 1-2. No IA-64 program is loaded yet, so the Program Window and Data Wind
empty. Scroll the various panes of the Register Window and note that with few exceptions, the registers are set to
Copyright © 2000 Hewlett-Packard Co. Getting Started: A Ski Tutorial 1-1

Ski IA-64 Simulator Reference Manual 1.0L
Figure 1-1. Starting xski From the Command Line
1-2 Getting Started: A Ski Tutorial Copyright © 2000 Hewlett-Packard Co.

Ski IA-64 Simulator Reference Manual 1.0L

mous

s will
own in
show,
gisters
1.2.2 Exiting Ski

You can quitxski and this tutorial with theQuit button, with the File->Quit menu selection, or with the “quit ” com-
mand. All are in the Main Window. (Don’t quit now; you are just beginning!)

1.2.3 Loading Your Program

Use the “Command” area of the “main” Window to load your program. For example, let’s say your program is the fa
“Hello, world” program, the executable file is named “hello ”, and the source code file is named “hello.c ”. Type “load

hello ” in the Command area to load it into Ski, as you see in Figure 1-3. After a moment, the other three window
change appropriately: the Program Window will show the program code in assembly language form as sh
Figure 1-4, the Data Window will show global and static data as shown in Figure 1-5, and the Register Window will
in r12 the value of the stack pointer, as shown in Figure 1-6. (You may need to use the scrollbar in the general re
pane of the Register Window to see these registers.)

Figure 1-2. The Four Primary xski Windows
Copyright © 2000 Hewlett-Packard Co. Getting Started: A Ski Tutorial 1-3

Ski IA-64 Simulator Reference Manual 1.0L
Figure 1-3. Loading the “ hello ” Program

Figure 1-4. The xski Program Window
1-4 Getting Started: A Ski Tutorial Copyright © 2000 Hewlett-Packard Co.

Ski IA-64 Simulator Reference Manual 1.0L
1.2.4 Inspecting Data

To look at theargv andenvp strings, you need to use the Data Window. Linux passesargc , argv , andenvp on the mem-
ory stack (r12). To look at this memory area, use the “dj ” command (“dataj ump”) in “Command” area of the Main Win-
dow. Supply, as an operand, the address of the memory stack. For example, ifr12 is set to9ffffffffff780 , you can

Figure 1-5. The xski Data Window

Figure 1-6. The xski Register Window
Copyright © 2000 Hewlett-Packard Co. Getting Started: A Ski Tutorial 1-5

Ski IA-64 Simulator Reference Manual 1.0L

dec-

ce– it

ge area.
ram is
e
n

d “
CII
type “dj r12 ” or “ dj 9ffffffffff780 ”, as shown in Figure 1-7 and the Data Window changes to display the hexa
imal data stored at the location, as shown in Figure 1-8. Find the value ofr12 in your program and use “dj ” now. (You
might wonder why “dj ” exists, instead of a simple scroll bar. Imagine scrolling through the entire IA-64 address spa
would take a long, long time!)

Looking at the Data Window, you can see that the first 16 bytes of the stack are all zeros. This is a scratch stora
The next 8-byte word containsargc , the argument count. It has a value of 1 as the only argument passed to the prog
the program name itself. Theargc count is then followed by theargv andenvp vectors. All C programs receive the sam
kind of data structure forargv : a variable-length vector ofchar * pointers whose end is marked with a NULL pointer. I
Figure 1-8, the first of thechar * pointers is9ffffffffffff938 . (The firstchar * pointer may be in a different place
on your system. Adjust the following instructions accordingly.) Jump the Data Window there using the commandj

9ffffffffffff938 ” (12 f’s) and you will see Figure 1-9, showing the hexadecimal codes for the null-terminated AS

Figure 1-7. Changing the Data Window Display

Figure 1-8. The Data Window Showing the argv and envp Vectors
1-6 Getting Started: A Ski Tutorial Copyright © 2000 Hewlett-Packard Co.

Ski IA-64 Simulator Reference Manual 1.0L

s, they
com-

mand
e
to
character strings ofargv andenvp . (In a moment, you’ll learn how to see data in ASCII translation.)

Typing hexadecimal numbers is error-prone, and Ski provides several shortcuts to avoid it. The first isxski ’s Command
History, an unlabeled window pane just above the “Command” area in the Main Window. As you execute command
move up to the Command History. Later, you can bring them back into the Command area. A single click brings a
mand back for you to edit. A double click brings the command back and re-executes it immediately. Try the Com
History by doing this: Type “dj 0 ” to jump the Data Window to location 0. The Main Window should look lik
Figure 1-10. Then click on the “dj 9ffffffffffff938 ” command in the Command History. Hit the enter/return key
execute it.

Figure 1-9. The Data Window Showing argv and envp Strings in Hexadecimal

Figure 1-10. The Main Window Showing Commands in the Command History
Copyright © 2000 Hewlett-Packard Co. Getting Started: A Ski Tutorial 1-7

Ski IA-64 Simulator Reference Manual 1.0L

ny
a
y useful

ake the
ccom-
ld see

dow,

code,
ANSI
’s

rst
move
Another shortcut is the* pointer-dereference operator for indirect addressing. Type “dj 0 ” to jump the Data Window to
location 0. Then type “dj *(r12+18) ”. Ski will take the contents ofr12 (9ffffffffff780 , remember?), add18 (hex)
and use that as the address of the operand. The* operator fetches the contents of*(r12+18) and uses that value,
9ffffffffff938 , as the address to jump to. Compare the Data Window display resulting from “dj r12+18 ” with the
display resulting from “dj *(r12+18) ”.

You will use the* operator a lot in debugging C programs because it performs the same function as C’s* operator: it
dereferences pointers. Unlike C’s* , however, Ski’s* operator is not type-specific: you can use it in any context where a
kind of address is needed and you can use it to dereference registers liker12 , memory locations, or anything that has
value. (This doesn’t always make sense, of course. For example, dereferencing a floating-point register is rarel
because floating-point registers don’t hold pointers.)

1.2.5 Viewing Data in ASCII

Hexadecimal is no fun. To expose the ASCII translation, use your window manager’s standard mechanism to m
Data Window wider. (How you do this depends on the window manager you’re using, but generally this can be a
plished by grabbing the edge of the Data Window with your mouse cursor and dragging it to the right.) You shou
approximately Figure 1-11. Now click on the Main Window, to make it the active window again. Try the “df ” (“ dataf or-
wards”) and “db” (“ databackwards”) commands without operands to move forwards and backwards in the Data Win
one screenful each time.

1.2.6 Looking at Code

Initially, the Program Window shows the beginning of the program. For C programs, this isn’t the first line of user
it’s the start-up routine fromcrt1.o that provides an interface between the operating system environment and the
C environment. This routine is named “_start ” and the ELF header inhello names it as the start of the program. That
what Ski shows in the Program Window by default: the start of the program according to ELF.

You use the “pj ” command (“programj ump”) to jump the program window elsewhere. For example, jump it to the fi
instruction in the user’s main(), as shown in Figure 1-12. The Program Window now looks like Figure 1-13. You can
the Program Window forwards and backwards through program code with the “pf ” (“ program f orwards”) and “pb”
(“programbackwards”) commands, respectively. Try these commands, and then try using “pj ” without an operand: note
how it jumps you back and forth between the previous and current locations. The “dj ” command does the same thing in
the Data Window. Handy, eh?

Figure 1-11. The Data Window Showing argv and envp Strings in ASCII
1-8 Getting Started: A Ski Tutorial Copyright © 2000 Hewlett-Packard Co.

Ski IA-64 Simulator Reference Manual 1.0L

e code
1.2.7 Viewing Source Code Mixed In with Assembly Code

The Program Window shows the C source code intermixed with the IA-64 assembly code. You can turn the sourc

Figure 1-12. Jumping the Program Window to the Beginning of main()

Figure 1-13. The Program Window Showing Code at the Beginning of main()
Copyright © 2000 Hewlett-Packard Co. Getting Started: A Ski Tutorial 1-9

Ski IA-64 Simulator Reference Manual 1.0L

-
he ELF

ample

Like any

). Use

0,

g a
e

display off or on using thepa (“programassembly”) andpm(“programmixed”) commands, respectively. Mixed code dis
play only works if you have the source code to the program available to Ski; the source code isn’t embedded in t
file. Also, you must compile your code with the appropriate compiler flags, for example, with the-g flag used by many C
compilers to generate debug line record information. If your program is composed of multiple object files, for ex
“cc -o test foo.o bar.o baz.o ”, Ski can only show source code from the files compiled with the-g flag. Make sure
the Program Window is in mixed mode for now.

1.2.8 Controlling Breakpoints

You can think of Ski as a debugger that happens to work on a simulated processor rather than a real processor.
good debugger, Ski provides breakpoints. To set a breakpoint in an IA-64 program, use the “bs ” command (“breakpoint
set”). In the example that follows, you will want to have the Program Window display the area of code near main(
the command “pj main ”, as you learned above.

To set a breakpoint at the beginning of main(), type “bs main ” in the Main Window. The Program Window shows a “0”
in the first column of the window at the breakpoint location (the‘‘alloc’’ instruction), because you just used breakpoint #
as Figure 1-14 shows. (The first three columns are also used for line numbers.) Set a breakpoint atmain+10 and another at
main+20 . Ski lets you set up to ten breakpoints.

Use the “bl ” command (“breakpointl ist”) to see a list of the breakpoints, as shown in Figure 1-15. If you prefer usin
mouse, use the “Breakpoints” item on the View menu instead of the “bl ” command. When you are finished viewing th
breakpoint list, click itsClose button to dismiss the window.

To delete breakpoints individually, use the “bd” command (“breakpointdelete”). Use the “bD” command (“breakpoint
Delete all”) to delete all breakpoints at once. Delete all your breakpoints before continuing this tutorial.

Figure 1-14. The Program Window Showing a Breakpoint at main()
1-10 Getting Started: A Ski Tutorial Copyright © 2000 Hewlett-Packard Co.

Ski IA-64 Simulator Reference Manual 1.0L

ssuming
s,
ctions
les that
ation of
cycle;

privi-
mula-

nd
1.2.9 Running a Program

To run your program, type the “run ” command or click theRun button in the Main Window. Ski will start the simulation
and connect the program’s standard I/O ports (stdin, stdout, and stderr) to Ski’s standard ports. For example, a
there are no breakpoints still set inhello , you will see “hello world” printed out when you run it, as Figure 1-16 show
and run statistics will appear in the Main Window, as Figure 1-17 shows. The statistics tell you how many instru
were simulated and how much time it took, the instructions-per-second rate, the number of IA-64 processor cyc
were consumed on the simulated CPU, and the average number of instructions per cycle, which provides an indic
the best-case effective parallelism of the program. (Ski simulates all the instructions in an instruction group in one
a hardware implementation may not be as capable.)

Ski will stop the simulation for three reasons: if a breakpoint is reached, if the IA-64 program attempts to access
leged resources or non-existent memory, or if the program ends normally by calling exit() or similar functions. If si
tion stops due to a breakpoint, you can continue simulation with the “cont ” command (“cont inue”) or you can step
through the simulation with the “step ” command orStep button. You cannot re-run a program, nor can you re-load it a
start over. You must exit and re-enterxski and then reload your program.

Figure 1-15. The Breakpoint List Window
Copyright © 2000 Hewlett-Packard Co. Getting Started: A Ski Tutorial 1-11

Ski IA-64 Simulator Reference Manual 1.0L

essage in
1.2.10 Single-stepping a Program

To try single-stepping (and no, this is not a kind of ethnic dance), set a breakpoint atmain+10 . Then use the “run ” com-
mand orRun button to simulate the program up to the breakpoint. (If you receive the error message “Nothing to run ”,
stop and reread the last sentence in the previous paragraph.) Ski stops at the breakpoint and notifies you with a m

Figure 1-16. The Terminal Window After the “ hello ” Program is Run

Figure 1-17. The xski Main Window after the “ hello ” Program is Run
1-12 Getting Started: A Ski Tutorial Copyright © 2000 Hewlett-Packard Co.

Ski IA-64 Simulator Reference Manual 1.0L

s you
l in the
ows the

of IA-

t,
ibed in

ter Win-
isters in
the Main Window. Ski tells you why it stopped and gives you statistics about program execution up to this point, a
can see in Figure 1-18. The Program Window marks the next instruction to be fetched with a greater-than symbo
second column. If the instruction is predicated off, Ski uses an asterisk instead of a greater-than symbol, and sh
predication register in parentheses.

Move and resize your windows so the Main Window and Program Window don’t overlap. Now use the “step ” command
or Step button to execute one instruction. Note that the greater-than symbol moves down one line: Ski keeps track
64 bundles and groups but it simulates individual instructions. You can follow the “step ” command with a (decimal)
number to specify how many steps Ski should take, for example, “step 10 ” to execute ten instructions. As a shortcu
shift-clicking on theStep button causes Ski to take ten steps. Most Ski commands can be abbreviated, as descr
Appendix A, “Command Reference”. Thestep command can be abbreviated as “s”.

1.2.11 Changing Registers and Memory

To debug a program, you usually need to inspect and alter registers and memory. The first three panes in the Regis
dow shows the registers of most concern to application programmers: user registers in the first pane, general reg
the second pane, and floating point registers in the third pane, as you can see in Figure 1-19.

Figure 1-18. The Main Window After Reaching the Breakpoint at main+10
Copyright © 2000 Hewlett-Packard Co. Getting Started: A Ski Tutorial 1-13

Ski IA-64 Simulator Reference Manual 1.0L

com-
tice
Win-

isters,
andling
By changing the value of theip register, you can change where in the program Ski will resume simulation. Enter the
mand “= ip main+20 ” in the Main Window and observe the first line of the first pane in the Register Window: no
that theip register changes to reflect your command, as Figure 1-20 shows. (You may need to left-click in the Main
dow to make it active.) You can make similar changes to all of the architecturally-visible, non-hardwired IA-64 reg
which helps you debug your program. You can test your program’s behavior in exceptional cases, such as h
unusual errors.

Figure 1-19. The xski Register Window After Stopping at a Breakpoint at main +10
1-14 Getting Started: A Ski Tutorial Copyright © 2000 Hewlett-Packard Co.

Ski IA-64 Simulator Reference Manual 1.0L

as well.
r-byte
u can

use

e 1-21.
Changing registers isn’t enough to debug most programs, however. Often, you need to change values in memory
Ski provides several commands for this, differing in whether they modify one-byte chunks, two-byte chunks, fou
chunks, eight-byte chunks, or variable-length C-language text strings. For example, instead of “hello world”, yo
have the program output “Ski!Ski!Ski!”. You can do this by using the “=s” command (“= s tring”) to modify the data
stored at the address “_IO_stdin_used+8 ”. (The string may be stored at a different address in your program. If so,
the Data Window to locate the string and then use the corresponding address instead.) Here’s what to do:

First, make sure the Data Window is wide enough to show ASCII translations along with hexadecimal, as in Figur
To avoid confusion, make sure the Data Window doesn’t overlap the Main Window.

Figure 1-20. The xski Register Window After Changing the ip Register
Copyright © 2000 Hewlett-Packard Co. Getting Started: A Ski Tutorial 1-15

Ski IA-64 Simulator Reference Manual 1.0L

d after,
o) has

om-

ult is
Next, issue the command “=s _IO_stdin_used+8 Ski!Ski!Ski! ” in the Main Window. (You may need to left-click in
the Main Window to make it active.) Observe how the Data Window changes: the hexadecimal values at, an
_IO_stdin_used+8 have changed, as have their corresponding ASCII translations, and a null byte (the value zer
been added to the end of your string to make it a valid C-language string. Compare Figure 1-21 and Figure 1-22.

The commands to change one, two, four, and eight byte quantities are=1, =2, =4, and=8, respectively. They are described
in detail in Appendix 8.1, “Changing Registers and Memory with Assignment Commands” and in Appendix A, “C
mand Reference”.

Often, you will need to evaluate formulas. For example, to find the address of the firstenvp string, you would need to
compute the sum of the contents ofr12 and18 (hex) and then add the length of theargv vector (argc+1) multiplied by
eight (the size of achar * on IA-64). To do this, you use the “eval ” command in the Main Window, as shown in
Figure 1-23. (The use of the “* ” operator was discussed in Section 1.2.4, “Inspecting Data”.) As you see, the res
shown in decimal and hexadecimal.

Figure 1-21. The xski Data Window Widened to Show ASCII

Figure 1-22. The xski Data Window After Changing the “Hello, world” String
1-16 Getting Started: A Ski Tutorial Copyright © 2000 Hewlett-Packard Co.

Ski IA-64 Simulator Reference Manual 1.0L

To

w

llation

ys.

d pro-
or firm-

plica-
stems,

ms.

rticular

i recog-
solutions.
1.2.12 Getting Help

To see what commands are available, type “help ” in the Main Window or use the Help->Commands menu selection.
see the syntax of a specific command, type “help ” followed by the command name, as in “help eval ”.

1.2.13 Next Steps

Congratulations! You now know how to usexski to test an IA-64 program. In the rest of this manual, you’ll find out ho
to useski andbski and the many additional commands and facilities not covered in this brief tutorial.

• Chapter 2, “Overview” presents the capabilities of Ski, how to start it and stop it, and a brief discussion of insta
issues. The chapter also shows how to usebski for batch simulations.

• Chapter 3, “Screen Presentation”, discusses the various screen displays ofxski andski in depth.

• Chapter 4, “Command Language”, defines the syntax of the language you use to control Ski’s operation.

• Chapter 5, “Screen Manipulation Commands”, presents the Ski commands for controlling Ski’s screen displa

• Chapter 6, “Program Simulation”, introduces the concepts of Ski program simulation, shows you how to loa
grams, and presents the Ski commands for simulating a program. Much of the information needed to use Ski f
ware development and operating system simulation is in this chapter.

• Chapter 7, “Linux and MS-DOS ABI Emulation”, discusses the Ski mechanisms and support for simulating ap
tion programs. If you are using Ski for to develop system software, such as bootstrap firmware or operating sy
you can skip this chapter.

• Chapter 8, “Debugging”, presents Ski commands and facilities that are useful in debugging and tuning progra

• Chapter 9, “Command Files”, introduces command files, a mechanism that lets you extend Ski to meet your pa
needs.

• The appendices contain summaries of the Ski command set, a list of the registers and internal variables Sk
nizes, and a description of the Ski error and status messages, their causes, and, for error messages, possible

Figure 1-23. The xski Main Window Showing an eval Command and Its Result
Copyright © 2000 Hewlett-Packard Co. Getting Started: A Ski Tutorial 1-17

Ski IA-64 Simulator Reference Manual 1.0L
1-18 Getting Started: A Ski Tutorial Copyright © 2000 Hewlett-Packard Co.

Ski IA-64 Simulator Reference Manual 1.0L

instruc-
erface.

break-
system
ed sym-

. Ski
g on is

prove

Ski to
essfully

Ski to
those

physics
ulators

y fast.
IA-64

mulate
cture.

ing Ski
subscribe.
2 Overview

2.1 Introduction
The Ski simulator is a software package designed to functionally simulate the IA-64 processor architecture at the
tion level. Ski offers an informative, screen-oriented machine state display and a friendly, powerful command int
Programs may be loaded from disk in executable format; they may be run from start to finish, single-stepped, and
pointed. Translation lookaside buffers may be simulated. Certain Linux and MS-DOS operating system functions (
calls) are provided for simulation of application programs. These capabilities are complemented by screen-orient
bolic debugging to provide a view into the simulated IA-64 processor.

2.1.1 Ski’s Strengths

Ski is particularly well-suited for:

• IA-64 application development:

Ski can simulate IA-64 programs in a Linux environment and IA-32 programs in an MS-DOS environment
provides a user interface that looks very much like a typical debugger– but the processor you are debuggin
virtual, simulated by Ski. Ski has successfully executed the SPEC-92 and SPEC-95 benchmark suites.

• IA-64 compiler tuning:

Ski provides performance statistics that can help you tune IA-64 compiler code generators. Ski can help you im
your compiler’s use of IA-64 architectural enhancements for parallelism.

• IA-64 operating system and firmware development:

Ski can simulate a “raw” IA-64 processor, with no operating system provided. Because of this, you can use
simulate an IA-64 operating system running IA-64 and IA-32 programs. For example, Ski has been used succ
to develop the IA-64 version of the Linux kernel.

• IA-64 processor functional hardware verification:

Ski is a true implementation of the IA-64 architecture. You can compare the behavior of code simulated with
the same code running on other IA-64 implementations. This helps you verify the correctness of
implementations.

2.1.2 Ski’s Scope

Many different kinds of simulators can be created: device simulators that function at the semiconductor quantum
level, circuit simulators that model the behavior of small numbers of transistors and other circuit elements, gate sim
that model digital circuits at the boolean logic level, and so on. Ski is an instruction simulator, which makes it ver
Ski doesn’t model any particular physical IA-64 implementation. Instead, it models an architecturally-compliant
processor with extensive compute resources.

2.2 What You Need to Know to Use This Manual
This manual describes the user interface of Ski in detail. In reading this manual, you will learn how to use Ski to si
your IA-64 and IA-32 programs. To understand this manual, you should already be familiar with the IA-64 archite
IA-64 abbreviations such asip , psr , andeax are used without explanation.

2.3 Defects and Defect Reporting
Ski is provided "as is", without any guarantees or warranties. However, a mailing list has been created for report
defects and for general Ski discussions. See the release notes for details on the mailing list address and how to
Copyright © 2000 Hewlett-Packard Co. Overview 2-1

Ski IA-64 Simulator Reference Manual 1.0L

started.

own in

re pointed

”) and
-
or on

ts
pages.
2.4 Ski Variations
The simulator is available in three varieties, distinguished by their user interfaces:ski , xski , andbski . The underlying
simulation engine is identical across all three varieties. The figures below show how each variety looks when first
Figure 2-1 showsski , which uses a terminal-oriented, curses-based, character user interface. Figure 2-2 showsxski ,
using an X Window System, Motif-based, graphical user interface. Figure 2-3 showsbski , which provides a batch-ori-
ented, command-line-driven environment and no user interface. Ski command line flags, some of which are sh
Figure 2-3, are described in Section 2.5.1, “Command Line Flags”.

The three varieties understand the same command language. There are a few, unavoidable differences and they a
out where appropriate in this manual. Most examples and sample screen displays are taken fromxski sessions. All exam-
ples have been verified in actual use.

2.4.1 Using bski for Batch Simulations

Becausebski has no user interface, you typically control it using a command file (see Chapter 9, “Command Files
the -i command line flag (see Section 2.5.1, “Command Line Flags”).ski andxski are intended for you to use interac
tively, while bski excels at batch simulations that might run for a long time as background jobs on your workstation
a higher-powered remote simulation server. Thecron and make programs work well withbski . With cron , you can
schedule simulations to run at night and on remote servers. Withmake, you can execute complex networks of tes
quickly, lettingmake keep track of the dependencies between the tests. These programs are documented in man

Figure 2-1. The Curses-based ski Interface
2-2 Overview Copyright © 2000 Hewlett-Packard Co.

Ski IA-64 Simulator Reference Manual 1.0L
Figure 2-2. The X Window System, Motif-based xski Interface
Copyright © 2000 Hewlett-Packard Co. Overview 2-3

Ski IA-64 Simulator Reference Manual 1.0L

ec-
mand

dy

un it.

gram

from/to
in

d (“

nd line in
2.5 Starting Ski
To start the Ski simulator, type its name (ski , xski , or bski) and any necessary command line options and file redir
tions, just as you would start any other Linux program. (Command line options are described in Section 2.5.1, “Com
Line Flags”.) The simplest invocation of the simulator is:

ski

This starts the (curses-based)ski version of the simulator with no program loaded: a “bare” IA-64 emulation is rea
for you to use.

A more sophisticated invocation would be:

xski my_program

This starts the (X/Motif-based)xski version of the simulator and loads the IA-64 executable filemy_program , ready
to run. The program will not receive any command line arguments (via the argc/argv mechanism) when you r

To run the simulator as a batch job in the background on an all-night run, you might execute this command line:

bski -noconsole -stats -i my_commands my_program foo bar <test_data >out_stuff 2>bad_news &

This invokes the (batch)bski version of the simulator and loads the IA-64 executable filemy_program , ready to run.
The-noconsole flag tellsbski not to create a separate console window for the program’s standard I/O. The pro
will receive the command line argumentsfoo andbar via the argc/argv mechanism whenbski runs it. Both the
simulator and the program being simulated will have standard in, standard out, and standard err redirected
test_data , out_stuff , and bad_news , respectively, and the simulator will execute the commands
my_commands. (Ski never reads from standard in, so there is no possibility of confusion.) The-stats flag specifies
that at the end of the run, collected statistics will be output to standard out (which is redirected). The ampersan&”)
runs the job in the background.

2.5.1 Command Line Flags

The simulator accepts certain flags on the command line when you start it up. The flags are passed on the comma

Figure 2-3. The Command-Line bski Interface
2-4 Overview Copyright © 2000 Hewlett-Packard Co.

Ski IA-64 Simulator Reference Manual 1.0L

ki

ent

ction

am’s
gram.

flag

out) at

ld

h

standard Linux fashion. The Ski command line syntax is shown below. The-i , -rest , -icnt , and -stats flags can
appear in any order.

ski [-help] [-i filename] [-rest filename] [program_filename [args]+]

xski [-help] [-noconsole] [-i filename] [-rest filename] [program_filename [args]+]

bski [-help] [-noconsole] [-i filename] [-rest filename] [-icnt filename] [-stats] [program_filename
[args]+]

2.5.1.1 Summary of Flags

-help

A list of flags accepted by this variety of Ski (ski , xski , or bski) is printed out. No other processing is done and S
terminates.

-i filename

The specified file is run as a command file before the first prompt to the user. If anprogram_filenameis provided on
the same command line, theprogram_filenameis loaded before the command file is run. This provides a conveni
way to load a program, initialize other machine state, and then turn control over to the user.

-icnt filename

Forbski only: This flag specifies instruction counts should be saved in the specified file. For each kind of instru
executed during the simulation, the instruction count file shows five fields of information:

• The instruction mnemonic

• The total number of times the instruction was executed

• The number of executions that were predicated on

• The number of executions that were predicated off

• The number of executions that were predicated on predicate register 0, which is “hardwired” on

The value in the second field equals the sum of the values in the last three fields.

-noconsole

For xski and bski only: This flag tells Ski not to create a separate console window for the simulated progr
standard I/O. Instead, Ski will use the existing console window’s for standard I/O purposes in the simulated pro

-rest filename

Restore the simulator run saved infilename. See Section 8.6, “Saving and Restoring the Simulator State”. This
cannot be combined with anprogram_filename. If combined with a-i flag, the-i flag is accepted and the-rest flag
is silently ignored.

-stats

Forbski only: specifies execution run-time and instruction rate information should be send to standard out (std
the end of the run. This information is normally displayed in the Main/Command Window ofxski andski . The
-stats flag allows users ofbski to get the same information.

2.5.2 The XSki File

xski ’s screen presentation is substantially controlled by the contents of theXSki file, which uses the X Window System’s
resource mechanism to provide information toxski . You can edit this file to changexski ’s use of graphic buttons,
described in Section 3.7.1, “The xski Main Window”. TheXSki file is part of the standard Ski distribution and you shou
put this file in your X Window System’sapp-defaults directory or in your home directory. If there is no validXSki file,
the simulator will not be usable. You can find more information on installingxski in the release notes that come with eac
Ski distribution.
Copyright © 2000 Hewlett-Packard Co. Overview 2-5

Ski IA-64 Simulator Reference Manual 1.0L

rned to
d
ell’s
control
2.6 Quitting Ski
Thequit command causes the simulator to exit. If a numeric operand or expression is supplied, the value is retu
the shell as Ski’s exit status. This can be particularly useful withbski and command files (see Chapter 9, “Comman
Files”), for automated testing and regression testing. The exit status from Ski becomes the new value of your sh$?

variable (for most shells) and can also be retrieved automatically by the make program, if you use makefiles to
batch runs.

2.6.1 Summary of the Quit Command

quit [expression]

Terminates the simulator and returns control to the system, setting the exit status toexpression (default is 0).
2-6 Overview Copyright © 2000 Hewlett-Packard Co.

Ski IA-64 Simulator Reference Manual 1.0L

ser
ha-

y
in-

enter
using

ver nec-
in more

er
g point
pace and,

nipula-

yboards.
ow has
line of

the cur-
r Win-
3 Screen Presentation

3.1 Ski’s Use of Windows
xski andski generally divide the screen into four windows. (bski doesn’t create any windows because it has no u
interface, only a command line interface.)xski uses Motif windows which you can move and resize using the mec
nisms provided by your window manager (WindowMaker, Englightenment, fvwm, twm, etc.)xski creates additional win-
dows as necessary.

ski uses the curses package to create four windows on the terminal screen. Becauseski uses curses, it runs on nearly an
terminal or terminal emulator, including xterm. Whenski needs to show data that isn’t appropriate for one of its four w
dows, it uses a pager such as “more” or “ less ” instead and restores the curses windows when the pager completes.

Ski uses three of the windows to display information to you. The fourth window is shared between you and Ski: You
commands that control Ski and Ski reports errors and other immediate information to you. You control the windows
Ski commands (see Chapter 5, “Screen Manipulation Commands”) and the simulator updates the windows whene
essary to maintain consistency with the internal state of the simulator engine. The four windows are described
detail below.

3.2 The Register Window
Ski divides the IA-64 processor registers into five sets. Inxski , all five sets are displayed in one window, the Regist
Window, with each set in its own subwindow or “pane”. The panes show user registers, general registers, floatin
registers, system registers, and IA-32 registers respectively, as shown in Figure 3-1. The five panes share screen s
unless you have a very large screen, it’s not possible to see all five panes at full size simultaneously.xski shows portions
of all five panes by default, but you can toggle any panes off with commands described in Chapter 5, “Screen Ma
tion Commands”.

xski understands the Page Up and Page Down keys and the up-arrow and down-arrow keys found on most ke
These keys operate on the current pane, which is usually highlighted with a bright border. When the Register Wind
the X Window System focus, the Page Up and Page Down keys scroll the current pane one “pane-full” less one
overlap. The up-arrow and down-arrow keys scroll the current pane one line. The Tab and Shift+tab keys change
rent pane highlight to the next or previous pane, respectively, “wrapping around” the top and bottom of the Registe
dow.
Copyright © 2000 Hewlett-Packard Co. Screen Presentation 3-1

Ski IA-64 Simulator Reference Manual 1.0L

Window
he Reg-

, the first
s of

yed in
ple, the

tion
y

the
isible
ski shows only a portion of a register set at a time and you use the commands described in Section 5.1, “Register
Commands” to select which portion of which set to see. The sets are described below in the order they appear in t
ister Window. Theirxski realizations are shown as well.

3.2.1 The User Registers Pane

The user registers pane (see Figure 3-2) displays the Predicate Registers (prs) in binary, the Application Registers in
hexadecimal, and the Branch Registers (b0-b7) and the Instruction Pointer (ip) symbolically if possible, otherwise in
hexadecimal. Symbolic displays are limited to sixteen characters; when more than sixteen characters are needed
fifteen are displayed and an asterisk (“* ”) is added to indicate that the symbolic display has been abbreviated. The field
the Current Frame Marker (cfm) register and subfields of the Previous Frame Marker field (pfm) are displayed in decimal.
For bit-encoded registers, some bits are displayed individually using their IA-64 mnemonics. If a bit name is displa
uppercase, the bit is currently set, and if the name is displayed in lowercase, the bit is currently clear. For exam
psr.bebit is shown as “BE” in Figure 3-2, indicating that the bit is set. The User Mask bitfield (psr.um) from the Processor
Status Register (psr) is displayed in this pane; the entirepsr is shown in the System Registers pane, described in Sec
3.2.4, “The System Registers Pane”. Predicate Registerspr16 -pr63 are displayed in their rotated form, as indicated b
therrbp field of the Current Frame Marker (cfm) register.

At the middle of the pane, the line starting “clean ” shows, in decimal, the values in the internal registers that control
Register Save Engine (rse). The IA-64 architecture requires that these registers exist but provides no program-v
access to them.

Figure 3-1. The Register Window in xski
3-2 Screen Presentation Copyright © 2000 Hewlett-Packard Co.

Ski IA-64 Simulator Reference Manual 1.0L

exadec-

ed to a

played
d
wn in

ate for
calcula-
3.2.2 The General Registers Pane

The general registers pane shows the current values of the 64-bit general (integer) data registers, four to a line, in h
imal. Registers whose corresponding NaT bits are set are displayed with a leading asterisk (“* ”) to indicate this. The dis-
play reflects IA-64 register stacking and rotation: only the 32 static registers and the stacked registers allocat
function are displayed. The allocated rotating registers are displayed in their rotated form, as indicated by therrbg field
of thecfm register, displayed in the user registers pane. The general registers pane is shown in Figure 3-3.

3.2.3 The Floating Point Registers Pane

The floating point registers pane shows the current values of the 82-bit floating point data registers, two to a line dis
in hex and scientific decimal notation. Floating point registersf32 -f127 are displayed in their rotated form, as indicate
by the rrbf field of thecfm register, displayed in the user registers pane. The floating point registers pane is sho
Figure 3-4 with various values in the registers.

Due to the nature of floating point arithmetic on the host computer, the scientific decimal displays may be inaccur
very large and very small numbers, positive and negative. The hexadecimal display is always correct, as are all
tions done by the simulated program.

Figure 3-2. The xski User Registers Pane

Figure 3-3. The xski General Registers Pane
Copyright © 2000 Hewlett-Packard Co. Screen Presentation 3-3

Ski IA-64 Simulator Reference Manual 1.0L

e
mited to
k (“

n

vidually
ame is
3.2.4 The System Registers Pane

The system registers pane shows the Processor Status Register (psr), Control Registers, Region Registers (rr0 -rr7), Pro-
tection Key Registers (pkr0 -pkr15), Data Breakpoint Registers (dbr0 -dbr15), Instruction Breakpoint Registers (ibr0 -
ibr15), and Performance Monitor Configuration Registers (pmc0-pmc15), in hexadecimal. Application programs hav
limited access to these registers. Addresses are displayed symbolically when possible. Symbolic displays are li
sixteen characters; when more than sixteen characters are needed, the first fifteen are displayed and an asteris* ”) is
added to indicate that the symbolic display has been abbreviated. Theiva register shown on the second text line i
Figure 3-5 is an example of this.

3.2.5 The IA-32 Registers Pane

The IA-32 registers pane shows IA-32 registers in hexadecimal. For bit-encoded registers, the bits are named indi
using their IA-32 mnemonics. If a name is displayed in uppercase, the corresponding bit is currently set, and if the n
displayed in lowercase, the bit is currently clear, as shown in Figure 3-6.

Figure 3-4. The xski Floating Point Registers Pane

Figure 3-5. The xski System Registers Pane
3-4 Screen Presentation Copyright © 2000 Hewlett-Packard Co.

Ski IA-64 Simulator Reference Manual 1.0L

, so you
all resize

rminal
conven-
k of
tem, or

w man-

in a
com-
3.3 Resizing Register Window Panes with xski
As mentioned above, even a large X Window System screen is too small to display all the registers simultaneously
may have to scroll a pane to see the registers you want, or resize the pane by dragging Pane Resizer, the sm
square on the right side of the dividing line between each pair of panes, as shown in Figure 3-7.

3.4 The Register Window and ski
Theski simulator, as noted above, uses curses to display multiple windows on non-graphic (text) terminals and te
emulators. These windows are fixed in size and are not big enough to display all the data at the same time. On a
tional, twenty four line screen,ski uses five lines for the Register Window, as shown in Figure 3-8. Because of this lac
space, the Register Window shows only one of the five sets of registers at a time: user, integer, floating point, sys
IA-32, and then only a portion of each set. If your screen is larger than twenty four lines when you startski , ski will make
use of the extra space. (You can resize terminal emulators using command-line arguments or by using your windo
ager’s standard mechanisms for window resizing.)

You use theur , gr , fr , sr , andiar commands to tellski which set of registers to display. To see the various registers
set, you use therf andrb commands to scroll the Register Window forwards and backwards, respectively. These
mands are described in Section 5.1.1, “Summary of Register Window Commands”.

Figure 3-6. The xski IA-32 Registers Pane

Figure 3-7. An xski Pane Resizer: The Small Box Between the Scrollbars
Copyright © 2000 Hewlett-Packard Co. Screen Presentation 3-5

Ski IA-64 Simulator Reference Manual 1.0L

essor’s
a
uch as
erated
mpiler

ode.
ay find

rce code

art of
i

the bit

preced-
en are
t bun-
t. The

t

3.5 The Program Window
The Program Window provides a view into the program space. Whether you load a program into the simulated proc
address space via the command line or using Ski’sload , iaload , or romload commands, the program is displayed in
format resembling a compiler’s assembler listing file. For IA-64 programs compiled from a high-level language s
‘C’ and linked with the appropriate options, the source code is displayed with line numbers, mixed in with the gen
assembly language as shown in Figure 3-9. As an example, to compile the “hello world” program with the IA-64 co
used in testing Ski, the command line is:

cc -o hello -g hello.c

Note that the-O (capital-O) “optimization” flag was not specified. Optimization, by definition, rearranges the object c
If you turn on optimization, the correspondence between source code and object code will be obscured and you m
the resulting display difficult to interpret.

IA-64 assembly code is displayed through disassembly; the original assembler source code is not displayed. Sou
for IA-32 programs, high-level and assembly, is not displayed.

Ski chooses whether to interpret the instructions as IA-64 or IA-32 encodings based on the setting of thepsr.isbit. If your
program has a mix of IA-64 and IA-32 code, you may need to manually set or clear this bit when trying to view a p
the program that is in a different encoding from the encoding at the currentip location. You can set the bit with the Sk
command “= psr.is 1 ” and you can clear the bit with “= psr.is 0 ”. If the bit is set incorrectly, Ski will use the wrong
instruction decoder and will show IA-64 code disassembled as if it was IA-32 code or vice-versa! Remember to set
back before resuming simulation.

3.5.1 IA-64 Instruction Display

Each IA-64 instruction bundle is labelled on the left with an hexadecimal byte-addressed offset from the nearest,
ing symbol up to 0xffff bytes away. If the symbol name and offset are longer than sixteen characters, the first fifte
displayed and an asterisk (“* ”) is added to indicate that the symbolic display has been abbreviated. For each 128 bi
dle, the two or three instructions are displayed in the center of the window with operands to their immediate righ
template for the bundle is shown as a triplet of capital letters, such as “MII ,” to the right of the last operand of the firs

Figure 3-8. The ski Register Window (at Top)
3-6 Screen Presentation Copyright © 2000 Hewlett-Packard Co.

Ski IA-64 Simulator Reference Manual 1.0L

a pair

cations

point
instruc-
Break-

of func-
-10. If
-
imme-
e

instruction in the bundle. The end of each instruction group (a unit of potentially parallel execution) is marked with
of semicolons (“;; ”) after the last operand of the last instruction in the group.

Ski uses the first few columns for source code line numbers. Ski also uses the first column to show breakpoint lo
for IA-64 assembly language instructions, numbering the breakpoints “0” through “9.” IA-64 breakpoint commands
includebs , bD, bd, andbl , and are described in Section 8.3, “Program Breakpoints”. For the purpose of setting break
addresses, Ski “pretends” that the slot 0 instruction in a bundle is located at the first byte of the bundle, the slot 1
tion is located at the fourth byte, and the slot 2 instruction is located at the eighth byte. See “How Ski Implements
points” on page 8-6 for more information.

Predication is an IA-64 feature that increases the usable parallelism of user programs and allows better utilization
tional units. Ski shows predication information in the second column of the Program Window, as shown in Figure 3
the second column of a given instruction line contains an exclamation mark (“! ”), the instruction is predicated on a predi
cate register that is currently 0: the instruction is “predicated off”. The predicate register is displayed in parenthesis
diately to the left of the instruction mnemonic. Ski uses a different encoding for the instruction pointed to by thip

register: an asterisk (“* ”) indicates that the instruction is predicated off and a greater-than symbol (“>”) indicates that the
instruction is predicated on. (That is, the “>” symbol means “This is the next instruction to be simulated.”)

Figure 3-9. xski ’s Program Window Showing Part of an IA-64 “hello world” Program
Copyright © 2000 Hewlett-Packard Co. Screen Presentation 3-7

Ski IA-64 Simulator Reference Manual 1.0L

s with
t loca-

k-
e

and the
es a plus-
3.5.2 IA-32 Instruction Display

IA-32 instructions are displayed as shown in Figure 3-11, according to the conventions for Intel assembly code. A
IA-64 instruction display, Ski uses the first column of each assembly language instruction line to show breakpoin
tions, numbering them “0” through “9.” Except for the use ofiabs rather thanbs , IA-32 breakpoint commands are the
same as IA-64 breakpoint commands and includeiabs , bD, bd, andbl ,as described in Section 8.3, “Program Brea
points”. In the second column, Ski puts a greater-than symbol (“>”) to point to the next instruction to be executed, i.e., th
location pointed to by theip register.

Because IA-32 instructions are variable in length, it is possible to set theip to point into the middle of an instruction. This
can happen, for example, when an instruction with prefix bytes is needed at the top of the first pass through a loop,
same instruction without the prefix bytes is needed at the top of subsequent passes. When this happens, Ski us
sign (“+”) in column two, rather than a greater-than symbol, to warn you thatip points somewhere in the middle of the
line of code displayed on the screen. To update the display, use the command “pj ip ”. This will cause Ski to reinterpret
the instruction stream and to display the variable length instructions with the new interpretation.

Figure 3-10. xski ’s Program Window Showing IA-64 Predication and Breakpoints
3-8 Screen Presentation Copyright © 2000 Hewlett-Packard Co.

Ski IA-64 Simulator Reference Manual 1.0L

ow for-

age Up,

sing

ontains
struc-

at

hasn’t

n”.
3.5.3 Changing the Range of Locations Shown in the Program Window

xski doesn’t place a scroll bar in the Program Window. Instead, likeski , xski provides thepf and pb commands,
described in Section 5.2, “Program Window Commands”. You use these commands to scroll the Program Wind
wards and backwards, respectively, through the assembly language program display. Ski also provides thepj command
which lets you “jump” the Program Window to any location in the address space. In addition,xski understands the Page
Up and Page Down keys and the arrow keys. When the Program Window has the X Window System focus, the P
Page Down, up-arrow, and down-arrow keys emit the “pb”, “ pf ”, “ pb 1 ”, and “pf 1 ” commands, respectively.

You can control the size ofxski ’s Program Window using your window manager’s standard mechanisms. If you are u
ski , the window is fixed in size; on a twenty four line terminal, the window will be nine lines tall.

3.5.4 Invalid Code and the Program Window

Ski will disassemble the area of memory it is displaying in the program window, regardless of whether the area c
program code or data. If you tell Ski to display non-program memory, Ski attempts to display the (non-existent) in
tions. When Ski finds bit encodings that don’t represent valid instructions, it displays the word “illegalOp ” instead, as
shown in Figure 3-12. Sometimes, Ski may displayx ’s, indicating that you asked Ski to show a page of memory th
doesn’t exist, as shown in Figure 3-13. There are three cases to consider:

• In application-mode,x ’s indicate a page of memory that hasn’t been accessed by the program and therefore
been allocated by Ski.

• In system-mode with instruction address translation enabled (thepsr.it bit is on),x ’s indicate a page of memory for
which no entry exists in the Translation Lookaside Buffer (TLB) or in the Virtual Hash Page Table (VHPT).

• In system-mode with instruction address translation disabled (thepsr.it bit is off), x ’s indicate a page of memory that
has not yet been accessed by the program.

Application-mode and system-mode programming are discussed in more detail in Chapter 6, “Program Simulatio

Figure 3-11. xski ’s Program Window Showing IA-32 Code, the Instruction Pointer, and a Breakpoint
Copyright © 2000 Hewlett-Packard Co. Screen Presentation 3-9

Ski IA-64 Simulator Reference Manual 1.0L

3-14.
he right
3.6 The Data Window
In the Data Window,xski andski present data in hexadecimal format, sixteen bytes to a line, as shown in Figure
The data are displayed as four groups of eight hexadecimal digits each, with an ASCII character translation on t
and the data address on the left. (The endianness of the displayed bytes is determined by the current value of thepsr.bebit

Figure 3-12. xski ’s Program Window Showing Illegal Instructions

Figure 3-13. xski ’s Program Window Showing Unallocated Space or No Translation
3-10 Screen Presentation Copyright © 2000 Hewlett-Packard Co.

Ski IA-64 Simulator Reference Manual 1.0L

s a sym-

wn in

olumn
s are the
the slot
slot 2
.

ta Win-
n
-arrow,
which may change by the time the simulated IA-64 processor actually loads the bytes.) The address is expressed a
bol from the executable file’s symbol table or as a sixteen digit hexadecimal number.

With the dbndl command, Ski can display data formatted as IA-64 instruction bundles in hexadecimal, as sho
Figure 3-15. (The figure was generated by loading a program and then issuing the command “dj main-10 ” followed by
thedbndl command.) This is useful when you need to see the raw hexadecimal instruction encodings. The first c
displays the address of each bundle. The second column displays the template field. The remaining three column
41-bit instructions from slots 0, 1, and 2. Note: for the purpose of setting breakpoint addresses, Ski “pretends” that
0 instruction is located at the first byte of the bundle, the slot 1 instruction is located at the fourth byte, and the
instruction is located at the eighth byte. See “How Ski Implements Breakpoints” on page 8-6 for more information

3.6.1 Changing the Range of Locations Shown in the Data Window

As with the Program Window,xski doesn’t place a scroll bar in the Data Window. Instead, likeski , xski provides thedf ,
db, anddj commands, described in Section 5.3, “Data Window Commands”. Use these commands to scroll the Da
dow forwards and backwards and to “jump” the Data Window. In addition,xski understands the Page Up and Page Dow
keys and the arrow keys. When the Data Window has the X Window System focus, the Page Up, Page Down, up
and down-arrow keys emit the “db”, “ df ”, “ db 1 ”, and “df 1 ” commands, respectively.

You can control the size ofxski ’s Data Window with your window manager’s standard mechanisms. If you are usingski ,
the window is fixed in size; on a twenty four line terminal, the window will be two lines tall.

Figure 3-14. xski ’s Data Window Showing Unallocated Space Followed by Data

Figure 3-15. xski ’s Data Window Showing Data Interpreted as Instruction Bundles
Copyright © 2000 Hewlett-Packard Co. Screen Presentation 3-11

Ski IA-64 Simulator Reference Manual 1.0L

-
valid

Your

. The
menu
lection

ly min-
w.

ber of

u

mand
d area
entioned
“

eedback

ow has
t area
lowing

in the
n each
ile menu.
3.6.2 Invalid Code and the Data Window

If you tell Ski to display non-existent memory, Ski will displayx ’s instead, as shown in Figure 3-14. Non-existent mem
ory is defined for the Data Window similarly to its definition for the Program Window, described in Section 3.5.4, “In
Code and the Program Window”, except that the relevant bit for system-mode programs ispsr.dt.

3.7 The Command/Main Window
xski andski are command-driven simulators. Most of your interaction with them is done by typing commands.
commands are typed in a window titled “main ” in xski (see Figure 3-16) and “Command” in ski (see Figure 3-17).

3.7.1 The xski Main Window

xski divides the Main Window into five areas:

• Menus: File, View, Configure, and Help. The File menu provides a “Quit” selection for you to exit the program
View menu lets you choose which windows to see. The Configure menu is currently non-functional. The Help
provides a “Commands” selection that displays the commands Ski recognizes and a “Product Information” se
that displays information aboutxski .

• Buttons:Step , Run, Prog , Data , Regs, Cache, TLB, andQuit . Clicking on theStep button executes the command
“step 1 ”, single-stepping the simulated program. Shift-clicking the button executes the command “step 10 ”, step-
ping the simulated program through ten instructions. TheRun, Prog , Data , andTLB buttons execute therun , pj , dj ,
andsdt commands respectively. If the Program Window has been closed (removed from the screen, not mere
imized to an icon), theProg button recreates it. TheData button operates similarly with respect to the Data Windo
TheRegs andCache buttons are currently non-functional.

xski ’s buttons are configurable. Using the X Window System resource mechanism, you can change the num
buttons, the button labels, and the commands the buttons emit. The easiest way to do this is to edit theXSki file,
described in Section 2.5.2, “The XSki File”. Much ofxski ’s user interface behavior is controlled by this file but yo
should be careful in making changes to any elements other than button descriptions;xski may change in the future in
ways that are not backwards-compatible with changes you make.

• Command History: commands you’ve already entered.

• Command: where you type commands toxski .

• Responses: responses and error messages fromxski .

The Menu, Button, and Command History areas provide shortcuts for typing commands. TheStep button is particularly
useful: when you are single-stepping through a program, you can click on theStep button instead of repeatedly typing the
“step ” command. The Command History area provides another way to avoid typing: you can double-click on a com
in the Command History to run the command again, or single-click on the command to move it to the Comman
where you can edit and then re-run it. The Command area is where you type commands to the simulator, but, as m
above, you can use the menus, buttons, and Command History as shortcuts. Two useful commands to know arehelp ”,
which causes a window listing all the commands to be displayed, and “help command” which causes information about
thecommandto be shown in the Responses area. The Responses area is also used by the simulator to give you f
when it can’t execute one of your commands.

xski understands the Prev and Next keys and the arrow keys found on many HP keyboards. When the Main Wind
the X Window System focus, the current area is highlighted, usually with a bright outline. You can make a differen
current with Tab and Shift-tab. The Prev, Next, up-arrow, and down-arrow keys scroll through the current area, al
you to easily edit and re-run previous commands from the Command History and review previous messages
Response area. In addition, you can use the Alternate key (“alt”) like a Shift key, along with the underlined letter i
menu name as a shortcut to access the menu, rather than using the mouse. For example, Alt+F brings up the F
This lets you spend less time shuttling between the keyboard and mouse, and more time doing productive work.
3-12 Screen Presentation Copyright © 2000 Hewlett-Packard Co.

Ski IA-64 Simulator Reference Manual 1.0L

nstead,

ecov-
). As a
3.7.2 The ski Command Window

ski ’s Command Window is simpler, as shown in Figure 3-17. There are no menus, buttons, or Command History. I
you enter commands when you see a* prompt in the 4-line Command Window at the bottom of the screen.ski displays
its responses in this window as well. The window scrolls so that information lost off the top of the window may be r
ered using the up and down arrows on your keyboard (for Emacs fans, Ctrl-P and Ctrl-N serve the same function
typing shortcut, if you hit the enter/return key,ski will repeat the last command you entered.

Figure 3-16. xski ’s Main (Command) Window
Copyright © 2000 Hewlett-Packard Co. Screen Presentation 3-13

Ski IA-64 Simulator Reference Manual 1.0L

ndow
ys
line of

rd
3.8 Other Windows
Some commands, such ashelp , isyms , andsymlist , causexski andski to create additional windows. Whenxski cre-
ates an additional window, it adds scroll bars if there is more information than will fit. As an example, the output wi
created byxski for thesymlist command is shown in Figure 3-18.xski understands the Page Up and Page Down ke
and the arrow keys. The Page Up and Page Down keys scroll through the window a windowful at a time, with one
overlap. The up-arrow and down-arrow keys scroll through the window a line at a time.

Whenski needs to display additional information, it does so by overwriting the four standard windows.ski sends the
information through a pager, usingless by default. When the pager finishes,ski refreshes the screen with the standa
ski windows. If you prefer to use a different pager, for examplemore or page , set the PAGER environment variable
accordingly, before starting the simulator.

Figure 3-17. ski ’s Command Window (at Bottom)
3-14 Screen Presentation Copyright © 2000 Hewlett-Packard Co.

Ski IA-64 Simulator Reference Manual 1.0L
Figure 3-18. xski ’s Symbol List Window
Copyright © 2000 Hewlett-Packard Co. Screen Presentation 3-15

Ski IA-64 Simulator Reference Manual 1.0L
3-16 Screen Presentation Copyright © 2000 Hewlett-Packard Co.

Ski IA-64 Simulator Reference Manual 1.0L

he key-
f argu-
ribed in

n about

om-
3.7.1,
ed in
board

of
he
ates the

ror
nd sum-

e times;
r

symbol
d

icolons
sy, using
on
ecute
4 Command Language

The Ski command language is simple, efficient, and easy to learn. It consists of commands you can invoke from t
board or from a command file (see Chapter 9, “Command Files”). Each command is given with an appropriate set o
ments (some optional) to further qualify the command. Commonly-used commands may be abbreviated as desc
Appendix A, “Command Reference” and commands may be repeated easily. A limited on-line help facility (thehelp

command) is provided for quick reference. This chapter presents the syntax of the command language. Informatio
specific commands (command semantics) is in later chapters and in Appendix A, “Command Reference”.

4.1 Command Entry
xski andski provide similar mechanisms for controlling the simulator. Both provide for direct keyboard entry of c
mands. In addition,xski offers buttons, menus, and the Command History to minimize typing, as described Section
“The xski Main Window”, andski provides the command repetition mechanism for the same purpose, as describ
Section 3.7.2, “The ski Command Window”.You give a command to Ski by typing the command name at the key
followed by operands and the enter/return key. (Use thehelp command to see a menu of available commandsorhelp fol-
lowed by the command name to see the command syntax.)xski displays the command you typed in the Command area
the Main Window.ski displays the command in the Command Window at the bottom of the screen following t*

prompt. Commands are case sensitive. When you hit the enter/return key, Ski acts on your command and upd
screen to reflect any changes caused by the command. For example, the command

db

causes the Data Window to show the contents of lower addresses in memory.

4.2 Command Arguments
Some commands, such assave , require additional information. If you don’t provide the information, Ski displays an er
message. Some commands have optional arguments. As described in “Syntax Conventions” on page -iii, comma
maries in this manual show optional arguments surrounded by square brackets[like this] . If you don’t specify an optional
argument, Ski uses a suitable default value. For example,

pf 3

causes the Program Window to advance three bundles after the last bundle in the Program Window, while

pf

alone moves the Program Window ahead one windowful. Some arguments can be supplied in a list, one or mor
these are shown by putting a plus sign (“+”) after the argument namelike this+. For example, the syntax description fo
the=1 command is:

=1 address_or_symbol value+

which suggests that the command

=1 __data_start 12 56 90 cd

assigns the hexadecimal values 12, 56, 90, and cd to the four bytes starting at the location specified by the
__data_start . Brackets and plus signs can be combined, [like this]+, to signify optional arguments that can be supplie
zero or more times.

4.3 Command Sequences, Repetition, and Abbreviation
You can type multiple commands on a single command line by separating the individual commands with sem
(“ ; ”). This is called a “command sequence”. Command sequences make re-executing a series of commands ea
the Command History mechanism ofxski (see Section 3.7.1, “The xski Main Window”) or the command repetiti
mechanism ofski (see Section 3.7.2, “The ski Command Window”). For example, you might want to repeatedly ex
Copyright © 2000 Hewlett-Packard Co. Command Language 4-1

Ski IA-64 Simulator Reference Manual 1.0L

nd
d

ism

xecute
then”
nd

x which
nce”.)

follows
hout the

ome other

ommands

y

group-

ules fol-
the commands “step 100 ” and “eval my_buffer ”. This pair of commands would execute one hundred instructions a
then print the value of (your) variable named “my_buffer ”. By combining these two commands into one comman
sequence, i.e., “step 100 ; eval my_buffer ”, you can use the Command History or command repetition mechan
to run these commands over and over. (The spaces around the semicolon are optional but improve readability.)

There is no grouping construct in Ski. This can be important when you write command files: when you want to e
commands conditionally using theif command, you cannot use the semicolon to group several commands into the “
or “else” clauses. Instead, you must use labels and thegoto command. Chapter 9, “Command Files” discusses comma
files in depth.

Most commands may be abbreviated, some to a single letter. A command may be abbreviated to the shortest prefi
is not also a prefix of a command which precedes it in the command menu. (See Appendix A, “Command Refere

4.4 Argument Specification
The arguments which are given with commands are, in general, obvious and natural. The description which
should clarify those cases which are not. The terms defined here are used in the command summaries throug
remainder of this manual.

4.4.1 Numeric Arguments

Many commands accept numeric arguments. The argument may be an address, a value, an execution count, or s
variable which is best expressed numerically.

4.4.1.1 Numbers and Counts

Some commands take arguments that are naturally expressed in hexadecimal: addresses, for example. Other c
take arguments that are naturally expressed in decimal, such as the number of instructions to simulate with thestep com-
mand. To make using Ski easier, some Ski commands default to interpreting their arguments as (hexadecimal)numbers
and some default to interpreting their arguments as (decimal)counts. You can always override the default interpretation b
specifying a radix override, as described below.

Hexadecimal digits may be upper or lower case. The default radix may be overridden by preceding thenumberor count
with 0D or 0d for decimal,0X or 0x for hexadecimal,0Oor 0o (zero-oh) for octal, and0B or 0b for binary. Since both the
decimal and binary prefixes look like hexadecimal, hexadecimal values such as0d600000 and0b100000 must be speci-
fied either with an explicit hexadecimal prefix, as in0x0d600000 and 0x0b100000 , or without the leading0, as in
d600000 andb100000 .

4.4.1.2 Expressions

Wherever anumberor countis needed, you can use a numeric expression instead, with parenthesis as needed for
ing. No spaces are allowed in an expression. In an expression whose result will be used as anumber, numbers not pre-
ceded by a radix override are assumed to be hexadecimal. If the result will be used as acount, numbers not preceded by a
radix override are assumed to be decimal. For example, thestep command expects acount operand, so the command

step r0+10

steps (decimal) ten instructions. On the other hand, thepj command expects an address operand, which is anumber, so
the command

pj r0+10

displays (hexadecimal) address 0x10 in the Program Window. (r0 is hardwired to always return a zero when read.)

The available operators are shown in order from higher to lower precedence in Table 4-1. Operator precedence r
low the C language rules.
4-2 Command Language Copyright © 2000 Hewlett-Packard Co.

Ski IA-64 Simulator Reference Manual 1.0L

n as a
ber. The

-

As an example, inxski ,

eval 64 0d64 0o64 0b100000 *main ~(((0D1234+0X10EF0)*4)<<6)+0B10001001

prints the values of the six expressions in the Main Window, as shown in Figure 4-1. The first expression is take
hexadecimal number, the second as a decimal number, the third as an octal number, and the fourth as a binary num
fifth expression is the value at the location specified by the symbol “main ” (the first 64 bits of the code bundle at that loca
tion), and the sixth expression is the result of some arithmetic.

Table 4-1. Ski Simulator Arithmetic and Logic Operators

Operator Description

() group operators with operands
! ~ + - * opposite truth value, logical one’s complement,

unary plus, unary minus, dereference: treat as an
address and read eight bytes

* / multiply, divide
+ - add, subtract
<< >> logical left shift, logical right shift
< <= > >= less than, less than or equal to, greater than, greater

than or equal to
== != equal to, not equal to
& bitwise and
^ bitwise exclusive or
| bitwise or
&& logical and
|| logical or

Figure 4-1. xski Evaluating Expressions
Copyright © 2000 Hewlett-Packard Co. Command Language 4-3

Ski IA-64 Simulator Reference Manual 1.0L

d Sys-
“virtual
ms. For
me

sses the

is 1032

internal

efined
l-known

red to as
com-
4.4.1.3 Addresses

An address is specified by a 64 bit hexadecimal number. For example, the command

pj 1000

repositions (“jumps”) the Program Window to address 0x1000. As discussed in Section 6.1, “Application-Mode an
tem-Mode Simulation”, Ski supports generic addresses in application-mode programs (that is, the concept of
memory” doesn’t apply to application mode programs), and physical and virtual addresses in system-mode progra
system-mode programs, thepsr.dtandpsr.it bits control whether Ski interprets addresses as physical or virtual. In so
cases, you may need to change the value of one or both of these bits temporarily, so that Ski will interpret addre
way you want. You should restore the bit values before resuming simulation, of course. You can set thepsr.dtbit with the
Ski command “= psr.dt 1 ” and clear the bit with “= psr.dt 0 ”. The corresponding commands for thepsr.it bit are “=
psr.it 1 ” and “= psr.it 0 ”, respectively.

Addresses may be computed using expressions. For example, the command

dj 1000+0d50

repositions (“jumps”) the Program Window to address 1032, because 1000 (hexadecimal) added to 50 (decimal)
(hexadecimal). Address expressions are particularly useful in symbolic constructs, as described below.

4.4.2 Symbolic Arguments

A symbol is a sequence of characters (a “name”). Examples of symbols are program-defined symbols, registers,
variables, labels, and filenames. Arguments may (and sometimes must) be expressed symbolically.

4.4.2.1 Program-Defined Symbols

A program-defined symbol is an identifier which can be used as a mnemonic for a memory location. Program-d
symbol names are defined in the executable file for the program being simulated. Some symbols are common, wel
names (e.g.printf , main), and others are defined by the programmer (e.g.foo , bar). Thesymlist command shows you
the symbols sorted by address, as Figure 4-2 shows.

4.4.2.2 Registers

A register name is a predefined mnemonic for a processor register. The general registers, for example, are refer
r0 , r1 , ..., r127 . (The register names Ski recognizes are listed in Section B.1, “IA-64 Registers”.) For example, the
mand

= r31 ip

Figure 4-2. xski ’s Symbol List Window
4-4 Command Language Copyright © 2000 Hewlett-Packard Co.

Ski IA-64 Simulator Reference Manual 1.0L

,
pply a
e stack-

e inter-
ere you

er of
might
lue of

uld use
ms as
ermi-

ation-

n 6.1,
ed

address
ro-

ut the
able

s run-
mand

pper or

place it

3” can be
ki looks
assigns the value contained in theip register to general register 31. (For a description of the= command, see Section 8.1
“Changing Registers and Memory with Assignment Commands”.) Wherever the simulator expects you to su
numeric argument, you can use a register instead. You may only refer to currently-visible registers, according to th
ing and rotation mechanisms of the IA-64 architecture.

4.4.2.3 Internal Variables

The simulator provides internal variables for you to use in command files (see Chapter 9, “Command Files”). Thes
nal variables are read-only; you cannot change their values. You can refer to an internal variable in any context wh
could refer to an IA-64 register. Ski has four internal variables:

$cycles$

The total number of “virtual cycles” simulated. A virtual cycle is a cycle on a machine with an very large numb
execution units and very fast memory; a real IA-64 processor may take more cycles. In a command file, you
use this variable to gather statistics about the efficiency of a particular compiler optimization algorithm. The va
$cycles$ is always equal to the value of$insts$ for IA-32 programs.

$exited$

The value 0 until the simulated program exits. Then the variable takes the value 1. In a command file, you wo
$exited$ to detect a program termination. Program termination is defined for IA-64 application-mode progra
a call to theexit() function or the receipt of an unhandled signal. For IA-64 system-mode programs, normal t
nation is defined to be a call to the Simulator System Call exit function or execution ofBREAK 0 instruction. This
variable is not supported for IA-32 programs in application-mode or system-mode. (See Section 6.1, “Applic
Mode and System-Mode Simulation” for details on these modes.)

$heap$

This variable has meaning only for IA-64 programs running in application-mode, as described in Sectio
“Application-Mode and System-Mode Simulation”.$heap$ marks the address past the “far end” of the simulat
heap, that is, the end farthest from the end of the data section. The heap starts at the first sixteen-byte-aligned
after the data section. Ski updates the$heap$ variable as the program being simulated malloc’s memory (for p
grams written in C; adapt accordingly for other programming languages). You can use the$heap$ variable to debug
wild pointer problems: if your program has a pointer that allegedly points to a malloc’ed data structure, b
pointer value exceeds$heap$, the pointer is invalid. For system-mode programs and IA-32 programs, this vari
is meaningless, as there is no malloc support.

$insts$

The number of instructions that have been simulated so far (including any faulting instructions, for program
ning in system-mode, described in Section 6.1, “Application-Mode and System-Mode Simulation”). In a com
file, you might use this variable to stop simulation after a certain number of instructions. The value of$insts$ is
always equal to the value of$cycles$ for IA-32 programs.

4.4.2.4 Labels

Labels (see Section 9.2, “Labels and Control Flow in Command Files”) are names which consist of an alpha (u
lower case alphabetic,$, or _), followed by a sequence of alphas or digits (e.g.,abc123 , $foo_bar , etc.) and ending with
a colon (“: ”). They may be up to 132 characters long. Labels are used in command files as targets of thegoto command.

4.4.2.5 Filenames

Filenames are subject to the restrictions of the underlying Linux operating system. Ski performs tilde (“~”) expansion: if
you provide a pathname whose first word starts with a tilde, Ski assumes the word is a username and tries to re
(and the tilde) with the user’s home directory. For example, “~david/hello ” might be expanded to “/home/david/

hello ”.

4.4.3 Resolving Ambiguous Symbols and Numbers

Some character sequences can be interpreted in more than one way. For example, the character sequence “b
interpreted as a branch register, a program-defined symbol, or a hexadecimal number. To resolve the ambiguity, S
Copyright © 2000 Hewlett-Packard Co. Command Language 4-5

Ski IA-64 Simulator Reference Manual 1.0L

atch is
eric inter-
e
wise to
means
first in its symbol tables for program-defined symbols and internal variables (which includes register names). If a m
found, the matching value is used, otherwise the character sequence is taken as a number. You can force the num
pretation by putting a “0x ” or “ 0X” prefix in front of the number, such as “0xb3 ”. It is undefined whether Ski searches th
symbol table for program-defined symbols before or after the internal variable symbol table. Because of this, it is
avoid naming global variables and functions with names duplicating any of Ski’s internal variables. In practice, this
you should avoid using register names as names of variables and functions in your programs.
4-6 Command Language Copyright © 2000 Hewlett-Packard Co.

Ski IA-64 Simulator Reference Manual 1.0L

t or fine

th
should be
ff.

f

ng

ral

ki

ki
5 Screen Manipulation Commands

Ski provides several commands to manipulate windows. These commands let you make major changes of contex
adjustments.xski provides more flexibility: you can change the location and size ofxski windows using the mechanisms
provided by your window manager, andxski provides scrollbars in some windows, for minor adjustments.

5.1 Register Window Commands
As described in Section 3.2, “The Register Window”,xski shows all five sets of registers in the Register Window, wi
scroll bars and pane resizers so you can select what registers to see within each set and how much screen space
devoted to each set. Thefr , gr , iar , sr , andur commands allow you to toggle display of individual sets on and o
Figure 3-1, “The Register Window in xski,” on page 3-2 shows thexski Register Window.

ski has much less screen space available and therefore shows only one set and only a part of it at a time. Thefr , gr , iar ,
sr , andur commands allow you to choose which register set to see. Therf andrb commands let you choose what part o
the chosen register set to see. Figure 3-8, “The ski Register Window (at Top),” on page 3-6 shows theski Register Win-
dow.

5.1.1 Summary of Register Window Commands

rd [filename]

Dump the Register Window to the screen in a new window (xski) or using a pager (ski), or, if filenameis provided,
to the file given byfilename. The mnemonic stands for “register dump”.

5.1.1.1 xski Register Window Commands

fr

Toggles display of the floating point registers (fr) pane in the Register Window. See Figure 3-4, “The xski Floati
Point Registers Pane,” on page 3-4.

gr

Toggles display of the general registers (gr) pane in the Register Window. See Figure 3-3, “The xski Gene
Registers Pane,” on page 3-3.

iar

Toggles display of the IA-32 registers (eax , ebx , esp , etc.) pane in the Register Window. See Figure 3-6, “The xs
IA-32 Registers Pane,” on page 3-5.

sr

Toggles display of the system registers (cr , rr , pkr , dbr , ibr , pmc, andpmd) pane in the Register Window. See
Figure 3-5, “The xski System Registers Pane,” on page 3-4.

ur

Toggles display of the user registers (pr , br , ar , ip , psr.um) pane in the Register Window. See Figure 3-2, “The xs
User Registers Pane,” on page 3-3.

5.1.1.2 ski Register Window Commands

fr

Displays the floating point registers (fr) in the Register Window.

gr

Displays the general registers (gr) in the Register Window.

iar
Copyright © 2000 Hewlett-Packard Co. Screen Manipulation Commands 5-1

Ski IA-64 Simulator Reference Manual 1.0L

gister
e,

gister
i.e.

w” on

tion

gram

gram

alid for
Displays the IA-32 (eax , ebx , esp , etc.) registers in the Register Window.

sr

Displays the system registers (cr , rr , pkr , dbr , ibr , pmc, andpmd) in the Register Window.

ur

Displays the user registers (pr , br , ar , ip , psr.um) in the Register Window.

rf [count]

Moves the Register Window “forward” (scrolls down) through the currently-displayed register set. The Re
Window is scrolledcountlines. If countis omitted, the Register Window scrolls down one windowful less one lin
i.e. the last line of the old window is displayed as the first line of the new window.

rb [count]

Moves the Register Window “backward” (scrolls up) through the currently-displayed register set. The Re
Window is scrolledcountlines. If countis omitted, the Register Window scrolls up one windowful less one line,
the first line of the old window is displayed as the last line of the new window.

5.2 Program Window Commands
The Program Window displays disassembled instructions, one instruction per line. (See “The Program Windo
page 3-6.)

5.2.1 Summary of Program Window Commands

pj [address]

If addressis specified, repositions (“jumps”) the Program Window so that the IA-64 bundle or IA-32 instruc
containing the specified address is second in the window. If noaddressis given, jumps to the previous location. The
mnemonic stands for “program jump”.

pf [count]

Moves the Program Window forwardcountIA-64 bundles or IA-32 instructions. Ifcountis not specified, moves the
Program Window forward one windowful less one bundle or instruction. The mnemonic stands for “pro
forward”.

pb [count]

Moves the Program Window backwardcountIA-64 bundles or IA-32 instructions. Ifcountis not specified, moves the
Program Window backward one windowful less one bundle or instruction. The mnemonic stands for “pro
backward”.

pa

Display the program being simulated in assembly language only, as shown in Figure 5-1. This command is v
IA-64 code only. The mnemonic stands for “program display assembly”.
5-2 Screen Manipulation Commands Copyright © 2000 Hewlett-Packard Co.

Ski IA-64 Simulator Reference Manual 1.0L

in, as
code,

ce code
of the

d in the
s
This
pm

Display the program being simulated in its source code form with the assembly language translation mixed
shown in Figure 5-2. The source code display is for your convenience only; you cannot interact with the source
e.g., modify the source code, click on a variable name to see its value in the Data Window, and so on. The sour
is not embedded in the executable file. Instead, the compiler and linker place into the executable file a record
location and filename of the source code. The source code file must be available to Ski in the location recorde
executable file. In practice, this means you will want to runxski or ski from the directory where the program wa
compiled. (See Section 3.5, “The Program Window” for more information on source code compilation.)
command is valid for IA-64 code only. The mnemonic stands for “program display mixed”.

Figure 5-1. xski ’s Program Window Showing IA-64 Assembly Language Code
Copyright © 2000 Hewlett-Packard Co. Screen Manipulation Commands 5-3

Ski IA-64 Simulator Reference Manual 1.0L

) to the
e

an
ump”.
pd starting_address ending_address[filename]

Dump the assembly language translation of the program in the area between the two addresses (inclusive
screen (ski) or to a window (xski) if no filenameis given, or to the specified file if one is. Source code will not b
dumped along with the assembly language, even if thepm command is given. Figure 5-3 shows an example of
assembly language dump of the program in Figure 5-1 and Figure 5-2. The mnemonic stands for “program d

Figure 5-2. xski ’s Program Window Showing Intermixed C and IA-64 Assembly Code

Figure 5-3. xski ’s Assembly Language Dump Window
5-4 Screen Manipulation Commands Copyright © 2000 Hewlett-Packard Co.

Ski IA-64 Simulator Reference Manual 1.0L

trans-
e Pro-

ss are
.

Data
at the
mn
e 41-bit
ndow

nds for
5.3 Data Window Commands
The Data Window displays an area of memory in hexadecimal format and, if the window is wide enough, an ASCII
lation. (See Section 3.6, “The Data Window”.) The commands to adjust the Data Window are similar to those for th
gram Window and are described below.

5.3.1 Summary of Data Window Commands

dj [address]

If addressis specified, repositions (“jumps”) the Data Window so that the bytes containing the specified addre
first in the window. If noaddress is given, jumps to the previous location. The mnemonic stands for “data jump”

df [count]

Moves the Data Window forwardcount display lines or one windowful ifcount is not specified. The mnemonic
stands for “data forward”.

db [count]

Moves the Data Window backwardcountdisplay lines or one windowful ifcount is not specified. The mnemonic
stands for “data backward”.

dbndl

Displays the data as hexadecimal instruction bundles, as shown in Figure 5-4 and in Figure 3-15, “xski’s
Window Showing Data Interpreted as Instruction Bundles,” on page 3-11. It is your responsibility to ensure th
Data Window is actually positioned on instructions; if not, Ski will dutifully display nonsense. The first colu
displays the address. The second column displays the template field. The remaining three columns display th
instructions from slots 0, 1, and 2, with the least-significant bit to the right. The mnemonic stands for “data wi
bundle”.

dh

Displays the data as raw hexadecimal with an ASCII translation, as shown in Figure 5-5. The mnemonic sta
“data window hexadecimal”.

Figure 5-4. xski Showing Data as Instruction Bundles
Copyright © 2000 Hewlett-Packard Co. Screen Manipulation Commands 5-5

Ski IA-64 Simulator Reference Manual 1.0L

”.
dd starting_address ending_address[filename]

Dump the memory area between the two addresses (inclusive) to the screen (ski) or window (xski) if no filenameis
given or to the specified file if one is. The dump will be in the format selected by the most recentdbndl or dh

command. An example of a hexadecimal dump is shown in Figure 5-6. The mnemonic stands for “data dump

Figure 5-5. xski Showing Data in Raw Hexadecimal and ASCII

Figure 5-6. xski ’s Hexadecimal Dump Window
5-6 Screen Manipulation Commands Copyright © 2000 Hewlett-Packard Co.

Ski IA-64 Simulator Reference Manual 1.0L

ands

IA-64

r firm-

-
-
gram

oper-

ce. Ski
a grow-

inguish
tructures,
ata struc-
ula-
well.

erating
ntions.
s can’t
an error

ation-

S con-

emula-
6 Program Simulation

Ski’s main responsibility is to simulate IA-64 instructions and programs built from these instructions. Many comm
and features are supplied to provide you with a great deal of flexibility in using Ski.

6.1 Application-Mode and System-Mode Simulation
Ski supports two instruction sets and two modes of simulation. The two instruction sets supported by Ski are the
instruction set and a subset of the traditional IA-32 instruction set, often called the “Intel x86” instruction set.

Ski’s two simulation modes let you simulate an application program (“application-mode”) or an operating system o
ware (“system-mode”). For IA-64 programs, Ski determines the mode based on the presence or absence of the_atexit

symbol. (If you strip symbols from your IA-64 program, Ski will not find_atexit and will assume your program is a sys
tem-mode program.) For IA-32 programs, you select the mode, using theiaload command for application-mode simula
tion and theromload command for system-mode simulation. Program loading is discussed in Section 6.5, “Pro
Loading”.

6.2 Ski Support for Application-Mode Programs
To support application-mode programs, Ski emulates a Linux operating system (for IA-64 programs) or an MS-DOS
ating system (for IA-32 programs).

6.2.1 Application-Mode IA-64 Programs

For IA-64 programs, Ski provides (simulated) memory for the text and data portions of the program’s address spa
also manages a growable heap for the C language’s malloc() function, a growable Register Save Engine area, and
able stack. As your program runs, Ski tracks the memory references emitted by the program. Ski tries to dist
between reasonable references and ridiculous references indicative of wild pointers. To track stack-based data s
Ski adds stack pages when it notices a reference to a location just past the end of the stack. To track heap-based d
tures, Ski provides an implementation of the malloc() family of functions. (Chapter 7, “Linux and MS-DOS ABI Em
tion”, discusses Ski’s pseudo-operating system in detail.) Ski tracks pages used by the Register Save Engine as

Application program calls to Linux system functions are emulated by the simulator or passed to the host Linux op
system; unsupported calls cause simulation to stop. Registers are initialized according to Linux calling conve
Application mode programs can’t access (simulated) I/O devices or privileged registers. Application mode program
execute privileged instructions or receive interrupts; any interruptions cause Ski to stop simulation and generate
message. Application-mode programs never see virtual memory page faults or TLB faults and therefore thesit andsdt

simulator commands (see Section 6.3.3, “System-Mode TLB Simulation”) are disabled when simulating applic
mode programs.

6.2.2 Application-Mode IA-32 Programs

For IA-32 programs, Ski’s support is more limited. Ski provides a subset of MS-DOS “int 21 ” functions. Ski does not
simulate Microsoft Windows. Loadable libraries (DLL’s),config.sys , andautoexec.bat are not supported. Environ-
ment variables are not available to MS-DOS programs. Registers and memory are initialized according to MS-DO
ventions.

6.3 Ski Support for System-Mode Programs
A system-mode program is, as far as Ski is concerned, running on a “bare” IA-64 processor. No operating system
tion is provided and the system-mode program has complete access to the simulated IA-64 processor.
Copyright © 2000 Hewlett-Packard Co. Program Simulation 6-1

Ski IA-64 Simulator Reference Manual 1.0L

o zero,
ns can
ling I/O

thernet
al IA-

Vector
ating
age-not-
4 archi-
ing the

s.

slation
the

.

The
try.

ess
TLB
the

TC is
hange.
6.3.1 System-Mode IA-64 Programs

A system-mode IA-64 program “sees” a more complete simulated environment: writeable registers are initialized t
page and TLB faults are simulated and cause a transfer to the interruption vector table (IVT), privileged instructio
be executed, privileged registers can be accessed, and so on. A tricky issue for system-mode simulation is hand
because there are no real I/O devices to simulate! Instead, Ski provides a special interface usingBREAK instructions to
implement Simulator SystemCalls (SSC’s), which provide access to the console, keyboard, SCSI disk and E
devices. A system-mode IA-64 program can’t access the underlying operating system; it “thinks” it’s running on a re
64 computer.

A system-mode IA-64 program must provide interruption handlers. The program must create a valid Interruption
Table (IVT) and set the Interruption Vector Address (IVA) accordingly. You can test your interruption code by cre
code that generates conditions corresponding to internal faults, traps, and interrupts, such as divide-by-zero and p
present. To test code for external interrupts, use the inter-processor interruption mechanism, as defined by the IA-6
tecture manual. Example assembly code for this is shown in Figure 6-1. Timer interruptions can be simulated us
Simulator System Call mechanism.

6.3.2 System-Mode IA-32 Programs

Ski does not support IA-32 programs running in system-mode.

6.3.3 System-Mode TLB Simulation

The simulator provides facilities for modeling the TLB’s (Translation Lookaside Buffers) for system-mode program

6.3.3.1 Summary of TLB Display Commands

sit

sdt

When a system-mode IA-64 program is loaded, these commands display information from the Instruction Tran
Lookaside Buffer (ITLB) and Data Translation Lookaside Buffer (DTLB), respectively. The simulator displays
entire selected TLB (Translation Registers and the Translation Cache) on the screen, as shown in Figure 6-2

The “V” and “RID” columns represent the V (valid) bit and Region Identifier, respectively, for each TLB entry.
“Virtual Page ” and “Physical Page ” columns show the actual address translation handled by each TLB en
The “PgSz”, “ ED”, “ AR”, “ PL”, “ D”, “ A”, “ MA”, and “P” columns represent the Page Size, Exception Deferral, Acc
Rights, Privilege Level, Dirty Bit, Accessed Bit, Memory Attribute, and Present fields, respectively, for each
entry. Finally, the “KEY” column represents the Protection Key for each TLB entry. A blank line separates
Translation Registers (TR’s) from the Translation Cache (TC). The number of TR’s and the size of the
implementation-dependent. Current versions of Ski provide 16 TR’s and 128 entries for the TC but this may c
If the precise value is important, check the release notes.

Figure 6-1. Example Code to Simulate an External Interrupt

ssm 0x6000 // Set psr.i and psr.ic to 1
mov cr.lid=r0 // For processor 0
movl r4=0xfee00000 // Interrupt block base for proc 0
mov r5=0x10 // Interrupt vector 16
st8 [r4]=r5 // Code branches to iva+0x3000 (the external

 // interrupt handler). irr0{16} is set to 1,
 // ivr = 0x10
6-2 Program Simulation Copyright © 2000 Hewlett-Packard Co.

Ski IA-64 Simulator Reference Manual 1.0L

sses are
the IA-

ces from
hether it
imula-
ss vector.

data,

-

of a
m-
must

file-
nd file
.) An
6.4 Misaligned Data Access Trap
If the psr.acbit is set, the IA-64 architecture requires alignment checks on memory accesses; i.e., when data acce
made to items larger than a byte, the appropriate number of low-order address bits must be zero. If the bit is clear,
64 implementation may choose whether or not to make such checks; Ski chooses to make the checks for referen
IA-64 code. When an IA-64 program attempts an misaligned access, the behavior of the simulator depends on w
is running in application-mode or system-mode (see Chapter 6, “Program Simulation”). In application-mode, the s
tor stops the program and displays an error message. In system-mode, the simulator traps to the unaligned acce

6.5 Program Loading
The Ski simulator supports loading IA-64 programs in the standard IA-64 ELF executable format and in MS-DOS.com

and.exe formats. ELF files contain enough information to allow the simulator not only to load the program and its
but also to build a symbol table, properly structure virtual memory, and initialize the screen andip with the proper values.
For IA-64 Linux programs, thepsr.bebit is always initialized to zero, indicating that the program will run with little
endian byte-order.

The MS-DOS formats do not include symbol table information. Instead, you must supply the information in the form
mapfile compatible with those created by Microsoft’s “ML” linker. If you don’t provide Ski with a mapfile, no progra
defined symbols will be available. The MS-DOS formats do not specify where to place the program in memory. You
provide this information to Ski yourself. The.com format is very basic and is supported with theiaload andromload

commands, described in Section 6.5.2, “Summary of Program Loading Commands”. The.exe format contains header
information that is used by theiaload command and ignored by theromload command. For this reason,.exe files are
not useful in system-mode simulation. For IA-32 programs, only IA-32 (little-endian) byte ordering is supported.

6.5.1 How to Load a Program

There are two ways to load a file. The first way is to run the simulator with a IA-64 (not IA-32) executable program
name as an argument. The file will be loaded immediately after the simulator initializes itself and before any comma
specified with the-i flag is executed. (See Chapter 9, “Command Files” and Section 2.5.1, “Command Line Flags”

Figure 6-2. sdt Command Output in xski
Copyright © 2000 Hewlett-Packard Co. Program Simulation 6-3

Ski IA-64 Simulator Reference Manual 1.0L

m

ress;
g with
h
n
. The

apter 9,
oading

hard to
ndition.

t, or an
nd use a

ent vari-
onment
d it. For
,
,
i received

rs. For

appli-
example is “xski my_program ”. The second way is to use theload , iaload , or romload commands, which take the
filename as the first argument, for example, “load my_program ”.

6.5.2 Summary of Program Loading Commands

load filename [args]+

Prepare for IA-64 application-mode simulation: Load the file specified byfilenameand prepares to pass the progra
args encoded using the C-language argc/argv mechanism. The file must be an IA-64 ELF file.

iaload filename address [mapfile [args]+]

Prepare for IA-32 application-mode simulation: Load the IA-32 executable file specified byfilename, which must be
an MS-DOS.com or .exe file and prepare to pass the programargs encoded using MS-DOS command line
argument conventions. Theaddressspecifies where Ski should load the program. This should be a physical add
virtual addressing is only supported for system-mode programs. The value you provide is used, alon
information from the.exe file or MS-DOS defaults for a.com file, to setup the IA-32 execution environment, suc
as segment descriptors, the stack pointer, etc. Themapfile is an ASCII text file providing the mappings betwee
symbols and addresses; it must be compatible in format with the mapfile produced by the Microsoft “ML” linker
psr.is bit is set.

romload filename address [mapfile]

Prepare for IA-64, IA-32, or mixed system-mode simulation: Load the MS-DOS.com -format file specified by
filename. (The MS-DOS.com format is essentially raw binary.)Addressandmapfileare as described for theiaload

command above. Theaddresscan be physical or virtual, depending on the setting of thepsr.it bit, as described in
Section 4.4.1.3, “Addresses”.

6.5.3 Notes about Program Loading

6.5.3.1 Adding Information after Loading

Sometimes, the load file doesn’t contain enough information. In this case, you can use a command file (see Ch
“Command Files”) to add more information. You execute the command file at the appropriate time, generally after l
the program. For example, perhaps you want to test how an application program handles error conditions that are
create in a “real” hardware environment. You could load the program and use a command file to create the error co
Then you would run the program and test its behavior.

As another example, perhaps you want to simulate the transfer of control from a bootstrap program, an interrup
application program to the operating system. You could load the operating system as a system-mode program a
command file to set up memory and registers to their appropriate state at the instant of the control transfer.

6.5.3.2 Creating the argc, argv, and envp Parameters

The first time an application-mode simulated program starts, it receives command line parameters and environm
ables using the C language argc/argv/envp mechanism. (IA-32 application-mode programs do not receive envir
variables.) By default, the program receives the same command line parameters you gave to Ski when you starte
example, if you invoked Ski as “xski my_program foo bar ”, Ski would start up using the X Window System interface
load the executable IA-64 programmy_program , and use “foo ”, “ bar ”, and environment variables to initialize the argc
argv and envp parameters passed on the memory stack. The environment variables are a copy of the variables Sk
from the shell when it started.

Instead of specifying the executable program on Ski’s invocation line as in the example above, you can use theload or
iaload commands to load the executable program. You can add extra arguments toload and iaload . Later, when you
invoke therun command, Ski will pass the extra arguments to the simulated program as command line paramete
example, you could issue the command “load my_program foo bar ”. When yourun the program, Ski would pass
“ foo ” and “bar ” to the program as command line parameters using the argc/argv/envp mechanism. Note that IA-32
cation-mode programs must be loaded with theiaload command; they cannot be loaded from the Ski invocation line.
6-4 Program Simulation Copyright © 2000 Hewlett-Packard Co.

Ski IA-64 Simulator Reference Manual 1.0L

tion 8.3,
rogram

n-
r

mand
doesn’t
“

er of
6.6 Program Execution
Programs may be run in their entirety without interruption, they may be stopped at appropriate places (see Sec
“Program Breakpoints”) and continued, or they may be single-stepped for debugging purposes. The different p
execution choices are described below.

You can stop a running simulation inski at any time with your interrupt character (usually ^C). The interrupt will be ho
ored at the beginning of simulation of the next instruction.xski andbski do not have interrupt handlers; if you use you
interrupt character while they are running, they will be terminated by the operating system.

6.6.1 Summary of Program Execution Commands

run

Starts / restarts execution of a program at the currentip value. Generally used after a breakpoint is encountered.

cont

Same function as therun command. The mnemonic stands for “continue”.

step [count]

With no argument, executes a single instruction. If acount is specified, executescount instructions.

step until expression

Steps through your program until the specifiedexpressionhas a non-zero value. Because theexpressionmust be
evaluated before each simulated instruction, you may notice a slowdown in Ski’s simulation speed. This com
can be used to implement data write breakpoints, with the caveat that it won’t detect the case where the write
change the value. This can be useful when you are tracking down a memory corruption problem: you can usestep

until r33!=r32 ”, for example. Another example of this command is breaking into a loop after a certain numb
iterations: “step until r35<=30 ”. (See Section 4.4.1.2, “Expressions”.)
Copyright © 2000 Hewlett-Packard Co. Program Simulation 6-5

Ski IA-64 Simulator Reference Manual 1.0L
6-6 Program Simulation Copyright © 2000 Hewlett-Packard Co.

Ski IA-64 Simulator Reference Manual 1.0L

rams
stem

s may
“real”

ns into
into the
l-C, it

rs can-

tically
stack as

e this:

the lat-
reted as
7 Linux and MS-DOS ABI Emulation

As discussed in Section 6.1, “Application-Mode and System-Mode Simulation”, Ski can provide application prog
with a Linux-compatible or MS-DOS-compatible environment. The environments aren’t full-blown operating sy
emulations, however. The most common OS functions are provided, as described below.

7.1 Interruptions
The IA-64 architecture defines a large set of interruption types, including faults, traps, and interrupts. Interruption
happen asynchronously, during an instruction, or between instructions. Like application programs running on a
Linux machine, IA-64 application-mode programs in Ski never see interruptions. Instead, Ski translates interruptio
the signal that a real IA-64 Linux kernel would generate. For example, a memory access violation gets translated
SIGSEGV signal. Similarly, if Ski receives a keyboard signal such as the SIGINT generated (usually) by contro
passes this signal on to the IA-64 application. Ski does not accurately simulate thesiginfo andsigcontext structures
that a real IA-64 Linux kernel would pass to a signal handler. Thus, applications relying on either of these paramete
not be simulated in Ski application mode.

7.2 Linux Application Environment
Ski provides a commonly-used subset of the Linux environment to IA-64 application-mode programs. Both sta
linked and dynamically linked programs are supported. The argc, argv, and envp parameters are created on the
described in Section 6.5.3.2, “Creating the argc, argv, and envp Parameters”. Ski initializes the IA-64 registers lik

sp points to the top of the stack.

bsp , andbspstore are initialized in the same way the IA-64 version of Linux is likely to do.

rsc.pl is initialized to 3.

rsc.be andpsr.beare cleared.

Ski supports the Linux system calls shown in Table 7-1. This list is subject to change; consult the release notes for
est information. The data passed between the application program and the simulated Linux environment is interp
64 bit (LP64) quantities.
Copyright © 2000 Hewlett-Packard Co. Linux and MS-DOS ABI Emulation 7-1

Ski IA-64 Simulator Reference Manual 1.0L

code is

call, the
Ski accepts but ignores the system calls shown in Table 7-2. For those that return an error indication, the errno
shown in parentheses. All other ignored system calls return with a success indication, having done nothing.

All other system calls are unsupported. When an IA-64 application-mode program makes an unsupported system
simulator stops the simulation and displays an error message.

Table 7-1. Linux System Calls Supported by Ski

accept access acct adjtimex

bind brk chdir chmod

chown chroot clone (fork & vfork) close

connect dup dup2 execve (IA-32 & IA-64)

exit fchdir fchmod fchown

fcntl fdatasync flock fstat

fstatfs fsync ftruncate getcwd

getdents getegid geteuid getgid

getgroups getitimer getpagesize (4KB) getpeername

getpgid getpid getppid getpriority

getresgid getresuid getrlimit getrusage

getsid getsockname getsockopt gettimeofday

getuid ioctl ioperm kill

lchown link listen lseek

lstat mkdir mknod mmap

mmap2 mount mprotect mremap

msgget msgrcv msgsnd msync

nanosleep open personality pipe

poll pread (not atomic) pwrite (not atomic) read

readlink readv (not atomic) reboot recv

recvfrom recvmsg rename rmdir

rt_sigaction rt_sigpending rt_sigprocmask rt_sigsuspend

sched_get_priority_max sched_get_priority_min sched_getparam sched_getscheduler

sched_rr_get_interval sched_setparam sched_setscheduler sched_yield

select semget semop send

sendmsg sendto setdomainname setfsgid

setfsuid setgid setgroups sethostname

setitimer setpgid setpriority setregid

setresgid setresuid setreuid setrlimit

setsid setsockopt settimeofday setuid

shmat shmdt shmget shutdown

sigalstack socket socketpair stat

statfs swapoff swapon symlink

sync syslog times truncate

umask umount uname unlink

ustat utimes vhangup wait4

write writev (not atomic)

Table 7-2. Linux System Calls Accepted but Ignored by Ski

_sysctl (ENOSYS) bdflush (ENOSYS) capget capset

create_module (ENOSYS) delete_module (ENOSYS) get_kernel_syms (ENOSYS) getpmsg

init_module (ENOSYS) msgctl (ENOSYS) munlockall nfsservctl

prctl ptrace (EOPNOTSUPP) putpmsg query_module (ENOSYS)

quotactl (ENOSYS) rt_sigqueueinfo rt_sigtimedwait semctl (ENOSYS)

sendfile shmctl (ENOSYS) sysfs (ENOSYS) sysinfo (ENOSYS)
7-2 Linux and MS-DOS ABI Emulation Copyright © 2000 Hewlett-Packard Co.

Ski IA-64 Simulator Reference Manual 1.0L

y cre-

is-

criptor
default,
tors rec-

,

7.3 MS-DOS Application Environment
IA-32 application-mode programs “see” a limited MS-DOS environment. The MS-DOS environment is emulated b
ating and initializing an MS-DOS Program Segment Prefix (PSP) and by setting up the stack pointer (iasp) and segmen-
tation registers. The arguments you gave with theiaload command, such as “iaload my_program foo bar baz ”, are
placed in the PSP as if they were command line parameters.

Ski supports the MS-DOS “INT 20 ” call to terminate the simulated program and the “INT 21 ” system calls shown in
Table 7-3. When an IA-32 program makes anINT 21 call that’s not supported, the simulator stops the simulation and d
plays an error message.

7.4 Program I/O
Your program may need to read from standard in (stdin: file descriptor 0) and write to standard out (stdout: file des
1) and standard err (stderr: file descriptor 2). As with all Linux programs, these file descriptors are connected, by
to your keyboard and screen. You can redirect them in the usual way: when you invoke Ski, use the < and > opera
ognized by most Linux shells. For example, “bski -noconsole my_program foo bar baz < test_input

>simulated_output ” runs bski , loading the IA-64 program filemy_program and passing it the argumentsfoo , bar

andbaz via the argc/argv mechanism. Because no command file was provided via the-i flag (described in Section 2.5.1
“Command Line Flags”),bski internally generates arun command followed by aquit command. The (simulated) pro-
gram reads on standard in from the filetest_input and writes on standard out to the filesimulated_output . Having
not been redirected, writes to standard err go to the default place, normally the terminal screen.

Table 7-3. MS-DOS System Calls (in Hexadecimal) Supported by Ski

00: terminate program 02: display character 08: read keyboard without echo

09: display string 2a: get date 2c: get time

30: get version number 3c: create file with handle 3d: open file with handle

3e: close file with handle 3f: read file or device 40: write file or device

44: device status control 44, sub-function 0: get device data 4c: end program

51: get PSP address 62: get PSP address (same as 51)
Copyright © 2000 Hewlett-Packard Co. Linux and MS-DOS ABI Emulation 7-3

Ski IA-64 Simulator Reference Manual 1.0L
7-4 Linux and MS-DOS ABI Emulation Copyright © 2000 Hewlett-Packard Co.

Ski IA-64 Simulator Reference Manual 1.0L

simu-

ster

t a byte,
zero, the
ome
re.

s
using

ed reg-

be on
alues,
nless a

ormat

n any
s may
8 Debugging

The simulator provides many facilities to help you debug your programs. You can modify the current state of the
lated processor, set program breakpoints, trace program execution, and dump a memory image into a file.

8.1 Changing Registers and Memory with Assignment Commands
Use the= command to assign a value to a register. The= command takes two arguments: the first is the name of a regi
and the second is the value to be assigned.

To change the contents of memory, you use one of five different commands, depending on whether you want to se
two bytes, four bytes, eight bytes, or a C-language string (a sequence of bytes terminated by a byte with the value
“null” byte). The commands are=1, =2, =4, =8, and=s respectively. Each command takes at least two arguments (s
take more): an address or symbol or expression resolving to an address, and the new value you want placed the

8.1.1 Summary of Assignment Commands

= register_name value

Thevalueis assigned to the register specified byregister_name. The old value is lost. Unless a modifying prefix such a
0d, 0b, or 0o is used,valuewill be treated as a hexadecimal number. Floating point registers must be set piecewise,
the register name (f2 throughf127) followed by a.s to set the sign,.m to set the mantissa, or.e to set the exponent. The
first general register,r0 , is “hardwired” to 0 and any attempt to assign to it will be rejected. Similarly, floating registersf0

andf1 are “hardwired” to be 0.0 and 1.0, respectively, and predicate registerp0 is “hardwired” to 1 and they too cannot be
changed. Some IA-64 registers are read-only according to the IA-64 architecture specification, but all non-hardwir
isters are writable with Ski’s= command to assist your debugging.

=1 address value+

=2 address value+

=4 address value+

=8 address value+

Thevalueis assigned to the specified location in memory. The old value at the location is lost. The location may
any allocated page, including instruction pages, as discussed in Section 8.1.3.3, “Page Allocation”. Multiple v
separated by spaces, may be supplied; if so, they will be assigned to sequential memory addresses. U
modifying prefix such as0d, 0b, or 0o is used,value will be treated as a hexadecimal number.

The=1 command truncates any extra high-order bytes of thevalueto make a single byte. The=2 command truncates
or pads (with zero) the high order bytes of thevalueas necessary to make a two-byte quantity. Similarly, the=4 and
=8 commands truncate or pad high order bytes to make four- and eight-byte quantities, respectively.

The =2, =4, and=8 commands respect the current value of thepsr.bebit, which controls whether multi-byte data
memory references are big-endian (if the bit is set) or little-endian (if the bit is clear). The bit also controls the f
of data display in the Data Window (see Section 3.6, “The Data Window”). You can set thepsr.bebit with the
command “= psr.be 1 ” and you can clear it with “= psr.be 0 ”.

Ski supports physical and virtual addressing. For more information, see Section 4.4.1.3, “Addresses”.

=s address string_without_spaces+

Thestring_without_spacesis assigned to memory locations starting at the location specified byaddress. A null byte
is added to the end of the string automatically. The old value at the location is lost. The location may be o
allocated page, including instruction pages, as discussed in Section 8.1.3.3, “Page Allocation”. Multiple value
be supplied, separated by a space. The strings may not contain spaces and quoting it is not a workaround.

8.1.2 Examples of Assignment Commands

= r1 1234
Copyright © 2000 Hewlett-Packard Co. Debugging 8-1

Ski IA-64 Simulator Reference Manual 1.0L

padded

odes the
“

al value
of

st the

the

t loca-
as no
The hexadecimal value 0x1234 is assigned to general register 1. The six upper (more significant) bytes are
with zeroes.

= r1 ip+10

The value inip added to 0x10 is assigned to general register 1.

= f2.m 1234 ; = f2.s 1 ; = f2.e 10033

The hexadecimal value 0x300330000000000001234 is assigned to floating register 2. The register now enc
decimal value of -2.2754, approximately. The “= f2.m 1234 ” part sets the mantissa (the 64 low-order bits). The=

f2.s 1 ” part encodes the mantissa sign (the most significant of the 82 bits). The “= f2.e 10033 ” encodes the 17
exponent bits (which fit between the sign bit and mantissa bits), using a bias of 65,535 (0xffff).

=4 __data_start+30 0d10 13feffff b3

The decimal value 10 is assigned to the four bytes starting 48 bytes past the location of the symbol “__data_start ”.
Because the value 10 occupies only one byte, three high-order zero bytes will be padded in, so the actu
assigned will be 0x0000000a. The value 13feffff is assigned to the four bytes starting 52 bytes past the location
__data_start . The lower four bytes of branch register 3 will be copied into the four bytes starting 56 bytes pa
location of__data_start . (To assign the value 0xb3, use the0x prefix.)

=s main ThisProgramIsBroken

The string “ThisProgramIsBroken ” with a null byte appended is placed in memory overwriting the instructions at
start of the program, as shown in the “before” and “after” views of Figure 8-1 and Figure 8-2. (The symbol “main ” tradi-
tionally marks the first instruction of a user program written in the C language.) The instructions previously at tha
tion are lost. If you attempt to run the program, it will almost certainly fail! Note that the string is not quoted and h
whitespace.

Figure 8-1. The Original Program Loaded in ski
8-2 Debugging Copyright © 2000 Hewlett-Packard Co.

Ski IA-64 Simulator Reference Manual 1.0L

te quan-
ight. For

he

e allo-
xistent
r cause a
8.1.3 Notes on Assignment

8.1.3.1 Address Alignment

Ski aligns addresses on natural boundaries: two-byte quantities are aligned on addresses divisible by two, four-by
tities are aligned on addresses divisible by four, and eight-byte quantities are aligned on addresses divisible by e
example, the command

=4 __data_start+1 0x12345678

results in the message

Non word-aligned address. Aligned to 0x6000000000001000

and the value is assigned starting one byte before the requested address. (“__data_start ” is a program-defined symbol
for 0x6000000000001000 .)

8.1.3.2 Bit-encoded Registers

Many registers are bit-encoded. You can assign to individual bits or to entire registers. For example, you can set tpsr.it
bit with this:

= psr.it 1

and you can set the entire Processor Status Register (psr) with this:

= psr 1234567890abcdef

A complete list of the registers and bits Ski recognizes is in Section B.1, “IA-64 Registers”.

8.1.3.3 Page Allocation

Virtual memory is simulated only for system-mode programs. In system-mode, your program is responsible for pag
cation. In application-mode, Ski handles page allocation for you. Either way, if you try to assign data to a non-e
page using the assignment commands, Ski will refuse, with an error message. The assignment commands neve
TLB miss or replacement.

Figure 8-2. The Program After Assigning a String in ski
Copyright © 2000 Hewlett-Packard Co. Debugging 8-3

Ski IA-64 Simulator Reference Manual 1.0L

xample

s
If the

hey are
truction
trol is

lained in

efuse to
programs
ation

sing.
8.2 Evaluating Formulas and Formatting Data
Theeval command evaluates one or more expressions and prints the result(s) in decimal and hexadecimal. An e
of theeval command and a more complete discussion are in Section 4.4.1.2, “Expressions”.

8.2.1 Summary of The eval Command

eval expression+

Evaluate theexpression(s) and print the result(s) on the screen. If theexpressionis simply a register name, the value i
display in the appropriate format: decimal, hexadecimal, or symbolically, depending on the kind of register.
expression has any operators, the result is displayed in decimal and hexadecimal. For example, “eval ip ” causes the
current value of theip register to be displayed symbolically or in hexadecimal. But “eval +ip ” causes the value to
be printed out in hexadecimal and decimal.

8.3 Program Breakpoints
Program breakpoints are “marks” within the executable code of a program that cause simulation to halt when t
encountered in the normal flow of a running program. When simulation stops because of a breakpoint, the ins
pointer (ip) is pointing to the instruction at which the breakpoint is set (before the instruction is executed) and con
returned to you.

The simulator provides several commands to let you manipulate program breakpoints. These commands are exp
detail below.

8.3.1 Setting Program Breakpoints

To set a breakpoint in IA-64 code, use thebs command. For IA-32 code, use theiabs command. If given with no argu-
ments, these commands set a breakpoint at the instruction pointed to by theip register. If an address is given following the
command, the breakpoint is set at that address. The address must be valid when Ski resumes simulation; Ski will r
simulate code if any breakpoints are set at non-existent addresses. You can set breakpoints in system-mode
using physical or virtual addresses. See Section 6.1, “Application-Mode and System-Mode Simulation” for inform
about system-mode programming and Section 4.4.1.3, “Addresses” for information on physical vs. virtual addres

Up to ten breakpoints may be set at any one time. They are indicated by the digits “0” through “9” in the first column of
the program window, as the example in Figure 8-3 shows.
8-4 Debugging Copyright © 2000 Hewlett-Packard Co.

Ski IA-64 Simulator Reference Manual 1.0L

ossible,

-

8.3.2 Deleting Program Breakpoints

Two commands delete program breakpoints. Thebd command deletes a specified breakpoint. ThebD command deletes all
breakpoints currently set.

8.3.3 Listing Program Breakpoints

Thebl command causes a list of currently set program breakpoints to be displayed on the screen, symbolically if p
as shown in Figure 8-4. The first column of the display shows the breakpoint number, for use with thebd command. The
second column displays a “P” for physically-addressed breakpoints and “V” for virtually-addressed breakpoints. The col
umn labelled “Address” is, of course, the breakpoint address. In the next column, “IA-64 ” indicates a breakpoint in IA-64
code and “IA-32 ” indicates a breakpoint in IA-32 code. The “Command” column is currently unused.

Figure 8-3. Three Breakpoints, 0, 2, and 1, Visible in xski ’s Program Window
Copyright © 2000 Hewlett-Packard Co. Debugging 8-5

Ski IA-64 Simulator Reference Manual 1.0L

IA-64
arted

loca-
ts

ility of
tion of
undle,
ations.

s
e

ak-

ting in
rupts. If
to a
8.3.4 Notes on Program Breakpoints

8.3.4.1 How Ski Implements Breakpoints

Program breakpoints are implemented by replacing the instruction at the address of each breakpoint with an
BREAK instruction or an IA-32INT3 instruction. The replacement is done at the time the program is started or rest
(e.g., withcont) and the original instructions are replaced when the program halts. Thus, if your program reads the
tion where a breakpoint is set, it will retrieve theBREAK or INT3 instruction instead. Ski detects if your program attemp
to write new data into the breakpoint location and automatically reinstalls the breakpoint after such an update.

You need to tell Ski where to set your IA-64 breakpoints but the IA-64 architecture doesn’t provide for addressab
individual instructions. Instead, instructions are bundled. To work around this, Ski “pretends” that the slot 0 instruc
a bundle is in the first four bytes of the bundle’s location, the slot 1 instruction is in the second four bytes of the b
and the slot 2 instruction is in the third four bytes of the bundle. You can only set breakpoints at these “pretend” loc
For example, setting a breakpoint at “main ”, “ main+1 ”, “ main+2 ”, and “main+3 ” all result in the breakpoint being set on
the first instruction in the bundle at “main ”. Similarly, “main+5 ”, “ main+6 ”, and “main+7 ” all correspond to “main+4 ”,
and “main+9 ”, “ main+a ”, and “main+b ” all correspond to “main+8 ”, If you try to set a breakpoint at the remaining byte
in the bundle (“main+c ”, “ main+d ”, “ main+e ”, and “main+f ” in this example), Ski will generate the error messag
“ Illegal slot field in breakpoint address ”. Ski can place IA-32 breakpoints at any byte address. If the bre
point address doesn’t correspond to the beginning of an IA-32 instruction, Ski’s behavior is undefined.

8.3.4.2 Unexpected Breakpoints

The IA-64 breakpoint mechanism usesBREAK.M 0, BREAK.I 0, BREAK.B 0, andBREAK.F 0, andBREAK.X 0 instructions.
These are special cases and executing these instructions will not cause “BREAK instruction trap” interrupts for system-
mode programs. The same is true forINT3 instructions in IA-32 code. However, if Ski findsBREAK or INT3 instruction at
a location which doesn’t correspond to a breakpoint, Ski’s behavior depends on whether the program is simula
application-mode or system-mode. Application-mode programs should never generate, or expect to receive, inter
Ski reaches aBREAK or INT3 instruction in an application-mode program at a location which doesn’t correspond
breakpoint, simulation halts and Ski displays an error message. System-mode IA-64 programs will receive theBREAK
interrupt.

8.3.5 Summary of Program Breakpoint Commands

bs [address]

Sets an IA-64 breakpoint at the specifiedaddress or, if noaddress is given, at the location pointed to byip .

Figure 8-4. xski ’s Breakpoint List Window Showing IA-64 and IA-32 Breakpoints
8-6 Debugging Copyright © 2000 Hewlett-Packard Co.

Ski IA-64 Simulator Reference Manual 1.0L

specified
e user at

ze from
on both

rgument.
cifies the

o

rgu-
fied

ssible.
iabs [address]

Sets an IA-32 breakpoint at the specifiedaddress or, if noaddress is given, at the location pointed to byip .

bd breakpoint_number

Deletes the breakpoint numbered bybreakpoint_number.

bD

Deletes all breakpoints.

bl

Displays a list of currently set breakpoints.

8.4 Data Breakpoints
Data breakpoints can be viewed as temporary access restrictions on an area of data. Access of a datum within the
area causes a running program to halt at the instruction which attempted the access. Control is then returned to th
command level.

The simulator allows up to ten areas to be specified within which data breakpoints may be set. They may vary in si
one byte to an entire region. Further, the area may be specified to cause a break either only on reads, writes, or
reads and writes. Several commands apply to the manipulation of these data breakpoints.

8.4.1 Setting Data Breakpoints

Thedbs command sets data breakpoints. The command requires two arguments and accepts an optional third a
The first argument is the starting address of the area which is associated with the break. The second argument spe
length of the area (in bytes). The third argument, if present, is the stringrw (default), which indicates that the break is t
occur on both reads or writes,r , which indicates that only reads cause breaks, orw, which indicates that only writes cause
breaks.

8.4.2 Deleting Data Breakpoints

Two commands delete data breakpoints. ThedbD command deletes all data breakpoints currently set. It takes no a
ments and requires no verification from the user. Thedbd command deletes the data breakpoint with the number speci
by the argument.

8.4.3 Listing Data Breakpoints

Thedbl command causes a list of currently set data breakpoints to be displayed on the screen, symbolically if po

8.4.4 Summary of Data Breakpoint Commands

dbs address length[type]

Sets a data breakpoint at the specifiedaddress. The length of the area (in bytes) is set tolength. Type is the stringrw
(default) specifying breaks on reads or writes,r , specifying breaks on reads only, orw, specifying breaks on writes
only.

dbd number

Deletes the data breakpoint numbered bynumber.

dbD

Deletes all data breakpoints.

dbl

Displays on the screen a list of currently set data breakpoints.
Copyright © 2000 Hewlett-Packard Co. Debugging 8-7

Ski IA-64 Simulator Reference Manual 1.0L

s”.
pond-
is are
mary

ifficult
different
estore
ne

ymbol
ternal
andles

er, or
egister
es pro-

ols flag
regis-

s

8.5 Dumping Registers and Memory to a File
You can dump the registers to a file with the “rd ” command, described in Section 5.1, “Register Window Command
You can dump a block of memory into a file in two forms: in hexadecimal or in symbolic disassembled form, corres
ing (roughly) to the formats in the Data Window and the Program Window, respectively. The commands to do th
“dd” and “pd” and are described in Section 5.3.1, “Summary of Data Window Commands” and Section 5.2.1, “Sum
of Program Window Commands”, respectively.

8.6 Saving and Restoring the Simulator State
You may need to interrupt a simulation session and continue it later. For example, you might be tracking down a d
bug and want to save the state of the simulator just before the bug occurs so you can replay the problem and try
strategies. Thesave command saves the state of the currently executing program to a named disk file. Later, you r
the saved file with therest command or the-rest command line flag (described in Section 2.5.1, “Command Li
Flags”).

Thesave command saves the state of the simulated IA-64 processor, including the overlaid IA-32 registers, the s
table for program-defined symbols, and memory. Certain simulator state information, in particular the values of in
variables and window-related information, is not saved. Linux and MS-DOS state information such as open file h
andfseek pointers is not currently saved; this will probably change, so you should check the release notes.

8.6.1 Summary of Save and Restore Commands

save filename

Saves an image of the machine state (IA-64 and IA-32) in the specified file.

rest filename

Restores an image of the machine state (IA-64 and IA-32) from the specified file.

8.7 Symbol Table Commands
Ski supports two kinds of symbols: program-defined symbols, which are identifiers provided by a compiler, link
human programmer (see Section 4.4.2.1, “Program-Defined Symbols”), and internal symbols, which include r
names and internal variables (see Section 4.4.2.2, “Registers” and Section 4.4.2.3, “Internal Variables”). Ski plac
gram-defined symbols in one symbol table; you can see the contents with thesymlist command. For IA-64 programs,
the ELF executable file always contains symbols, regardless of whether you used your compiler’s debug symb
(typically -g), unless you stripped the symbols. Internal symbols are stored in a second symbol table along with the
ter names Ski recognizes, listed in Appendix B, “Register Names”. Theisyms command displays the contents of thi
table.

8.7.1 Summary of Symbol Commands

symlist [filename]

Shows the list of program-defined symbols sorted by ascending address, as seen in Figure 8-5. Iffilenameis given,
the list is written to the named file, otherwise the list is written to the screen.
8-8 Debugging Copyright © 2000 Hewlett-Packard Co.

Ski IA-64 Simulator Reference Manual 1.0L
isyms [filename]

Writes the list of internal variables tofilename if given, otherwise to the screen.

Figure 8-5. The symlist Output from xski
Copyright © 2000 Hewlett-Packard Co. Debugging 8-9

Ski IA-64 Simulator Reference Manual 1.0L
8-10 Debugging Copyright © 2000 Hewlett-Packard Co.

Ski IA-64 Simulator Reference Manual 1.0L

vided
om the
les may
nt.

st nota-
rule is
sary.

werful
ge, sub-
particu-

ative
o create

first

a
ate

is

e file

rams that
run-time

xt can

ecution
particular
rences
9 Command Files

The dot (“. ”) command temporarily redirects command input to the simulator so that input is taken from the file pro
as an argument to the command. Into this file (a “command file”), you put commands as if you had typed them fr
keyboard. Several commands are specifically applicable to command files and are described below. Command fi
be nested; i.e., one command file may invoke another. The maximum nesting depth is operating-system-depende

Some syntax rules that apply to keyboard input don’t make sense or would be cumbersome in command files. Mo
bly, in ski , a shortcut for re-executing the previous command is to hit the enter/return key on an empty line. This
removed in command files, so you are free to put in blank lines for readability. You can also indent lines as neces

The ability to assign values to registers and memory and the flow control features provide the simulator with a po
Church-Turing-complete command language; i.e., tasks which can be accomplished in any programming langua
ject to memory constraints, can be accomplished in the command language of the simulator. Command files are
larly appropriate for initializing the state of the simulator and for implementing complex facilities on top of Ski’s n
commands. For example, you can write command files to setup the machine state just before an I/O interrupt, t
sophisticated breakpointing, and to take complex performance measurements.

9.1 Initialization File
If you start Ski with a-i option followed by a filename, the named file will be executed as a command file before the
prompt (see Section 2.5.1, “Command Line Flags”). This feature is particularly important forbski , because without a
command file to guide it,bski will only run your program and thenquit . If you want to do anything else, you need
command file. When you combine the-i option with Ski’s ability to load a program on the command line, you can cre
a powerful debugging environment. For example, this command line:

bski -i test.init -stats -icnt instruction_counts

combined with thistest.init command file:

load ia_test 0x26c50

romload test.com etext test.map

uses the command filetest.init to load an IA-64 Platform Support File namedia_test (filling in Ski’s symbol table
for program-defined symbols), and then loads the IA-32 system-mode programtest.com , putting it at the location corre-
sponding to the symbol “etext ” in ia_test . The command file finishes andbski automatically executes arun com-
mand followed by aquit command. To start the run, theia_test program receives 0x26c50 as its argv[1] value. Th
corresponds to the value of the symbol “etext ” and tells ia_test wheretest.com was loaded. The IA-64 program
completes its initialization and transfers control to the IA-32 program, setting thepsr.isbit appropriately. When the IA-32
program completes,bski prints out end-of-run performance statistics and writes an instruction frequency count to th
instruction_counts .

9.2 Labels and Control Flow in Command Files
Command files are useful as macro sequences of simple commands and, more interestingly, to create small prog
do useful things for you: create formatted displays of data structures, create complete breakpoints, and gather
statistics, for example. Two commands provide the ability to change the flow of control in a command file:goto andif .

9.2.1 The goto Command and Labels

A label identifies a particular line in a command file. Labels are defined in Section 4.4.2.4, “Labels”. No other te
appear on a label line.

The goto command takes a label as an argument and searches the command file for a line with that label. Ex
resumes at the first command after the label. There is no good reason to have a label appear more than once in a
command file; if this condition occurs, only the first occurrence of the label will be noticed and all subsequent occur
will be ignored. Thegoto command can only be executed in a command file. Agoto may go forward or backward. An
Copyright © 2000 Hewlett-Packard Co. Command Files 9-1

Ski IA-64 Simulator Reference Manual 1.0L

o, the
le, this
ishes,

hat is, if
ro, that
mand
eral inte-

d sign”
e in

in less
example of usinggoto and a label is:

loop:

... other commands ...

goto loop

9.2.2 The if Command

The if command allows for conditional execution. If the expression following the command evaluates to nonzer
remainder of the line is executed; otherwise it is ignored. (No spaces are allowed in the expression.) For examp
command file steps through a IA-64 application-mode simulation 600 instructions at a time until the program fin
printing the contents of general register 32 after each step:

loop:

step 600

eval r32

if !$exited$ goto loop

quit

If a colon surrounded by spaces is present on the line, the remainder of the line is taken to be an “else” clause. T
the if expression evaluates to nonzero, the remainder of the line up to but not including the colon is executed; if ze
part of the line is ignored and execution continues immediately following the colon. For example, the following com
file line sets the contents of general register 4 to zero or one depending on whether the sum of the contents of gen
ger 1 and 2 are equal to the contents of the location pointed to by general register 13.

if (r1+r2)==*r13 = r4 0 : = r4 1

9.3 Comments in Command Files
To document command files, you can add comments– any characters following an octothorpe (also called a “poun
or “sharp sign” and shown, typically, as “#”) are ignored by the command interpreter. Examples of comments ar
Figure 9-1.

9.4 An Example Command File
Command files are easy to write. The command file in Figure 9-1 for computing Fibonacci numbers was written
than five minutes and most of that time was spent making the comments correct.
9-2 Command Files Copyright © 2000 Hewlett-Packard Co.

Ski IA-64 Simulator Reference Manual 1.0L

ey were

is

,

and
9.5 Summary of Command File Commands
. filename

Executes commands in the given command file. The file is opened and its contents are executed as if th
entered from the keyboard. When the contents of a non-nested command file are exhausted,xski andski resume
keyboard input andbski executes arun command followed by aquit command. When a nested command file
exhausted, control returns to the next-higher-level command file.

if expression-without-spaces true-command

if expression-without-spaces true-command : false-command

In the first form, causes the rest of the line to be ignored ifexpression-without-spacesevaluates to zero. Otherwise
true-commandis executed. In the second form, ifexpression-without-spacesevaluates to nonzero, thetrue-command
is executed. Otherwise, thefalse-command is executed.

The if command may be executed from the keyboard. In combination withxski ’s Command History (see Section
3.7.1, “The xski Main Window”) orski ’s command repetition mechanism (see Section 3.7.2, “The ski Comm
Window”), this can be quite powerful.

goto label

In a command file (only), causes execution to continue following the first line in the file which contains thelabel.
Goto’s may be forward or backward.

comment

The “#” and all characters following it until the next newline are ignored.

label:

The colon (“: ”) command marks agoto label. All characters following the “: ” and preceding the next newline are
ignored.

Figure 9-1. An Example Command File to Compute Fibonacci Numbers

Compute and print Fibonacci numbers from 1 to 50.
Initialize variables
= r10 1 # Hold n-2’th value
= r11 1 # Hold n-1’th value
= r12 0 # Temporary holding place for n-1’th value
= r13 0 # Loop counter

Print out first two Fibonacci numbers (initial values of r10 & r11)
eval r10
eval r11

Calculate and print the rest of the numbers. The last line has the
stopping value of the loop index. (This is a simple counting loop.)
loop:
 eval +r11 # “+” makes an expression: decimal and hex printing
 = r12 r11 # Compute n’th Fibonacci term
 = r11 r11+r10
 = r10 r12
 = r13 r13+1 # Increment loop counter
 if r13<0d50 goto loop # Loop again?
Copyright © 2000 Hewlett-Packard Co. Command Files 9-3

Ski IA-64 Simulator Reference Manual 1.0L
9-4 Command Files Copyright © 2000 Hewlett-Packard Co.

Ski IA-64 Simulator Reference Manual 1.0L

ymbol
guage”.

abbrevi-
ple, the

as

,
hap-

ny part
ee

om-

ands”

ay be
d; if so,

ds” on

y allo-
A Command Reference

In the command descriptions that follow,this face indicates literal text you should type,this faceindicates operand text
you should modify, [bracketed text] indicates text you may choose to omit (never type the brackets), and the + s
indicates items you may repeat. The syntax of the command language is described in Chapter 4, “Command Lan

The order in which commands appear here is the order in which they may be abbreviated: any command may be
ated to as few letters as are needed to distinguish it from all commands preceding it in the list below. For exam
“step ” command may be spelled out in full or abbreviated as “ste ”, “ st ”, or “ s”. The “save ” command can be spelled
out in full or abbreviated as “sav ” or “sa ”. It can’t be abbreviated as “s” because it follows “step ” in the list below.

. filename

Execute commands from the command file specified byfilename. The file is opened and its contents are executed
if they were entered from the keyboard. When the contents are exhausted,ski andxski resume reading commands
from the keyboard.bski , on the other hand, executes arun command and then aquit command (unless, of course
the command file already executed aquit command). Command files can be nested to a reasonable level. See C
ter 9, “Command Files”.

comment

Comments may be used to help document the design and implementation of command files. A comment is a
of a line following an octothorpe (“#”). The octothorpe and everything following it on the line are ignored. S
“Comments in Command Files” on page 9-2.

label:

Labels are targets forgoto commands and are valid only in command files. See “Labels and Control Flow in C
mand Files” on page 9-1.

= register_name value

Assignvalue to the register specified byregister_name. Unless a modifying prefix such as0d, 0o, or 0b is used,
valuewill be treated as a hexadecimal number. See “Changing Registers and Memory with Assignment Comm
on page 8-1. The register names recognized by Ski are listed in “IA-64 Registers” on page B-1.

=1 address value+

=2 address value+

=4 address value+

=8 address value+

Thevalueis assigned to the specified location in memory. The old value at the location is lost. The location m
on any allocated page, including instruction pages. Multiple values separated by whitespace may be supplie
they will be assigned to sequential memory addresses. Unless a modifying prefix such as0d, 0o, or 0b is used,value
will be treated as a hexadecimal number. See “Changing Registers and Memory with Assignment Comman
page 8-1.

The=1 command truncates any extra high-order bytes of thevalueto make a single byte. The=2 command truncates
or pads (with zero) the high order bytes of thevalueas necessary to make a two-byte quantity. Similarly, the=4 and
=8 commands truncate or pad high order bytes to make four- and eight-byte quantities, respectively. Thepsr.bebit
controls whether the data is stored in big-endian or little-endian format.

=s address string_without_spaces

Thestring_without_spacesis assigned to memory locations starting at the location specified byaddress. A null byte
is added to the end of the string automatically. The old value at the location is lost. The location may be on an
Copyright © 2000 Hewlett-Packard Co. Command Reference A-1

Ski IA-64 Simulator Reference Manual 1.0L

ces and
8-1.

ing

t a

e
“Data

e-

e 5-5.
cated page, including instruction pages. Multiple values may not be supplied. The string may not contain spa
quoting it is not a workaround. See “Changing Registers and Memory with Assignment Commands” on page

bs [address]

Set breakpoint at the location specified by the current value ofip or at the specifiedaddress. (IA-64 code only) See
“Setting Program Breakpoints” on page 8-4.

bD

Delete all breakpoints. See “Deleting Program Breakpoints” on page 8-5.

bd breakpoint_number

Delete breakpointbreakpoint_number. Use thebl command to get a list of all breakpoints and their correspond
numbers. See “Deleting Program Breakpoints” on page 8-5.

bl

Display a list of current breakpoints. See “Listing Program Breakpoints” on page 8-5.

cont

Continue simulating the program from the currentip value. Most commonly used after the simulator stops a
breakpoint. See “Program Execution” on page 6-5.

dj [address]

Jump the Data Window display to the specifiedaddress. If no addressis given, the window display changes to th
previous location, providing a handy way to swap the display between two different parts of memory. See
Window Commands” on page 5-5.

db [count]

Move the Data Window backwardcount lines or one windowful if nocount is given. See “Data Window Com-
mands” on page 5-5.

dbndl

Display the Data Window contents as instruction bundles. See “Data Window Commands” on page 5-5.

dbs address length [r|w|rw]

Set data breakpoint covering the memory area oflengthbytes starting ataddress. See “Setting Data Breakpoints” on
page 8-7.

dbD

Delete all data breakpoints. See “Deleting Program Breakpoints” on page 8-5.

dbd breakpoint_number

Delete data breakpointbreakpoint_number. Use thedbl command to get a list of all breakpoints and their corr
sponding numbers. See “Deleting Program Breakpoints” on page 8-5.

dbl

Display a list of current data breakpoints. See “Listing Program Breakpoints” on page 8-5.

dd starting_address ending_address [filename]

Dump memory contents to the screen or to the file given byfilename. The range dumped is betweenstarting_address
andending_addressinclusive. The dump is formatted as hexadecimal. See “Data Window Commands” on pag
A-2 Command Reference Copyright © 2000 Hewlett-Packard Co.

Ski IA-64 Simulator Reference Manual 1.0L

”

al
s,
g Data”

-1.

.

t

t spec-
d a
df [count]

Move the Data Window forwardcountlines or one windowful if nocountis given. See “Data Window Commands
on page 5-5.

dh

Display Data Window contents in hexadecimal format. See “Data Window Commands” on page 5-5.

eval expression_without_spaces+

Evaluate one or moreexpression_without_spacesand print the result in an appropriate format, typically hexadecim
and/or decimal, or symbolically. Anexpression_without_spacescan include numbers, registers, internal variable
program-defined symbols, operators, and parentheses for grouping. See “Evaluating Formulas and Formattin
on page 8-4.

fr

ski : Show the floating point registers in the Register Window. See “Register Window Commands” on page 5

xski : Toggle the display of the floating point registers pane. See “Register Window Commands” on page 5-1

goto label

Causes execution to continue following the first line in the file which contains thelabel. Goto’s may be forward or
backward. Goto’s are valid only in command files. See “The goto Command and Labels” on page 9-1.

gr

ski : Show the general registers in the Register Window. See “Register Window Commands” on page 5-1.

xski : Toggle the display of the general registers pane. See “Register Window Commands” on page 5-1.

help [command_name]

Display a list of the commands Ski recognizes, or, if acommand_nameis specified, a syntax description for tha
command. See “Command Entry” on page 4-1.

iar

ski : Show the IA-32 registers in the Register Window. See “Register Window Commands” on page 5-1.

xski : Toggle the display of the IA-32 registers pane. See “Register Window Commands” on page 5-1.

iabs [address]

Set IA-32 breakpoint ataddressor at the current value ofip if addressis omitted. (IA-32 code only) See “Setting
Program Breakpoints” on page 8-4.

iaload filename address [mapfile [args]+]

Prepare for IA-32 application-mode simulation: Load an IA-32 executable file (.com or .exe) and prepare to pass
the programargsusing the MS-DOS command line parameter mechanism.addressspecifies where to load the pro-
gram.mapfileprovides Ski with the mapping between program-defined symbols and their addresses and mus
ify an ASCII text file exactly compatible with mapfiles produced by the Microsoft “ML” linker. See “How to Loa
Program” on page 6-3.

if expression_without_spaces true_command [: false_command]

Executetrue_commandif the expression_without_spacesevaluates to a non-zero value,false_commandif it evalu-
ates to zero. See “The if Command” on page 9-2.
Copyright © 2000 Hewlett-Packard Co. Command Reference A-3

Ski IA-64 Simulator Reference Manual 1.0L

Pro-

. See

om-

le

mary

or

ulator
conve-

ation

se-

e com-
ed with

ion. Only
such as

Win-
i.e.
isyms [filename]

Write internal symbols to the screen or to the file given byfilename. See “Symbol Table Commands” on page 8-8.

load filename [args]+

Prepare for IA-64 application-mode simulation: Load the IA-64 ELF executable program file given byfilenameand
prepare to pass the programargs using the C language argc/argv parameter mechanism. See “How to Load a
gram” on page 6-3.

pj [address]

Jump the Program Window display to the specifiedaddress. If no addressis given, the window display changes to
the previous location, providing a handy way to swap the display between two different parts of the program
“Summary of Program Window Commands” on page 5-2.

pa

Display the program in assembly language format only. (IA-64 only) See “Summary of Program Window C
mands” on page 5-2.

pb [count]

Move the Program Window backwardcountIA-64 bundles or IA-32 instructions, or one windowful less one bund
or instruction if nocount is given. See “Summary of Program Window Commands” on page 5-2.

pd starting_address ending_address [filename]

Dump memory to the screen or to the file given byfilename. The range dumped is betweenstarting_addressand
ending_addressinclusive. The dump is formatted as disassembled instructions, without source code. See “Sum
of Program Window Commands” on page 5-2.

pf [count]

Move the Program Window forwardcountIA-64 bundles or IA-32 instructions, or one windowful less one bundle
instruction if nocount is given. See “Summary of Program Window Commands” on page 5-2.

pm

Display an IA-64 program in both source and assembly form. The source code file must be available to the sim
in the location recorded in the executable file when this command is issued. The source code is displayed for
nience; it cannot be modified or interacted with. Mixed display may not be useful if a high degree of optimiz
was applied during compilation. (IA-64 only) See “Summary of Program Window Commands” on page 5-2.

quit [return_value_for_shell]

Quit the simulator. If noreturn_value_for_shellis given, a zero value is returned to the shell. Return values are u
ful in shell script programming. See “Quitting Ski” on page 2-6.

run

Simulate the program. Using the C language argc/argv mechanism, Ski will pass the program a copy of th
mand line parameters Ski received on its command line, or, if specified, the command line parameters provid
the load andiaload commands. See “Program Execution” on page 6-5.

rest filename

Restore the state of a simulated processor from the specified file and prepare to resume a suspended simulat
the registers and memory of the simulated processor are restored; state information private to the simulator
cycle counts is not restored. See “Saving and Restoring the Simulator State” on page 8-8.

rf [count]

Moves the Register Window “forward” (scroll down) through the currently-displayed register set. The Register
dow is scrolledcountlines. If countis omitted, the Register Window scrolls down one windowful less one line,
A-4 Command Reference Copyright © 2000 Hewlett-Packard Co.

Ski IA-64 Simulator Reference Manual 1.0L

Win-
the

s and
ow

n

d
ving and

n” on

tion”

gisters,
Perfor-
the last line of the old window is displayed as the first line of the new window. (ski only) See “ski Register Window
Commands” on page 5-1.

rb [count]

Moves the Register Window “backward” (scroll up) through the currently-displayed register set. The Register
dow is scrolledcountlines. If countis omitted, the Register Window scrolls up one windowful less one line, i.e.
first line of the old window is displayed as the last line of the new window. (ski only) See “ski Register Window
Commands” on page 5-1.

rd [filename]

Dump the Register Window to the screen or to the file given byfilename. See “Register Window Commands” on
page 5-1.

romload filename address [mapfile]

Load an MS-DOS.com -format file for IA-64, IA-32, or mixed system-mode simulation.addressspecifies where to
load the program.mapfileprovides Ski with the mapping between program-defined symbols and their addresse
must specify an ASCII text file exactly compatible with mapfiles produced by the Microsoft “ML” linker. See “H
to Load a Program” on page 6-3.

step [count]

Executecount instructions or, if nocount is specified, one instruction. See “Program Execution” on page 6-5.

step until expression_without_spaces

Execute instructions until theexpression_without_spaceshas a non-zero value. See “Program Execution” o
page 6-5.

save filename

Save the state of a simulated processor in the file given byfilename. Only the registers and memory of the simulate
processor are saved; state information private to the simulator such as cycle counts is not saved. See “Sa
Restoring the Simulator State” on page 8-8.

sdt

Show the Data Translation Lookaside Buffer (DTLB) (system-mode only). See “System-Mode TLB Simulatio
page 6-2.

sit

Show Instruction Translation Lookaside Buffer (ITLB) (system-mode only). See “System-Mode TLB Simula
on page 6-2.

sr

ski : Show the system registers (Control Registers, Region Registers, Debug Registers, Protection Key Re
Data Breakpoint Registers, Instruction Breakpoint Registers, Performance Monitor Configuration Registers,
mance Monitor Data Registers) in the Register Window. See “Register Window Commands” on page 5-1.

xski : Toggle the display of the system registers pane. See “Register Window Commands” on page 5-1.

symlist [filename]

Write program-defined symbols to the screen or to the file given byfilename. See “Symbol Table Commands” on
page 8-8.
Copyright © 2000 Hewlett-Packard Co. Command Reference A-5

Ski IA-64 Simulator Reference Manual 1.0L

er, User
ur

ski : Show the user registers (Predicate Registers, Branch Registers, Application Registers, Instruction Point
Mask) in the Register Window. See “Register Window Commands” on page 5-1.

xski : Toggle the display of the user registers pane. See “Register Window Commands” on page 5-1.
A-6 Command Reference Copyright © 2000 Hewlett-Packard Co.

Ski IA-64 Simulator Reference Manual 1.0L

egister
ocuments
ssa part,
entities
by

ur bytes

r bytes

ificant

r bytes

r bytes

ast
B Register Names

IA-64 registers are fully described in other documents. This appendix provides a list for convenience only. The r
names are documented here as recognized by Ski and, in a few cases, don’t exactly match the names in other d
due to program limitations. For example, the floating point registers must be accessed in three pieces: the manti
the sign part, and the (biased) exponent part. Similarly, the “Not a Thing” bits of the various registers are separate
for Ski. Individual bits of complex registers such as thepsr are documented here as well, corresponding to the names
which Ski recognizes them.

B.1 IA-64 Registers
al, ah, ax, eax IA-32 Registers: al and ah are byte-wide, ax is al and ah taken together as two bytes, eax is fo

wide with ax as the two least significant bytes.

ar0 - ar127 IA-64 Application Registers

b0 - b7 IA-64 Branch Registers

bl, bh, bx, ebx IA-32 Registers: bl and bh are byte-wide, bx is bl and bh taken together as two bytes, ebx is fou
wide with bx as the two least significant bytes.

bp, ebp IA-32 Base Pointers: bp is two bytes wide, ebp is four bytes wide with bp as the two least sign
bytes.

bsp IA-64 Register Save Engine (RSE) Backing Store Pointer Register

bspst IA-64 Register Save Engine (RSE) Backing Store Pointer Register for memory stores

ccv IA-64 Compare and Exchange Value Register

cl, ch, cx, ecx IA-32 Registers: cl and ch are byte-wide, cx is cl and ch taken together as two bytes, ecx is fou
wide with cx as the two least significant bytes.

cmcv IA-64 Corrected Machine Check Vector Register

cr0 - cr127 IA-64 Control Registers

cs IA-32 Code Segment Register

csd IA-32 Code Segment Register Descriptor

dbr0 - dbr15 IA-64 Data Breakpoint Registers

dcr IA-64 Default Control Register

dl, dh, dx, edx IA-32 Registers: dl and dh are byte-wide, dx is dl and dh taken together as two bytes, edx is fou
wide with dx as the two least significant bytes.

di, edi IA-32 Arithmetic Registers: di is two bytes wide, edi is four bytes wide with di as the two le
significant bytes.

ds IA-32 Data Segment Register

dsd IA-32 Data Segment Register Descriptor

ec IA-64 Epilog Count Register

eflags IA-32 Flags Register

eflags.ac IA-32 Alignment Check bit

eflags.af IA-32 Auxiliary Carry Flag bit, also called the IA-32 Adjust Flag bit

eflags.be IA-32 Below Equal Flag bit

eflags.cf IA-32 Carry Flag bit
Copyright © 2000 Hewlett-Packard Co. Register Names B-1

Ski IA-64 Simulator Reference Manual 1.0L
eflags.df IA-32 Direction Flag bit

eflags.id IA-32 ID Flag bit

eflags.if IA-32 Interruption Flag bit

eflags.iopl IA-32 I/O Privilege Level bit

eflags.le IA-32 Less Equal Flag bit

eflags.lt IA-32 Less Than Flag bit

eflags.nt IA-32 Nested Task bit

eflags.of IA-32 Overflow Flag bit

eflags.pf IA-32 Parity Flag bit

eflags.rf IA-32 Resume Flag bit

eflags.sf IA-32 Sign Flag bit

eflags.tf IA-32 Trap Flag bit

eflags.vm IA-32 Virtual 8086 Mode bit

eflags.zf IA-32 Zero Flag bit

eoi IA-64 End of Interrupt

es IA-32 “Extra” Segment Register

esd IA-32 “Extra” Segment Register Descriptor

esp IA-32 four byte Stack Pointer; see “iasp” below

f0.e, f1.e, … f127.e
IA-64 Floating-point Register exponent parts

f0.m, f1.m, … f127.m
IA-64 Floating-point Register mantissa parts

f0.s, f1.s, … f127.s
IA-64 Floating-point Register sign bits

fpsr IA-64 Floating-point Status Register

fpsr.traps IA-64 FPSR Trap Bits

fpsr.sf0 IA-64 FPSR Status Field 0

fpsr.sf0.ftz IA-64 FPSR Status Field 0, Flush-to-Zero mode bit.

fpsr.sf0.wre IA-64 FPSR Status Field 0, Widest range exponent mode bit

fpsr.sf0.pc IA-64 FPSR Status Field 0, Precision control bits

fpsr.sf0.rc IA-64 FPSR Status Field 0, Rounding control bits

fpsr.sf0.v IA-64 FPSR Status Field 0, IEEE Invalid Operation status bit

fpsr.sf0.d IA-64 FPSR Status Field 0, Denormal/Unnormal Operand status bit

fpsr.sf0.z IA-64 FPSR Status Field 0, IEEE Zero Divide status bit

fpsr.sf0.o IA-64 FPSR Status Field 0, IEEE Overflow status bit

fpsr.sf0.u IA-64 FPSR Status Field 0, IEEE Underflow status bit

fpsr.sf0.i IA-64 FPSR Status Field 0, IEEE Inexact status bit

fpsr.sf1 IA-64 FPSR Status Field 1

fpsr.sf2 IA-64 FPSR Status Field 2
B-2 Register Names Copyright © 2000 Hewlett-Packard Co.

Ski IA-64 Simulator Reference Manual 1.0L

ificant
er of
fpsr.sf2.pc IA-64 FPSR Status Field 2, Precision control bits

fpsr.sf2.rc IA-64 FPSR Status Field 2, Rounding control bits

fpsr.sf2.v IA-64 FPSR Status Field 2, IEEE Invalid Operation status bit

fpsr.sf2.d IA-64 FPSR Status Field 2, Denormal/Unnormal Operand status bit

fpsr.sf2.z IA-64 FPSR Status Field 2, IEEE Zero Divide status bit

fpsr.sf2.o IA-64 FPSR Status Field 2, IEEE Overflow status bit

fpsr.sf2.u IA-64 FPSR Status Field 2, IEEE Underflow status bit

fpsr.sf2.i IA-64 FPSR Status Field 2, IEEE Inexact status bit

fpsr.sf3 IA-64 FPSR Status Field 3

fs IA-32 additional extra Segment Register

fsd IA-32 additional extra Segment Register Descriptor

gdtd IA-32 Global Descriptor Table Descriptor

gp IA-64 Global Pointer, a synonym for r1

gp.nat IA-64 Global Pointer Not-a-Thing bit, a synonym for r1.nat

gs IA-32 additional extra Segment Register

gsd IA-32 additional extra Segment Register Descriptor

iasp, esp IA-32 Stack Pointer: iasp is two bytes wide, esp is four bytes wide with iasp as the two least sign
bytes. (The x86 mnemonic for the iasp register is “sp” but that conflicts with the IA-64 Stack Point
the same name, hence the name change for IA-32.)

ibr0 - ibr15 IA-64 Instruction Breakpoint Registers

ifa IA-64 Interruption Faulting Address Register

ifs IA-64 Interruption Function State

iha IA-64 Interruption Hash Address

iim IA-64 Interruption Immediate Register

iip IA-64 Interruption Instruction Bundle Pointer

iipa IA-64 Interruption Instruction Previous Address

ip IA-64 Instruction Pointer

ipsr IA-64 Interruption Processor Status Register

irr0-irr3 IA-64 Interrupt Request Registers

isr IA-64 Interruption Status Register

itc IA-64 Interval Time Counter

itir IA-64 Interruption TLB Insertion Register

itm IA-64 Interval Timer Match Register

itv IA-64 Interval Timer Vector

iva IA-64 Interrupt Vector Address

ivr IA-64 Interrupt Vector Register

k0 - k7 IA-64 Kernel Registers

lc IA-64 Loop Count Register

ldt IA-32 Local Descriptor Table
Copyright © 2000 Hewlett-Packard Co. Register Names B-3

Ski IA-64 Simulator Reference Manual 1.0L
ldtd IA-32 Local Descriptor Table Descriptor

lid IA-64 Local Interrupt ID

lrr0-lrr1 IA-64 Local Redirection Registers

p0 - p63 IA-64 Predicate Registers

pfs IA-64 Previous Function State

pkr0 - pkr15 IA-64 Protection Key Registers

pmc0 - pmc15 IA-64 Performance Monitor Configuration Registers

pmd0 - pmd15 IA-64 Performance Monitor Data Registers

pmv IA-64 Performance Monitoring Vector

psr IA-64 Processor Status Register

psr.ac IA-64 PSR Alignment Check bit

psr.be IA-64 PSR Big-Endian bit

psr.bn IA-64 PSR Register Bank bit

psr.cpl IA-64 PSR Current Privilege Level

psr.da IA-64 PSR Disable Access and Dirty-bit faults bit

psr.db IA-64 PSR Debug Breakpoint fault bit

psr.dd IA-64 PSR Data Debug fault disable bit

psr.dfh IA-64 PSR Disabled Floating-point High bit

psr.dfl IA-64 PSR Disabled Floating-point Low bit

psr.di IA-64 PSR Disable Instruction set transition bit

psr.dt IA-64 PSR Data address Translation bit

psr.ed IA-64 PSR Exception Deferral bit

psr.i IA-64 PSR Interrupt unmask bit

psr.ic IA-64 PSR Interrupt Collection bit

psr.id IA-64 PSR Instruction Debug fault disable bit

psr.is IA-64 PSR Instruction Set bit

psr.it IA-64 PSR Instruction address Translation bit

psr.lp IA-64 PSR Lower Privilege transfer trap bit

psr.mfh IA-64 PSR Floating-point High modified bit

psr.mfl IA-64 PSR Floating-point Low modified bit

psr.mc IA-64 PSR Machine Check abort mask bit

psr.pk IA-64 PSR Protection Key enable bit

psr.pp IA-64 PSR Privileged Performance monitor enable bit

psr.ri IA-64 PSR Restart Instruction slot number

psr.rt IA-64 PSR Register stack Translation bit

psr.si IA-64 PSR Secure Interval timer bit

psr.sp IA-64 PSR Secure Performance monitors bit

psr.ss IA-64 PSR Single Step enable bit
B-4 Register Names Copyright © 2000 Hewlett-Packard Co.

Ski IA-64 Simulator Reference Manual 1.0L

east

the
psr.tb IA-64 PSR Taken Branch trap bit

psr.um IA-64 PSR User Mask bits

psr.up IA-64 PSR User Performance monitor enable bit

pta IA-64 Page Table Address

r0, r1, … r127 IA-64 General Registers

r0.nat, … r127.nat
IA-64 General Register Not-a-Thing bits

rnat IA-64 Register Save Engine (RSE) Not-a-Thing (NaT) Collection Register

rp IA-64 Return Pointer, a synonym for b0

rr0 - rr7 IA-64 Region Registers

rrbf IA-64 CFM Register Rename Base for floating-point registers

rrbg IA-64 CFM Register Rename Base for general registers

rrbp IA-64 CFM Register Rename Base for predicate registers

rsc IA-64 Register Stack Configuration Register

si, esi IA-32 Arithmetic Registers: si is two bytes wide, esi is four bytes wide with si as the two l
significant bytes.

sof IA-64 CFM Size of Stack frame

sol IA-64 CFM Size of Locals Portion of Stack frame

sor IA-64 CFM Size of Rotating Portion of Stack frame

sp IA-64 Stack Pointer, a synonym for r12. For the IA-32 equivalent of the x86 “sp” register, see
description of “iasp” above.

sp.nat IA-64 Stack Pointer Not-a-Thing bit, a synonym for r12.nat.

ss IA-32 Stack Segment Register

ssd IA-32 Stack Segment Register Descriptor

tpr IA-64 Task Priority Register

unat IA-64 User Not-a-Thing (NaT) Collection Register
Copyright © 2000 Hewlett-Packard Co. Register Names B-5

Ski IA-64 Simulator Reference Manual 1.0L
B-6 Register Names Copyright © 2000 Hewlett-Packard Co.

Ski IA-64 Simulator Reference Manual 1.0L

Section
C Internal Variable Names

Ski has one combined symbol table for registers and internal variables. (See Section 4.4.2.2, “Registers” and
4.4.2.3, “Internal Variables”.) A separate symbol table describes program-defined symbols.

C.1 Internal Variables
$cycles$ Number of “virtual cycles” simulated.

$exited$ The value 0 until the simulated program exits. Then the variable takes the value 1.

$heap$ The address of the bottom of the simulated heap.

$insts$ The number of instructions simulated so far.
Copyright © 2000 Hewlett-Packard Co. Internal Variable Names C-1

Ski IA-64 Simulator Reference Manual 1.0L
C-2 Internal Variable Names Copyright © 2000 Hewlett-Packard Co.

Ski IA-64 Simulator Reference Manual 1.0L

“Fault”
ignal to

age at
ee the

e, not

s of
nt com-

9. See

roes.
terrup-

will not

his is

akpoints”

m Break-
D Simulator Status and Error Messages

The following is a description of some of the status and error messages which can be produced by the simulator.
and “Trap” messages are usually the result of a program trying to do something that, under Linux, would cause a s
be generated.

The “%” constructs are printf() substitutions. Where “%s” appears, a string will be substituted in the error mess
runtime. Where “%llx” appears, a 64-bit hexadecimal integer will be substituted in the error message at runtime. S
printf() man page for more information on % substitutions.

All breakpoints deleted

You executed thebD command. Ski is confirming that it has deleted all the breakpoints. This is a status messag
an error message. See “Deleting Program Breakpoints” on page 8-5.

All breakpoints in use

You tried to set a breakpoint but all ten are in use. Use thebl command to list them and then thebd or bD commands
to free up some for you to use. See “Setting Program Breakpoints” on page 8-4.

Assignment failed

You tried to use the=1, =2, =4, =8, or =s commands to write data to an invalid location. Ski creates new page
memory when the simulated program needs them; Ski will not create new pages in response to the assignme
mands. See “Changing Registers and Memory with Assignment Commands” on page 8-1.

Bad breakpoint number. (Use 0-9)

You tried to specify a breakpoint but used an invalid specifier. There are ten breakpoints, numbered 0 through
“Deleting Program Breakpoints” on page 8-5.

Break instruction fault

A non-Ski-breakpointBREAK instruction was executed. One possible cause is a wild branch to page with all ze
This can only happen for application-mode programs; system-mode programs handle this fault through the in
tion mechanism. See “How Ski Implements Breakpoints” on page 8-6 and “Interruptions” on page 7-1.

Breakpoint already set at that location

You tried to set a breakpoint at an address where there already is a breakpoint. Your request is ignored; Ski
set two breakpoints at one address. See “Setting Program Breakpoints” on page 8-4.

Breakpoint #%d at %s (%s) deleted

You used thebd command to delete a specific breakpoint. Ski is confirming that it has deleted the breakpoint. T
a status message, not an error message. See “Deleting Program Breakpoints” on page 8-5.

Breakpoint (IA-64) at %s

An IA-64 breakpoint has been reached. This is a status message, not an error message. See “Program Bre
on page 8-4.

Breakpoint (IA-32) at %s

An IA-32 breakpoint has been reached. This is a status message, not an error message. See “Setting Progra
points” on page 8-4.
Copyright © 2000 Hewlett-Packard Co. Simulator Status and Error Messages D-1

Ski IA-64 Simulator Reference Manual 1.0L

right
per-

le to

he file-
and the

problem

mber
indow

hat is
ing” on

age 9-1.

am. But,
d after

file
ski for

than
field on
Reg-

to read
file per-
Breakpoint #%d wasn’t set

You used thebd command to delete a specific breakpoint but that breakpoint doesn’t exist. Did you specify the
breakpoint? Use thebl command to list the breakpoints. See “Deleting Program Breakpoints” on page 8-5 and
haps “Listing Program Breakpoints” on page 8-5.

Cannot access registers outside current frame

You tried to use the= command to assign a new value to a register that isn’t in the set of registers currently visib
your program. The only registers for which this can occur are the General Registers (gr) and their NaT bits. Ski
faithfully implements IA-64 register stacking and rotation. Look at the most recentALLOC instruction.

Cannot open file %s (%s) for %s

This generic error message indicates that Ski tried to open a file and failed. The first %s field is replaced with t
name you provided, the second %s field is replaced with the filename Ski tried to use after tilde expansion,
third %s field is replaced with the mode Ski tried to use, either “reading ”, “ writing ”, or “ appending ”. Check that
you typed the filename correctly and that the directories you specified are accessible. Is there a permissions
or a network failure, perhaps? See “Filenames” on page 4-5.

Construct DWARF image: can’t find .debug_info section

You told Ski to load a program. Ski couldn’t find the part of the executable file containing source code line nu
information. As a result, Ski won’t be able to show source code in the Program Window. See “Program W
Commands” on page 5-2.

Could not open %s for reading

You told Ski to load a program but Ski couldn’t open the file you specified. Perhaps you specified a file t
doesn’t exist or a pathname that includes non-existent or inaccessible directories? See “Program Load
page 6-3.

couldn’t find label %s

A command file tried to use thegoto command but Ski can’t find the label to which thegoto refers. The %s field is
replaced with the label. Perhaps the label is spelled incorrectly? See “The goto Command and Labels” on p

Couldn’t open file ‘%s’. Was ski started in the right directory?

Ski loaded a program to simulate, per your request, and tried to access source code pointed to by that progr
for some reason, Ski couldn’t open the specified file. This can happen, for example, if files have been move
compilation. See “Summary of Program Window Commands” on page 5-2.

Couldn’t open instruction count file

You startedbski with the -icnt option butbski couldn’t open the file you specified. Perhaps you specified a
that is write-protected or a pathname that includes non-existent or inaccessible directories? See “Using b
Batch Simulations” on page 2-2 and “Command Line Flags” on page 2-4.

Data larger than a %s. Truncated to 0x%llx

You used the=, =1, =2, =4, or =8 commands to write data to a register or to memory. You provided more data
would fit, so Ski truncated the excess most significant part away and used the least significant part. The %s
the left is how many bytes Ski needed. The %llx field on the right is the value after truncation. See “Changing
isters and Memory with Assignment Commands” on page 8-1.

Error reading ‘%s’ line: %d

Ski tried to display the source code corresponding to an IA-64 program you loaded. For some reason, it failed
a line from the file represented by the %s field, at the line number represented by the %d field. Perhaps the
D-2 Simulator Status and Error Messages Copyright © 2000 Hewlett-Packard Co.

Ski IA-64 Simulator Reference Manual 1.0L

3-6 and

ing and

you spec-
ustment

e you
“Pro-

of
m needs
Memory

such as
s; IA-

Simula-

appli-
ed, for

or exam-
grams
“Inter-

See

ee
missions are wrong or a remote file has suddenly become inaccessible? See “The Program Window” on page
the discussion of thepm command in “Program Window Commands” on page 5-2.

Error: unrecognized restore file tag: %s

You are trying to restore a saved simulator state and either the save file is corrupt or Ski is broken. See “Sav
Restoring the Simulator State” on page 8-8.

Expression aligned to (mod %lld) boundary

You tried to assign an address to a register that requires an address on a specific boundary, but the address
ified isn’t on that boundary. Ski has adjusted the address for you, but you should check to make sure the adj
matches your intent. See “Changing Registers and Memory with Assignment Commands” on page 8-1.

Expression > 47

You tried to assign a value greater than 47 to therrbp register.

Expression > 95

You tried to assign a value greater than 95 to therrbf or rrbf register.

File size > Memory size

You tried to load an IA-64 program but the library Ski uses to parse ELF files can’t make sense of the file. Ar
sure it’s an IA-64 program and not an IA-32 program, an object file, or something completely different? See
gram Loading” on page 6-3.

Following values could not be assigned:

You supplied multiple values in an=1, =2, =4, or =8 command. Some of the values overflowed on to the next page
memory but that page hasn’t been allocated. Ski creates new pages of memory when the simulated progra
them; Ski will not create new pages in response to assignment commands. See “Changing Registers and
with Assignment Commands” on page 8-1.

FP exception fault

An IA-64 application-mode program attempted to execute a floating point operation that doesn’t make sense,
divide by zero or square root of a negative number. This can only happen for IA-64 application-mode program
64 system-mode programs handle this fault through the interruption mechanism. See Chapter 6, “Program
tion” and “Interruptions” on page 7-1.

FP exception trap

An IA-64 application-mode program caused a floating-point trap. This trap, like all traps, stops simulation of
cation-mode programs. A trap is different from a fault: faults are detected before the machine state is chang
example when an attempt is made to divide by zero. Traps are detected after the machine state is changed, f
ple, when numeric overflow occurs. This can only happen for application-mode programs; system-mode pro
handle this trap through the interruption mechanism. See Chapter 6, “Program Simulation” and Chapter 7.1,
ruptions”.

goto only allowed inside a command file

You tried to execute thegoto command from the keyboard. The command is only legal within command files.
“The goto Command and Labels” on page 9-1.

Halting Simulation

Your IA-64 system-mode program executed aBREAK 0 instruction at a place where there is no Ski breakpoint. S
Chapter 8.3.4.1, “How Ski Implements Breakpoints” and “System-Mode IA-64 Programs” on page 6-2.
Copyright © 2000 Hewlett-Packard Co. Simulator Status and Error Messages D-3

Ski IA-64 Simulator Reference Manual 1.0L

itself.
e IA-

ystem
e 6-1.

Argu-

rands and

left and

ranch.
terrup-

undle.
s” that
nd the
isn’t
” on

con-
ns” on
help: Unknown command: %s

You asked Ski to tell you about a particular command but the command you asked for doesn’t exist. Try thehelp

command alone to get a list of all of the commands Ski understands. See “Command Entry” on page 4-1.

IA-32 program terminated

An IA-32 application-mode program finished executing and invoked an MS-DOS system function to terminate
The function it used doesn’t provide a way for the program to return a completion status. See “Application-Mod
32 Programs” on page 6-1.

IA-32 program terminated with status %d

Your IA-32 application-mode program finished execution in the normal fashion and invoked an MS-DOS s
function to terminate itself and indicate a completion status. See “Application-Mode IA-32 Programs” on pag

Ignored attempt to write a Read-Only symbol

Some registers and symbols recognized by Ski are read-only. You tried to modify one of them. See “Symbolic
ments” on page 4-4 and “Changing Registers and Memory with Assignment Commands” on page 8-1.

Illegal expression: %s

You used an expression that can’t be parsed. Check parentheses, variable names, and the matching of ope
operators. See “Expressions” on page 4-2.

%s: Illegal number of arguments < %d >:

You passed too few or too many operands with a Ski command. The command appears in the %s field on the
the number of operands you passed appears in the %d field on the right. Use thehelp command for information
about the command of interest or see Appendix A, “Command Reference”.

Illegal operation fault

An attempt was made to execute an invalid instruction; probably a wild pointer in a jump table caused a wild b
This can only happen for application-mode programs; system-mode programs handle this fault through the in
tion mechanism. See Chapter 6, “Program Simulation”.

Illegal slot field in breakpoint address

You used thebs command to set an IA-64 breakpoint, but you specified an address in the last four bytes of a b
Because the IA-64 architecture provides for bundle-level, but not instruction-level, addressing, Ski “pretend
the first instruction of the bundle is in the first four bytes, the second instruction is in the second four bytes, a
third instruction is in the third four bytes. You specified a location in the fourth four bytes of a bundle and that
allowed by Ski. See “Setting Program Breakpoints” on page 8-4 and “How Ski Implements Breakpoints
page 8-6.

Interrupting simulation

Ski received a SIGINT signal while simulating, probably because you hit control-C (or whatever key you have
figured to interrupt a running program.) This is a status message, not an error message. See “Interruptio
page 7-1 and the first few paragraphs of Chapter 9, “Command Files”.

missing command

You used the “if expression true_command: false_command” command. Either you left thetrue_commandblank
and theexpressionevaluated to a non-zero value, or you left thefalse_commandblank and theexpressionevaluated
to zero. See “The if Command” on page 9-2.
D-4 Simulator Status and Error Messages Copyright © 2000 Hewlett-Packard Co.

Ski IA-64 Simulator Reference Manual 1.0L

t begin
g the

age 4-2.

, and
lf? See

on

ts”

re-

s that
r com-
m-

ry
cified a

. The
at Ski
mands”
Missing ELF header

See “File size > Memory size” on page D-3.

Missing file version number

You are trying to restore a saved simulator state and the first non-blank, non-comment line of the file doesn’
with “ file_ver ”, the file version string. Is the file a Ski simulator state save file? See “Saving and Restorin
Simulator State” on page 8-8.

missing value for option %s

You specified a command line option that requires an argument. See “Command Line Flags” on page 2-4.

More than %d characters in expression: %s

You gave Ski an expression that is too long for it to parse. Try a shorter expression. See “Expressions” on p

Nesting overflow

You invoked a command file from within another command file, and another command file from within there
again and again... and you did it too much. Do you have an recursive loop, where a command file invokes itse
Chapter 9, “Command Files”.

No breakpoints set

You tried to list all breakpoints with thebl command but there aren’t any. See “Listing Program Breakpoints”
page 8-5.

No breakpoints to delete

You tried to delete all breakpoints with thebD command but there aren’t any. See “Deleting Program Breakpoin
on page 8-5.

No previous command

You tried to re-run the previous command inski but you haven’t executed any commands yet– there is nothing to
run. See “The ski Command Window” on page 3-13.

No such command

You typed a command to Ski that Ski doesn’t understand. Either you mis-typed, or Ski is broken, or the rule
underpin the basic functioning of our universe have ceased to operate properly. In the first case, try typing you
mand correctly; use the “help ” command or see Appendix A, “Command Reference” to find out what the co
mands are. In the third case, you’re on your own; bring film.

No such user %s

You specified a filename with a leading tilde (“~”), causing Ski to try to expand the first word into the home directo
for the corresponding user. Ski wasn’t able to the find the user. Perhaps you mis-typed the filename or spe
user that doesn’t exist? See “Filenames” on page 4-5.

Non %s-aligned address. Aligned to 0x%llx

You used the=2, =4, or =8 commands to write data to memory but you specified an improperly-aligned address
%s field on the left tells what kind of alignment was needed and the %llx field on the right is the address th
used. This may not be the address you want! See “Changing Registers and Memory with Assignment Com
on page 8-1.

Not an ELF file
Copyright © 2000 Hewlett-Packard Co. Simulator Status and Error Messages D-5

Ski IA-64 Simulator Reference Manual 1.0L

” on

ou’ve

m and
e which
ter. See

AGER
et the
roblem
reasons

while
due to
u, for
i-

plica-
apter 6,

ation-
6, “Pro-

e.

value.
terrup-
Not an IA-64 file

See “File size > Memory size” on page D-3.

Nothing to run

No program has been loaded. Use theload , iaload , or romload command, depending on what kind of program
you want to simulate or load an IA-64 program by naming it on Ski’s command line. See “Program Loading
page 6-3.

Out of memory

Ski needed to get more memory to run but couldn’t get it. You need more virtual memory swap space or y
found a Ski defect. See your local Linux specialist.

Page not allocated

When Ski loads an IA-64 application-mode program, Ski allocates pages for the fixed-size parts of the progra
allocates a small stack. As the program runs, Ski allows the stack to grow. If the program tries to access a pag
isn’t in one of those areas, Ski detects the error and prints the message. The most likely cause is a wild poin
“Application-Mode IA-64 Programs” on page 6-1.

Pager %s not found

You executed aski command that sends output through a pager and there was a problem. Did you set the P
environment variable to point to a program that’s not reachable through your PATH shell variable? Did you s
PAGER variable to point to a non-executable program? If your pager is on a remote file system, is there a p
with accessing that system? Did your pager program return a failure status for some reason? If none of these
is applicable, you may have found a Ski defect. See “Other Windows” on page 3-14.

popen failed

A call to the Linux system routine popen() failed, that is, a -1 was returned from the call. This is unusual and,
it doesn’t indicate an internal Ski error, it may suggest that your Linux operating system is corrupt, perhaps
some other program.ski uses popen() when it needs to invoke a pager to display a large amount of text to yo
example, when you use thehelp andsymlist commands. The popen() function might fail if you have the max
mum allowed number of processes running on your computer or if you have run out of swap space.

Privileged operation fault

Your IA-64 application-mode program tried to execute a privileged instruction. This can only happen for ap
tion-mode programs; system-mode programs handle this fault through the interruption mechanism. See Ch
“Program Simulation” and “Interruptions” on page 7-1.

Privileged register fault

Your IA-64 application-mode program tried to access a privileged register. This can only happen for applic
mode programs; system-mode programs handle this fault through the interruption mechanism. See Chapter
gram Simulation” and “Interruptions” on page 7-1.

program exited with status %d

Your IA-64 program finished execution in the normal fashion. This is a status message, not an error messag

Register NaT Consumption fault

Your IA-64 application-mode program tried to reference the contents of a register that didn’t contain a valid
This can only happen for application-mode programs; system-mode programs handle this fault through the in
tion mechanism. See Chapter 6, “Program Simulation” and “Interruptions” on page 7-1.
D-6 Simulator Status and Error Messages Copyright © 2000 Hewlett-Packard Co.

Ski IA-64 Simulator Reference Manual 1.0L

ly hap-
anism.

e spec-

greater
’t bind to
Com-

age. See

izes the
tem-

A-32

cores
rgument

f argu-

e
atting
ularly

to the
Abbrevi-
Reserved register/field fault

Your IA-64 application-mode program tried to access a reserved register or portion of a register. This can on
pen for application-mode programs; system-mode programs handle this fault through the interruption mech
See Chapter 6, “Program Simulation” and “Interruptions” on page 7-1.

screen size is %dx%d -- minimum is %dx%d

ski uses the curses package to create a multi-window interface on a terminal. Curses requires a terminal of th
ified minimum size but your terminal is smaller than that. See “Ski Variations” on page 2-2.

Starting address > ending address

You used thedd or pd command to dump data or program code to a file but the starting address you passed is
than the ending address. Perhaps you have them reversed? Are you are using symbolic addresses that don
the locations you think they bind to? See “Program Window Commands” on page 5-2 and “Data Window
mands” on page 5-5.

Stopping at %s due to IA-32 halt instruction

An IA-32 HALT instruction was reached; simulation has stopped. This is a status message, not an error mess
“Application-Mode IA-32 Programs” on page 6-1 and “System-Mode IA-32 Programs” on page 6-2.

Stopping at %s due to reserved IA-32 instruction

An attempt was made to execute an IA-32 instruction whose encoding has been reserved by Intel. Ski recogn
encoding but doesn’t know what to do with it. See “Application-Mode IA-32 Programs” on page 6-1 and “Sys
Mode IA-32 Programs” on page 6-2.

Stopping at %s due to unimplemented IA-32 instruction

An attempt was made to execute an IA-32 instruction that isn’t implemented by Ski. See “Application-Mode I
Programs” on page 6-1 and “System-Mode IA-32 Programs” on page 6-2.

Stopping at %s due to unimplemented instruction

Your program tried to execute an IA-64 instruction that isn’t implemented by Ski.

Symbol ‘%s’ not found

You referred to a symbol that Ski doesn’t know about. Did you spell the symbol correctly, with leading unders
as needed? Is the symbol a C++ mangled name? Have you loaded the right program? See the section “A
Specification” on page 4-2, particularly “Symbolic Arguments” on page 4-4.

%s: Too many arguments (> %d)

You passed too many operands with a Ski command. Ski’s internal parser can handle a maximum number o
ments (currently 64) and you tried to pass more than that number. This could happen with the=1, =2, =4, and=8

assignment commands, theeval and if commands, and theload and iaload program loading commands. Se
“Changing Registers and Memory with Assignment Commands” on page 8-1, “Evaluating Formulas and Form
Data” on page 8-4, “The if Command” on page 9-2, and the section “Program Loading” on page 6-3, partic
“Creating the argc, argv, and envp Parameters” on page 6-4.

Too many commands in a line (> %d)

You can type multiple commands on a line by separating them with semicolons. But there’s a limit, as shown,
number of commands you can do this to... and you exceeded it. See “Command Sequences, Repetition, and
ation” on page 4-1.
Copyright © 2000 Hewlett-Packard Co. Simulator Status and Error Messages D-7

Ski IA-64 Simulator Reference Manual 1.0L

’t able
roper
ron-
m? See

s evenly
d Data

ing and

it? Or
ed (the
recog-
gister

exa-
cation-

gram

inux
Unable to open console window

Your system-mode program tried to open a console with the appropriate Simulator System Call but Ski wasn
to spawn the corresponding xterm program. First, verify that environment variable DISPLAY is set to the p
hostname:displaynumberstring. If this does not help, perhaps there is no xterm available via your PATH envi
ment variable? Perhaps you have hit the process limit or used all the pseudo-tty devices on your Linux syste
“System-Mode IA-64 Programs” on page 6-2.

Unaligned Data fault

An attempt was made to access data on an unnatural boundary. Two-byte quantities must be on addresse
divisible by two; four-byte quantities must be on addresses evenly divisible by four, and so on. See “Misaligne
Access Trap” on page 6-3 and “Interruptions” on page 7-1.

Unexpected end of file

You are trying to restore a saved simulator state and either the save file is corrupt or Ski is broken. See “Sav
Restoring the Simulator State” on page 8-8.

unrecognized option %s

You specified a command line option that Ski doesn’t understand. Different varieties of Ski (xski , ski , andbski)
understand different flags. See “Command Line Flags” on page 2-4.

Unrecognized symbol name: %s

You tried to refer to a symbol in an expression but Ski doesn’t know about that symbol. Perhaps you mis-typed
perhaps it is a program-defined symbol in a file that wasn’t compiled with debugging symbol generation enabl
-g flag on many compilers)? Or perhaps you referred to an IA-64 register using a mnemonic that Ski doesn’t
nize? See “Symbolic Arguments” on page 4-4, “Symbol Table Commands” on page 8-8, and Appendix B, “Re
Names”.

unsupported DOS int 21 function %02x%02x

Your IA-32 application-mode program tried to invoke an MS-DOS function that Ski doesn’t emulate. The first h
decimal number is the MS-DOS function code and the second number is the sub-function code. See “Appli
Mode IA-32 Programs” on page 6-1 and “MS-DOS Application Environment” on page 7-3.

Unsupported SSC: %d

Your IA-64 system-mode program invoked a Simulator System Call that Ski doesn’t support. Either your pro
has a bug or Ski is broken. See “System-Mode IA-64 Programs” on page 6-2.

unsupported system call %d

Your IA-64 application-mode program tried to invoke an Linux system call that Ski doesn’t emulate. See “L
Application Environment” on page 7-1 and “Application-Mode IA-64 Programs” on page 6-1.

Usage: %s [options] [file [args]]

Ski’s generic command line help message.
D-8 Simulator Status and Error Messages Copyright © 2000 Hewlett-Packard Co.

	1 Getting Started: A Ski Tutorial
	1.1 The Ski Simulator
	1.2 How to Run an IA-64 Application Program
	1.2.1 Starting xski
	1.2.2 Exiting Ski
	1.2.3 Loading Your Program
	1.2.4 Inspecting Data
	1.2.5 Viewing Data in ASCII
	1.2.6 Looking at Code
	1.2.7 Viewing Source Code Mixed In with Assembly Code
	1.2.8 Controlling Breakpoints
	1.2.9 Running a Program
	1.2.10 Single-stepping a Program
	1.2.11 Changing Registers and Memory
	1.2.12 Getting Help
	1.2.13 Next Steps

	2 Overview
	2.1 Introduction
	2.1.1 Ski’s Strengths
	2.1.2 Ski’s Scope

	2.2 What You Need to Know to Use This Manual
	2.3 Defects and Defect Reporting
	2.4 Ski Variations
	2.4.1 Using bski for Batch Simulations

	2.5 Starting Ski
	2.5.1 Command Line Flags
	2.5.1.1 Summary of Flags

	2.5.2 The XSki File

	2.6 Quitting Ski
	2.6.1 Summary of the Quit Command

	3 Screen Presentation
	3.1 Ski’s Use of Windows
	3.2 The Register Window
	3.2.1 The User Registers Pane
	3.2.2 The General Registers Pane
	3.2.3 The Floating Point Registers Pane
	3.2.4 The System Registers Pane
	3.2.5 The IA-32 Registers Pane

	3.3 Resizing Register Window Panes with xski
	3.4 The Register Window and ski
	3.5 The Program Window
	3.5.1 IA-64 Instruction Display
	3.5.2 IA-32 Instruction Display
	3.5.3 Changing the Range of Locations Shown in the Program Window
	3.5.4 Invalid Code and the Program Window

	3.6 The Data Window
	3.6.1 Changing the Range of Locations Shown in the Data Window
	3.6.2 Invalid Code and the Data Window

	3.7 The Command/Main Window
	3.7.1 The xski Main Window
	3.7.2 The ski Command Window

	3.8 Other Windows

	4 Command Language
	4.1 Command Entry
	4.2 Command Arguments
	4.3 Command Sequences, Repetition, and Abbreviation
	4.4 Argument Specification
	4.4.1 Numeric Arguments
	4.4.1.1 Numbers and Counts
	4.4.1.2 Expressions
	4.4.1.3 Addresses

	4.4.2 Symbolic Arguments
	4.4.2.1 Program-Defined Symbols
	4.4.2.2 Registers
	4.4.2.3 Internal Variables
	4.4.2.4 Labels
	4.4.2.5 Filenames

	4.4.3 Resolving Ambiguous Symbols and Numbers

	5 Screen Manipulation Commands
	5.1 Register Window Commands
	5.1.1 Summary of Register Window Commands
	5.1.1.1 xski Register Window Commands
	5.1.1.2 ski Register Window Commands

	5.2 Program Window Commands
	5.2.1 Summary of Program Window Commands

	5.3 Data Window Commands
	5.3.1 Summary of Data Window Commands

	6 Program Simulation
	6.1 Application-Mode and System-Mode Simulation
	6.2 Ski Support for Application-Mode Programs
	6.2.1 Application-Mode IA-64 Programs
	6.2.2 Application-Mode IA-32 Programs

	6.3 Ski Support for System-Mode Programs
	6.3.1 System-Mode IA-64 Programs
	6.3.2 System-Mode IA-32 Programs
	6.3.3 System-Mode TLB Simulation
	6.3.3.1 Summary of TLB Display Commands

	6.4 Misaligned Data Access Trap
	6.5 Program Loading
	6.5.1 How to Load a Program
	6.5.2 Summary of Program Loading Commands
	6.5.3 Notes about Program Loading
	6.5.3.1 Adding Information after Loading
	6.5.3.2 Creating the argc, argv, and envp Parameters

	6.6 Program Execution
	6.6.1 Summary of Program Execution Commands

	7 Linux and MS-DOS ABI Emulation
	7.1 Interruptions
	7.2 Linux Application Environment
	7.3 MS-DOS Application Environment
	7.4 Program I/O

	8 Debugging
	8.1 Changing Registers and Memory with Assignment Commands
	8.1.1 Summary of Assignment Commands
	8.1.2 Examples of Assignment Commands
	8.1.3 Notes on Assignment
	8.1.3.1 Address Alignment
	8.1.3.2 Bit-encoded Registers
	8.1.3.3 Page Allocation

	8.2 Evaluating Formulas and Formatting Data
	8.2.1 Summary of The eval Command

	8.3 Program Breakpoints
	8.3.1 Setting Program Breakpoints
	8.3.2 Deleting Program Breakpoints
	8.3.3 Listing Program Breakpoints
	8.3.4 Notes on Program Breakpoints
	8.3.4.1 How Ski Implements Breakpoints
	8.3.4.2 Unexpected Breakpoints

	8.3.5 Summary of Program Breakpoint Commands

	8.4 Data Breakpoints
	8.4.1 Setting Data Breakpoints
	8.4.2 Deleting Data Breakpoints
	8.4.3 Listing Data Breakpoints
	8.4.4 Summary of Data Breakpoint Commands

	8.5 Dumping Registers and Memory to a File
	8.6 Saving and Restoring the Simulator State
	8.6.1 Summary of Save and Restore Commands

	8.7 Symbol Table Commands
	8.7.1 Summary of Symbol Commands

	9 Command Files
	9.1 Initialization File
	9.2 Labels and Control Flow in Command Files
	9.2.1 The goto Command and Labels
	9.2.2 The if Command

	9.3 Comments in Command Files
	9.4 An Example Command File
	9.5 Summary of Command File Commands

	A Command Reference
	B Register Names
	B.1 IA-64 Registers

	C Internal Variable Names
	C.1 Internal Variables

	D Simulator Status and Error Messages

