Ski IA-64 Simulator Reference Manual

D |

invent

Rev. 1.0L (26 Apr 00)

Copyright © 2000 Hewlett-Packard Co.

Ski IA-64 Simulator Reference Manual 1.0L

Notice

The information in this document is subject to change without notice.

HEWLETT-PACKARD MAKES NO WARRANTY OF ANY KIND WITH REGARD TO THIS MATERIAL, INCLUD-
ING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
PARTICULAR PURPOSE.

Hewlett-Packard shall not be liable for errors contained herein or for incidental or consequential damages in connection
with furnishing, performance, or use of this material.

This document contains information which is protected by copyright. All rights are reserved. No part of this document
may be photocopied, reproduced, or translated to another language without the prior written consent of Hewlett-Packard.

Copyright © 2000 by HEWLETT-PACKARD COMPANY.

Printing History

« First Edition: Revision 1.0L, April, 2000

Trademarks

Linuxis a registered trademark of Linus TorvaltgS-DOSandWindowsare registered trademarks of Microsoft Corpora-
tion. UNIX is a trademark or registered trademark of the Santa Cruz Operhtiehis a registered trademark of the Intel
Corporation.

il Notice Copyright © 2000 Hewlett-Packard Co.

Ski IA-64 Simulator Reference Manual 1.0L

Preface

This document is the Ski IA-64 Simulator Reference Manual. The goal of this document is to provide a description of the
features, commands, and simulation environment provided by the Ski IA-64 simulator. The version of the simulator
described here is Version 0.873l.

How to Use This Manual

The first chapter of this manual is a quick-start tutorial. Using only the first chapter, you can learn enough about Ski to do
useful work. If you are using Ski to simulate an 1A-64 application program and are familiar with debuggers such as HP’s
xdb, the first chapter and Appendix A, “Command Reference” may be all you need to read.

The remaining chapters provide information about Ski in depth. Use these chapters to learn about commands not covered
in the tutorial and to learn more about how Ski operates.

Use Appendix A, “Command Reference” and the on-lie¢ command to find a list of all Ski commands and a brief
description of each command.

Use Appendix D, “Simulator Status and Error Messages” to understand the causes and possible solutions for each of Ski's
error messages.

Font Conventions

In this manual, fonts are used as described below. Depending on how you are viewing this document (paper, a web page, a
PDF file, etc.), some distinctions may not be visible.

italic
is used for optional text including operand fields suatoast and for the names of bitfields suchpasbe

light italic

is used for graphical button names suclras

fixed-width bold
is used for literal text including commands suchibisdl , and for examples such aski -icnt foo <bar >baz

SMALL UPPERCASE
is used for processor instructions sucilBREAK.

fixed-width regular

is used for directories and filenames suchetis , and for web URL's such dmtp:/Avww.hp.com

Syntax Conventions

In this manual, symbols are used as described below.
[italic]

Square brackets surrounding optional argument(s) indicate that the argument(s) can be omitted, as in the Appendix
A, “Command Reference” description of tfie commanddj [addresd

Copyright © 2000 Hewlett-Packard Co. Preface ili

Ski IA-64 Simulator Reference Manual 1.0L

italic+
A plus sign applied to an argument indicates that the argument must be supplied one or more times, as in the Appen-
dix A, “Command Reference” description of el commandeval expression_without_spaces

[italic]+

A plus sign applied to optional argument(s) in square brackets indicates that the argument(s) can be supplied zero or
more times, as in the Appendix A, “Command Reference” description abahle commandioad filenamegargg+.

iv Syntax Conventions Copyright © 2000 Hewlett-Packard Co.

Ski IA-64 Simulator Reference Manual 1.0

1 Getting Started: A SKi Tutorial L e e e 1-1
1.1 The Ski Simulator e e e e 1-1
1.2 How to Run an IA-64 Application Program e 14
121 StartingkSKi. o e e e e e e 11
122 Exiting SKi. e e e e 1-3
1.2.3 Loading Your Program e 1-3
124 InspectingData e e 1-5
125 ViewingDatain ASCIl e e 1-8
126 LookingatCode. e e e 1-8
1.2.7 Viewing Source Code Mixed In with Assembly Code 1-9
1.2.8 Controlling Breakpoints. e 1-10
1.29 RunningaProgram e 1-11
1.2.10 Single-steppinga Program 1-12
1.2.11 Changing Registersand Memory o 1-13
1212 Getting Help. o o e e 1-17
1.2.13 NextSteps o e e e 1-17
20VEIVIEW . . . o e e e 2-1
2.1 Introduction. L e e e 2-1
2.1.1 Ski'sStrengths. L e e i 2-1
2.1.2 SKI'SSCOPE e e e 2-1
2.2 What You Need to Know to Use ThisManual.0ceo...21
2.3 Defects and Defect Reporting e e e e 2-1
2.4 SKiVariations e e e e e e 2-2
2.4.1 Usingbski for Batch Simulations 2-2
25 Starting SKi. L e e e 2-4
251 CommandlLineFlags e 2-4
252 TheXski File e e 2-5
2.6 Quitting SKi. L e e e e e 2-6
2.6.1 Summary ofthe QuitCommand. e e 2-6
3 Screen Presentation L e 3-1
3.1 Ski'sUse of WINdOWS e e e 3-1
3.2 The Register Window L e e 3-1
3.21 TheUserRegistersPane. e, 032
3.22 TheGeneralRegistersPane. mnn...33
3.2.3 The Floating Point Registers Pane e 3-3
3.2.4 The SystemRegistersPane 34
3.25 ThelA-32 RegistersPane e e 3-4
3.3 Resizing Register Window Paneswillki L 3-5
3.4 The Register Window arski 0 o e 5 ..3-
3.5 The Program WIindow e e e i 3-6
3.5.1 IA-64 Instruction Display e e e e 3-6
3.5.2 IA-32Instruction Display e e e e 3-8
3.5.3 Changing the Range of Locations Shown in the Program Window. 3-9
3.5.4 Invalid Code and the Program Window. 3-9
3.6 TheData Window e e i 3-10
3.6.1 Changing the Range of Locations Shown in the Data Window. 3-11
3.6.2 Invalid Code and the Data Window 3-12
3.7 The Command/Main Window 0 o e e e e 3-12
3.7.1 Thexski Main Window. e 3-12 .
3.7.2 Theski Command Window. e 3..31
3.8 Other WIndOWS. o e e e 3-14
4 Command Language. i e e e e e e e e e 4-1

Table of Contents

Copyright © 2000 Hewlett-Packard Co. Table of Contents v

Ski IA-64 Simulator Reference Manual 1.0

4.1 Command Entry. e e e 4-1
4.2 Command ArgumentsS. L e e e e e e e e 4-1
4.3 Command Sequences, Repetition, and Abbreviation. 41
4.4 Argument Specification. L L L e 4-2
4.4, 1 Numeric Arguments e e e e e e e e 4-2
4.4.2 Symbolic Arguments. e 4-4
4.4.3 Resolving Ambiguous Symbols and Numbers. 5.,
5 Screen Manipulation Commands. Lo e e e e e 5-1
5.1 Register Window Commands. e e e e 5-1
5.1.1 Summary of Register Window Commands 5-1
5.2 Program Window Commands. e e e e e e 5-2
5.2.1 Summary of Program Window Commands 2. ..
5.3 Data Window Commands. e e e e e e 5-5
5.3.1 Summary of Data Window Commands 5-5. .
6 Program Simulation L e e e 6-1

6.1 Application-Mode and System-Mode Simulation6-1
6.2 Ski Support for Application-Mode Programs. e . 61

6.2.1 Application-Mode IA-64 Programs e e e 6-1
6.2.2 Application-Mode IA-32 Programs e e e 6-1
6.3 Ski Support for System-Mode Programs Lo 6-1
6.3.1 System-Mode IA-64 Programs. e e e 6-2
6.3.2 System-Mode IA-32 Programs. e e 6-2
6.3.3 System-Mode TLB Simulation. e 6-2
6.4 Misaligned Data Access Trap. o v i i i e e e e 6-3
6.5 Program Loading e e e 6-3
6.5.1 HowtoLoadaProgram e 6-3
6.5.2 Summary of Program Loading Commands 6-4 .
6.5.3 NotesaboutProgram Loading e 6-4
6.6 Program EXecution L e e e e e 6-5
6.6.1 Summary of Program Execution Commands, 5.,
7 Linux and MS-DOS ABI Emulation. e e e e e 7-1
7.1 Interruptions. L e e e e e e 7-1
7.2 Linux Application Environment L L e e e e e 7-1
7.3 MS-DOS Application Environment. L L e 7-3
7.4 Program /O e e e e e 7-3
8 Debugging e e e e e 8-1
8.1 Changing Registers and Memory with Assignment Commands 8-1
8.1.1 Summary of AssignmentCommands e 8-1.
8.1.2 Examples of AssignmentCommands s e 8-1.
8.1.3 Noteson Assignment. e e 8-3
8.2 Evaluating Formulas and FormattingData 8-4
8.2.1 Summaryof Theval Command
8.3 Program Breakpoints e 8-4
8.3.1 Setting Program Breakpoints. 84
8.3.2 Deleting Program Breakpoints. e 8-5
8.3.3 Listing Program Breakpoints. 85
8.3.4 Notes on Program Breakpoints. Lo 8-6
8.3.5 Summary of Program BreakpointCommands 6. ..
8.4 Data BreakpointS e e e e e 8-7
8.4.1 Setting Data Breakpoints. L e e e 8-7
8.4.2 Deleting Data Breakpoints L e 8-7
8.4.3 Listing Data BreakpointS. e e 8-7

8.4.4 Summary of Data Breakpoint Commands .
8.5 Dumping Registers and MemorytoaFile 88
8.6 Saving and Restoring the SimulatorState cee.... 88

8.6.1 Summary of Save and Restore Commands 88 ..
8.7 Symbol Table Commands. e e e e e e 8-8

Vi Table of Contents Copyright © 2000 Hewlett-Packard Co.

Ski IA-64 Simulator Reference Manual 1.0

8.7.1 Summary of SymbolCommands 8-8
9 Command Files e e e e e 9-1
9.1 Initialization File e e e e e e e e 9-1
9.2 Labels and Control Flowin Command Files. cowe...91
9.2.1 Thegoto Command and Labels e
9.2.2 Theaf Command e e e e 9-2
9.3 Commentsin Command Files e e e e e 9-2
9.4 An Example Command File e 9-2
9.5 Summary of Command File Commands. e e e 9-3
ACommand Reference L e e e e e A-1
B Register Names e e e e B-1
B.1 IA-64 ReqiSters. e e e e B-1
Clnternal Variable Names. e e e e e C-1
C.1 Internal Variables. L e e e C-1

D Simulator Statusand ErrorMessages iuamun...... D1

Copyright © 2000 Hewlett-Packard Co. Table of Contents Vii

Ski IA-64 Simulator Reference Manual 1.0

viii Table of Contents Copyright © 2000 Hewlett-Packard Co.

Ski IA-64 Simulator Reference Manual 1.0L

Figure 1-1.
Figure 1-2.
Figure 1-3.
Figure 1-4.
Figure 1-5.
Figure 1-6.
Figure 1-7.
Figure 1-8.
Figure 1-9.

Figure 1-10.
Figure 1-11.
Figure 1-12.
Figure 1-13.
Figure 1-14.
Figure 1-15.
Figure 1-16.
Figure 1-17.
Figure 1-18.
Figure 1-19.
Figure 1-20.
Figure 1-21.
Figure 1-22.
Figure 1-23.

Figure 2-1.
Figure 2-2.
Figure 2-3.
Figure 3-1.
Figure 3-2.
Figure 3-3.
Figure 3-4.
Figure 3-5.
Figure 3-6.
Figure 3-7.
Figure 3-8.
Figure 3-9.

Figure 3-10.
Figure 3-11.
Figure 3-12.
Figure 3-13.
Figure 3-14.
Figure 3-15.
Figure 3-16.
Figure 3-17.
Figure 3-18.

Figure 4-1.
Figure 4-2.
Figure 5-1.
Figure 5-2.
Figure 5-3.
Figure 5-4.
Figure 5-5.
Figure 5-6.
Figure 6-1.
Figure 6-2.

List of Figures

Startingsski From the Command Line
The Four Primawski WIiNdOWS. e 1-3
Loading thehtllo " Program
Thexski Program Window. e 1-4.
Thexski Data Window. e e 1-5
Thexski Register Window L e e 1-5
Changing the Data Window Display . e .1-6
The Data Window Showing thgv andenvp Vectors 1-6
The Data Window Showiaggv andenvp Strings in Hexadecimal
The Main Window Showing Commands in the Command History
The Data Window Showiagyv andenvp Stringsin ASCIl. 1-8
Jumping the Program Window to the Beginningof main(). 1-9
The Program Window Showing Code at the Beginningof main() 19 ..
The Program Window Showing a Breakpoint at main()
The Breakpoint ListWindow e
The Terminal Window After theello ” Program is Run
Thetski Main Window after thelfello " ProgramisRun
The Main Window After Reaching the Breakpoint at main+10
Theski Register Window After Stopping at a Breakpointnain +10.
Theski Register Window After Changing the Register.
Thetski Data Window Widened to Show ASCIlo o oo o
Theski Data Window After Changing the “Hello, world” String
Thexski Main Window Showing aeval Commandand ItsResult
The Curses-basekf Interface. 2-2
The X Window System, Motif-baseski Interface. 2-3
The Command-Lineski Interface. 2-4
The Register Window iski
Thexski User Registers Pane
Thexski General RegistersPane. 33 .
Thexski Floating Point Registers Pane 34 ..
Thexski System RegistersPane e e 34 .
Thexski 1A-32 Registers Pane. e 35.
Anxski Pane Resizer: The Small Box Between the Scrollbars
Theski Register Window (&t TOp) o 0 e s 3-6.
xski’s Program Window Showing Part of an IA-64 “hello world” Program
xski's Program Window Showing 1A-64 Predication and Breakpoints 3-8
xski’s Program Window Showing IA-32 Code, the Instruction Pointer, and a Breakpoint 3-9
xski’s Program Window Showing lllegal Instructions. 3-10
xski's Program Window Showing Unallocated Space or No Translation 3-10
xski's Data Window Showing Unallocated Space Followed by Data 3-11
xski’s Data Window Showing Data Interpreted as Instruction Bundles. 3-11
xski’'s Main (Command) Window e 3-13.
ski's Command Window (at Bottom)
xski’'s Symbol ListWindow 3-15
xski Evaluating EXpressions e 4-3
xski’'s Symbol ListWindow 4-4
xski’s Program Window Showing IA-64 Assembly Language Code 5-3
xski's Program Window Showing Intermixed C and 1A-64 Assembly Code 5-4
xski's Assembly Language Dump Window 5-4
xski Showing Data as InstructionBundles. 55 ..
xski Showing Data in Raw Hexadecimal and ASCII
xski's Hexadecimal Dump Window 5-6. .
Example Code to Simulate an External Interrupt. 6-2
sdt Command Output inski

Copyright © 2000 Hewlett-Packard Co.

List of Figures iX

Ski IA-64 Simulator Reference Manual 1.0L

Figure 8-1.
Figure 8-2.
Figure 8-3.
Figure 8-4.
Figure 8-5.
Figure 9-1.

The Original Program Loadedskr . e 8-2
The Program After Assigninga Stringski e 8-3
Three Breakpoints, 0, 2, and 1, Visibleski’'s Program Window 8-5
Xski’s Breakpoint List Window Showing IA-64 and IA-32 Breakpoints. 8-6
Thesymlist Output fromxski 8-9
An Example Command File to Compute Fibonacci Numbers 3...9

X List of Figures Copyright © 2000 Hewlett-Packard Co.

Ski IA-64 Simulator Reference Manual 1.0L

List of Tables

Table 4-1. Ski Simulator Arithmetic and Logic Operators.43
Table 7-1. Linux System Calls Supported by Ski ke . (-2
Table 7-2. Linux System Calls Accepted but Ignored by Sk| e e e e X2
Table 7-3. MS-DOS System Calls (in Hexadecimal) Supported by Ski 7-3 .

Copyright © 2000 Hewlett-Packard Co. List of Tables Xi

Ski IA-64 Simulator Reference Manual 1.0L

Xil List of Tables Copyright © 2000 Hewlett-Packard Co.

Ski IA-64 Simulator Reference Manual 1.0L

1 Getting Started: A Ski Tutorial

In this chapter, you learn how to use Ski by executing a brief tutorial. At the end of the tutorial, you will learn where to
look in this manual for detailed descriptions of Ski's operation and commands. Introductory information on Ski is pre-
sented in Chapter 2, “Overview”.

1.1 The Ski Simulator

Ski simulates the 1A-64 architecture and also has limited support for simulating 1A-32 programs. Ski runs on 1A-32 Linux
host systems. You can use Ski for many purposes, as described in Section 2.1, “Introduction”. One of the most common
uses of Ski is to test an IA-64 program in a Linux environment, and in this chapter, you will learn howxskiséhe X

Window System version of Ski, by “walking through” a sample session, in about ten minutes. Ok, twenty minutes.

You should already be familiar with the 1A-64 architecture and the C programming languagesskavestalled on your
Linux system, and have thésSki file in your home directory or in your X Window System app-defaults directory, typi-
cally /usr/lib/X11/app-defaults . You will also need to have an executable Linux 1A-64 program such as the classic
“helloworld " program.

1.2 How to Run an 1A-64 Application Program

Ski provides a Linux application environment in which an IA-64 program you provide can be simulated. The release notes
provide the most up-to-date information on Ski's support for the Linux Application Binary Interface (ABI). The following
sections provide a short tutorial which leads you through an 1A-64 program sessiorskithYou will learn how to use

the most common Ski commands.

1.2.1 Starting xski

As shown in Figure 1-1, starski by typing its name to the Linux shell, just like any other Linux program, as shown in
Figure 1-1. When running inside the 1A-64 Linux Native User Environment (NUE), make sure that the environment vari-
able DISPLAY is set to a string of the forostname : display (e.g., “myhost:0 ", values such as tnix0 "or*“ :0”

won't work) before invokingxski . If you have never run the simulator before, it will first prompt you to read and accept
the software license it is distributed under. After accepting the license, the four priséiryindows will be displayed

on your screen, as shown in Figure 1-2. No IA-64 program is loaded yet, so the Program Window and Data Window are
empty. Scroll the various panes of the Register Window and note that with few exceptions, the registers are set to zero.

Copyright © 2000 Hewlett-Packard Co. Getting Started: A Ski Tutorial 1-1

Ski IA-64 Simulator Reference Manual 1.0L

Figure 1-1. Starting xski From the Command Line

1-2 Getting Started: A Ski Tutorial Copyright © 2000 Hewlett-Packard Co.

Ski IA-64 Simulator Reference Manual 1.0L

=| Data Window [=I[=i[]
_ Data
§| Program WWindow QOOOCOCAOOONO0LO GO XN
Program (filer 779 QOOOCOCAOOOOIDZ N Xk g
COROAOODOAOODNZCN S G X
000000000O0N00010 oo LN R e e e e e e s e
0000000000000020 oo OOOOODNOCOONNNBRD XOEOOCAGONEHNNNG XONOOOCNCNNNN0N
000000A0ANANNNZ0 e OOOONDNOO0NNIRN XCOOCOCONENNNNG XNXNOOCNCENNNGN
0OOOOOOAONOON0AN e OOODOOO0DDNNNNTY KK SR ARE, KA KR AR RN,
00QOAN0MONO0NNS0 soeox: QOOOGCONOMONED KRN EHEALHHEN KA HH KA AHN AN RN
0OO0OOOOOOO0D0BN e COOOAOODOAOODOER oo XN N
=| Registers YWindow [I=i[=i[x]
ip OOOOOOOOONOON00 psr,um mfhlmfllac luplbe 2]
pra 10000000 000000 OOOOOOD HOOOOO0Y OOOOHONG HOOCONON OAOOHONG AONHONON .J
b0 G00CO0GOGODO000 GOO0OO0ODNODO000 b2 0OOOOHOMOOMONON0 GOOCONHOCONHONON
b4 0OOQOOAA0OO0DOO0 AOOOOO00OOOCANN0 bE OOOAACONOOCOOAN AOO0OOOOQOMNANO0N
rrbp rrbf rrbg sor =0l =of
le OOOOOOCOOODOO000 ec 00 bal O cfm 0 0 0] 0 96
rac 0000 0 0 0 pec 00 ppl O pfm 0 0 0 0 0 0 i
ey
ri QOQOAACOARRANA0 AOOONAANANOION0 AOOAACOOORANA00 GOOAANANDACITC j
ré OOOOOOOOOOHO0HO0 HOOCONOONOHO0HO0 CONOOOAOOCONHHN GOOOBOOOHNHHCHH0
ré OOOOOOCO0OH00H00 HOOCONOANOHO0H00 CONOONOANOCONHHN HODOOHOOHOOHNHHN
rl2 0000G0GO0O000000 GOOGODEODOOO0000 GODEODOOOOOONOO0 GOOOOOOOHNOHOH0
rlE 0OOOOO000000O0A0 0O0000OOCANNN000 OOOAACONOOOOOANG OOOODOOCANNA0O00
r20 000OACOOO0OO0G0 GOOCOOOORANAA00N OOOAANANOACGNAND AOOONOOONIA0A00
r24 000000CODOO00000 GOOCODNODOON0CO0 AOOGODOONOOHNHH0 GOOAOOAOHNOHCHH0 4
il
O QOQOOOOOODOOOONADOOD0 ¢ 0, 0000e+003 OFFFFE00N000000000000 {1, 00002+003 =
£2 00000000000000N00A000 ¢ 0, 0000e+003 OO00000000C00OOCOM000 {0, 0000+003
f4 000O0GOCODO0DN00H0M
f6 0OOOOOOOODOODOODAC0 i
File Wiew Configure :'_I\:
par OOOOOOQ0AOO00000 1p: =
iva 0O00OOOOODOO0000 pt. Stepl Runl ngl]Jatal - J{_
eax 00000000 ebe QOO0 j
ezl OOOOO000 edi QOO0
cs 0000 dz 0000 es QOO0
eflags QOOOOOOD [lelbellq i
Elosel

Commands

L |

|

Figure 1-2. The Four Primary xski Windows

1.2.2 Exiting Ski

You can quitxski and this tutorial with theQuit button, with the File->Quit menu selection, or with theuit ” com-
mand. All are in the Main Window. (Don’t quit now; you are just beginning!)

123

Use the “Command” area of the “main” Window to load your program. For example, let’s say your program is the famous
“Hello, world” program, the executable file is naméttllo ”, and the source code file is namdgtllo.c . Type “load

hello " in the Command area to load it into Ski, as you see in Figure 1-3. After a moment, the other three windows will
change appropriately: the Program Window will show the program code in assembly language form as shown in
Figure 1-4, the Data Window will show global and static data as shown in Figure 1-5, and the Register Window will show,
in r12 the value of the stack pointer, as shown in Figure 1-6. (You may need to use the scrollbar in the general registers
pane of the Register Window to see these registers.)

Loading Your Program

Copyright © 2000 Hewlett-Packard Co. Getting Started: A Ski Tutorial 1-3

Ski IA-64 Simulator Reference Manual 1.0L

(B[]

File Wiew Configure Help

Stepl fﬁ{d PPDQI Datal ?9;?' o z:I IEEJ ﬂuitl

Command 3

load hello

| I < |

Figure 1-3. Loading the “ hello ” Program

Program YWindow ===
Program File: 797

_init+0090 NOP . L) MIB
nop., i 01
br.ret.zptk.many bo::

> _start alloc r2=ar,pfz.0,.0,7.0 ML

o L 3= 0002004002 70033

_ztart+i0Lo addz rad=1E,r12 ML
s L r1=0xdFFFFFFFFFFFIOaa:

_start+0020 1d3 ra3=[r341,8 MIT
oy ri=ips:
sub rl=r3,rl;:

_ztart+0030 Mo, m ar , fpar=r3 MFI
nop, f (1)
add] r32=0x2b0, rl

_start+i040 addl r36=0x2F8, rl MFI
nop, £ 00
addl r35=0x188, rls

_ztart+i0ho 1d3 ra2=[r3Z] MHI
143 r3h=[r351
adds rag=1E,r12

Elusel psm o

Figure 1-4. The xski Program Window

1-4 Getting Started: A Ski Tutorial Copyright © 2000 Hewlett-Packard Co.

Ski IA-64 Simulator Reference Manual 1.0L

Data Window

=[Blx]

_I0_ztdin_used

40000000000 TES20
400000000 TEE30
4000000 7SS4
400000000007 8850
400000000007 S860
40000000000 78870
400000000007 SS80
40000000000 7SS0
40000000000 7ESa0)
40000000000 7ESh
40000000000 7ESc0

0000000000NZ0001
0000000002646 72
OO00A00O00DO00EC
455248545 444952
545f434fdcdcdldd
4d5f434f dcdcdldd
DOO05F444c4f 4853
5f58414d5f50414d
435f434f dcdcdldd
203a636fEcBok1Ed
20E676e63EVEY /0E2
E42020616e657241

Bf /7 206FBcEoEhES
Ec/hEe2f FEEEE42F
540f434fdcdodldd
00005f 444c4f 4053
0054441505 504
455248545150414d
4d5f434f 4cdedl4d
0O0OAAODOAAODN00
0000005F 4b4 24548
E5E4206/EeE37 370
0000027 3ELEFEFES
0000000O0AN00a3a

LRy

r1d
log
RIH
MAL
MAL
SHO
HAP
HAL
mal
bug
Are

Elusel a4

Figure 1-5. The xski Data Window

SIS

ip _start per,um mfhimfllacluplbe J

Fegisters Window

prs 10000000 00000000 00000000 QOOOOHN0 . HOOAOONG QOOOAAOY COOOOOON HOMOOON
BO 0OOO00OOOOO00000 NOOOONOOOHNNOO00 B2 QAOOOAAOOOAAAON HOOOOOOOOOMONNGN
b4 OOOODOOOOODONO00 HOOOOOOOCHNNO00N BE OOOOOOAODOAOND GOOOOOOCHNOOONN
rrbp rrbf rrbg sor =0l sof
le QOOOOOOOOOD0000) ez 00 bol 0 cfm 0 0]] 0 9
rac QOO0 0 3 0 pec 00 ppl O pfm 0 0 i} i} 0 0

1
rd4
r8
ri2
r16
20
r24

OOOQA0NOAANNAI00
OOOQA0NOAANNAI00
OOOQA0N0AANNAH00
IEFFFFFFFFFEFTa0
QOOOAQODANNOI00
QOOOAQODANNOI00
QOOQACOODAONA00

QOOQOOA0N0NN0HA0
QOOQOOA0N0NN0HA0
QOOQOOA0N0NN0HA0
QOQOOOAONOONNION
QOQOOOAONOONNION
QOQOOOAONOONNION
QOOOOCAODODN0I00

DOOQOOUCANNANN0M0
DOOQOOUCANNANN0M0
DOOQOOUCANNANN0M0
DOOOOOOONODOOIOD
DOOOOOOONODOOIOD
DOOOOOOONODOOIOD
DOOOOOACH0DO0I00

DO0DOAGANNND00
DO0DOAGANNND00
DO0DOAGANNND00
DOOOOGONON00000
DOOOOGONON00000
DOOOOGONON00000
DOODOACAOI0D00

L__lrfT*~

Llrfr*n

0 00000000000A00000000 ¢ 0, 0000e+00}
2 0000000n000A000000000D ¢ 0, 000e+00}
4 000000O00O0AO00N00N00D ¢ 0, 000e+00
fE Q0ODO0AO0OOO0IAO0NN00 ¢ O, D000e-+00

OFFFFE000000000000000 ¢ 1, 0000e+003
0000000OOAA0OOAANNON0 ¢ 0, O000+00
0000000OOA0OOAAMNONN ¢ 0, 000+00
DAOOHOOHAOCACOHANHAGY ¢ 0, HO00e+00)

psr OOOOOOOZOO000000 ipse QOOOOOOOOOOOOOON dor OO0OOOOOO0O00000
iva OOOOOOOOOOOOO000 pha OOOOOOOOOODO00NE: gpta OOODOOOOMOOOOO0

L_err*n lerT*n

eax 00000000 ebo QOOQOOO0 ecx OOOQOOO0 edx OOOOOOO0
ezl 00000000 edi OOOQOO00 ebp OOOOOO00 esp FRFFFFB0
cz Q000 ds 0000 es Q000 fs 0000 gz 0000 ss 0000 1dt 0000 tss QOO0

eflagz 0000000 [lelbelltlidlaclvmlrfintQlof IdFIifItfleflzflaf [pFlcfl

Clnsel

gip 0000: 0000010

B

Figure 1-6. The xski Register Window

1.2.4

To look at theargv andenvp strings, you need to use the Data Window. Linux passgs, argv , andenvp on the mem-
ory stack (12). To look at this memory area, use th# * command (tataj ump”) in “Command” area of the Main Win-
dow. Supply, as an operand, the address of the memory stack. For exannfgte jisfset tooffffffffff780 , you can

Inspecting Data

Copyright © 2000 Hewlett-Packard Co. Getting Started: A Ski Tutorial 1-5

Ski IA-64 Simulator Reference Manual 1.0L

type “dj r12 " or*“dj Offffffffff780 ”, as shown in Figure 1-7 and the Data Window changes to display the hexadec-
imal data stored at the location, as shown in Figure 1-8. Find the valug ah your program and usel] " now. (You

might wonder why tjj " exists, instead of a simple scroll bar. Imagine scrolling through the entire 1A-64 address space— it
would take a long, long time!)

= = [Bx]
File Miew Configure Help
Stepl M F‘ru:ugl Ilatal E::#:;*.‘l ih‘s-’.‘izﬁrl EI Huitl
load hellao
Command s
dj SFFFFEFEFFFFFTEO

=

=l

~J 1=

Figure 1-7. Changing the Data Window Display

Data Window =TS

SFFFEFFFFFEFFTE0 0000000000000000 0000000000000 , , ,
SFFFFFRFFFEFFTA0 0000000000000001 SFFFFFFFFFFFFIZE ..,
IFFFEFRFFFEFFTA0 0000000000000000 SFFFFFFFFFFFFIZe ..,
SFFFFFEFEFFFETRO SFEFFFEFFEFFFIB0 SFFFFRFFFFFFFOED °,,
SFFFFFEFEFFFFTCO SFEFFFFFFEFFFITA SFFFFRFFFFFFFOa 3.,
SFFFFFFFFFFFFTAD SFFFFFFFFFFFFIbD SFFFFRFFFFFFFIca ..,
SFFFFFFFFFFFFTR0 SFFFFFFFFFFFFe SFFFFRFFFFFFFAFT ..,
SFFFFFFFFFFFFTFD SFFFFFFFFFFFFa0e SFFFFFFFFFFFFaZe ..,
IFFFFFFFFFFFFBO00 SFFFFFFFFFFFFadd SFFFFRFFFFFFFABO D,,
IFFFEFRFFFFFFEL0 SFFFFFFEFEFFFa74 SFFFFRFFFFFFFaZE t,,
IFFFRFRFFFEFFO20 SFFFFFFFFFFFFacL SFPFFRFFFFFFFac? ...
IFFFRFRFFFEFFOZ0 SFFFFFFFPFFFFF2 SFFFFRFFFFFFFBOO ...

Close| iors| iwis]

Figure 1-8. The Data Window Showing the argv and envp Vectors

Looking at the Data Window, you can see that the first 16 bytes of the stack are all zeros. This is a scratch storage area.
The next 8-byte word contairggc , the argument count. It has a value of 1 as the only argument passed to the program is
the program name itself. Thegc count is then followed by thargy andenvp vectors. All C programs receive the same

kind of data structure fagrgv : a variable-length vector @har * pointers whose end is marked with a NULL pointer. In

Figure 1-8, the first of thehar * pointers isoffffffffffffo38 . (The firstchar * pointer may be in a different place

on your system. Adjust the following instructions accordingly.) Jump the Data Window there using the comnand “
Offffffffffffo38 " (12 f's) and you will see Figure 1-9, showing the hexadecimal codes for the null-terminated ASCII

1-6 Getting Started: A Ski Tutorial Copyright © 2000 Hewlett-Packard Co.

Ski IA-64 Simulator Reference Manual 1.0L

character strings afrgv andenvp . (In a moment, you'll learn how to see data in ASCII translation.)

Data Window [=I[Eix]

Data

AFFFFFFFFFFFFTEE 4h4cO0BFECECERES 7o3ddedbbidfhahs hel
AFFFFFEFFFFFFS48 BeRIB22F727E702F 7ORIVO7I73656C2F Fus
SFFFFFFEFFFFFInG O073252068732e0D 434548434049414d e,5
IFFFFFFEFFFFFIEE 4053050030363d4b 61643d404d414e52 K=6
IFFFFFFEFFFFFITE 4d4604006d646976 752 3d53544edf40 vid
SFFFFFFEFFFFFI8E BoBlB3EFEC2F7273 7ORR742FE2696c2fF srd
SFFFFFFEFFFFFI98 73746e0FE02F000d 4F4cdf43003a2F2F mf
AFFFFFEFFFFTFSal Beb73dddn2455452 6d7265742d656dEF RTE
AFFFFFEFFFFFFObE 534348006c61669 35323d455a495304 ina
AFFFFFFFFFFFFIcE 414045347 480036 22796167 05d454d B, H
AFFFFFFFFFFFFIdE 22676261747 36fEd 447 4f4c006d6FES mos
AFFFFFFFFFFFFSed BI7EE1643d454d41 5fh4434=43006d64 AME

Elusel e

Figure 1-9. The Data Window Showing argv and envp Strings in Hexadecimal

Typing hexadecimal numbers is error-prone, and Ski provides several shortcuts to avoid it. Thex$ikssi€ommand

History, an unlabeled window pane just above the “Command” area in the Main Window. As you execute commands, they
move up to the Command History. Later, you can bring them back into the Command area. A single click brings a com-
mand back for you to edit. A double click brings the command back and re-executes it immediately. Try the Command
History by doing this: Type dj 0 ” to jump the Data Window to location 0. The Main Window should look like
Figure 1-10. Then click on thed| offffffffffffo38 " command in the Command History. Hit the enter/return key to
execute it.

= [=I[B][x]
File Miew Configure Help
Stepl Runl Prngl Datal iqul iaﬂh#l TLB| ﬂuitl
load hello
dj SFFFFFFFEFFFFTED
dj SFFFFFFFFFFFFI38
dj o
Command
|
i
-~ 1

Figure 1-10. The Main Window Showing Commands in the Command History

Copyright © 2000 Hewlett-Packard Co. Getting Started: A Ski Tutorial 1-7

Ski IA-64 Simulator Reference Manual 1.0L

Another shortcut is the pointer-dereference operator for indirect addressing. Tgp@®*” to jump the Data Window to
location 0. Then typedj *(r12+18) ". Ski will take the contents of12 (Offffffffff780 , remember?), adtB (hex)
and use that as the address of the operand.*Thperator fetches the contents @f12+18) and uses that value,
offffffffffo38 , as the address to jump to. Compare the Data Window display resulting ffiomZ+18 ” with the
display resulting fromdj *(r12+18) ”

You will use the* operator a lot in debugging C programs because it performs the same function*asg&mtor: it
dereferences pointers. Unlike G'showever, Ski's operator is not type-specific: you can use it in any context where any
kind of address is needed and you can use it to dereference registet likmemory locations, or anything that has a
value. (This doesn’'t always make sense, of course. For example, dereferencing a floating-point register is rarely useful
because floating-point registers don’t hold pointers.)

1.2.5 Viewing Data in ASCII

Hexadecimal is no fun. To expose the ASCII translation, use your window manager’s standard mechanism to make the
Data Window wider. (How you do this depends on the window manager you're using, but generally this can be accom-
plished by grabbing the edge of the Data Window with your mouse cursor and dragging it to the right.) You should see
approximately Figure 1-11. Now click on the Main Window, to make it the active window again. Tryftli¢“dataf or-

wards”) and 4b” (“ databackwards”) commands without operands to move forwards and backwards in the Data Window,
one screenful each time.

Data Window B

Data

SEFFFFFFFFFEFI38 454c006fEcBohBRE Yoiddedhb0dfh353 hello, LESSOPEN=I
FFFFFFFFFFFFR48 BeBIB22F7273702F FORIVO7E73656c2f Ausrsbin/lesspip
IFFFFFFFFFFFFInE 0073252068732eB0 434048424c43414d e,sh s, MAILCHEC
IEFFFFFFFFFFFIEE 4h03R50020263d4b 61643d454d414e02 K=E0,USERMAME=da
FFFFFFFFFFFFS7E 4d4B604006d646976 7o2F 2d53044e4f 46 vidm, TFHFONTS=4u
SEFFFFFEFFFFFIBE BoBlBEEFEC2FVE7E 7OER742FE2696c2F srilocal/libstex
IFFFFFFEFFFFFI98 73746ebfER2006d 4f4cdfd3003a2F2F mf/fontss s COLO
HFFFFFEFFFfIal Geb73dd4dD2405402 6d7265742d656d6F RTERH=gnome—term
FFFFFEFFFFFIbE 534948006c616e69 30323d405a495354 inal JHISTSIZE=25
HFFFFFEFFFFFIcE 414eh4534F480036 2e79616c703d454d 6. HOSTNAME=p 12y,
IFFFFFFEFFFFFIdE 2e676e6174736F6d 4ed74f4c00BdEFES mostang. com, LOGH
SFFFFFFFFFFEFOed B97EE1643d454d41 5fh4494243006d64 AME=davidm, INIT_

Figure 1-11. The Data Window Showing argv and envp Strings in ASCII

1.2.6 Looking at Code

Initially, the Program Window shows the beginning of the program. For C programs, this isn't the first line of user code,
it's the start-up routine fromartl.o that provides an interface between the operating system environment and the ANSI
C environment. This routine is namedstart " and the ELF header inello names it as the start of the program. That's
what Ski shows in the Program Window by default: the start of the program according to ELF.

You use the pj " command (‘brogramj ump”) to jump the program window elsewhere. For example, jump it to the first
instruction in the user’s main(), as shown in Figure 1-12. The Program Window now looks like Figure 1-13. You can move
the Program Window forwards and backwards through program code withptle(*‘programf orwards”) and pb”
(“programbackwards”) commands, respectively. Try these commands, and then try psingithout an operand: note

how it jumps you back and forth between the previous and current locationsdirhedmmand does the same thing in

the Data Window. Handy, eh?

1-8 Getting Started: A Ski Tutorial Copyright © 2000 Hewlett-Packard Co.

Ski IA-64 Simulator Reference Manual 1.0L

= =]i=lES)
File Miew Configure Help
Stepl Runl F‘ru:ugl Ilatal E::#:;*.‘l ih‘s-’.‘izﬁrl TLBl Huitl
load hello
dj SFFFFFFEFFFFFTRO
dj *{rl2+18)
dj o
dj #{r12+18}
Command:
pJ main
|
i
~J 1=

Figure 1-12. Jumping the Program Window to the Beginning of main()

Program YWindow | =1ES]
Program (fFiley ¥%7)
__do_framek+0030 br, ret, spthk, many b BER
nop. b 0]
rop. b Qe s
e printf ("hello worldswn'i:
mMair alloc r3d=ar,pfz,0,3,1,0 MII
addl r1d=tr1118, r1
oy r32=rl2
maint+Oolo NOp M Q=0 MII
T r33=hb0:
adds r12=—1E,r12
main+O020 1d# r36=[ri41 MIE
nop, 1 ()

br,call,sptk . many bO=_I0_printf::
0¥ return 0f

fain+Q0E0 MO ra=0r+ M I
oy rl2=r32
oy, 1 ar.pfe=r34

ma i gl NOp .M) MIB
oy b=r33

br,ret,sptk,many bos:

Close| tovs| eip

Figure 1-13. The Program Window Showing Code at the Beginning of main()

1.2.7 Viewing Source Code Mixed In with Assembly Code

The Program Window shows the C source code intermixed with the |1A-64 assembly code. You can turn the source code

Copyright © 2000 Hewlett-Packard Co. Getting Started: A Ski Tutorial 1-9

Ski IA-64 Simulator Reference Manual 1.0L

display off or on using thea (“programassembly”) ancm (“programnixed”) commands, respectively. Mixed code dis-

play only works if you have the source code to the program available to Ski; the source code isn't embedded in the ELF
file. Also, you must compile your code with the appropriate compiler flags, for example, with tiheg used by many C
compilers to generate debug line record information. If your program is composed of multiple object files, for example
“cc -0 test foo.0 bar.o baz.o ", Ski can only show source code from the files compiled with-thélag. Make sure

the Program Window is in mixed mode for now.

1.2.8 Controlling Breakpoints

You can think of Ski as a debugger that happens to work on a simulated processor rather than a real processor. Like any
good debugger, Ski provides breakpoints. To set a breakpoint in an 1A-64 program, uss"tberimand (‘breakpoint

set”). In the example that follows, you will want to have the Program Window display the area of code near main(). Use
the commandgj main ", as you learned above.

To set a breakpoint at the beginning of main(), typse ‘main " in the Main Window. The Program Window shows @’*

in the first column of the window at the breakpoint location (thac” instruction), because you just used breakpoint #0,
as Figure 1-14 shows. (The first three columns are also used for line numbers.) Set a breakpaintatand another at
main+20 . Ski lets you set up to ten breakpoints.

Program YWindow ==l
Praogram (file: 972
__do_framek+0030 br,ret,sptk,many bo BEE
nop, b ()
nop. b iz x
e printf {"hello worldsn'i:
0 main alloc rad=ar ,pfz,0.3,1.0 MII
addl r1ld=0r1118, r1
oy ra2=rl2
maintodil NOp .M) MII
T r33=h0:
adds r12=-1%,r12
ma 0020 1d8 r35=[r14] MIE
nop, i 00

br,call,sptk,.many bO=_I0_printf::
007 return 0F

main+O0E0 Mo ra=0:: MMI
O rl2=r32
oy, 1 ar ,pfa=r3d

main+iodi nop,m () MIB
oy bi=r33

br,ret . sptk,many bis:

Figure 1-14. The Program Window Showing a Breakpoint at main()

Use the bl ” command (‘breakpointl ist”) to see a list of the breakpoints, as shown in Figure 1-15. If you prefer using a
mouse, use the “Breakpoints” item on the View menu instead oftih& command. When you are finished viewing the
breakpoint list, click itClose button to dismiss the window.

To delete breakpoints individually, use thied® command (breakpointdelete”). Use the D" command (‘breakpoint
Delete all”) to delete all breakpoints at once. Delete all your breakpoints before continuing this tutorial.

1-10 Getting Started: A Ski Tutorial Copyright © 2000 Hewlett-Packard Co.

Ski IA-64 Simulator Reference Manual 1.0L

Ereakpoints

Address Command

0 P main IR-64 2]
1 P main+00lo IA-64

2 P main+0020 IA-64

Figure 1-15. The Breakpoint List Window

1.2.9 Running a Program

To run your program, type thedn " command or click therun button in the Main Window. Ski will start the simulation

and connect the program’s standard I/O ports (stdin, stdout, and stderr) to Ski's standard ports. For example, assuming
there are no breakpoints still sethiallo , you will see “hello world” printed out when you run it, as Figure 1-16 shows,

and run statistics will appear in the Main Window, as Figure 1-17 shows. The statistics tell you how many instructions
were simulated and how much time it took, the instructions-per-second rate, the number of 1A-64 processor cycles that
were consumed on the simulated CPU, and the average number of instructions per cycle, which provides an indication of
the best-case effective parallelism of the program. (Ski simulates all the instructions in an instruction group in one cycle;
a hardware implementation may not be as capable.)

Ski will stop the simulation for three reasons: if a breakpoint is reached, if the |IA-64 program attempts to access privi-
leged resources or non-existent memory, or if the program ends normally by calling exit() or similar functions. If simula-
tion stops due to a breakpoint, you can continue simulation with ¢het” command (tont inue”) or you can step
through the simulation with thestep ” command orStep button. You cannot re-run a program, nor can you re-load it and
start over. You must exit and re-enkski and then reload your program.

Copyright © 2000 Hewlett-Packard Co. Getting Started: A Ski Tutorial 1-11

Ski IA-64 Simulator Reference Manual 1.0L

Linuxfiag4 Console

=[8lx]

Figure 1-16. The Terminal Window After the “

File View Configure

hello ” Program is Run

| [=11ES

Help

bz main

bz main+10)
bz main+20
bl

bl

Command?

All breakpoints deleted

program exited with statuz 0
19639 insts, 0,39 sec, 49899 i/s, 7207 cycles, 2,70 ipc

L

=

1=

Figure 1-17. The xski Main Window after the “ hello ” Program is Run

1.2.10 Single-stepping a Program

To try single-stepping (and no, this is not a kind of ethnic dance), set a breakpoiaihal0 . Then use thertin ” com-

mand orRun button to simulate the program up to the breakpoint. (If you receive the error mes&ahjed’ to run

stop and reread the last sentence in the previous paragraph.) Ski stops at the breakpoint and notifies you with a message in

1-12 Getting Started: A Ski Tutorial

Copyright © 2000 Hewlett-Packard Co.

Ski IA-64 Simulator Reference Manual 1.0L

the Main Window. Ski tells you why it stopped and gives you statistics about program execution up to this point, as you
can see in Figure 1-18. The Program Window marks the next instruction to be fetched with a greater-than symbol in the
second column. If the instruction is predicated off, Ski uses an asterisk instead of a greater-than symbol, and shows the
predication register in parentheses.

S=TlES

File Wiew Configure Help

load hella
b main+10
P

Command?

Breakpoint {IA-E4} at main+O0l10
15336 insts, 0,15 sec, 102261 ifs, BO28 cuycles, 2,63 ipc

L

=4 1=

Figure 1-18. The Main Window After Reaching the Breakpoint at main+10

Move and resize your windows so the Main Window and Program Window don't overlap. Now usgeiiné tommand

or Step button to execute one instruction. Note that the greater-than symbol moves down one line: Ski keeps track of 1A-
64 bundles and groups but it simulates individual instructions. You can followstkp " command with a (decimal)
number to specify how many steps Ski should take, for examplep “10 ” to execute ten instructions. As a shortcut,
shift-clicking on theStep button causes Ski to take ten steps. Most Ski commands can be abbreviated, as described in
Appendix A, “Command Reference”. Teep command can be abbreviated a5 “

1.2.11 Changing Registers and Memory

To debug a program, you usually need to inspect and alter registers and memory. The first three panes in the Register Win-
dow shows the registers of most concern to application programmers: user registers in the first pane, general registers in
the second pane, and floating point registers in the third pane, as you can see in Figure 1-19.

Copyright © 2000 Hewlett-Packard Co. Getting Started: A Ski Tutorial 1-13

Ski IA-64 Simulator Reference Manual 1.0L

Fegisters Window

=/ [B][x]

prs

ip main+O0lo

par,um mfhIMFLIac|uplbe
10000000 OOQROAG AOOOCONN HOAMOAAC AOGOOANG DOOOAAN0 QOOCOHHN QOO
b0 __libc_sta%+0250 QOOOOCOO0O000000 B2 OOCOOOOOOQOOACO0 GOCOOOHNANCIACC
b4 OOOOOCHOOOOAAN00 GOOOOCOINNNNNNN0 BE main
rrbp rrbf rrbg sor =ol

QOOOOOOOCDNONN0
zof

lc OOOOOEOOOOOOON00 e OO bol 17 cfm 0 0 0 0 3 4
rec QOO0 0 3 0 pec 00 ppl 3 pfm 0 0 i} o1y 20
10 OOOCOOOAOGHNONN0 BOGOOOOOCON0ESFE QOOOOOOOLANONNNN AOOSO04002FO033F
r4 QOOCOOOOOOOOON0N0 OOAAOOOOHOOOAN0N AAAOOOOHOOOONOAN AOOOOOOOOOONO00
r8 400000000000020 BOOAOOOOOOOOLLTE AOAOOOOOOOOON0A0 AOOOOOOOOOONOO00
rl2 SFFFFFFFEFFFFTTO Q0000000000000 EO0000000000FEI0 000000000000
rif 0000000000000 QOOCOOOOOAANOOZ] O0OO0O0OAN000E Fefefefefefefeff
r20 SFFFFFFFFFFFFI40 BOOOOOOOOONOTEFE 400000000007IETE OOO000MAAM0NII0C
r2d O000000000AN0NN0 QOCCOOQOOAAINA0 GOCOOOOOAAMNAION OCOOOODAAIONIIC

f) 0Q0QOOACHOOA0A0D0NN0N ¢ O, O000e+00)
f2 00000000H0DA0A0M0NN0N ¢ O, G000e+00)
f4 00000OOGHODA0A0M0NN0N ¢ O, 0000e+00)
f6 O000OOQOOOOAOOONANNON ¢ O, OO00:+003

OFFFFEO0A0ANDA0DAOA0N ¢ 1, 0000e+00)
DOOOOOACA0DODN0D0GACH ¢ O, G000+
DOOQOOOCAND0DN0D0GACN ¢ O, G000+
0OAOOOOOOODOONOIOOAON . ¢ 0, OO00e+003

p=r
iva

0000000Z00000010° ipsr 00000O0000000000 dor OOO0OO0OAAODOAGG
O000a0000A000000 pta OO000OO00OO0003: gpta OOOOOOOOAOODONG0

eax Q0000Ze0 ehoc OOOO0000 eox OOO00S17E ede QOGO
ezi QOOO7EA0 edi OOOOOOO0 ebp QOOOOOO0 esp FRFFFFFN
cz 0021 ds feff ez 0000 fz £940 gz 7EF2 == 0008 1dt 9673 ts= B478

eflags 00000000 [lelbelltlidlaclvmlrf Int[Olof IdF1if Itf 1sfzf | af |pflcf]

gip 002130000050

L_________lrfr*n

LerT*~

L_err*n Llrfr*n

=

ClDSEl

Figure 1-19. The xski Register Window After Stopping at a Breakpoint at

main +10

By changing the value of thp register, you can change where in the program Ski will resume simulation. Enter the com-
mand = ip main+20 " in the Main Window and observe the first line of the first pane in the Register Window: notice
that theip register changes to reflect your command, as Figure 1-20 shows. (You may need to left-click in the Main Win-
dow to make it active.) You can make similar changes to all of the architecturally-visible, non-hardwired IA-64 registers,
which helps you debug your program. You can test your program’s behavior in exceptional cases, such as handling

unusual errors.

1-14 Getting Started: A Ski Tutorial

Copyright © 2000 Hewlett-Packard Co.

Ski IA-64 Simulator Reference Manual 1.0L

=/ [B][x]

Fegisters Window

ip main+O0zo par,um mfhIMFLIac|uplbe

prz 10000000 QOOAaO0 GOOOGH00 QOAMONAC AOOGCNNG GOAOAAC0 QOOCOMHN QOO -J

b0 __libc_sta%+0250 QOOOOCOO0O000000 B2 OOCOOOOOOQOOACO0 GOCOOOHNANCIACC

b4 OOOOOCHOOOOAAN00 GOOOOCOINNNNNNN0 BE main QOOOOOOOCDNONN0
rrbp rrbf rrbg sor =0l sof

lc
rac

0000000000000000 ec 00 bol 17

0000 0 3 0

pec 00 ppl 3

cfm 0 0
pfm 0 0

]] 3 4
] o 17 20

10
r4

ri2
ri6
r20
r24

OOOQA0NOAANNAI00
QOOOAQODANNO00
A0000000000003:0
IEFFFFFFFFFFFTT
QOO0ACOODAOA0N00
SEFFFFFFFFFFFI40
QOOQAOAOAA0NAI00

GOO000A0N000E4 7
QOOOOOAOIONNION
GOOO0OOON0N051FE
QOQOOOAONOONNIOH
QOOOOCAOD0D0021
EOOOO0A000007EFE
QOOQOCA0A0DD0D00

DOOQOOUCANNANN0M0
DOOOOOOONODOOIOD
DOOOOOOONODOONOD
BO00OOOONON0TSI0
DOOOOOACO0DO0I0E
400000000007 IETE
DOOQOOACANDO0D00

OOOBO0400ZFONZZF
QOOOODOOAMONN000
QOOOODOOAMONN000
QOOOODOOAMONN000
Tefefefefefefeff
QOO0
QOO0

L_________lrfr*n

LerT*~

f) 0Q0QOOACHOOA0A0D0NN0N ¢ O, O000e+00)
f2 00000000H0DA0A0M0NN0N ¢ O, G000e+00)
f4 00000OOGHODA0A0M0NN0N ¢ O, 0000e+00)
f6 O000OOQOOOOAOOONANNON ¢ O, OO00:+003

OFFFFEO0A0ANDA0DAOA0N ¢ 1, 0000e+00)
DOOOOOACA0DODN0D0GACH ¢ O, G000+
DOOQOOOCAND0DN0D0GACN ¢ O, G000+
0OAOOOOOOODOONOIOOAON . ¢ 0, OO00e+003

pst 0OO00OOZ00000010 ipsr 0000000000000000 dor QO00OOOOOOOOOO00
iva 0000000OO0000000 pta QOOO00OOO00000Z: gpta OOOOOOOOOONNOOO0

L_err*n Llrfr*n

eax Q0000Ze0 ehoc OOOO0000 eox OOO00S17E ede QOGO
ezi QOOO7EA0 edi OOOOOOO0 ebp QOOOOOO0 esp FRFFFFFN
cz 0021 ds feff ez 0000 fz £940 gz 7EF2 == 0008 1dt 9673 ts= B478

eflags 00000000 [lelbelltlidlaclvmlrf Int[Olof IdF1if Itf 1sfzf | af |pflcf]

ClDSEl

gip 0021300000400

=

Figure 1-20. The xski Register Window After Changing the ip Register

Changing registers isn't enough to debug most programs, however. Often, you need to change values in memory as well.
Ski provides several commands for this, differing in whether they modify one-byte chunks, two-byte chunks, four-byte
chunks, eight-byte chunks, or variable-length C-language text strings. For example, instead of “hello world”, you can
have the program output “Ski!Ski!Skil”. You can do this by using tke™command (* string”) to modify the data

stored at the address|O_stdin_used+8 ". (The string may be stored at a different address in your program. If so, use

the Data Window to locate the string and then use the corresponding address instead.) Here’s what to do:

First, make sure the Data Window is wide enough to show ASCII translations along with hexadecimal, as in Figure 1-21.
To avoid confusion, make sure the Data Window doesn'’t overlap the Main Window.

Copyright © 2000 Hewlett-Packard Co. Getting Started: A Ski Tutorial 1-15

Ski IA-64 Simulator Reference Manual 1.0L

Widindone

Data

4000000000073518 Bf77206fEcEoERED
4000000000073828 Bo/SEe2f FEEDE42F
4000000000073838 545f434f 4cdcdldd
4000000000073848 00005F444c4f4853
4000000000073858 005 4441505F 504
A000000000073865 455248545F50414d
A000000000073878 4d5f434f 4cdcdldd
4000000000073838 Q000000000000000
4000000000073838 0000005f 46434548
40000000000785a8 B56420676637375
40000000000735b8 0000027 3ELEFEFED
40000000000785:8 0000000000000 a32

0000000003646 72
0000000000006
4h5248545f 444952
545f434fdcdcdldd
4d5f434f4cdcdldd
QOOO5F444c4£ 4853
5fo0414d5f50414d
420f 4341 dcdcd14d
203ab36fboboh16d
20E7EeE96VE/ /B2
E42020616e657241
B2206dEL 74737973

hello world,.,..
Sdewdnull, s ean
HALLOC _TRIM_THRE
SHOLD_. MALLOC_T
OP_PAD_ . MALLOC_H
MAP_THRESHOLD_., .
MALLOC _MMAP_MAX_
sessrseeALLOC_C
HECK_, . .malloci

uzing debugging

hooks, . ,Arena #d
TersrssoSustem b

Elosel

Figure 1-21. The xski Data Window Widened to Show ASCII

Next, issue the commands$ |0 _stdin_used+8 Ski!Ski!Ski! " in the Main Window. (You may need to left-click in
the Main Window to make it active.) Observe how the Data Window changes: the hexadecimal values at, and after,
_lO0_stdin_used+8 have changed, as have their corresponding ASCII translations, and a null byte (the value zero) has
been added to the end of your string to make it a valid C-language string. Compare Figure 1-21 and Figure 1-22.

Data Window

[=/[B][x]

4000000000078818
4000000000078828
400000000007 3328
4000000000073343
40000000000 73858
40000000000 73568
40000000000 7387
40000000000 73038
400000000007 3538
400000000007888
4000000000078853
40000000000788::3

21E36E5321696053
B /hEe2f FEEDE42F
5d40f424f 4cdcdldd
00005 44444353
005 4441505 504f
4h5248545F50414d
4d5f434f4cdcdldd
QOOOOOROOOOOHO0
QOOOOOSF 40434548
B5E42067BeB37375
00000/ 36bEFEFES
0000000000023

0000000021636053
0000000000006
455248540f 444952
5d4bf424f 4cdcdl4d
4d5f434fdcdcdldd
DO005F444cdf4853
5f00414d5f50414d
435f434f 4cdcdldd
2033636 6chohlhd
20E7EeE36TEY 70E2
E42020616e657241
B2206dEh 74737973

SkilSkilSkil,,,.
Adewinull, s
MALLOC _TRIM_THRE
SHOLD_, .MALLOC_T
OP_PAD_ . MALLOC_K
MAP_THRESHOLD_., .
MALLOC _MMAP_MAX_
vessseseALLOC_C
HECK_...malloc:

uzing debugging

hooksz, . ,Arena #d
fereres.system b

Cloze | fursier |

E;:l

Figure 1-22. The xski Data Window After Changing the “Hello, world” String

The commands to change one, two, four, and eight byte quantitied are, =4, and=8, respectively. They are described
in detail in Appendix 8.1, “Changing Registers and Memory with Assignment Commands” and in Appendix A, “Com-
mand Reference”.

Often, you will need to evaluate formulas. For example, to find the address of thenfipststring, you would need to
compute the sum of the contentsrd? and18 (hex) and then add the length of thgv vector @rgc+1) multiplied by

eight (the size of a&har * on IA-64). To do this, you use thestal " command in the Main Window, as shown in
Figure 1-23. (The use of the ™ operator was discussed in Section 1.2.4, “Inspecting Data”.) As you see, the result is
shown in decimal and hexadecimal.

1-16 Getting Started: A Ski Tutorial Copyright © 2000 Hewlett-Packard Co.

Ski IA-64 Simulator Reference Manual 1.0L

=B/X]

File View Configure Help

rn A
step 1

= ip main+Zi

=z _ID_stdin_uzed+d SkilSkilSkil

eval rl2+18+ (% {r12+100+1 %8 v
Commands

Breakpoint {IA-B4} at main+0010

16836 inst=. 0,65 szec. 24204 ifs, BOZE cucles, 2.B3 ipc
1 insts, 0,00 sec, 386 ifs

Hexs SEFEFFFFFFFFFFI0 Decimal: 1152921504E0854E7E00

[] =

~l =]

Figure 1-23. The xski Main Window Showing an eval Command and Its Result

1.2.12 Getting Help

To see what commands are available, typag' ” in the Main Window or use the Help->Commands menu selection. To
see the syntax of a specific command, tyydp" " followed by the command name, as hetp eval "

1.2.13 Next Steps

Congratulations! You now know how to ugski to test an I1A-64 program. In the rest of this manual, you'll find out how
to useski andbski and the many additional commands and facilities not covered in this brief tutorial.

« Chapter 2, “Overview” presents the capabilities of Ski, how to start it and stop it, and a brief discussion of installation
issues. The chapter also shows how tohsée for batch simulations.

« Chapter 3, “Screen Presentation”, discusses the various screen dispisiisaridski in depth.
e Chapter 4, “Command Language”, defines the syntax of the language you use to control Ski's operation.
« Chapter 5, “Screen Manipulation Commands”, presents the Ski commands for controlling Ski's screen displays.

« Chapter 6, “Program Simulation”, introduces the concepts of Ski program simulation, shows you how to load pro-
grams, and presents the Ski commands for simulating a program. Much of the information needed to use Ski for firm-
ware development and operating system simulation is in this chapter.

e Chapter 7, “Linux and MS-DOS ABI Emulation”, discusses the Ski mechanisms and support for simulating applica-
tion programs. If you are using Ski for to develop system software, such as bootstrap firmware or operating systems,
you can skip this chapter.

« Chapter 8, “Debugging”, presents Ski commands and facilities that are useful in debugging and tuning programs.

« Chapter 9, “Command Files”, introduces command files, a mechanism that lets you extend Ski to meet your particular
needs.

« The appendices contain summaries of the Ski command set, a list of the registers and internal variables Ski recog-
nizes, and a description of the Ski error and status messages, their causes, and, for error messages, possible solutions

Copyright © 2000 Hewlett-Packard Co. Getting Started: A Ski Tutorial 1-17

Ski IA-64 Simulator Reference Manual 1.0L

1-18 Getting Started: A Ski Tutorial Copyright © 2000 Hewlett-Packard Co.

Ski IA-64 Simulator Reference Manual 1.0L

2 Overview

2.1 Introduction

The Ski simulator is a software package designed to functionally simulate the 1A-64 processor architecture at the instruc-
tion level. Ski offers an informative, screen-oriented machine state display and a friendly, powerful command interface.
Programs may be loaded from disk in executable format; they may be run from start to finish, single-stepped, and break-
pointed. Translation lookaside buffers may be simulated. Certain Linux and MS-DOS operating system functions (system
calls) are provided for simulation of application programs. These capabilities are complemented by screen-oriented sym-
bolic debugging to provide a view into the simulated 1A-64 processor.

211 Ski’'s Strengths
Ski is particularly well-suited for:
* |A-64 application development:

Ski can simulate 1A-64 programs in a Linux environment and |A-32 programs in an MS-DOS environment. SKi
provides a user interface that looks very much like a typical debugger— but the processor you are debugging on is
virtual, simulated by Ski. Ski has successfully executed the SPEC-92 and SPEC-95 benchmark suites.

* |A-64 compiler tuning:

Ski provides performance statistics that can help you tune 1A-64 compiler code generators. Ski can help you improve
your compiler’s use of IA-64 architectural enhancements for parallelism.

* |A-64 operating system and firmware development:

Ski can simulate a “raw” 1A-64 processor, with ho operating system provided. Because of this, you can use Ski to
simulate an 1A-64 operating system running IA-64 and IA-32 programs. For example, Ski has been used successfully
to develop the I1A-64 version of the Linux kernel.

* IA-64 processor functional hardware verification:

Ski is a true implementation of the IA-64 architecture. You can compare the behavior of code simulated with Ski to
the same code running on other IA-64 implementations. This helps you verify the correctness of those
implementations.

2.1.2 Ski's Scope

Many different kinds of simulators can be created: device simulators that function at the semiconductor quantum physics
level, circuit simulators that model the behavior of small numbers of transistors and other circuit elements, gate simulators
that model digital circuits at the boolean logic level, and so on. Ski is an instruction simulator, which makes it very fast.
Ski doesn’t model any particular physical IA-64 implementation. Instead, it models an architecturally-compliant IA-64
processor with extensive compute resources.

2.2 What You Need to Know to Use This Manual

This manual describes the user interface of Ski in detail. In reading this manual, you will learn how to use Ski to simulate
your IA-64 and IA-32 programs. To understand this manual, you should already be familiar with the 1A-64 architecture.
IA-64 abbreviations such &s, psr , andeax are used without explanation.

2.3 Defects and Defect Reporting

Ski is provided "as is", without any guarantees or warranties. However, a mailing list has been created for reporting Ski
defects and for general Ski discussions. See the release notes for details on the mailing list address and how to subscribe.

Copyright © 2000 Hewlett-Packard Co. Overview 2-1

Ski IA-64 Simulator Reference Manual 1.0L

2.4 Ski Variations

The simulator is available in three varieties, distinguished by their user interfeldescski, and bski. The underlying
simulation engine is identical across all three varieties. The figures below show how each variety looks when first started.
Figure 2-1 showsski, which uses a terminal-oriented, curses-based, character user interface. Figure 2-Xstiows

using an X Window System, Motif-based, graphical user interface. Figure 2-3 diskiuswhich provides a batch-ori-

ented, command-line-driven environment and no user interface. Ski command line flags, some of which are shown in
Figure 2-3, are described in Section 2.5.1, “Command Line Flags”.

The three varieties understand the same command language. There are a few, unavoidable differences and they are pointed
out where appropriate in this manual. Most examples and sample screen displays are takeskifreessions. All exam-
ples have been verified in actual use.

24.1 Using bski for Batch Simulations

Becausebski has no user interface, you typically control it using a command file (see Chapter 9, “Command Files”) and
the-i command line flag (see Section 2.5.1, “Command Line FlagXl)andxski are intended for you to use interac-
tively, while bski excels at batch simulations that might run for a long time as background jobs on your workstation or on
a higher-powered remote simulation server. Then and make programs work well withbski. With cron , you can
schedule simulations to run at night and on remote servers. mMéie, you can execute complex networks of tests
quickly, lettingmake keep track of the dependencies between the tests. These programs are documented in man pages.

=Bl

r0 0000000000000000 0000000000000000 0000000000000000 0ONNO000OONO0000
r4 0000000000000000 000OODO00000ON00 0OONOO000CO0N00 HONNN00CCONN000
rE 0000000000000000 00000D0000000000 0OONOO000CO0N000 HONON000CONN000
P12 0000000000000000 000OODO0000CON00 0OONOO000CO0N00 HONON000CONN000
16 0000000000000000 0000000000000000 0000000000000000 0000000000000000

[
_

IA-64 Debugger/Sinulator
Version 0,8731 (EAS 2.5)
Copyright (o) 1985-2000
The Hewlett-Packard Company
All Rights Reserved

QOQOOOO0OOO0NCICN st S b
QOOOOOODOOO0NNTD s e

Command Version 0,8731 (EAS 2.5

i

Figure 2-1. The Curses-based ski Interface

2-2 Overview Copyright © 2000 Hewlett-Packard Co.

Ski IA-64 Simulator Reference Manual 1.0L

=| Data Window =]
Data
El ngram Window L T g G G 0 G
Progtam filey 79 QORCQOCCACCIOCIZN 5 3 a3 N
QOOOOODOOOOONNZR e XKL
QOOOOOOOOODONOLY e R R e e s s et
QOOOOOOONODONOZN oo QOOODOOOOONONNGD RN KRR T KR KN
0OO0OOOO0ODO0NEN e OOOODOUOOODONNG xRN XN N
0OO0OOA0A000004D e OOOODOUOOODONNTY N X RN
DOOOAAOOANOONNGD oo OO00OOMOOON000BY XxxEXNENEEERN XA GO
DOOOAAOOANOONOED oo OO000OMOOON000TN Xxx RN NENEIENERN KA HH GO
= Registers Window ==
ip OOOQQOCOAO0CAN00 par,um mfhinfllacluplbe 21
pra 10000000 QOOCOA0 QQOAOAA0 AOO0OARC GCAOGOAC COAMGON0 QOA0CO0 GOA00OG0 J
b QOOGAAADOAANGON GOANQOAANGANNN0G b QOCOA0AOAANGANA0 AOOGOCANCQA0AI0
bd QOOODOOOGAANAG00 GOOOOGAAAAGNONND BE QOOGOODHOOGAANA0 GOOOHHOIAIIGN0N
rrbp rebf rrbg zor =0l sof
le 0000000000000000 ec 00 bol O w0 0 0 0 0 9
rac Q00O 0 00 pec 00 ppl O pfm 0 Q0 0 0 0 0]
I
10 QOOOAAOCOGANNGA0 QOOCOAQOOAANCHI0 GOOOOCADCOAN0OG0 CCOOOA0NOIAICD 21
4 QOOOAAMCOANCAN0 QAOCOAANOAANCOI0 AOOAOCANCOAAN0A0 SCOOCOR0AOIANCG0 J
8 QOOOAAMCOANCAN0 QAOCOAANOAANCOI0 AOOAOCANCOAAN0A0 SCOOCOR0AOIANCG0
12 OOOQQOOAROCOA00 QOOAANCAAA0OAN00 QOCOA0AOAANCAN00 AOCOCANCOA0AOGA0
rlE OQQOQOOANOGOA0G OOOAANGORANOAN0G QOCOA0AOAANGANA0 AOGOCANCQA0AOIA0
P20 OOQAQOOANNGOIANG OQOAANGAAANOAN0G QOCOAOAOAANGANA0 AOGOCANCQA0AOIA0
24 OO0OOOCQAOAGIO0L GOAAMANNGDOOO0 QOOQOCHHGOAAANAN GOOOOADANHHCHT]
|
O 0OO0OOOOAAAOOOOO0HON £ Q,0000e+003 OFFFFE0000000A0000000 {1, 0000e+000 =
2 0000OOOOAAAO00O000H00 § 0,0000e+003 QO0O0O0O0OOCAA0AN0000 {0, Q000+
4 O00Oa00A0COA0CCICL
FE 0000000000000000000) = Nkl 7]
File View Configure Help :f
par QOOOQOOOQA0COA0 i p: =
I T Stepl RunI Progl Datal ﬁﬁgvl iachvl TLB| Quitl i
—_——
eax Q0000000 eby QOODCHD j
ezl Q0000000 edi QOODOO0
cz 0000 ds 0000 ez QOO0 {
eflags Q0000000 [lelbell]
Elusel

Commands
I
]
|
=l =]

Figure 2-2. The X Window System, Motif-based

xski Interface

Copyright © 2000 Hewlett-Packard Co.

Overview

2-3

Ski IA-64 Simulator Reference Manual 1.0L

[=I[BI [
$ cat command_file
eval 3+4
LI
guit
3 bski -noconsole -i command_file -stats -icnt instruction_counts hello
Hext T Decimal: T
hello world
progran exited with status 0
20&13 inst=s, 0,04 zec, 560TEE ifs, T485 cucles, 2,69 ipc
¥

il

Figure 2-3. The Command-Line bski Interface

2.5 Starting Ski

To start the Ski simulator, type its namsk(, xski, or bski) and any necessary command line options and file redirec-
tions, just as you would start any other Linux program. (Command line options are described in Section 2.5.1, “Command
Line Flags”.) The simplest invocation of the simulator is:

ski

This starts the (curses-based) version of the simulator with no program loaded: a “bare” I1A-64 emulation is ready
for you to use.

A more sophisticated invocation would be:
xski my_program

This starts the (X/Motif-base®ski version of the simulator and loads the IA-64 executablenfifeprogram , ready
to run. The program will not receive any command line arguments (via the argc/argv mechanism) when you run it.

To run the simulator as a batch job in the background on an all-night run, you might execute this command line:
bski -noconsole -stats -i my_commands my_program foo bar <test_data >out_stuff 2>bad_news &

This invokes the (batchfski version of the simulator and loads the |1A-64 executableniiteprogram , ready to run.
The-noconsole flag tellsbski not to create a separate console window for the program’s standard 1/0. The program
will receive the command line argumerit® andbar via the argc/argv mechanism whéski runs it. Both the
simulator and the program being simulated will have standard in, standard out, and standard err redirected from/to
test data , out stuff , and bad news, respectively, and the simulator will execute the commands in
my_commands (Ski never reads from standard in, so there is no possibility of confusion.)stre flag specifies

that at the end of the run, collected statistics will be output to standard out (which is redirected). The ampe&tysand (“
runs the job in the background.

251 Command Line Flags

The simulator accepts certain flags on the command line when you start it up. The flags are passed on the command line in

2-4 Overview Copyright © 2000 Hewlett-Packard Co.

Ski IA-64 Simulator Reference Manual 1.0L

standard Linux fashion. The Ski command line syntax is shown below-iTheest , -icnt , and-stats flags can
appear in any order.

ski [-help][-i filenamé[-rest filenamé [program_filenam¢argg+]
xski [-help][-noconsole][-i filenamé [-rest filenamé [program_filenamgargg+]
bski [-help] [-noconsole] [-i filenamé [-rest filenamé [-icnt filenamé [-stats] [program_filename
[argsl+]
2511 Summary of Flags
-help

A list of flags accepted by this variety of SlkgKi, xski, or bski) is printed out. No other processing is done and Ski
terminates.

- filename

The specified file is run as a command file before the first prompt to the usemptbgram_filenamés provided on
the same command line, tippogram_filenamés loaded before the command file is run. This provides a convenient
way to load a program, initialize other machine state, and then turn control over to the user.

-icnt filename

For bski only: This flag specifies instruction counts should be saved in the specified file. For each kind of instruction
executed during the simulation, the instruction count file shows five fields of information:

* The instruction mnemonic
» The total number of times the instruction was executed
< The number of executions that were predicated on
e The number of executions that were predicated off
< The number of executions that were predicated on predicate register 0, which is “hardwired” on
The value in the second field equals the sum of the values in the last three fields.
-noconsole

For xski and bski only: This flag tells Ski not to create a separate console window for the simulated program’s
standard I/O. Instead, Ski will use the existing console window's for standard 1/0 purposes in the simulated program.

-rest filename

Restore the simulator run savedfitltname See Section 8.6, “Saving and Restoring the Simulator State”. This flag
cannot be combined with grogram_filenamef combined with ai flag, the-i flag is accepted and theest flag
is silently ignored.

-stats

For bski only: specifies execution run-time and instruction rate information should be send to standard out (stdout) at
the end of the run. This information is normally displayed in the Main/Command Windaws/if and ski. The
-stats flag allows users dfski to get the same information.

25.2 The XSki File

Xski's screen presentation is substantially controlled by the contents &fSttiefile, which uses the X Window System'’s
resource mechanism to provide informationxeki. You can edit this file to changgski’s use of graphic buttons,
described in Section 3.7.1, “The xski Main Window”. Tkgki file is part of the standard Ski distribution and you should
put this file in your X Window System’app-defaults directory or in your home directory. If there is no vakgki file,

the simulator will not be usable. You can find more information on instaMisig in the release notes that come with each
Ski distribution.

Copyright © 2000 Hewlett-Packard Co. Overview 2-5

Ski IA-64 Simulator Reference Manual 1.0L

2.6 Quitting Ski

Thequit command causes the simulator to exit. If a numeric operand or expression is supplied, the value is returned to
the shell as Ski's exit status. This can be particularly useful witki and command files (see Chapter 9, “Command
Files™), for automated testing and regression testing. The exit status from Ski becomes the new value of yogr shell’s
variable (for most shells) and can also be retrieved automatically by the make program, if you use makefiles to control
batch runs.

26.1 Summary of the Quit Command
quit [expressioh

Terminates the simulator and returns control to the system, setting the exit stsjuessior(default is 0).

2-6 Overview Copyright © 2000 Hewlett-Packard Co.

Ski IA-64 Simulator Reference Manual 1.0L

3 Screen Presentation

3.1 Ski's Use of Windows

xski and ski generally divide the screen into four window#ski doesn't create any windows because it has no user
interface, only a command line interfacegki uses Motif windows which you can move and resize using the mecha-
nisms provided by your window manager (WindowMaker, Englightenment, fvwm, twm xstd.)creates additional win-
dows as necessary.

ski uses the curses package to create four windows on the terminal screen. Begawus®s curses, it runs on nearly any
terminal or terminal emulator, including xterm. Wheki needs to show data that isn’t appropriate for one of its four win-
dows, it uses a pager such amfe” or “less " instead and restores the curses windows when the pager completes.

Ski uses three of the windows to display information to you. The fourth window is shared between you and Ski: You enter
commands that control Ski and Ski reports errors and other immediate information to you. You control the windows using
Ski commands (see Chapter 5, “Screen Manipulation Commands”) and the simulator updates the windows whenever nec-
essary to maintain consistency with the internal state of the simulator engine. The four windows are described in more
detail below.

3.2 The Register Window

Ski divides the 1A-64 processor registers into five setsxdki, all five sets are displayed in one window, the Register
Window, with each set in its own subwindow or “pane”. The panes show user registers, general registers, floating point
registers, system registers, and 1A-32 registers respectively, as shown in Figure 3-1. The five panes share screen space and
unless you have a very large screen, it's not possible to see all five panes at full size simultaws&iislyows portions

of all five panes by default, but you can toggle any panes off with commands described in Chapter 5, “Screen Manipula-
tion Commands”.

Xxski understands the Page Up and Page Down keys and the up-arrow and down-arrow keys found on most keyboards.
These keys operate on the current pane, which is usually highlighted with a bright border. When the Register Window has
the X Window System focus, the Page Up and Page Down keys scroll the current pane one “pane-full” less one line of
overlap. The up-arrow and down-arrow keys scroll the current pane one line. The Tab and Shift+tab keys change the cur-
rent pane highlight to the next or previous pane, respectively, “wrapping around” the top and bottom of the Register Win-
dow.

Copyright © 2000 Hewlett-Packard Co. Screen Presentation 3-1

Ski IA-64 Simulator Reference Manual 1.0L

Hagistars Window

ip DOSODOGOOOOO0G00 psr.um ac|op|BE |OR

prs 10000000 GOOOGO0G O0GO0GH0 GOOGHO00 DOG00GH0 GO0GH0N00 DGDO0GO0 G00GH000

L0 DOGEOGRE0GH0G300 GO0S000000GH0GH0 b2 OO0GDDOGO0GHN0EE GOSH0G00SH00H

béd OOGHNEGH0GHOGEH0 SOGGHNGBNGGH0GE0 bi GODGADGGAENNMNGE GO ONGHDGHNHGH00E]
rrhp rebf rrbg =or sel sof

¢ BOGDOGROOGHODGE0 ec 00 bol O cim e 6] 0 o Lo ok

rac DOGH 1 8 © pac B0 ppl O plm o i L o a i]

ril GROGRAOGHOOGANGD GOOGHOOGHNGDANGD GODGHNOGONGHANGE HOGGHOMGODGOO0G0 #

rd GOOGODOGHOGOO0GE GOOGHO0EO0MBO0GE GOOGH0GGO0GH00GH DOOGH0M0 OH00ERE

rd GOAGDHOGHONBGD0GE GROGHADSH0GHH0NG GOOGH0GGH0GH0GGH DOOGHORE HEHO0EE

rl1?d GROGDDOCGHODSOUGE GROcHNDoRnGRONED GOOGDOGGHNED00G0 DDOGHO0 GO0

rlb GOOMROOGHNMINNGE GOOEDNNGONEN0GE0 GDOSHN0GONENNGRGH ODAGHOMNR00B0

r2 GOOAQOOEDOMBO0GD GODOQODOGDOGHONGE0 GOOODDAGOOGN00R0 OOSDOM00GH00GH0

r2a CGONAQOOED0G3O03D GOOODOOGOOGHOORD GO0CDDAGOOEN0000 GOOGODMG00N000B0 .

0 OOHEGGOOGDO0E00BHAa0E {0, 000e+00] 0f {11 8000000000000 1 B0 e+ | '1

12 OoONOGODGONEGODNEH0000 [0.0000e+00) GO0GHN000N000003600 { o, 0000e+H0)

I4 OEDOMGOOGONHN0GH00EN [0,0000=+00] OD0SON0GO000G003000 | O, DDE=4+H30) |

6 OGONGOOGDNH0ME00EN [0.0000=+00) ODOGDDOGO0GD00GO0000 | O, DD0=4+00] .

par OEHODODOGHODGN0E ipsr GODOOOOGOOOOOO0E dep GOOGDOEO OGN

iva OOQOGOODGODGGO00 prta OHOOGODGO0GOO0MO gpta GOIEHOCGOOMGOGE ;]

cax OO0GH0GE0 ebx QOOGHOOG ecy ODGOOGBO0 ede DOGDO0GO eip OGO :GOOGHOO0G

esi OOGOO0O0 edi GOOGHAOG abp OOOOGBO0 esp QOGO 3

s G000 da DO00D es 0000 fs GOO0 ga OO0G s ODO0GD 14t GOOG tas D000

af lags Q000000 [lalballelidlae vl el Intllaf |AEILE 16l lad 28 Dal |l ef] .

E-I-u-l-l H-u-|,|1|

Figure 3-1. The Register Window in xski

ski shows only a portion of a register set at a time and you use the commands described in Section 5.1, “Register Window
Commands” to select which portion of which set to see. The sets are described below in the order they appear in the Reg-
ister Window. Theiwxski realizations are shown as well.

3.2.1

The user registers pane (see Figure 3-2) displays the Predicate Registgrin(binary, the Application Registers in
hexadecimal, and the Branch Registes8-(7) and the Instruction Pointeip() symbolically if possible, otherwise in
hexadecimal. Symbolic displays are limited to sixteen characters; when more than sixteen characters are needed, the first
fifteen are displayed and an asterisk’'is added to indicate that the symbolic display has been abbreviated. The fields of
the Current Frame Markecftn) register and subfields of the Previous Frame Marker figfd X are displayed in decimal.

For bit-encoded registers, some bits are displayed individually using their IA-64 mnemonics. If a bit name is displayed in
uppercase, the bit is currently set, and if the name is displayed in lowercase, the bit is currently clear. For example, the
psr.bebit is shown as BE" in Figure 3-2, indicating that the bit is set. The User Mask bitfigdgrun) from the Processor

Status Registempér) is displayed in this pane; the entiser is shown in the System Registers pane, described in Section
3.2.4, “The System Registers Pane”. Predicate Regipteés-pr63 are displayed in their rotated form, as indicated by
therrbp field of the Current Frame Markedfrq) register.

The User Registers Pane

At the middle of the pane, the line startingean ” shows, in decimal, the values in the internal registers that control the
Register Save Enginesg). The IA-64 architecture requires that these registers exist but provides no program-visible
access to them.

3-2 Screen Presentation Copyright © 2000 Hewlett-Packard Co.

Ski IA-64 Simulator Reference Manual 1.0L

ip compress psr.um ac|upl|BEIOR Gi
prs 10068007 OGHO0GO0 B00800048 O08H0GH00 G0GH006H GHDOGHOG O0GHO0GH GDHOOGE00
b maln#22B60 —mal o060 b2 GOO0GO00G00GE006 ODOOGONGH0 GG
b4 GOOCHOGOO0ROO00H GHEGGO0GOO0GO000 be _bek-HO060 Rl Rl el el ale)
ttbp rrbf rrbg sor 80l sef
le GOOGOOOOOOROOOOH ec 0 bol 15 clm o {f] i) i 3] 5
reqc DROG 1 @ 0 peo B0 ppl 3 plm il o () o g 13
clean 0 cleanMAT @ dirty 15 dirtyHAT 0 dnvalid 76 rle @
bep SEfFEEEEVEGOOOVE bspst DEEEffE§7EGODOODH
roat D0GHOGSO0GH0000 nnat GOO0GH0GHO00O000
fpsy DOGYAOG-O02TOOIE ite CROOROORRAAG0000 cow OOOGHOGHH OO0
ko DOGRO0S00G0a0G00 G00G00GEA0S00000 k2 GDOGDOGRONGH0EG0 GHO0EO0GDO0EH00
k& DOCBOGSO0G0OEGAL0 GD0GH0GHO0BH0000 ki aDOcDOoONnBHnEGn CHo0aa0EDA0Sa06n
ellapgs GOOCDOOBOODGOOED cf 1g OOO0GOOBOODGOO0G0
cud GROOBROGHO0GR0GD sed DOOGHOGDOOGH00H0 r
#
Figure 3-2. The xski User Registers Pane
3.2.2 The General Registers Pane

The general registers pane shows the current values of the 64-bit general (integer) data registers, four to a line, in hexadec-
imal. Registers whose corresponding NaT bits are set are displayed with a leading ast&riski(dicate this. The dis-

play reflects 1A-64 register stacking and rotation: only the 32 static registers and the stacked registers allocated to a
function are displayed. The allocated rotating registers are displayed in their rotated form, as indicatedbgy fiedd

of thecfm register, displayed in the user registers pane. The general registers pane is shown in Figure 3-3.

i CEROEOOOROOENNG0E ROOERDOBEAGGDaGE GROUE0HcO2 TO0I3E eDODODGHOCHA 10 £
4 aBDROOOBON0E2Z000 GO0OD0BH00ZhecE GODGDORGODGHNNG0 DOCHOBGHOGHOGA0
ré OSO0GH0OG0000008 OO0GODBE0G0O0GE DO0GHOBE0NGI 0000 DOGD00GH0RD00G00
r12 OfFFEEEEEEFEfbA0 OEFEFFEEEEEffcTa OODGDDOGOOGOOOOD OOCDDDGDOGDOODON
riG DODD0OD0GO0GB0000 COODODOGOONGDDGD O00SDDG00GO000D DO0OODGDDOD00G00
r20 DSD0OOO0GO0GOD00 eO00000000002006 EO0GDOGOO002becE DOGODAGOOGHODOEE
p24 eGD0OH00SO0GR00E eO00ODOGH0GO00GE GODGDOGHONGO0GE0 SH0GH0AGO0GH0M00
r28 OODOGHOOGHOGHA0G cOAOGHOGOANGN2EG GAOGHOGGO0GLSI40 HOGB00000D00EE0
2 MEfffEEEfEEfait conoeOOGoOoe933e SEEfEEEfEEEfEnan cOGROOGHORH0G
30 GODO00ORCN00ET 40 |
Figure 3-3. The xski General Registers Pane
3.2.3 The Floating Point Registers Pane

The floating point registers pane shows the current values of the 82-bit floating point data registers, two to a line displayed
in hex and scientific decimal notation. Floating point registe?2s-f127 are displayed in their rotated form, as indicated

by therrbf field of thecfm register, displayed in the user registers pane. The floating point registers pane is shown in
Figure 3-4 with various values in the registers.

Due to the nature of floating point arithmetic on the host computer, the scientific decimal displays may be inaccurate for
very large and very small numbers, positive and negative. The hexadecimal display is always correct, as are all calcula-
tions done by the simulated program.

Copyright © 2000 Hewlett-Packard Co. Screen Presentation 3-3

Ski IA-64 Simulator Reference Manual 1.0L

9 OOGDOGONOGHO0GDOEN00E [O.0e00e+00) off f1S00000G000000600 {1, DODEe+HR)
12 VL0 EEe000R0en0Gn0nG [— +Iinl —=) 111 EEO000000000000000 { Unsupported)
£4 VELEE2O000000600000008 [(——HaT¥al—) 1{{E§cO00O0GB0G000000 (—qgblal—/
f6 001 23000000000000012% [2.5105:+71) 200000000000000000123 (=6, 3101e=17) .
Figure 3-4. The Xxski Floating Point Registers Pane
3.24 The System Registers Pane

The system registers pane shows the Processor Status Regisyeontrol Registers, Region Registen® (-rr7), Pro-

tection Key Registerspkr0 -pkrl5), Data Breakpoint Registersl{f0 -dbrl5), Instruction Breakpoint RegisteriiQ -

ibrl5), and Performance Monitor Configuration Registgnaq0-pmc15), in hexadecimal. Application programs have
limited access to these registers. Addresses are displayed symbolically when possible. Symbolic displays are limited to
sixteen characters; when more than sixteen characters are needed, the first fifteen are displayed and arr §serisk (“
added to indicate that the symbolic display has been abbreviatediva heegister shown on the second text line in

Figure 3-5is

an example of this.

pEr
iwa
Lip
s
iitr
iltam
liat
irrd
3
itw
Lt

e
rrd

pkrl
plkrd

phr12

il
s
dbnb
dbe12

ibrid
lbrdg
Lhel
Abr1d

P
e d

pmc 2

OOEO00G00EE0 2002
YHPFT_Translatios
starti

al s alelebalelesalale atale]
DO OO0 a0
DOEE O DRI 0
DOHDERO0HN00n
DOERNOG00E00 0000
OOED00G00ER0 00
OOGHO0G00G00I000
OOER 00D 0EGH0 00

GG AGEEINENOGGH0C DOSDOCDN0G0 000
CCECEEIDEM TR ND OOGH DRG0 0RONL

OEH00GO0GH0 G000 OG0 00H0 MR 0H00
OG000G000H0 300G 0030000000000
0Ep00G008H0 3000 00300000 M00H00
OB 0000600 00008 OoeD00H0 0 0000

OGHOMERNEDOGGHNG OOGDODO0GH0G00
GEHAGOENENOGOHNG BOGOOGDH0EB0 000
OCHOGEO0MR00GON0G O0GDOGDN0GH03H00
OHO00GO03M008000 00GONGH00E 000

Lest_FH0048

(W 0OE0 000 3000 0300000000000
O 00G00GH0 03000 O0e00G00 0G0 0GH00
OB OGO 0GE0 006 OO0 (R0 0800
OEHOGEENEDOGCHN0G DOGOOCIN0GH0BH0

QEHOGEONEDAG0NN00 OGGOOGDO0BO0GH00
OEROCGO0EN0 000G DoEO0GH0G00R00
OEEOO0GO0GH0 G000 OMFOGD0ME00GD00
D000 00H0 3000 OMR000D00E000H00

0000 GO0HO0G002
OGBHO0ME00GH00GH0G
OGD00O 0000
OGa00G 000000
CICREMEICHEE CREMENEMERER I

OCRO0O0GH0BH003OE
00B003000H003000
OGD0M00GD003000
0GB0MR00GH00GH0G
Elcalnleialulapalalelidaald]

red
rrh

pkrz
pkri
pkrin
pkris

dbr?
dbi i
dbr 10
dbrls

ibr2
ibré
bl
ibrid

e 2
pme b
pmc 10
pme T 4

EREIEI G GG CICREMEN I
R DR TG CIER

GG LG CICHMEICIG)
EeEIC O DG DI DR
OO DGO
GO ORI G0 D0

GO0 00CH0M0 3D
G000 0GD 000 D
e CHCRE 1 M C RN ChEED
GG GG DI G

sl e el TRl el L]
e OO ORI O
QOO OO0 0 (0 D00
GO0 000 M0 00D

der 0OD0GOO0OO0GD00G
gpta 0OD0GOOGOO0GDOOD
15 GOROOGOOGE0GH000
ddm CDOOGHOMN GO0

tpr OO0GH0M00GH000
irr2 OOOGHOMM00CH000

CHEREICHERE I CHEMEI CHERENEN I
CRE TR RN IR CI N

GO 00000000
GRO0E00030 00000
GO00EH00G0 00000
ChEREN OG0 0 G CHED (R

CHR O DGO
CHEICER O CHEMEICHEREN IR
CHREOERE DGR D0
G0N0 0I006

0 0 0 D) CHEEY O EMED
GE00eH0000G0000
CHEENCHEE O RO D (1 CHE
G O E CRIEI0GD00

CHE CGR EICHEI I DI
CHRE OO R D RO DG
CHO0 OO D CRO O RO O
OO0 00 0 0 D000

r-.l.

Figure 3-5. The xski System Registers Pane

3.25 The 1A-32 Registers Pane

The 1A-32 registers pane shows IA-32 registers in hexadecimal. For bit-encoded registers, the bits are named individually
using their IA-32 mnemonics. If a name is displayed in uppercase, the corresponding bit is currently set, and if the name is
displayed in lowercase, the bit is currently clear, as shown in Figure 3-6.

3-4 Screen Presentation Copyright © 2000 Hewlett-Packard Co.

Ski IA-64 Simulator Reference Manual 1.0L

=

iau QOOGH00E abs HOOGD0T ecy OOOOOGOZ edr QOGDO0EE eip 1010: 0000074

i [L0da%id edi GOOOGO05 abp DGDOOO0S ssp OO00O0100

ce 1910 ds 1008 e 1000 fg 0900 gs OO0 == 1097 ldt @DOG tss 0000

eflags 03003246 [LEIBEILtlidlac!vm|rEint|3lcf|dE|IFItEl=EIZFlafIPFlct]

csd O DELEE DOGTOT1E0 [gldEpIﬂl:IE] ded 000 GEEEE 00010800 [gldlplﬂl:m]
ssd 006 OffEE GOGI0M0 [glblpl@ls|0] esd o060 Gffff DOO10G00 [gldipldisio]
fad 333 33333 cococece [gldipli1513] gsd 222 22222 dddddddd [gldiplilsi2]
ldtd 111 11111 eaeeeacs gdtd 000 o000 FELEEfLE

taad Q00 OGHEG OOGHAGGEH ddltd o0 000G OCRRCEE0

crl O0oBhoos [peoe | ppe lmee |l paelpseldeltedlpei lvma] iobase O0GHOCO00GH00HO0
cr? D000 or3 O00ennG [08000|ped|pwt |

crd GO00003 [pglodlmslamlwp lomliilif licineletits]lemimp |pa]

drf 000E000 [bt |bslbdibIIb2 10T | LOJ -

Figure 3-6. The xski 1A-32 Registers Pane

3.3 Resizing Register Window Panes with xski

As mentioned above, even a large X Window System screen is too small to display all the registers simultaneously, so you
may have to scroll a pane to see the registers you want, or resize the pane by dragging Pane Resizer, the small resize
square on the right side of the dividing line between each pair of panes, as shown in Figure 3-7.

rle 0O

I.I--IT'--.

i[ololopemoiolatolalatolalatolalatolalalo]
i[ololopemoiolatolalatolalatolalatolalalo]
1000 O0000000ANOAANNEN

Figure 3-7. An xski Pane Resizer: The Small Box Between the Scrollbars

3.4 The Register Window and ski

The ski simulator, as noted above, uses curses to display multiple windows on non-graphic (text) terminals and terminal
emulators. These windows are fixed in size and are not big enough to display all the data at the same time. On a conven-
tional, twenty four line screerski uses five lines for the Register Window, as shown in Figure 3-8. Because of this lack of
space, the Register Window shows only one of the five sets of registers at a time: user, integer, floating point, system, or
IA-32, and then only a portion of each set. If your screen is larger than twenty four lines when y@kstaki will make

use of the extra space. (You can resize terminal emulators using command-line arguments or by using your window man-
ager’s standard mechanisms for window resizing.)

You use thaur, gr, fr , sr, andiar commands to teléki which set of registers to display. To see the various registers in a
set, you use thé andrb commands to scroll the Register Window forwards and backwards, respectively. These com-
mands are described in Section 5.1.1, “Summary of Register Window Commands”.

Copyright © 2000 Hewlett-Packard Co. Screen Presentation 3-5

Ski IA-64 Simulator Reference Manual 1.0L

r0 0000000000000000 0000000000000000 000000OODO000000 0000O0000000000
r4 0000000000000000 0OO0O00000000000 0O000OODO000000 0O0OONO000ON000
rE 0000000000000000 0O00000000000000 0000000000000 0000O000000N000
ri2 0000000000000000 0OO0000000000000 0OO000OONO000000 0000O0DO000ON000
16 0000000000000000 0000000000000000 0000000000000000 0000000000000000

n
_

IA-64 Debugger/Sinulator
Version 0,873l (EAS 2.5)
Copuright {c) 1995-2000
The Hewlett-Fackard Company
All Right=s Reserved

00000000000 R RN R
o000 R N R

Command Verzion 00,8731 (EAS 2.5

T |

Figure 3-8. The ski Register Window (at Top)

3.5 The Program Window

The Program Window provides a view into the program space. Whether you load a program into the simulated processor’s
address space via the command line or using $ki , iaload , orromload commands, the program is displayed in a
format resembling a compiler’s assembiler listing file. For 1A-64 programs compiled from a high-level language such as
‘C’ and linked with the appropriate options, the source code is displayed with line numbers, mixed in with the generated
assembly language as shown in Figure 3-9. As an example, to compile the “hello world” program with the 1A-64 compiler
used in testing Ski, the command line is:

cc -0 hello -g hello.c

Note that theO (capital-O) “optimization” flag was not specified. Optimization, by definition, rearranges the object code.
If you turn on optimization, the correspondence between source code and object code will be obscured and you may find
the resulting display difficult to interpret.

IA-64 assembly code is displayed through disassembly; the original assembler source code is not displayed. Source code
for IA-32 programs, high-level and assembly, is not displayed.

Ski chooses whether to interpret the instructions as 1A-64 or IA-32 encodings based on the settingsoisthie. If your

program has a mix of IA-64 and 1A-32 code, you may need to manually set or clear this bit when trying to view a part of
the program that is in a different encoding from the encoding at the cuprelocation. You can set the bit with the Ski
command £ psris 1 " and you can clear the bit with=* psr.is 0 ". If the bit is set incorrectly, Ski will use the wrong
instruction decoder and will show IA-64 code disassembled as if it was 1A-32 code or vice-versal Remember to set the bit
back before resuming simulation.

3.5.1 IA-64 Instruction Display

Each 1A-64 instruction bundle is labelled on the left with an hexadecimal byte-addressed offset from the nearest, preced-
ing symbol up to OKff bytes away. If the symbol name and offset are longer than sixteen characters, the first fifteen are
displayed and an asterisk*(") is added to indicate that the symbolic display has been abbreviated. For each 128 bit bun-
dle, the two or three instructions are displayed in the center of the window with operands to their immediate right. The
template for the bundle is shown as a triplet of capital letters, suciM&s™to the right of the last operand of the first

3-6 Screen Presentation Copyright © 2000 Hewlett-Packard Co.

Ski IA-64 Simulator Reference Manual 1.0L

instruction in the bundle. The end of each instruction group (a unit of potentially parallel execution) is marked with a pair
of semicolons (;; ") after the last operand of the last instruction in the group.

Program YWindow =1
Program tFile: #

__do_frame*-+0090 br.ret.zptk.many b EEE
nop..b)
nop.b (s s

005 printf {"hello worldsn"i:

main alloc r3d=ar,pfs.0,3,1,0 MII
addl r1d=0x1118,r1
o ra2=riz

main+ioLo (yla]= (301 MIT
mow r33=b0::
adds r12=-16,r12

main+I020 148 ran=[ri4] MIE
nop., i (301

br.call,zptk, many bO=_I0_printf::
0oy return 0f

main+0E0 [Talf] ra=0: FMI
mow rl2=r3Z
mow, i ar ,pfa=ri4

main+oed NOp..M (301 MIB
oL bO=r33

br.ret,zptk, many bOt:

Close| deve| Heisl

Figure 3-9. xski’s Program Window Showing Part of an 1A-64 “hello world” Program

Ski uses the first few columns for source code line numbers. Ski also uses the first column to show breakpoint locations
for 1A-64 assembly language instructions, numbering the breakpofritshfough “9.” IA-64 breakpoint commands
includebs, bD, bd, andbl , and are described in Section 8.3, “Program Breakpoints”. For the purpose of setting breakpoint
addresses, Ski “pretends” that the slot 0 instruction in a bundle is located at the first byte of the bundle, the slot 1 instruc-
tion is located at the fourth byte, and the slot 2 instruction is located at the eighth byte. See “How Ski Implements Break-
points” on page 8-6 for more information.

Predication is an 1A-64 feature that increases the usable parallelism of user programs and allows better utilization of func-
tional units. Ski shows predication information in the second column of the Program Window, as shown in Figure 3-10. If
the second column of a given instruction line contains an exclamation mak ttie instruction is predicated on a predi-

cate register that is currently O: the instruction is “predicated off’. The predicate register is displayed in parenthesis imme-
diately to the left of the instruction mnemonic. Ski uses a different encoding for the instruction pointed toipy the
register: an asterisk{) indicates that the instruction is predicated off and a greater-than sym#dlifticates that the
instruction is predicated on. (That is, thé Ssymbol means “This is the next instruction to be simulated.”)

Copyright © 2000 Hewlett-Packard Co. Screen Presentation 3-7

Ski IA-64 Simulator Reference Manual 1.0L

| Pragiain Window il

Prougeam

_mtart+ho T 1dé ri=m[ri] MFE
nop . £ Ox
nop . b Hxthy ;

_atart+Honio Al vi=tz1, e HFE
TET T Bz
e . b Ox; ;

&2 _slart-H090 cmiad . g ph, pO=rl, r& HFE
nop. £ Oxiy
1 (p6) br.cond.sptk.few _start+0x@0do;

_start400ad L0 < T Ox HLI
mow] ri=_ signal_magic_cookic

_atartHibo i . I Bz HLI
miwl rA=HE0RROEEAHEGE2 T 1989 ; ;

—atart+Hafch ata [t%]=rE HER
rigs . Bixih
nop. b Dx0;;

5 _start+DDdd FL o Dx HLI

mowl ri=_environgj

_start+bbed 1d& ri=[ri] HFE
nop . § Oz
i - b Dy

Chose| Goto| Hely|

Figure 3-10. xski’'s Program Window Showing 1A-64 Predication and Breakpoints

3.5.2 IA-32 Instruction Display

IA-32 instructions are displayed as shown in Figure 3-11, according to the conventions for Intel assembly code. As with
IA-64 instruction display, Ski uses the first column of each assembly language instruction line to show breakpoint loca-
tions, numbering them0” through “9.” Except for the use ofabs rather tharbs, I1A-32 breakpoint commands are the
same as |A-64 breakpoint commands and incliatte , bD, bd, andbl ,as described in Section 8.3, “Program Break-
points”. In the second column, Ski puts a greater-than symbd) {6 point to the next instruction to be executed, i.e., the
location pointed to by thip register.

Because IA-32 instructions are variable in length, it is possible to séi thee point into the middle of an instruction. This

can happen, for example, when an instruction with prefix bytes is needed at the top of the first pass through a loop, and the
same instruction without the prefix bytes is needed at the top of subsequent passes. When this happens, Ski uses a plus-
sign (“+") in column two, rather than a greater-than symbol, to warn youithgioints somewhere in the middle of the

line of code displayed on the screen. To update the display, use the comppapd™ This will cause Ski to reinterpret

the instruction stream and to display the variable length instructions with the new interpretation.

3-8 Screen Presentation Copyright © 2000 Hewlett-Packard Co.

Ski IA-64 Simulator Reference Manual 1.0L

- Program Window |

Prosgram
—gpot_fpu_txHIO5f rat

* gtart may ax, Bx1040

b art4+0003 mav ds, ax
start+00ns mow 5, 4%
start+p07 and sp, Oxfffc
start+000a call _Ret_cpu_type
st art4+0h0d call _get_fpu type

i startHio call print
start-+HM13 moy ax, Bracii
startHH16 int Bx21
primt mis dx, 54
print+HMI03 maw ah, 9
primt+0005 int fx21
primt+0H07 CHp byte ptr [10], 1
print+06ic jnz print+aa11
iAot 4000 Jmp P nt e
print+E11 cmf byte pte [28], 0
print+016 inz print-HM¥33
printHMITH me s d=, 92
print+3a1hL mow ah, 9
print+001d4 int Ox2¥

Chope| Gote| Helpl

Figure 3-11. xski’'s Program Window Showing IA-32 Code, the Instruction Pointer, and a Breakpoint

3.5.3 Changing the Range of Locations Shown in the Program Window

xski doesn’t place a scroll bar in the Program Window. Instead, $ke xski provides thepf andpb commands,
described in Section 5.2, “Program Window Commands”. You use these commands to scroll the Program Window for-
wards and backwards, respectively, through the assembly language program display. Ski also progjdesrtiraand

which lets you “jump” the Program Window to any location in the address space. In addisikinunderstands the Page

Up and Page Down keys and the arrow keys. When the Program Window has the X Window System focus, the Page Up,
Page Down, up-arrow, and down-arrow keys emit tié,“ pf ”, “pb 1 ”, and “pf 1 " commands, respectively.

You can control the size ofski’s Program Window using your window manager’s standard mechanisms. If you are using
ski, the window is fixed in size; on a twenty four line terminal, the window will be nine lines tall.

3.54 Invalid Code and the Program Window

Ski will disassemble the area of memory it is displaying in the program window, regardless of whether the area contains
program code or data. If you tell Ski to display non-program memory, Ski attempts to display the (non-existent) instruc-
tions. When Ski finds bit encodings that don’t represent valid instructions, it displays the MegaGp " instead, as

shown in Figure 3-12. Sometimes, Ski may dispkas, indicating that you asked Ski to show a page of memory that
doesn't exist, as shown in Figure 3-13. There are three cases to consider:

« In application-modex’s indicate a page of memory that hasn't been accessed by the program and therefore hasn’t
been allocated by Ski.

« In system-mode with instruction address translation enabledp@hi¢bit is on),x’s indicate a page of memory for
which no entry exists in the Translation Lookaside Buffer (TLB) or in the Virtual Hash Page Table (VHPT).

« In system-mode with instruction address translation disabledp&hi¢bit is off), x’s indicate a page of memory that
has not yet been accessed by the program.

Application-mode and system-mode programming are discussed in more detail in Chapter 6, “Program Simulation”.

Copyright © 2000 Hewlett-Packard Co. Screen Presentation 3-9

Ski IA-64 Simulator Reference Manual 1.0L

Figure 3-12. xski’'s Program Window Showing lllegal Instructions

Figure 3-13. xski’s Program Window Showing Unallocated Space or No Translation

3.6 The Data Window

In the Data Windowxski and ski present data in hexadecimal format, sixteen bytes to a line, as shown in Figure 3-14.
The data are displayed as four groups of eight hexadecimal digits each, with an ASCII character translation on the right
and the data address on the left. (The endianness of the displayed bytes is determined by the current vaisicbebihe

3-10 Screen Presentation Copyright © 2000 Hewlett-Packard Co.

Ski IA-64 Simulator Reference Manual 1.0L

which may change by the time the simulated 1A-64 processor actually loads the bytes.) The address is expressed as a sym-
bol from the executable file’s symbol table or as a sixteen digit hexadecimal number.

With the dbndl command, Ski can display data formatted as 1A-64 instruction bundles in hexadecimal, as shown in
Figure 3-15. (The figure was generated by loading a program and then issuing the condimanagh-10 " followed by

thedbndl command.) This is useful when you need to see the raw hexadecimal instruction encodings. The first column
displays the address of each bundle. The second column displays the template field. The remaining three columns are the
41-bit instructions from slots 0, 1, and 2. Note: for the purpose of setting breakpoint addresses, Ski “pretends” that the slot
0 instruction is located at the first byte of the bundle, the slot 1 instruction is located at the fourth byte, and the slot 2
instruction is located at the eighth byte. See “How Ski Implements Breakpoints” on page 8-6 for more information.

Doaba Winel o

GOO0GOOD00P0 el XNXENKEXE AXEAEXNE NEIXENIEN EXNXENKEE

GOODOOBD0BOEFD ¥EXENEXE AXENXEXNN NEXENIEE EXNNXENNE

—data_start H4B656cbec GEZc2O0TV GET260G4 DpDOOBDD Hello, world....
BOOGOOOGOA0ETOTE 4ORE2320 20582030 IP2:3001 204-5036 BIR) X.02.01 LP&
GOROGOOGRANGTOH0 4204 54d 20322032 MO0 632eb15F 4 EM 2.2 libe.a_
GOROGHOGDENOTOR 49544040 2E6d6169 Ge2i 723 30736163 1086/ main/ ri1l0sas
GRODGO0GERRRT0NW 2I6c6962 6ISLTI6T GI2E320a 40282329 Slibe_sac/Z.8(8§)
GOD0GDOORDRRTI05D PO2ETSTE 2EGI6ETE 652f6cb? 6Z27324i6c Jux/coreSlibs/f1
GO0DDGD0ODDD0T 06D 6962632 61726368 6976655f 65643232 ibefarchive_em22
GEOOGDOOHDOOI0TE S5£36T42f Gob96263 2e615f40 44004028 _64/1ibe.a ID.8(
GEOOGODGHOGET 00 23202041 TS56T2032 IT203139 9362030) Aug 27 1996 O
GOOOGAOGHAGOT0M 3233132 Jal53660 GOOGBO00 OOBOGBH0 2:12:56.........

E'Dibl Gamn| el

Figure 3-14. xski’s Data Window Showing Unallocated Space Followed by Data

Cata Window (=[]

Data
A000000AM000FI0 17 QO10S001100 400000 Gdaaocgc
main (0 02e00308880 12000130380 10B00-00S00

4000000000000 750 02 QOOOFO00000 00133000340 113F3celZ00
4000000000000760 11 08000030 00003000000 ObLFHI000
4000000000000 00 10S02000300 00154044000 (000142000
4000000000000730 11 QOOOFO00OM00 . OOOASOAAO0 (01 0S001100
__do_global _cto% 01 02c00408330 13000150800 1c0Z0000000
4000000000007 40 O 0302000300 OOOO3O0M00 (013000540
4000000000000750 05 0a0c23103c6 0302300046 00200112156
400000000000070 1d 0b0ca0f 030 0000300000 (2000004006
4000000000000740° 1e 1dE323Fe000 00003000000 0L {006
4000000000000 70 00 QOOOFOOO000 00154044000 (000142000

Close| fote| Heinl

Figure 3-15. xski’s Data Window Showing Data Interpreted as Instruction Bundles

3.6.1 Changing the Range of Locations Shown in the Data Window

As with the Program Windowxski doesn't place a scroll bar in the Data Window. Instead, $ike xski provides theif

db, anddj commands, described in Section 5.3, “Data Window Commands”. Use these commands to scroll the Data Win-
dow forwards and backwards and to “jump” the Data Window. In addittskj understands the Page Up and Page Down
keys and the arrow keys. When the Data Window has the X Window System focus, the Page Up, Page Down, up-arrow,
and down-arrow keys emit thed”, “df ”, “db 1 ", and “df 1 ” commands, respectively.

You can control the size ofski’s Data Window with your window manager’s standard mechanisms. If you are sking
the window is fixed in size; on a twenty four line terminal, the window will be two lines tall.

Copyright © 2000 Hewlett-Packard Co. Screen Presentation 3-11

Ski IA-64 Simulator Reference Manual 1.0L

3.6.2 Invalid Code and the Data Window

If you tell Ski to display non-existent memory, Ski will displais instead, as shown in Figure 3-14. Non-existent mem-
ory is defined for the Data Window similarly to its definition for the Program Window, described in Section 3.5.4, “Invalid
Code and the Program Window”, except that the relevant bit for system-mode progoant is

3.7 The Command/Main Window

xski and ski are command-driven simulators. Most of your interaction with them is done by typing commands. Your
commands are typed in a window titleddin " in xski (see Figure 3-16) andCbmmand in ski (see Figure 3-17).

3.7.1 The xski Main Window
xski divides the Main Window into five areas:

« Menus: File, View, Configure, and Help. The File menu provides a “Quit” selection for you to exit the program. The
View menu lets you choose which windows to see. The Configure menu is currently non-functional. The Help menu
provides a “Commands” selection that displays the commands Ski recognizes and a “Product Information” selection
that displays information aboubki .

« Buttons:Step , Run, Prog , Data , Regs, Cache, TLB, andQuit . Clicking on theStep button executes the command
“step 1 ", single-stepping the simulated program. Shift-clicking the button executes the comsiemdlO ", step-
ping the simulated program through ten instructions. Rhe Prog, Data , and TLB buttons execute then , pj , dj ,
andsdt commands respectively. If the Program Window has been closed (removed from the screen, not merely min-
imized to an icon), thérog button recreates it. ThBata button operates similarly with respect to the Data Window.
The Regs andCache buttons are currently non-functional.

Xxski's buttons are configurable. Using the X Window System resource mechanism, you can change the number of
buttons, the button labels, and the commands the buttons emit. The easiest way to do this is toxstit fie,
described in Section 2.5.2, “The XSki File”. Much xéki’s user interface behavior is controlled by this file but you
should be careful in making changes to any elements other than button descripgidnsiay change in the future in

ways that are not backwards-compatible with changes you make.

« Command History: commands you've already entered.
e Command: where you type commandx$&i .
« Responses: responses and error messagesfiam

The Menu, Button, and Command History areas provide shortcuts for typing commandaep hlgutton is particularly

useful: when you are single-stepping through a program, you can click @teebutton instead of repeatedly typing the

“step " command. The Command History area provides another way to avoid typing: you can double-click on a command

in the Command History to run the command again, or single-click on the command to move it to the Command area
where you can edit and then re-run it. The Command area is where you type commands to the simulator, but, as mentioned
above, you can use the menus, buttons, and Command History as shortcuts. Two useful commands to kegw'are “

which causes a window listing all the commands to be displayed, fat “commantiwhich causes information about
thecommando be shown in the Responses area. The Responses area is also used by the simulator to give you feedback
when it can’t execute one of your commands.

xski understands the Prev and Next keys and the arrow keys found on many HP keyboards. When the Main Window has
the X Window System focus, the current area is highlighted, usually with a bright outline. You can make a different area
current with Tab and Shift-tab. The Prev, Next, up-arrow, and down-arrow keys scroll through the current area, allowing
you to easily edit and re-run previous commands from the Command History and review previous messages in the
Response area. In addition, you can use the Alternate key (“alt”) like a Shift key, along with the underlined letter in each
menu name as a shortcut to access the menu, rather than using the mouse. For example, Alt+F brings up the File menu.
This lets you spend less time shuttling between the keyboard and mouse, and more time doing productive work.

3-12 Screen Presentation Copyright © 2000 Hewlett-Packard Co.

Ski IA-64 Simulator Reference Manual 1.0L

Figure 3-16. xski's Main (Command) Window

3.7.2 The ski Command Window

ski's Command Window is simpler, as shown in Figure 3-17. There are no menus, buttons, or Command History. Instead,
you enter commands when you see prompt in the 4-line Command Window at the bottom of the screkndisplays

its responses in this window as well. The window scrolls so that information lost off the top of the window may be recov-
ered using the up and down arrows on your keyboard (for Emacs fans, Ctrl-P and Ctrl-N serve the same function). As a
typing shortcut, if you hit the enter/return keyj will repeat the last command you entered.

Copyright © 2000 Hewlett-Packard Co. Screen Presentation 3-13

Ski IA-64 Simulator Reference Manual 1.0L

=1}

General Registers

0 0OQ00AQ0OA00A000 GO00OA00A0005ATE Q0000000000000 Q00ES004002T0033f

rd 00Q00AQ0OA00A000 Q000000000 QOOOQ00OQ00A0000 Q0000000000000

& FEEEFFEFFFEEFf00 4000000000000200 QO00000000000000 Q0000000000000
r12 SfFFFFFFEFAFEFFTI0 00Q000a00a000a00 0ooo0a000a000001 0000000000004 2
rl6 SfFFEFAEFFFETE0 G0000000000045ec QOOOOQOOOROO0000 Q0000000000000
Progra file: 77

__libc_open+0010 nap . mn (020 MEBE
! ipey br.cond.spnt,few __syscall error
br.ret . sptk,few bo;;

__libc_fentl adds r15=0x=427, r0 MII
» break . 1 0z 100000
Chp, e pE=-1,r10;;
__libc_fen*+0010 nap ., f (020 MEE

! ipey br.cond.spnt,few __syscall error
br.ret.sptk,.few bo;;
Data

Verzion 0.8731 (EAS 2.5

23 insts, 0,03 zec, 2473 ifs, 22 cycles, 3.7TT ipc
i _I0_stdin_usedts

e is _I0_stdin_used+® SkilsGreat!

.-"*

Figure 3-17. ski’s Command Window (at Bottom)

3.8 Other Windows

Some commands, suchlasp , isyms , andsymlist , causexski andski to create additional windows. Whesski cre-

ates an additional window, it adds scroll bars if there is more information than will fit. As an example, the output window
created byxski for thesymlist command is shown in Figure 3-18ski understands the Page Up and Page Down keys
and the arrow keys. The Page Up and Page Down keys scroll through the window a windowful at a time, with one line of
overlap. The up-arrow and down-arrow keys scroll through the window a line at a time.

When ski needs to display additional information, it does so by overwriting the four standard windkivsends the
information through a pager, usitegs by default. When the pager finisheski refreshes the screen with the standard
ski windows. If you prefer to use a different pager, for examplee or page, set the PAGER environment variable
accordingly, before starting the simulator.

3-14 Screen Presentation Copyright © 2000 Hewlett-Packard Co.

Ski IA-64 Simulator Reference Manual 1.0L

Figure 3-18. xski’s Symbol List Window

Copyright © 2000 Hewlett-Packard Co. Screen Presentation 3-15

Ski IA-64 Simulator Reference Manual 1.0L

3-16 Screen Presentation Copyright © 2000 Hewlett-Packard Co.

Ski IA-64 Simulator Reference Manual 1.0L

4 Command Language

The Ski command language is simple, efficient, and easy to learn. It consists of commands you can invoke from the key-
board or from a command file (see Chapter 9, “Command Files”). Each command is given with an appropriate set of argu-
ments (some optional) to further qualify the command. Commonly-used commands may be abbreviated as described in
Appendix A, “Command Reference” and commands may be repeated easily. A limited on-line help facilitglfthe
command) is provided for quick reference. This chapter presents the syntax of the command language. Information about
specific commands (command semantics) is in later chapters and in Appendix A, “Command Reference”.

4.1 Command Entry

Xxski and ski provide similar mechanisms for controlling the simulator. Both provide for direct keyboard entry of com-
mands. In additionyski offers buttons, menus, and the Command History to minimize typing, as described Section 3.7.1,
“The xski Main Window”, andski provides the command repetition mechanism for the same purpose, as described in
Section 3.7.2, “The ski Command Window”.You give a command to Ski by typing the command name at the keyboard
followed by operands and the enter/return key. (Uséenéiie command to see a menu of available commantsipr fol-

lowed by the command name to see the command symtski)displays the command you typed in the Command area of

the Main Window.ski displays the command in the Command Window at the bottom of the screen following the
prompt. Commands are case sensitive. When you hit the enter/return key, Ski acts on your command and updates the
screen to reflect any changes caused by the command. For example, the command

db
causes the Data Window to show the contents of lower addresses in memory.

4.2 Command Arguments

Some commands, suchsave , require additional information. If you don't provide the information, Ski displays an error
message. Some commands have optional arguments. As described in “Syntax Conventions” on page -iii, command sum-
maries in this manual show optional arguments surrounded by square bidikeethig . If you don't specify an optional
argument, Ski uses a suitable default value. For example,

pf3
causes the Program Window to advance three bundles after the last bundle in the Program Window, while
pf

alone moves the Program Window ahead one windowful. Some arguments can be supplied in a list, one or more times;
these are shown by putting a plus sign (“+”) after the argument rm¢hist. For example, the syntax description for
the=1 command is:

=1 address_or_symbol valse
which suggests that the command
=1 __data_start 12 56 90 cd

assigns the hexadecimal values 12, 56, 90, and cd to the four bytes starting at the location specified by the symbol
_ data _start . Brackets and plus signs can be combinékie [thig+, to signify optional arguments that can be supplied
zero or more times.

4.3 Command Sequences, Repetition, and Abbreviation

You can type multiple commands on a single command line by separating the individual commands with semicolons
(“; ™). This is called a “command sequence”. Command sequences make re-executing a series of commands easy, using
the Command History mechanism géki (see Section 3.7.1, “The xski Main Window”) or the command repetition
mechanism obki (see Section 3.7.2, “The ski Command Window”). For example, you might want to repeatedly execute

Copyright © 2000 Hewlett-Packard Co. Command Language 4-1

Ski IA-64 Simulator Reference Manual 1.0L

the commandsstep 100 " and “eval my_buffer ”. This pair of commands would execute one hundred instructions and
then print the value of (your) variable nameshy’ buffer . By combining these two commands into one command
sequence, i.e.sfep 100 ; eval my_buffer ", you can use the Command History or command repetition mechanism
to run these commands over and over. (The spaces around the semicolon are optional but improve readability.)

There is no grouping construct in Ski. This can be important when you write command files: when you want to execute
commands conditionally using tlife command, you cannot use the semicolon to group several commands into the “then”
or “else” clauses. Instead, you must use labels anddtte command. Chapter 9, “Command Files” discusses command
files in depth.

Most commands may be abbreviated, some to a single letter. A command may be abbreviated to the shortest prefix which
is not also a prefix of a command which precedes it in the command menu. (See Appendix A, “Command Reference”.)

4.4 Argument Specification

The arguments which are given with commands are, in general, obvious and natural. The description which follows
should clarify those cases which are not. The terms defined here are used in the command summaries throughout the
remainder of this manual.

44.1 Numeric Arguments

Many commands accept numeric arguments. The argument may be an address, a value, an execution count, or some other
variable which is best expressed numerically.

441.1 Numbers and Counts

Some commands take arguments that are naturally expressed in hexadecimal: addresses, for example. Other commands
take arguments that are naturally expressed in decimal, such as the number of instructions to simulatstegthciive-

mand. To make using Ski easier, some Ski commands default to interpreting their arguments as (hexadeuineas)

and some default to interpreting their arguments as (dectoabits You can always override the default interpretation by
specifying a radix override, as described below.

Hexadecimal digits may be upper or lower case. The default radix may be overridden by precedingitesor count
with 0D or 0d for decimal,0X or Ox for hexadecimalpO or Oo (zero-oh) for octal, andB or Ob for binary. Since both the
decimal and binary prefixes look like hexadecimal, hexadecimal values s@dB®00 and0b100000 must be speci-
fied either with an explicit hexadecimal prefix, asdx0d600000 and 0x0b100000 , or without the leading, as in
d600000 andb100000 .

44.1.2 Expressions

Wherever enumberor countis needed, you can use a numeric expression instead, with parenthesis as needed for group-
ing. No spaces are allowed in an expression. In an expression whose result will be usatha@seanumbers not pre-

ceded by a radix override are assumed to be hexadecimal. If the result will be useoled aumbers not preceded by a

radix override are assumed to be decimal. For exampletefhecommand expects@untoperand, so the command

step rO+10

steps (decimal) ten instructions. On the other handptheommand expects an address operand, whicmisnaber so
the command

pj r0O+10
displays (hexadecimal) address 0x10 in the Program Windwvis hardwired to always return a zero when read.)

The available operators are shown in order from higher to lower precedence in Table 4-1. Operator precedence rules fol-
low the C language rules.

4-2 Command Language Copyright © 2000 Hewlett-Packard Co.

Ski IA-64 Simulator Reference Manual 1.0L

Table 4-1. Ski Simulator Arithmetic and Logic Operators

Operator

Description

O

L~ 4%

*/
+ -
<< >>

<<=>>=

group operators with operands

opposite truth value, logical one’s complement,
unary plus, unary minus, dereference: treat as &
address and read eight bytes

multiply, divide
add, subtract
logical left shift, logical right shift

less than, less than or equal to, greater than, gre
than or equal to

equal to, not equal to
bitwise and

bitwise exclusive or
bitwise or

logical and

logical or

AN

ater

As an example, ixski,
eval 64 0d64 0064 0b100000 *main ~(((0D1234+0X10EF0)*4)<<6)+0B10001001

prints the values of the six expressions in the Main Window, as shown in Figure 4-1. The first expression is taken as a
hexadecimal number, the second as a decimal number, the third as an octal number, and the fourth as a binary number. The
fifth expression is the value at the location specified by the symbah™ (the first 64 bits of the code bundle at that loca-

tion), and the sixth expression is the result of some arithmetic.

Hex: B150BE005200G2
Hex: fEfffffffenciadi

Siop)| F|L-1| Prog| Data] Regs) Cocts| TLB| Quitl

bnad haollo

oval B4 Bdbd Dobd Ob1 00D fmain = (M0 Z34+010EF0) 4) < <6)+ D61 0001001

Commansd

il

Hex: &4 Decimal: 1060 i
Hexo 4 Decimal : 6%

Hex: 34 Decimals 52

Hexy 20 Decimnly 32

Decimal: Z2T49260654264TF4
Decimal: 1BS4ET440TI6014TI6EE

=i

Figure 4-1. xski Evaluating Expressions

Copyright © 2000 Hewlett-Packard Co.

Command Language 4-3

Ski IA-64 Simulator Reference Manual 1.0L

44.1.3 Addresses
An address is specified by a 64 bit hexadecimal number. For example, the command
pj 1000

repositions (“jumps”) the Program Window to address 0x1000. As discussed in Section 6.1, “Application-Mode and Sys-
tem-Mode Simulation”, Ski supports generic addresses in application-mode programs (that is, the concept of “virtual
memory” doesn't apply to application mode programs), and physical and virtual addresses in system-mode programs. For
system-mode programs, tiper.dtandpsr.it bits control whether Ski interprets addresses as physical or virtual. In some
cases, you may need to change the value of one or both of these bits temporarily, so that Ski will interpret addresses the
way you want. You should restore the bit values before resuming simulation, of course. You carpsetithé@ with the
Skicommand £ psr.dt 1 " and clear the bit with£ psr.dt 0 ". The corresponding commands for thsr.it bit are ‘=

psritl " and “=psr.it0 ", respectively.

Addresses may be computed using expressions. For example, the command
dj 1000+0d50

repositions (“jumps”) the Program Window to address 1032, because 1000 (hexadecimal) added to 50 (decimal) is 1032
(hexadecimal). Address expressions are particularly useful in symbolic constructs, as described below.

4.4.2 Symbolic Arguments

A symbol is a sequence of characters (a “name”). Examples of symbols are program-defined symbols, registers, internal
variables, labels, and filenames. Arguments may (and sometimes must) be expressed symbolically.

44.2.1 Program-Defined Symbols

A program-defined symbol is an identifier which can be used as a mnemonic for a memory location. Program-defined
symbol names are defined in the executable file for the program being simulated. Some symbols are common, well-known
names (e.gorintf , main), and others are defined by the programmer (eag, bar). Thesymlist command shows you

the symbols sorted by address, as Figure 4-2 shows.

Value Hame

|

GONOGDNGONMaN. 58 DERIM_LINE
O0OPN0000 1 cE __text_start
AO00G00H0EG0LAD _DYHAHIC
AR00200G00ER5S TR0 _main
AD00SH0H0EES T malin
HHOGHH0GOOENS5S A _start
HO00HaoeHoahaELdD ___exit
HOn0HRoeHoadhe 20 _atexit
AO0000GONMAT Ich _isalnum
AENDGO0GH0ROTEM _isalpha
AP00300B003 T och _iscntrl
HE00G00O000E] 40 _isdigit
90000000008 5c0 _isgraph
HENGS00RE0G0E sl _is] ower

Figure 4-2. xski’s Symbol List Window

4.4.2.2 Registers

A register name is a predefined mnemonic for a processor register. The general registers, for example, are referred to as
r0,rl,...,r127 . (The register names Ski recognizes are listed in Section B.1, “IA-64 Registers”.) For example, the com-
mand

=r3lip

4-4 Command Language Copyright © 2000 Hewlett-Packard Co.

Ski IA-64 Simulator Reference Manual 1.0L

assigns the value contained in theregister to general register 31. (For a description oftkemmand, see Section 8.1,
“Changing Registers and Memory with Assignment Commands”.) Wherever the simulator expects you to supply a
numeric argument, you can use a register instead. You may only refer to currently-visible registers, according to the stack-
ing and rotation mechanisms of the 1A-64 architecture.

4423 Internal Variables

The simulator provides internal variables for you to use in command files (see Chapter 9, “Command Files”). These inter-
nal variables are read-only; you cannot change their values. You can refer to an internal variable in any context where you
could refer to an 1A-64 register. Ski has four internal variables:

$cycles$

The total number of “virtual cycles” simulated. A virtual cycle is a cycle on a machine with an very large number of
execution units and very fast memory; a real IA-64 processor may take more cycles. In a command file, you might
use this variable to gather statistics about the efficiency of a particular compiler optimization algorithm. The value of
$cycles$ is always equal to the value ®ifists$ for IA-32 programs.

$exited$

The value 0 until the simulated program exits. Then the variable takes the value 1. In a command file, you would use
$exited$ to detect a program termination. Program termination is defined for IA-64 application-mode programs as
a call to theexit() ~ function or the receipt of an unhandled signal. For IA-64 system-mode programs, normal termi-
nation is defined to be a call to the Simulator System Call exit function or executiBREAK 0 instruction. This
variable is not supported for IA-32 programs in application-mode or system-mode. (See Section 6.1, “Application-
Mode and System-Mode Simulation” for details on these modes.)

$heap$

This variable has meaning only for 1A-64 programs running in application-mode, as described in Section 6.1,
“Application-Mode and System-Mode Simulatiorgheap$ marks the address past the “far end” of the simulated

heap, that is, the end farthest from the end of the data section. The heap starts at the first sixteen-byte-aligned address
after the data section. Ski updates #ireap$ variable as the program being simulated malloc’s memory (for pro-
grams written in C; adapt accordingly for other programming languages). You can ugedh$ variable to debug

wild pointer problems: if your program has a pointer that allegedly points to a malloc’ed data structure, but the
pointer value exceedsheap$, the pointer is invalid. For system-mode programs and IA-32 programs, this variable

is meaningless, as there is no malloc support.

$insts$

The number of instructions that have been simulated so far (including any faulting instructions, for programs run-
ning in system-mode, described in Section 6.1, “Application-Mode and System-Mode Simulation”). In a command
file, you might use this variable to stop simulation after a certain number of instructions. The v&iusts$f is

always equal to the value $dycles$ for IA-32 programs.

4.4.2.4 Labels

Labels (see Section 9.2, “Labels and Control Flow in Command Files”) are names which consist of an alpha (upper or
lower case alphabetig, or), followed by a sequence of alphas or digits (eafjc123 , $foo_bar , etc.) and ending with
a colon (). They may be up to 132 characters long. Labels are used in command files as targetstoftbenmand.

4425 Filenames

Filenames are subject to the restrictions of the underlying Linux operating system. Ski performs-tjaeansion: if

you provide a pathname whose first word starts with a tilde, Ski assumes the word is a username and tries to replace it
(and the tilde) with the user’'s home directory. For exampielalid/hello " might be expanded to/fome/david/

hello "

443 Resolving Ambiguous Symbols and Numbers

Some character sequences can be interpreted in more than one way. For example, the character sequence “b3” can be
interpreted as a branch register, a program-defined symbol, or a hexadecimal number. To resolve the ambiguity, Ski looks

Copyright © 2000 Hewlett-Packard Co. Command Language 4-5

Ski IA-64 Simulator Reference Manual 1.0L

first in its symbol tables for program-defined symbols and internal variables (which includes register names). If a match is
found, the matching value is used, otherwise the character sequence is taken as a number. You can force the numeric inter-
pretation by putting adx” or “0X” prefix in front of the number, such agxb3”. It is undefined whether Ski searches the

symbol table for program-defined symbols before or after the internal variable symbol table. Because of this, it is wise to
avoid naming global variables and functions with names duplicating any of Ski’s internal variables. In practice, this means
you should avoid using register names as names of variables and functions in your programs.

4-6 Command Language Copyright © 2000 Hewlett-Packard Co.

Ski IA-64 Simulator Reference Manual 1.0L

5 Screen Manipulation Commands

Ski provides several commands to manipulate windows. These commands let you make major changes of context or fine
adjustmentsxski provides more flexibility: you can change the location and sizes&f windows using the mechanisms
provided by your window manager, arski provides scrollbars in some windows, for minor adjustments.

5.1 Register Window Commands

As described in Section 3.2, “The Register Windowski shows all five sets of registers in the Register Window, with

scroll bars and pane resizers so you can select what registers to see within each set and how much screen space should be
devoted to each set. ThHe, gr, iar , sr, andur commands allow you to toggle display of individual sets on and off.

Figure 3-1, “The Register Window in xski,” on page 3-2 shows«Hie Register Window.

ski has much less screen space available and therefore shows only one set and only a part of it at afimer Tiae ,

sr, andur commands allow you to choose which register set to seerfTlaadrb commands let you choose what part of
the chosen register set to see. Figure 3-8, “The ski Register Window (at Top),” on page 3-6 shekisRbhgister Win-
dow.

5.1.1 Summary of Register Window Commands
rd [filenamé

Dump the Register Window to the screen in a new windgek() or using a pagerski), or, if filenameis provided,
to the file given byilename The mnemonic stands for “register dump”.

5.11.1 xski Register Window Commands
fr

Toggles display of the floating point registefis pane in the Register Window. See Figure 3-4, “The xski Floating
Point Registers Pane,” on page 3-4.

[o]8
Toggles display of the general registerg X pane in the Register Window. See Figure 3-3, “The xski General
Registers Pane,” on page 3-3.

iar
Toggles display of the 1A-32 registersak, ebx, esp, etc.) pane in the Register Window. See Figure 3-6, “The xski
IA-32 Registers Pane,” on page 3-5.

Sr

Toggles display of the system registees ,(rr , pkr , dbr, ibr , pmc, andpmd) pane in the Register Window. See
Figure 3-5, “The xski System Registers Pane,” on page 3-4.

ur
Toggles display of the user registeps (br, ar, ip , psr.un) pane in the Register Window. See Figure 3-2, “The xski
User Registers Pane,” on page 3-3.

5.1.1.2 ski Register Window Commands

fr
Displays the floating point registerfs § in the Register Window.

ar
Displays the general registers § in the Register Window.

iar

Copyright © 2000 Hewlett-Packard Co. Screen Manipulation Commands 5-1

Ski IA-64 Simulator Reference Manual 1.0L

Displays the 1A-32dax, ebx, esp, etc.) registers in the Register Window.

Sr

Displays the system registers (rr , pkr , dor , ibr , pmc, andpmd) in the Register Window.
ur

Displays the user registens (br, ar, ip , psr.un) in the Register Window.

rf [couni

Moves the Register Window “forward” (scrolls down) through the currently-displayed register set. The Register
Window is scrolledcountlines. If countis omitted, the Register Window scrolls down one windowful less one line,
i.e. the last line of the old window is displayed as the first line of the new window.

rb [couni

Moves the Register Window “backward” (scrolls up) through the currently-displayed register set. The Register
Window is scrolledcountlines. If countis omitted, the Register Window scrolls up one windowful less one line, i.e.
the first line of the old window is displayed as the last line of the new window.

5.2 Program Window Commands

The Program Window displays disassembled instructions, one instruction per line. (See “The Program Window” on
page 3-6.)
5.2.1 Summary of Program Window Commands

pj [addres}

If addressis specified, repositions (“jumps”) the Program Window so that the 1A-64 bundle or IA-32 instruction

containing the specified address is second in the window. #duvesds given, jumps to the previous location. The
mnemonic stands for “program jump”.

pf [couni

Moves the Program Window forwaimbuntlA-64 bundles or I1A-32 instructions. Kountis not specified, moves the

Program Window forward one windowful less one bundle or instruction. The mnemonic stands for “program
forward”.

pb [couni

Moves the Program Window backwarduntlA-64 bundles or IA-32 instructions. fountis not specified, moves the

Program Window backward one windowful less one bundle or instruction. The mnemonic stands for “program
backward”.

pa

Display the program being simulated in assembly language only, as shown in Figure 5-1. This command is valid for
IA-64 code only. The mnemonic stands for “program display assembly”.

5-2 Screen Manipulation Commands Copyright © 2000 Hewlett-Packard Co.

Ski IA-64 Simulator Reference Manual 1.0L

Figure 5-1. xski's Program Window Showing IA-64 Assembly Language Code

pm
Display the program being simulated in its source code form with the assembly language translation mixed in, as
shown in Figure 5-2. The source code display is for your convenience only; you cannot interact with the source code,
e.g., modify the source code, click on a variable name to see its value in the Data Window, and so on. The source code
is not embedded in the executable file. Instead, the compiler and linker place into the executable file a record of the
location and filename of the source code. The source code file must be available to Ski in the location recorded in the
executable file. In practice, this means you will want to ki or ski from the directory where the program was
compiled. (See Section 3.5, “The Program Window” for more information on source code compilation.) This
command is valid for IA-64 code only. The mnemonic stands for “program display mixed”.

Copyright © 2000 Hewlett-Packard Co. Screen Manipulation Commands 5-3

Ski IA-64 Simulator Reference Manual 1.0L

Figure 5-2. xski's Program Window Showing Intermixed C and 1A-64 Assembly Code

pd starting_address ending_addrd$itenamé

Dump the assembly language translation of the program in the area between the two addresses (inclusive) to the
screen $ki) or to a window &ski) if no filenameis given, or to the specified file if one is. Source code will not be
dumped along with the assembly language, even ifptheommand is given. Figure 5-3 shows an example of an
assembly language dump of the program in Figure 5-1 and Figure 5-2. The mnemonic stands for “program dump”.

Figure 5-3. xski’s Assembly Language Dump Window

5-4 Screen Manipulation Commands Copyright © 2000 Hewlett-Packard Co.

Ski IA-64 Simulator Reference Manual 1.0L

5.3

The Data Window displays an area of memory in hexadecimal format and, if the window is wide enough, an ASCII trans-
lation. (See Section 3.6, “The Data Window”.) The commands to adjust the Data Window are similar to those for the Pro-
gram Window and are described below.

Data Window Commands

5.3.1
dj [addres}

Summary of Data Window Commands

If addresds specified, repositions (“jumps”) the Data Window so that the bytes containing the specified address are
first in the window. If naddresss given, jumps to the previous location. The mnemonic stands for “data jump”.

df [couni

Moves the Data Window forwardountdisplay lines or one windowful itountis not specified. The mnemonic
stands for “data forward”.

db [couni

Moves the Data Window backwarbuntdisplay lines or one windowful i€ountis not specified. The mnemonic
stands for “data backward”.

dbndl

Displays the data as hexadecimal instruction bundles, as shown in Figure 5-4 and in Figure 3-15, “xski's Data
Window Showing Data Interpreted as Instruction Bundles,” on page 3-11. It is your responsibility to ensure that the
Data Window is actually positioned on instructions; if not, Ski will dutifully display nonsense. The first column
displays the address. The second column displays the template field. The remaining three columns display the 41-bit
instructions from slots 0, 1, and 2, with the least-significant bit to the right. The mnemonic stands for “data window
bundle”.

I=IET

Data Window

000NN S0
main

00000000 T)
00000000 T
A0 F)
AO0CCRCCCC0 T B
__do_global _cto%
AO0CACECCCIN T A0
0000 T b
SO0CCCCOCCI0 T oo
000N S H0
000NN T &)

17
00
0z
11
i}
11
ik
0o
0a
1d
1c
00

00108001100
0200302330
QOO0
OE0C0e003C0
10802000500
QOO0
0200408350
OE0C2000300
05023103k
OEOCa0f OG0
148323 Fe000
OOO0A000C0

04000000000
120001903280
00133000340
QOGO
00154044000
QOQASOANN00
130001 20300
QOQOSOAA00
030C2300045
OOOOSOAO000
DOOOZOO0000
00154044000

04000000000
1080000300
119fBce300
OELFFFRI000
Q0042000
QOLOZ001100
130000000
QO1E000340
O0e0011e186
Q2000004005
OILFFFFeO0E
OOe00L4 2000

Close| eis

HEFT N
H :S_:‘ EEL |

Figure 5-4. xski Showing Data as Instruction Bundles

dh

Displays the data as raw hexadecimal with an ASCII translation, as shown in Figure 5-5. The mnemonic stands for

“data window hexadecimal”.

Copyright © 2000 Hewlett-Packard Co.

Screen Manipulation Commands

Ski IA-64 Simulator Reference Manual 1.0L

Figure 5-5. xski Showing Data in Raw Hexadecimal and ASCII

dd starting_address ending_addrd$itenamé

Dump the memory area between the two addresses (inclusive) to the ssk8ewor (window (xski) if no filenamels
given or to the specified file if one is. The dump will be in the format selected by the most dreit or dh
command. An example of a hexadecimal dump is shown in Figure 5-6. The mnemonic stands for “data dump”.

Figure 5-6. xski’'s Hexadecimal Dump Window

5-6 Screen Manipulation Commands Copyright © 2000 Hewlett-Packard Co.

Ski IA-64 Simulator Reference Manual 1.0L

6 Program Simulation

Ski's main responsibility is to simulate IA-64 instructions and programs built from these instructions. Many commands
and features are supplied to provide you with a great deal of flexibility in using Ski.

6.1 Application-Mode and System-Mode Simulation

Ski supports two instruction sets and two modes of simulation. The two instruction sets supported by Ski are the 1A-64
instruction set and a subset of the traditional 1A-32 instruction set, often called the “Intel x86” instruction set.

Ski's two simulation modes let you simulate an application program (“application-mode”) or an operating system or firm-
ware (“system-mode”). For I1A-64 programs, Ski determines the mode based on the presence or abseneexf the
symbol. (If you strip symbols from your IA-64 program, Ski will not findtexit ~ and will assume your program is a sys-
tem-mode program.) For 1A-32 programs, you select the mode, usiriggdgheé command for application-mode simula-

tion and theromload command for system-mode simulation. Program loading is discussed in Section 6.5, “Program
Loading”.

6.2 Ski Support for Application-Mode Programs

To support application-mode programs, Ski emulates a Linux operating system (for IA-64 programs) or an MS-DOS oper-
ating system (for IA-32 programs).

6.2.1 Application-Mode 1A-64 Programs

For IA-64 programs, Ski provides (simulated) memory for the text and data portions of the program’s address space. Ski
also manages a growable heap for the C language’s malloc() function, a growable Register Save Engine area, and a grow-
able stack. As your program runs, Ski tracks the memory references emitted by the program. Ski tries to distinguish
between reasonable references and ridiculous references indicative of wild pointers. To track stack-based data structures,
Ski adds stack pages when it notices a reference to a location just past the end of the stack. To track heap-based data struc-
tures, Ski provides an implementation of the malloc() family of functions. (Chapter 7, “Linux and MS-DOS ABI Emula-
tion”, discusses Ski's pseudo-operating system in detail.) Ski tracks pages used by the Register Save Engine as well.

Application program calls to Linux system functions are emulated by the simulator or passed to the host Linux operating
system; unsupported calls cause simulation to stop. Registers are initialized according to Linux calling conventions.
Application mode programs can’t access (simulated) I/O devices or privileged registers. Application mode programs can'’t
execute privileged instructions or receive interrupts; any interruptions cause Ski to stop simulation and generate an error
message. Application-mode programs never see virtual memory page faults or TLB faults and thereforeatiusdt

simulator commands (see Section 6.3.3, “System-Mode TLB Simulation”) are disabled when simulating application-
mode programs.

6.2.2 Application-Mode 1A-32 Programs

For IA-32 programs, Ski's support is more limited. Ski provides a subset of MS-D@S1 " functions. Ski does not
simulate Microsoft Windows. Loadable libraries (DLL'€pnfig.sys , andautoexec.bat are not supported. Environ-

ment variables are not available to MS-DOS programs. Registers and memory are initialized according to MS-DOS con-
ventions.

6.3 Ski Support for System-Mode Programs

A system-mode program is, as far as Ski is concerned, running on a “bare” IA-64 processor. No operating system emula-
tion is provided and the system-mode program has complete access to the simulated 1A-64 processor.

Copyright © 2000 Hewlett-Packard Co. Program Simulation 6-1

Ski IA-64 Simulator Reference Manual 1.0L

6.3.1 System-Mode |IA-64 Programs

A system-mode IA-64 program “sees” a more complete simulated environment: writeable registers are initialized to zero,
page and TLB faults are simulated and cause a transfer to the interruption vector table (IVT), privileged instructions can
be executed, privileged registers can be accessed, and so on. A tricky issue for system-mode simulation is handling I/O
because there are no real I1/0O devices to simulate! Instead, Ski provides a special interfa@REgiKignstructions to
implement Simulator SystemCalls (SSC’s), which provide access to the console, keyboard, SCSI disk and Ethernet
devices. A system-mode IA-64 program can’t access the underlying operating system; it “thinks” it's running on a real IA-
64 computer.

A system-mode I1A-64 program must provide interruption handlers. The program must create a valid Interruption Vector
Table (IVT) and set the Interruption Vector Address (IVA) accordingly. You can test your interruption code by creating
code that generates conditions corresponding to internal faults, traps, and interrupts, such as divide-by-zero and page-not-
present. To test code for external interrupts, use the inter-processor interruption mechanism, as defined by the 1A-64 archi-
tecture manual. Example assembly code for this is shown in Figure 6-1. Timer interruptions can be simulated using the
Simulator System Call mechanism.

ssm 0x6000 I/ Set psr.i and psr.icto 1

mov cr.lid=r0 // For processor 0

movl r4=0xfee00000 // Interrupt block base for proc 0

mov r5=0x10 /I Interrupt vector 16

st8 [r4]=r5 /I Code branches to iva+0x3000 (the external
[l interrupt handler). irr0{16} is set to 1,
Il 'ivr = 0x10

Figure 6-1. Example Code to Simulate an External Interrupt

6.3.2 System-Mode 1A-32 Programs

Ski does not support 1A-32 programs running in system-mode.

6.3.3 System-Mode TLB Simulation

The simulator provides facilities for modeling the TLB’s (Translation Lookaside Buffers) for system-mode programs.

6.3.3.1 Summary of TLB Display Commands
sit
sdt

When a system-mode IA-64 program is loaded, these commands display information from the Instruction Translation
Lookaside Buffer (ITLB) and Data Translation Lookaside Buffer (DTLB), respectively. The simulator displays the
entire selected TLB (Translation Registers and the Translation Cache) on the screen, as shown in Figure 6-2.

The “v’ and “RID” columns represent the V (valid) bit and Region Identifier, respectively, for each TLB entry. The
“Virtual Page " and “Physical Page ” columns show the actual address translation handled by each TLB entry.
The “PgSz”, “ED', “AR, “PL", “D’, “ A", “MA, and “P” columns represent the Page Size, Exception Deferral, Access
Rights, Privilege Level, Dirty Bit, Accessed Bit, Memory Attribute, and Present fields, respectively, for each TLB
entry. Finally, the KEY' column represents the Protection Key for each TLB entry. A blank line separates the
Translation Registers (TR’s) from the Translation Cache (TC). The number of TR’s and the size of the TC is
implementation-dependent. Current versions of Ski provide 16 TR’s and 128 entries for the TC but this may change.
If the precise value is important, check the release notes.

6-2 Program Simulation Copyright © 2000 Hewlett-Packard Co.

Ski IA-64 Simulator Reference Manual 1.0L

Wirtual Page Physical Page PoSz EDI AR PL D A MA P KEY

1 000319 20000000000F4 Q00000000047 16K 1 1 3 o0 1 WE 1 000319 A
1 O0E0b EOOOOOOONN0Z2e OO000000ced 16K 1 2 3 1 1 WE 1 odd30b

1 000319 Z0000000000ec Q0000000004ed 16K 1 1 3 0 1 WE 1 000313

1 000319 200000000008 0000000003F34 16K 1 2 3 1 1 WE 1 000313

1 000319 200000000008 O000000004e8 16K 1 1 3 o0 1 WE 1 000319

1 O0E0b EOOOOOOON001d OOo0000000cbd 16K 1 2 3 1 1 WE 1 odd30b

1 00031c SEFFFFFF30000 Q000O00000cE0 16K 1 2 3 1 1 WE 1 0003lc _J
1 000300 EOOOOOOOO00LE 0000000000zac 16K 1 2 3 1 1 WE 1 00030b

1 000319 200000000003 000000000zed 16K 1 2 3 1 1 WBE 1 000319

1 00319 200000000020 MOOOO00000b1e 16K 1 1 3 o 1 WE 1 000319

1 000E0a 40000000000ec Q000O00000BFE 16K 1 1 3 O 1 WE 1 00030a

1 000300 EOOOOOOOOOOND Q0OOOODDONd1E 16K 1 2 3 1 1 WE 1 00030b

1 000309 2000000000040 0000000004098 16K 1 1 3 0 1 WE 1 000309

1 O0Z1c SFFFFFFFFFFFE OOOOOO00OOC1E 16K 1 2 3 1 1 WE 1 odd3lc r
Elnsel ﬁ#?;l

Figure 6-2. sdt Command Output in xski

6.4

If the psr.achbit is set, the IA-64 architecture requires alignment checks on memory accesses; i.e., when data accesses are
made to items larger than a byte, the appropriate number of low-order address bits must be zero. If the bit is clear, the IA-
64 implementation may choose whether or not to make such checks; Ski chooses to make the checks for references from
IA-64 code. When an 1A-64 program attempts an misaligned access, the behavior of the simulator depends on whether it
is running in application-mode or system-mode (see Chapter 6, “Program Simulation”). In application-mode, the simula-
tor stops the program and displays an error message. In system-mode, the simulator traps to the unaligned access vector.

Misaligned Data Access Trap

6.5

The Ski simulator supports loading 1A-64 programs in the standard 1A-64 ELF executable format and in M8eBDOS
and.exe formats. ELF files contain enough information to allow the simulator not only to load the program and its data,
but also to build a symbol table, properly structure virtual memory, and initialize the scregn ariith the proper values.

For IA-64 Linux programs, th@sr.bebit is always initialized to zero, indicating that the program will run with little-
endian byte-order.

Program Loading

The MS-DOS formats do not include symbol table information. Instead, you must supply the information in the form of a
mapfile compatible with those created by Microsoft’s “ML” linker. If you don't provide Ski with a mapfile, no program-
defined symbols will be available. The MS-DOS formats do not specify where to place the program in memory. You must
provide this information to Ski yourself. Theom format is very basic and is supported with thiead andromload
commands, described in Section 6.5.2, “Summary of Program Loading Commandséx&hérmat contains header
information that is used by thaload command and ignored by themload command. For this reasomrxe files are

not useful in system-mode simulation. For IA-32 programs, only IA-32 (little-endian) byte ordering is supported.

6.5.1

There are two ways to load a file. The first way is to run the simulator with a 1A-64 (not 1A-32) executable program file-
name as an argument. The file will be loaded immediately after the simulator initializes itself and before any command file
specified with thei flag is executed. (See Chapter 9, “Command Files” and Section 2.5.1, “Command Line Flags”.) An

How to Load a Program

Copyright © 2000 Hewlett-Packard Co. Program Simulation 6-3

Ski IA-64 Simulator Reference Manual 1.0L

example is %ski my_program ”. The second way is to use thead , iaload , orromload commands, which take the
filename as the first argument, for examplead' my_program "

6.5.2 Summary of Program Loading Commands
load filenamelargg+

Prepare for IA-64 application-mode simulation: Load the file specifiefiléyameand prepares to pass the program
argsencoded using the C-language argc/argv mechanism. The file must be an 1A-64 ELF file.

iaload filename addrespnapfile[argg+]

Prepare for 1A-32 application-mode simulation: Load the IA-32 executable file specifitiegme which must be

an MS-DOS.com or .exe file and prepare to pass the prograngs encoded using MS-DOS command line
argument conventions. Tregldressspecifies where Ski should load the program. This should be a physical address;
virtual addressing is only supported for system-mode programs. The value you provide is used, along with
information from theexe file or MS-DOS defaults for acom file, to setup the 1A-32 execution environment, such

as segment descriptors, the stack pointer, etc. mhpfileis an ASCII text file providing the mappings between
symbols and addresses; it must be compatible in format with the mapfile produced by the Microsoft “ML" linker. The
psr.isbit is set.

romload filename addresgnapfild

Prepare for 1A-64, IA-32, or mixed system-mode simulation: Load the MS-D@f -format file specified by
filename (The MS-DOScom format is essentially raw binaryAddressandmapfileare as described for thaoad
command above. Thaddresscan be physical or virtual, depending on the setting ofgbeit bit, as described in
Section 4.4.1.3, “Addresses”.

6.5.3 Notes about Program Loading

6.5.3.1 Adding Information after Loading

Sometimes, the load file doesn’t contain enough information. In this case, you can use a command file (see Chapter 9,
“Command Files”) to add more information. You execute the command file at the appropriate time, generally after loading
the program. For example, perhaps you want to test how an application program handles error conditions that are hard to
create in a “real” hardware environment. You could load the program and use a command file to create the error condition.
Then you would run the program and test its behavior.

As another example, perhaps you want to simulate the transfer of control from a bootstrap program, an interrupt, or an
application program to the operating system. You could load the operating system as a system-mode program and use a
command file to set up memory and registers to their appropriate state at the instant of the control transfer.

6.5.3.2 Creating the argc, argv, and envp Parameters

The first time an application-mode simulated program starts, it receives command line parameters and environment vari-
ables using the C language argc/argv/envp mechanism. (IA-32 application-mode programs do not receive environment
variables.) By default, the program receives the same command line parameters you gave to Ski when you started it. For
example, if you invoked Ski ax$ki my_program foo bar ", Ski would start up using the X Window System interface,

load the executable 1A-64 programy_program , and use foo ”, “bar ”, and environment variables to initialize the argc,

argv and envp parameters passed on the memory stack. The environment variables are a copy of the variables Ski received
from the shell when it started.

Instead of specifying the executable program on Ski’s invocation line as in the example above, you caroade tie

iaload commands to load the executable program. You can add extra argumémis tandiaload . Later, when you

invoke therun command, Ski will pass the extra arguments to the simulated program as command line parameters. For
example, you could issue the commanghi my program foo bar ”. When yourun the program, Ski would pass

“foo " and “bar " to the program as command line parameters using the argc/argv/envp mechanism. Note that 1A-32 appli-
cation-mode programs must be loaded withidlkad command; they cannot be loaded from the Ski invocation line.

6-4 Program Simulation Copyright © 2000 Hewlett-Packard Co.

Ski IA-64 Simulator Reference Manual 1.0L

6.6 Program Execution

Programs may be run in their entirety without interruption, they may be stopped at appropriate places (see Section 8.3,
“Program Breakpoints”) and continued, or they may be single-stepped for debugging purposes. The different program
execution choices are described below.

You can stop a running simulation gki at any time with your interrupt character (usually ~C). The interrupt will be hon-
ored at the beginning of simulation of the next instructigski andbski do not have interrupt handlers; if you use your
interrupt character while they are running, they will be terminated by the operating system.

6.6.1 Summary of Program Execution Commands
run
Starts / restarts execution of a program at the cugremalue. Generally used after a breakpoint is encountered.
cont
Same function as then command. The mnemonic stands for “continue”.
step [couni
With no argument, executes a single instruction.cdantis specified, executesuntinstructions.
step until expression

Steps through your program until the specifepressiorhas a non-zero value. Because thgressiormust be
evaluated before each simulated instruction, you may notice a slowdown in Ski's simulation speed. This command
can be used to implement data write breakpoints, with the caveat that it won't detect the case where the write doesn't
change the value. This can be useful when you are tracking down a memory corruption problem: you s&p use “

until r33!=r32 ", for example. Another example of this command is breaking into a loop after a certain number of
iterations: tep until r35<=30 ". (See Section 4.4.1.2, “Expressions”.)

Copyright © 2000 Hewlett-Packard Co. Program Simulation 6-5

Ski IA-64 Simulator Reference Manual 1.0L

6-6 Program Simulation Copyright © 2000 Hewlett-Packard Co.

Ski IA-64 Simulator Reference Manual 1.0L

7 Linux and MS-DOS ABI Emulation

As discussed in Section 6.1, “Application-Mode and System-Mode Simulation”, Ski can provide application programs
with a Linux-compatible or MS-DOS-compatible environment. The environments aren’t full-blown operating system
emulations, however. The most common OS functions are provided, as described below.

7.1 Interruptions

The 1A-64 architecture defines a large set of interruption types, including faults, traps, and interrupts. Interruptions may
happen asynchronously, during an instruction, or between instructions. Like application programs running on a “real”
Linux machine, 1A-64 application-mode programs in Ski never see interruptions. Instead, Ski translates interruptions into
the signal that a real IA-64 Linux kernel would generate. For example, a memory access violation gets translated into the
SIGSEGYV signal. Similarly, if Ski receives a keyboard signal such as the SIGINT generated (usually) by control-C, it
passes this signal on to the 1A-64 application. Ski does not accurately simulatgitfie andsigcontext structures

that a real IA-64 Linux kernel would pass to a signal handler. Thus, applications relying on either of these parameters can-
not be simulated in Ski application mode.

7.2 Linux Application Environment

Ski provides a commonly-used subset of the Linux environment to 1A-64 application-mode programs. Both statically
linked and dynamically linked programs are supported. The argc, argv, and envp parameters are created on the stack as
described in Section 6.5.3.2, “Creating the argc, argv, and envp Parameters”. Ski initializes the 1A-64 registers like this:

sp points to the top of the stack.

bsp, andbspstore are initialized in the same way the IA-64 version of Linux is likely to do.
rsc.plis initialized to 3.

rsc.beandpsr.beare cleared.

Ski supports the Linux system calls shown in Table 7-1. This list is subject to change; consult the release notes for the lat-
est information. The data passed between the application program and the simulated Linux environment is interpreted as
64 bit (LP64) quantities.

Copyright © 2000 Hewlett-Packard Co. Linux and MS-DOS ABI Emulation 7-1

Ski IA-64 Simulator Reference Manual 1.0L

Table 7-1. Linux System Calls Supported by Ski

accept
bind
chown
connect
exit

fentl
fstatfs
getdents
getgroups
getpgid
getresgid
getsid
getuid
Ichown
Istat
mmap2
msgget
nanosleep
poll
readlink
recvfrom
rt_sigaction
sched_get_priority_max
sched_rr_get_interval
select
sendmsg
setfsuid
setitimer
setresgid
setsid
shmat
sigalstack
statfs
sync
umask
ustat

write

access
brk
chroot
dup
fchdir
fdatasync
fsync
getegid
getitimer
getpid
getresuid
getsockname
ioctl
link
mkdir
mount
msgrcv
open
pread (not atomic)
readv (not atomic)
recvmsg
rt_sigpending
sched_get_priority_min
sched_setparam
semget
sendto
setgid
setpgid
setresuid
setsockopt
shmdt
socket
swapoff
syslog
umount
utimes
writev (not atomic)

acct
chdir
clone (fork & vfork)
dup2
fchmod
flock
ftruncate
geteuid
getpagesize (4KB)
getppid
getrlimit
getsockopt
ioperm
listen
mknod
mprotect
msgsnd
personality
pwrite (not atomic)
reboot
rename
rt_sigprocmask
sched_getparam
sched_setscheduler
semop
setdomainname
setgroups
setpriority
setreuid
settimeofday
shmget
socketpair
swapon
times
uname
vhangup

adjtimex
chmod
close
execve (IA-32 & 1A-64)
fchown
fstat
getcwd
getgid
getpeername
getpriority
getrusage
gettimeofday
kill
Iseek
mmap
mremap
msync
pipe
read
recv
rmdir
rt_sigsuspend
sched_getscheduler
sched_yield
send
setfsgid
sethostname
setregid
setrlimit
setuid
shutdown
stat
symlink
truncate
unlink
wait4

Ski accepts but ignores the system calls shown in Table 7-2. For those that return an error indication, the errno code is

shown in parentheses. All other ignored system calls return with a success indication, having done nothing.

Table 7-2. Linux System Calls Accepted but Ignored by Ski

_sysctl ENOSY$
create_moduleENOSY$
init_module ENOSY$
prctl

quotactl ENOSY$
sendfile

bdflush ENOSY$
delete_moduleENOSY$
msgctl ENOSYP

ptrace EOPNOTSURP
rt_sigqueueinfo
shmctiENOSY$

capget
get_kernel_symsENOSY$
munlockall
putpmsg

rt_sigtimedwait
sysfs ENOSY$

capset

getpmsg

nfsservctl

query_modul&ENOSYH
semddNOSY$

sysinfo ENOSY$

All other system calls are unsupported. When an 1A-64 application-mode program makes an unsupported system call, the

simulator stops the simulation and displays an error message.

7-2 Linux and MS-DOS ABI Emulation

Copyright © 2000 Hewlett-Packard Co.

Ski IA-64 Simulator Reference Manual 1.0L

7.3 MS-DOS Application Environment

IA-32 application-mode programs “see” a limited MS-DOS environment. The MS-DOS environment is emulated by cre-
ating and initializing an MS-DOS Program Segment Prefix (PSP) and by setting up the stack jsintgand segmen-

tation registers. The arguments you gave withitdlbad command, such asdload my program foo bar baz ", are

placed in the PSP as if they were command line parameters.

Ski supports the MS-DOSINT 20" call to terminate the simulated program and theT* 21 ” system calls shown in
Table 7-3. When an IA-32 program makesldm 21 call that’s not supported, the simulator stops the simulation and dis-
plays an error message.

Table 7-3. MS-DOS System Calls (in Hexadecimal) Supported by Ski

00: terminate program 02: display character 08: read keyboard without echo
09: display string 2a: get date 2c: get time

30: get version number 3c: create file with handle 3d: open file with handle

3e: close file with handle 3f: read file or device 40: write file or device

44: device status control 44, sub-function 0: get device data 4c: end program

51: get PSP address 62: get PSP address (same as 51)

7.4 Program 1/O

Your program may need to read from standard in (stdin: file descriptor 0) and write to standard out (stdout: file descriptor
1) and standard err (stderr: file descriptor 2). As with all Linux programs, these file descriptors are connected, by default,
to your keyboard and screen. You can redirect them in the usual way: when you invoke Ski, use the < and > operators rec-
ognized by most Linux shells. For exampléaski -noconsole my program foo bar baz < test input

>simulated_output " runs bski, loading the 1A-64 program fileny_program and passing it the argumerit® , bar

andbaz via the argc/argv mechanism. Because no command file was provided via flag (described in Section 2.5.1,
“Command Line Flags”)bski internally generatesan command followed by guit command. The (simulated) pro-

gram reads on standard in from the fidst input and writes on standard out to the fdienulated_output . Having

not been redirected, writes to standard err go to the default place, normally the terminal screen.

Copyright © 2000 Hewlett-Packard Co. Linux and MS-DOS ABI Emulation 7-3

Ski IA-64 Simulator Reference Manual 1.0L

7-4 Linux and MS-DOS ABI Emulation Copyright © 2000 Hewlett-Packard Co.

Ski IA-64 Simulator Reference Manual 1.0L

8 Debugging

The simulator provides many facilities to help you debug your programs. You can modify the current state of the simu-
lated processor, set program breakpoints, trace program execution, and dump a memory image into a file.

8.1 Changing Registers and Memory with Assignment Commands

Use the= command to assign a value to a register. Flmmmmand takes two arguments: the first is the name of a register
and the second is the value to be assigned.

To change the contents of memory, you use one of five different commands, depending on whether you want to set a byte,
two bytes, four bytes, eight bytes, or a C-language string (a sequence of bytes terminated by a byte with the value zero, the
“null” byte). The commands arel, =2, =4, =8, and=s respectively. Each command takes at least two arguments (some
take more): an address or symbol or expression resolving to an address, and the new value you want placed there.

8.1.1 Summary of Assignment Commands
= register_name value

Thevalueis assigned to the register specifiedrbgister_nameThe old value is lost. Unless a modifying prefix such as

0d, Ob, or Oo is usedyaluewill be treated as a hexadecimal number. Floating point registers must be set piecewise, using
the register nameZ throughf127) followed by a.s to set the signm to set the mantissa, ar to set the exponent. The

first general register , is “hardwired” to 0 and any attempt to assign to it will be rejected. Similarly, floating registers

andfl are “hardwired” to be 0.0 and 1.0, respectively, and predicate regisisr‘hardwired” to 1 and they too cannot be
changed. Some 1A-64 registers are read-only according to the IA-64 architecture specification, but all non-hardwired reg-
isters are writable with Ski's command to assist your debugging.

=1 address value+
=2 address value+
=4 address value+
=8 address value+

Thevalueis assigned to the specified location in memory. The old value at the location is lost. The location may be on
any allocated page, including instruction pages, as discussed in Section 8.1.3.3, “Page Allocation”. Multiple values,
separated by spaces, may be supplied; if so, they will be assigned to sequential memory addresses. Unless a
modifying prefix such agd, 0Ob, or0o is usedyaluewill be treated as a hexadecimal number.

The=1 command truncates any extra high-order bytes of/tiieeto make a single byte. The2 command truncates
or pads (with zero) the high order bytes of th@ueas necessary to make a two-byte quantity. Similarly=hand
=8 commands truncate or pad high order bytes to make four- and eight-byte quantities, respectively.

The =2, =4, and=8 commands respect the current value of pisebebit, which controls whether multi-byte data
memory references are big-endian (if the bit is set) or little-endian (if the bit is clear). The bit also controls the format
of data display in the Data Window (see Section 3.6, “The Data Window”). You can segisthm bit with the
command £ psrbel " and you can clear it with='psr.be 0 ".

Ski supports physical and virtual addressing. For more information, see Section 4.4.1.3, “Addresses”.
=s address string_without_spaces+

The string_without_spaceis assigned to memory locations starting at the location specifieditisess A null byte
is added to the end of the string automatically. The old value at the location is lost. The location may be on any
allocated page, including instruction pages, as discussed in Section 8.1.3.3, “Page Allocation”. Multiple values may
be supplied, separated by a space. The strings may not contain spaces and quoting it is not a workaround.

8.1.2 Examples of Assignment Commands
=r11234

Copyright © 2000 Hewlett-Packard Co. Debugging 8-1

Ski IA-64 Simulator Reference Manual 1.0L

The hexadecimal value 0x1234 is assigned to general register 1. The six upper (more significant) bytes are padded
with zeroes.

=rlip+10
The value inp added to 0x10 is assigned to general register 1.
=f2.m 1234 ;=f2.s 1; =f2.e 10033

The hexadecimal value 0x300330000000000001234 is assigned to floating register 2. The register now encodes the
decimal value of -2.2754, approximately. The f2.m 1234 ” part sets the mantissa (the 64 low-order bits). The “

f2.s 1 " part encodes the mantissa sign (the most significant of the 82 bits).=Tha¢ 10033 ” encodes the 17
exponent bits (which fit between the sign bit and mantissa bits), using a bias of 65,535 (0xffff).

=4 __ data_start+30 0d10 13feffff b3

The decimal value 10 is assigned to the four bytes starting 48 bytes past the location of the sywdal Start
Because the value 10 occupies only one byte, three high-order zero bytes will be padded in, so the actual value
assigned will be 0x0000000a. The value Iffés assigned to the four bytes starting 52 bytes past the location of

_ data_start . The lower four bytes of branch register 3 will be copied into the four bytes starting 56 bytes past the
location of _data_start . (To assign the value Oxb3, use tixeprefix.)

=s main ThisProgramlIsBroken

The string ‘ThisProgramisBroken " with a null byte appended is placed in memory overwriting the instructions at the
start of the program, as shown in the “before” and “after” views of Figure 8-1 and Figure 8-2. (The synabbol tradi-

tionally marks the first instruction of a user program written in the C language.) The instructions previously at that loca-
tion are lost. If you attempt to run the program, it will almost certainly fail! Note that the string is not quoted and has no
whitespace.

General Registers
rQ 0000000A0000000 0A00000000A03000 OO0A0A0A00000000 Q0000000000000
rd 0000000A0000000 0A00000000A03000 OO0A0A0A00000000 Q0000000000000
r& 0000000A0000000 0A00000000A03000 OO0A0A0A00000000 Q0000000000000
r12 SFEFFFFEFEFEFETA0 0000000000000000 Q0000000000000 Q0000000000000
rl6 Q000000000000000 00000Q000000000 Q0000000000000 QO00O0O0000A0N0)

Progra file: ¥¥

__do_frame*®+0030 br.ret, sptk .many b0 EEEB
nop b 0220
nop b 0005 5

main alloc radd=ar ,pfs,0,3,1,0 MII
addl r14=0mchE, rl
In o raZ=ri2

maint 0010 nap . mn (020 MII
no r33=h0; ;

adds r1Z2=-18, 12
Data

main c0e0053006111000 E400600400483205 veas
A40000000000003F0 0Z10000100000002 EcfecaTOLE0006Z00 L, ., b...2..

Verzion 0.8731 (EAS 2.5

* load hello
® pi main

| # di main
Zx1

Figure 8-1. The Original Program Loaded in ski

8-2 Debugging Copyright © 2000 Hewlett-Packard Co.

Ski IA-64 Simulator Reference Manual 1.0L

General Registers

QOOOOOROOR0OR000 QOOQOOA0OA0OR00D AOOROOROOAOOA00D AOOCOOCOOCOCCIC
rd QOOOOOROOR0OR000 QOOQOOA0OA0OR00D AOOROOROOAOOA00D AOOCOOCOOCOCCIC
rg QOOOOOROOR0OR000 QOOQOOA0OA0OR00D AOOROOROOAOOA00D AOOCOOCOOCOCCIC
rl2 SFEFFFFFFFFFFFTA0 QOOO0OO0OR0OR00D QOOOOOROOR0OA000 OOOOOOCOOCOOC0CC
rl6 000Q0OQ0OO0O0000 QOOQ0OQ0OQ0OR00D AOOQOOOOOCOORA0OD AOOCOOCOOCOCCCT

Propra file: ¥F
__do_frame*®+0090 br.ret,sptk many bO BEEB
nop b 20
nop . b (=005 5
main illegallp (1928390 4kh42 T
illegallp (2 1b585c99 b
illegallp OxceedB3dend?
| maint+0010 (pd3) nop.m Oxdce; s MMI
srlz.i
adds rl12=—16,r12;;
Data
maln BTEFTZ00TIEIER04 B T242T3496051T2 ThlSPPDgPamISBPD
4000000000030 02 1000010062656k ScfoATOLE0008200 ken, b...2..

Version 0.8'?31 Efs 2.5

*® pq main

i main

* == main ThisProgramIsBroken
¥

=l

Figure 8-2. The Program After Assigning a String in ski

8.1.3 Notes on Assignment

8.1.3.1 Address Alignment

Ski aligns addresses on natural boundaries: two-byte quantities are aligned on addresses divisible by two, four-byte quan-
tities are aligned on addresses divisible by four, and eight-byte quantities are aligned on addresses divisible by eight. For
example, the command

=4 _data_start+1 0x12345678
results in the message
Non word-aligned address. Aligned to 0x6000000000001000
and the value is assigned starting one byte before the requested addretsa ($tart " is a program-defined symbol
for 0x6000000000001000 .)
8.1.3.2 Bit-encoded Registers

Many registers are bit-encoded. You can assign to individual bits or to entire registers. For example, you cgssit the
bit with this:

=psritl
and you can set the entire Processor Status Registenyith this:
= psr 1234567890abcdef
A complete list of the registers and bits Ski recognizes is in Section B.1, “IA-64 Registers”.

8.1.3.3 Page Allocation

Virtual memory is simulated only for system-mode programs. In system-mode, your program is responsible for page allo-
cation. In application-mode, Ski handles page allocation for you. Either way, if you try to assign data to a non-existent
page using the assignment commands, Ski will refuse, with an error message. The assignment commands never cause a
TLB miss or replacement.

Copyright © 2000 Hewlett-Packard Co. Debugging 8-3

Ski IA-64 Simulator Reference Manual 1.0L

8.2 Evaluating Formulas and Formatting Data

Theeval command evaluates one or more expressions and prints the result(s) in decimal and hexadecimal. An example
of theeval command and a more complete discussion are in Section 4.4.1.2, “Expressions”.

8.2.1 Summary of The eval Command

eval expression

Evaluate thexpressio(s) and print the result(s) on the screen. If éxpressioris simply a register name, the value is
display in the appropriate format: decimal, hexadecimal, or symbolically, depending on the kind of register. If the
expression has any operators, the result is displayed in decimal and hexadecimal. For exaatgfe, * causes the
current value of thép register to be displayed symbolically or in hexadecimal. Buhl' +ip " causes the value to

be printed out in hexadecimal and decimal.

8.3 Program Breakpoints

Program breakpoints are “marks” within the executable code of a program that cause simulation to halt when they are
encountered in the normal flow of a running program. When simulation stops because of a breakpoint, the instruction
pointer {p) is pointing to the instruction at which the breakpoint is set (before the instruction is executed) and control is
returned to you.

The simulator provides several commands to let you manipulate program breakpoints. These commands are explained in
detail below.

8.3.1 Setting Program Breakpoints

To set a breakpoint in 1A-64 code, use tteecommand. For IA-32 code, use tlsds command. If given with no argu-

ments, these commands set a breakpoint at the instruction pointed toippyrégster. If an address is given following the
command, the breakpoint is set at that address. The address must be valid when Ski resumes simulation; Ski will refuse to
simulate code if any breakpoints are set at non-existent addresses. You can set breakpoints in system-mode programs
using physical or virtual addresses. See Section 6.1, “Application-Mode and System-Mode Simulation” for information
about system-mode programming and Section 4.4.1.3, “Addresses” for information on physical vs. virtual addressing.

Up to ten breakpoints may be set at any one time. They are indicated by the digitsdugh “9” in the first column of
the program window, as the example in Figure 8-3 shows.

8-4 Debugging Copyright © 2000 Hewlett-Packard Co.

Ski IA-64 Simulator Reference Manual 1.0L

Figure 8-3. Three Breakpoints, 0, 2, and 1, Visible in xski’s Program Window

8.3.2 Deleting Program Breakpoints

Two commands delete program breakpoints. Bdheommand deletes a specified breakpoint. Bbheommand deletes all
breakpoints currently set.

8.3.3 Listing Program Breakpoints

Thebl command causes a list of currently set program breakpoints to be displayed on the screen, symbolically if possible,
as shown in Figure 8-4. The first column of the display shows the breakpoint number, for use withctiramand. The

second column displays &"for physically-addressed breakpoints and for virtually-addressed breakpoints. The col-

umn labelled “Address” is, of course, the breakpoint address. In the next coluks, * indicates a breakpoint in 1A-64

code and fA-32 " indicates a breakpoint in 1A-32 code. The “Command” column is currently unused.

Copyright © 2000 Hewlett-Packard Co. Debugging 8-5

Ski IA-64 Simulator Reference Manual 1.0L

Breakpoints
Address Command
0 P init IA-32 2]
1 P raize IA-32
2 P main IA-E4
3 P _I0_printf IA-64
¥

Figure 8-4. xski’s Breakpoint List Window Showing IA-64 and IA-32 Breakpoints

8.34 Notes on Program Breakpoints

8.34.1 How Ski Implements Breakpoints

Program breakpoints are implemented by replacing the instruction at the address of each breakpoint with an 1A-64
BREAK instruction or an IA-32NT3 instruction. The replacement is done at the time the program is started or restarted
(e.g., withcont) and the original instructions are replaced when the program halts. Thus, if your program reads the loca-
tion where a breakpoint is set, it will retrieve tBREAK or INT3 instruction instead. Ski detects if your program attempts

to write new data into the breakpoint location and automatically reinstalls the breakpoint after such an update.

You need to tell Ski where to set your 1A-64 breakpoints but the 1A-64 architecture doesn't provide for addressability of
individual instructions. Instead, instructions are bundled. To work around this, Ski “pretends” that the slot 0 instruction of
a bundle is in the first four bytes of the bundle’s location, the slot 1 instruction is in the second four bytes of the bundle,
and the slot 2 instruction is in the third four bytes of the bundle. You can only set breakpoints at these “pretend” locations.
For example, setting a breakpoint aidin ", “ main+1 ", “main+2 ", and “main+3 " all result in the breakpoint being set on
the first instruction in the bundle atiain ”. Similarly, “main+5 ", “ main+6 ", and “main+7 ” all correspond to thain+4 ",

and ‘main+9 ”, “main+a ”, and “main+b ” all correspond to thain+8 ”, If you try to set a breakpoint at the remaining bytes
in the bundle (fnain+c ”, “main+d ", “main+e ”, and “main+f " in this example), Ski will generate the error message
“llegal slot field in breakpoint address ”. Ski can place 1A-32 breakpoints at any byte address. If the break-

point address doesn't correspond to the beginning of an 1A-32 instruction, Ski's behavior is undefined.

8.3.4.2 Unexpected Breakpoints

The 1A-64 breakpoint mechanism u€BREAK.M 0, BREAK.I 0, BREAK.B 0, andBREAK.F 0, andBREAK.X 0 instructions.

These are special cases and executing these instructions will not &REBAK' instruction trap” interrupts for system-

mode programs. The same is true 9T 3 instructions in IA-32 code. However, if Ski findBREAK or INT3 instruction at

a location which doesn’t correspond to a breakpoint, Ski's behavior depends on whether the program is simulating in
application-mode or system-mode. Application-mode programs should never generate, or expect to receive, interrupts. If
Ski reaches 8REAK or INT3 instruction in an application-mode program at a location which doesn't correspond to a
breakpoint, simulation halts and Ski displays an error message. System-mode IA-64 programs will receiRieAtke
interrupt.

8.3.5 Summary of Program Breakpoint Commands
bs [addres}

Sets an |1A-64 breakpoint at the speciféetiiressor, if noaddresds given, at the location pointed to ipy.

8-6 Debugging Copyright © 2000 Hewlett-Packard Co.

Ski IA-64 Simulator Reference Manual 1.0L

iabs [addres$
Sets an 1A-32 breakpoint at the speciféettiressor, if noaddresdss given, at the location pointed to ipy.
bd breakpoint_number
Deletes the breakpoint numberediygakpoint_number
bD
Deletes all breakpoints.
bl
Displays a list of currently set breakpoints.

8.4 Data Breakpoints

Data breakpoints can be viewed as temporary access restrictions on an area of data. Access of a datum within the specified
area causes a running program to halt at the instruction which attempted the access. Control is then returned to the user at
command level.

The simulator allows up to ten areas to be specified within which data breakpoints may be set. They may vary in size from
one byte to an entire region. Further, the area may be specified to cause a break either only on reads, writes, or on both
reads and writes. Several commands apply to the manipulation of these data breakpoints.

8.4.1 Setting Data Breakpoints

Thedbs command sets data breakpoints. The command requires two arguments and accepts an optional third argument.
The first argument is the starting address of the area which is associated with the break. The second argument specifies the
length of the area (in bytes). The third argument, if present, is the strirfdefault), which indicates that the break is to

occur on both reads or writess, which indicates that only reads cause breaksy arhich indicates that only writes cause

breaks.

8.4.2 Deleting Data Breakpoints

Two commands delete data breakpoints. @he command deletes all data breakpoints currently set. It takes no argu-
ments and requires no verification from the user. dbiecommand deletes the data breakpoint with the number specified
by the argument.

8.4.3 Listing Data Breakpoints

Thedbl command causes a list of currently set data breakpoints to be displayed on the screen, symbolically if possible.

8.4.4 Summary of Data Breakpoint Commands
dbs address lengtfitypd

Sets a data breakpoint at the specifieldress The length of the area (in bytes) is setéagth Type is the stringw
(default) specifying breaks on reads or writesspecifying breaks on reads only, wrspecifying breaks on writes
only.

dbd number
Deletes the data breakpoint numberechbsnber
dbD
Deletes all data breakpoints.
dbl
Displays on the screen a list of currently set data breakpoints.

Copyright © 2000 Hewlett-Packard Co. Debugging 8-7

Ski IA-64 Simulator Reference Manual 1.0L

8.5 Dumping Registers and Memory to a File

You can dump the registers to a file with thel " command, described in Section 5.1, “Register Window Commands”.
You can dump a block of memory into a file in two forms: in hexadecimal or in symbolic disassembled form, correspond-
ing (roughly) to the formats in the Data Window and the Program Window, respectively. The commands to do this are
“dd” and “pd” and are described in Section 5.3.1, “Summary of Data Window Commands” and Section 5.2.1, “Summary
of Program Window Commands”, respectively.

8.6 Saving and Restoring the Simulator State

You may need to interrupt a simulation session and continue it later. For example, you might be tracking down a difficult
bug and want to save the state of the simulator just before the bug occurs so you can replay the problem and try different
strategies. Theave command saves the state of the currently executing program to a named disk file. Later, you restore
the saved file with theest command or therest command line flag (described in Section 2.5.1, “Command Line
Flags”).

Thesave command saves the state of the simulated IA-64 processor, including the overlaid IA-32 registers, the symbol
table for program-defined symbols, and memory. Certain simulator state information, in particular the values of internal
variables and window-related information, is not saved. Linux and MS-DOS state information such as open file handles
andfseek pointers is not currently saved; this will probably change, so you should check the release notes.

8.6.1 Summary of Save and Restore Commands
save filename
Saves an image of the machine state (IA-64 and IA-32) in the specified file.
rest filename

Restores an image of the machine state (IA-64 and IA-32) from the specified file.

8.7 Symbol Table Commands

Ski supports two kinds of symbols: program-defined symbols, which are identifiers provided by a compiler, linker, or
human programmer (see Section 4.4.2.1, “Program-Defined Symbols”), and internal symbols, which include register
names and internal variables (see Section 4.4.2.2, “Registers” and Section 4.4.2.3, “Internal Variables”). Ski places pro-
gram-defined symbols in one symbol table; you can see the contents witpniliee command. For 1A-64 programs,

the ELF executable file always contains symbols, regardless of whether you used your compiler's debug symbols flag
(typically -g), unless you stripped the symbols. Internal symbols are stored in a second symbol table along with the regis-
ter names Ski recognizes, listed in Appendix B, “Register Names”.idies command displays the contents of this

table.

8.7.1 Summary of Symbol Commands

symlist [filenamé

Shows the list of program-defined symbols sorted by ascending address, as seen in Figuféeiamiis given,
the list is written to the named file, otherwise the list is written to the screen.

8-8 Debugging Copyright © 2000 Hewlett-Packard Co.

Ski IA-64 Simulator Reference Manual 1.0L

Figure 8-5. The symlist Output from xski

isyms [filenamé

Writes the list of internal variables filenameif given, otherwise to the screen.

Copyright © 2000 Hewlett-Packard Co. Debugging 8-9

Ski IA-64 Simulator Reference Manual 1.0L

8-10 Debugging Copyright © 2000 Hewlett-Packard Co.

Ski IA-64 Simulator Reference Manual 1.0L

9 Command Files

The dot (“ ") command temporarily redirects command input to the simulator so that input is taken from the file provided

as an argument to the command. Into this file (a “command file”), you put commands as if you had typed them from the
keyboard. Several commands are specifically applicable to command files and are described below. Command files may
be nested; i.e., one command file may invoke another. The maximum nesting depth is operating-system-dependent.

Some syntax rules that apply to keyboard input don't make sense or would be cumbersome in command files. Most nota-
bly, in ski, a shortcut for re-executing the previous command is to hit the enter/return key on an empty line. This rule is
removed in command files, so you are free to put in blank lines for readability. You can also indent lines as necessary.

The ability to assign values to registers and memory and the flow control features provide the simulator with a powerful
Church-Turing-complete command language,; i.e., tasks which can be accomplished in any programming language, sub-
ject to memory constraints, can be accomplished in the command language of the simulator. Command files are particu-
larly appropriate for initializing the state of the simulator and for implementing complex facilities on top of Ski’'s native
commands. For example, you can write command files to setup the machine state just before an 1/O interrupt, to create
sophisticated breakpointing, and to take complex performance measurements.

9.1 Initialization File

If you start Ski with &i option followed by a filename, the named file will be executed as a command file before the first
prompt (see Section 2.5.1, “Command Line Flags”). This feature is particularly importabskoy because without a
command file to guide itbski will only run your program and thequit . If you want to do anything else, you need a
command file. When you combine tkie option with Ski’s ability to load a program on the command line, you can create
a powerful debugging environment. For example, this command line:

bski -i test.init -stats -icnt instruction_counts
combined with thigest.init command file:
load ia_test 0x26¢50

romload test.com etext test. map

uses the command fitest.init to load an 1A-64 Platform Support File namiadtest (filling in Ski's symbol table

for program-defined symbols), and then loads the 1A-32 system-mode praggtasom |, putting it at the location corre-
sponding to the symboletext ” in ia_test . The command file finishes artibki automatically executesan com-

mand followed by ajuit command. To start the run, the test program receives 0x26c50 as its argv[1] value. This
corresponds to the value of the symbetekt ” and tellsia_test wheretestcom was loaded. The IA-64 program
completes its initialization and transfers control to the 1A-32 program, settingsttiebit appropriately. When the IA-32
program completediski prints out end-of-run performance statistics and writes an instruction frequency count to the file
instruction_counts

9.2 Labels and Control Flow in Command Files

Command files are useful as macro sequences of simple commands and, more interestingly, to create small programs that
do useful things for you: create formatted displays of data structures, create complete breakpoints, and gather run-time
statistics, for example. Two commands provide the ability to change the flow of control in a commaoid findif .

9.2.1 The goto Command and Labels

A label identifies a particular line in a command file. Labels are defined in Section 4.4.2.4, “Labels”. No other text can
appear on a label line.

The goto command takes a label as an argument and searches the command file for a line with that label. Execution
resumes at the first command after the label. There is no good reason to have a label appear more than once in a particular
command file; if this condition occurs, only the first occurrence of the label will be noticed and all subsequent occurrences
will be ignored. Thegoto command can only be executed in a command filgo#d may go forward or backward. An

Copyright © 2000 Hewlett-Packard Co. Command Files 9-1

Ski IA-64 Simulator Reference Manual 1.0L

example of usingoto and a label is:
loop:
... other commands ...

goto loop

922 The if Command

Theif command allows for conditional execution. If the expression following the command evaluates to nonzero, the
remainder of the line is executed; otherwise it is ignored. (No spaces are allowed in the expression.) For example, this
command file steps through a I1A-64 application-mode simulation 600 instructions at a time until the program finishes,
printing the contents of general register 32 after each step:

loop:
step 600
eval r32
if 1$exited$ goto loop
quit
If a colon surrounded by spaces is present on the line, the remainder of the line is taken to be an “else” clause. That is, if
theif expression evaluates to nonzero, the remainder of the line up to but not including the colon is executed; if zero, that
part of the line is ignored and execution continues immediately following the colon. For example, the following command

file line sets the contents of general register 4 to zero or one depending on whether the sum of the contents of general inte-
ger 1 and 2 are equal to the contents of the location pointed to by general register 13.

if (rl+r2)==*r13=r40:=r4 1

9.3 Comments in Command Files

To document command files, you can add comments— any characters following an octothorpe (also called a “pound sign”
or “sharp sign” and shown, typically, ag™) are ignored by the command interpreter. Examples of comments are in
Figure 9-1.

9.4 An Example Command File

Command files are easy to write. The command file in Figure 9-1 for computing Fibonacci numbers was written in less
than five minutes and most of that time was spent making the comments correct.

9-2 Command Files Copyright © 2000 Hewlett-Packard Co.

Ski IA-64 Simulator Reference Manual 1.0L

Compute and print Fibonacci numbers from 1 to 50.
Initialize variables

=rl01 # Hold n-2'th value

=rl11 # Hold n-1'th value

=rl20 # Temporary holding place for n-1'th value
=r130 # Loop counter

Print out first two Fibonacci numbers (initial values of r10 & r11)
eval r10

eval r11

Calculate and print the rest of the numbers. The last line has the
stopping value of the loop index. (This is a simple counting loop.)

loop:
eval +r11 # “+” makes an expression: decimal and hex printing
=rl2rll # Compute n'th Fibonacci term
=r11r11+r10
=r10rl12
=r13rl13+1 # Increment loop counter

if r13<0d50 goto loop # Loop again?

Figure 9-1. An Example Command File to Compute Fibonacci Numbers

9.5 Summary of Command File Commands

if
if

filename

Executes commands in the given command file. The file is opened and its contents are executed as if they were
entered from the keyboard. When the contents of a non-nested command file are exhakstadd ski resume
keyboard input andski executes aun command followed by guit command. When a nested command file is
exhausted, control returns to the next-higher-level command file.

expression-without-spaces true-command
expression-without-spaces true-commandalse-command

In the first form, causes the rest of the line to be ignorezkgression-without-spacewvaluates to zero. Otherwise,
true-commands executed. In the second form gikpression-without-spacesaluates to nonzero, theie-command
is executed. Otherwise, tf@se-commands executed.

Theif command may be executed from the keyboard. In combination xgiki's Command History (see Section
3.7.1, “The xski Main Window") orski’s command repetition mechanism (see Section 3.7.2, “The ski Command
Window"), this can be quite powerful.

goto label

In a command file (only), causes execution to continue following the first line in the file which contaitabéhe
Goto’s may be forward or backward.

comment

The “#” and all characters following it until the next newline are ignored.

label:

The colon (% ") command marks goto label. All characters following the:™ and preceding the next newline are
ignored.

Copyright © 2000 Hewlett-Packard Co. Command Files 9-3

Ski IA-64 Simulator Reference Manual 1.0L

9-4 Command Files Copyright © 2000 Hewlett-Packard Co.

Ski IA-64 Simulator Reference Manual 1.0L

A Command Reference

In the command descriptions that folloivis face indicates literal text you should typthis faceindicates operand text
you should modify, [bracketed text] indicates text you may choose to omit (never type the brackets), and the + symbol
indicates items you may repeat. The syntax of the command language is described in Chapter 4, “Command Language”.

The order in which commands appear here is the order in which they may be abbreviated: any command may be abbrevi-
ated to as few letters as are needed to distinguish it from all commands preceding it in the list below. For example, the
“step " command may be spelled out in full or abbreviated ste “, “st ”, or “s”. The “save " command can be spelled

out in full or abbreviated asédv” or “sa”. It can’t be abbreviated as™ because it followsstep ” in the list below.

. filename

Execute commands from the command file specifiefllegame The file is opened and its contents are executed as

if they were entered from the keyboard. When the contents are exhasktexhd xski resume reading commands
from the keyboardbski, on the other hand, executesua command and thenquit command (unless, of course,

the command file already executeduit command). Command files can be nested to a reasonable level. See Chap-
ter 9, “Command Files”.

comment

Comments may be used to help document the design and implementation of command files. A comment is any part
of a line following an octothorpe #"). The octothorpe and everything following it on the line are ignored. See
“Comments in Command Files” on page 9-2.

label:
Labels are targets fgoto commands and are valid only in command files. See “Labels and Control Flow in Com-
mand Files” on page 9-1.

= register_name value

Assignvalueto the register specified liggister_ nameUnless a modifying prefix such &8, 0o, or Ob is used,
valuewill be treated as a hexadecimal number. See “Changing Registers and Memory with Assignment Commands”
on page 8-1. The register names recognized by Ski are listed in “IA-64 Registers” on page B-1.

=1 address value+
=2 address value+
=4 address value+
=8 address value+

Thevalueis assigned to the specified location in memory. The old value at the location is lost. The location may be
on any allocated page, including instruction pages. Multiple values separated by whitespace may be supplied; if so,
they will be assigned to sequential memory addresses. Unless a modifying prefix d¢h@sor 0b is usedyalue

will be treated as a hexadecimal number. See “Changing Registers and Memory with Assignment Commands” on
page 8-1.

The=1 command truncates any extra high-order bytes of/theeto make a single byte. The2 command truncates
or pads (with zero) the high order bytes of tr@ueas necessary to make a two-byte quantity. Similarly=thand
=8 commands truncate or pad high order bytes to make four- and eight-byte quantities, respectivpsy. bt
controls whether the data is stored in big-endian or little-endian format.

=s address string_without_spaces

Thestring_without_spaceis assigned to memory locations starting at the location specifieditigess A null byte
is added to the end of the string automatically. The old value at the location is lost. The location may be on any allo-

Copyright © 2000 Hewlett-Packard Co. Command Reference A-1

Ski IA-64 Simulator Reference Manual 1.0L

cated page, including instruction pages. Multiple values may not be supplied. The string may not contain spaces and
guoting it is not a workaround. See “Changing Registers and Memory with Assignment Commands” on page 8-1.
bs [addres$

Set breakpoint at the location specified by the current value @i at the specifiedddress (IA-64 code only) See
“Setting Program Breakpoints” on page 8-4.

bD
Delete all breakpoints. See “Deleting Program Breakpoints” on page 8-5.

bd breakpoint_number

Delete breakpoinbreakpoint_numbetJse thebl command to get a list of all breakpoints and their corresponding
numbers. See “Deleting Program Breakpoints” on page 8-5.

bl
Display a list of current breakpoints. See “Listing Program Breakpoints” on page 8-5.

cont
Continue simulating the program from the currgntvalue. Most commonly used after the simulator stops at a
breakpoint. See “Program Execution” on page 6-5.

dj [addres$
Jump the Data Window display to the specifesdtiress If no addresss given, the window display changes to the
previous location, providing a handy way to swap the display between two different parts of memory. See “Data
Window Commands” on page 5-5.

db [couni
Move the Data Window backwardountlines or one windowful if nocountis given. See “Data Window Com-
mands” on page 5-5.

dbndl

Display the Data Window contents as instruction bundles. See “Data Window Commands” on page 5-5.

dbs address lengtlrjw|rw]
Set data breakpoint covering the memory arel@ofthbytes starting aaddress See “Setting Data Breakpoints” on
page 8-7.

dbD

Delete all data breakpoints. See “Deleting Program Breakpoints” on page 8-5.

dbd breakpoint_number
Delete data breakpoirireakpoint_numbeiUse thedbl command to get a list of all breakpoints and their corre-
sponding numbers. See “Deleting Program Breakpoints” on page 8-5.

dbl

Display a list of current data breakpoints. See “Listing Program Breakpoints” on page 8-5.

dd starting_address ending_addreé¢enamé

Dump memory contents to the screen or to the file givefilbgame The range dumped is betwestarting_address
andending_addresmclusive. The dump is formatted as hexadecimal. See “Data Window Commands” on page 5-5.

A-2 Command Reference Copyright © 2000 Hewlett-Packard Co.

Ski IA-64 Simulator Reference Manual 1.0L

df [couni
Move the Data Window forwardountlines or one windowful if nacountis given. See “Data Window Commands”
on page 5-5.

dh
Display Data Window contents in hexadecimal format. See “Data Window Commands” on page 5-5.

eval expression_without spaces+

Evaluate one or morexpression_without_spacasd print the result in an appropriate format, typically hexadecimal
and/or decimal, or symbolically. Aexpression_without_spacean include numbers, registers, internal variables,
program-defined symbols, operators, and parentheses for grouping. See “Evaluating Formulas and Formatting Data”
on page 8-4.

fr
ski: Show the floating point registers in the Register Window. See “Register Window Commands” on page 5-1.

xski: Toggle the display of the floating point registers pane. See “Register Window Commands” on page 5-1.

goto label

Causes execution to continue following the first line in the file which containtatied Goto’s may be forward or
backward. Goto’s are valid only in command files. See “The goto Command and Labels” on page 9-1.

ar
ski: Show the general registers in the Register Window. See “Register Window Commands” on page 5-1.

Xxski: Toggle the display of the general registers pane. See “Register Window Commands” on page 5-1.

help [command_nanje

Display a list of the commands Ski recognizes, or, danmand_names specified, a syntax description for that
command. See “Command Entry” on page 4-1.

iar

ski: Show the 1A-32 registers in the Register Window. See “Register Window Commands” on page 5-1.
Xxski: Toggle the display of the 1A-32 registers pane. See “Register Window Commands” on page 5-1.

iabs [addres$

Set 1A-32 breakpoint aaddressor at the current value af if addresss omitted. (IA-32 code only) See “Setting
Program Breakpoints” on page 8-4.

iaload filename addrespnapfile[argg+]

Prepare for IA-32 application-mode simulation: Load an 1A-32 executable.d¢den(or .exe) and prepare to pass

the programargsusing the MS-DOS command line parameter mecharésidressspecifies where to load the pro-
gram.mapfileprovides Ski with the mapping between program-defined symbols and their addresses and must spec-
ify an ASCII text file exactly compatible with mapfiles produced by the Microsoft “ML” linker. See “How to Load a
Program” on page 6-3.

if expression_without _spaces true_commpandialse_commard

Executetrue_commandf the expression_without_spacesgaluates to a non-zero valdealse_command it evalu-
ates to zero. See “The if Command” on page 9-2.

Copyright © 2000 Hewlett-Packard Co. Command Reference A-3

Ski IA-64 Simulator Reference Manual 1.0L

isyms [filenamé
Write internal symbols to the screen or to the file givefilegame See “Symbol Table Commands” on page 8-8.

load filename[argg+
Prepare for I1A-64 application-mode simulation: Load the IA-64 ELF executable program file giféertameand
prepare to pass the prograargs using the C language argc/argv parameter mechanism. See “How to Load a Pro-
gram” on page 6-3.

pj [addres}

Jump the Program Window display to the speciféeldiress If no addresss given, the window display changes to
the previous location, providing a handy way to swap the display between two different parts of the program. See
“Summary of Program Window Commands” on page 5-2.

pa
Display the program in assembly language format only. (IA-64 only) See “Summary of Program Window Com-
mands” on page 5-2.

pb [couni

Move the Program Window backwaoduntlA-64 bundles or 1A-32 instructions, or one windowful less one bundle
or instruction if nocountis given. See “Summary of Program Window Commands” on page 5-2.

pd starting_address ending_addrd$tenamé

Dump memory to the screen or to the file givenfiigname The range dumped is betwestarting_addressnd
ending_addresmclusive. The dump is formatted as disassembled instructions, without source code. See “Summary
of Program Window Commands” on page 5-2.

pf [couni

Move the Program Window forwarcbuntlA-64 bundles or 1A-32 instructions, or one windowful less one bundle or
instruction if nocountis given. See “Summary of Program Window Commands” on page 5-2.

pm

Display an IA-64 program in both source and assembly form. The source code file must be available to the simulator
in the location recorded in the executable file when this command is issued. The source code is displayed for conve-
nience; it cannot be modified or interacted with. Mixed display may not be useful if a high degree of optimization
was applied during compilation. (IA-64 only) See “Summary of Program Window Commands” on page 5-2.

quit [return_value_for_shdll
Quit the simulator. If naeturn_value_for_shelk given, a zero value is returned to the shell. Return values are use-
ful in shell script programming. See “Quitting Ski” on page 2-6.

run

Simulate the program. Using the C language argc/argv mechanism, Ski will pass the program a copy of the com-
mand line parameters Ski received on its command line, or, if specified, the command line parameters provided with
theload andiaload commands. See “Program Execution” on page 6-5.

rest filename

Restore the state of a simulated processor from the specified file and prepare to resume a suspended simulation. Only
the registers and memory of the simulated processor are restored; state information private to the simulator such as
cycle counts is not restored. See “Saving and Restoring the Simulator State” on page 8-8.

rf [couni

Moves the Register Window “forward” (scroll down) through the currently-displayed register set. The Register Win-
dow is scrolledcountlines. If countis omitted, the Register Window scrolls down one windowful less one line, i.e.

A-4 Command Reference Copyright © 2000 Hewlett-Packard Co.

Ski IA-64 Simulator Reference Manual 1.0L

the last line of the old window is displayed as the first line of the new windski. gnly) See “ski Register Window
Commands” on page 5-1.

rb [couni

Moves the Register Window “backward” (scroll up) through the currently-displayed register set. The Register Win-
dow is scrolleccountlines. If countis omitted, the Register Window scrolls up one windowful less one line, i.e. the
first line of the old window is displayed as the last line of the new wind®ki only) See “ski Register Window
Commands” on page 5-1.

rd [filenamé
Dump the Register Window to the screen or to the file giverfilepame See “Register Window Commands” on
page 5-1.

romload filename addresgnapfilg

Load an MS-DOScom -format file for 1A-64, 1A-32, or mixed system-mode simulati@ddressspecifies where to

load the programmapfileprovides Ski with the mapping between program-defined symbols and their addresses and
must specify an ASCII text file exactly compatible with mapfiles produced by the Microsoft “ML” linker. See “How
to Load a Program” on page 6-3.

step [coun]

Executecountinstructions or, if n@ountis specified, one instruction. See “Program Execution” on page 6-5.

step untli expression_without_spaces
Execute instructions until thexpression_without_spacdms a non-zero value. See “Program Execution” on
page 6-5.

save filename

Save the state of a simulated processor in the file givefildnyame Only the registers and memory of the simulated
processor are saved; state information private to the simulator such as cycle counts is not saved. See “Saving and
Restoring the Simulator State” on page 8-8.

sdt
Show the Data Translation Lookaside Buffer (DTLB) (system-mode only). See “System-Mode TLB Simulation” on
page 6-2.

sit
Show Instruction Translation Lookaside Buffer (ITLB) (system-mode only). See “System-Mode TLB Simulation”
on page 6-2.

Sr

ski: Show the system registers (Control Registers, Region Registers, Debug Registers, Protection Key Registers,
Data Breakpoint Registers, Instruction Breakpoint Registers, Performance Monitor Configuration Registers, Perfor-
mance Monitor Data Registers) in the Register Window. See “Register Window Commands” on page 5-1.

xski: Toggle the display of the system registers pane. See “Register Window Commands” on page 5-1.

symlist [filenamé

Write program-defined symbols to the screen or to the file givefillaygame See “Symbol Table Commands” on
page 8-8.

Copyright © 2000 Hewlett-Packard Co. Command Reference A-5

Ski IA-64 Simulator Reference Manual 1.0L

ur

ski: Show the user registers (Predicate Registers, Branch Registers, Application Registers, Instruction Pointer, User
Mask) in the Register Window. See “Register Window Commands” on page 5-1.

xski: Toggle the display of the user registers pane. See “Register Window Commands” on page 5-1.

A-6 Command Reference Copyright © 2000 Hewlett-Packard Co.

Ski IA-64 Simulator Reference Manual 1.0L

B

Register Names

IA-64 registers are fully described in other documents. This appendix provides a list for convenience only. The register
names are documented here as recognized by Ski and, in a few cases, don't exactly match the names in other documents
due to program limitations. For example, the floating point registers must be accessed in three pieces: the mantissa patrt,
the sign part, and the (biased) exponent part. Similarly, the “Not a Thing” bits of the various registers are separate entities
for Ski. Individual bits of complex registers such as fise are documented here as well, corresponding to the names by
which Ski recognizes them.

B.1

al, ah, ax, eax

ar0 - arl27
b0 - b7
bl, bh, bx, ebx

bp, ebp

bsp
bspst
ccv

cl, ch, cx, ecx

cmev
cr0 - crl27

cs

csd

dbrO - dbr15
der

dl, dh, dx, edx

di, edi

ds

dsd

ec

eflags
eflags.ac
eflags.af
eflags.be

eflags.cf

IA-64 Registers

IA-32 Registers: al and ah are byte-wide, ax is al and ah taken together as two bytes, eax is four bytes
wide with ax as the two least significant bytes.

IA-64 Application Registers
IA-64 Branch Registers

IA-32 Registers: bl and bh are byte-wide, bx is bl and bh taken together as two bytes, ebx is four bytes
wide with bx as the two least significant bytes.

IA-32 Base Pointers: bp is two bytes wide, ebp is four bytes wide with bp as the two least significant
bytes.

IA-64 Register Save Engine (RSE) Backing Store Pointer Register
IA-64 Register Save Engine (RSE) Backing Store Pointer Register for memory stores
IA-64 Compare and Exchange Value Register

IA-32 Registers: cl and ch are byte-wide, cx is cl and ch taken together as two bytes, ecx is four bytes
wide with cx as the two least significant bytes.

IA-64 Corrected Machine Check Vector Register
IA-64 Control Registers

IA-32 Code Segment Register

IA-32 Code Segment Register Descriptor

IA-64 Data Breakpoint Registers

IA-64 Default Control Register

IA-32 Registers: dl and dh are byte-wide, dx is dl and dh taken together as two bytes, edx is four bytes
wide with dx as the two least significant bytes.

IA-32 Arithmetic Registers: di is two bytes wide, edi is four bytes wide with di as the two least
significant bytes.

IA-32 Data Segment Register

IA-32 Data Segment Register Descriptor

IA-64 Epilog Count Register

IA-32 Flags Register

IA-32 Alignment Check bit

IA-32 Auxiliary Carry Flag bit, also called the IA-32 Adjust Flag bit
IA-32 Below Equal Flag bit

IA-32 Carry Flag bit

Copyright © 2000 Hewlett-Packard Co.

Register Names B-1

Ski IA-64 Simulator Reference Manual 1.0L

eflags.df
eflags.id
eflags.if
eflags.iopl
eflags.le
eflags.It
eflags.nt
eflags.of
eflags.pf
eflags.rf
eflags.sf
eflags.tf
eflags.vm
eflags.zf
eoi

es

esd

esp

IA-32 Direction Flag bit

IA-32 ID Flag bit

IA-32 Interruption Flag bit
IA-32 1/0O Privilege Level bit
IA-32 Less Equal Flag bit
IA-32 Less Than Flag bit

IA-32 Nested Task bit

IA-32 Overflow Flag bit

IA-32 Parity Flag bit

IA-32 Resume Flag bit

IA-32 Sign Flag bit

IA-32 Trap Flag bit

IA-32 Virtual 8086 Mode bit
IA-32 Zero Flag bit

IA-64 End of Interrupt

IA-32 “Extra” Segment Register
IA-32 “Extra” Segment Register Descriptor

IA-32 four byte Stack Pointer; see “iasp” below

fO.e, fl.e, ... f127.e

IA-64 Floating-point Register exponent parts

fO.m, f1.m, ... f127.m

IA-64 Floating-point Register mantissa parts

fO.s, fl.s, ... f127.s

fpsr
fpsr.traps
fpsr.sfoO
fpsr.sf0.ftz
fpsr.sfO.wre
fpsr.sfO.pc
fpsr.sfO.rc
fpsr.sfO.v
fpsr.sfO.d
fpsr.sf0.z
fpsr.sf0.0
fpsr.sfO.u
fpsr.sfO.i
fpsr.sfl
fpsr.sf2

IA-64 Floating-point Register sign bits

IA-64 Floating-point Status Register

IA-64 FPSR Trap Bits

IA-64 FPSR Status Field 0

IA-64 FPSR Status Field 0, Flush-to-Zero mode bit.

IA-64 FPSR Status Field 0, Widest range exponent mode bit
IA-64 FPSR Status Field 0, Precision control bits

IA-64 FPSR Status Field 0, Rounding control bits

IA-64 FPSR Status Field 0, IEEE Invalid Operation status bit
IA-64 FPSR Status Field 0, Denormal/Unnormal Operand status bit
IA-64 FPSR Status Field O, IEEE Zero Divide status bit
IA-64 FPSR Status Field 0, IEEE Overflow status bit

IA-64 FPSR Status Field 0, IEEE Underflow status bit

IA-64 FPSR Status Field O, IEEE Inexact status bit

IA-64 FPSR Status Field 1

IA-64 FPSR Status Field 2

B-2 Register Names

Copyright © 2000 Hewlett-Packard Co.

Ski IA-64 Simulator Reference Manual 1.0L

fpsr.sf2.pc IA-64 FPSR Status Field 2, Precision control bits

fpsr.sf2.rc IA-64 FPSR Status Field 2, Rounding control bits

fpsr.sf2.v IA-64 FPSR Status Field 2, IEEE Invalid Operation status bit
fpsr.sf2.d IA-64 FPSR Status Field 2, Denormal/Unnormal Operand status bit
fpsr.sf2.z IA-64 FPSR Status Field 2, IEEE Zero Divide status bit

fpsr.sf2.0 IA-64 FPSR Status Field 2, IEEE Overflow status bit

fpsr.sf2.u IA-64 FPSR Status Field 2, IEEE Underflow status bit

fpsr.sf2.i IA-64 FPSR Status Field 2, IEEE Inexact status bit

fpsr.sf3 IA-64 FPSR Status Field 3

fs IA-32 additional extra Segment Register

fsd IA-32 additional extra Segment Register Descriptor

gdtd IA-32 Global Descriptor Table Descriptor

ap IA-64 Global Pointer, a synonym for rl

gp.nat IA-64 Global Pointer Not-a-Thing bit, a synonym for rl.nat

gs IA-32 additional extra Segment Register

gsd IA-32 additional extra Segment Register Descriptor

iasp, esp IA-32 Stack Pointer: iasp is two bytes wide, esp is four bytes wide with iasp as the two least significant

bytes. (The x86 mnemonic for the iasp register is “sp” but that conflicts with the 1A-64 Stack Pointer of
the same name, hence the name change for 1A-32.)

ibrO - ibrl5 IA-64 Instruction Breakpoint Registers

ifa IA-64 Interruption Faulting Address Register
ifs IA-64 Interruption Function State

iha IA-64 Interruption Hash Address

im IA-64 Interruption Immediate Register

iip IA-64 Interruption Instruction Bundle Pointer
iipa IA-64 Interruption Instruction Previous Address
ip IA-64 Instruction Pointer

ipsr IA-64 Interruption Processor Status Register
irr0-irr3 IA-64 Interrupt Request Registers

isr IA-64 Interruption Status Register

itc IA-64 Interval Time Counter

itir IA-64 Interruption TLB Insertion Register

itm IA-64 Interval Timer Match Register

itv IA-64 Interval Timer Vector

iva IA-64 Interrupt Vector Address

ivr IA-64 Interrupt Vector Register

kO - k7 IA-64 Kernel Registers

Ic IA-64 Loop Count Register

Idt IA-32 Local Descriptor Table

Copyright © 2000 Hewlett-Packard Co. Register Names B-3

Ski IA-64 Simulator Reference Manual 1.0L

Idtd IA-32 Local Descriptor Table Descriptor
lid IA-64 Local Interrupt ID

IrrO-lrrl IA-64 Local Redirection Registers

pO0 - p63 IA-64 Predicate Registers

pfs IA-64 Previous Function State

pkrO - pkrl5 IA-64 Protection Key Registers
pmcO - pmcl5 1A-64 Performance Monitor Configuration Registers

pmdO - pmd15 [A-64 Performance Monitor Data Registers

pmv IA-64 Performance Monitoring Vector

psr IA-64 Processor Status Register

psr.ac IA-64 PSR Alignment Check bit

psr.be IA-64 PSR Big-Endian bit

psr.bn IA-64 PSR Register Bank bit

psr.cpl IA-64 PSR Current Privilege Level

psr.da IA-64 PSR Disable Access and Dirty-bit faults bit
psr.db IA-64 PSR Debug Breakpoint fault bit

psr.dd IA-64 PSR Data Debug fault disable bit
psr.dfh IA-64 PSR Disabled Floating-point High bit
psr.dfl IA-64 PSR Disabled Floating-point Low bit
psr.di IA-64 PSR Disable Instruction set transition bit
psr.dt IA-64 PSR Data address Translation bit
psr.ed IA-64 PSR Exception Deferral bit

psr.i IA-64 PSR Interrupt unmask bit

psr.ic IA-64 PSR Interrupt Collection bit

psr.id IA-64 PSR Instruction Debug fault disable bit
psr.is IA-64 PSR Instruction Set bit

psr.it IA-64 PSR Instruction address Translation bit
psr.Ip IA-64 PSR Lower Privilege transfer trap bit
psr.mfh IA-64 PSR Floating-point High modified bit
psr.mfl IA-64 PSR Floating-point Low modified bit
psr.mc IA-64 PSR Machine Check abort mask bit
psr.pk IA-64 PSR Protection Key enable bit

psr.pp IA-64 PSR Privileged Performance monitor enable bit
psr.ri IA-64 PSR Restart Instruction slot number
psr.rt IA-64 PSR Register stack Translation bit

psr.si IA-64 PSR Secure Interval timer bit

psr.sp IA-64 PSR Secure Performance monitors bit
psr.ss IA-64 PSR Single Step enable bit

B-4 Register Names Copyright © 2000 Hewlett-Packard Co.

Ski IA-64 Simulator Reference Manual 1.0L

psr.tb IA-64 PSR Taken Branch trap bit

psr.um IA-64 PSR User Mask bits

psr.up IA-64 PSR User Performance monitor enable bit
pta IA-64 Page Table Address

ro, rl, ... r127 |1A-64 General Registers

ro.nat, ... r127.nat
IA-64 General Register Not-a-Thing bits

rnat IA-64 Register Save Engine (RSE) Not-a-Thing (NaT) Collection Register

rp IA-64 Return Pointer, a synonym for b0

rrO - rr7 IA-64 Region Registers

rrof IA-64 CFM Register Rename Base for floating-point registers

rrbg I1A-64 CFM Register Rename Base for general registers

rrbp IA-64 CFM Register Rename Base for predicate registers

rsc IA-64 Register Stack Configuration Register

Si, esi IA-32 Arithmetic Registers: si is two bytes wide, esi is four bytes wide with si as the two least
significant bytes.

sof IA-64 CFM Size of Stack frame

sol IA-64 CFM Size of Locals Portion of Stack frame

sor IA-64 CFM Size of Rotating Portion of Stack frame

sp IA-64 Stack Pointer, a synonym for r12. For the IA-32 equivalent of the x86 “sp” register, see the
description of “iasp” above.

sp.nat IA-64 Stack Pointer Not-a-Thing bit, a synonym for r12.nat.

Ss IA-32 Stack Segment Register

ssd IA-32 Stack Segment Register Descriptor

tpr IA-64 Task Priority Register

unat IA-64 User Not-a-Thing (NaT) Collection Register

Copyright © 2000 Hewlett-Packard Co. Register Names B-5

Ski IA-64 Simulator Reference Manual 1.0L

B-6 Register Names Copyright © 2000 Hewlett-Packard Co.

Ski IA-64 Simulator Reference Manual 1.0L

C Internal Variable Names

Ski has one combined symbol table for registers and internal variables. (See Section 4.4.2.2, “Registers” and Section
4.4.2.3, “Internal Variables”.) A separate symbol table describes program-defined symbols.

C.l Internal Variables

$cycles$ Number of “virtual cycles” simulated.

$exited$ The value 0 until the simulated program exits. Then the variable takes the value 1.
$heap$ The address of the bottom of the simulated heap.

$insts$ The number of instructions simulated so far.

Copyright © 2000 Hewlett-Packard Co. Internal Variable Names C-1

Ski IA-64 Simulator Reference Manual 1.0L

C-2 Internal Variable Names Copyright © 2000 Hewlett-Packard Co.

Ski IA-64 Simulator Reference Manual 1.0L

D Simulator Status and Error Messages

The following is a description of some of the status and error messages which can be produced by the simulator. “Fault”
and “Trap” messages are usually the result of a program trying to do something that, under Linux, would cause a signal to
be generated.

The “%” constructs are printf() substitutions. Where “%s” appears, a string will be substituted in the error message at
runtime. Where “%lIx” appears, a 64-bit hexadecimal integer will be substituted in the error message at runtime. See the
printf() man page for more information on % substitutions.

All breakpoints deleted
You executed théD command. Ski is confirming that it has deleted all the breakpoints. This is a status message, not
an error message. See “Deleting Program Breakpoints” on page 8-5.

All breakpoints in use
You tried to set a breakpoint but all ten are in use. Usebtheommand to list them and then the or bD commands
to free up some for you to use. See “Setting Program Breakpoints” on page 8-4.

Assignment failed
You tried to use the1, =2, =4, =8, or =s commands to write data to an invalid location. Ski creates new pages of
memory when the simulated program needs them; Ski will not create new pages in response to the assignment com-
mands. See “Changing Registers and Memory with Assignment Commands” on page 8-1.

Bad breakpoint number. (Use 0-9)
You tried to specify a breakpoint but used an invalid specifier. There are ten breakpoints, numbered 0 through 9. See
“Deleting Program Breakpoints” on page 8-5.

Break instruction fault
A non-Ski-breakpoinBREAK instruction was executed. One possible cause is a wild branch to page with all zeroes.
This can only happen for application-mode programs; system-mode programs handle this fault through the interrup-
tion mechanism. See “How Ski Implements Breakpoints” on page 8-6 and “Interruptions” on page 7-1.

Breakpoint already set at that location
You tried to set a breakpoint at an address where there already is a breakpoint. Your request is ignored; Ski will not
set two breakpoints at one address. See “Setting Program Breakpoints” on page 8-4.

Breakpoint #%d at %s (%s) deleted
You used théod command to delete a specific breakpoint. Ski is confirming that it has deleted the breakpoint. This is
a status message, not an error message. See “Deleting Program Breakpoints” on page 8-5.

Breakpoint (IA-64) at %s
An IA-64 breakpoint has been reached. This is a status message, not an error message. See “Program Breakpoints”
on page 8-4.

Breakpoint (IA-32) at %s

An |A-32 breakpoint has been reached. This is a status message, not an error message. See “Setting Program Break-
points” on page 8-4.

Copyright © 2000 Hewlett-Packard Co. Simulator Status and Error Messages D-1

Ski IA-64 Simulator Reference Manual 1.0L

Breakpoint #%d wasn't set

You used théod command to delete a specific breakpoint but that breakpoint doesn’t exist. Did you specify the right
breakpoint? Use thel command to list the breakpoints. See “Deleting Program Breakpoints” on page 8-5 and per-
haps “Listing Program Breakpoints” on page 8-5.

Cannot access registers outside current frame

You tried to use the command to assign a new value to a register that isn't in the set of registers currently visible to
your program. The only registers for which this can occur are the General Regigtgin@ their NaT bits. Ski
faithfully implements IA-64 register stacking and rotation. Look at the most race@iC instruction.

Cannot open file %s (%s) for %s

This generic error message indicates that Ski tried to open a file and failed. The first %s field is replaced with the file-
name you provided, the second %s field is replaced with the filename Ski tried to use after tilde expansion, and the
third %s field is replaced with the mode Ski tried to use, eitherding ", “writing ", or “appending . Check that

you typed the filename correctly and that the directories you specified are accessible. Is there a permissions problem
or a network failure, perhaps? See “Filenames” on page 4-5.

Construct DWARF image: can’t find .debug_info section

You told Ski to load a program. Ski couldn'’t find the part of the executable file containing source code line number
information. As a result, Ski won't be able to show source code in the Program Window. See “Program Window
Commands” on page 5-2.

Could not open %s for reading

You told Ski to load a program but Ski couldn’t open the file you specified. Perhaps you specified a file that is
doesn’t exist or a pathname that includes non-existent or inaccessible directories? See “Program Loading” on
page 6-3.

couldn’t find label %s
A command file tried to use thgoto command but Ski can'’t find the label to which tipgo refers. The %s field is
replaced with the label. Perhaps the label is spelled incorrectly? See “The goto Command and Labels” on page 9-1.

Couldn’t open file ‘%s’. Was ski started in the right directory?

Ski loaded a program to simulate, per your request, and tried to access source code pointed to by that program. But,
for some reason, Ski couldn’t open the specified file. This can happen, for example, if files have been moved after
compilation. See “Summary of Program Window Commands” on page 5-2.

Couldn’t open instruction count file

You startedbski with the-icnt option butbski couldn’t open the file you specified. Perhaps you specified a file
that is write-protected or a pathname that includes non-existent or inaccessible directories? See “Using bski for
Batch Simulations” on page 2-2 and “Command Line Flags” on page 2-4.

Data larger than a %s. Truncated to 0x%olIx

You used thes, =1, =2, =4, or =8 commands to write data to a register or to memory. You provided more data than
would fit, so Ski truncated the excess most significant part away and used the least significant part. The %s field on
the left is how many bytes Ski needed. The %lix field on the right is the value after truncation. See “Changing Reg-
isters and Memory with Assignment Commands” on page 8-1.

Error reading ‘%s’ line: %d

Ski tried to display the source code corresponding to an 1A-64 program you loaded. For some reason, it failed to read
a line from the file represented by the %s field, at the line number represented by the %d field. Perhaps the file per-

D-2 Simulator Status and Error Messages Copyright © 2000 Hewlett-Packard Co.

Ski IA-64 Simulator Reference Manual 1.0L

missions are wrong or a remote file has suddenly become inaccessible? See “The Program Window” on page 3-6 and
the discussion of themcommand in “Program Window Commands” on page 5-2.

Error: unrecognized restore file tag: %s
You are trying to restore a saved simulator state and either the save file is corrupt or Ski is broken. See “Saving and
Restoring the Simulator State” on page 8-8.

Expression aligned to (mod %lld) boundary

You tried to assign an address to a register that requires an address on a specific boundary, but the address you spec-
ified isn’t on that boundary. Ski has adjusted the address for you, but you should check to make sure the adjustment
matches your intent. See “Changing Registers and Memory with Assignment Commands” on page 8-1.

Expression > 47

You tried to assign a value greater than 47 tortipe register.

Expression > 95

You tried to assign a value greater than 95 tartiie orrrbf register.

File size > Memory size

You tried to load an IA-64 program but the library Ski uses to parse ELF files can't make sense of the file. Are you
sure it's an 1A-64 program and not an 1A-32 program, an object file, or something completely different? See “Pro-
gram Loading” on page 6-3.

Following values could not be assigned:

You supplied multiple values in arl, =2, =4, or=8 command. Some of the values overflowed on to the next page of
memory but that page hasn’t been allocated. Ski creates new pages of memory when the simulated program needs
them; Ski will not create new pages in response to assignment commands. See “Changing Registers and Memory
with Assignment Commands” on page 8-1.

FP exception fault

An 1A-64 application-mode program attempted to execute a floating point operation that doesn’t make sense, such as
divide by zero or square root of a negative number. This can only happen for IA-64 application-mode programs; IA-
64 system-mode programs handle this fault through the interruption mechanism. See Chapter 6, “Program Simula-
tion” and “Interruptions” on page 7-1.

FP exception trap

An IA-64 application-mode program caused a floating-point trap. This trap, like all traps, stops simulation of appli-
cation-mode programs. A trap is different from a fault: faults are detected before the machine state is changed, for
example when an attempt is made to divide by zero. Traps are detected after the machine state is changed, for exam-
ple, when numeric overflow occurs. This can only happen for application-mode programs; system-mode programs
handle this trap through the interruption mechanism. See Chapter 6, “Program Simulation” and Chapter 7.1, “Inter-
ruptions”.

goto only allowed inside a command file
You tried to execute thgoto command from the keyboard. The command is only legal within command files. See
“The goto Command and Labels” on page 9-1.

Halting Simulation

Your 1A-64 system-mode program executeBREAK 0 instruction at a place where there is no Ski breakpoint. See
Chapter 8.3.4.1, “How Ski Implements Breakpoints” and “System-Mode |1A-64 Programs” on page 6-2.

Copyright © 2000 Hewlett-Packard Co. Simulator Status and Error Messages D-3

Ski IA-64 Simulator Reference Manual 1.0L

help: Unknown command: %s
You asked Ski to tell you about a particular command but the command you asked for doesn't exist.hEly the
command alone to get a list of all of the commands Ski understands. See “Command Entry” on page 4-1.
IA-32 program terminated

An 1A-32 application-mode program finished executing and invoked an MS-DOS system function to terminate itself.
The function it used doesn’t provide a way for the program to return a completion status. See “Application-Mode IA-
32 Programs” on page 6-1.

IA-32 program terminated with status %d
Your 1A-32 application-mode program finished execution in the normal fashion and invoked an MS-DOS system
function to terminate itself and indicate a completion status. See “Application-Mode 1A-32 Programs” on page 6-1.
Ignored attempt to write a Read-Only symbol
Some registers and symbols recognized by Ski are read-only. You tried to modify one of them. See “Symbolic Argu-
ments” on page 4-4 and “Changing Registers and Memory with Assignment Commands” on page 8-1.
lllegal expression: %s
You used an expression that can't be parsed. Check parentheses, variable names, and the matching of operands and
operators. See “Expressions” on page 4-2.
%s: lllegal number of arguments < %d >:

You passed too few or too many operands with a Ski command. The command appears in the %s field on the left and
the number of operands you passed appears in the %d field on the right. Usgptheommand for information
about the command of interest or see Appendix A, “Command Reference”.

lllegal operation fault

An attempt was made to execute an invalid instruction; probably a wild pointer in a jump table caused a wild branch.
This can only happen for application-mode programs; system-mode programs handle this fault through the interrup-
tion mechanism. See Chapter 6, “Program Simulation”.

lllegal slot field in breakpoint address

You used thésps command to set an I1A-64 breakpoint, but you specified an address in the last four bytes of a bundle.
Because the IA-64 architecture provides for bundle-level, but not instruction-level, addressing, Ski “pretends” that
the first instruction of the bundle is in the first four bytes, the second instruction is in the second four bytes, and the
third instruction is in the third four bytes. You specified a location in the fourth four bytes of a bundle and that isn’t
allowed by Ski. See “Setting Program Breakpoints” on page 8-4 and “How Ski Implements Breakpoints” on
page 8-6.

Interrupting simulation

Ski received a SIGINT signal while simulating, probably because you hit control-C (or whatever key you have con-
figured to interrupt a running program.) This is a status message, not an error message. See “Interruptions” on
page 7-1 and the first few paragraphs of Chapter 9, “Command Files”.

missing command

You used theif expression true_commandalse_commaridcommand. Either you left theue_commandblank
and theexpressiorevaluated to a non-zero value, or you left false_commandblank and theexpressiorevaluated
to zero. See “The if Command” on page 9-2.

D-4 Simulator Status and Error Messages Copyright © 2000 Hewlett-Packard Co.

Ski IA-64 Simulator Reference Manual 1.0L

Missing ELF header

See “File size > Memory size” on page D-3.

Missing file version number

You are trying to restore a saved simulator state and the first non-blank, non-comment line of the file doesn't begin
with “file_ver ", the file version string. Is the file a Ski simulator state save file? See “Saving and Restoring the
Simulator State” on page 8-8.

missing value for option %s

You specified a command line option that requires an argument. See “Command Line Flags” on page 2-4.

More than %d characters in expression: %s

You gave Ski an expression that is too long for it to parse. Try a shorter expression. See “Expressions” on page 4-2.

Nesting overflow
You invoked a command file from within another command file, and another command file from within there, and
again and again... and you did it too much. Do you have an recursive loop, where a command file invokes itself? See
Chapter 9, “Command Files”.

No breakpoints set
You tried to list all breakpoints with thel command but there aren’t any. See “Listing Program Breakpoints” on
page 8-5.

No breakpoints to delete
You tried to delete all breakpoints with th® command but there aren’t any. See “Deleting Program Breakpoints”
on page 8-5.

No previous command
You tried to re-run the previous commandski but you haven't executed any commands yet— there is nothing to re-
run. See “The ski Command Window” on page 3-13.

No such command

You typed a command to Ski that Ski doesn’t understand. Either you mis-typed, or Ski is broken, or the rules that
underpin the basic functioning of our universe have ceased to operate properly. In the first case, try typing your com-
mand correctly; use thehélp ” command or see Appendix A, “Command Reference” to find out what the com-
mands are. In the third case, you're on your own; bring film.

No such user %s

You specified a filename with a leading tilde-{), causing Ski to try to expand the first word into the home directory
for the corresponding user. Ski wasn't able to the find the user. Perhaps you mis-typed the filename or specified a
user that doesn't exist? See “Filenames” on page 4-5.

Non %s-aligned address. Aligned to 0x%lIx

You used the=2, =4, or=8 commands to write data to memory but you specified an improperly-aligned address. The
%s field on the left tells what kind of alignment was needed and the %lIx field on the right is the address that Ski
used. This may not be the address you want! See “Changing Registers and Memory with Assignment Commands”
on page 8-1.

Not an ELF file

Copyright © 2000 Hewlett-Packard Co. Simulator Status and Error Messages D-5

Ski IA-64 Simulator Reference Manual 1.0L

Not an |IA-64 file

See “File size > Memory size” on page D-3.

Nothing to run

No program has been loaded. Use kel , iaload , or romload command, depending on what kind of program
you want to simulate or load an I1A-64 program by naming it on Ski's command line. See “Program Loading” on
page 6-3.

Out of memory

Ski needed to get more memory to run but couldn't get it. You need more virtual memory swap space or you've
found a Ski defect. See your local Linux specialist.

Page not allocated

When Ski loads an IA-64 application-mode program, Ski allocates pages for the fixed-size parts of the program and

allocates a small stack. As the program runs, Ski allows the stack to grow. If the program tries to access a page which
isn't in one of those areas, Ski detects the error and prints the message. The most likely cause is a wild pointer. See
“Application-Mode |A-64 Programs” on page 6-1.

Pager %s not found

You executed &ki command that sends output through a pager and there was a problem. Did you set the PAGER
environment variable to point to a program that’s not reachable through your PATH shell variable? Did you set the
PAGER variable to point to a non-executable program? If your pager is on a remote file system, is there a problem
with accessing that system? Did your pager program return a failure status for some reason? If none of these reasons
is applicable, you may have found a Ski defect. See “Other Windows” on page 3-14.

popen failed

A call to the Linux system routine popen() failed, that is, a -1 was returned from the call. This is unusual and, while
it doesn’t indicate an internal Ski error, it may suggest that your Linux operating system is corrupt, perhaps due to
some other progranski uses popen() when it needs to invoke a pager to display a large amount of text to you, for
example, when you use thelp andsymlist commands. The popen() function might fail if you have the maxi-
mum allowed number of processes running on your computer or if you have run out of swap space.

Privileged operation fault

Your 1A-64 application-mode program tried to execute a privileged instruction. This can only happen for applica-
tion-mode programs; system-mode programs handle this fault through the interruption mechanism. See Chapter 6,
“Program Simulation” and “Interruptions” on page 7-1.

Privileged register fault

Your 1A-64 application-mode program tried to access a privileged register. This can only happen for application-
mode programs; system-mode programs handle this fault through the interruption mechanism. See Chapter 6, “Pro-
gram Simulation” and “Interruptions” on page 7-1.

program exited with status %d

Your 1A-64 program finished execution in the normal fashion. This is a status message, not an error message.

Register NaT Consumption fault

Your 1A-64 application-mode program tried to reference the contents of a register that didn’t contain a valid value.
This can only happen for application-mode programs; system-mode programs handle this fault through the interrup-
tion mechanism. See Chapter 6, “Program Simulation” and “Interruptions” on page 7-1.

D-6 Simulator Status and Error Messages Copyright © 2000 Hewlett-Packard Co.

Ski IA-64 Simulator Reference Manual 1.0L

Reserved register/field fault

Your IA-64 application-mode program tried to access a reserved register or portion of a register. This can only hap-
pen for application-mode programs; system-mode programs handle this fault through the interruption mechanism.
See Chapter 6, “Program Simulation” and “Interruptions” on page 7-1.

screen size is %dx%d -- minimum is %dx%d
ski uses the curses package to create a multi-window interface on a terminal. Curses requires a terminal of the spec-
ified minimum size but your terminal is smaller than that. See “Ski Variations” on page 2-2.

Starting address > ending address

You used theld or pd command to dump data or program code to a file but the starting address you passed is greater
than the ending address. Perhaps you have them reversed? Are you are using symbolic addresses that don't bind to
the locations you think they bind to? See “Program Window Commands” on page 5-2 and “Data Window Com-
mands” on page 5-5.

Stopping at %s due to I1A-32 halt instruction
An |A-32 HALT instruction was reached; simulation has stopped. This is a status message, not an error message. See
“Application-Mode IA-32 Programs” on page 6-1 and “System-Mode |A-32 Programs” on page 6-2.

Stopping at %s due to reserved 1A-32 instruction

An attempt was made to execute an IA-32 instruction whose encoding has been reserved by Intel. Ski recognizes the
encoding but doesn’t know what to do with it. See “Application-Mode IA-32 Programs” on page 6-1 and “System-
Mode IA-32 Programs” on page 6-2.

Stopping at %s due to unimplemented IA-32 instruction
An attempt was made to execute an 1A-32 instruction that isn’t implemented by Ski. See “Application-Mode |A-32
Programs” on page 6-1 and “System-Mode IA-32 Programs” on page 6-2.

Stopping at %s due to unimplemented instruction

Your program tried to execute an IA-64 instruction that isn’t implemented by Ski.

Symbol ‘%s’ not found

You referred to a symbol that Ski doesn’t know about. Did you spell the symbol correctly, with leading underscores
as needed? Is the symbol a C++ mangled name? Have you loaded the right program? See the section “Argument
Specification” on page 4-2, particularly “Symbolic Arguments” on page 4-4.

%s: Too many arguments (> %d)

You passed too many operands with a Ski command. Ski's internal parser can handle a maximum number of argu-
ments (currently 64) and you tried to pass more than that number. This could happen with tRe=4, and=8
assignment commands, tkeal andif commands, and thiead andiaload program loading commands. See
“Changing Registers and Memory with Assignment Commands” on page 8-1, “Evaluating Formulas and Formatting
Data” on page 8-4, “The if Command” on page 9-2, and the section “Program Loading” on page 6-3, particularly
“Creating the argc, argv, and envp Parameters” on page 6-4.

Too many commands in a line (> %d)

You can type multiple commands on a line by separating them with semicolons. But there’s a limit, as shown, to the
number of commands you can do this to... and you exceeded it. See “Command Sequences, Repetition, and Abbrevi-
ation” on page 4-1.

Copyright © 2000 Hewlett-Packard Co. Simulator Status and Error Messages D-7

Ski IA-64 Simulator Reference Manual 1.0L

Unable to open console window

Your system-mode program tried to open a console with the appropriate Simulator System Call but Ski wasn't able
to spawn the corresponding xterm program. First, verify that environment variable DISPLAY is set to the proper
hostnamadisplaynumbestring. If this does not help, perhaps there is no xterm available via your PATH environ-
ment variable? Perhaps you have hit the process limit or used all the pseudo-tty devices on your Linux system? See
“System-Mode IA-64 Programs” on page 6-2.

Unaligned Data fault

An attempt was made to access data on an unnatural boundary. Two-byte quantities must be on addresses evenly
divisible by two; four-byte quantities must be on addresses evenly divisible by four, and so on. See “Misaligned Data
Access Trap” on page 6-3 and “Interruptions” on page 7-1.

Unexpected end of file
You are trying to restore a saved simulator state and either the save file is corrupt or Ski is broken. See “Saving and
Restoring the Simulator State” on page 8-8.

unrecognized option %s
You specified a command line option that Ski doesn’t understand. Different varieties ofs&kj 6ki, and bski)
understand different flags. See “Command Line Flags” on page 2-4.

Unrecognized symbol name: %s

You tried to refer to a symbol in an expression but Ski doesn’t know about that symbol. Perhaps you mis-typed it? Or
perhaps itis a program-defined symbol in a file that wasn’t compiled with debugging symbol generation enabled (the
-g flag on many compilers)? Or perhaps you referred to an IA-64 register using a mnemonic that Ski doesn'’t recog-
nize? See “Symbolic Arguments” on page 4-4, “Symbol Table Commands” on page 8-8, and Appendix B, “Register
Names”.

unsupported DOS int 21 function %02x%02x

Your IA-32 application-mode program tried to invoke an MS-DOS function that Ski doesn’t emulate. The first hexa-
decimal number is the MS-DOS function code and the second number is the sub-function code. See “Application-
Mode IA-32 Programs” on page 6-1 and “MS-DOS Application Environment” on page 7-3.

Unsupported SSC: %d

Your 1A-64 system-mode program invoked a Simulator System Call that Ski doesn’t support. Either your program
has a bug or Ski is broken. See “System-Mode IA-64 Programs” on page 6-2.

unsupported system call %d

Your IA-64 application-mode program tried to invoke an Linux system call that Ski doesn’t emulate. See “Linux
Application Environment” on page 7-1 and “Application-Mode |A-64 Programs” on page 6-1.

Usage: %s [options] [file [args]]

Ski's generic command line help message.

D-8 Simulator Status and Error Messages Copyright © 2000 Hewlett-Packard Co.

	1 Getting Started: A Ski Tutorial
	1.1 The Ski Simulator
	1.2 How to Run an IA-64 Application Program
	1.2.1 Starting xski
	1.2.2 Exiting Ski
	1.2.3 Loading Your Program
	1.2.4 Inspecting Data
	1.2.5 Viewing Data in ASCII
	1.2.6 Looking at Code
	1.2.7 Viewing Source Code Mixed In with Assembly Code
	1.2.8 Controlling Breakpoints
	1.2.9 Running a Program
	1.2.10 Single-stepping a Program
	1.2.11 Changing Registers and Memory
	1.2.12 Getting Help
	1.2.13 Next Steps

	2 Overview
	2.1 Introduction
	2.1.1 Ski’s Strengths
	2.1.2 Ski’s Scope

	2.2 What You Need to Know to Use This Manual
	2.3 Defects and Defect Reporting
	2.4 Ski Variations
	2.4.1 Using bski for Batch Simulations

	2.5 Starting Ski
	2.5.1 Command Line Flags
	2.5.1.1 Summary of Flags

	2.5.2 The XSki File

	2.6 Quitting Ski
	2.6.1 Summary of the Quit Command

	3 Screen Presentation
	3.1 Ski’s Use of Windows
	3.2 The Register Window
	3.2.1 The User Registers Pane
	3.2.2 The General Registers Pane
	3.2.3 The Floating Point Registers Pane
	3.2.4 The System Registers Pane
	3.2.5 The IA-32 Registers Pane

	3.3 Resizing Register Window Panes with xski
	3.4 The Register Window and ski
	3.5 The Program Window
	3.5.1 IA-64 Instruction Display
	3.5.2 IA-32 Instruction Display
	3.5.3 Changing the Range of Locations Shown in the Program Window
	3.5.4 Invalid Code and the Program Window

	3.6 The Data Window
	3.6.1 Changing the Range of Locations Shown in the Data Window
	3.6.2 Invalid Code and the Data Window

	3.7 The Command/Main Window
	3.7.1 The xski Main Window
	3.7.2 The ski Command Window

	3.8 Other Windows

	4 Command Language
	4.1 Command Entry
	4.2 Command Arguments
	4.3 Command Sequences, Repetition, and Abbreviation
	4.4 Argument Specification
	4.4.1 Numeric Arguments
	4.4.1.1 Numbers and Counts
	4.4.1.2 Expressions
	4.4.1.3 Addresses

	4.4.2 Symbolic Arguments
	4.4.2.1 Program-Defined Symbols
	4.4.2.2 Registers
	4.4.2.3 Internal Variables
	4.4.2.4 Labels
	4.4.2.5 Filenames

	4.4.3 Resolving Ambiguous Symbols and Numbers

	5 Screen Manipulation Commands
	5.1 Register Window Commands
	5.1.1 Summary of Register Window Commands
	5.1.1.1 xski Register Window Commands
	5.1.1.2 ski Register Window Commands

	5.2 Program Window Commands
	5.2.1 Summary of Program Window Commands

	5.3 Data Window Commands
	5.3.1 Summary of Data Window Commands

	6 Program Simulation
	6.1 Application-Mode and System-Mode Simulation
	6.2 Ski Support for Application-Mode Programs
	6.2.1 Application-Mode IA-64 Programs
	6.2.2 Application-Mode IA-32 Programs

	6.3 Ski Support for System-Mode Programs
	6.3.1 System-Mode IA-64 Programs
	6.3.2 System-Mode IA-32 Programs
	6.3.3 System-Mode TLB Simulation
	6.3.3.1 Summary of TLB Display Commands

	6.4 Misaligned Data Access Trap
	6.5 Program Loading
	6.5.1 How to Load a Program
	6.5.2 Summary of Program Loading Commands
	6.5.3 Notes about Program Loading
	6.5.3.1 Adding Information after Loading
	6.5.3.2 Creating the argc, argv, and envp Parameters

	6.6 Program Execution
	6.6.1 Summary of Program Execution Commands

	7 Linux and MS-DOS ABI Emulation
	7.1 Interruptions
	7.2 Linux Application Environment
	7.3 MS-DOS Application Environment
	7.4 Program I/O

	8 Debugging
	8.1 Changing Registers and Memory with Assignment Commands
	8.1.1 Summary of Assignment Commands
	8.1.2 Examples of Assignment Commands
	8.1.3 Notes on Assignment
	8.1.3.1 Address Alignment
	8.1.3.2 Bit-encoded Registers
	8.1.3.3 Page Allocation

	8.2 Evaluating Formulas and Formatting Data
	8.2.1 Summary of The eval Command

	8.3 Program Breakpoints
	8.3.1 Setting Program Breakpoints
	8.3.2 Deleting Program Breakpoints
	8.3.3 Listing Program Breakpoints
	8.3.4 Notes on Program Breakpoints
	8.3.4.1 How Ski Implements Breakpoints
	8.3.4.2 Unexpected Breakpoints

	8.3.5 Summary of Program Breakpoint Commands

	8.4 Data Breakpoints
	8.4.1 Setting Data Breakpoints
	8.4.2 Deleting Data Breakpoints
	8.4.3 Listing Data Breakpoints
	8.4.4 Summary of Data Breakpoint Commands

	8.5 Dumping Registers and Memory to a File
	8.6 Saving and Restoring the Simulator State
	8.6.1 Summary of Save and Restore Commands

	8.7 Symbol Table Commands
	8.7.1 Summary of Symbol Commands

	9 Command Files
	9.1 Initialization File
	9.2 Labels and Control Flow in Command Files
	9.2.1 The goto Command and Labels
	9.2.2 The if Command

	9.3 Comments in Command Files
	9.4 An Example Command File
	9.5 Summary of Command File Commands

	A Command Reference
	B Register Names
	B.1 IA-64 Registers

	C Internal Variable Names
	C.1 Internal Variables

	D Simulator Status and Error Messages

