
Compaq TP Desktop Connector
for ACMS
Client Services Reference Manual
Order Number: AA–PVNFG–TE

May 2002

This manual describes the services and commands needed to create and
maintain TP Desktop Connector client programs that use the portable API.

Revision Update Information: This is a revised manual.

Operating System: Compaq OpenVMS VAX
Compaq OpenVMS Alpha

Software Version: Compaq TP Desktop Connector
for ACMS Version 3.2

Compaq Computer Corporation
Houston, Texas

© 2002 Compaq Information Technologies Group, L.P.

Compaq, the Compaq logo, ACMS, ACMS Desktop, ACMSxp, DECnet, the DIGITAL logo,
OpenVMS, and VMScluster are trademarks of Compaq Information Technologies Group, L.P. in
the U.S. and/or other countries.

Microsoft, Windows, Windows NT, and Visual C++ are trademarks of Microsoft Corporation in
the U.S. and/or other countries.

Java and all Java-based marks are trademarks or registered trademarks of Sun Microsystems,
Inc., in the U.S. and other countries.

All other product names mentioned herein may be trademarks of their respective companies.

Confidential computer software. Valid license from Compaq required for possession, use, or
copying. Consistent with FAR 12.211 and 12.212, Commercial Computer Software, Computer
Software Documentation, and Technical Data for Commercial Items are licensed to the U.S.
Government under vendor’s standard commercial license.

Compaq shall not be liable for technical or editorial errors or omissions contained herein. The
information in this document is provided "as is" without warranty of any kind and is subject
to change without notice. The warranties for Compaq products are set forth in the express
limited warranty statements accompanying such products. Nothing herein should be construed
as constituting an additional warranty.

Contents

Preface . vii

1 Service Format

1.1 Routine Names . 1–1
1.2 Format . 1–1
1.3 Parameters . 1–1
1.3.1 Type Entry . 1–2
1.3.2 Access . 1–3
1.3.3 Mechanism . 1–3
1.4 Return Status . 1–4
1.5 Session Environments . 1–4

2 TP Desktop Connector Portable API Client Services

2.1 Summary of Portable API Client Services 2–1
2.2 Parameter Memory Allocation . 2–2
2.3 Nonblocking Service Usage . 2–2
2.3.1 Nonblocking and Blocking Restriction 2–3
2.3.2 Completion Routine Format . 2–3
2.4 Workspace Data Structures . 2–4
2.4.1 ACMSDI_WORKSPACE Structure and Initialization

Macro . 2–4
2.4.2 ACMSDI_WORKSPACE_OPT Structure 2–6
2.4.3 ACMSDI_WORKSPACE_BIND Structure 2–7
2.4.4 ACMSDI_FORM_RECORD_BIND Structure 2–7
2.5 ACMSDI_CALL_OPTION Union Structure 2–8
2.5.1 ACMSDI_OPTION Array . 2–10
2.6 acmsdi_call_task . 2–13
2.7 acmsdi_cancel . 2–18
2.8 acmsdi_complete_pp . 2–21
2.9 acmsdi_dispatch_message . 2–23
2.10 acmsdi_return_pointer . 2–25

iii

2.11 acmsdi_sign_in . 2–26
2.12 acmsdi_sign_out . 2–29

3 Portable API Presentation Procedures

3.1 Summary of Portable API Presentation Procedures 3–1
3.1.1 Return Status Values Expected from Presentation

Procedures . 3–2
3.1.2 ACMSDI_FORM_RECORD Structure and Macro Call 3–3
3.1.3 Prototypes and Code for Presentation Procedures and

Version Routines . 3–3
3.2 Parameter Memory Allocation . 3–3
3.3 Blocking and Nonblocking Usage . 3–4
3.3.1 Presentation Procedures in a Nonblocking Environment 3–4
3.3.2 Nonblocking and Blocking Restriction 3–4
3.4 acmsdi_disable . 3–5
3.5 acmsdi_enable . 3–6
3.6 acmsdi_read_msg . 3–9
3.7 acmsdi_receive . 3–11
3.8 acmsdi_request . 3–14
3.9 acmsdi_send . 3–16
3.10 acmsdi_transceive . 3–19
3.11 acmsdi_write_msg . 3–23
3.12 Version-Checking Routines . 3–25
3.12.1 acmsdi_check_version . 3–25
3.12.2 acmsdi_get_version . 3–27

4 Forced Nonblocking Client Services

4.1 Summary of Forced Nonblocking Procedures 4–1
4.1.1 ACMSDI_FORM_RECORD_BIND Structure 4–2
4.1.2 ACMSDI_WORKSPACE_BIND Structure 4–3
4.2 acmsdi_complete_call . 4–4
4.3 acmsdi_bind_enable_args . 4–7
4.4 acmsdi_bind_msg . 4–10
4.5 acmsdi_bind_receive_args . 4–13
4.6 acmsdi_bind_receive_recs . 4–15
4.7 acmsdi_bind_request_args . 4–17
4.8 acmsdi_bind_request_wksps . 4–19
4.9 acmsdi_bind_send_args . 4–21
4.10 acmsdi_bind_send_recs . 4–23
4.11 acmsdi_bind_session_id . 4–25
4.12 acmsdi_bind_transceive_args . 4–27

iv

4.13 acmsdi_poll . 4–30

5 System Management Service on OpenVMS

5.1 ACMSDI$GET_SUBMITTER_INFO . 5–2

6 Data Compression Monitor Commands

6.1 EXIT . 6–2
6.2 HELP . 6–3
6.3 LIST . 6–4
6.4 RENEW . 6–9
6.5 SELECT . 6–10
6.6 SET . 6–13
6.7 SHOW . 6–15

A Compaq ACMS System Status Values

Index

Examples

2–1 Workspace Structure Definition and Initialization 2–5
2–2 Passing Workspaces to a Procedure . 2–5
2–3 ACMSDI_WORKSPACE_OPT Type Definition 2–6
2–4 Passing Two Workspaces . 2–6
2–5 Initializing an Options List . 2–11
2–6 Dynamically Specifying a TCP/IP Port Identifier 2–12
3–1 Form Record Definition and Initialization Macro 3–3
4–1 Form Record Definition . 4–3
4–2 Workspace Structure Definition . 4–3

v

Figures

5–1 Submitter Item Descriptor Format . 5–3

Tables

1–1 Services Description Parameters . 1–1
1–2 Parameter Data Types . 1–2
1–3 Called Routine Access Methods . 1–3
1–4 Parameter-Passing Mechanisms . 1–4
1–5 Matrix of Services and Environments 1–5
2–1 Summary of Portable API Client Services 2–1
2–2 acmsdi_call_task Return Status Values 2–16
2–3 acmsdi_cancel Return Status Values 2–20
2–4 acmsdi_complete_pp Return Status Values 2–22
2–5 acmsdi_dispatch_message Return Status Values 2–23
2–6 acmsdi_sign_in Return Status Values 2–28
2–7 acmsdi_sign_out Return Status Values 2–30
3–1 Summary of Portable API Presentation Procedures 3–1
4–1 Summary of Forced Nonblocking Procedures 4–1
4–2 acmsdi_complete_call Return Status Values 4–6
4–3 acmsdi_bind_enable_args Return Status Values 4–9
4–4 acmsdi_bind_msg Return Status Values 4–12
4–5 acmsdi_bind_receive_args Return Status Values 4–14
4–6 acmsdi_bind_receive_recs Return Status Values 4–16
4–7 acmsdi_bind_request_args Return Status Values 4–18
4–8 acmsdi_bind_request_wksps Return Status Values 4–20
4–9 acmsdi_bind_send_args Return Status Values 4–22
4–10 acmsdi_bind_send_recs Return Status Values 4–24
4–11 acmsdi_bind_session_id Return Status Values 4–26
4–12 acmsdi_bind_transceive_args Return Status Values 4–29
4–13 acmsdi_poll Return Status Values . 4–31
5–1 Submitter Information Item Codes . 5–3
5–2 ACMSDI$GET_SUBMITTER_INFO Return Status

Values . 5–6
A–1 ACMS System Status Values . A–1

vi

Preface

This manual provides reference information for the TP Desktop Connector
client services, formerly known as the ACMS Desktop Portable API.

Intended Audience
This guide is intended for application programmers, application designers, and
system managers.

Manual Structure
This manual has the following structure:

Chapter Description

Chapter 1 Explains the format of the reference information.

Chapters 2, 3, 4,
and 5

Contain the reference information on TP Desktop Connector client
services, presentation procedures, action routines, and the Compaq
OpenVMS based system management service.

Chapter 6 Lists the data compression monitor commands.

Appendix A Lists the Compaq ACMS system status values that can be returned
in the err2 parameter.

Related Documents
For information on developing Compaq ACMS applications, refer to the
following manuals:

• Compaq TP Desktop Connector for ACMS Client Application
Programming Guide

Provides information for designing, coding, and implementing a TP Desktop
Connector solution.

vii

• Compaq TP Desktop Connector for ACMS Installation Guide

Provides the steps needed to install a TP Desktop Connector gateway on an
OpenVMS system and the TP Desktop Connector software on the desktop
client system.

• Compaq TP Desktop Connector for ACMS Gateway Management Guide

Contains information about the system management and administration
of the TP Desktop Connector gateway. It also includes information on the
methodology of the use of network transports.

• Compaq TP Desktop Connector for ACMS Getting Started

Provides a high-level discussion and examples of the activities to develop,
install, and run a complete application.

If you are new to programming with ACMS software, Compaq recommends
reading the following books before using the Compaq TP Desktop Connector for
ACMS product:

• Compaq ACMS for OpenVMS Writing Applications

Describes procedures to follow using the Application Development Utility
(ADU).

• Compaq ACMS for OpenVMS Writing Server Procedures

Describes how to write and debug procedures for ACMS applications. Also
supplies reference information for application and system programming
services.

For additional information on ACMS software, refer to the following manuals:

• Compaq ACMS for OpenVMS Introduction

Describes basic concepts and terms concerning the ACMS environment.

• Compaq ACMS for OpenVMS ADU Reference Manual

Describes the details of the syntax for the definitions you create and the
commands you use to build the run-time components.

For information on OpenVMS programming tools, refer to this document:

• Using DECset

Describes the OpenVMS programming environment, provides helpful hints
about conducting a software project, and shows a case study of DECset
tools. Provided with the DECset documentation set.

The Compaq ACMS documentation also describes how you can use the
DECset tools to create an effective development environment.

viii

Conventions
This guide uses the following conventions and symbols:

TP Desktop Connector Refers to the Compaq TP Desktop Connector for ACMS
software.

User Input In examples, user input is highlighted with bold type.

$ The dollar sign indicates a generic command line prompt.
This prompt may be different on your system.

Return A key name in a box indicates that you press that key on
the keyboard.

Ctrl/x Press the Ctrl (control) key and hold it down while pressing
the specified key (indicated here by x).

WORD Uppercase text indicates OpenVMS data types, commands,
keywords, logical names, and routines or services; C files
and data structures; Microsoft Windows data structures; or
HyperCard data types.

word In format descriptions, lowercase words indicate parame-
ters, variables, services, or procedures.

ix

italics Italics are used for emphasis and for parameters in text.
Titles of manuals are also italicized.

[] In format descriptions, square brackets surround a choice of
options; select none, one, several, or all of the choices.

.

.

.
A vertical ellipsis in an example means that information not
directly related to the example has been omitted.

Windows When used alone, Windows indicates any supported member
of the family of Microsoft Windows operating systems.
Where necessary, specific Windows operating systems are
mentioned. For a list of Microsoft Windows operating
systems supported by the TP Desktop Connector product,
see the product’s Software Product Description (SPD).

x

1
Service Format

This chapter describes the format and elements of the service descriptions
provided in following chapters. This chapter also provides a list of the services
and the appropriate session environments in which each service may be used.

1.1 Routine Names
The TP Desktop Connector service names and OpenVMS action routines are
shown in C-language format. The OpenVMS system management services are
shown in the OpenVMS services format.

1.2 Format
The format section describes the C functions as they are declared for the
portable API in the include file ACMSDI.H in the ACMSDI$COMMON
directory.

Square brackets ([]) indicate optional parameters in the call.

1.3 Parameters
This section contains details about each parameter listed in the format section.
Parameters appear in the order in which they are shown in the format. The
format shown in Table 1–1 describes each parameter.

Table 1–1 Services Description Parameters

Name Description

Type Data type of the parameter

Access Method by which the called routine accesses the parameter

Mechanism Method by which a parameter is passed to the called routine

The parameters section additionally contains a sentence or two describing the
purpose of the parameter.

Service Format 1–1

1.3.1 Type Entry
Table 1–2 lists the C-language data types used in the TP Desktop Connector
services.

Table 1–2 Parameter Data Types

Data Type Description

ACMSDI_CALL_ID Identification returned by the acmsdi_call_task
service

ACMSDI_FORM_RECORD Structure defined in the ACMSDI.H include file (see
Section 3.1.2)

ACMSDI_FORM_RECORD_
BIND

Structure defined in the ACMSDI.H and
ACMSDI.BAS include files (see Section 4.1.1)

ACMSDI_FORMS_SESSION_ID Structure defined in the ACMSDI.H include file (see
Section 3.5)

ACMSDI_OPTION Union to specify sign-in options (see Section 2.11)

ACMSDI_CALL_OPTIONS Union to specify call task options

ACMSDI_SUBMITTER_ID Structure defined in the ACMSDI.H include file (see
Section 2.11)

ACMSDI_WORKSPACE Array of structures defined in the ACMSDI.H
include file to pass workspaces between the desktop
system and the TP Desktop Connector gateway (see
Section 2.4)

ACMSDI_WORKSPACE_BIND Structure defined in the ACMSDI.H and
ACMSDI.BAS include files (see Section 4.1.2)

ACMSDI_WORKSPACE_OPT Array of structures defined in the ACMSDI.H
include file to pass unidirectional workspaces
between the desktop system and the TP Desktop
Connector server

char * Array of unsigned 8-bit integers

character string descriptor Address of an OpenVMS string descriptor pointing
to the character string to be passed

function address Address of a function that complies with the
prototype in ACMSDI.H for the completion routine

int 32-bit signed integer

long Synonym for long int

long int 32-bit signed integer

(continued on next page)

1–2 Service Format

Table 1–2 (Cont.) Parameter Data Types

Data Type Description

longword 32-bit unsigned integer

ptr Longword pointer to data buffer

short Synonym for short int

short int 16-bit signed integer

unsigned long int 32-bit unsigned integer

void * Pointer to object of unknown type

1.3.2 Access
Access describes the way in which the called routine accesses the data specified
by the parameter. The access methods are described in Table 1–3.

Table 1–3 Called Routine Access Methods

Access Method Description

Read Data needed by the called routine to perform its operation is read
but not returned.

Write Data that the called routine returns to the calling routine is written
into a location accessible to the calling routine.

Modify Data is both read and returned by the called routine; input data
specified by the parameter is overwritten.

1.3.3 Mechanism
The parameter-passing mechanism is the way in which a parameter specifies
the data to be used by the called routine. The passing mechanisms are
described in Table 1–4.

Service Format 1–3

Table 1–4 Parameter-Passing Mechanisms

Mechanism Description

By value The parameter contains a copy of the data to be used by the routine.

By reference The parameter contains the address of the data to be used by
the routine. The parameter is a pointer to the data. Because C
supports only call by value, write parameters other than arrays
and structures must be passed as pointers. References to names
of arrays and structures are converted by the compiler to pointer
expressions.

For information on whether the caller or the called routine allocates memory,
see the discussions of the individual platforms.

1.4 Return Status
Each service returns a status value defined as follows:

Platform Value

Windows long int

OpenVMS long int

Tru64 UNIX long int

Only the status codes defined in the related reference sections are valid in the
TP Desktop Connector client services. The definitions for the return status
values are in include files as follows:

Type of Services Include File

Portable client services ACMSDI$COMMON:ACMSDI.H

1.5 Session Environments
Client services can be used in three different session environments, blocking,
nonblocking, and forced nonblocking. In a blocking environment, service
routines are completed in one procedure. In a nonblocking environment,
service routines return control to the desktop client program as soon as a
request is sent and then call the appropriate completion routine when the
request is completed or call the appropriate presentation procedure when an
exchange step is detected.

1–4 Service Format

In a forced nonblocking environment, service routines provide a method of
polling that is used to determine the type of message sent from the back-end
server. This message type may then be used to determine the appropriate
action (for example, process the call completion or exchange step). The forced
nonblocking software provides additional routines to access call completion and
exchange step arguments. These session environments are explained in more
depth in Chapter 2 and in Compaq TP Desktop Connector for ACMS Client
Application Programming Guide.

Table 1–5 lists the services and indicates the session environments in which
you can use each call.

Table 1–5 Matrix of Services and Environments

Service Availability within Environment

Blocking Nonblocking Forced Nonblocking

acmsdi_call_task
See description in Section 2.6

yes yes yes

acmsdi_cancel
See description in Section 2.7

- yes yes

acmsdi_complete_pp
See description in Section 2.8

- yes yes

acmsdi_dispatch_message
See description in Section 2.9

- yes -

acmsdi_return_pointer
See description in Section 2.10

yes - yes

acmsdi_sign_in
See description in Section 2.11

yes yes yes

acmsdi_sign_out
See description in Section 2.12

yes yes yes

acmsdi_poll
See description in Section 4.13

- - yes

acmsdi_complete_call
See description in Section 4.2

- - yes

acmsdi_bind_enable_args
See description in Section 4.3

- - yes

acmsdi_bind_send_args
See description in Section 4.9

- - yes

(continued on next page)

Service Format 1–5

Table 1–5 (Cont.) Matrix of Services and Environments

Service Availability within Environment

Blocking Nonblocking Forced Nonblocking

acmsdi_bind_receive_args
See description in Section 4.5

- - yes

acmsdi_bind_transceive_args
See description in Section 4.12

- - yes

acmsdi_bind_msg
See description in Section 4.4

- - yes

acmsdi_bind_request_args
See description in Section 4.7

- - yes

acmsdi_bind_session_id
See description in Section 4.11

- - yes

acmsdi_bind_send_recs
See description in Section 4.10

- - yes

acmsdi_bind_receive_recs
See description in Section 4.6

- - yes

acmsdi_bind_request_wksps
See description in Section 4.8

- - yes

Callbacks

acmsdi_disable
See description in Section 3.4

- yes -

acmsdi_enable
See description in Section 3.5

- yes -

acmsdi_read_msg
See description in Section 3.6

- yes -

acmsdi_receive
See description in Section 3.7

- yes -

acmsdi_request
See description in Section 3.8

- yes -

acmsdi_send
See description in Section 3.9

- yes -

(continued on next page)

1–6 Service Format

Table 1–5 (Cont.) Matrix of Services and Environments

Service Availability within Environment

Blocking Nonblocking Forced Nonblocking

Callbacks

acmsdi_transceive
See description in Section 3.10

- yes -

acmsdi_write_msg
See description in Section 3.11

- yes -

acmsdi_check_version
See description in Section 3.12.1

- yes -

acmsdi_get_version(back end)
See description in Section 3.12.2

- yes yes

Service Format 1–7

2
TP Desktop Connector Portable API Client

Services

This chapter describes the Compaq TP Desktop Connector portable API client
services available on the following desktop systems:

• Microsoft Windows

• Compaq OpenVMS

• Compaq Tru64 UNIX

2.1 Summary of Portable API Client Services
Similar to the Compaq ACMS Service Interface (SI) routines provided on the
Compaq OpenVMS host, the TP Desktop Connector portable API client services
allow you to write a desktop client program on desktop systems without
extensive knowledge of network communications. Table 2–1 summarizes the
TP Desktop Connector portable API client services.

Table 2–1 Summary of Portable API Client Services

Service Description

acmsdi_call_task Sends a request to the TP Desktop Connector gateway
to start a task in a ACMS application. The TP Desktop
Connector client service is either blocking or nonblocking.
Exchange step processing during the task is handled by
the TP Desktop Connector gateway calling customer-
written generic presentation procedures in the desktop
client program.

acmsdi_cancel Used by nonblocking services only. Called by a desktop
application to cancel a currently active ACMS task.

(continued on next page)

TP Desktop Connector Portable API Client Services 2–1

Table 2–1 (Cont.) Summary of Portable API Client Services

Service Description

acmsdi_complete_pp Used by nonblocking environments only. Sends a response
from a presentation procedure request to the TP Desktop
Connector gateway.

acmsdi_dispatch_
message

Used by nonblocking environments only. Checks for and
processes messages from the TP Desktop Connector
gateway. If no messages have been received from the
gateway, acmsdi_dispatch_message returns immediately.

acmsdi_return_pointer Used by client programs written in Microsoft Visual Basic
to create the workspace array for ACMS_CALL_TASK.
Also used in the forced nonblocking environment to obtain
reference pointers.

acmsdi_sign_in Requests the TP Desktop Connector gateway to sign a user
running a desktop client program in to a ACMS system.

acmsdi_sign_out Requests the TP Desktop Connector gateway to sign a
desktop client program out of a ACMS system.

These calls use the C-language argument-passing standards. Character strings
are NULL-terminated and passed by reference. Workspaces are passed as
structures composed of a length and a pointer field.

2.2 Parameter Memory Allocation
The caller of a TP Desktop Connector client service or a presentation procedure
is responsible for allocating the memory for the parameters of that routine.
For calls to the TP Desktop Connector client services, the desktop client
program must allocate the memory for all parameters passed in, for example,
submitter_id and call_context. For calls to the presentation procedures, the
TP Desktop Connector client services allocate memory for all the parameters
passed and for all workspaces.

2.3 Nonblocking Service Usage
The acmsdi_sign_in, acmsdi_call_task, and acmsdi_sign_out services can be
either blocking, nonblocking, or forced nonblocking. If the desktop client
program supplies the completion_routine parameter to the TP Desktop
Connector client service, the service behaves in the nonblocking fashion. The
TP Desktop Connector client service returns control to the desktop client
program as soon as a request is sent to the TP Desktop Connector gateway.
If the request is sent to the gateway successfully, the TP Desktop Connector

2–2 TP Desktop Connector Portable API Client Services

client service returns the ACMSDI_PENDING status. If a status other than
ACMSDI_PENDING is returned, the completion routine is not called.

If nonblocking calls are active, use the acmsdi_dispatch_message service to
poll for responses from the TP Desktop Connector gateway. When a response
is received, acmsdi_dispatch_message calls the appropriate customer-supplied
completion routine. If the desktop client program supplies the completion_
status parameter on the initial TP Desktop Connector client service call,
the TP Desktop Connector client services set the completion_status to the
final completion status for the service and immediately call the completion
routine. See Compaq TP Desktop Connector for ACMS Client Application
Programming Guide for descriptions and examples.

The forced nonblocking services extend the portable API to support both
exchange steps and nonblocking execution of task calls for development tools
that do not support pointer data types or whose memory management routines
relocate data. You can specify a forced nonblocking session with the acmsdi_
sign_in service by using the ACMSDI_OPTION, ACMSDI_OPT_NONBLK. Do
not specify a completion routine in a forced nonblocking session as this will
result in an error. See Chapter 4 for more information.

2.3.1 Nonblocking and Blocking Restriction
All calls using the same desktop client program and TP Desktop Connector
gateway connection must be either blocking, nonblocking, or forced
nonblocking. These types of service calls cannot be mixed for a desktop
client program and TP Desktop Connector gateway pair. See Table 1–5 for
the list of service calls available for each type of session. If a desktop client
program connects to two different TP Desktop Connector gateways, it can
mix service call types, using blocking calls to interact with one TP Desktop
Connector gateway and nonblocking calls to interact with the other TP Desktop
Connector gateway.

2.3.2 Completion Routine Format
For nonblocking service requests, the acmsdi_dispatch_message service calls
the customer-supplied completion routine when a response is received from
the TP Desktop Connector gateway. The completion routine has the following
format:

void completion_routine (call_context)

Parameters

TP Desktop Connector Portable API Client Services 2–3

call_context
Type: void *
Access: read
Mechanism: by value
Supplies application-specific context to the completion routine. If specified on
acmsdi_call_task, acmsdi_sign_in, acmsdi_cancel, or acmsdi_sign_out service,
the call_context is passed by the TP Desktop Connector client services to the
completion routine.

Return Status
The customer-supplied completion routine does not return a status value.

2.4 Workspace Data Structures
This section describes the following workspace data structures:

ACMSDI_WORKSPACE
ACMSDI_WORKSPACE_OPT
ACMSDI_WORKSPACE_BIND
ACMSDI_FORM_RECORD_BIND

2.4.1 ACMSDI_WORKSPACE Structure and Initialization Macro
Defined in the ACMSDI.H file, the ACMSDI_WORKSPACE type declares
workspaces passed to tasks using the acmsdi_call_task service and workspaces
passed from tasks to acmsdi_request presentation procedures.

The code in Example 2–1 defines the ACMSDI_WORKSPACE type and
an ACMSDI_INIT_WORKSPACE macro used to initialize the workspace
structure.

2–4 TP Desktop Connector Portable API Client Services

Example 2–1 Workspace Structure Definition and Initialization

typedef struct {
unsigned int length; /** length of workspace **/
void *data; /** pointer to workspace **/

} ACMSDI_WORKSPACE;
.
.
.

#define ACMSDI_INIT_WORKSPACE(_wksp, _rec)\
{\

_wksp.length = sizeof(_rec);\
_wksp.record = &(_rec);\

}

To pass more than one workspace to a procedure, use an array of the ACMSDI_
WORKSPACE structures. Example 2–2 passes two workspaces.

Example 2–2 Passing Workspaces to a Procedure

ACMSDI_WORKSPACE wksp_array[2];

struct {
char ctrl_key[5];
char error_message[80];

} control_wksp;

struct {
int id_number;
char first_name[15];
char last_name[25];

} employee_record;

ACMSDI_INIT_WORKSPACE (wksp_array[0], control_wksp);
ACMSDI_INIT_WORKSPACE (wksp_array[1], employee_record);

The array wksp_array is defined with two elements of type ACMSDI_
WORKSPACE. The structure definitions control_wksp and employee_record
define the elements of the array. The two macro ACMSDI_INIT_WORKSPACE
calls initialize the array of structures.

TP Desktop Connector Portable API Client Services 2–5

2.4.2 ACMSDI_WORKSPACE_OPT Structure
The ACMSDI.H file contains the definition of the ACMSDI_WORKSPACE_OPT
type you use to declare workspaces passed to tasks using the ACMSDI_CALL_
TASK service. You can use ACMSDI_WORKSPACE_OPT instead of ACMSDI_
WORKSPACE. Only task calls that use the ACMSDI_TASK_OPTIONS flag to
indicate unidirectional workspaces can use this structure. Example 2–3 shows
the ACMSDI_WORKSPACE_OPT type definition and the definition of a macro
to initialize the workspace structure.

Example 2–3 ACMSDI_WORKSPACE_OPT Type Definition

#define ACMSDI_ACCESS_READ ’1’ /* read-only access */
#define ACMSDI_ACCESS_WRITE ’2’ /* write-only access */
#define ACMSDI_ACCESS_MODIFY ’3’ /* modify (read and write) */

.

.

.
typedef char ACMSDI_ACCESS_TYPE;
typedef struct {

unsigned int length;
ACMSDI_ACCESS_TYPE access;
void *data;

} ACMSDI_WORKSPACE_OPT;
.
.
.

#define ACMSDI_INIT_WORKSPACE_OPT(_wksp, _rec, _access)\
{\

_wksp.length = sizeof(_rec);\
_wksp.access = _access;\
_wksp.data = &(_rec);\

}

To pass more than one workspace to a procedure, use an array of the type
ACMSDI_WORKSPACE_OPT. Example 2–4 passes two workspaces.

Example 2–4 Passing Two Workspaces

ACMSDI_WORKSPACE_OPT wksp_array[2];

struct {
char ctrl_key[5];
char error_message[80];

} control_wksp;

(continued on next page)

2–6 TP Desktop Connector Portable API Client Services

Example 2–4 (Cont.) Passing Two Workspaces

struct {
int id_number;
char first_name[15];
char last_name[25];

} employee_record;

ACMSDI_INIT_WORKSPACE_OPT (wksp_array[0], control_wksp, ACMSDI_ACCESS_READ);
ACMSDI_INIT_WORKSPACE_OPT (wksp_array[1], employee_record, ACMSDI_ACCESS_WRITE);

2.4.3 ACMSDI_WORKSPACE_BIND Structure
The ACMSDI_WORKSPACE_BIND structure locates workspace buffers
and specifies the sizes of workspaces during acmsdi_bind_request_wksps
operations. Like the ACMSDI_FORM_RECORD_BIND structure, the
ACMSDI_WORKSPACE_BIND structure contains a field where the length
of the TDMS exchange step workspace is returned. If the length differs from
the buffer length, TP Desktop Connector truncates the resultant workspaces or
buffers are not completely filled.

The following example shows the C language definition of this structure as it
appears in the acmsdi.h file:

typedef struct {
unsigned int buffer_len; /* length of caller’s buffer */
unsigned int wksp_len; /* actual length of the workspace */
void *data;

} ACMSDI_WORKSPACE_BIND;

2.4.4 ACMSDI_FORM_RECORD_BIND Structure
The ACMSDI_FORM_RECORD_BIND structure locates form record buffers
and specifies their sizes during acmsdi_bind_send_recs and acmsdi_bind_
receive_recs operations. ACMSDI_FORM_RECORD_BIND serves the same
purpose as ACMSDI_FORM_RECORD with one additional feature. It contains
an additional field, rec_len, with which the TP Desktop Connector client
services return the actual length of the form record as it is returned from
the back-end application. You can compare this length against the client
application buffer length to see if the buffer is large enough, too large, or
exactly the right size to contain the form record. If the buffer size is too small,
the form record is truncated to fit the buffer. If the buffer size is too large, the
buffer is not completely filled.

TP Desktop Connector Portable API Client Services 2–7

You can use the ACMSDI_FORM_RECORD_BIND structure to locate send
control text and receive control text buffers. Both acmsdi_bind_send_args and
acmsdi_bind_receive_args services contain arguments to specify whether or not
to transfer control text. If you specify to transfer control text, the following
rules apply:

• ACMSDI_FORM_RECORD_BIND structure for the control text must be
the first one in the array of such structures passed on the call.

• After the call completes, the record length field (rec_len) contains the send
control text count or the receive control text count instead of the length of
the record.

The following example shows the C language definition of this structure as it
appears in the acmsdi.h file:

typedef struct {
unsigned int buffer_len; /* length of caller’s record buffer */
unsigned int rec_len; /* actual length of the form record */
void *data_record;
unsigned int shadow_buffer_len; /* length of caller’s shadow buffer */
unsigned int shadow_rec_len; /* actual length of shadow record */
void *shadow_record;

} ACMSDI_FORM_RECORD_BIND;

2.5 ACMSDI_CALL_OPTION Union Structure
ACMSDI_CALL_OPTION union is a parameter that is passed to the ACMSDI_
CALL_TASK service to enable TP Desktop Connector functions, such as
optimizing unidirectional workspace traffic on the call to the acmsdi_call_task
client service. The include file ACMSDI.H contains the definition for the
ACMSDI_CALL_OPTION union.

ACMSDI_CALL_OPTION contains several structures with the option variables,
whose values determine the type of option being selected. Specify the values
for the option variable using the following constants defined in the ACMSDI.H
include file:

2–8 TP Desktop Connector Portable API Client Services

Option Description

ACMSDI_CALL_OPT_END_LIST Ends options list

ACMSDI_CALL_OPT_OPTIMIZE_WKSPS Enables unidirectional workspace
optimization

ACMSDI_CALL_OPT_ENABLE Pointer to enable function

ACMSDI_CALL_OPT_DISABLE Pointer to disable function

ACMSDI_CALL_OPT_SEND Pointer to send function

ACMSDI_CALL_OPT_RECEIVE Pointer to receive function

ACMSDI_CALL_OPT_TDMS_READ Pointer to TDMS read function

ACMSDI_CALL_OPT_TDMS_WRITE Pointer to TDMS write function

ACMSDI_CALL_OPT_TRANSCEIVE Pointer to transceive function

ACMSDI_CALL_OPT_REQUEST Pointer to TDMS request function

ACMSDI_CALL_OPT_CHECK_VERSION Version checking routine

ACMSDI_CALL_OPT_PASS_TID TID of distributed transaction

ACMSDI_CALL_OPT_COMPRESS_WKSPS Activate workspace compression

To select options:

1. Declare an array of at least two elements of the type ACMSDI_CALL_
OPTION.

2. Specify in the option variable the name for the structure being used.

3. Specify the address for the malloc routine or password expiring buffer, if
these options are being used.

4. End an options list by assigning ACMSDI_CALL_OPT_END_LIST to the
option variable in the last array element.

The following example shows the initialization of an options list used to enable
unidirectional workspace handling:

ACMSDI_CALL_OPTION call_options[2];

call_options[0].option = ACMSDI_CALL_OPT_OPTIMIZE_WKSPS;
call_options[1].option = ACMSDI_CALL_OPT_END_LIST;

TP Desktop Connector Portable API Client Services 2–9

Caution

Use the ACMSDI_CALL_OPT_OPTIMIZE_WKSPS option and the
ACMSDI_WORKSPACE_OPT type definition together to optimize
unidirectional workspace traffic. Do not use one without the other.
The acmsdi_call_task client service uses the presence or absence of
the workspace optimization option to decide which data type has been
passed in the workspaces argument. Using either one without the
other produces unpredictable results.

2.5.1 ACMSDI_OPTION Array
ACMSDI_OPTION array is a parameter that is passed to the ACMSDI_
SIGN_IN service to enable TP Desktop Connector functions, such as enabling
password expiration checking on the call to acmsdi_call_task client service.
The include file ACMSDI.H contains the definition for the ACMSDI_OPTION
array.

The ACMSDI_OPTION array is a union containing multiple structures and an
option variable, the value of which defines the type of option being selected.
Specify the values for the option variable using the following constants defined
in the include file ACMSDI.H:

Constant Description

ACMSDI_OPT_CHECK_VERSION Enables version checking

ACMSDI_OPT_COMMID Supplies communications device id or
TCP/IP comm port

ACMSDI_OPT_END_LIST Ends options list

ACMSDI_OPT_FREE_ROUTINE Enables user-defined memory deallocation

ACMSDI_OPT_MALLOC_ROUTINE Enables user-defined memory allocation

ACMSDI_OPT_NONBLK Enables a forced nonblocking session

ACMSDI_OPT_PWD_EXPIRING Enables checking for passwords that are
about to expire

2–10 TP Desktop Connector Portable API Client Services

To select options:

1. Declare an array of at least two elements of the type ACMSDI_OPTION.

2. Specify in the option variable the name tag for the structure being used.

3. End an options list by assigning ACMSDI_OPT_END_LIST to the option
variable in the last array element.

Example 2–5 initializes an options list to enable version checking, user-defined
memory allocation, and password expiration checking.

Example 2–5 Initializing an Options List

void *my_malloc_routine(int size);
long pwd_exp_buffer;
void my_free_routine(void *ptr);
ACMSDI_OPTION options[5];

options[0].option = ACMSDI_OPT_CHECK_VERSION;
options[1].option = ACMSDI_OPT_MALLOC_ROUTINE;
options[1].malloc_routine.address = my_malloc_routine;
options[2].option = ACMSDI_OPT_FREE_ROUTINE;
options[2].free_routine.address = my_free_routine;
options[3].option = ACMSDI_OPT_PWD_EXPIRING;
options[3].pwd_expiring_hrs.address = &pwd_exp_buffer;
options[4].option = ACMSDI_OPT_END_LIST;

You can provide the TCP/IP port number during sign-in by using the ACMSDI_
OPT_COMMID option. Example 2–6 shows how to do this in C.

Note

This option is usable with forced nonblocking calls only.

If the environmental variable ACMSDI_TCPIP_PORT_host_node is defined,
the option specified on the acmsdi_sign_in call takes precedence. If neither the
environmental variable nor the sign-in option is specified, the default TCP/IP
port number, 1023, is used.

TP Desktop Connector Portable API Client Services 2–11

Example 2–6 Dynamically Specifying a TCP/IP Port Identifier

int status;
ACMSDI_SUBMITTER_ID subm_id;
long tcpip_port = 1000;
ACMSDI_OPTION options[2];
options[0].option = ACMSDI_OPT_COMMID;
options[0].CommID = tcpip_port;
options[1].option = ACMSDI_OPT_END_LIST;

status = acmsdi_sign_in ("N2001", /* ACMS Desktop Gateway node */
"HAL", /* username */
"HELLO_DAVE", /* password */
options, /* sign in options */
&subm_id, /* submitter id */
0, 0, 0);

2–12 TP Desktop Connector Portable API Client Services

acmsdi_call_task

2.6 acmsdi_call_task

TP Desktop Connector client programs call this service to execute a task in a
ACMS application.

Format

acmsdi_call_task (submitter_id,
[call_options],
task_name,
application_name,
selection_string,
status_message,
workspace_count,
[workspaces],
[call_id],
[completion_status],
[completion_routine], 1

[call_context])

Parameters

submitter_id
Type: ACMSDI_SUBMITTER_ID
Access: read
Mechanism: by reference
The submitter_id returned by the acmsdi_sign_in service.

call_options
Type: ACMSDI_CALL_OPTION
Access: read
Mechanism: by reference
An array of ACMSDI_CALL_OPTION elements that either enables
unidirectional workspace optimization or defines presentation procedure
addresses. The include file ACMSDI.H contains the definition for the
ACMSDI_CALL_OPTION type. If you use the options array to enable
unidirectional workspaces, use the ACMSDI_WORKSPACE_OPT type in
the workspace list. See Section 2.4.2 and Section 2.5 for more information.

1 For nonblocking only, see Section 2.3.

TP Desktop Connector Portable API Client Services 2–13

acmsdi_call_task

task_name
Type: char *
Access: read
Mechanism: by reference
The name of the task to execute. Maximum length is 31.

application_name
Type: char *
Access: read
Mechanism: by reference
The specification of a ACMS application in which the task resides. The
application name must be a valid application specification on the submitter
node. It can take the form NODE::APPLICATION, or can be specified using a
logical name that is translated by the ACMS Central Controller (ACC) on the
submitter node. Maximum length is 80.

selection_string
Type: char *
Access: read
Mechanism: by reference
Used by the desktop client program to pass additional information to the task.
Maximum length is 256.

status_message
Type: char *
Access: write
Mechanism: by reference
A buffer to receive the message text associated with the task completion status.
The message text returned is either the text associated with a TP Desktop
Connector error or the message text returned from a ACMS application.
Required length is 80.

Caution

If the full space is not allocated, the TP Desktop Connector client
services write past the end of the allocated string and can cause the
application to fail. Ensure that the desktop client program allocates
the required length of space.

2–14 TP Desktop Connector Portable API Client Services

acmsdi_call_task

workspace_count
Type: long int
Access: read
Mechanism: by value
The decimal number of workspaces being passed to the task.

workspaces
Type: ACMSDI_WORKSPACE or ACMSDI_WORKSPACE_OPT array
Access: read/write
Mechanism: by reference
One or more optional workspaces to be passed to the task. You need to typecast
your array to void *. The workspaces must be specified in the same order as
they are declared in the task definition, and must match the number specified
in the workspace_count parameter. If you use the ACMSDI_WORKSPACE_
OPT type, you must set the call_options parameter to allow unidirectional
workspaces.

call_id
Type: ACMSDI_CALL_ID
Access: write
Mechanism: by reference
A structure defined in the ACMSDI.H include file into which the acmsdi_call_
task service writes a newly created call identification, a handle used by the TP
Desktop Connector client services to identify an active call for a submitter.

completion_status
Type: int
Access: write
Mechanism: by reference
The final status of the TP Desktop Connector client service. In the blocking
environment, the completion_status parameter is set to zero when the service
starts successfully.

When the service completes, the completion_status parameter contains the final
status. See Table 2–2 for the list of return status values.

When a task is canceled, the TP Desktop Connector gateway reports a specific
error, where possible. If the gateway cannot convert a ACMS error to a specific
TP Desktop Connector status, it returns ACMSDI_TASK_FAILED to the
desktop client program.

TP Desktop Connector Portable API Client Services 2–15

acmsdi_call_task

completion_routine
Type: function address1

Access: read
Mechanism: by value
Address of a function to be called when the service completes. The completion_
routine is called by the acmsdi_dispatch_message service when the "End of
Task" message is received from the TP Desktop Connector gateway.

call_context
Type: void *
Access: read
Mechanism: by value
Optional parameter passed to presentation procedures and completion routines
to identify the call. Use this parameter to supply an application-specific context
for the call.

Return Status

The status values returned by the acmsdi_call_task service are listed in
Table 2–2.

Table 2–2 acmsdi_call_task Return Status Values

Status Description

ACMSDI_APPLDEAD Application stopped unexpectedly.
ACMSDI_CALLACTV Call is already active.
ACMSDI_INSUFPRM Insufficient parameters.
ACMSDI_INTERNAL Internal TP Desktop Connector error.
ACMSDI_INVOPTION Invalid item in options list.
ACMSDI_INVSUBID Invalid or obsolete submitter identification.
ACMSDI_MIXEDMODE All calls on a connection must be either

blocking or nonblocking.
ACMSDI_NOMEMORY Insufficient memory to complete requests.
ACMSDI_NORMAL Normal successful completion.
ACMSDI_NOSUCH_APPL Application not found.

(continued on next page)

1 For nonblocking only, see Section 2.3. Not applicable to forced nonblocking and will
cause an error if supplied.

2–16 TP Desktop Connector Portable API Client Services

acmsdi_call_task

Table 2–2 (Cont.) acmsdi_call_task Return Status Values

Status Description

ACMSDI_NOSUCH_TASK Task not found.
ACMSDI_OPR_CANCELLED Operator canceled task.
ACMSDI_PENDING Successful operation pending nonblocking

completion. The final status is in the
completion status parameter.

ACMSDI_SECCHK Task security check failed.
ACMSDI_SIGNINACTV Request is invalid while the sign-in is active.
ACMSDI_SIGNOUTACTV Request is invalid while the sign-out is active.
ACMSDI_SRVDEAD Node name is invalid, or TP Desktop

Connector gateway is not running on the
specified node, or the network link terminated.

ACMSDI_TASK_ABORT Task completed abnormally.
ACMSDI_TASK_CANCELLED Task was canceled.
ACMSDI_TASK_FAILED Task failed during execution.
ACMSDI_TASK_SP_DIED Task was canceled when TP Desktop

Connector gateway process died.

TP Desktop Connector Portable API Client Services 2–17

acmsdi_cancel

2.7 acmsdi_cancel

TP Desktop Connector client programs call this service in a nonblocking or
forced nonblocking environment to cancel a currently active ACMS task. Use
the acmsdi_cancel service only if you invoke a task using nonblocking services.
Do not use the acmsdi_cancel service from a presentation procedure or from an
asynchronous completion routine.

Format

acmsdi_cancel (submitter id,
call_id,
[cancel_reason],
reserved,
[completion_status],
completion_routine, 1

[call_context])

Parameters

submitter_id
Type: ACMSDI_SUBMITTER_ID
Access: read
Mechanism: by reference
The submitter_id for the session associated with the task that is being canceled.

call_id
Type: ACMSDI_CALL_ID
Access: read
Mechanism: by reference
The call_id for the task that is being canceled, which was passed back on the
acmsdi_call_task service.

cancel_reason
Type: long int
Access: read
Mechanism: by value
Optional parameter containing the status value of the reason code for the
cancel request. This value is passed to the Application Execution Controller
(EXC) by the TP Desktop Connector gateway. The default is ACMSDI_CALL_
CANCELED, "the task was canceled by the task submitter".

1 For nonblocking only, see Section 2.3.

2–18 TP Desktop Connector Portable API Client Services

acmsdi_cancel

reserved
Type:
Access:
Mechanism:
This parameter is reserved for future use. Specify as NULL.

completion_status
Type: long int
Access: write
Mechanism: by reference
Optional parameter to contain the final completion status of the service.
The completion_status is set to ACMSDI_PENDING when the service starts
successfully. When the service is successful, completion_status is set to 0.

completion_routine
Type: function address1

Access: read
Mechanism: by value
Address of a function to be called when the service completes. The completion_
routine is called by the ACMSDI_DISPATCH_MESSAGE service when the
appropriate reply is received from the TP Desktop Connector gateway on the
OpenVMS system.

call_context
Type: void*
Access: read
Mechanism: by value
Optional parameter that is passed to the completion_routine to identify the
call. You can use this to supply application-specific context for the call that is
being canceled.

Return Status

The status values returned by the acmsdi_cancel service are listed in
Table 2–3.

1 For nonblocking only, see Section 2.3. Not applicable to forced nonblocking and will
cause an error if supplied.

TP Desktop Connector Portable API Client Services 2–19

acmsdi_cancel

Table 2–3 acmsdi_cancel Return Status Values

Status Description

ACMSDI_CANCELACTV Cancel already in progress.
ACMSDI_EXCHACTV Service cannot be called from presentation

procedure.
ACMSDI_INSUFPRM Insufficient parameters.
ACMSDI_INTERNAL Internal ACMS error.
ACMSDI_INVCALLID Invalid or obsolete call identification.
ACMSDI_INVSUBID Invalid or obsolete submitter identification.
ACMSDI_NOMEMORY Insufficient memory to complete requests.
ACMSDI_NORMAL Normal successful completion.
ACMSDI_PENDING Successful operation pending nonblocking

completion. The final status is in the
completion status parameter.

ACMSDISIGNINACTV Request is invalid while the sign-in is active.
ACMSDISIGNOUTACTV Request is invalid while sign-out is active.
ACMSDI_SRVDEAD Node name is invalid, or the TP Desktop

Connector gateway is not running on the
specified node.

2–20 TP Desktop Connector Portable API Client Services

acmsdi_complete_pp

2.8 acmsdi_complete_pp

TP Desktop Connector client programs call this nonblocking service to complete
exchange step processing for a submitter. An application must call this
service to complete an outstanding presentation procedure request from
the TP Desktop Connector gateway in a nonblocking or forced nonblocking
environment (see Compaq TP Desktop Connector for ACMS Client
Application Programming Guide.

Format

acmsdi_complete_pp (call_id,
pp_status)

Parameters

call_id
Type: ACMSDI_CALL_ID
Access: read
Mechanism: by reference
The call_id parameter is passed back on the acmsdi_call_task service.

pp_status
Type: long int
Access: read
Mechanism: by value
The completion status of the presentation procedure. The pp_status parameter
is returned to the ACMS task as the completion status for the current exchange
step. A valid OpenVMS status value is returned to the task.

Return Status

The status values returned by the acmsdi_complete_pp service are listed in
Table 2–4.

TP Desktop Connector Portable API Client Services 2–21

acmsdi_complete_pp

Table 2–4 acmsdi_complete_pp Return Status Values

Status Description

ACMSDI_INSUFPRM Insufficient parameters.
ACMSDI_INTERNAL Internal TP Desktop Connector error.
ACMSDI_INVCALLID Invalid or obsolete call identification.
ACMSDI_INVSUBID Invalid or obsolete submitter identification.
ACMSDI_NOMEMORY Insufficient memory to complete requests.
ACMSDI_NOPPACTV No presentation procedure active for this call.
ACMSDI_NORMAL Normal successful completion.
ACMSDI_SRVDEAD Node name is invalid, or the TP Desktop

Connector gateway is not running on the
specified node, or the network link terminated.

2–22 TP Desktop Connector Portable API Client Services

acmsdi_dispatch_message

2.9 acmsdi_dispatch_message

TP Desktop Connector client programs call this nonblocking service to check
for and process messages sent from a TP Desktop Connector gateway to an
active submitter in the desktop application. The application must periodically
call this service in a nonblocking environment to check for completion of
outstanding acmsdi_sign_in, acmsdi_call_task, and acmsdi_sign_out requests.
If no TP Desktop Connector messages are received, the service returns
immediately. If a TP Desktop Connector message is received, the service
calls the appropriate completion routine or presentation procedure and then
returns (see Compaq TP Desktop Connector for ACMS Client Application
Programming Guide.

Note that this call is not used in the forced nonblocking environment. See
Section 4.13.

Format

acmsdi_dispatch_message ()

Parameters

No parameters are specified.

Return Status

The status values returned by the acmsdi_dispatch_message service are listed
in Table 2–5.

Table 2–5 acmsdi_dispatch_message Return Status Values

Status Description

ACMSDI_INTERNAL Internal TP Desktop Connector error.
ACMSDI_NOMEMORY Insufficient memory.

(continued on next page)

TP Desktop Connector Portable API Client Services 2–23

acmsdi_dispatch_message

Table 2–5 (Cont.) acmsdi_dispatch_message Return Status Values

Status Description

ACMSDI_NORMAL Normal successful completion.
ACMSDI_SRVDEAD Node name is invalid, or TP Desktop

Connector gateway is not running on
the specified node, or the network link
terminated.

2–24 TP Desktop Connector Portable API Client Services

acmsdi_return_pointer

2.10 acmsdi_return_pointer

TP Desktop Connector client programs written in Visual Basic use the
ACMSDI_RETURN_POINTER service to create the workspace array for the
ACMSDI_CALL_TASK routine. When passing a workspace, the ACMSDI_
CALL_TASK service expects a data structure with the size and address of each
workspace. The ACMSDI_RETURN_POINTER service assigns the address of
a workspace argument to the contents of a pointer address argument. This
service may be used in the forced nonblocking environment to obtain reference
pointers to structures such as call_id.

Format

acmsdi_return_pointer (structure)

Parameters

structure
Type: long int
Access: read
Mechanism: by reference
The workspace or other structure for which a pointer is to be obtained.

Return Status

The return status value for acmsdi_return_pointer is the address of the
structure passed as the parameter in the call.

TP Desktop Connector Portable API Client Services 2–25

acmsdi_sign_in

2.11 acmsdi_sign_in

TP Desktop Connector client programs call this service to sign a user in to a
ACMS system.

Format

acmsdi_sign_in (submitter_node,
username,
password,
[options],
submitter_id,
[completion_status],
[completion_routine], 1

[call_context])

Parameters

submitter_node
Type: char *
Access: read
Mechanism: by reference
The node name of the ACMS system where the user is to be signed in.
Maximum length is 80.

username
Type: char *
Access: read
Mechanism: by reference
The name of the OpenVMS account of the user to be signed in. Maximum
length is 80.

password
Type: char *
Access: read
Mechanism: by reference
The password of the user to be signed in. Maximum length is 80.

1 For nonblocking only, see Section 2.3.

2–26 TP Desktop Connector Portable API Client Services

acmsdi_sign_in

options
Type: ACMSDI_OPTION array
Access: read
Mechanism: by reference
Union containing multiple structures and an option variable, the value of
which defines the type of option being selected (see Section 2.5.1).

submitter_id
Type: ACMSDI_SUBMITTER_ID
Access: write
Mechanism: by reference
A structure into which the acmsdi_sign_in service writes a newly created
submitter identification. Other services use the submitter identification as
a handle to identify an active submitter. The ACMSDI_SUBMITTER_ID
structure is defined in the ACMSDI.H include file.

completion_status
Type: int
Access: write
Mechanism: by reference
The final status of the service. In the blocking environment, the completion_
status parameter is set to zero when the service starts successfully.

When the service completes, completion_status contains the final status. See
Table 2–6 for a list of return status values.

completion_routine
Type: function address1

Access: read
Mechanism: by value
Address of a function to be called when the nonblocking service completes. The
completion routine is called by the acmsdi_dispatch_message service when the
reply is received from the TP Desktop Connector gateway.

call_context
Type: void *
Access: read
Mechanism: by value
Optional parameter passed to presentation procedures and completion routines
to identify the call. Use this parameter to supply application-specific context
for the call.

1 For nonblocking only, see Section 2.3. Not applicable to forced nonblocking and will
cause an error if supplied.

TP Desktop Connector Portable API Client Services 2–27

acmsdi_sign_in

Return Status

The status values returned by the acmsdi_sign_in service are listed in
Table 2–6.

Table 2–6 acmsdi_sign_in Return Status Values

Status Description

ACMSDI_CALLACTV Call is active.
ACMSDI_INSUFPRM Insufficient parameters.
ACMSDI_INTERNAL Internal TP Desktop Connector error.
ACMSDI_INVLOGIN Invalid login attempt.
ACMSDI_INVOPTION Invalid item in options list.
ACMSDI_INVPROTOCOL Mismatch in versions of TP Desktop

Connector client and gateway software.
ACMSDI_MIXEDMODE All calls on a connection must be either

blocking or nonblocking.
ACMSDI_NOACMS ACMS system not available.
ACMSDI_NOCOMPRESS Gateway does not allow compression.
ACMSDI_NOMEMORY Insufficient memory to complete

requests.
ACMSDI_NORMAL Normal successful completion.
ACMSDI_PENDING Successful operation pending

nonblocking completion. The final
status is in the completion_status
parameter.

ACMSDI_PWDEXPIRED Password has expired.
ACMSDI_PWDEXPIRING Password expiring in the number of

hours specified in options array.
ACMSDI_SIGNINACTV Sign-in active.
ACMSDI_SIGNOUTACTV Sign-out active.
ACMSDI_SRVDEAD Node name is invalid, or TP Desktop

Connector gateway is not running on
the specified node, or the network link
terminated.

2–28 TP Desktop Connector Portable API Client Services

acmsdi_sign_out

2.12 acmsdi_sign_out

TP Desktop Connector client programs call this service to terminate an active
session with a ACMS system. To insure that all network links are properly
shut down, the desktop client program calls the acmsdi_sign_out service before
terminating.

Format

acmsdi_sign_out (submitter_id,
[completion_status],
[completion_routine], 1

[call_context])

Parameters

submitter_id
Type: ACMSDI_SUBMITTER_ID
Access: read
Mechanism: by reference
The submitter identification returned by the acmsdi_sign_in service.

completion_status
Type: int
Access: write
Mechanism: by reference
The final status of the service. In the blocking environment, the completion_
status parameter is set to zero when the service starts successfully.

When the service completes, completion_status contains the final status. See
Table 2–7 for a list of the return status values.

completion_routine
Type: function address1

Access: read
Mechanism: by value
Address of a function to be called when the nonblocking service completes. The
completion routine is called by the acmsdi_dispatch_message service when the
reply is received from the TP Desktop Connector gateway.

1 For nonblocking only, see Section 2.3.

TP Desktop Connector Portable API Client Services 2–29

acmsdi_sign_out

call_context
Type: void *
Access: read
Mechanism: by value
Optional parameter passed to presentation procedures and completion routines
to identify the call. Use this parameter to supply application-specific context
for the call.

Return Status

The status values returned by the acmsdi_sign_out service are listed in
Table 2–7.

Table 2–7 acmsdi_sign_out Return Status Values

Status Description

ACMSDI_CALLACTV Request is invalid while task call is
active.

ACMSDI_INSUFPRM Insufficient parameters.
ACMSDI_INTERNAL Internal TP Desktop Connector error.
ACMSDI_INVSUBID Invalid or obsolete submitter

identification.
ACMSDI_MIXEDMODE All calls on a connection must be either

blocking or nonblocking.
ACMSDI_NOMEMORY Insufficient memory to complete

requests.
ACMSDI_NORMAL Normal successful completion.
ACMSDI_PENDING Successful operation pending

nonblocking completion. The final
status is in the completion_status
parameter.

ACMSDI_SIGNINACTV Request is invalid while sign-in is
active.

(continued on next page)

2–30 TP Desktop Connector Portable API Client Services

acmsdi_sign_out

Table 2–7 (Cont.) acmsdi_sign_out Return Status Values

Status Description

ACMSDI_SIGNOUTACTV Request is invalid while sign-out is
active.

ACMSDI_SRVDEAD Node name is invalid, or TP Desktop
Connector gateway is not running on
the specified node, or the network link
terminated.

TP Desktop Connector Portable API Client Services 2–31

3
Portable API Presentation Procedures

This chapter describes the interface between the TP Desktop Connector
gateway and customer-written presentation procedures. It also describes the
interfaces on portable clients for customer-written action routines to perform
version checking.

3.1 Summary of Portable API Presentation Procedures
Presentation procedures are customer-written routines that the TP Desktop
Connector gateway calls when an exchange step occurs in a ACMS task with
either the FORM I/O or REQUEST I/O attribute. Table 3–1 summarizes
the presentation procedures available in a nonblocking session. These are
not applicable to a forced nonblocking session. For more information on
presentation procedures, refer to Compaq TP Desktop Connector for ACMS
Client Application Programming Guide.

Table 3–1 Summary of Portable API Presentation Procedures

Customer-Supplied Procedure Description

acmsdi_disable Services a Compaq DECforms disable request,
which disables a form.

acmsdi_enable Services a DECforms enable request, which enables
a form.

acmsdi_read_msg Services a TDMS Read exchange, which displays
the prompt, if any, sent from the ACMS task, and
acquires the text from the form’s message field.

acmsdi_receive Services a DECforms receive request, which sends
data from the form to the application program.

(continued on next page)

Portable API Presentation Procedures 3–1

Table 3–1 (Cont.) Summary of Portable API Presentation Procedures

Customer-Supplied Procedure Description

acmsdi_request Services a TDMS Request exchange, which displays
a form and transfers data between a form and the
application program.

acmsdi_send Services a DECforms send request, which sends
data from the application program to the form.

acmsdi_transceive Services a DECforms transceive request, which
combines the actions of a send and a receive.

acmsdi_write_msg Services a TDMS Write exchange, which displays
the text sent from the form’s message field or the
ACMS task.

See Compaq TP Desktop Connector for ACMS Client Application
Programming Guide for a description of sample client presentation procedures.

3.1.1 Return Status Values Expected from Presentation Procedures
The presentation procedure routines must return a long integer containing any
valid OpenVMS status value, including DECforms, TDMS, and application-
defined values. Return status values for nonblocking presentation procedures
are returned using the acmsdi_complete_pp routine. The status value is passed
to the ACMS Application Execution Controller (EXC) as the completion status
for the exchange step. The EXC attempts to interpret the value as a standard
OpenVMS status value. Unless the task definition for the exchange step
specifies CONTINUE ON FAILURE, the EXC cancels the task for an error
status returned.

The TP Desktop Connector kit provides include files that specify the return
status values for DECforms and TDMS: FORMS.H and TDMS.H. If the
return status values change, you can regenerate the include files with the
command procedures, MAKE_FORMS_H.COM and MAKE_TDMS_H.COM, in
the ACMSDI$EXAMPLES directory.

To handle errors, specify the exception-handler syntax in the task definition.
To have a single ACMS application support both DECforms terminals and
graphical desktop systems, code the task definition to check for a DECforms
error status value.

3–2 Portable API Presentation Procedures

3.1.2 ACMSDI_FORM_RECORD Structure and Macro Call
Defined in the ACMSDI.H file, the ACMSDI_FORM_RECORD type declares
form records and shadow records passed to and from presentation procedures.
The code in Example 3–1 defines the ACMSDI_FORM_RECORD type and a
macro ACMSDI_INIT_FORM_RECORD to initialize the form record structure.

Example 3–1 Form Record Definition and Initialization Macro

typedef struct {
int data_length; /** length of data record **/
void *data_record; /** pointer to data record **/
int shadow_length; /** length of shadow record **/
void *shadow_record; /** pointer to shadow record **/

} ACMSDI_FORM_RECORD;

#define ACMSDI_INIT_FORM_RECORD (record, data, shadow)\
{\

record.data_length = sizeof(data);\
record.data_record = &data;\
record.shadow_length = sizeof(shadow);\
record.shadow_record = &shadow;\

}\

3.1.3 Prototypes and Code for Presentation Procedures and Version
Routines

The ACMSDI.H file contains function prototypes for the presentation
procedures and action routines that your code supplies. The file PPSTUBS.C
contains stub modules you can use for linking your application (see Compaq
TP Desktop Connector for ACMS Client Application Programming Guide).

3.2 Parameter Memory Allocation
The caller of a TP Desktop Connector service or presentation procedure is
responsible for allocating the memory for the parameters of that routine.
For calls to the TP Desktop Connector client services, the desktop client
program must allocate the memory for all parameters passed in, for example,
submitter_id and call_context. For the presentation procedures, the desktop
client program can expect that TP Desktop Connector software allocates
memory for all the parameters passed in and for all workspaces before it calls
these procedures.

Portable API Presentation Procedures 3–3

3.3 Blocking and Nonblocking Usage
Like the portable TP Desktop Connector client services, presentation
procedures can be either blocking or nonblocking. If the desktop client
program supplies the completion_routine parameter in the acmsdi_call_task
call, the service behaves in the nonblocking environment (see Section 2.3). In
a nonblocking environment, presentation procedures must behave in a way
consistent with nonblocking services.

3.3.1 Presentation Procedures in a Nonblocking Environment
When nonblocking services are in use, presentation procedures are written in
two parts:

• The first part handles the generic presentation procedure and dispatches to
the application-specific presentation procedure to handle interaction with
the user.

• The second part uses the acmsdi_complete_pp service to indicate that
exchange step processing is completed.

The TP Desktop Connector client services return exchange step data and
status to the TP Desktop Connector gateway when the desktop client program
calls the acmsdi_complete_pp service.

3.3.2 Nonblocking and Blocking Restriction
All calls using the same desktop client program and TP Desktop Connector
gateway connection must be either blocking, nonblocking, or forced
nonblocking. These types of service calls cannot be mixed for a client/server
pair. If a desktop client program connects to two different TP Desktop
Connector gateways, it can mix service call types, using blocking calls to
interact with one gateway and nonblocking calls to interact with the other
gateway.

3–4 Portable API Presentation Procedures

acmsdi_disable

3.4 acmsdi_disable

TP Desktop Connector services call this procedure for each active forms session
for a desktop submitter whenever the TP Desktop Connector client program
calls acmsdi_sign_out to sign the submitter out of the ACMS system.

Format

acmsdi_disable (forms_session,
call_id,
call_context)

Parameters

forms_session
Type: ACMSDI_FORMS_SESSION_ID
Access: read
Mechanism: by reference
An identification that associates the session with the form specified in the
acmsdi_enable request (see Section 3.5).

call_id
Type: ACMSDI_CALL_ID
Access: read
Mechanism: by reference
The call identification used to complete the disable call when using nonblocking
services. See the description of acmsdi_complete_pp (Section 2.8).

call_context
Type: void *
Access: read
Mechanism: by value
Application-specific context for the call. This is the same context that was
passed by the application to the acmsdi_sign_out() call.

Return Status

The status values returned by the acmsdi_disable procedure are described in
Section 3.1.1.

Portable API Presentation Procedures 3–5

acmsdi_enable

3.5 acmsdi_enable

TP Desktop Connector client services call this presentation procedure whenever
a DECforms ENABLE request is received from the TP Desktop Connector
gateway on the OpenVMS system.

Format

acmsdi_enable (submitter_id,
forms_session,
file_specification,
form_specification,
forms_print_file,
forms_language,
call_id,
call_context)

Parameters

submitter_id
Type: ACMSDI_SUBMITTER_ID
Access: read
Mechanism: by reference
The value returned by the acmsdi_sign_in service (see Section 2.11).

forms_session
Type: ACMSDI_FORMS_SESSION_ID
Access: write
Mechanism: by reference
An identification that associates the session with the submitter identification.
This is a write parameter that customer-supplied presentation procedures can
fill. Presentation procedures (acmsdi_send, acmsdi_receive, acmsdi_transceive,
and acmsdi_disable) can use the forms_session parameter to associate the
session with the form specified in the enable request. The TP Desktop
Connector run-time system passes this parameter to subsequent requests to
specify which form to use.

3–6 Portable API Presentation Procedures

acmsdi_enable

file_specification
Type: char *
Access: read
Mechanism: by reference
The form file specification from the ACMS task group definition. Refer to
Compaq TP Desktop Connector for ACMS Client Application Programming
Guide for guidelines on specifying the form file specification.

form_specification
Type: char *
Access: read
Mechanism: by reference
The form name specified in the exchange step in the ACMS task definition.
Refer to Compaq TP Desktop Connector for ACMS Client Application
Programming Guide for guidelines on specifying the form name.

forms_print_file
Type: char *
Access: read
Mechanism: by reference
The DECforms specification for the user in ACMSUDF.DAT.

forms_language
Type: char *
Access: read
Mechanism: by reference
The DECforms specification for the user in ACMSUDF.DAT.

call_id
Type: ACMSDI_CALL_ID
Access: read
Mechanism: by reference
The call identification returned by the acmsdi_call_task service.

call_context
Type: void *
Access: read
Mechanism: by value
Application-specific context for the call. This is the same context that was
passed by the application to the acmsdi_call_task() call.

Portable API Presentation Procedures 3–7

acmsdi_enable

Return Status

The status values returned by the acmsdi_enable procedure are described in
Section 3.1.1.

3–8 Portable API Presentation Procedures

acmsdi_read_msg

3.6 acmsdi_read_msg

TP Desktop Connector client services call this presentation procedure when
a TDMS Read exchange is received from the TP Desktop Connector gateway
on the host OpenVMS system. Its function is to display the prompt (if any)
sent from the ACMS task and then to acquire the text from the form’s Message
Field to be returned to ACMS.

Format

acmsdi_read_msg (submitter_id,
msg_text,
prompt_text,
call_id,
call_context)

Parameters

submitter_id
Type: ACMSDI_SUBMITTER_ID
Access: read
Mechanism: by reference
The value returned by the acmsdi_sign_in service.

msg_text
Type: char
Access: write
Mechanism: by reference
A buffer into which the presentation procedure will write the text from the
form’s Message Field to be returned to the ACMS task. This is a C-style
null-terminated string with a maximum length of 132 plus one for the null
terminator.

prompt_text
Type: char
Access: read
Mechanism: by reference
Text to be displayed as a prompt to the terminal operator. This is a C-style
null-terminated string with a maximum length of 132 plus one for the null
terminator. There may be no prompt text to display in which case the length
will be 0; that is, the null terminator will be in the first position.

Portable API Presentation Procedures 3–9

acmsdi_read_msg

call_id
Type: ACMSDI_CALL_ID
Access: read
Mechanism: by reference
The call identification returned by the acmsdi_call_task service which initiated
the ACMS task associated with this exchange.

call_context
Type: void *
Access: read
Mechanism: by value
Application-specific context for the call. This is the same context that was
passed by the application to the acmsdi_call_task service which initiated the
ACMS task associated with this exchange.

Return Status

This function returns a ps32, defined in ACMSDI.H to be equivalent to a
signed 32-bit integer. The value must be a valid TDMS status code. Valid
TDMS statuses are defined in TDMS.H.

3–10 Portable API Presentation Procedures

acmsdi_receive

3.7 acmsdi_receive

The TP Desktop Connector client services call this presentation procedure
whenever a DECforms RECEIVE request is received from the TP Desktop
Connector gateway on the OpenVMS system.

Format

acmsdi_receive (forms_session,
receive_record_identifier,
receive_record_count,
receive_control_text,
receive_control_text_count,
send_control_text,
send_control_text_count,
timeout,
call_id,
call_context,
receive_record)

Parameters

forms_session
Type: ACMSDI_FORMS_SESSION_ID
Access: read
Mechanism: by reference
An identification to associate the session with the form specified in the acmsdi_
enable request (see Section 3.5).

receive_record_identifier
Type: char *
Access: read
Mechanism: by reference
The form record name or record list name specified in the RECEIVE request in
the ACMS task. Refer to Compaq TP Desktop Connector for ACMS Client
Application Programming Guide for guidelines on specifying the form name.

receive_record_count
Type: long int
Access: read
Mechanism: by value
The number of receive record items sent from the ACMS task.

Portable API Presentation Procedures 3–11

acmsdi_receive

receive_control_text
Type: char *
Access: write
Mechanism: by reference
A 25-character string that the customer-supplied request can use to return
receive control text.

receive_control_text_count
Type: long int
Access: write
Mechanism: by reference
The number of receive control text items that the customer-supplied request
returns.

send_control_text
Type: char *
Access: read
Mechanism: by reference
Send control text sent from the ACMS task.

send_control_text_count
Type: long int
Access: read
Mechanism: by value
The number of send control text items sent from the ACMS task.

timeout
Type: short int
Access: read
Mechanism: by value
A timeout value for user input processing sent from the ACMS task.

call_id
Type: ACMSDI_CALL_ID
Access: read
Mechanism: by reference
The call identification returned by the acmsdi_call_task service.

call_context
Type: void *
Access: read
Mechanism: by value
Application-specific context for the call. This is the same context that was
passed by the application to the acmsdi_call_task() call.

3–12 Portable API Presentation Procedures

acmsdi_receive

receive_record
Type: ACMSDI_FORM_RECORD array
Access: write
Mechanism: by reference
An array of ACMSDI_FORM_RECORD structures pointing to buffers that
store application data and shadow records from the request (see Section 3.1.2).

Return Status

The status values returned by the acmsdi_receive procedure are described in
Section 3.1.1.

Portable API Presentation Procedures 3–13

acmsdi_request

3.8 acmsdi_request

TP Desktop Connector client services call this presentation procedure whenever
a TDMS Request exchange is received from the TP Desktop Connector gateway
on the OpenVMS system.

Format

acmsdi_request (submitter_id,
request_name,
workspace_count,
workspaces,
call_id,
call_context)

Parameters

submitter_id
Type: ACMSDI_SUBMITTER_ID
Access: read
Mechanism: by reference
The value returned by the acmsdi_sign_in service (see Section 2.11).

request_name
Type: char *
Access: read
Mechanism: by reference
The name of the TDMS request specified in the ACMS task.

workspace_count
Type: long int
Access: read
Mechanism: by value
The number of workspaces sent from the ACMS task.

3–14 Portable API Presentation Procedures

acmsdi_request

workspaces
Type: ACMSDI_WORKSPACE array
Access: read/write
Mechanism: by reference
The workspace data sent from the ACMS task. One or more optional
workspace arguments can be sent from the task (see Section 2.4).

call_id
Type: ACMSDI_CALL_ID
Access: read
Mechanism: by reference
The call identification returned by the acmsdi_call_task service.

call_context
Type: void *
Access: read
Mechanism: by value
Application-specific context for the call. This is the same context that was
passed by the application to the acmsdi_call_task() call.

Return Status

The status values returned by the acmsdi_request procedure are described in
Section 3.1.1.

Portable API Presentation Procedures 3–15

acmsdi_send

3.9 acmsdi_send

TP Desktop Connector client services call this presentation procedure whenever
a DECforms SEND request is received from the TP Desktop Connector gateway
on the OpenVMS system.

Format

acmsdi_send (forms_session,
send_record_identifier,
send_record_count,
receive_control_text,
receive_control_text_count,
send_control_text,
send_control_text_count,
timeout,
call_id,
call_context,
send_record)

Parameters

forms_session
Type: ACMSDI_FORMS_SESSION_ID
Access: read
Mechanism: by reference
An identification that associates the session with the form specified in the
acmsdi_enable request (see Section 3.5).

send_record_identifier
Type: char *
Access: read
Mechanism: by reference
The form record name or record list name specified in the SEND request in
the ACMS task. Refer to Compaq TP Desktop Connector for ACMS Client
Application Programming Guide for guidelines on specifying the form name.

send_record_count
Type: long int
Access: read
Mechanism: by value
The number of send record items sent from the ACMS task.

3–16 Portable API Presentation Procedures

acmsdi_send

receive_control_text
Type: char *
Access: write
Mechanism: by reference
A 25-character string that the customer-supplied request can use to return
receive control text.

receive_control_text_count
Type: long int
Access: write
Mechanism: by reference
The number of receive control text items that the customer-supplied request
returns.

send_control_text
Type: char *
Access: read
Mechanism: by reference
Send control text sent from the ACMS task.

send_control_text_count
Type: long int
Access: read
Mechanism: by value
The number of send control text items sent from the ACMS task.

timeout
Type: short int
Access: read
Mechanism: by value
A timeout value for user input processing, sent from the ACMS task.

call_id
Type: ACMSDI_CALL_ID
Access: read
Mechanism: by reference
The call identification returned by the acmsdi_call_task service.

call_context
Type: void *
Access: read
Mechanism: by value
Application-specific context for the call. This is the same context that was
passed by the application to the acmsdi_call_task() call.

Portable API Presentation Procedures 3–17

acmsdi_send

send_record
Type: ACMSDI_FORM_RECORD array
Access: read
Mechanism: by reference
An array of ACMSDI_FORM_RECORD structures pointing to buffers
containing application data and shadow records sent from the ACMS task
(see Section 3.1.2).

Return Status

The status values returned by the acmsdi_send procedure are described in
Section 3.1.1.

3–18 Portable API Presentation Procedures

acmsdi_transceive

3.10 acmsdi_transceive

TP Desktop Connector client services call this presentation procedure whenever
a DECforms TRANSCEIVE request is received from the TP Desktop Connector
gateway on the OpenVMS system.

Format

acmsdi_transceive (forms_session,
send_record_identifier,
send_record_count,
receive_record_identifier,
receive_record_count,
receive_control_text,
receive_control_text_count,
send_control_text,
send_control_text_count,
timeout,
call_id,
call_context,
send_record,
receive_record)

Parameters

forms_session
Type: ACMSDI_FORMS_SESSION_ID
Access: read
Mechanism: by reference
An identification that associates the session with the form specified in the
acmsdi_enable request (see Section 3.5).

send_record_identifier
Type: char *
Access: read
Mechanism: by reference
The form record name or record list name specified in the SEND request in
the ACMS task. Refer to Compaq TP Desktop Connector for ACMS Client
Application Programming Guide for guidelines on specifying the form name.

Portable API Presentation Procedures 3–19

acmsdi_transceive

send_record_count
Type: long int
Access: read
Mechanism: by value
The number of send record items sent from the ACMS task.

receive_record_identifier
Type: char *
Access: read
Mechanism: by reference
The form record name or record list name specified in the RECEIVE request in
the ACMS task. Refer to Compaq TP Desktop Connector for ACMS Client
Application Programming Guide for guidelines on specifying the form name.

receive_record_count
Type: long int
Access: read
Mechanism: by value
The number of receive record items sent from the ACMS task.

receive_control_text
Type: char *
Access: write
Mechanism: by reference
A 25-character string that the customer-supplied request can use to return
receive control text.

receive_control_text_count
Type: long int
Access: write
Mechanism: by reference
The number of receive control text items that the customer-supplied request
returns.

send_control_text
Type: char *
Access: read
Mechanism: by reference
Send control text sent from the ACMS task.

3–20 Portable API Presentation Procedures

acmsdi_transceive

send_control_text_count
Type: long int
Access: read
Mechanism: by value
The number of send control text items sent from the ACMS task.

timeout
Type: short int
Access: read
Mechanism: by value
A timeout value for user input processing, sent from the ACMS task.

call_id
Type: ACMSDI_CALL_ID
Access: read
Mechanism: by reference
The call identification returned by the acmsdi_call_task service.

call_context
Type: void *
Access: read
Mechanism: by value
Application-specific context for the call. This is the same context that was
passed by the application to the acmsdi_call_task() call.

send_record
Type: ACMSDI_FORM_RECORD array
Access: read
Mechanism: by reference
An array of ACMSDI_FORM_RECORD structures pointing to buffers
containing application data and shadow records sent from the ACMS task
(see Section 3.1.2).

receive_record
Type: ACMSDI_FORM_RECORD array
Access: write
Mechanism: by reference
An array of ACMSDI_FORM_RECORD structures pointing to buffers to receive
application data and shadow records from the request (see Section 3.1.2).

Portable API Presentation Procedures 3–21

acmsdi_transceive

Return Status

The status values returned by the acmsdi_transceive procedure are described
in Section 3.1.1.

3–22 Portable API Presentation Procedures

acmsdi_write_msg

3.11 acmsdi_write_msg

TP Desktop Connector client services call this presentation procedure when
a TDMS Write exchange is received from the TP Desktop Connector gateway
on the host OpenVMS system. Its function is to display the message text sent
from the ACMS task in the form’s Message Field.

Format

acmsdi_write_msg (submitter_id,
msg_text,
call_id,
call_context)

Parameters

submitter_id
Type: ACMSDI_SUBMITTER_ID
Access: read
Mechanism: by reference
The value returned by the acmsdi_sign_in service.

msg_text
Type: char
Access: read
Mechanism: by reference
Text to be displayed in the form’s Message Field. This is a C-style null-
terminated string with a maximum length of 132 plus one for the null
terminator.

Portable API Presentation Procedures 3–23

acmsdi_write_msg

call_id
Type: ACMSDI_CALL_ID
Access: read
Mechanism: by reference
The call identification returned by the acmsdi_call_task service which initiated
the ACMS task associated with this exchange.

call_context
Type: void *
Access: read
Mechanism: by value
Application-specific context for the call. This is the same context that was
passed by the application to the acmsdi_call_task service which initiated the
ACMS task associated with this exchange.

Return Status

This function returns a ps32, defined in ACMSDI.H to be equivalent to a
signed 32-bit integer. The value must be a valid TDMS status code. Valid
TDMS statuses are defined in TDMS.H.

3–24 Portable API Presentation Procedures

acmsdi_check_version

3.12 Version-Checking Routines
The following sections describe the version-checking routines. Version checking
is supported on systems using FORM I/O tasks (see Compaq TP Desktop
Connector for ACMS Client Application Programming Guide).

3.12.1 acmsdi_check_version

TP Desktop Connector client services call this routine whenever they receive
an ENABLE request from the TP Desktop Connector gateway. The action
routine can check the version string passed from the acmsdi_get_version
routine on the submitter node and notify the desktop user of any inconsistency.

You request version checking during a sign-in (see Compaq TP Desktop
Connector for ACMS Client Application Programming Guide).

Format

acmsdi_check_version (form_file,
version)

Parameters

form_file
Type: char *
Access: read
Mechanism: by reference
Specification of a form file or a request library from the ACMS task group
definition.

version
Type: char *
Access: read
Mechanism: by reference
Twenty-four bytes containing the version number or date supplied by the
acmsdi_get_version routine on the OpenVMS system.

Portable API Presentation Procedures 3–25

acmsdi_check_version

Return Status

The TP Desktop Connector service checks the status value returned and
expects a valid OpenVMS status. If a failure status is returned, the TP
Desktop Connector run-time system terminates the ENABLE request.

If the version-checking routine determines that software is not synchronized, it
does one of the following:

• Returns an OpenVMS failure status that cancels the ENABLE request.

• Sets a flag that causes the acmsdi_enable routine to terminate with a
failure status.

3–26 Portable API Presentation Procedures

acmsdi_get_version

3.12.2 acmsdi_get_version

The TP Desktop Connector gateway calls this routine on the OpenVMS system
whenever it receives an ENABLE request from the EXC. The action routine
can return a version string that is then passed to the desktop client program,
allowing a version comparison at the desktop system.

This service can also be used in a forced nonblocking environment, see
Section 4.3. On a Windows system, version checking occurs during enable
processing.

Format

acmsdi_get_version (form_file,
version)

Parameters

form_file
Type: char *
Access: read
Mechanism: by reference
Form file or request library specification from the ACMS task group definition.

version
Type: char *
Access: write
Mechanism: by reference
Twenty-four bytes in which the routine writes the version number or date
associated with the specified form file. The version parameter is passed to the
desktop client program to be checked in the acmsdi_check_version routine.

Return Status

Always returns SUCCESS status.

Portable API Presentation Procedures 3–27

4
Forced Nonblocking Client Services

This chapter describes the forced nonblocking interface between the TP
Desktop Connector gateway and customer-written procedures.

4.1 Summary of Forced Nonblocking Procedures
Forced nonblocking client services extend the Portable API to support
development tools that do not provide for callbacks, data pointers or consistent
memory locations for data. (Such tools include Visual Basic and others.) You
create a forced nonblocking session when you specify the ACMSDI_OPTION,
ACMSDI_OPT_NONBLK, with the acmsdi_sign_in service and do not supply
a completion address. In this session, all calls are nonblocking. Table 4–1
summarizes the forced nonblocking calls to the TP Desktop Connector API. For
more information on forced nonblocking calls, refer to Compaq TP Desktop
Connector for ACMS Client Application Programming Guide.

Table 4–1 Summary of Forced Nonblocking Procedures

Customer-Supplied Procedure Description

acmsdi_complete_call Returns the completion status. Can also provide
the ACMS status message and task argument
workspaces.

acmsdi_bind_enable_args Retrieves write-only arguments in an enable
exchange step request.

acmsdi_bind_enable_args Retrieves write-only arguments in an enable
exchange step request.

acmsdi_bind_msg Sends or acquires the message text in TDMS Read
or Write exchanges, respectively, or acquires the
prompt text of a TDMS Read exchange.

(continued on next page)

Forced Nonblocking Client Services 4–1

Table 4–1 (Cont.) Summary of Forced Nonblocking Procedures

Customer-Supplied Procedure Description

acmsdi_bind_receive_recs Services receive and transceive exchange steps,
which send data from the desktop client to the TP
Desktop Connector gateway.

acmsdi_bind_request_args Provides the client application with the request
name and identifies the set of workspaces in a
TDMS request exchange step.

acmsdi_bind_request_wksps Services a TDMS exchange step, which transfers
data between a desktop client and the TP Desktop
Connector gateway.

acmsdi_bind_send_args Provides the client application with the send record
identifier and identifies the records to be received in
a send exchange step.

acmsdi_bind_send_recs Services send and transceive exchange steps, which
send data from the TP Desktop Connector gateway
to the desktop client.

acmsdi_bind_session_id Sends the forms session identifier to the TP Desktop
gateway during an enable exchange step.

acmsdi_bind_transceive_args Provides the client application with the send and
receive record identifiers and identifies the records
to be passed in a transceive exchange step.

acmsdi_poll Returns the message type of a message from the
back end and a pointer to the call context from the
client application.

4.1.1 ACMSDI_FORM_RECORD_BIND Structure
Defined in the ACMSDI.H and ACMSDI.BAS files, the
ACMSDI_FORM_RECORD type declares form records and shadow records
transferred. The code in Example 4–1 defines the ACMSDI_FORM_RECORD_
BIND type for the C language.

4–2 Forced Nonblocking Client Services

Example 4–1 Form Record Definition

typedef struct {
unsigned int buffer_len; /** length of caller’s record buffer **/
unsigned int rec_len; /** actual length of the form record **/
void *data_record; /** pointer to data record **/
unsigned int shadow_buffer_len; /** length of callers shadow buffer **/
unsigned int shadow_rec_len; /** actual length of shadow record **/
void *shadow_record; /** pointer to shadow record **/

} ACMSDI_FORM_RECORD_BIND;

4.1.2 ACMSDI_WORKSPACE_BIND Structure
Defined in the ACMSDI.H file, the ACMSDI_WORKSPACE_BIND type
declares workspaces passed to tasks using the acmsdi_call_task service and
workspaces passed from tasks to acmsdi_request presentation procedures.

The code in Example 4–2 defines the ACMSDI_WORKSPACE_BIND type
structure.

Example 4–2 Workspace Structure Definition

typedef struct {
unsigned int buffer_len; /** length of caller’s buffer **/
unsigned int wksp_len; /** actual length of the workspace **/
void *data; /** pointer to workspace **/

} ACMSDI_WORKSPACE_BIND;

Forced Nonblocking Client Services 4–3

acmsdi_complete_call

4.2 acmsdi_complete_call

The acmsdi_complete_call service is a required call that obtains completion
arguments for acsmdi_call_task, acsmdi_sign_in, acmsdi_sign_out, and
acmsdi_cancel services. When acmsdi_poll detects completion,
acmsdi_complete_call can obtain the completion status for these services. The
acmsdi_complete_call can also obtain the ACMS status message and task
argument workspaces sent from the back end for the acmsdi_call_task service.

Format

acmsdi_complete_call (submitter_id,
completion_status,
[call_id],
[status_message],
[workspaces])

Parameters

submitter_id
Type: ACMSDI_SUBMITTER_ID
Access: read
Mechanism: by reference
The submitter_id returned by the acmsdi_sign_in service.

completion_status
Type: int
Access: write
Mechanism: by reference
The final status of the TP Desktop Connector client service. When the service
completes, the completion_status parameter contains the final status. For the
list of return status values, see Table 4–2.

When a task is canceled, the TP Desktop Connector gateway reports a specific
error, where possible. If the gateway cannot convert a ACMS error to a specific
TP Desktop Connector status, it returns ACMSDI_TASK_FAILED to the
desktop client program.

call_id
Type: ACMSDI_CALL_ID *
Access: read
Mechanism: by reference

4–4 Forced Nonblocking Client Services

acmsdi_complete_call

A structure defined in the ACMSDI.H include file into which the acmsdi_call_
task service writes a newly created call identification, a handle used by the
TP Desktop Connector client services to identify an active call for a submitter.
This parameter is required when completing an acmsdi_call_task service.

status_message
Type: char *
Access: write
Mechanism: by reference
A buffer to receive the message text associated with the task completion status.
The message text returned is either the text associated with a TP Desktop
Connector error or the message text returned from a ACMS application.
Required length is 80. You use this parameter only for the acmsdi_call_task
service completion.

Caution

If the full space is not allocated, the TP Desktop Connector client
services write past the end of the allocated string and can cause the
application to fail. Ensure that the desktop client program allocates
the required length of space.

workspaces
Type: ACMSDI_WORKSPACE or ACMSDI_WORKSPACE_OPT array
Access: write
Mechanism: by reference
One or more optional workspaces passed to the application from the back end.
You need to typecast your array to void *. The workspaces must be specified in
the same order as they are declared in the task definition, and must match the
number specified in the workspace_count parameter. If you use the ACMSDI_
WORKSPACE_OPT type, you must set the call_options parameter to allow
unidirectional workspaces.

Because buffers may have been relocated by memory management, workspace
pointers in the structures must be renewed using the acmsdi_return_pointer
call just prior to issuing acmsdi_complete_call.

You use this parameter only for the acmsdi_call_task service completion.

Forced Nonblocking Client Services 4–5

acmsdi_complete_call

Return Status

The status values returned by the acmsdi_complete_call procedure are
described in Table 4–2.

Table 4–2 acmsdi_complete_call Return Status Values

Status Description

ACMSDI_EXCHACTV Request is invalid while exchange step
processing is active.

ACMSDI_INSUFPRM Insufficient parameters.
ACMSDI_INTERNAL Internal TP Desktop Connector error.
ACMSDI_INVCALLID Invalid or obsolete call identification.
ACMSDI_INVSUBID Invalid or obsolete submitter identification.
ACMSDI_MIXEDMODE Not a forced nonblocking session.
ACMSDI_NORMAL Normal successful completion.
ACMSDI_WRONG_STATE Session is in the wrong state for this call.

4–6 Forced Nonblocking Client Services

acmsdi_bind_enable_args

4.3 acmsdi_bind_enable_args

The client application can call this service whenever acmsdi_poll returns
ACMSDI_ENABLE_EXCH from the TP Desktop Connector gateway on the
OpenVMS system. This service retrieves the write-only arguments passed from
the TP Desktop Connector client services. This is an optional call.

Format

acmsdi_bind_enable_args (submitter_id,
file_specification,
form_specification,
form_version,
forms_print_file,
forms_language,
call_id)

Parameters

submitter_id
Type: ACMSDI_SUBMITTER_ID
Access: read
Mechanism: by reference
The value returned by the acmsdi_sign_in service (see Section 2.11).

file_specification
Type: char *
Access: write
Mechanism: by reference
The form file specification from the ACMS task group definition. Refer to
Compaq TP Desktop Connector for ACMS Client Application Programming
Guide for guidelines on specifying the form file specification.

form_specification
Type: char *
Access: write
Mechanism: by reference
The form name specified in the exchange step in the ACMS task definition.
Refer to Compaq TP Desktop Connector for ACMS Client Application
Programming Guide for guidelines on specifying the form name.

Forced Nonblocking Client Services 4–7

acmsdi_bind_enable_args

form_version
Type: char *
Access: write
Mechanism: by reference
Twenty-four bytes containing the version number or date supplied by the
acmsdi_get_version routine on the OpenVMS system. The argument provides
for version checking by the client application. (The acmsdi_check_version is
not available in a forced nonblocking session.)

forms_print_file
Type: char *
Access: write
Mechanism: by reference
The DECforms specification for the user in ACMSUDF.DAT.

forms_language
Type: char *
Access: write
Mechanism: by reference
The DECforms specification for the user in ACMSUDF.DAT.

call_id
Type: ACMSDI_CALL_ID *
Access: write
Mechanism: by reference
A pointer to the call identification returned by the acmsdi_call_task service. To
identify the original task call, compare this pointer with a reference pointer to
the call identifier obtained by acmsdi_return_pointer.

Return Status

The status values returned by the acmsdi_bind_enable_args procedure are
described in Table 4–3.

4–8 Forced Nonblocking Client Services

acmsdi_bind_enable_args

Table 4–3 acmsdi_bind_enable_args Return Status Values

Status Description

ACMSDI_INSUFPRM Insufficient parameters.
ACMSDI_INVSUBID Invalid or obsolete submitter identification.
ACMSDI_MIXEDMODE Not a forced nonblocking session.
ACMSDI_NORMAL Normal successful completion.
ACMSDI_WRONG_BIND Trying to bind arguments for an exchange that

is not in progress.

Forced Nonblocking Client Services 4–9

acmsdi_bind_msg

4.4 acmsdi_bind_msg

The client application can call this service when acmsdi_poll returns ACMSDI_
TDMS_READ_EXCH (a TDMS Read exchange) or ACMSDI_TDMS_WRITE_
EXCH (a TDMS Write exchange) from the TP Desktop Connector gateway on
the host OpenVMS system. It performs one of the following functions:

• acquires the prompt text, if any, associated with a TDMS Read exchange

• sends the message text associated with a TDMS Read exchange.

• acquires the message text associated with a TDMS Write exchange.

If the prompt or message text is being acquired, the text is truncated when
the buffer supplied is not large enough to hold the entire text. If the buffer is
larger than the text being acquired, the text is left-justified in the buffer and
right-filled with blank characters.

This is an optional call, that is, you are not required to issue this call.
However, if you do not issue this call you will not be able to process arguments
received from the server or to send arguments back to the server.

Format

acmsdi_bind_msg (submitter_id,
direction,
length,
text,
call_id)

Parameters

submitter_id
Type: ACMSDI_SUBMITTER_ID
Access: read
Mechanism: by reference
The value returned by the acmsdi_sign_in service.

direction
Type: short int
Access: read
Mechanism: by value
The value indicates which direction the text is being sent. A value of 1
indicates that the prompt text from a TDMS Read exchange or the message
text from a TDMS Write exchange is being copied into the application’s memory

4–10 Forced Nonblocking Client Services

acmsdi_bind_msg

from ACMS. A value of 0 indicates that the message text for a TDMS Read
exchange is being copied to ACMS from the application’s memory.

length
Type: short int
Access: read
Mechanism: by value
The length of the text being sent or the length of the buffer to receive the text;
specifically one of the following:

• the length of the buffer in the application’s memory which is to receive the
prompt text for a TDMS Read exchange.

• the length of the message text being sent to ACMS for a TDMS Read
exchange.

• the length of the buffer in the application’s memory which is to receive the
message text for a TDMS Write exchange.

text
Type: char
Access: read/write
Mechanism: by reference
The text string being sent to ACMS or the buffer which is to hold the text
string being acquired from ACMS.

call_id
Type: ACMSDI_CALL_ID *
Access: write
Mechanism: by reference
Pointer to the call identification returned by the acmsdi_call_task service. To
identify the original task call, compare this pointer with a reference pointer to
the call identifier obtained by acmsdi_return_pointer.

Return Status

This function returns an int value representing a valid TP Desktop Connector
status code as defined in ACMSDI.H and described in Table 4–4.

Forced Nonblocking Client Services 4–11

acmsdi_bind_msg

Table 4–4 acmsdi_bind_msg Return Status Values

Status Description

ACMSDI_INSUFPRM Insufficient parameters.
ACMSDI_INVSUBID Invalid or obsolete submitter identification.
ACMSDI_MIXEDMODE Not a forced nonblocking session call.
ACMSDI_NORMAL Normal successful completion.
ACMSDI_WRONG_BIND Trying to bind arguments for an exchange that

is not in progress.

4–12 Forced Nonblocking Client Services

acmsdi_bind_receive_args

4.5 acmsdi_bind_receive_args

The client application can call this service whenever an acmsdi_poll returns
ACMSDI_RECV_EXCH from the TP Desktop Connector gateway on the
OpenVMS system. This service retrieves the write-only arguments passed from
the TP Desktop Connector client services. This provides the client application
with the receive record identifier and identifies the appropriate set of forms
records to send back to ACMS. See also Section 4.6 for information on calls for
receive forms records and receive control text. This is an optional call.

Format

acmsdi_bind_receive_args (submitter_id,
forms_session,
receive_record_identifier,
receive_record_count,
timeout,
call_id)

Parameters

submitter_id
Type: ACMSDI_SUBMITTER_ID
Access: read
Mechanism: by reference
The submitter_id returned by the acmsdi_sign_in service.

forms_session
Type: ACMSDI_FORMS_SESSION_ID
Access: write
Mechanism: by reference
An identification to associate the session with the form specified in the acmsdi_
enable request (see Section 4.11).

receive_record_identifier
Type: char *
Access: write
Mechanism: by reference
The form record name or record list name specified in the RECEIVE request in
the ACMS task. Refer to Compaq TP Desktop Connector for ACMS Client
Application Programming Guide for guidelines on specifying the form name.

Forced Nonblocking Client Services 4–13

acmsdi_bind_receive_args

receive_record_count
Type: long int
Access: write
Mechanism: by reference
The number of receive record items sent from the ACMS task. The TP Desktop
Connector writes the receive_record_count into this location.

timeout
Type: short int
Access: write
Mechanism: by reference
A timeout value for user input processing sent from the ACMS task. TP
Desktop Connector writes the timeout value into this location.

call_id
Type: ACMSDI_CALL_ID *
Access: write
Mechanism: by reference
A pointer to the call identification returned by the acmsdi_call_task service. To
identify the original task call, compare this pointer with a reference pointer to
the call identifier obtained by acmsdi_return_pointer.

Return Status

The status values returned by the acmsdi_bind_receive_args procedure are
described in Table 4–5.

Table 4–5 acmsdi_bind_receive_args Return Status Values

Status Description

ACMSDI_INSUFPRM Insufficient parameters.
ACMSDI_INVSUBID Invalid or obsolete submitter identification.
ACMSDI_MIXEDMODE Not a forced nonblocking session call.
ACMSDI_NORMAL Normal successful completion.
ACMSDI_WRONG_BIND Trying to bind arguments for an exchange that

is not in progress.

4–14 Forced Nonblocking Client Services

acmsdi_bind_receive_recs

4.6 acmsdi_bind_receive_recs

The client application calls this service to send the client application’s receive
forms record data to the TP Desktop Connector gateway on the OpenVMS
system. Use this service after you have retrieved the exchange step arguments
that identify the forms records to be sent to the TP Desktop Connector gateway.
This service can also be used to send receive control text to the TP Desktop
Connector gateway. This is an optional call.

Format

acmsdi_bind_receive_recs (submitter_id,
receive_control_text_flag,
receive_record)

Parameters

submitter_id
Type: ACMSDI_SUBMITTER_ID
Access: read
Mechanism: by reference
The value returned by the acmsdi_sign_in service (see Section 2.11).

receive_control_text_flag
Type: short integer
Access: read
Mechanism: by value
A value of 1 indicates that receive control text is to be sent to the TP Desktop
Connector gateway. A value of 0 indicates that receive control text is not to be
sent.

receive_record
Type: ACMSDI_FORM_RECORD_BIND array
Access: read
Mechanism: by reference
An array of ACMSDI_FORM_RECORD_BIND structures pointing to buffers
that store application data and shadow records to be sent to the ACMS
task, (see Compaq TP Desktop Connector for ACMS Client Application
Programming Guide). If the send_control_text_flag contains a value of 1, the
first ACMSDI_FORM_RECORD_BIND structure in the array must point to the
receive control text buffer. No shadow record is associated with receive control
text.

Forced Nonblocking Client Services 4–15

acmsdi_bind_receive_recs

Return Status

The status values returned by the acmsdi_bind_receive_recs service are
described in Table 4–6.

Table 4–6 acmsdi_bind_receive_recs Return Status Values

Status Description

ACMSDI_INSUFPRM Insufficient parameters.
ACMSDI_INVSUBID Invalid or obsolete submitter identification.
ACMSDI_MIXEDMODE Not a forced nonblocking session.
ACMSDI_NORMAL Normal successful completion.
ACMSDI_WRONG_BIND Trying to bind arguments for an exchange that

is not in progress.

4–16 Forced Nonblocking Client Services

acmsdi_bind_request_args

4.7 acmsdi_bind_request_args

The client application can call this service whenever acmsdi_poll returns
ACMSDI_REQUEST_EXCH (a TDMS exchange step) from the TP Desktop
Connector gateway on the OpenVMS system. This service retrieves the write-
only arguments passed from the TP Desktop Connector client services. This
provides the client application with the request name and and identifies the
set of workspaces to be received from and then sent back to ACMS. This is an
optional call.

Format

acmsdi_bind_request_args (submitter_id,
request_name,
workspace_count,
call_id)

Parameters

submitter_id
Type: ACMSDI_SUBMITTER_ID
Access: read
Mechanism: by reference
The value returned by the acmsdi_sign_in service (see Section 2.11).

request_name
Type: char *
Access: write
Mechanism: by reference
The name of the TDMS request specified in the ACMS task.

workspace_count
Type: long int
Access: write
Mechanism: by reference
The number of workspaces sent from the ACMS task. TP Desktop Connector
writes this workspace count into this location.

Forced Nonblocking Client Services 4–17

acmsdi_bind_request_args

call_id
Type: ACMSDI_CALL_ID *
Access: write
Mechanism: by reference
The call identification returned by the acmsdi_call_task service. To identify
the original task call, compare this pointer with a reference pointer to the call
identifier obtained by acmsdi_return_pointer.

Return Status

The status values returned by the acmsdi_bind_request_args service are
described in Table 4–7.

Table 4–7 acmsdi_bind_request_args Return Status Values

Status Description

ACMSDI_INSUFPRM Insufficient parameters.
ACMSDI_INVSUBID Invalid or obsolete submitter identification.
ACMSDI_MIXEDMODE Not a forced nonblocking session.
ACMSDI_NORMAL Normal successful completion.
ACMSDI_WRONG_BIND Trying to bind arguments for an exchange that

is not in progress.

4–18 Forced Nonblocking Client Services

acmsdi_bind_request_wksps

4.8 acmsdi_bind_request_wksps

The client application calls this service to copy request workspace data
between the client application and the ACMS during a TDMS exchange.
Use the acmsdi_bind_request_wksps call to copy request workspace data
from TP Desktop Connector gateway to the client application memory. After
modification, use this call again to copy the modified contents back to the TP
Desktop Connector gateway. Use this service after you have retrieved the
exchange step arguments that identify the workspaces from the TP Desktop
Connector gateway. This is an optional call.

Format

acmsdi_enable (submitter_id,
direction,
req_wksp_array)

Parameters

submitter_id
Type: ACMSDI_SUBMITTER_ID
Access: read
Mechanism: by reference
The value returned by the acmsdi_sign_in service (see Section 2.11).

direction
Type: short int
Access: read
Mechanism: by value
The value indicates which direction the workspaces are being sent. A value of
1 indicates that the workspaces are being copied into the application’s memory
from ACMS. A value of 0 indicates that the workspaces are being copied to
ACMS from the application’s memory.

workspaces
Type: ACMSDI_WORKSPACE_BIND array
Access: read/write
Mechanism: by reference
The workspace data sent from the ACMS task. One or more workspace
arguments can be sent from and returned to the task (see Compaq TP
Desktop Connector for ACMS Client Application Programming Guide).

Forced Nonblocking Client Services 4–19

acmsdi_bind_request_wksps

Return Status

The status values returned by the acmsdi_bind_request_wksps service are
described in Table 4–8.

Table 4–8 acmsdi_bind_request_wksps Return Status Values

Status Description

ACMSDI_INSUFPRM Insufficient parameters.
ACMSDI_INVSUBID Invalid or obsolete submitter identification.
ACMSDI_MIXEDMODE Not a forced nonblocking session.
ACMSDI_NORMAL Normal successful completion.
ACMSDI_WRONG_BIND Trying to bind arguments for an exchange that

is not in progress.

4–20 Forced Nonblocking Client Services

acmsdi_bind_send_args

4.9 acmsdi_bind_send_args

The client application can call this service whenever an acmsdi_poll returns
ACMSDI_SEND_EXCH from the TP Desktop Connector gateway on the
OpenVMS system. This service retrieves the write-only arguments passed from
the TP Desktop Connector client services. This provides the client application
with the send record identifier and identifies the set of forms records it receives
from ACMS. See also Section 4.10 for information on calls for send forms
records and send control text. This is an optional call.

Format

acmsdi_bind_send_args (submitter_id,
forms_session,
send_record_identifier,
send_record_count,
timeout,
call_id)

Parameters

submitter_id
Type: ACMSDI_SUBMITTER_ID
Access: read
Mechanism: by reference
The submitter_id returned by the acmsdi_sign_in service.

forms_session
Type: ACMSDI_FORMS_SESSION_ID
Access: write
Mechanism: by reference
An identification that associates the session with the form specified in the
acmsdi_enable request (see Section 4.11).

send_record_identifier
Type: char *
Access: write
Mechanism: by reference
The form record name or record list name specified in the SEND request in
the ACMS task. Refer to Compaq TP Desktop Connector for ACMS Client
Application Programming Guide for guidelines on specifying the form name.

Forced Nonblocking Client Services 4–21

acmsdi_bind_send_args

send_record_count
Type: long int
Access: write
Mechanism: by reference
The number of send record items sent from the ACMS task. TP Desktop
Connector writes the send_record_count into this location.

timeout
Type: short int
Access: write
Mechanism: by reference
A timeout value for user input processing, sent from the ACMS task. TP
Desktop Connector writes the timeout value into this location.

call_id
Type: ACMSDI_CALL_ID *
Access: write
Mechanism: by reference
A pointer to the call identification returned by the acmsdi_call_task service. To
identify the original task call, compare this pointer with a reference pointer to
the call identifier obtained by acmsdi_return_pointer.

Return Status

The status values returned by the acmsdi_bind_send_args procedure are
described in Table 4–9.

Table 4–9 acmsdi_bind_send_args Return Status Values

Status Description

ACMSDI_INSUFPRM Insufficient parameters.
ACMSDI_INVSUBID Invalid or obsolete submitter identification.
ACMSDI_MIXEDMODE Not a forced nonblocking session.
ACMSDI_NORMAL Normal successful completion.
ACMSDI_WRONG_BIND Trying to bind arguments for an exchange that

is not in progress.

4–22 Forced Nonblocking Client Services

acmsdi_bind_send_recs

4.10 acmsdi_bind_send_recs

The client application calls this service to retrieve send forms record data from
the TP Desktop Connector gateway on the OpenVMS system. Use this service
after you have retrieved the exchange step arguments that identify the forms
records required from the TP Desktop Connector gateway. This service can also
be used to retrieve send control text from the TP Desktop Connector gateway.
This is an optional call.

Format

acmsdi_bind_send_recs (submitter_id,
send_control_text_flag,
send_record)

Parameters

submitter_id
Type: ACMSDI_SUBMITTER_ID
Access: read
Mechanism: by reference
The value returned by the acmsdi_sign_in service (see Section 2.11).

send_control_text_flag
Type: short integer
Access: read
Mechanism: by value
A value of 1 indicates that send control text is to be copied from the ACMS
task. A value of 0 indicates that send control text is not to be copied.

send_record
Type: ACMSDI_FORM_RECORD_BIND array
Access: write
Mechanism: by reference
An array of ACMSDI_FORM_RECORD_BIND structures pointing to buffers
containing application data and shadow records sent from the ACMS task (see
Compaq TP Desktop Connector for ACMS Client Application Programming
Guide). If the send_control_text_flag contains a value of 1, the first ACMSDI_
FORM_RECORD_BIND structure in the array must point to the send control
text buffer. There is no shadow record associated with send control text.

Forced Nonblocking Client Services 4–23

acmsdi_bind_send_recs

Return Status

The status values returned by the acmsdi_bind_send_recs service are described
in Table 4–10.

Table 4–10 acmsdi_bind_send_recs Return Status Values

Status Description

ACMSDI_INSUFPRM Insufficient parameters.
ACMSDI_INVSUBID Invalid or obsolete submitter identification.
ACMSDI_MIXEDMODE Not a forced nonblocking session.
ACMSDI_NORMAL Normal successful completion.
ACMSDI_WRONG_BIND Trying to bind arguments for an exchange that

is not in progress.

4–24 Forced Nonblocking Client Services

acmsdi_bind_session_id

4.11 acmsdi_bind_session_id

You can issue the acmsdi_bind_session_id service to send the forms session ID
argument to ACMS during an enable exchange step. This is an optional call.

Format

acmsdi_bind_session_id (submitter_id,
forms_session)

Parameters

submitter_id
Type: ACMSDI_SUBMITTER_ID
Access: read
Mechanism: by reference
The value returned by the acmsdi_sign_in service (see Section 2.11).

forms_session
Type: ACMSDI_FORMS_SESSION_ID
Access: read
Mechanism: by reference
An identification that associates the session with the submitter identification.
The user-written application can use the forms_session parameter to associate
the session with the form specified in the enable request. The TP Desktop
Connector run-time system passes this parameter to subsequent requests to
specify which form to use.

Forced Nonblocking Client Services 4–25

acmsdi_bind_session_id

Return Status

The status values returned by the acmsdi_bind_session_id procedure are
described in Table 4–11.

Table 4–11 acmsdi_bind_session_id Return Status Values

Status Description

ACMSDI_INSUFPRM Insufficient parameters.
ACMSDI_INVSUBID Invalid or obsolete submitter identification.
ACMSDI_MIXEDMODE Not a forced nonblocking session.
ACMSDI_NORMAL Normal successful completion.
ACMSDI_WRONG_BIND Trying to bind arguments for an exchange that

is not in progress.

4–26 Forced Nonblocking Client Services

acmsdi_bind_transceive_args

4.12 acmsdi_bind_transceive_args

The client application can call this service whenever an acmsdi_poll returns
ACMSDI_TRCV_EXCH from the TP Desktop Connector gateway on the
OpenVMS system. This service retrieves the write-only arguments passed from
the TP Desktop Connector client services. This provides the client application
with the send and receive record identifiers and identifies the set of forms
records to be received from and sent to ACMS. See Section 4.6 for information
on calls for receive forms records and receive control text. See Section 4.10 for
information on calls for send forms records and send control text. This is an
optional call.

Format

acmsdi_bind_transceive_args submitter_id,
forms_session,
send_record_identifier,
send_record_count,
receive_record_identifier,
receive_record_count,
timeout,
call_id)

Parameters

submitter_id
Type: ACMSDI_SUBMITTER_ID
Access: read
Mechanism: by reference
The submitter_id returned by the acmsdi_sign_in service.

forms_session
Type: ACMSDI_FORMS_SESSION_ID
Access: write
Mechanism: by reference
An identification to associate the session with the form specified in the acmsdi_
enable request (see Section 4.11).

Forced Nonblocking Client Services 4–27

acmsdi_bind_transceive_args

send_record_identifier
Type: char *
Access: write
Mechanism: by reference
The form record name or record list name specified in the SEND request in
the ACMS task. Refer to Compaq TP Desktop Connector for ACMS Client
Application Programming Guide for guidelines on specifying the form name.

send_record_count
Type: long int
Access: write
Mechanism: by reference
The number of send record items sent from the ACMS task. TP Desktop
Connector writes the send_record_count into this location.

receive_record_identifier
Type: char *
Access: write
Mechanism: by reference
The form record name or record list name specified in the RECEIVE request in
the ACMS task. Refer to Compaq TP Desktop Connector for ACMS Client
Application Programming Guide for guidelines on specifying the form name.

receive_record_count
Type: long int
Access: write
Mechanism: by reference
The number of receive record items sent from the ACMS task. TP Desktop
Connector writes the receive_record_count into this location.

timeout
Type: short int
Access: write
Mechanism: by reference
A timeout value for user input processing, sent from the ACMS task. TP
Desktop Connector writes the timeout value into this location.

call_id
Type: ACMSDI_CALL_ID *
Access: write
Mechanism: by reference
A pointer to the call identification returned by the acmsdi_call_task service. To
identify the original task call, compare this pointer with a reference pointer to
the call identifier obtained by acmsdi_return_pointer.

4–28 Forced Nonblocking Client Services

acmsdi_bind_transceive_args

Return Status

The status values returned by the acmsdi_bind_transceive_args service are
described in Table 4–12.

Table 4–12 acmsdi_bind_transceive_args Return Status Values

Status Description

ACMSDI_INSUFPRM Insufficient parameters.
ACMSDI_INVSUBID Invalid or obsolete submitter identification.
ACMSDI_MIXEDMODE Not a forced nonblocking session.
ACMSDI_NORMAL Normal successful completion.
ACMSDI_WRONG_BIND Trying to bind arguments for an exchange that

is not in progress.

Forced Nonblocking Client Services 4–29

acmsdi_poll

4.13 acmsdi_poll

TP Desktop Connector client programs call this nonblocking service to check
for and process messages sent from a TP Desktop Connector gateway to an
active submitter in the desktop application. The application must periodically
call this service in a forced nonblocking environment to check for completion
of outstanding acmsdi_sign_in, acmsdi_call_task, acmsdi_cancel, and acmsdi_
sign_out requests. The acmsdi_poll call also checks for the arrival of an
exchange step from the back end. (For more information, see Compaq TP
Desktop Connector for ACMS Client Application Programming Guide).

The acmsdi_poll service returns a pointer to the call context acquired from the
user application when the just-completed call was issued. Storage for this 32-
bit integer must exist in the client application’s memory. The client application
can compare this pointer with that returned by the acmsdi_return_pointer
service to identify the completed call. The call context is identified by matching
the values.

Format

acmsdi_poll (submitter_id,
call-context)

Parameters

submitter_id
Type: ACMSDI_SUBMITTER_ID
Access: read
Mechanism: by reference
The submitter_id returned by the acmsdi_sign_in service. The submitter
identifier is used to identify the submitter for which the call is being
issued. The acmsdi_poll service passes the submitter identifier as a read-
only argument. TP Desktop responds with either the message type received
from the back end for that submitter or a return code indicating that there is
no message.

call_context
Type: void *
Access: write
Mechanism: by reference
This call writes the pointer to the call context into this optional parameter.
This context identifies the call message that has arrived from the back end.

4–30 Forced Nonblocking Client Services

acmsdi_poll

For example, if an acmsdi_call_task completion message is sent from the back
end, this is a pointer to the context supplied on the acmsdi_call_task call.

This pointer to a structure in the client application’s memory is treated as
a 32-bit integer. To determine the structure being referenced, the client
application compares this value with the values returned by the acmsdi_
return_pointer service. Because data can be moved by memory management,
acmsdi_return_pointer calls must be issued within the same procedure as the
original call.

Return Status

The status values returned by the acmsdi_poll service are listed in Table 4–13.

Table 4–13 acmsdi_poll Return Status Values

Status Description

ACMSDI_CANCEL_DONE Task cancel call complete.
ACMSDI_DONE Sign-in, sign-out, or task call complete.
ACMSDI_ENABLE_EXCH Enable exchange step has arrived.
ACMSDI_EXCHACTV Request is invalid while exchange step

processing is active.
ACMSDI_EXEC No message from the back-end

available; call still executing.
ACMSDI_INSUFPRM Insufficient or conflicting parameters.
ACMSDI_INVSUBID Invalid or obsolete submitter

identification.
ACMSDI_INTERNAL Internal TP Desktop Connector error.
ACMSDI_MIXEDMODE Not a forced nonblocking session call.
ACMSDI_NOMEMORY Insufficient memory.
ACMSDI_READY No message from the back-end

available; no call executing.
ACMSDI_RECV_EXCH Receive exchange step has arrived.
ACMSDI_REQUEST_EXCH TDMS Request exchange step has

arrived.
ACMSDI_SEND_EXCH Send exchange step has arrived.

(continued on next page)

Forced Nonblocking Client Services 4–31

acmsdi_poll

Table 4–13 (Cont.) acmsdi_poll Return Status Values

Status Description

ACMSDI_SRVDEAD TP Desktop Connector gateway is not
running on the server node, or the
network link has been terminated.

ACMSDI_TDMS_READ_EXCH TDMS Read exchange has arrived
ACMSDI_TDMS_WRITE_EXCH TDMS Write exchange has arrived
ACMSDI_TRCV_EXCH Transceive exchange step has arrived.

4–32 Forced Nonblocking Client Services

5
System Management Service on OpenVMS

This chapter describes the system management service available on
systems running the TP Desktop Connector gateway. The ACMSDI$GET_
SUBMITTER_INFO service returns information about the status of TP
Desktop Connector gateway processing on the submitter node.

System Management Service on OpenVMS 5–1

ACMSDI$GET_SUBMITTER_INFO

5.1 ACMSDI$GET_SUBMITTER_INFO

This service returns information regarding desktop users signed in to the
Compaq ACMS system. The service reports only those users signed in to the
TP Desktop Connector gateway running on the same node as the program
calling the ACMSDI$GET_SUBMITTER_INFO routine. See Compaq TP
Desktop Connector for ACMS Client Application Programming Guide for
coding and building guidelines.

The C-language function prototype and definitions for the item codes are in the
file ACMSDI.H in the ACMSDI$COMMON directory.

The ACMSDI$EXAMPLES directory contains a program, SHOW_DESKTOP_
USERS.EXE, that uses the ACMSDI$GET_SUBMITTER_INFO service, the
source file (.C), and the build command procedure (.COM). See Compaq TP
Desktop Connector for ACMS Client Application Programming Guide for
more information about this program.

Note

A program using the ACMSDI$GET_SUBMITTER_INFO service that
was compiled and linked with TP Desktop Connector Version 3.2 works
with only TP Desktop Connector Version 3.2.

Format

ACMSDI$GET_SUBMITTER_INFO (user_context,
itmlst,
[target_submitter_ID],
[target_desktop_ID],
[target_username])

Parameters

user_context
Type: longword (unsigned)
Access: read write
Mechanism: by reference
A context variable acting as a placeholder while the program reports on
multiple submitters. Before calling ACMSDI$GET_SUBMITTER_INFO
initially, the program must set the user context variable to zero. On

5–2 System Management Service on OpenVMS

ACMSDI$GET_SUBMITTER_INFO

ACMSDI$GET_SUBMITTER_INFO calls, if the service returns the status
ACMSDI$_NORMAL, the program does not modify the variable value.

itmlst
Type: longword (unsigned)
Access: read
Mechanism: by reference
Item list describing the information to be reported. Itmlst is the address
of a list of item descriptors, each of which specifies or controls an item of
information to be returned. The list of item descriptors is terminated by an
item code of zero.

Figure 5–1 shows the item descriptor format.

Figure 5–1 Submitter Item Descriptor Format

MR-5219-AD

31 16 15 0

Item Code Buffer Length

Buffer Address

Return Length Address

The valid item codes are described in Table 5–1.

Table 5–1 Submitter Information Item Codes

Code Name

ACMSDI$K_LATEST_MSG_TIME
Action: Returns the OpenVMS absolute date and time at which the

desktop submitter most recently sent a message to the TP
Desktop Connector gateway.

Description: The buffer address field of the item descriptor is the address
of a quadword in which the ACMSDI$GET_SUBMITTER_
INFO service writes this time.

(continued on next page)

System Management Service on OpenVMS 5–3

ACMSDI$GET_SUBMITTER_INFO

Table 5–1 (Cont.) Submitter Information Item Codes

Code Name

ACMSDI$K_DESKTOP_ID
Action: Returns the desktop gateway submitter identification

assigned internally by the TP Desktop Connector gateway.
Description: The buffer address field in the item descriptor is the address

of a two-longword structure. ACMSDI$GET_SUBMITTER_
INFO writes the desktop gateway submitter number into the
first field in the target_desktop_ID array, and the instance
into the second field. These two values make up the complete
desktop gateway submitter identification.

ACMSDI$K_NODENAME
Action: Returns the name of the network node from which the desktop

submitter is signed in to the ACMS system.
Description: The buffer address field in the item descriptor points to a

user-provided buffer into which ACMSDI$GET_SUBMITTER_
INFO writes the name. The return length address field of the
item descriptor points to a word into which ACMSDI$GET_
SUBMITTER_INFO writes the length of the node name in
bytes.

ACMSDI$K_SIGN_IN_TIME
Action: Returns the OpenVMS absolute date and time at which the

desktop submitter signed in to the TP Desktop Connector
gateway.

Description: The buffer address field of the item descriptor is the address
of a quadword in which the ACMSDI$GET_SUBMITTER_
INFO service writes this time.

(continued on next page)

5–4 System Management Service on OpenVMS

ACMSDI$GET_SUBMITTER_INFO

Table 5–1 (Cont.) Submitter Information Item Codes

Code Name

ACMSDI$K_SUBMITTER_ID
Action: Returns the ACMS submitter_ID of the desktop submitter.
Description: The buffer address field in the item descriptor is the address

in which the ACMSDI$GET_SUBMITTER_INFO service
writes the submitter_ID.

ACMSDI$K_TRANSPORT
Action: Returns an enumerated longword value corresponding to the

name of the transport used for the submitter sign-in.
Description: The buffer address field of the item descriptor is the address

of a longword in which ACMSDI$GET_SUBMITTER_INFO
writes this value.

ACMSDI$K_USERNAME
Action: Returns the user name under which the desktop submitter is

signed in.
Description: The buffer address field in the item descriptor points to

a user-provided buffer into which the ACMSDI$GET_
SUBMITTER_INFO service writes the user name. The return
length address field of the item descriptor points to a word
into which the ACMSDI$GET_SUBMITTER_INFO service
writes the length of the user name in bytes.

target_submitter_ID
Type: unsigned Long Int
Access: read
Mechanism: by reference
The ACMS submitter identification as displayed in the ACMS/SHOW USERS
command.

target_desktop_ID
Type: unsigned Long Int [2]
Access: read
Mechanism: by reference
The desktop gateway submitter identification, ACMS$DESKTOP_ID, on which
to report. The first long int contains the desktop gateway submitter number
and the second long int contains the instance.

System Management Service on OpenVMS 5–5

ACMSDI$GET_SUBMITTER_INFO

target_username
Type: character string descriptor
Access: read
Mechanism: by descriptor
The user name on which to report.

Return Status

The status values returned by the ACMSDI$GET_SUBMITTER_INFO service
are listed in Table 5–2.

Table 5–2 ACMSDI$GET_SUBMITTER_INFO Return Status Values

Status Description

ACMSDI$_ILLITEMCODE An illegal item code appears in the item list.
No information is reported.

ACMSDI$_NOMATCHSUBS No matching submitter. No submitter matches
the selection criteria.

ACMSDI$_NOMORESUBS No more submitters to report. No information
was reported by this call, because no more
submitters match the selection criteria. The
snapshot is consistent with the current set of
submitters.

ACMSDI$_NORMAL Normal successful completion. Information
specified by the item list has been reported
about a matching submitter. Additional
matching submitters can remain to be
reported.

ACMSDI$_OBSINFOREP Obsolete information reported. No information
was returned, because no more submitters
match the selection criteria. The snapshot
is not consistent with the current set of
submitters.

5–6 System Management Service on OpenVMS

6
Data Compression Monitor Commands

This chapter provides a description of the Data Compression Monitor
commands that you can use to monitor compression activity. You can shorten
all commands and keywords to the smallest unambiguous abbreviation, which
is at most three characters.

See Compaq TP Desktop Connector for ACMS Client Application
Programming Guide for more information on using the Data Compression
Monitor.

Data Compression Monitor Commands 6–1

EXIT

6.1 EXIT

This command exits the Compression Monitor Activity reporting program.

Format

EXIT

6–2 Data Compression Monitor Commands

HELP

6.2 HELP

Displays the help file, SYS$HLP:ACMSDI$DCM_REPORTER_HLP.TXT.

Format

HELP

Data Compression Monitor Commands 6–3

LIST

6.3 LIST

This command generates a report, which you can display on the screen or write
to a file.

Format

LIST [/qualifier]

Qualifiers

/APPLICATION=application
Allows you to select detailed records associated with the application(s)
specified. The application specification can be an ACMS application name
or a list of application names. If you specify a list, separate the names with
a comma and enclose the list within parentheses. The asterisk (*) wild card
character is permitted in application name specifications. If you do not specify
/APPLICATION, records for all applications are selected unless you set default
application(s) with the SET command.

Specifying /APPLICATION with the LIST command overrides any default
applications that you previously set. Specifying /APPLICATION=* on the LIST
command selects records for all applications, overriding any defaults that are
set.

/BEFORE[=date-time]
Selects detailed records that were written before the date and time specified.
The date-time specification is optional. If you omit it, records written earlier
than the current date are selected. Specify date and time in the OpenVMS
standard format dd-mmm-yyyy:hh-mm-ss.

/DETAILS
Specifies that the report should contain details of all calls. This is the default,
unless you specify /SUMMARY in the SET command. Specifying /DETAILS
with the LIST command overrides SET/SUMMARY.

/INPUT=file
Specifies a source file from which records for the report are to be read. If you
do not specify a source file, the latest version of SYS$ERRORLOG:
ACMSDI$COMPRESSION.LOG is used, unless you have previously specified
a default input file using the SET command. To override a default input file
setting, use /INPUT=* on the LIST command.

6–4 Data Compression Monitor Commands

LIST

/NODE=(node-identifier[,...])
Selects detailed records associated with task calls originating from the client
node(s) specified. The node-identifier can be a DECnet node name, TCP/IP
address, or a list of same. If you specify a list, separate the identifiers with
commas and enclose the list within parentheses. If you specify a single
identifier, you do not need the comma and parentheses. The asterisk (*) wild
card character is permitted in node identifiers. If you do not specify /NODE,
records for all nodes are selected unless you set default node(s) with the SET
command.

Specifying /NODE with the LIST command overrides any default nodes that
you may have set. Specifying /NODE=* with the LIST command specifies that
records for all nodes are to be selected, overriding any defaults that you may
have set.

/OUTPUT=file
Directs the report to a file. The file specification must be a valid OpenVMS
file specification. Displaying the report on the screen is the default, unless you
specify the /OUTPUT qualifier with the SET command. Specifying /OUTPUT=*
with the LIST command, displays any reports on the screen, overriding any
defaults that may be set.

/SINCE[=date-time]
Selects detailed records that were written on or after the date and time
specified. The date-time specification is optional. If you omit it, the records
written on the current date are selected. Specify the date and time in the
OpenVMS format, dd-mmm-yyyy:hh:mm:ss.

/SUMMARY
Specifies that a summary report, omitting details, be written. The default is
a detailed report containing all calls be written. You can set your own default
with the SET command. Summary reports show totals of the uncompressed
workspace sizes, the compressed workspace sizes, and the number of bytes
saved by data compression.

/TASK=task-name
Selects detailed records associated with ACMS task calls for the task name(s)
specified, including any exchange steps associated with the task calls. The
task-name specification can be a valid ACMS task name or a list of task names.
If you specify a list, separate the names with a comma and enclose the list
within parentheses. You can use the asterisk (*) wild-card character in the
task-name specification. If you do not specify the /TASK qualifier, records
for all tasks are selected, unless you have specified another default with the
SET command. If you specify /TASK=* with the LIST command, records for

Data Compression Monitor Commands 6–5

LIST

all tasks are selected. If tasks specified are part of more than one ACMS
application, matching task details for all applications are selected, unless you
narrow the selection further with the /APPLICATION qualifier.

/USER=user-identifier
Selects detailed records associated with ACMS task calls executed for the
signed-in user session(s) specified. The user-identifier specification can be
a user identifier or a list of user identifiers. If you specify a list, separate
the identifiers with a comma and enclose the list within parentheses. The
asterisk (*) wild card character is permitted in user identifier specifications. If
/USER is not specified, records for all users are selected, unless default user
identifier(s) have been selected with the SET command. Specifying /USER on
the LIST command overrides any default user identifiers that may have been
set. Specifying /USER=* on the LIST command specifies that records for all
user sessions are selected, overriding any defaults that may have been set.

Examples

1. /APPLICATION=LARRY

Selects records for application LARRY.

2. /APPLICATION=(KURT,SARAH)

Selects records for applications KURT and SARAH.

3. /APPLICATION=*DEC*

Selects records for applications that contain DEC in their names.

4. /BEFORE

Selects records written yesterday and earlier.

5. /BEFORE=12-JUN

Selects records written prior to June 12th of this year.

6. /BEFORE=16:30

Selects records written prior to today at 4:30 p.m.

7. /BEFORE=12-JUN-2002:9:15:30

Selects records written prior to 30 seconds after 9:15 a.m. on June 12,
2002.

6–6 Data Compression Monitor Commands

LIST

8. /NODE=ALPHA1

Selects all records for task calls from node ALPHA1.

9. /NODE=(LION,TIGER,PANTHR)

Selects all records for task calls from nodes LION, TIGER, and PANTHR.

10. /NODE=*CPQ*

Selects all records for task calls from nodes that contain CPQ in their
names.

11. /OUTPUT=DAILY_COMPRESSION.REP

Directs the report to a file named DAILY_COMPRESSION.REP in the
current directory.

12. /SINCE

Selects records written today (after midnight yesterday, or 0:00 today).

13. /SINCE=13-JUN

Selects records written after midnight, June 12th of the current year.

14. /SINCE=11:25

Selects records written at or after 11:25 this morning.

15. /SINCE=12-OCT-2001:8:0:45

Selects records written at or after 45 seconds after 8 a.m. on October 12,
2001.

16. /TASK=HYACINTH

Selects records for task calls for ACMS task HYACINTH.

17. /TASK=(APRIL,MAY,JUNE)

Selects records for task calls for ACMS tasks APRIL, MAY, and JUNE.

18. /TASK=*DEF

Selects all records for task calls associated with tasks with names ending
in DEF.

Data Compression Monitor Commands 6–7

LIST

19. /USER=MAIN-PLANT

Selects all records for sessions established for user identifier MAIN-PLANT.

20. /USER=(SCHMIDT,MASELLA,RAJIV,SWEENEY)

Selects all records for sessions established for user identifiers SCHMIDT,
MASELLA, RAJIV, and SWEENEY.

21. /USER=SITE3*

Selects all records for sessions established for user identifiers that begin
with SITE3.

6–8 Data Compression Monitor Commands

RENEW

6.4 RENEW

This command closes the current log file and opens a new one. The new log file
is a new version of ACMSDI$COMPRESSION.LOG.

Format

RENEW

Data Compression Monitor Commands 6–9

SELECT

6.5 SELECT

This command selects records from the log file and writes them to a file from
which you can generate customized reports. If you do not specify a qualifier, all
records are selected.

Format

SELECT file [/qualifier]

Parameters

file
Is a required parameter that specifies the name of the file to which the selected
records are written.

Qualifiers

/APPLICATION=application
Allows you to select detailed records associated with the application(s)
specified. The application specification can be an ACMS application name
or a list of application names. If you specify a list, separate the names with
a comma and enclose the list within parentheses. The asterisk (*) wild card
character is permitted in application name specifications. If you do not specify
/APPLICATION, records for all applications are selected unless you set default
application(s) with the SET command.

Specifying /APPLICATION with the SELECT command overrides any default
applications that you previously set. Specifying /APPLICATION=* on the
SELECT command selects records for all applications, overriding any defaults
that are set.

/BEFORE[=date-time]
Selects detailed records that were written before the date and time specified.
The date-time specification is optional. If you omit it, records written earlier
than the current date are selected. Specify date and time in the OpenVMS
standard format dd-mmm-yyyy:hh-mm-ss.

/INPUT=file
Specifies a source file from which records for the report are to be read. If you
do not specify a source file, the latest version of SYS$ERRORLOG:
ACMSDI$COMPRESSION.LOG is used, unless you have previously specified

6–10 Data Compression Monitor Commands

SELECT

a default input file using the SET command. To override a default input file
setting, use /INPUT=* on the LIST command.

/NODE=(node-identifier[,...])
Selects detailed records associated with task calls originating from the client
node(s) specified. The node-identifier can be a DECnet node name, TCP/IP
address, or a list of same. If you specify a list, separate the identifiers with
commas and enclose the list within parentheses. If you specify a single
identifier, you do not need the comma and parentheses. The asterisk (*) wild
card character is permitted in node identifiers. If you do not specify /NODE,
records for all nodes are selected unless you set default node(s) with the SET
command.

Specifying /NODE with the SELECT commands overrides any default nodes
that you may have set. Specifying /NODE=* with the SELECT commands
specifies that records for all nodes are to be selected, overriding any defaults
that you may have set.

/SINCE[=date-time]
Selects detailed records that were written on or after the date and time
specified. The date-time specification is optional. If you omit it, the records
written on the current date are selected. Specify the date and time in the
OpenVMS format, dd-mmm-yyyy:hh:mm:ss.

/TASK=task-name
Selects detailed records associated with ACMS task calls for the task name(s)
specified, including any exchange steps associated with the task calls. The
task-name specification can be a valid ACMS task name or a list of task names.
If you specify a list, separate the names with a comma and enclose the list
within parentheses. You can use the asterisk (*) wild-card character in the
task-name specification. If you do not specify the /TASK qualifier, records
for all tasks are selected, unless you have specified another default with the
SET command. If you specify /TASK=* with the SELECT command, records
for all tasks are selected. If tasks specified are part of more than one ACMS
application, matching task details for all applications are selected, unless you
narrow the selection further with the /APPLICATION qualifier.

/USER=user-identifier
Selects detailed records associated with ACMS task calls executed for the
signed-in user session(s) specified. The user-identifier specification can be
a user identifier or a list of user identifiers. If you specify a list, separate
the identifiers with a comma and enclose the list within parentheses. The
asterisk (*) wild card character is permitted in user identifier specifications. If
/USER is not specified, records for all users are selected, unless default user

Data Compression Monitor Commands 6–11

SELECT

identifier(s) have been selected with the SET command. Specifying /USER
with the SELECT command overrides any default user identifiers that may
have been set. Specifying /USER=* with the SELECT command specifies that
records for all user sessions are selected, overriding any defaults that may
have been set.

6–12 Data Compression Monitor Commands

SET

6.6 SET

This command sets default values for the LIST and SELECT commands. All
qualifiers, except /BEFORE and /SINCE, can have a default value. You can
use the SHOW command to display the current default settings. When you set
a default, it applies to all reports you request with the LIST command and to
all records you select with the SELECT command. However, you can override
these default settings on the command line by specifying certain qualifiers.

Format

SET /qualifier

Qualifiers

/APPLICATION=application
Allows you to select detailed records associated with the application(s)
specified. The application specification can be an ACMS application name
or a list of application names. If you specify a list, separate the names with
a comma and enclose the list within parentheses. The asterisk (*) wild card
character is permitted in application name specifications. If you do not specify
/APPLICATION, records for all applications are selected.

/DETAILS
This default is applicable to the LIST command only. It specifies that the
report is to contain detailed information for all calls. This is the standard
default.

/INPUT=file
Specifies a source file from which records for the report are to be read. If you
do not specify a source file, the latest version of SYS$ERRORLOG:
ACMSDI$COMPRESSION.LOG is used, unless you have previously specified
a default input file using the SET command. To override a default input file
setting, use /INPUT=* on the LIST command.

/NODE=(node-identifier[,...])
Selects detailed records associated with task calls originating from the client
node(s) specified. The node-identifier can be a DECnet node name, TCP/IP
address, or a list of same. If you specify a list, separate the identifiers with
commas and enclose the list within parentheses. If you specify a single
identifier, you do not need the comma and parentheses. The asterisk (*) wild
card character is permitted in node identifiers.

Data Compression Monitor Commands 6–13

SET

/OUTPUT=file
Directs the report to a file. The file specification must be a valid OpenVMS
file specification. Displaying the report on the screen is the default, unless you
specify the /OUTPUT qualifier with the SET command. Specifying /OUTPUT=*
with the LIST command, displays any reports on the screen, overriding any
defaults that may be set.

/SUMMARY
Specifies that a summary report, omitting details, be written. The default is
a detailed report containing all calls be written. You can set your own default
with the SET command. Summary reports show totals of the uncompressed
workspace sizes, the compressed workspace sizes, and the number of bytes
saved by data compression.

/TASK=task-name
Selects detailed records associated with ACMS task calls for the task name(s)
specified, including any exchange steps associated with the task calls. The
task-name specification can be a valid ACMS task name or a list of task
names. If you specify a list, separate the names with a comma and enclose
the list within parentheses. You can use the asterisk (*) wild-card character
in the task-name specification. If you specify /TASK=*, records for all tasks
are selected. If tasks specified are part of more than one ACMS application,
matching task details for all applications are selected, unless you narrow the
selection further with the /APPLICATION qualifier.

/USER=user-identifier
Selects detailed records associated with ACMS task calls executed for the
signed-in user session(s) specified. The user-identifier specification can be a
user identifier or a list of user identifiers. If you specify a list, separate the
identifiers with a comma and enclose the list within parentheses. The asterisk
(*) wild card character is permitted in user identifier specifications. Specifying
/USER=*, selects records for all users.

6–14 Data Compression Monitor Commands

SHOW

6.7 SHOW

This command displays the default values for qualifiers of the LIST and
SELECT commands, which you have set with the SET command. All command
qualifiers, except /BEFORE and /SINCE, can have a default value. Specifying
SHOW without any qualifiers displays all defaults.

Format

SHOW [/qualifier]

Qualifiers

/APPLICATION
Displays the default for /APPLICATION qualifier.

/DETAILS
Displays /DETAILS if /DETAILS is the default; displays /SUMMARY if
/SUMMARY is the default. /DETAILS and /SUMMARY are mutually exclusive.

/INPUT
Displays the default for the /INPUT qualifier.

/NODE
Displays the default for the /NODE qualifier.

/OUTPUT
Displays the default for the /OUTPUT qualifier.

/SUMMARY
Displays /SUMMARY if /SUMMARY is the default; displays /DETAILS if
/DETAILS is the default. /SUMMARY and /DETAILS are mutually exclusive.

/TASK
Displays the default for the /TASK qualifier.

/USER
Displays the default for the /USER qualifier.

Data Compression Monitor Commands 6–15

A
Compaq ACMS System Status Values

Table A–1 lists the ACMS system status values and their corresponding
numeric values as defined in ACMSDI.H and returned in the err2 parameter,
with corresponding symbols.

Table A–1 ACMS System Status Values

Symbol Value Text

ACMSDI_NORMAL 0 Normal completion

ACMSDI_APPLDEAD –3001 ACMS application not started

ACMSDI_CALLACTV –3002 Call active — cannot start new
operation

ACMSDI_INSUFPRM –3003 Insufficient parameters

ACMSDI_INTERNAL –3004 Internal error

ACMSDI_INVCALLID –3005 Invalid call identification

ACMSDI_INVLOGIN –3006 Invalid login attempt

ACMSDI_INVOPTION –3007 Invalid submitter option

ACMSDI_INVSUBID –3008 Invalid submitter identification

ACMSDI_MIXEDMODE –3009 Using both blocking & non-
blocking modes

ACMSDI_NOACMS –3010 ACMS not active

ACMSDI_NOMEMORY –3011 Low memory resource

ACMSDI_NOPPACTV –3012 No active presentation
procedure

ACMSDI_NOSUCH_APPL –3013 ACMS application not found

ACMSDI_NOSUCH_TASK –3014 Invalid task code

ACMSDI_OPR_CANCELLED –3015 Operator canceled ACMS user

(continued on next page)

Compaq ACMS System Status Values A–1

Table A–1 (Cont.) ACMS System Status Values

Symbol Value Text

ACMSDI_PENDING –3016 Operation started

ACMSDI_SECCHK –3017 ACMS task ACL failure

ACMSDI_SIGNINACTV –3018 Sign-in in process

ACMSDI_SIGNOUTACTV –3019 Sign-out in process

ACMSDI_SRVDEAD –3020 TP Desktop Connector server
has died

ACMSDI_TASK_ABORT –3021 Task has aborted

ACMSDI_TASK_CANCELLED –3022 Task canceled by operator

ACMSDI_TASK_SP_DIED –3023 Task procedure server process
has died

ACMSDI_TASK_FAILED –3024 Task failed to complete normally

ACMSDI_INVPROTOCOL –3025 Protocol versions of the DDEV
and the TP Desktop Connector
server do not match

ACMSDI_BADNODENAME –3026 Invalid node name

ACMSDI_PWDEXPIRED –3027 Password has expired

ACMSDI_CANCELACTV –3028 Client-initiated cancel in
progress

ACMSD_EXCHACTV –3029 User-written presentation
procedure not completed

ACMSDI_DISPATCHACTV –3030 ACMSDI_DISPATCH_
MESSAGE call in process

ACMSDI_UNSUPPORTED –3031 Unsupported option requested
on acmsdi_sign_in or acmsdi_
call_task

ACMSDI_PWDEXPIRING –3100 Number of hours returned until
password expires

ACMSDI_CALL_CANCELED –3101 The task was canceled by the
task submitter

A–2 Compaq ACMS System Status Values

Descriptions of client messages and server messages are provided in the
following files:

• SYS$HELP:ACMSDI$CLIENT_MESSAGES.TXT

• SYS$HELP:ACMSDI$SERVER_MESSAGES.TXT

Compaq ACMS System Status Values A–3

Index

A
Access

in documentation format, 1–3
parameter, 1–1

ACMS$DESKTOP_ID submitter
description, 5–5

ACMSDI$GET_SUBMITTER_INFO service
description, 5–2
sample program using, 5–2

acmsdi_bind_enable_args routine
description of interface, 4–7

acmsdi_bind_msg routine, 4–10
acmsdi_bind_receive_args routine

description of interface, 4–13
acmsdi_bind_receive_recs routine

description of interface, 4–15
acmsdi_bind_request_args routine

description of interface, 4–17
acmsdi_bind_request_wksps

description of interface, 4–19
acmsdi_bind_send_args routine

description of interface, 4–21
acmsdi_bind_send_recs routine

description of interface, 4–23
acmsdi_bind_session_id routine

description of interface, 4–25
acmsdi_bind_transceive_args routine

description of interface, 4–27
ACMSDI_CALL_ID data type, 1–2
ACMSDI_CALL_OPTIONS data type

structure, 1–2

acmsdi_call_task service
description, 2–13

acmsdi_cancel service
description, 2–18

acmsdi_check_version routine
interface description, 3–25

acmsdi_complete_call routine
description of interface, 4–4

acmsdi_complete_pp service
description, 2–21

acmsdi_disable routine
description of interface, 3–5

acmsdi_dispatch_message service
description, 2–23

acmsdi_enable routine
description of interface, 3–6

ACMSDI_FORMS_SESSION_ID data type
structure, 1–2

ACMSDI_FORM_RECORD data type
definition, 3–3
structure, 1–2

ACMSDI_FORM_RECORD_BIND data type
definition, 4–2
structure, 1–2

ACMSDI_FORM_RECORD_BIND structure,
2–7

acmsdi_get_version routine
interface description, 3–27

ACMSDI_INIT_FORM_RECORD data type
definition, 3–3

ACMSDI_INIT_FORM_RECORD_BIND data
type

definition, 4–2

Index–1

ACMSDI_INIT_WORKSPACE data type
definition, 2–4

ACMSDI_OPTION array
using, 2–11

ACMSDI_OPTION data type
structure, 1–2

ACMSDI_OPT_CHECK_VERSION option
defined, 2–10
example, 2–27

ACMSDI_OPT_COMMID option
defined, 2–10
example, 2–11

ACMSDI_OPT_END_LIST option
defined, 2–10

ACMSDI_OPT_FREE_ROUTINE option
defined, 2–10

ACMSDI_OPT_MALLOC_ROUTINE option
defined, 2–10

ACMSDI_OPT_NONBLK option
defined, 2–10

ACMSDI_OPT_PWD_EXPIRING option
defined, 2–10

acmsdi_poll service
description, 4–30

acmsdi_read_msg function, 3–9
acmsdi_receive routine

description of interface, 3–11
acmsdi_request routine

description of interface, 3–14
acmsdi_return_pointer service

description, 2–25
acmsdi_send routine

description of interface, 3–16
acmsdi_sign_in service

description, 2–26
acmsdi_sign_out service

description, 2–29
ACMSDI_SUBMITTER_ID data type

structure, 1–2
ACMSDI_SUBMITTER_ID option

description, 2–27
ACMSDI_TCPIP_PORT_host_node variable,

2–11

acmsdi_transceive routine
description of interface, 3–19

ACMSDI_WORKSPACE data type
definition, 2–4
structure array, 1–2

ACMSDI_WORKSPACE_BIND data type
definition, 4–3
structure, 1–2

acmsdi_write_msg routine, 3–23

B
Blocking service

presentation procedure usage, 3–4
restriction, 2–3, 3–4
specifying, 2–2

Brackets
square, in format, 1–1

C
Call_id parameter

specification, 2–21
Client service

summary, 2–1
Completion routine

format, 2–3
specifying, 2–2

D
Data compression monitor commands, 6–1
Data type

parameter, 1–2

E
EXIT command

description, 6–2

Index–2

F
Forced nonblocking services

described, 4–1
specifying, 2–3
summary, 4–1

Form record
initialization macro, 3–3
type definition, 3–3, 4–2

G
Gateway

task cancellation status, 2–15, 4–4

H
HELP command

description, 6–3

L
LIST command

description, 6–4

M
Management

service, 5–1
Mechanism

parameter, 1–1
parameter passing, 1–3

Memory
allocating parameters, 3–3

Memory allocation, 2–2
Modify

access method, 1–3

N
Nonblocking service

See also Forced nonblocking
presentation procedure usage, 3–4
restriction, 2–3, 3–4
specifying, 2–2

O
OpenVMS system

management service, 5–1
Options

specifying sign-in, 2–27

P
Parameter

allocating memory, 3–3
data type, 1–2
passing mechanism, 1–3

Portable API client services, 2–1
Portable API presentation procedure

summary, 3–1
Presentation procedure

status expected, 3–2

R
Read

access method, 1–3
RENEW command

description, 6–9
Return status

description, 1–4

S
SELECT command

description, 6–10
Server

See Gateway
Service

client, 2–1
OpenVMS

management, 5–1
summary, 2–1

Service description
documentation format, 1–1

Session
forms identification, 3–6, 4–25

Index–3

Session Environments
description, 1–4

SET command
description, 6–13

SHOW command
description, 6–15

SHOW_DESKTOP_USERS program
location, 5–2

Sign-in
service description, 2–26

Square brackets
use in format, 1–1

Status
return, 1–4

Submitter
identification

ACMS, 5–5
desktop gateway, 5–4

program for information, 5–2
Submitter_id

description, 2–27
System status values, A–1

T
Target desktop

ID, 5–5
Target submitter

ID, 5–5
Task

cancellation status, 2–15, 4–4
TCP/IP port number, 2–11
Type

in documentation format, 1–2
parameter, 1–1

V
Version checking

example, 2–27
routine

description, 3–25

W
Workspace

defining multiple, 2–5
initialization macro, 2–4
relocation by memory management, 4–31
structure definition, 2–4, 4–3

Write
access method, 1–3

Index–4

