
 — Printed in U.S.A.

Xilinx System
Generator v2.1 for
Simulink

User Guide

Xilinx Blockset
Reference Guide

Introduction

Xilinx Blockset Overview

Xilinx Blocks

System Generator Software Features

Using the Xilinx Software

Auxiliary Files

2 Xilinx Development System

Xilinx System Generator v2.1 Reference Guide

About This Manual

This document is a reference guide for system designers who are unfamiliar with the

System Generator v2.1 and the Xilinx Blockset.

Manual Contents
This guide covers the following topics:

• Chapter 1, Introduction, gives a high-level overview of the System Generator and

its uses.

• Chapter 2, Xilinx Blockset Overview, describes the Xilinx Blockset: how to

instantiate a Xilinx block within your Simulink model, how to configure it

through its block parameters dialog box, the common options that can be used in

several of the blocks, and the nature of the signals used in the System Generator

software.

• Chapter 3, Xilinx Blocks, describes the details of each block, including options, and

use of Xilinx LogiCOREs. This chapter also tells where to find descriptions of

the cores on your computer.

• Chapter 4, System Generator Software Features, describes the System Generator

software and gives tips for using it to create efficient hardware designs.

• Chapter 5, Using the Xilinx Software, tells, step-by-step, how to use System

Generator as a front-end to the Xilinx Foundation 4.1i ISE software, from VHDL

to bitstream generation.

• Chapter 6, Auxiliary Files, contains instructions for accessing System Generator

demo designs, as well as a list of Perl scripts that are delivered with the System

Generator software. The demo designs show examples of designs using Xilinx

blocks. The scripts are used by the System Generator to create auxiliary project

files, but can also be used as stand-alone tools.

3

Additional Resources

For additional information, go to http://support.xilinx.com . The following

table lists some additional resources.

Resource Description/URL

IP Center Information on Xilinx LogiCOREs and IP solutions.

http://www.xilinx.com/ipcenter/
This page contains a link to the Xilinx Xtreme DSP solutions page.

Technical Tips Latest news, design tips, and patch information for the Xilinx design environment.

http://support.xilinx.com/xlnx/xil_tt_home.jsp

Tutorials Tutorials covering Xilinx ISE 4.1i design flows, from design entry to verification and

debugging.

http://support.xilinx.com/support/techsup/tutorials/
tutorials4.htm

Documentation Xilinx Software Manuals online.

http://toolbox.xilinx.com/docsan/xilinx4/

Software

Updates

Periodic software service packs, IP updates, and information is available online.

http://support.xilinx.com/support/software/install_info.htm

The

MathWorks

MATLAB , Simulink , DSP design, and other company information.

http://www.mathworks.com

4 Xilinx Development System

Xilinx System Generator v2.1 Reference Guide

Conventions

This document uses the following conventions. An example illustrates each

convention.

Typographical
The following conventions are used for all System Generator documents.

• Courier font (a fixed-width font) indicates messages, prompts, menu pick

items, and dialog box entries that the system displays.

speed grade: - 100

• Courier bold indicates literal commands that you enter in a command-line

prompt or dialog box. However, triangular braces “<>” in Courier bold are not

literal.

>> cd <your $MATLAB home directory>

• Italic font denotes the following items.

♦ Introduction of words being used with a context-specific definition

The System Generator provides bit true and cycle true modeling.

♦ References to other manuals or sections in this manual

See the Development System Reference Guide for more information.

♦ Emphasis in text

If a wire is drawn so that it overlaps the pin of a symbol, the two nets are not
connected.

5

Contents

Chapter 1 Introduction

Industry and Product Overview ...8
System Generator ...9
System Level Modeling with System Generator ...9
The System Generator Design Flow ...10
Arithmetic Data Types ..12
Hardware Handshaking ..13

Multirate Systems ..13
Bit-True and Cycle-True Modeling ..14

Automatic Testbench Generation ..14

Chapter 2 Xilinx Blockset Overview

What is a Xilinx Block? ...15
Instantiating Xilinx Blocks within a Simulink Model ...16
The Block Parameters Dialog Box ..16
The Nature of Signals in the Xilinx Blockset ...16
Use of Xilinx Smart-IP Cores by the System Generator ...18

Licensed Cores ..18
Xilinx LogiCORE Versions ...19

Common Options in Block Parameters Dialog Box ..19
Arithmetic Type ..20
Implement with Xilinx Smart-IP Core (if possible) ...20
Generate Core ...20
Latency ..20
Precision ..21
Number of Bits ...21
Overflow and Quantization ..21
Override with Doubles ...21
Sample Period ...22

Chapter 3 Xilinx Blocks

Basic Elements ...23
System Generator ...23
Addressable Shift Register ..26
Black Box ...28

6 Xilinx Development System

Xilinx System Generator v2.1 Reference Guide

Concat ...30
Constant ..31
Convert ..31
Counter ..32
Delay ...35
Down Sample ..36
Get Valid Bit ...37
Mux ..38
Parallel to Serial ..39
Register ...40
Reinterpret ...42
Serial to Parallel ..43
Set Valid Bit ...45
Slice ...45
Sync ...47
Up Sample ...50

Communication ...52
Convolutional Encoder ..52
Depuncture ..54
Interleaver Deinterleaver ...55
Puncture ..58
RS Decoder ...59
RS Encoder ...63
Viterbi Decoder ..68

DSP ..70
CIC ..70
DDS ...73
FFT ..75
FIR ...79

Math ..81
Accumulator ...81
AddSub ..83
CMult ...84
Inverter ..85
Logical ...86
Mult ..88
Negate ...90
Relational ...90
Scale ..92
Shift ...92
SineCosine ..93
Threshold ...95

MATLAB I/O ..96
Gateway Blocks ...96
Enabled Subsystems ...96
Gateway In ...97

7

Gateway Out...99
Quantization Error Blocks ..101
Display ...101

Memory ...102
Dual Port RAM ...102
FIFO ..106
ROM ..107
Single Port RAM ..110

State Machine ...114
Mealy State Machine ...114
Moore State Machine ..116
Registered Mealy State Machine ...119
Registered Moore State Machine ..123

Chapter 4 System Generator Software Features

Using the System Generator installer ...127
Uninstalling previous System Generator directories ..127
Installed System Generator directory ..128

Using Black Boxes ..128
Example model ..128
Black Box window ..129

Use of mixed language projects ...130
Incorporating mixed language black boxes ...130

Tips for creating a high performance design ..132
Using the System Generator Constraints Files..133

System Clock Period ..133
Multicycle Path Constraints ..133
IOB Timing and Placement Constraints ...134
Example for showing constraints use ...134
Important Issues ...136

Files automatically created by System Generator ..137

Chapter 5 Using the Xilinx Software

Xilinx ISE 4.1i Project Navigator ...139
Opening a System Generator project ..139
Customizing your System Generator project ...139
Implementing your design ...140
Simulating using ModelSim within the Project Navigator141

Using an EDIF software flow ..143
Simulation ...143

Compiling your IP ..143
Associating ModelSim with ISE 4.1i Project Navigator ..144

Xilinx software tools resources ...145

Chapter 6 Auxiliary Files

Demonstration designs..146
Perl scripts ...147

8 Xilinx Development System

Xilinx System Generator v2.1 Reference Guide

Chapter 1

Introduction

This chapter describes the basic concepts and tools of the System Generator v2.1.

This chapter contains the following sections.

• Industry and Product Overview

• System Generator

• System Level Modeling with System Generator

• The System Generator Design Flow

• Arithmetic Data Types

• Hardware Handshaking

• Bit-true and Cycle-true Modeling

Industry and Product Overview
In recent years, field-programmable gate arrays (FPGAs) have become key

components in implementing high performance digital signal processing (DSP)

systems, especially in the areas of digital communications, networking, video, and

imaging. The logic fabric of today's FPGAs consists not only of look-up tables,

registers, multiplexers, distributed and block memory, but also dedicated circuitry for

fast adders, multipliers, and I/O processing (e.g., giga-bit I/O). The memory

bandwidth of a modern FPGA far exceeds that of a microprocessor or DSP processor

running at clock rates two to ten times that of the FPGA. Coupled with a capability

for implementing highly parallel arithmetic architectures, this makes the FPGA

ideally suited for creating high-performance custom data path processors for tasks

such as digital filtering, fast Fourier transforms, and forward error correction.

For example, all major telecommunication providers have adopted FPGAs for high-

performance DSP out of necessity. A third-generation (3G) wireless base station

typically contains FPGAs and ASICs in addition to microprocessors and digital signal

processors (DSPs). The processors and DSPs, even when running at GHz clock rates,

are increasingly used for relatively low MIPs packet level processing, with the chip

and symbol rate processing being implemented in the FPGAs and ASICs. The fluidity

of emerging standards often makes FPGAs, which can be reprogrammed in the field,

better suited than ASICs.

Despite these characteristics, broader acceptance of FPGAs in the DSP community has

historically been hampered by several factors. First, there is a general lack of

familiarity with hardware design and especially, FPGAs. DSP engineers conversant

with programming in C or assembly language are often unfamiliar with digital design

using hardware description languages (HDLs) such as VHDL or Verilog.

Furthermore, although VHDL provides many high level abstractions and language

System Generator 9

Introduction

constructs for simulation, its synthesizable subset is far too restrictive for system

design.

System Generator is a software tool for modeling and designing FPGA-based DSP

systems in Simulink. The tool presents a high level abstract view of a DSP system, yet

nevertheless automatically maps the system to a faithful hardware implementation.

What is most significant is that System Generator provides these services without

substantially compromising either the quality of the abstract view or the performance

of the hardware implementation.

System Generator
Simulink provides a powerful high level modeling environment for DSP systems, and

consequently is widely used for algorithm development and verification. System

Generator maintains an abstraction level very much in keeping with the traditional

Simulink blocksets, but at the same time automatically translates designs into

hardware implementations that are faithful, synthesizable, and efficient.

The implementation is faithful in that the system model and hardware

implementation are bit-identical and cycle-identical at sample times defined in

Simulink. The implementation is made efficient through the instantiation of

intellectual property (IP) blocks that provide a range of functionality from arithmetic

operations to complex DSP functions. These IP blocks have been carefully designed

to run at high speed and to be area efficient. In System Generator, the capabilities of

IP blocks have been extended transparently and automatically to fit gracefully into a

system level framework. For example, although the underlying IP blocks operate on

unsigned integers, System Generator allows signed and unsigned fixed point

numbers to be used, including saturation arithmetic and rounding. User-defined IP

blocks can be incorporated into a System Generator model as black boxes which will

be embedded by the tool into the HDL implementation of the design.

System Level Modeling with System Generator
The creation of a DSP design begins with a mathematical description of the operations

needed and concludes with a hardware realization of the algorithm. The hardware

implementation is rarely faithful to the original functional description --instead it is

faithful enough. The challenge is to make the hardware area and speed efficient while

still producing acceptable results.

In a typical design flow --a flow supported by System Generator-- the following steps

occur:

1. Describe the algorithm in mathematical terms,

2. Realize the algorithm in the design environment, initially using double precision,

3. Trim double precision arithmetic down to fixed point,

4. Translate the design into efficient hardware.

Step 4 is error prone because it can be difficult to guarantee the hardware implements

the design faithfully. System Generator eliminates this concern by automatically

generating a faithful hardware implementation.

Step 3 is error prone because an efficient hardware implementation uses just enough

fixed point precision to give correct results. System Generator does not automate this

step, which typically involves subtle trade off analysis, but it does provide tools to

make the process tractable. You might wonder why it is not possible to eliminate Step

10 Xilinx Development System

Xilinx System Generator v2.1 Reference Guide

3 and simply use floating point operations in hardware. The answer is that most

operations have a sufficiently small dynamic range that a fixed point representation is

acceptable, and the hardware realization of fixed point is considerably cheaper.

The System Generator Design Flow
Simulink provides a graphical environment for creating and modeling dynamical

systems. System Generator consists of a Simulink library called the Xilinx Blockset,

and software to translate a Simulink model into a hardware realization of the model.

System Generator maps system parameters defined in Simulink (e.g. as mask

variables in Xilinx Blockset blocks), into entities and architectures, ports, signals, and

attributes in a hardware realization. In addition, System Generator automatically

produces command files for FPGA synthesis, HDL simulation, and implementation

tools, so that the user can work entirely in graphical environments in going from

system specification to hardware realization.

The System Generator Design Flow 11

Introduction

The System Generator design flow is shown in the following figure.

Figure 1-1: System Generator design flow diagram

The Xilinx Blockset is accessible in the Simulink library browser, and elements can be

freely combined with other Simulink elements. Only those subsystems denoted as

Xilinx black boxes, and blocks and subsystems consisting of blocks from the Xilinx

Blockset are translated by System Generator into a hardware realization. The

generation process is controlled from the System Generator block found in the Xilinx

Blockset Basic Elements library. The System Generator parameterization GUI allows

the user to choose the target FPGA device, target system clock period, and other

implementation options.

System Generator translates the Simulink model into a hardware realization by

mapping Xilinx Blockset elements into IP library modules, inferring control signals

and circuitry from system parameters (e.g. sample periods), and converting the

Library

Simulation

Synthesis

MATLAB Environment

Simulink

Z 1–

k

System Model
OutputInput

Synthesis
Compiler

CORE
Generator

FPGA
Place & Route

Logic
Simulator

Bit stream Pass/Fail

Simulation
Data

EDIF + Timing

EDIF

Xilinx
DesignTools
Environment

Test
Vectors

VHDL
Core
Parameters

ENTITY mult IS
 GENERIC(w:
 PORT(a,b:IN
 PORT(y:OUT
 END ENTITY
...

+

including
S-functions

(including
 Xilinx
Blockset)

System Generator
Code Generation Software

- map to IP libraries
- control signals
- VHDL design
- HDL testbench
- constraints
- simulation scripts, project files

12 Xilinx Development System

Xilinx System Generator v2.1 Reference Guide

Simulink hierarchy into a hierarchical VHDL netlist. In addition, System Generator

creates the necessary command files to create the IP block netlists using CORE

Generator, invokes CORE Generator, and creates project and script files for HDL

simulation, synthesis, technology mapping, placement, routing, and bit stream

generation. To ensure efficient compilation of multi-rate systems, System Generator

creates constraint files for the physical implementation tools. System Generator also

creates an HDL test bench for the generated realization, including test vectors

computed during Simulink simulation.

Arithmetic Data Types
System Generator provides the three arithmetic data types that are of greatest use in

DSP: double precision floating point, and signed and unsigned fixed point numbers.

Floating point data cannot be converted into hardware, but is supported for

simulation and modeling.

The set of signed arbitrary precision fixed point numbers has nice mathematical

properties, allowing for operations that are much cleaner than those on familiar

floating point representations. Operations on floating point numbers entail implicit

rounding on the result, and consequently, desirable algebraic characteristics such as

associativity and distributivity are lost. Both are retained for arbitrary precision fixed

point numbers.

System Generator allows the quantization of the design to be addressed as an issue

separate from the implementation of the mathematical algorithm. The transition from

double precision to fixed point can be done selectively. In practice this means the

designer gets the design working using double precision, then converts to fixed point

incrementally. At all times, these three representations can be freely intermingled

without any changes to the signal flow graph. This mixing is possible because library

building blocks are polymorphic, changing their internal behavior based on the types

of their inputs.

There is another benefit from this scheme in which quantization events are broken out

as separate design parameters. At every point and stage of the design, the designer

can specify how both the overflow and the rounding issues are to be addressed. For

cases of overflow, the designer can choose whether or not saturation should be

applied, and do so in consideration of the hardware cost versus the benefit to the

system design. Saturation is a more faithful reflection of the underlying mathematics,

but more expensive in hardware; wrapping is inexpensive but less faithful. It is also

possible to trap overflow events in the system level simulation, which can be a useful

debugging mechanism in the design of subsystem that are intended never to result in

overflow.

Likewise, when quantizing at the least significant bit, the designer can choose

whether the value should be truncated (with no hardware cost) or rounded under

some particular rule (possibly improving the system design, but with added cost in

hardware).

In System Generator, many operators support full precision outputs, which means that

the output precision is always sufficient to carry out the operation without loss

information. Combined with the data type propagation rules supported in Simulink,

this allows great convenience when designing an algorithm. Naturally, any operator

that increases the output width of its inputs (e.g. an adder) cannot feed back on itself

with full precision.

The designer specifies the translation to fixed precision at key points in the design (in

particular, at gateways from the outside world and in feedback loops), and System

Hardware Handshaking 13

Introduction

Generator then propagates signal types and precisions as appropriate. The

automatically chosen type is the least expensive that preserves full precision.

Translations from signed to unsigned and vice versa are automatic as well.

System Generator also allows designs to contain elements that cannot be realized in

hardware, but assist development and debugging. Examples of such elements are

signal sources, scopes, and machinery that tracks the divergence between fixed point

and double precision calculations. System Generator automatically discards such

elements when asked to translate to hardware.

Hardware Handshaking
In Simulink, time evolution is defined by sample rates for each block in the system.

There are propagation rules along signals so that not every block need set an explicit

sample period. This is extremely flexible, but has implications for modeling

hardware. Sequential circuits are clocked, and a key aspect of designing, especially

multirate systems, is the interplay between clock and clock enable signals. Although

abstracted, a bit and cycle true simulation must have mechanisms for defining and

controlling clocked behavior in the system model.

Every signal has a fixed point value as defined in the previous section. In addition, it

carries an implicit boolean valid bit that can be used to achieve hardware handshakes

between blocks. For example, upon startup, a pipeline may define its output invalid
until it has flushed its pipe. By inspecting the valid bits of its inputs, a block can

determine how to process its input data.

Multirate Systems
Multirate systems can be implemented in System Generator by using sample rate

conversion blocks for up-sampling and down-sampling. The necessary control logic

is automatically generated when the design is netlisted. Before netlisting, the sample

rates in the system are normalized to integer values; in hardware, the system clock

period corresponds to the GCD of the integer sample periods. Clock enables are used

to activate the hardware blocks at the appropriate moment in time with respect to the

system clock.

Consider for example, the multirate system model shown in the figure below, which

consists of I/O registers, an up-sampler, an anti-aliasing filter, and a down-sampler.

The input signal is up-sampled by a factor of two, and subsequently down-sampled

by a factor of three, giving an overall sample rate conversion by a factor of 2/3. The

ST blocks in the system model extract the sample period from a Simulink signal,

which can then be displayed. In the example, the input sample period is one. In the

generated hardware implementation shown below the system model, each element is

driven by the system clock, with its respective clock enable driven according to its

sample period in the original system model.

Figure 1-2: Example of a multirate system model

14 Xilinx Development System

Xilinx System Generator v2.1 Reference Guide

Bit-True and Cycle-True Modeling
System Generator produces a hardware implementation that is bit and cycle true to

the system level simulation. We define the term bit and cycle true at the boundaries of

the design. The boundaries of a design in System Generator are specified by the

presence of Gateway In and Gateway Out blocks. These form interfaces between data

representation within System Generator and data types that can be examined and

manipulated in the standard Simulink environment. The gateways are translated into

ports in the implemented hardware design. The Gateway In blocks become input

ports to the design and the Gateway Out blocks become output ports.

In the Simulink simulation, Gateway in and Out blocks have data samples flowing

through at regular sample periods. The values flowing in provide the stimuli, and

those flowing out represent the response. In the generated hardware, if an identical

stimulus sequence is presented at the input ports (at clock events corresponding to the

input sample periods), then identical output sequences will be observed (here at clock

events corresponding to Simulink output events). The values presented to the

hardware input ports and produced by the output ports are bit vectors interpreted as

representing the fixed point values of the Simulink simulation. This correspondence

between Simulink and hardware results is guaranteed to hold regardless of the

particular input stimulus to the design or the positioning or number of Gateway Out

blocks.

Automatic Testbench Generation
For a black box instantiation, the design must provide both a Simulink model and an

implementation. System Generator cannot automatically provide the verification that

the two representations of the black box match. To assist the designer in verifying that

the system model simulated in Simulink mirrors the generated hardware circuit, a

VHDL test bench is automatically created during HDL code generation.

Test bench input stimuli are recorded by Gateway In blocks during Simulink

simulation. These blocks quantize double precision input date into a fixed point

representation. The fixed point values are saved to a data file and then used as input

stimuli during VHDL simulation.

Gateway Out blocks convert the fixed point representation into Simulink floating

point and define the output data ports of the HDL design. The signal connected to the

input of a Gateway In block is sampled at a given sample rate and is used as expected
data in the HDL simulation.

During HDL code generation, each Gateway In block is translated to a VHDL

component which reads the input stimuli. Gateway Out blocks are translated to

components that compare the VHDL results to the expected results. The comparisons

are performed at the blocks' sample rates. Only values which are tagged as valid by

the valid bit are compared.

The fixed point data type in Simulink is represented using a std_logic_vector in

VHDL. The position of the binary point, size of the container, and treatment of sign

are supplied to the VHDL as generic parameters. To ease the interpretation of fixed

point types in VHDL, the Gateway In and Out blocks convert the

std_logic_vector into a real number representation by using the generic

parameter information. A sequence of real numbers can then be viewed as an analog

waveform in an HDL simulator.

What is a Xilinx Block? 15

Xilinx Blockset Overview

Chapter 2

Xilinx Blockset Overview

This chapter gives an overview of the Xilinx Blockset, including background

information on underlying blockset implementation, which will help you understand

how each block can be used to create and simulate your designs.

This chapter contains the following sections.

• What is a Xilinx Block?

• Instantiating Xilinx Blocks Within a Simulink Model

• The Block Parameters Dialog Box

• The Nature of Signals in the Xilinx Blockset

• Use of Xilinx Smart-IP Cores by the System Generator

• Common Options in Xilinx Block Parameters Dialog Box

What is a Xilinx Block?
The Xilinx Blockset is a Simulink

library, accessible from the Simulink

library browser. It consists of building

blocks that can be instantiated within

a Simulink model and, like other

Simulink blocksets, blocks can be

combined to form subsystems and

arbitrary hierarchies. The Xilinx

Gateway blocks (from the Xilinx

Blockset’s MATLAB I/O library) are

used to interface between the Xilinx

Blockset fixed point data type and

other Simulink blocks.

Every Xilinx Block can be configured

using a block parameters dialog box, with

few exceptions even during

simulation. Many blocks share

common parameters, which are

described later in this chapter. Most

also have parameters specific to the

function computed.

The System Generator is able to

generate an FPGA implementation consisting of RTF VHDL and Xilinx Smart-IP
Cores from a Simulink subsystem built from the Xilinx Blockset. The overall design,

including test environment, may consist of arbitrary Simulink blocks. However, the

16 Xilinx Development System

Xilinx System Generator v2.1 Reference Guide

portion of a Simulink model to be implemented in an FPGA must be built exclusively

of Xilinx blocks, with the exception of subsystems denoted as black boxes.

Instantiating Xilinx Blocks within a Simulink Model
Xilinx blocks can be dragged (from the Simulink library browser, or from an

expanded sheet showing the blocks in the library) and dropped onto a Simulink

model sheet. Double-clicking on a block icon will open its block parameters dialog

box and allow customization of that instance of the block. It is also possible to build

user libraries of customized blocks and subsystems. Refer to the manual: Using
Simulink from The MathWorks.

The Xilinx blocks operate on fixed point data, using an arbitrary precision arithmetic

type. The Gateway blocks found in the Xilinx MATLAB I/O library comprise the

interface between Xilinx blocks and other Simulink blocks, and enable Xilinx blocks to

be freely instantiated within a Simulink model. Of course, the only blocks that System

Generator will convert to hardware are those from the Xilinx Blockset.

The Block Parameters Dialog Box
Most Xilinx blocks have parameters that can be configured. The typical block has a

dialog box with several common parameters (common to most blocks in the blockset)

and some specific parameters (specific to the particular block only). Double-clicking

on any block icon on a sheet will open its block parameters dialog box. Details of the

use of each block’s parameters dialog can be found elsewhere in this document.

Each parameters dialog contains four buttons: OK, Cancel, Help, and Apply .

Apply applies your configuration changes to the block, leaving the box still visible on

your screen. Help launches HTML help information for the block. Cancel closes the

box without saving any changes, and OK applies your configuration changes and

closes the box.

Figure 2-1: Buttons common to each block parameters dialog box

The Nature of Signals in the Xilinx Blockset
The fundamental scalar signal type in Simulink is double precision floating point. In

contrast, for bit and cycle true simulation of hardware, System Generator signals are

represented in an arbitrary precision fixed point arithmetic type. The Xilinx Gateway
In block converts double precision values into fixed point, and the Gateway Out
block converts fixed point values back into double precision floating point.

Some blocks produce full precision values by default, which is to say their output

signal has sufficient precision to represent the output without rounding error or

overflow. Some blocks also support the option of defining the output precision to be a

specific arithmetic type (e.g., 16-bit signed data with 8 bits of fraction), with

quantization options of rounding or truncation, and with overflow options of

saturation or truncation.

The Nature of Signals in the Xilinx Blockset 17

Xilinx Blockset Overview

As an example, the figures shown below depict the Xilinx Negate block parameters

dialog box with full and user defined precision. Note in the latter case the additional

options for selecting quantization and overflow behavior.

Figure 2-2: User-Defined Precision Options (available if selected instead of full
precision)

Valid and Invalid Data

In the Xilinx Blockset portion of a Simulink model, every data sample is accompanied

by a handshake validation signal. In the corresponding hardware, every data-carrying

bus has a companion net that carries a valid or invalid status indicator. This is a

commonly used handshaking mechanism. There are different circumstances under

which the status indicator may be set to invalid. For example, invalid data might

mean that a pipeline has not yet filled up, or it may denote bursty outputs, as with an

FFT. Blocks in the Xilinx Blockset can use this valid bit signal to determine what to do

with the input data. Some of the Xilinx blocks, for example, the storage blocks and the

FFT, use the valid bit to determine when to store input data.

Port Data Types

Selecting the Port Data Types option (under the Format menu in the Simulink

window) shows the data type and precision of a signal. An example port data type

string is Fix_11_9, which indicates that the signal is a signed 11-bit number with the

binary point 9 bits from the right side. Similarly, an unsigned signal is indicated by the

UFix_ prefix.

18 Xilinx Development System

Xilinx System Generator v2.1 Reference Guide

Use of Xilinx Smart-IP Cores by the System Generator
To increase hardware performance, most System Generator blocks are implemented

using Xilinx Smart-IP (Intellectual Property) LogiCOREs. These are hand crafted

modules that make optimal use of FPGA resources to maximize performance. Some

System Generator blocks map onto multiple LogiCOREs, for example, the 1024-point

FFT, maps onto Dual Port Memory blocks as well as the FFT core itself.

Some Xilinx blocks also can be implemented as synthesizable VHDL modules, hence

the LogiCORE is an option. When such a block cannot be implemented as a

LogiCORE, System Generator automatically maps the block onto the synthesizable

module. For example, the Xilinx Negate block generates a LogiCORE if you specify

input of up to 256 bits, but for more than 256 bits the block is realized in synthesizable

VHDL.

Many Xilinx blocks have implementations only as LogiCOREs. The reason for this is

circuit performance. Because they are handcrafted for FPGA implementation,

LogiCOREs have predictable performance in all design contexts. For example, the

Xilinx FIR Filter block can be implemented only as the Distributed Arithmetic FIR

Filter LogiCORE.

During algorithm exploration in Simulink and System Generator, it is common to

iterate through block customization, Simulink simulation, and code generation. When

you incorporate Black Box functionality, you can also add HDL simulation to this

flow. To speed this design cycle, it is possible to instruct System Generator to not

invoke Xilinx CORE Generator to re-generate LogiCOREs that have already been

generated and have not changed. This can be done on individual blocks by the

Generate Core checkbox control, or globally using the System Generator block

parameters dialog box.

Licensed Cores
The System Generator targets a suite of new ready-to-use licensed LogiCORE

algorithms for forward error correction (FEC), which are critical for detecting and

correcting errors in wired and wireless communication systems during transmission

of data to optimize the use of available bandwidth. The new algorithms include Reed-

Solomon Encoder/ Decoder, a Viterbi Decoder, and an Interleaver/De-interleaver.

These cores may be used for communication applications such as broadcast

equipment, wireless LAN, cable modems, xDSL, satellite communications,

microwave networks, and digital TV.

The System Generator allows you to build and simulate your FEC designs in Simulink

using the Xilinx Blockset Communication library. System Generator creates a VHDL

design and testbench that allows you to do a VHDL simulation of the FEC cores. Free

evaluation versions of the FEC cores provide the behavioral models needed for VHDL

simulation. The System Generator will allow you to generate the licensed core using

the Xilinx CORE Generator after you have purchased and installed the FEC cores.

Licensing information, as well as instructions for downloading the cores, can be

found at the Xilinx IP Center:

http://www.xilinx.com/ipcenter/fec_index.htm .

Common Options in Block Parameters Dialog Box 19

Xilinx Blockset Overview

Xilinx LogiCORE  Versions
The Xilinx LogiCORE blocks (indicating the version numbers being supported by

the System Generator) used in Xilinx System Generator v2.1 are listed below.

Common Options in Block Parameters Dialog Box
Each Xilinx block has several configurable parameters, seen in the block parameters
dialog box. Many of these parameters are specific to that particular block. Those block

Xilinx Block Xilinx LogiCORE Version

Accumulator ACCUMULATOR V5.0

Addressable Shift

Register

RAM_SHIFT V5.0

Adder/Subtractor ADDSUB V5.0

CIC CIC V1.0

Counter BINARY_COUNTER V5.0

Constant Multiplier MULT_GEN V4.0

Convolutional

Encoder

CONVOLUTION V1.0

DDS DDS V4.0

Dual Port Ram MEM_DP_BLOCK V3.2

FIFO SYNC_FIFO V3.0

FFT FFT and MEM_DP_BLOCK V1.0 (Virtex, Spartan-II),

V2.0 (Virtex-II)

V3.2 (MEM_DP_BLOCK)

FIR Filter DA_FIR V6.0

Interleaver/

Deinterleaver

INTERLEAVER V1.1

Inverter GATE_BUS V5.0

Logical GATE_BUS V5.0

Multiplier (mult) MULT_GEN V4.0

Mutiplexer (mux) BUS_MUX V5.0

Negate TWOS_COMP V5.0

Relational COMPARE V5.0

RS Decoder RS_DECODER V2.0

RS Encoder RS_ENCODER V2.0

Sine Cosine SIN_COS V3.0

Single Port RAM MEM_SP_BLOCK and
DIST_MEM

V3.2(BRAM), V5.0 (dist.)

State Machines MEM_SP_BLOCK and
DIST_MEM

V3.2(BRAM), V5.0 (dist.)

ROM MEM_SP_BLOCK and
DIST_MEM

V3.2 (BRAM), V5.0 (dist.)

Viterbi Decoder VITERBI V1.0

20 Xilinx Development System

Xilinx System Generator v2.1 Reference Guide

specific parameters are described in the specific block documentation in the next

chapter.

The remainder of the parameters in each block’s parameters dialog box are common

to most blocks. These common parameters are described below.

Arithmetic Type
In the Type field of the block parameters dialog box, you can choose unsigned or

signed (two’s complement) as the datatype of the output signal.

Implement with Xilinx Smart-IP  Core (if possible)
This checkbox (sometimes referred to as the Use Core checkbox) asks the software to

instantiate a core in the generated VHDL. If you do not select this checkbox, the

software will instead create synthesizable VHDL.

Selecting this option does not guarantee that a Xilinx LogiCORE will be used. If the

parameters for your block are such that a core cannot be generated, synthesizable

VHDL will be generated instead. The System Generator software determines this at

code generation time.

Generate Core
When the Generate Core checkbox is selected, the Xilinx CORE Generator will be

invoked during System Generator code generation. If Generate Core is not selected, a

Xilinx LogiCORE will not be generated, and if the core doesn’t already exist in your

project directory, subsequently running the Xilinx Implementation tools will produce

an error.

If you select Implement with Xilinx Smart-IP Core but do not select

Generate Core , you will be able to simulate your generated VHDL because (1) a

core will be instantiated in the VHDL, and (2) the behavioral VHDL models will be

available for a simulator to use. However, you will not be able to complete

implementation into a Xilinx FPGA until you have also generated the core.

In some blocks, only the Generate Core option is available. If the Implement
with Smart IP-Core option is not available, only a core implementation is

available from the System Generator, but no synthesizable VHDL implementation.

Use Placement Information for Core

If Generate Core is selected,the generated core includes relative placement

information. This generally results in a faster implementation. Because the placement

is constrained by this information, it can sometimes hinder the place and route

software.

Latency
Many elements in the Xilinx Blockset have a latency option. This defines the number

of sample periods by which the block’s output is delayed. One sample period may

correspond to multiple clock cycles in the corresponding FPGA implementation (for

example, when the hardware is overclocked with respect to the Simulink model).

System Generator v2.1 does not perform extensive pipelining; additional latency is

usually implemented as a shift register on the output of the block.

Common Options in Block Parameters Dialog Box 21

Xilinx Blockset Overview

Precision
The fundamental computational mode in the Xilinx Blockset is arbitrary precision

fixed point arithmetic. Most blocks give you the option of choosing the precision, i.e.

the number of bits and binary point position.

By default, the output of Xilinx blocks is full precision; that is, sufficient precision to

represent the result without error. Most blocks have a User-Defined precision option

that fixes the number of total and fractional bits.

Number of Bits
When you have specify user-defined precision, you will be asked to specify how

many bits the output should have.

Binary Point

You will also be asked to specify how many bits are to the right of the binary point

(i.e., the size of the fraction). The binary point position must be between zero and the

number of bits in the number’s container.

Overflow and Quantization
When user-defined precision is selected, errors may result from overflow or

quantization. Overflow occurs if a value lies outside the representable range.

Quantization error occurs if the number of fractional bits is insufficient to represent

the fractional portion of a value.

The Xilinx fixed point data type supports several options for user-defined precision.

In the case of overflow, the options are to saturate to the largest positive (or smallest

negative) value, wrap the value (i.e., discard any significant bits beyond the most-

significant bit in the fixed point number), or flag an overflow as a Simulink error

during simulation.

In the case of quantization, the options are to round to the nearest representable value

or to the value farthest from zero if there are two equidistant nearest representable

values, or to truncate the data (i.e., discard bits to the right of the least significant bit).

It is important to realize that whatever option is selected, the generated HDL model

and Simulink model will behave identically.

Override with Doubles
An Override with Doubles message appears on many Xilinx Blocks, with some

variations. Variations are:

Override Computation with Doubles

Override Constant with Double

Override Output with Doubles

Override Storage with Doubles

Most Simulink blocks use double precision floating point signals and arithmetic.

However, when such a signal passes through Xilinx Gateway In block, it is converted

to a fixed point signal. Later, when passing through a Xilinx Gateway Out block, the

signals are converted back into double precision floating point.

22 Xilinx Development System

Xilinx System Generator v2.1 Reference Guide

In the Simulink environment, the Override with Doubles option allows you to

simulate the entire design in double precision floating point.

This option is useful in selecting fixed point widths or when debugging. If you detect

unacceptable quahtization errors with fixed point signals, you can choose to simulate

your entire design, or only specific blocks, using double precision floating point

signals and arithmetic operations. This option will help you discover which part of

your design is responsible for the unacceptable quantization error.

You may choose Override with Doubles on a particular block. You may also choose

this option for an entire sheet or an entire subsystem (the sheet plus underlying

hierarchy) by instantiating a System Generator token on the sheet, and choosing

Override with Doubles as one of the System Generator block’s configurable

parameters.

When the output of one block with Override with Doubles set is connected to the

input of another block where the option is also set, data samples are transmitted in

double precision.

You can easily identify which blocks are currently set to Override with Doubles.

When this option is set, affected Xilinx blocks are displayed in gray rather than the

normal blue or yellow.

Sample Period
Data streams are processed at a specific sample rate as they flow through Simulink.

Typically, each block detects the input sample rate and produces the correct sample

rate on its output. Xilinx blocks Up Sample and Down Sample provide a means to

increase or decrease sample rates.

Use Explicit Sample Period

If you select Use Explicit Sample Period rather than the default, you may set the

sample period required for all the block outputs. This is useful when implementing

features such as feedback loops in your design. In a feedback loop, it is not possible

for the System Generator to determine a default sample rate, because the loop makes

an input sample rate depend on a yet-to-be-determined output sample rate. System

Generator under these circumstances requires you to supply a hint to establish sample

periods throughout a loop.

The following image (the Concat block’s parameters dialog box) shows the options

with Use Explicit Sample Period selected.

Figure 2-3: Use Explicit Sample Period options (available if selected)

Basic Elements 23

Xilinx Blocks

Chapter 3

Xilinx Blocks

This chapter describes each Xilinx block in detail. Xilinx blocks are grouped within six

categories, also shown in the Simulink library browser. They are:

• Basic Elements

• Communication

• DSP

• Math

• MATLAB I/O

• Memory

• State Machine

Basic Elements
The Xilinx Basic Elements library includes the standard building blocks for digital

designs. Using these blocks, you may insert delay, change the sample rate, and

introduce constants, counters, multiplexers, etc. The Basic Elements library also has

two special blocks: the System Generator and the Black Box.

System Generator
The System Generator is a special Xilinx block that invokes the tool’s

code generation software.

By placing the System Generator token on your Simulink project sheet,

you can generate HDL and Xilinx LogiCOREs for all the Xilinx blocks

on that sheet and on any sheets beneath it in the hierarchy. The System

Generator block parameters dialog box allows you to tailor your

Simulink simulation and code generation.

24 Xilinx Development System

Xilinx System Generator v2.1 Reference Guide

Block Parameters Dialog Box

The block parameters dialog box can be invoked by double-clicking the icon in your

Simulink model.

Figure 3-1: System Generator block parameters dialog box

Parameters specific to the System Generator block are:

• Xilinx Product Family

Supported families currently are: Virtex, Virtex2, Spartan2, and VirtexE.

• Target Directory

Specify where the output files (VHDL, cores, and project files) will be written. It is

suggested that you create a separate directory (away from your Simulink model

files) to generate your files in order to keep your Xilinx project files and Simulink

model files directories organized separately.

• System Clock Period

Enter the desired System Clock Period of your design in nanoseconds (ns). This

information will be passed to the Xilinx software tools through the user

constraints file (.ucf) that will be created by the System Generator. This value

will be used as the global PERIOD constraint and multi-cycle paths will be

constrained to a multiple of this value.

• Create Testbench

Checking the Create Testbench box instructs the tool to save test vectors to be

used downstream, during behavioral simulation.

When the Create Testbench box is checked, a VHDL testbench wrapper file is

created for your design. Data vectors (created during Simulink simulation) are

also generated.

Basic Elements 25

Xilinx Blocks

The wrapper file is named to match the top level VHDL file generated for your

project. For example, if your top level file is named design_project , the

wrapper is called design_project_testbench.vhd . The top level of the

project is taken to be the Simulink sheet from which you invoked the System

Generator token.

In addition to the testbench VHDL file, test vectors (.dat files) are also generated.

These vectors represent the inputs and expected outputs seen in Simulink

simulation. The testbench (which uses these test vectors) can be run in a

behavioral simulator such as ModelSim from Model Technology. It will report any

discrepancies between the Simulink and VHDL simulations.

• Global Clock Enable and Global Clear

A global clock enable or clear clock signal can be added to the design by selecting

these options. This may result in a large fanout signal thus degrading system

performance. Use this option only if absolutely necessary.

• Override with Doubles

The System Generator token allows you to override fixed point values with

double precision values for your Simulink simulation. This is particularly useful

during design and debugging. The Override with Doubles directive from a

System Generator token is applied to all Xilinx blocks on the same sheet and

recursively through all subsystems on the sheet. Additional System Generator

tokens can be inserted into the subsystems to selectively mask this effect. For an

explanation of the Override with Doubles behavior, see the Common

Parameters section of the previous chapter.

• Generate Cores

The Generate Cores pulldown menu on the System Generator token gives three

ways to determine for which blocks the Xilinx LogiCOREs should be generated. They

are:

♦ According to Block Masks : Each block that uses a Xilinx LogiCORE has

a Generate Core checkbox on its parameters dialog box. When

According to Block Masks is selected on the System Generator dialog,

a core is generated for each block whose Generate Core box is checked.

♦ Everywhere Available : When Everywhere Available is selected,

cores are generated without regard to the settings of Generate Core check-

boxes on individual blocks.

♦ Not Needed - Already Generated : When Not Needed - Already
Generated is selected, no cores are generated. This is useful in the early

stages of design development because it saves the time that would otherwise

be used in unnecessary calls to the Xilinx CORE Generator. When, in the later

stages, you plan to run the design through the Xilinx Implementation tools,

you must remember to regenerate your design with According to Block
Masks or Everywhere Available selected so that your cores are up to

date.

• Generate button

Finally, clicking the Generate button invokes the code generation software, and

your Simulink design is converted to VHDL and Xilinx LogiCOREs. Note that the

Cancel button is active during code generation. If you want to cancel the code

generation phase while it is running, you may do so by selecting Cancel during

code generation.

26 Xilinx Development System

Xilinx System Generator v2.1 Reference Guide

Addressable Shift Register
The Xilinx Addressable Shift Register block is a variable-length

shift register (or delay chain). This block differs from the Xilinx

Delay block in that the amount of latency experienced by data

from input to block output is variable and depends on the address

value.

Data presented to the block will traverse the entire delay chain.

The output of the block is not necessarily the output of the last register in the chain,

however. Instead, the output of the block is taken from the register pointed to by the

address presented on the addr port.

Block Interface

The block interface (inputs and outputs as seen on the Addressable Shift Register

icon) are as follows:

In Simulink, the addr port is given priority over the data (d) port, i.e. on each

successive cycle, the addressed data value is read from the register before the shift

operation occurs. This order is needed in the Simulink software model to guarantee

one clock cycle of latency between the data port and the first register of the delay

chain. (If the shift operation were to come first, followed by the read, then there would

be no delay, and the hardware would be incorrect.)

Input signals:

d data input

addr address

en enable signal

Output signals:

q data output

Basic Elements 27

Xilinx Blocks

Block Parameters Dialog Box

The Addressable Shift Register Block Parameters Dialog Box can be invoked by

double-clicking the icon in your Simulink model.

Figure 3-2: Addressable Shift Register block parameters dialog box

Parameters specific to the Addressable Shift Register block are:

• Infer Maximum Latency (depth) using Address Port Width : you can

choose to allow the block to automatically determine the depth or maximum

latency of the shift-register based on the bit-width of the address port.

• Maximum Latency (depth) : In the case thaqt the maximum latency is not

inferred (previous option), the maximum latency can be set explicitly. It must be a

positive integer.

• Allow Additional Hardware in Certain Rate-Change Cases : several

rate-change conditions require the use of extra hardware beyond that used by the

IP core to make it compliant with the Simulink simulation output. A rate-change

condition will be detected if the address and data rates differ and the address port

is running at a non-system rate. Choosing this parameter allows additonal

hardware to be used in these cases.

• Use Enable Port : when checked, the optional enable port is activated.

Other parameters used by this block are explained in the Common Parameters section

of the previous chapter.

Xilinx LogiCORE

The block always uses the Xilinx LogiCORE Ram-based Shift Register V5.0. When the

Generate Core parameter is checked, the Use Placement Information
parameter provides the option of generating the core as a Relationally Placed Macro

(RPM) or as unplaced logic.

The core datasheet can be found on your local disk at:

%XILINX%\coregen\ip\xilinx\eip1\com\xilinx\ip\baseblox_v5_0\do
c\ram_shift.pdf

28 Xilinx Development System

Xilinx System Generator v2.1 Reference Guide

Black Box
The Xilinx Black Box token enables you to instantiate your own

specialized functions in your model, and subsequently into a generated

design. Like the System Generator token, the Black Box token can be

placed in any Simulink subsystem, identifying the subsystem as a black

box. If you choose to include functionality in your Simulink model that

does not exist in the current blockset, any Simulink subsystem can be

treated as a black box. You may want to build a model out of non-Xilinx blocks for an

HDL representation of functionality that you want to turn into a Simulink model.

To create a black box in the System Generator, you must supply both a Simulink

model and a corresponding HDL file.

Incorporating mixed language black boxes

System Generator creates VHDL for the Xilinx blocks in your design. But if you

include a black box that is written in Verilog HDL, System Generator will produce a

mixed language project.

A VHDL black box and a Verilog black box share the same interface, as is seen below

in the description of the block parameters. You must specify the VHDL/Verilog

design unit name, and specify types, names, and values of generics or parameters.

You must also specify how many clocks the black box has and how these clocks

should be associated with ports.

In addition, you must specify whether you are inserting a VHDL black box or a

Verilog black box by choosing the appropriate language in the HDL Language option

on the Black Box block parameter dialog. System Generator will generate a

corresponding wrapper in the chosen language.

Block Parameters Dialog Box

The Black Box block parameters dialog box encapsulates the design information

necessary for the compiler to create the correct instantiation interfaces. This black box

support allows you to abstract commonly used control signals and ports, and then

Basic Elements 29

Xilinx Blocks

infer them in the generated VHDL. The block parameters dialog box can be invoked

by double-clicking the icon in your Simulink model.

Figure 3-3: Black Box block parameters dialog box

Parameters specified as cell arrays (generic or parameter names, types, and values)

permit several methods for entering data. You can specify your data directly in the

dialog box as shown. You may also specify the cell arrays as MATLAB expressions.

This is useful if you have many elements in your cell arrays. Generic types can be any

VHDL type. Parameter types can be any Verilog type.

The black box block parameters dialog box allows you to specify multiple clocks on a

black box. To handle more than one clock, the System Generator must be told how fast

each clock should run. To specify a clock’s speed, you must associate the clock to a

port on the black box; the frequency of the clock is then the frequency of the signal

passing through the port. System Generator allows more than one port to be

associated to a clock, but all associated ports must have the same frequency.

Note - Constant inputs match any paired frequency.

For example, a black box with two ports (a fast input and a slow output) should have

clocks called fast_clk and slow_clk with frequencies that match those of the

30 Xilinx Development System

Xilinx System Generator v2.1 Reference Guide

input and output ports respectively. To configure the black box, enter the parameters

in the black box block parameters dialog box as shown in the figure below.

Figure 3-4: Customizing Clocks in the Black Box block parameters dialog box

These settings indicate that the black box should have clocks named fast_clk and

slow_clk . The fast_clk should have the same frequency as the samples presented

to input port #1, and the slow_clk should have the same frequency as output port

#1.

Concat
The Xilinx Concat block performs a concatenation of two bit vectors

represented by unsigned integer numbers, i.e. two unsigned numbers

with binary points at position zero.

The Xilinx Reinterpret block provides capabilities that can extend the

functionality of the Concat block.

Block Interface

The block has two input ports and one output port. The two input ports are labeled

hi and low . The number input to the hi port will occupy the most significant bits of

the output and the number that is input to the low port will occupy the least

significant bits of the output.

Block Parameters Dialog Box

The block parameters dialog box can be invoked by double-clicking the icon in your

Simulink model.

Figure 3-5: Concat block parameters dialog box

Parameters used by this block are explained in the Common Parameters section of the

previous chapter.

The Concat block does not use a Xilinx LogiCORE.

Basic Elements 31

Xilinx Blocks

Constant
The Xilinx Constant block generates a constant. This block is similar to the

Simulink constant block, but can be used to drive the inputs on Xilinx

blocks.

Block Parameters Dialog Box

The block parameters dialog box can be invoked by double-clicking the icon in your

Simulink model.

Figure 3-6: Constant block parameters dialog box

Parameters specific to the block are:

• Constant Value : specifies the value of the constant. When changed, the new

constant value of the block will appear on the block icon.

• Sampled Constant : allows a sample period to be associated with the constant

ouput and inherited by blocks that the constant block drives. (This is useful

mainly because the blocks eventually target hardware and the sample periods of

Simulink are used to establish hardware clock periods.)

Other parameters used by this block are explained in the Common Parameters section

of the previous chapter.

The Constant block does not use a Xilinx LogiCORE.

Convert
The Xilinx Convert block converts each input sample to a number of a

desired arithmetic type. For example, a number can be converted to a

signed (two’s complement) or unsigned value.

32 Xilinx Development System

Xilinx System Generator v2.1 Reference Guide

Block Parameters Dialog Box

The block parameters dialog box can be invoked by double-clicking the icon in your

Simulink model.

Figure 3-7: Convert block parameters dialog box

All the parameters of the Convert block are parameters common to other blocks.

Please refer to the Common Parameters section in the previous chapter for details.

Parameters defining the desired output type are:

• Output Arithmetic Type

• Number of Bits

• Binary Point

Parameters defining the quantization effect and the overflow effect are:

• Quantization Behavior

• Overflow Behavior

The Convert block does not use a Xilinx LogiCORE.

Counter
The Xilinx Counter block implements an up or down counter. It can be

configured to step between the starting and ending values, provided the

increment evenly divides the difference between the starting and ending

values. The counter output and increment values can be fixed point

numbers in addition to integers.

The output for an up counter is calculated as follows:

The down counter calculation replaces addition by subtraction.

Basic Elements 33

Xilinx Blocks

The block can be configured as a free running up or down counter by

selecting the Provide Reset Pin option on the block parameters

dialog box. In this case, the block has a reset input port in addition to its

output port.

The output for a free running up counter is calculated as follows:

Here N denotes the number of bits in the counter. The down counter calculations

replace addition by subtraction.

The free running up or down counter can be configured to load the

output of the counter with a value on the input din port by selecting the

Provide Load Pin option on the block parameters dialog box.

In this case, the block has three (rst, Load, din) input ports in

addition to its output port.

The output for a free running up counter with load capability is calculated as follows:

Here N denotes the number of bits in the counter. The down counter calculations

replace addition by subtraction.

34 Xilinx Development System

Xilinx System Generator v2.1 Reference Guide

Block Parameters Dialog Box

The Counter block parameters dialog box is invoked by double-clicking the block

icon.

Figure 3-8: Counter block parameters dialog box

Parameters specific to the block are:

• Number of Bits : specifies the number of bits in the counter.

• Binary Point Position : specifies the location of the binary point.

• Arithmetic Type : specifies the block ouput to be either Signed or Unsigned.

• Start Count at : specifies the starting and reset value. The default is zero.

• Count to Value : specifies the ending value, the number at which the counter

resets. A value of Inf denotes the largest representable output in the specified

precision. This cannot be the same as the start count.

• Count By Value : specifies the increment, which must evenly divide the

difference between the extreme values.

• Count Direction : specifies the direction of the count (Up or Down).

• Provide Reset Pin : when checked, the block operates as a free running

counter with explicit reset port. In this case, there is no Count to Value setting.

• Provide Load Pin : when checked, the block operates as a free running load

counter with explicit load and din port. The load capability is available only for

free running counter.

Other parameters used by this block are described in the Common Parameters section

of the previous chapter.

Basic Elements 35

Xilinx Blocks

Xilinx LogiCORE

The block always uses the Xilinx LogiCORE: Binary Counter V5.0.

The Core datasheet can be found on your local disk at:

%XILINX%\coregen\ip\xilinx\eip1\com\xilinx\ip\baseblox_v5_0\do
c\binary_counter.pdf

Delay
The Xilinx Delay block is a delay line (also called a shift register) of

configurable length, allowing you to add latency to your design. Data

presented at the input will appear at the output after a user specified

number of sample periods.

The Delay block differs from the Register in that the Register allows only

latency of 1, and contains an Initial Value parameter. The Delay block supports a user

specified latency, but no initial value, other than zeroes.

Block Parameters Dialog Box

The block parameters dialog box can be invoked by double-clicking the icon in your

Simulink model.

Figure 3-9: Delay block parameters dialog box

Parameters specific to this block are:

• Initialize with Zeros : The block’s internal registers are set to zero if this

option is selected, otherwise the output will be NaN (Not a Number) until the

registers are flushed. For example, if the Delay block has a latency of 5 and this

option is selected, the first five output values will be zeros. If this option is not

selected, the first five output values will be NaN.

• Latency : You may set the amount of latency in the Latency field.

Other parameters used by this block are explained in the Common Parameters section

of the previous chapter.

The Delay block does not use a Xilinx LogiCORE, but is efficiently mapped to utilize

the SRL16 feature of Xilinx devices.

36 Xilinx Development System

Xilinx System Generator v2.1 Reference Guide

Down Sample
The Xilinx Down Sample block reduces the sample rate at the point

where the block is placed in your design. The input signal is under-

sampled so that every nth input sample is presented at the output and

held.

Output sample period is ki, where k is the sampling rate and i is

the input sample period.

In Simulink, a block changes its output right after it is enabled. In hardware, a

register does not change until the clock enable is sampled, i.e. one clock cycle later. To

make the hardware cycle-true to the Simulink model, the down sample block is

implemented with the following circuit in hardware:

Figure 3-10: Hardware implementation of down sample block

The clock enable connected to this circuit is the same one that is distributed to the

blocks connected to its output. The timing diagram shown below demonstrates the

circuit's behavior. It is important to notice that this circuit has a combinatorial path

from din to dout . Whenever possible put a register or delay block after a down

sample block.

Figure 3-11: Down sample circuit behavior

Basic Elements 37

Xilinx Blocks

Block Parameters Dialog Box

The block parameters dialog box can be invoked by double-clicking the icon in your

Simulink model.

Figure 3-12: Down sample block parameters dialog box

Parameters specific to the block are:

• Sampling Rate : must be an integer greater or equal to 2. This is the ratio of the

output sample period to the input, and is essentially a sample rate divider. For

example, a ratio of 2 indicates a 2:1 division of the input sample rate. If a non-

integer ratio is desired, the Up Sample block can be used in combination with the

Down Sample block.

• Zero Initial Output (otherwise NaN) : NaN means Not a Number. This

option lets you choose what the first value of the new sample (before it has valid

data) will be. By selecting Zero Initial Output, you can validate the first sample

with valid data of zero. Otherwise, an invalid data (NaN) will be the block’s first

output.

Other parameters used by this block are explained in the Common Parameters section

of the previous chapter.

The Down Sample block does not use a Xilinx LogiCORE.

Get Valid Bit
The Xilinx Get Valid Bit element sets its output to 1 when its input is a

valid data value. The output is set to 0 otherwise.

In the Xilinx Blockset, every data sample that flows through the model is

accompanied by a handshake validation signal. In the corresponding

hardware, every data-carrying bus has a companion net that carries a

status indicator. Under different circumstances the status indicator may be set to

invalid. For example, a pipeline might not yet have filled, or outputs might be bursty,

as with an FFT. This block simply reports the valid status of the samples presented to

it.

There are no parameters for this block.

38 Xilinx Development System

Xilinx System Generator v2.1 Reference Guide

Mux
The Xilinx Mux block implements a multiplexer.

The block has one select input (type unsigned) and a user-

configurable number of data bus inputs, ranging from 2 to

32.

Block Parameters Dialog Box

The block parameters dialog box can be invoked by double-clicking the icon in your

Simulink model.

Figure 3-13: Mux block parameters dialog box

Parameters specific to the block are:

• Number of Inputs : specifies the number of data bus inputs, from 2 to 32.

• Use Placement Information for Core : when checked, the generated core

includes relative placement information. This usually results in a faster

implementation. The resulting floorplan is a single column with two bits per slice.

With this placement, large multiplexers may not fit into small Xilinx devices.

When unchecked, the core is generated as unplaced logic.

Other parameters used by this block are described in the Common Parameters section

of the previous chapter.

Xilinx LogiCORE

The block uses the Xilinx LogiCORE Bus Multiplexer V5.0. When the Generate Core

parameter is checked, the Use Placement Information for Core parameter provides the

option of generating the core as a Relationally Placed Macro (RPM) or as unplaced

logic.

The Core datasheet can be found on your local disk at:

Basic Elements 39

Xilinx Blocks

%XILINX%\coregen\ip\xilinx\eip1\com\xilinx\ip\baseblox_v5_0\do
c\bus_mux.pdf

Parallel to Serial
The Parallel to Serial block takes an input word and splits it into N time

multiplexed output words where N equals the number of input bits/

number of output bits. The order of the output is either least significant

bit first or most significant bit first.

The following waveform illustrates the block’s behavior:

Figure 3-14: Example of Parallel to Serial behavior

This example illustrates the case where the input width is 4, output width is 2, word

size is 1 bit, and the block is configured to output the least significant partial word

first.

Block Interface

The Parallel to Serial block has one input and one output port. The input port can be

any size. The output port size is indicated on the block parameters dialog box.

40 Xilinx Development System

Xilinx System Generator v2.1 Reference Guide

Block Parameters Dialog Box

Figure 3-15: Parallel to Serial block parameters dialog box

Parameters specific to the block are:

• Output Order : Most significant word first or least significant word first. Word

size is determined by the size of the input port.

• Output Arithmetic Type : unsigned or signed

• Number of Input Bits : Input width. Must match size of input port.

• Number of Output Bits : Output width. Must divide Number of Input
Bits evenly.

• Binary Point : Output binary point location.

An error is reported when the number of output bits does not evenly divide the

number of input bits.

The minimum latency of this block is 1.

Other parameters used by this block are explained in the Common Parameters section

of the previous chapter.

The Parallel to Serial block does not use a Xilinx LogiCORE.

Register
The Xilinx Register block models a D flip flop-based register, having

latency of one sample period.

Basic Elements 41

Xilinx Blocks

Block Interface

The block has one input port for the data and an optional input reset port. The initial

output value is specified by the user in the block parameters dialog box (below). Data

presented at the input will appear at the output after one sample period. Upon reset,

the register assumes the initial value specified in the parameters dialog box.

The Register block differs from the Xilinx Delay block by providing an optional reset

port and a user specifiable initial value.

Block Parameters Dialog Box

The block parameters dialog box can be invoked by double-clicking the icon in your

Simulink model.

Figure 3-16: Register block parameters dialog box

Parameters specific to the block are:

• Initial Value : specifies the initial value in the register.

• Quantization (of Initital Value) : specifies desired quantization effect;

one on Round or Truncate.

• Overflow Effect (of Initital Value) : specifies desired overflow effect;

Wrap, Saturate, or Flag as Error.

• Register Only Valid Data : when checked, only valid values are registered.

Extra logic is added when this option is selected, thus decreasing system

performance.

• Use Reset Port : when checked, the optional reset port is activated.

• Use Enable Port : when checked, the optional clock enable port is activated.

Other parameters used by this block are explained in the Common Parameters section

of the previous chapter.

The Register block is implemented as a synthesizable VHDL module. It does not use a

Xilinx LogiCORE.

42 Xilinx Development System

Xilinx System Generator v2.1 Reference Guide

Reinterpret
The Reinterpret block forces its output to a new type without any

regard for retaining the numerical value represented by the input. The

binary representation is passed through unchanged, so in hardware this

block consumes no resources. The number of bits in the output will

always be the same as the number of bits in the input.

The block allows for unsigned data to be reinterpreted as signed data, or, conversely,

for signed data to be reinterpreted as unsigned. It also allows for the reinterpretation

of the data’s scaling, through the repositioning of the binary point within the data.

The Xilinx Scale block provides an analagous capability.

An example of this block’s use is as follows: if the input type is 6 bits wide and signed,

with 2 fractional bits and the output type is forced to be unsigned with 0 fractional

bits, then an input of -2.0 (1110.00 in binary, two’s complement) would be translated

into an output of 56 (111000 in binary).

This block can be particularly useful in applications that combine it with the Xilinx

Slice block or the Xilinx Concat block. To illustrate the block’s use, consider the

following scenario:

Given two signals, one carrying signed data and the other carrying two unsigned

bits (a UFix_2_0), we want to design a system that concatenates the two bits

from the second signal onto the tail (least significant bits) of the signed signal.

We can do so using two Reinterpret blocks and one Concat block. The first

Reinterpret block is used to force the signed input signal to be treated as an

unsigned value with its binary point at zero. The result is then fed through the

Concat block along with the other signal’s UFix_2_0 . The Concat operation is

then followed by a second Reinterpret that forces the output of the Concat block

back into a signed interpretation with the binary point appropriately

repositioned.

Though three blocks are required in this construction, the hardware

implementation will be realized as simply a bus concatenation, which has no cost

in hardware.

Basic Elements 43

Xilinx Blocks

Block Parameters Dialog box

Figure 3-17: Reinterpret block parameters dialog box

Parameters specific to the block are:

• Force Arithmetic Type : When checked, the Output Arithmetic Type

parameter can be set and the output type will be forced to the arithmetic type

chosen according to the setting of the Output Arithmetic Type parameter. When

unchecked, the arithmetic type of the output will be unchanged from the

arithmetic type of the input.

• Force Binary Point Position : When checked, the Output Binary Point

parameter can be set and the binary point position of the output will be forced to

the position supplied in the Output Binary Point parameter. When unchecked, the

arithmetic type of the output will be unchanged from the arithmetic type of the

input.

• Output Arithmetic Type : The arithemetic type (unsigned or signed, 2’s

complement) to which the output is to be forced.

• Output Binary Point : The position to which the output’s binary point is to be

forced. The supplied value must be an integer between zero and the number of

bits in the input (inclusive).

This block does not use any hardware resources. The block does not use a Xilinx

LogiCORE.

Serial to Parallel
The Serial to Parallel block takes a series of inputs of any size and

creates a single output of a specified multiple of that size. The input

series can be ordered either with the most significant word first or the

least significant word first.

44 Xilinx Development System

Xilinx System Generator v2.1 Reference Guide

The following waveform illustrates the block’s behavior:

Figure 3-18: Example of Serial to Parallel behavior

This example illustrates the case where the input width is 1, output width is 4, word

size is 1 bit, and the block is configured for most significant word first.

Block Interface

The Serial to Parallel block has one input and one output port. The input port can be

any size. The output port size is indicated on the block parameters dialog box.

Block Parameters Dialog Box

Figure 3-19: Serial to Parallel block parameters dialog box

Parameters specific to the block are:

• Input Order : Most Significant Word First or Least Significant Word First

• Output Arithmetic Type : Unsigned or Signed

• Number of Input Bits : Input width. Must match size of input port.

• Number of Output Bits : Output width which must be a multiple of the

number of input bits.

Basic Elements 45

Xilinx Blocks

• Binary Point : Output binary point location

Other parameters used by this block are explained in the Common Parameters section

of the previous chapter.

The Parallel to Serial block does not use a Xilinx LogiCORE.

An error is reported when the number of output bits cannot be divided evenly by the

number of input bits. The minimum latency for this block is zero.

Set Valid Bit
The Xilinx Set Valid Bit block flags input data as invalid when the signal

on the valid bit input port is zero. This block only sets data invalid; it

cannot change input data to valid.

In the Xilinx Blockset, every data sample that flows through the model

is accompanied by a handshake validation signal. In the corresponding

hardware, every data-carrying bus has a companion net that carries a valid or invalid

status indicator. This block provides some explicit control over this handshake

mechanism.

Block Parameters Dialog Box

The block parameters dialog box can be invoked by double-clicking the icon in your

Simulink model.

Figure 3-20: Set Valid Bit block parameters dialog box

Slice
The Xilinx Slice block allows you to slice off a sequence of bits from your

input data and create a new data value. This value is presented as the

output from the block. The output data type is unsigned with its binary

point at zero.

The block provides several mechanisms by which the sequence of bits

can be specified. If the input type is known at the time of parameterization, the

various mechanisms do not offer any gain in functionality. If, however, a Slice block is

used in a design where the input data width or binary point position are subject to

change, the variety of mechanisms becomes useful. The block can be configured, for

example, always to extract only the top bit of the input, or only the integral bits, or

46 Xilinx Development System

Xilinx System Generator v2.1 Reference Guide

only the first three fractional bits. The following diagram illustrates how to extract all

but the top 16 and bottom 8 bits of the input.

Figure 3-21: Slice block operation

Block Parameters Dialog Box

The block parameters dialog box can be invoked by double-clicking the icon in your

Simulink model.

Basic Elements 47

Xilinx Blocks

Figure 3-22: Slice block parameters dialog box showing different options

Parameters specific to the block are:

• Specify Range As : (Two Bit Locations | Upper Bit Location + Width |Lower

Bit Location + Width). Allows the user to specify either the bit locations of both

end-points of the slice or one end-point along with number of bits to be taken in

the slice.

• Width of Slice (Number of Bits) : specifies the number of bits to extract.

• Top bit of slice Offset by : specifies the offset for the ending bit position

from the LSB, MSB or binary point.

• Bottom bit of slice Offset by : specifies the offset for the ending bit

position from the LSB, MSB or binary point.

• Relative To : specifies the bit slice position relative to the Most Significant Bit

(MSB), Least Significant Bit (LSB), or Binary point of the top or the bottom of the

slice. Other parameters used by this block are explained in the Common

Parameters section of the previous chapter.

The Slice block does not use a Xilinx LogiCORE.

Sync
The Xilinx Sync Block synchronizes two to four channels of data so that

their first valid data samples appear aligned in time with the outputs.

The input of each channel is passed through a delay line and then

presented at the output port for that channel. The lengths of the delay

lines embedded in this block, however, are adaptively chosen at the

start of simulation so that the first valid input samples are aligned.

Thus, no data appears on any channel until a first valid sample has been received into

each channel.

48 Xilinx Development System

Xilinx System Generator v2.1 Reference Guide

The following diagram illustrates the operation of this block.

Figure 3-23: Sync block use

This diagram shows a two-channel Xilinx Sync Block connected to two signal sources,

with one producing a sawtooth wave and the other a sine wave. The sawtooth

generator is able to produce its output much more quickly than the sine generator.

This scenario could reflect, for example, a CORDIC-based sine generator with many

pipeline stages for hardware efficiency and a simple counter-based sawtooth

generator.

The rest of the diagram shows the connections of both the inputs and outputs of the

Sync block to a four-channel scope. The waveforms presented by that scope are

shown in the figure below. Note that the input waveforms are not aligned, with the

first valid sine wave samples significantly lagging the sawtooth wave. In the third and

fourth scope windows, the output signals can be seen to have been aligned.

Figure 3-24: Output of diagram showing Sync block use

Basic Elements 49

Xilinx Blocks

It is instructive to note that the following model produces behavior identical to the

one with the Sync block. This one, though, requires the designer to examine the two

upstream pipelined sources and to insert the correct delay line length to balance the

two pipelines. Moreover, should a pipeline stage be either added to or removed from

the sine wave generator, the pipeline balancing delay line would have to be re-tuned.

The Xilinx Sync block allows such balancing operations to be automated.

Figure 3-25: Design with delay rather than Sync block

The Sync block can be configured to have up to four channels and to add latency to all

channels beyond the minimum required.

Block Parameters Dialog Box

The block parameters dialog box can be invoked by double-clicking on the block icon

in your Simulink model. The dialog box is illustrated below.

Figure 3-26: Sync block parameters dialog box

Parameters specific to the block are:

• Number of channels : Specifies the number of channels to process, hence the

number of input and output ports. The number of channels can be 2, 3, or 4.

• Latency (minimum per channel) : Specifies the smallest amount of delay

that will be added to any channel. Latency will also be the amount of latency

50 Xilinx Development System

Xilinx System Generator v2.1 Reference Guide

added to the channel that is last to present a valid input sample. Note that if this

parameter is zero, the block has a feed-through path; otherwise, it does not.

Other parameters used by this block are described in the Common Parameters section

of a previous chapter in this manual.

The Xilinx Sync block does not use a Xilinx LogiCORE.

Up Sample
The Xilinx Up Sample block increases the sample rate at the point

where the block is placed in your design. The input signal is over-

sampled so that every nth input sample is presented at the output, or

presented once with (n-1) zeroes interspersed.

The output sample period is i/k, where i is the input sample period

and k the sampling rate.

In Simulink, a block changes its output right after it is enabled. In hardware, a

register does not change until the clock enable is sampled, i.e. one clock cycle later. To

make the hardware cycle-true to the Simulink model, the up sample block is

implemented with the circuit shown below. The portion of the circuit within the

dashed line is always present. The additional mux used for zero padding is removed

if the Copy Samples option is selected on the block parameters dialog box.

Figure 3-27: Up sample block hardware implementation

The clock enable connected to this circuit is the same one that is distributed to the

blocks connected to its input. The timing diagram shown below demonstrates the

circuit's behavior. It is important to notice that this circuit has a combinatorial path

Basic Elements 51

Xilinx Blocks

from din to dout. Whenever possible, put a register or delay block after an up sample

block.

Figure 3-28: Example of up sample block behavior with zero padding

Block Parameters Dialog Box

The block parameters dialog box can be invoked by double-clicking the icon in your

Simulink model.

Figure 3-29: Up Sample block parameters dialog box

Parameters specific to the block are:

• Sampling Rate : must be an integer with a value of 2 or greater. This is the ratio

of the output sample period to the input, and is essentially a sample rate

multiplier. For example, a ratio of 2 indicates a doubling of the input sample rate.

If a non-integer ratio is desired, the Up Sample block can be used in combination

with the Down Sample block.

• Copy Samples : allows you to choose what to do with the additional samples

produced by the increased clock rate. By selecting Copy Samples , the same

sample will be duplicated (copied) during the extra sample times. If this checkbox

is not selected, the additional samples are zero.

Other parameters used by this block are explained in the Common Parameters section

of the previous chapter.

The Up Sample block does not use a Xilinx LogiCORE.

52 Xilinx Development System

Xilinx System Generator v2.1 Reference Guide

Communication
The blocks in the Communication library implement functions used in digital

communications systems, including convolutional and block channel coding,

interleaving, and utility functions.

Convolutional Encoder
The Xilinx Convolutional Encoder block implements an encoder

for convolutional codes. Commonly used in tandem with a

Viterbi decoder block, this block can be used to implement

forward error correction (FEC) circuitry for digital

communication systems.

Data is encoded using a linear feed forward shift register to

compute modulo-two sums over a sliding window of input

data, as shown in the figure below. The length of the shift register, and the code's

constraint length, is equal to the length of the convolution codes that characterize the

encoder, specified in the block’s parameters dialog box. These convolution codes

specify which bits in the data window contribute to the modulo-two sum at the

encoder output. Resetting the block will clear the contents of the shift register to all

zeros. The encoder rate is the ratio of input bits to output bits, so a rate 1/2 encoder

outputs two bits for each input bit. Similarly, a rate 1/3 encoder outputs three bits for

each input bit.

Figure 3-30: Constraint length 9 convolutional encoder

Block Interface

The block has two input and one output ports. The input ports, din and rst , are

limited to type UFix1_0 . The size of the output port , dout, is determined by the

output rate. The port will be either type UFix2_0 or UFix3_0 .

Communication 53

Xilinx Blocks

Block Parameters Dialog Box

The following figure shows the block parameters dialog box.

Figure 3-31: Convolutional encoder block parameters dialog box

Parameters specific to the block are:

• Output Rate : 2 or 3. Number of output bits generated per input bit. A rate 1/2

encoder will have an output rate of 2.

• Convolution Code 1 : Used to generate least significant bit of the output.

Length of convolution code must be between 3 and 9 (inclusive).

• Convolution Code 2 : Used to generate bit 2 of the output. Length of

convolution code must be between 3 and 9 (inclusive).

• Convolution Code 3 : Used to generate bit 3 of the output. Length of

convolution code must be between 3 and 9 (inclusive).

Other parameters used by this block are described in the Common Parameters section

of the previous chapter.

The Convolutional Encoder block cannot be placed in an enabled subsystem in

System Generator v2.1. See the Enabled Subsystems section (within the MATLAB I/O

library documentation) explanation for more details.

Xilinx LogiCORE

The block always uses the Xilinx LogiCORE: Convolutional Encoder v1.0.

The Core datasheet can be found on your local disk at:

%XILINX%\coregen\ip\xilinx\eip1\com\xilinx\ip\convolution_v1_0
\doc\convolution.pdf

54 Xilinx Development System

Xilinx System Generator v2.1 Reference Guide

Depuncture
The Xilinx Depuncture block allows you to insert arbitrary symbol into

your input data at the location specified by the depuncture code and

creates a new value. This value is presented as output from the block.

The Xilinx depuncture block accepts data of type UFixN_0 where N

equals the length of insert string x (the number of ones in the depuncture code) and

produces output data of type UFixK_0 where K equals the length of insert string x

(the length of the depuncture code).

The Xilinx Depuncture block can be used to decode a range of punctured convolution

codes. The following diagram illustrates an application of this block to implement soft

decision Viterbi decoding of punctured convolution codes.

Figure 3-32: Example of Depuncture block use

The previous diagram shows a matched filter block connected to a serial to parallel

block. The serial to parallel block concatenates two continuous soft inputs and

presents it as a 6-bit word to the depuncture block. The depuncture block inserts the

symbol '100' after the 3-bits from the MSB for code 0 ([1 0 1]) and 6-bits from the MSB

for code 1 ([1 1 0]) to form a 9-bit word. The output of the depuncture block is

serialized as soft decision 3-bit input words for the Viterbi decoder which decodes the

punctured convolutional code and outputs the decoded data.

Communication 55

Xilinx Blocks

Block Parameters Dialog Box

The Xilinx depuncture block can be configured using its Block Parameters dialog box.

Figure 3-33: Depuncture block parameters dialog box

Parameters specific to the Xilinx Puncture block are:

• Depuncture Code : specifies the depuncture pattern for inserting the string to

the input.

• Insert Symbol : specifies the binary word to be inserted in the depuncture

code.

Other parameters used by this block are described in the Common Parameters section

of the previous chapter.

The Depuncture block does not use a Xilinx LogiCORE.

Interleaver Deinterleaver
The Xilinx Interleaver/Deinterleaver block implements an

interleaver or a deinterleaver. An interleaver is a device that

rearranges the ordering of a sequence of symbols in a one-to-one

deterministic manner. Associated with any interleaver is a

deinterleaver, a device that restores the reordered sequence.

When the block is in interleaver mode, the input data sampled on

the din port shall be multiplexed into and out of B shift registers

onto the dout port using two (synchronized) commutator arms,

as illustrated in the figure below. B is the number of branches as entered in the block’s

parameters dialog. Branch 0 shall have a shift register of zero length. Branch 1 shall

have a shift register of length L. Branch 2 shall have a shift register of length 2L .

Branch (B-1) shall have a shift register of length (B-1)L . L is the branch length

constant entered as an array with a length of one.

56 Xilinx Development System

Xilinx System Generator v2.1 Reference Guide

Figure 3-34: Forney convolutional interleaver with a constant difference
between consecutive branches

When the block is in deinterleaver mode, the input data sampled on the DIN port is

multiplexed into and out of B shift registers onto the DOUT port using two

(synchronized) commutator arms. Branch 0 will have a shift register of length (B-1)*L.

Branch (B-1) shall have a shift register length of zero.

Figure 3-35: Forney convolutional deinterleaver with a constant difference
between consecutive branches

Communication 57

Xilinx Blocks

When the branch lengths are specified as an array, the block operates the same in

either interleaver or deinterleaver mode because the array fully defines the length of

all the branches. The array must have length B, matching the number of branches.

The reset pin (rst) will set the commutator arms to branch 0, but will not clear the

branches of data.

Block Interface

The Interleaver/Deinterleaver block has two input and one output ports. The input

port, din , must be between 1 and 256 (inclusive) bits. The reset port, rst , must be of

type UFix1_0 . The size of the output port, dout , is the same as the input port, din.

Block Parameters Dialog Box

Figure 3-36: Interleaver/Deinterleaver block parameters dialog box

Parameters specific to the block are:

• Mode: Interleaver or Deinterleaver

• Number of Branches : 1 to 256 (inclusive)

• Length of Branches : 1 to MAX (inclusive). MAX depends on the number of

branches and size of core input. Branch length must be an array of either length

one or number of branches. If the array size is one, the value is used as a constant

difference between consecutive branches. Otherwise, each branch has a unique

length.

• Memory Type : Automatically chosen, block RAM or distributed RAM

Other parameters used by this block are described in the Common Parameters section

of the previous chapter.

Xilinx LogiCORE

The block always uses the Xilinx LogiCORE: Interleaver/Deinterleaver v1.1.

58 Xilinx Development System

Xilinx System Generator v2.1 Reference Guide

The Core datasheet can be found on your local disk at:

%XILINX%\coregen\ip\xilinx\eip1\com\xilinx\ip\sid_v1_1\doc\sid
.pdf

This is a licensed core, available for purchase on the Xilinx web site at:

http://www.xilinx.com/ipcenter/interleaver

Puncture
The Xilinx Puncture block allows you to remove arbitrary bits specified

as a puncture code from your input data and create a new value. This

value is presented as the output from the block. The Xilinx puncture

block accepts data of type UFixN_0 (where N is equal to the length of

the puncture code) and outputs data of type UFixK_0 (where K is equal to the

number of ones in the puncture code).

The Xilinx Puncture block can be used to implement a range of punctured

convolution codes. The following diagram illustrates an application of this block.

Figure 3-37: Example of a Puncture block application

The preceding diagram shows a 1/2 rate Convolutional Encoder block connected to a

binary input signal source. The slice blocks separate the convolution code output over

the two branches. The output of the slice block is connected to a Serial to Parallel

block which concatenates the output of the convolution code to form a 3-bit word. The

puncture block removes the center bit for code 0 ([1 0 1]) and LSB bit for code 1

([1 1 0]) to produce a 2-bit punctured output which is again serialized to be

connected to the I and Q channel for baseband shaping.

Communication 59

Xilinx Blocks

Block Parameters Dialog Box

The Xilinx puncture block can be configured using its Block Parameters dialog box.

Figure 3-38: Puncture block parameters dialog box

Parameters specific to the Xilinx Puncture block are:

• Puncture Code : specifies the puncture pattern for removing the bits from the

input.

Other parameters used by this block are described in the Common Parameters section

of the previous chapter.

The Puncture block does not use a Xilinx LogiCORE.

RS Decoder
RS (Reed-Solomon) codes are block-based error correcting codes

with a wide range of applications in digital communications and

storage. The Xilinx RS Decoder core handles both full length and

shortened systematic codes. The Reed-Solomon decoder takes a

block of digital data and processes each block and attempts to

correct errors and recover the original data.

A Reed-Solomon code is specified as RS(n,k) with s-bit symbols.

Reed-Solomon codes are usually referred to as (n,k) codes, where

n is the total number of symbols in a code block and k is the number of information or

data symbols. See the RS Encoder block documentation for more details. A Reed-

Solomon decoder can correct up to t symbols that contain errors in a codeword, where

2t = n-k.

The RS decoder can correct up to t errors or up to 2t erasures. An erasure occurs when

the position of an erred symbol is known. Erasure information is generally supplied

by the demodulator in a digital communication system, i.e. the demodulator flags
received symbols that are likely to contain errors. When a codeword is decoded, there

are three possible outcomes:

1. If 2p + r < 2t (p errors, r erasures) the original transmitted code word will

always be recovered

2. The decoder will detect that it cannot recover the original code word and will

indicate a failure in decoding.

3. The decoder will mis-decode and recover an incorrect code word without any

indication.

60 Xilinx Development System

Xilinx System Generator v2.1 Reference Guide

The probability of each of the three outcomes depends on the particular Reed-

Solomon code and the nature of the communications channel. The Simulink blocksets

provide excellent capabilities for modeling communication channels and ascertaining

these probabilities.

Block Interface

The Xilinx RS Decoder Block has two input (din, rst) and four output (dout,
info, fail, err_cnt) ports. The RS Decoder block also has two optional input

ports (start, erase) and one optional output port (erase_cnt).

Figure 3-39: Reed-Solomon Decoder icons, including optional ports

The port descriptions are:

• din : carries the codeword to be decoded. The din signal must be a UFixS_0
where S is equal to the symbol width (3 to 12).

• rst : carries the reset signal for the decoder. After the rst signal is asserted the

decoder initializes the next available input as the first input codeword symbol.

The rst signal must be a UFix1_0 .

• start : when start is asserted for a particular sample period, the data on the din
port is taken as the first input codeword. The start signal is ignored for (n-1)

sample periods after the first start signal is asserted. The decoder always needs

the start signal to be asserted for one sample period to mark the beginning of a

codeword. The start signal must be a UFix1_0 .

• erase : when erase is asserted for a particular sample period, data input on the

din port is marked as an erasure to be corrected by the decoder. The erase signal

must be a UFix1_0 .

• dout : carries the decoded information symbols and the parity symbols of the

input codeword. The dout signal must have the same arithmetic type as the din
input.

• info : info output is 1 when there are information symbols on the dout port and 0

when there are parity symbols on the dout port. The info signal is a UFix1_0 .

• fail : supplied when the last symbol of a code block is output on dout. The

decoder sets fail 1 if it determines that there were more errors in the code block

than it could correct. The fail signal is a UFix1_0 .

• err_cnt : supplied when the last symbol of a code block is output on dout. The

err_cnt outputs the number of errors that were corrected by the decoder in the

output code block. The err_cnt signal is a UFixN_0 (where N is equal to the

number of binary bits required to represent n-k).

• erase_cnt : erase_cnt output is available only when the erasure decoding is

enabled. The erase_cnt output is set when the last symbol of a code block is

output on dout . The erase_cnt output provides a count on the number of

erasures that were flagged for the output code block. The erase_cnt signal is a

UFixN_0 (where N is equal to the number of binary bits required to represent n).

Communication 61

Xilinx Blocks

Block Parameters Dialog Box

The RS Decoder block can be configured using its Block Parameters dialog box.

Figure 3-40: Reed-Solomon Decoder block parameters dialog box

Parameters specific to the RS Decoder block are:

• Code Specification : specifies the type of RS Decoder desired. The choices

are:

♦ Custom: allows you to set all the block parameters.

♦ ATSC: implements ATSC (Advanced Television Systems Committee) stan-

dard (207, 187) shortened RS code.

♦ CCSDS: implements CCSDS (Consultative Committee for Space Data

Systems) standard full length and shortened RS code.

♦ DVB: implements DVB (Digital Video Broadcasting) standard (204, 188)

shortened RS code.

♦ IESS-308 (126): implements IESS-308 (INTELSAT Earth Station Standard)

specification (126, 112) shortened RS code.

♦ IESS-308 (194): implements IESS-308 specification (194, 178) shortened RS

code.

62 Xilinx Development System

Xilinx System Generator v2.1 Reference Guide

♦ IESS-308 (208): implements IESS-308 specification (208, 192) shortened RS

code.

♦ IESS-308 (219): implements IESS-308 specification (219, 201) shortened RS

code.

♦ IESS-308 (225): implements IESS-308 specification (225, 205) shortened RS

code.

• Symbol Width : specifies the symbol width for the RS code. The RS decoder

supports symbol width from 3 to 12.

• n: specifies the length of the RS code. The RS decoder supports code with length

from (2sw
 -1) to 3, where sw is symbol width.

• k : specifies the number of information symbols in a RS code. The RS decoder

supports code with length from (n-2) to max((n-128), 1).

• Field Polynomial: specifies the field polynomial used to generate the Galois field

for the code. It is entered as an binary array where the 1st element corresponds to

the highest degree of the polynomial. A value of zero causes the default

polynomial for the given symbol width to be selected. The specified polynomial

should be a primitive polynomial for the given symbol width. The default

polynomials for the specified symbol width are:

• Generator Start : specifies the Galois field logarithm of the first root of the

generator polynomial g(x), i.e.:

where

a = a primitive root of the Galois field for the code

GS = Generator Start

h = Scaling Factor. Normally, Generator_Start is 0 or 1; however, it can be any non-

negative integer between 0 and (216 - 1).

Symbol Width Default Polynomials Array Representation

3 x3 + x + 1 [1 0 1 1]

4 x4 + x + 1 [1 0 0 1 1]

5 x5 + x2 + 1 [1 0 0 0 1 1]

6 x6 + x + 1 [1 0 0 0 0 1 1]

7 x7 + x3 + 1 [1 0 0 0 1 0 0 1]

8 x8 + x4 + x3 + x2 + 1 [1 0 0 0 1 1 1 0 1]

9 x9 + x4+ 1 [1 0 0 0 0 1 0 0 0 1]

10 x10 + x3 + 1 [1 0 0 0 0 0 0 1 0 0 1]

11 x11 + x2 + 1 [1 0 0 0 0 0 0 0 0 1 0 1]

12 x12 + x6 + x4 + x + 1 [1 0 0 0 0 0 1 0 1 0 0 1 1]

g x() x a
hx GS i+()

–()
i 0=

n k– 1–

∏=

Communication 63

Xilinx Blocks

• Scaling Factor : Scaling factor for the generator polynomial root index.

Normally h is 1; however, it can be any positive integer between 1 and (216-1).

• Provide Start Pin : when checked, the block has optional start input pin.

• Enable Erasure Decoding : when checked, the block has optional pins erase

at the input and erase_cnt at the output.

Other parameters used by this block are described in the Common Parameters section

of the previous chapter.

The RS Decoder block cannot be placed in an enabled subsystem in System Generator

v2.1. See the Enabled Subsystems section (within the MATLAB I/O library

documentation) explanation for more details.

Latency

The RS Decoder block always accepts continuous code blocks. The same RS Decoder

core is sometimes overclocked using the core’s Clock Periods Per Symbol parameter. In a

multirate system, the Clock Periods Per Symbol is set to the maximum of the rate of

decoder block and the number of Clock Periods Per Symbol required to support

continuous code blocks. The latency of the decoder in sample periods is dependent

on the values of n, error correcting capacity of the code and Clock Periods Per Symbol

set by the block. The latency of the RS decoder block is always equal to the latency

returned by the RS Decoder core + 3.

Xilinx LogiCore

The RS Decoder block uses Xilinx LogiCORE: RS Decoder v2.0.

The Core datasheet can be found on your local disk at:

%XILINX%\coregen\ip\xilinx\eip1\com\xilinx\ip\rs_decoder_v2_0\
doc\rs_decoder.pdf

This is a licensed core, available for purchase on the Xilinx web site at:

http://www.xilinx.com/ipcenter/reed_solomon

RS Encoder
Reed-Solomon (RS) codes are block-based error correcting codes

with a wide range of applications in digital communications and

storage. Reed-Solomon codes are used to correct errors in many

systems such as digital storage devices, wireless or mobile

communications, digital video broadcasting, etc.

A typical system is shown below:

Figure 3-41: Example of a system using Reed-Solomon codes

The Reed-Solomon encoder takes a block of digital data and adds extra, redundant
bits. Errors may occur during transmission or storage for a number of reasons (noise

or interference, scratches on a CD, etc.). The Reed-Solomon decoder processes each

block and attempts to correct errors and recover the original data. The number and

64 Xilinx Development System

Xilinx System Generator v2.1 Reference Guide

type of errors that can be corrected depends on the characteristics of the Reed-

Solomon code.

Reed-Solomon codes are a subset of BCH (Bose, Chaudhuri, and Hocquenghem)

codes and are linear block codes. A Reed-Solomon code is specified as RS(n,k) with s-

bit symbols. Reed-Solomon codes are usually referred to as (n,k) codes, where n is the

total number of symbols in a code block and k is the number of information or data

symbols. Normally, n = 2
(sw)

-1, where sw is symbol width. If n is less than this, the

code is referred to as a shortened code. The RS Encoder core handles both full length

and shortened codes.

The RS Encoder block generates systematic code blocks. This means that the encoder

takes k data symbols of s bits each and adds parity symbols to make an n symbol

codeword. There are (n-k) parity symbols of s bits each. The following diagram shows

a typical Reed-Solomon codeword. This is known as a Systematic code because the

data is left unchanged and the parity symbols are appended.

Figure 3-42: Example of a Reed Solomon codeword

A Reed-Solomon code is characterized by two polynomials: the field polynomial and

the generator polynomial. The field polynomial defines the Galois field, of which the

symbols are members. The generator polynomial defines how the check symbols are

generated. Both of these polynomials are usually defined in the specification for any

particular Reed-Solomon code. The Reed-Solomon codeword is generated using the

generator polynomial. All valid codewords are exactly divisible by the generator

polynomial.

The general form of the generator polynomial is:

and the codeword is constructed using:

where

g(x) is the generator polynomial

i(x) is the information block

c(x) is a valid codeword

x is referred to as the field polynomial.

 For example: Generator for RS(204,188) is:

g x() x a
i

–() x a
i 1+

–()= x a
i 2t+

–(). . . .

c x() g x() i x()⋅=

g x() x a
0

–() x a
1

–() x a
2

–()= x a
15

–(). . . .

Communication 65

Xilinx Blocks

Block Interface

The Xilinx RS Encoder block has two inputs (din, rst) and three output (dout,
info and rfd) ports. The RS Encoder block also has optional start and bypass
input ports.

Figure 3-43: Reed-Solomon Encoder icons, including optional ports

The port descriptions are:

• din : carries the input information symbols of the RS code. The din signal must

be an UFixS_0 where S is equal to the symbol width (3 to 12).

• rst : carries the reset signal for the RS encoder. After the rst signal is asserted the

RS encoder initializes the next available input as the first information symbol. The

rst signal must be a UFix1_0 .

• start : when start is asserted for a particular sample period, the data on the din

port is taken as the first input information symbol. If start is asserted high for

more than one sample period, the data at the last sample period is taken as the

first input information symbol. The start signal is ignored if bypass is asserted

high for the same sample period. The start signal always resets the state of the

code generator. The start signal must be a UFix1_0 .

• bypass : when bypass is asserted for a particular sample period, the

corresponding data input on the din port is passed straight through to the dout

port with a 4 (6 in case of CCSDS) sample period delay. The bypass signal has no

effect on the state of the code generator. The bypass signal must be a UFix1_0 .

• dout : carries the input information symbols and the parity symbols of the RS

code. The dout signal has the same arithmetic type as the din input.

• info : The info output is 1 when there is information symbols on the dout port.

The info output is also 1 when the bypass asserted input data appears at the dout

port. The info signal is a UFix1_0 .

• rfd : carries the ready for data signal for the RS encoder. This signal is 1 till the RS

encoder is accepting information symbols and 0 when the RS encoder is

outputting parity symbols. The rfd signal is a UFix1_0 .

66 Xilinx Development System

Xilinx System Generator v2.1 Reference Guide

Block Parameters Dialog Box

The RS Encoder block can be configured using its Block Parameters dialog box.

Figure 3-44: Reed-Solomon Encoder block parameters dialog box

Parameters specific to the RS Encoder block are:

• Code Specification : specifies the type of RS Encoder desired. The choices

are:

♦ Custom: allows you to set all the block parameters.

♦ ATSC: implements ATSC (Advanced Television Systems Committee) stan-

dard (207, 187) shortened RS code.

♦ CCSDS: implements CCSDS (Consultative Committee for Space Data

Systems) standard (255, 223) full length RS code.

♦ DVB: implements DVB (Digital Video Broadcasting) standard (204, 188)

shortened RS code.

♦ IESS-308 (126): implements IESS-308 (INTELSAT Earth Station Standard)

specification (126, 112) shortened RS code.

♦ IESS-308 (194): implements IESS-308 specification (194, 178) shortened RS

code.

♦ IESS-308 (208): implements IESS-308 specification (208, 192) shortened RS

code.

♦ IESS-308 (219): implements IESS-308 specification (219, 201) shortened RS

code.

Communication 67

Xilinx Blocks

♦ IESS-308 (225): implements IESS-308 specification (225, 205) shortened RS

code.

• Symbol Width : specifies the symbol width for the RS code. The RS encoder

supports symbol width from 3 to 12.

• n: specifies the length of the RS code. The RS encoder supports code with length

from (2sw - 1) to 3, where sw is symbol width.

• k : specifies the number of information symbols in a RS code. The RS encoder

supports code with length from (n-2) to max((n-256), 1).

• Field Polynomial : specifies the field polynomial used to generate the Galois

field for the code. It is entered as an binary array where the 1st element

corresponds to the highest degree of the polynomial. A value of zero causes the

default polynomial for the given symbol width to be selected. The specified

polynomial should be a primitive polynomial for the given symbol width. The

default polynomials for the specified symbol width are:

• Generator Start : specifies the Galois field logarithm of the first root of the

generator polynomial g(x), i.e.:

where

a = a primitive root of the Galois field for the code

GS = Generator Start

h = Scaling Factor. Normally, Generator_Start is 0 or 1; however, it can be any non-

negative integer between 0 and (216 - 1).

• Scaling Factor : Scaling factor for the generator polynomial root index.

Normally h is 1; however, it can be any positive integer between 1 and (216 - 1).

• Provide Reset Pin : when checked, the block has optional start and bypass

input pins.

Symbol Width Default Polynomials Array Representation

3 x3 + x + 1 [1 0 1 1]

4 x4 + x + 1 [1 0 0 1 1]

5 x5 + x2 + 1 [1 0 0 0 1 1]

6 x6 + x + 1 [1 0 0 0 0 1 1]

7 x7 + x3 + 1 [1 0 0 0 1 0 0 1]

8 x8 + x4 + x3 + x2 + 1 [1 0 0 0 1 1 1 0 1]

9 x9 + x4+ 1 [1 0 0 0 0 1 0 0 0 1]

10 x10 + x3 + 1 [1 0 0 0 0 0 0 1 0 0 1]

11 x11 + x2 + 1 [1 0 0 0 0 0 0 0 0 1 0 1]

12 x12 + x6 + x4 + x + 1 [1 0 0 0 0 0 1 0 1 0 0 1 1]

g x() x a
hx GS i+()

–()
i 0=

n k– 1–

∏=

68 Xilinx Development System

Xilinx System Generator v2.1 Reference Guide

Other parameters used by this block are described in the Common Parameters section

of the previous chapter.

The RS Encoder block cannot be placed in an enabled subsystem in System Generator

v2.1. See the Enabled Subsystems section (within the MATLAB I/O library

documentation) explanation for more details.

Latency

The RS Encoder has a 6 sample period latency for CCSDS code specification and a 4

sample period latency for all other specifications.

Xilinx LogiCore

The RS Encoder block uses Xilinx LogiCORE RS Encoder v2.0.

The Core datasheet can be found on your local disk at:

%XILINX%\coregen\ip\xilinx\eip1\com\xilinx\ip\rs_encoder_v2_0\
doc\rs_encoder.pdf

This is a licensed core, available for purchase on the Xilinx web site at:

http://www.xilinx.com/ipcenter/reed_solomon

Viterbi Decoder
The Xilinx Viterbi Decoder block is used for decoding

convolutionally encoded data. The first step in decoding is to

assess the cost of the incoming data against all possible data input

combinations. Either the Hamming or Euclidean metric is used to

determine the cost. The cost determines the distance to each state

in the Viterbi trellis. The second and final decoding step is to trace

backwards through the trellis and determine the optimal path. The

length of the trace through the trellis is determined from the traceback length

parameter.

The Viterbi Decoder has a lower error rate when given optimal convolution codes. On

the Convolutional Encoder, the convolution codes are used to select which bits in the

constraint register are XORed to generate the encoded output. The convolution codes

must match those on the corresponding convolutional encoder. When using sub-

optimal codes, the opposite path has the same cost as the desired path in the Viterbi

trellis and decoding errors will result. The following table provides a list of optimal

codes. The constraint length is inferred from the length of the convolution code.

Constraint

length

Optimal convolution codes for

decoding 1/2 rate encoders

Optimal convolution codes for

decoding 1/3 rate encoders

3 111,101 111,111,101

4 111,1011 111,1011,1101

5 11111,11011 11111,11011,10101

6 101111, 110101 101111, 110101,111001

7 1001111,1010111 1001111,1010111,1101101

8 11101111, 10011011 11101111, 10011011, 10101001

Communication 69

Xilinx Blocks

Block Interface

The Viterbi Decoder has either two or three input

ports and one output port. The decoder can have

either two or three input ports depending on the

configurable parameter indicating encoder

output rate. Use of hard coding requires input

data to be 1 bit wide. Soft coding requires the

input data to be 3 to 8 bits (inclusive). The output

port is of type UFix1_0 .

Note - This version of the Viterbi Decoder is not recommended for implementation of

punctured codes.

Block Parameters Dialog Box

Figure 3-45: Viterbi Decoder block parameters dialog box

Parameters specific to the Viterbi Decoder block are:

• Encoder Output Rate : 2 or 3. must match the output rate on the

Convolutional Encoder from which data is being decoded.

9 111101101, 110011011 111101101, 110011011, 100100111

Constraint

length

Optimal convolution codes for

decoding 1/2 rate encoders

Optimal convolution codes for

decoding 1/3 rate encoders

70 Xilinx Development System

Xilinx System Generator v2.1 Reference Guide

• Traceback Length : Length of the traceback through the Viterbi trellis. Optimal

length is considered to be between 5 and 7 times the constraint length.

• Convolution Code 1 : Used to decode data on input port din1 . Length of

convolution code must be between 3 and 9 (inclusive).

• Convolution Code 2 : Used to decode data on input port din2 . Length of

convolution code must be between 3 and 9 (inclusive).

• Convolution Code 3 : Used to decode data on input port din3 . Length of

convolution code must be between 3 and 9 (inclusive). This parameter is only

available for encoder output rate of 3.

• Coding: Hard or Soft . Hard coding uses the Hamming metric to calculate

the difference between the input and the branches in the Viterbi trellis. Hard

coding requires the input data to be 1 bit wide. Soft coding uses the Euclidean

metric to cost the incoming data against the branches of the Viterbi trellis. When

using soft coding, the input port widths must be between 3 and 8 bits.

• Data Format : Signed Magnitude and Offset Binary (available for Soft Coding

only).

Other parameters used by this block are described in the Common Parameters section

of the previous chapter.

The Viterbi Decoder block cannot be placed in an enabled subsystem in System

Generator v2.1. See the Enabled Subsystems section (within the MATLAB I/O library

documentation) explanation for more details.

Xilinx LogiCore

The Viterbi Decoder block uses Xilinx LogiCORE: Viterbi v1.0.

The Core datasheet can be found on your local disk at:

%XILINX%\coregen\ip\xilinx\eip1\com\xilinx\ip\viterbi_v1_0\doc
\viterbi.pdf

This is a licensed core, available for purchase on the Xilinx web site at:

http://www.xilinx.com/ipcenter/viterbi

DSP
This library contains blocks that implement Digital Signal Processing (DSP) specific

functions.

CIC
Cascaded integrator-comb (CIC) filters are multirate filters used

for realizing large sample rate changes in digital systems. Both

decimation and interpolation structures are supported. CIC

filters contain no multipliers; they consist only of adders,

subtractors and registers. They are typically employed in

applications that have a large excess sample rate; that is, the

system sample rate is much larger than the bandwidth occupied

by the signal. CIC filters are frequently used in digital down-

converters and digital up-converters.

DSP 71

Xilinx Blocks

Block Interface

The CIC Block has one input and one output port. The input port can be between 1

and 32 bits (inclusive).

The two basic building blocks of a CIC filter are the integrator and the comb. A single

integrator is a single-pole IIR filter with a transfer function of:

H(z) = (1 – z-1)-1

The integrator’s unity feedback coefficient is y[n] = y[n-1] + x[n].

A single comb filter is an odd-symmetric FIR filter described by:

y[n] = x[n] – x[n – RM]

M is the differential delay selected in the block parameterization GUI, and R is the

selected integer rate change factor. The transfer function for a single comb stage is

H(z) = 1 –z-RM

As seen in the two figures below, the CIC filter cascades N integrator sections together

with N comb sections. To keep the integrator and comb structures independent of

rate change, a rate change block (i.e., an up-sampler or down-sampler) is inserted

between the sections. In the interpolator, the up-sampler causes a rate increase by a

factor of R by inserting R-1 zero-valued samples between consecutive samples of the

comb section output. In the decimator, the down-sampler reduces the sample rate by

a factor of R by taking subsamples of the output from the last integrator stage.

Figure 3-46: Pipelined decimator and interpolator

72 Xilinx Development System

Xilinx System Generator v2.1 Reference Guide

Block Parameters Dialog Box

The CIC Block can be configured using its Block Parameters dialog box:

Figure 3-47: CIC block parameters dialog box

Parameters specific to this block are:

• Filter Type : Interpolator or Decimator

• Number of Stages : 1 to 8 (inclusive)

• Sample Rate Change : 8 to 16384 (inclusive)

• Differential Delay : 1 or 2

Other parameters used by this block are described in the Common Parameters section

of the previous chapter.

The CIC block cannot be placed in an enabled subsystem in System Generator v2.1.

See the Enabled Subsystems section (within the MATLAB I/O library documentation)

explanation for more details.

Xilinx LogiCORE

The CIC block always uses the Xilinx LogiCORE: CIC v1.0.

The Core datasheet can be found on your local disk at:

%XILINX%\coregen\ip\xilinx\primary\com\xilinx\ip\cic_v1_0\doc\
C_CIC_V1_0.pdf

DSP 73

Xilinx Blocks

DDS
The Xilinx DDS Block implements a direct digital synthesizer (DDS),

also commonly called a numerically controlled oscillator (NCO). The

block employs a look-up table scheme to generate real or complex

valued sinusoids. An internal look-up table stores samples

representing one period of a sinusoid. A digital integrator

(accumulator) is then used to generate a suitable phase argument that

is mapped by the look-up table into the desired output waveform.

To understand how to use the DDS block, it is necessary to understand how the block

is implemented in hardware, as the block parameters are defined in terms of the DDS

implementation as a Xilinx LogiCORE. The figure below shows a high-level view of

the core. The input phase increment ∆θ is registered and integrated in a phase

accumulator. A phase offset is added to the high-precision phase angle computed by

the accumulator, and the sum is quantized by truncation. The quantized value is then

used to index into the Sine/Cosine Lookup Table, mapping phase-space into time.

The phase increment ∆θ is defined by the following relationship

The phase offset and phase increment can be defined as constants or can be set

dynamically through optional input ports (details not shown in the figure). When one

or both are set dynamically, the block has a single data port, which is multiplexed

between the Phase Increment and Phase Offset inputs, with the selection determined

by the value on a select port of the block. If only one of the increment and offset is

configurable, there is no select port. The data value is registered in the Phase

Increment register or the Phase Offset register when the block’s write enable input is

1.

When phase dithering is used, the dither sequence d(n) linearises the quantizer Q()

that is used to produce the sine/cosine LUT address. The additional logic resources

required to implement the dither sequence generator are not significant.

Figure 3-48: High-Level View of LogiCORE DDS Implementation

74 Xilinx Development System

Xilinx System Generator v2.1 Reference Guide

Block Parameters Dialog Box

The block parameters dialog box can be invoked by double-clicking the icon in your

Simulink model.

Figure 3-49: DDS block parameters dialog box

Parameters specific to the DDS block are:

• Function : specifies the block output to be sine, cosine, or both.

• Negative Sine : when checked, the sine output is negated.

• Negative Cosine : when checked, the cosine output is negated.

• Output Width : number of bits in the output signal; value must be between 4

and 32 inclusive.

• Lookup Table Input Width : specifies the number of address bits into the

Sin/Cos Lookup Table; value must be at least 3. It cannot exceed the lesser of the

accumulator width and 16 (if block RAM is used), or 10 (if distributed RAM is

used).

DSP 75

Xilinx Blocks

• Phase Increment Type : specifies ∆θ to be either constant or register. Choice

of register activates optional ports on the block.

• Phase Increment : specifies value of phase increment constant, a multiple of 2π.

The number of bits is determined in one of two ways. If the increment type is

Register, the number of bits is set to the width of the data port. If the increment

type is Constant, the number of bits is inferred from the phase increment value.

• Accumulator Latency : specifies the latency in the phase accumulator to be

zero or one.

• Accumulator Width : specifies the phase accumulator width; value must be

between 3 and 32 inclusive.

• Phase Offset Type : specifies phase offset to be Constant, Register, or None.

Choice of register activates optional ports on the block.

• Phase Offset : specifies value of phase offset constant, as a multiple of 2π. The

number of bits is determined in one of two ways. If the offset type is Register, the

number of bits is set to the width of the data port. If the offset type is Constant,

the number of bits is inferred from the phase offset value.

• Memory Type : directs the block to be implemented either with distributed or

block RAM.

• Use Phase Dithering : when checked, a dither sequence is added to the result

of the phase accumulator.

• Pipeline the DDS : when checked, the implementation is fully pipelined.

Other parameters used by this block are described in the Common Parameters section

of the previous chapter.

Xilinx LogiCORE

The DDS block always uses the Xilinx LogiCORE DDS v4.0.

The Core datasheet can be found on your local disk at:

%XILINX%\coregen\ip\xilinx\eip1\com\xilinx\ip\dds_v4_0\doc\dds
.pdf

FFT
The Xilinx FFT Block computes the Discrete Fourier Transform (DFT)

using the radix-4 Cooley-Tukey algorithm, explained below:

The N-point DFT of a complex vector x(n) = [x(0), x(1), ..., x(N-1)], is
the vector X(k) = [X(0), X(1), ..., X(N-1)], where the k-th element

X k() x m()WN
mk

m 0=

N 1–

∑=

76 Xilinx Development System

Xilinx System Generator v2.1 Reference Guide

for k=0, 1, ... , N-1, where

is a principal N-th root of unity.

The FFT block accepts as input a stream of complex data represented as a pair of

Xilinx fixed point data and computes successive DFTs of nonoverlapping frames of N

data samples.

Block Interface

The block interface (inputs and outputs as seen on the FFT icon) are

as follows:

Block Parameters Dialog Box

The FFT block parameters dialog box can be invoked by double-clicking the icon in

your Simulink model.

Figure 3-50: FFT block parameters dialog box

Parameters specific to the FFT block are:

• Number of Sample Points : transform length, one of 16, 64, 256, or 1024.

Input signals:

xn_r real component of input data stream

xi_r imaginary component of input data stream

reset reset signal

inv 0 for forward transform, 1 for inverse

Output signals:

Xk_r real component of output data stream

Xk_i imaginary component of output data stream

done active high on first output sample in a frame

rfd active high when block can accept input data

WN e
i–()2π

N

=

DSP 77

Xilinx Blocks

• Memory Usage : number of memory banks used to compute the transform, one of

Single, Double, Triple (not used for 16 point FFTs).

• Scale Output By : one of 1/N or 1/(2N).

• Overflow characteristic : block behavior when internal overflow occurs;

you may choose to invalidate the output (if checkbox is selected) or to stop the

simulation in the event of an overflow (if checkbox is not selected).

Other parameters used by this block are explained in the Common Parameters section

of the previous chapter.

The FFT block cannot be placed in an enabled subsystem in System Generator v2.1.

See the Enabled Subsystems section (within the MATLAB I/O library documentation)

explanation for more details.

Block Timing

The timing diagram below illustrates the behavior of the FFT block. The diagram

indicates the number of sample periods between the taking of input samples and the

production of the output samples for a particular frame. (Note that the timing

characteristics depend on the number of points in the FFT and the memory usage

mode selected. For triple memory configurations, the timing numbers are specified in

terms of the output data sample period.)

Figure 3-51: FFT Timing Diagram

78 Xilinx Development System

Xilinx System Generator v2.1 Reference Guide

Figure 3-52: FFT Timing Characteristics

For 16-point FFTs, the block is always in the "ready for data" state and output frames

are delivered continuously. Thus, there are no stall periods (stall = stall_0 = 0), and the

frame variable of the timing diagram defaults to 16 sample periods. There is,

however, a pipeline delay (i.e., it takes some time for the first output frame to appear)

with frame_0 = 84 sample periods.

Xilinx LogiCORE

The block always uses the Xilinx LogiCORE fft V1.0 (Virtex) or FFT V2.0 (Virtex-II).

The number of points supported are N=16, 64, 256, or 1024. The 64, 256, and 1024

point FFTs contain external memories implemented with the LogiCORE Dual Port

Block Memory V3.2. The number of memory blocks (either 1, 2, or 3) determines the

timing characteristics and size of the implementation. The FFT LogiCOREs support

only 16-bit data, although in simulation, the System Generator FFT block supports

other data sizes.

The Core datasheets can be found on your local disk at:

For Virtex:

%XILINX%\coregen\ip\xilinx\primary\com\xilinx\ip\vfft\doc\c_ff
t1024_v1_0.pdf
%XILINX%\coregen\ip\xilinx\primary\com\xilinx\ip\vfft\doc\c_ff
t16_v1_0.pdf
%XILINX%\coregen\ip\xilinx\primary\com\xilinx\ip\vfft\doc\c_ff
t256_v1_0.pdf
%XILINX%\coregen\ip\xilinx\primary\com\xilinx\ip\vfft\doc\c_ff
t64_v1_0.pdf

For Virtex-II:

%XILINX%\coregen\ip\xilinx\primary\com\xilinx\ip\vfft_v2_0\doc
\vfft1024v2.pdf
%XILINX%\coregen\ip\xilinx\primary\com\xilinx\ip\vfft_v2_0\doc
\vfft16v2.pdf
%XILINX%\coregen\ip\xilinx\primary\com\xilinx\ip\vfft_v2_0\doc
\vfft256v2.pdf
%XILINX%\coregen\ip\xilinx\primary\com\xilinx\ip\vfft_v2_0\doc
\vfft64v2.pdf

Single Memory Double Memory Triple Memory

64-point

stall_0 = 275

stall = 275

frame_0 = 277

frame = 339

stall_0 = 146

stall = 128

frame_0 = 276

frame = 192

stall_0 = 0

stall = 0

frame_0 = 406

frame = 192

256-point

stall_0 = 1074

stall = 1074

frame_0 = 1076

frame = 1330

stall_0 = 789

stall = 768

frame_0 = 1075

frame = 1024

stall_0 = 0

stall = 0

frame_0 = 1589

frame = 768

1024-point

stall_0 = 5170

stall = 5170

frame_0 = 5172

frame = 6194

stall_0 = 4117

stall = 4096

frame_0 = 5171

frame = 5120

stall_0 = 0

stall = 0

frame_0 = 8246

frame = 4096

DSP 79

Xilinx Blocks

The Dual Port Block Memory LogiCORE datasheet can be found on your local disk at:

%XILINX%\coregen\ip\xilinx\eip1\com\xilinx\ip\blkmemdp_v3_2\do
c\dp_block_mem.pdf

FIR
The Xilinx FIR Filter Block implements a finite-impulse response (FIR)

digital filter, or a bank of identical FIR filters (multichannel mode). An

N-tap filter is defined by N filter coefficients (or taps) h(0), h(1),,h(n-
1). Here each h(i) is a Xilinx fixed point number.

The filter block accepts a stream of Xilinx fixed point data samples x(0),
x(1), ..., and at time n computes the output:

Block Interface

The FIR block takes one to eight inputs, xi (n) : i Xilinx Blockset signal fixed point

data samples.

The block produces the same number of output signals, yi (n) : i Xilinx Blockset fixed

point samples.

y n() h i()x n i–()
i 0=

N 1–

∑=

80 Xilinx Development System

Xilinx System Generator v2.1 Reference Guide

Block Parameters Dialog Box

The block parameters dialog box can be invoked by double-clicking the icon in your

Simulink model.

Figure 3-53: FIR block parameters dialog box

Parameters specific to the block are:

• Coefficients : vector of filter coefficients; note that these can be evaluated from

a MATLAB workspace variable and may in turn be computed by MATLAB. You

can also refer to examples in the System Generator Tutorial.

• Coefficient Structure : Xilinx Smart-IP core preferred implementation

depends on the structure of the sequence of filter taps. You can choose one of

these: inferred from coefficients, none, symmetric, negative symmetric, half band,

and interpolate fir.

• Number of bits per coefficient : Xilinx fixed point parameter.

• Binary point for coefficients : Xilinx fixed point parameter.

• Coefficient arithmetic type : Xilinx fixed point parameter.

• Number of Channels : One to eight, inclusive. For multi-channel filters,

polyphase behavior is not supported, i.e. the filter must be single rate. The core,

which processes the channels serially, will be overclocked by the System

Generator by a factor equaling the number of channels so as to provide the

necessary throughput. To reduce control logic overhead, the block requires that

the valid bits match on all inputs.

Math 81

Xilinx Blocks

• Polyphase behavior : Decimation, Interpolation, Single rate.

• Latency : specify input sample period latency.

• Hardware Over-Sampling Rate : Hardware clocks per sample. This affects

hardware implementation only, and has no effect on simulation. In multi-channel

mode, this factor will multiply the implicit oversampling factor.

Other parameters used by this block are explained in the Common Parameters section

of the previous chapter.

The FIR filter block cannot be placed in an enabled subsystem in System Generator

v2.1. See the Enabled Subsystems section (within the MATLAB I/O library

documentation) explanation for more details.

Xilinx LogiCORE

The block always uses the Xilinx LogiCORE Distributed Arithmetic FIR Filter V6.0.

The Simulink model operates on a sample in/sample out basis, but the core has the

capability of using serial arithmetic by overclocking. Although this adds latency, it has

the benefit of reducing the hardware required for the filter. Refer to the core datasheet

for more details of the filter modes and parameters.

The core datasheet can be found on your local disk at:

%XILINX%\coregen\ip\xilinx\eip1\com\xilinx\ip\da_fir_v6_0\doc\
da_fir.pdf

Math
The Math section of the Xilinx Blockset contains mathematical functions.

Accumulator
The Xilinx Accumulator block implements an adder or subtractor based

scaling accumulator. The block’s current input is accumulated with a

scaled current stored value. The scale factor is a block parameter.

Block Interface

The block has an input b, a reset rst , and an output q. The output must have the

same width as the input data. The output q is calculated as follows:

The output must have the same arithmetic type as the input. The block has latency of

one sample period.

A subtractor based accumulator replaces addition of the current input b(n) with

subtraction. The output will have the same arithmetic type and binary point position

as the input. The block always has a latency of one sample period.

82 Xilinx Development System

Xilinx System Generator v2.1 Reference Guide

Block Parameters Dialog Box

The block parameters dialog box can be invoked by double-clicking the icon in your

Simulink model.

Figure 3-54: Accumulator block parameters dialog box

Parameters specific to the block are:

• Number of Bits (output width) : specifies the output width which must

match the input width. If the data input does not match the output width, an error

is reported.

• Overflow : specifies behavior on internal overflow to be Wrap, Saturate, or flag as

an Error.

• Operation : This is a list of two choices: add and subtract. This determines

whether the block is adder or subtractor based.

• Feedback Scaling : specifies the feedback scale factor to be one of the

following:

1, 1/2, 1/4, 1/8, 1/16, 1/32, 1/64, 1/128, or 1/256.

• Reset to input : when selected, the output of the accumulator is loaded by the

data on input port b whenever the accumulator is reset. When not selected, the

output of the accumulator is reset to 0.

The type of the output is the same as that of the input. The block always has a latency

of 1.

Other parameters used by this block are explained in the Common Parameters section

of the previous chapter.

Xilinx LogiCORE

The block always uses the Xilinx LogiCORE Accumulator V5.0. The data width must

be between 1 and 258, inclusive.

The Core datasheet can be found on your local disk at:

Math 83

Xilinx Blocks

%XILINX%\coregen\ip\xilinx\eip1\com\xilinx\ip\baseblox_v5_0\do
c\accum.pdf

AddSub
The Xilinx AddSub block implements an adder/subtractor.

The operation can be fixed (Add or Subtract) or changed

dynamically under control of the sub mode signal.

Block Parameters Dialog Box

The block parameters dialog box can be invoked by double-clicking the icon in your

Simulink model.

Figure 3-55: AddSub block parameters dialog box

Parameters specific to the AddSub block are:

• Mode: specifies the block operation to be Addition, Subtraction, or Addition/

Subtraction. When Addition/Subtraction is selected, the block operation is

determined by the sub input port, which must be driven by a 1-bit unsigned

signal. When the sub input is 1, the block performs subtraction. Otherwise, it

performs addition.

• Implement with Xilinx Smart-IP Core : when checked, the System

Generator will implement the block as a LogiCORE. Otherwise, it is implemented

as a synthesizable VHDL module.

Other parameters used by this block are explained in the Common Parameters section

of the previous chapter.

Xilinx LogiCORE

If the Implement with Xilinx Smart-IP Core checkbox is selected on the

parameters dialog box, and if the output width is in the range of 1 to 256, the block

84 Xilinx Development System

Xilinx System Generator v2.1 Reference Guide

uses the Xilinx LogiCORE Adder Subtractor V5.0. Otherwise, the block is

implemented as a synthesizable VHDL module.

The Core datasheet can be found on your local disk at:

%XILINX%\coregen\ip\xilinx\eip1\com\xilinx\ip\baseblox_v5_0\do
c\addsub.pdf

CMult
The Xilinx CMult block implements a gain operator, with output equal

to the product of its input by a constant value. This value can be a

MATLAB expression that evaluates to a constant.

Block Parameters Dialog Box

The block parameters dialog box can be invoked by double-clicking the icon in your

Simulink model.

Figure 3-56: CMult block parameters dialog box

Parameters specific to the CMult block are:

• Value of Constant : may be a constant or an expression. If the constant cannot

be expressed exactly in the specified fixed point type, its value is rounded and

Math 85

Xilinx Blocks

saturated as needed. A positive value is implemented as an unsigned number, a

negative value as signed.

• Number of Bits in Constant : specifies the bit location of the binary point of

the constant, where bit zero is the least significant bit.

• Multiplier Type : specifies the implementation to be parallel or sequential.

• Memory Type : specifies whether to use distributed RAM or block RAM.

• Require Maximum Pipelining : when checked, directs System Generator to

pipeline the LogiCORE implementation to the fullest extent possible.

• Hardware Over-Sampling Rate : specifies the number of hardware cycles per

input sample; does not affect behavior in simulation, only the hardware

implementation.

• Use Placement Information for Core : allows specification of placement

layout shape that will be used when implementing the core in hardware

• Placement Style : specifies the layout shape in which the multiplier core will

be placed in hardware. The Rectangular option will generate a rectangular placed

core with loosely placed LUTs. Triangular packing will create a more compact

shape, with denser placement of LUTs.

Other parameters used by this block are explained in the Common Parameters section

of the previous chapter.

Xilinx LogiCORE

The block always uses the Xilinx LogiCORE Multiply Generator V4.0.

The Core datasheet can be found on your local disk at:

%XILINX%\coregen\ip\xilinx\eip1\com\xilinx\ip\mult_gen_v4_0\do
c\mult_gen.pdf

Inverter
The Xilinx Inverter block calculates the bitwise logical complement

of a fixed point number. The block can be implemented either as a

Xilinx LogiCORE or as a synthesizable VHDL module.

86 Xilinx Development System

Xilinx System Generator v2.1 Reference Guide

Block Parameters Dialog Box

The block parameters dialog box can be invoked by double-clicking the icon in your

Simulink model.

Figure 3-57: Inverter block parameters dialog box

Parameters used by this block are explained in the Common Parameters section of the

previous chapter of the Reference Guide.

Xilinx LogiCORE

The Inverter block uses the Xilinx LogiCORE Bus Gate V5.0 if the Implement with
Xilinx Smart-IP Core parameter is checked and the input data width is between

1 and 64, inclusive. Otherwise, the block is implemented as a synthesizable VHDL

module.

The Core datasheet can be found on your local disk at:

%XILINX%\coregen\ip\xilinx\eip1\com\xilinx\ip\baseblox_v5_0\do
c\bus_gate.pdf

Logical
The Xilinx Logical block performs a bit-wise logical operation on 2,

3, or 4 fixed point numbers. Operands are aligned at their respective

binary points, zero padded, and sign extended as necessary. The

logical operation is performed and produced at the output port.

The block can be implemented either as a Xilinx LogiCORE or as a

synthesizable VHDL module. If you build a tree of logical gates, it is

typically better to choose the synthesizable implementation so that

logic optimization can be applied during synthesis and mapping.

Math 87

Xilinx Blocks

Block Parameters Dialog Box

The block parameters dialog box can be invoked by double-clicking the icon in your

Simulink model.

Figure 3-58: Logical block parameters dialog box

Parameters specific to the block are:

• Logical Function : specifies one of the following bitwise logical operators:

AND, NAND, OR, NOR, XOR, XNOR.

• Number of Inputs : specifies the number of inputs: either 2, 3, or 4.

• Align Binary point : specifies that the block must align binary points

automatically. If not selected, all inputs must have the same binary point position.

Other parameters used by this block are explained in the Common Parameters section

of the previous chapter.

Xilinx LogiCORE

The Logical block uses the Xilinx LogiCORE Bus Gate V5.0 if the Implement with
Xilinx Smart-IP Core parameter is checked and the input data width is between

1 and 64, inclusive. Otherwise, the block is implemented as a synthesizable VHDL

module.

The Core datasheet can be found on your local disk at:

%XILINX%\coregen\ip\xilinx\eip1\com\xilinx\ip\baseblox_v5_0\do
c\bus_gate.pdf

88 Xilinx Development System

Xilinx System Generator v2.1 Reference Guide

Mult
The Xilinx Mult block implements a multiplier. It computes the

product of the data on its two input ports, producing the result on its

output port. The block supports a size-performance tradeoff in its

implementation. It can be implemented either as a parallel multiplier

that operates on the full width data (faster and larger), or as a

sequential multiplier that computes the result from smaller partial

products (slower and smaller). Note that this choice affects the

hardware implementation only. The simulation behavior of the block is not affected.

Block Parameters Dialog Box

The block parameters dialog box can be invoked by double-clicking the icon in your

Simulink model.

Figure 3-59: Mult block parameters dialog box - parallel type

Math 89

Xilinx Blocks

Figure 3-60: Mult block parameters dialog box - sequential type

Parameters specific to the Mult block are:

• Multiplier Type : directs the implementation to be either parallel or

sequential.

• Require Maximum Pipelining : directs the core to be pipelined to the fullest

extent possible.

• Use Dedicated High-Speed Multipliers : when checked, directs the core

to use embedded multipliers (available in Virtex-II only, and when the multiplier

type is parallel).

• Hardware Over-Sampling Rate : specifies the number of hardware cycles per

input sample; does not affect behavior in simulation, only the hardware

implementation.

• Use Placement Information for Core : allows specification of placement

layout shape that will be used when implementing the core in hardware

• Placement Style : specifies the layout shape in which the multiplier core will

be placed in hardware. The Rectangular option will generate a rectangular placed

core with loosely placed LUTs. Triangular packing will create a more compact

shape, with denser placement of LUTs.

Other parameters used by this block are explained in the Common Parameters section

of the previous chapter.

Xilinx LogiCORE

The Mult block always uses Xilinx LogiCORE: Multiply Generator V4.0.

The Core datasheet can be found on your local disk at:

%XILINX%\coregen\ip\xilinx\eip1\com\xilinx\ip\mult_gen_v4_0\do
c\mult_gen.pdf

90 Xilinx Development System

Xilinx System Generator v2.1 Reference Guide

Negate
The Xilinx Negate block computes the arithmetic negation (two’s

complement) of its input.

The block can be implemented either as a Xilinx LogiCORE or as a

synthesizable VHDL module.

Block Parameters Dialog Box

The block parameters dialog box can be invoked by double-clicking the icon in your

Simulink model.

Figure 3-61: Negate block parameters dialog box

Parameters used by this block are explained in the Common Parameters section of the

previous chapter.

Xilinx LogiCORE

If the Implement with Xilinx Smart-IP Core checkbox is selected and the

input width is between 1 and 256, inclusive, the block uses the Xilinx LogiCORE Twos

Complementer V5.0. Otherwise, the block is implemented as a synthesizable VHDL

module.

The Core datasheet can be found on your local disk at:

%XILINX%\coregen\ip\xilinx\eip1\com\xilinx\ip\baseblox_v5_0\do
c\twos_comp.pdf

Relational
The Xilinx Relational block implements a comparator. The supported

comparisons are the following:

Math 91

Xilinx Blocks

♦ equal-to (a = b)

♦ not-equal-to (a != b)

♦ less-than (a < b)

♦ greater-than (a > b)

♦ less-than-or-equal-to (a <= b)

♦ greater-than-or-equal-to (a >= b)

The output of the block is a 1-bit unsigned number. It is 1 if the comparison is true and

0 if false.

Block Parameters Dialog Box

The block parameters dialog box can be invoked by double-clicking the icon in your

Simulink model.

Figure 3-62: Relational block parameters dialog box

The only parameter specific to the Relational block is:

• Comparison Operation : specifies the comparison operation computed by the

block.

Other parameters used by this block are explained in the Common Parameters section

of the previous chapter.

Xilinx LogiCORE

The block uses the Xilinx LogiCORE: Comparator V5.0 if the Implement with
Xilinx Smart-IP Core checkbox is selected and the output widths to the block

are between 1 and 64, inclusive. Otherwise, the block is implemented as a

synthesizable VHDL module.

The Core datasheet can be found on your local disk at:

%XILINX%\coregen\ip\xilinx\eip1\com\xilinx\ip\baseblox_v5_0\do
c\compare.pdf

92 Xilinx Development System

Xilinx System Generator v2.1 Reference Guide

Scale
The Xilinx Scale block scales its input by a power of two. The power

can be either positive or negative. The block has one input and one

output. The scale operation has the effect of moving the binary point

without changing the bits in the container.

Block Parameters Dialog Box

The block parameters dialog box can be invoked by double-clicking the icon in your

Simulink model.

Figure 3-63: Scale block parameters dialog box

The only parameter that is specific to the Scale block is Scale Factor . It can be a

positive or negative integer. The output of the block is i2k, where i is the input value

and k is the scale factor. The effect of scaling is to move the binary point, which in

hardware has no cost (a shift, on the other hand, may add logic).

The other parameters used by this block are explained in the Common Parameters

section of the previous chapter.

The Scale block does not use a Xilinx LogiCORE.

Shift
The Xilinx Shift block performs a left or right shift on the input signal.

The result will have the same fixed point container as that of the input.

Math 93

Xilinx Blocks

Block Parameters Dialog Box

The block parameters dialog box can be invoked by double-clicking the icon in your

Simulink model.

Figure 3-64: Shift block parameters dialog box

Parameters specific to the Shift block are:

• Shift Direction : specifies a direction, Left or Right. The Right shift moves the

input toward the least significant bit within its container, with appropriate sign

extension. Bits shifted out of the container are discarded. The Left shift moves the

input toward the most significant bit within its container with zero padding of the

least significant bits. Bits shifted out of the container are discarded.

• Number of Bits : specifies how many bits are shifted. If the number is negative,

direction selected with Shift direction is reversed.

Other parameters used by this block are explained in the Common Parameters section

of the previous chapter.

The Shift block does not use a Xilinx LogiCORE.

SineCosine
The Xilinx Sine Cosine block computes sin(x) and/or cos(x).
It stores a reference sinusoid in a read-only memory (ROM),

whose depth is defined by the width of the block’s single

input port. An N-bit input address results in a logical ROM

containing 2N equally spaced samples of one period (the

implementation may actually store only a fraction of one

full period to reduce memory size). The input signal must be an unsigned integer.

The block can produce a sine or cosine (or its negative) at one output port, or both sine

and cosine (or their negatives) at two output ports, depending on customization

parameters. Stepping through the memory produces sampled sinusoids on the

block’s output port(s), with output frequency determined by the address increment.

Although the error is quite small for practical choices of output width, the

implementation is unbalanced; that is, values are stored in the memory as two’s

complement numbers having exactly one sign bit. Consequently, sample values of the

94 Xilinx Development System

Xilinx System Generator v2.1 Reference Guide

fundamental sinusoid lie in the half-open interval [-1, 1]. If you need a balanced

representation, one can be built using the Single Port RAM block with the appropriate

initialization vector.

Block Parameters Dialog Box

The block parameters dialog box can be invoked by double-clicking the icon in your

Simulink model.

Figure 3-65: SineCosine block parameters dialog box

Parameters specific to the SineCosine block are:

• Function : specifies output to be sine, cosine, or both.

• Negative Sine : when selected, the sine output is negated.

• Negative Cosine : when selected, the cosine output is negated.

• Output Width : specifies the number of bits in the output. The valid range is

from 4 to 32, inclusive. The output is stored as a two’s complement value with one

integer sign bit. As a result, the range of values stored in the table lies in the half-

open interval [-1, 1].

• Memory Type : directs the block to be implemented either with Distributed or

Block RAM.

• Pipeline the Core : when selected, the implementation is fully pipelined.

Other parameters used by this block are described in the Common Parameters section

of the previous chapter.

Xilinx LogiCORE

The block always uses the Xilinx LogiCORE Sine/Cosine Look-Up Table V3.0. The

input and output width determine whether the ROM stores a full or quarter wave.

The distributed memory case stores a full wave for table depths less than or equal to

Math 95

Xilinx Blocks

64. This corresponds to one CLB per output bit. If the table depth is greater than 64, a

quarter wave is stored, and additional logic is used to generate the remaining portions

of the wave. Storing only the quarter wave for the large tables reduces the area

needed. Block memory stores a full wave for all table depths and widths that can be

implemented in a single block memory. Otherwise, values are stored as a quarter

wave. Latency for the distributed ROM implementation is determined by the input

width, whether or not the block is pipelined, and the given latency value.

The minimum pipeline for block ROM implementations is 1, thus the minimum

latency is 1. The maximum latency for block ROM is also 1 except for the cases

outlined in the table below.

The Core datasheet can be found on your local disk at:

%XILINX%\coregen\ip\xilinx\primary\com\xilinx\ip\sincos_v3_0\d
oc\C_SIN_COS_V3_0.pdf

Threshold
The Xilinx Threshold block tests the sign of the input number. If the

input number is negative, the output of the block is -1; otherwise, the

output is 1. The output is a signed fixed point integer that is 2 bits

long. The block has one input and one output.

Input Width
Block Latency Range using

Distributed ROM

3-6 1-2

7-8 1-4

9-10 1-5

Input Width Output Width
Maximum Core

Latency Using Block
ROM

Greater than 10 Greater than 16 2

Equal to 10 Greater than 4 2

Greater than 9 Greater than 8 2

96 Xilinx Development System

Xilinx System Generator v2.1 Reference Guide

Block Parameters Dialog Box

The block parameters dialog box can be invoked by double-clicking the icon in your

Simulink model.

Figure 3-66: Threshold block parameters dialog box

The block parameters do not control the output data type because the output is

always a signed fixed point integer that is 2 bits long.

All the parameters used by this block are explained in the Common Parameters

section of the previous chapter.

The Threshold block does not use a Xilinx LogiCORE.

MATLAB I/O
The MATLAB I/O section includes Xilinx Gateway blocks, the Enabled Subsystem

gateway, blocks to report quantization error, and display blocks.

Gateway Blocks
The Xilinx Gateway blocks have several functions:

• Convert data from double precision floating point to the System Generator fixed

point type and vice versa during Simulink simulation.

• Define I/O ports for the top level of the HDL design generated by System

Generator. A Gateway In block defines a top level input port, and a Gateway Out

block defines a top level output port.

• Define testbench stimuli and predicted output files when the System Generator

Create Testbench option is selected. In this case, during HDL code

generation, Simulink simulation values are logged as logic vectors into a data file

for each top level port defined by a Gateway block. An HDL component is

inserted in the top level testbench for each top level port which, during HDL

simulation, reads the values from the file and compares them to the expected

results.

• The name specified for the Gateway In or Gateway Out block is passed on as the

port name on the top level VHDL entity.

Enabled Subsystems
The System Generator infers clock circuitry in its hardware implementation from the

sample periods defined in the Simulink model for the Xilinx blocks. This circuitry

includes clock (CLK), clock enable (CE), and clear (CLR) ports on registers and Xilinx

MATLAB I/O 97

Xilinx Blocks

LogiCOREs, as well as signals and control circuits to drive the clock network.

Consequently, most System Generator blocks do not provide an explicit enable port.

There are two exceptions> the Register block and the Addressable Shift Register

block, which fundamentally require a CE port in order to target a high performance

hardware implementation.

Simulink Enabled Subsystems can be used to enable blocks and subsystems. In order to

support System Generator’s bit and cycle true modeling in Simulink, it is required

that the enable port on an enabled subsystem be driven by the Enable Adapter block,

found in the Xilinx blockset’s MATLAB I/O library. An example of this requirement is

shown in the figure below. This shows an address generation model for a MAC-based

FIR filter. The DownCount subsystem is stalled for a single sample period when the

CoefCount counter value is equal to the number of filter taps (in this case, 96 taps).

Figure 3-67: Example of enabled subsystem

The following blocks cannot be placed in an enabled subsystem with System

Generator v2.1. The blocks are: CIC, Convolutional Encoder, FIR, FFT, Gateway In,

Gateway Out, RS Decoder, RS Encoder, and Viterbi Decoder.

Enable Adapter

When using an enabled subsystem that contains Xilinx blocks, the

enable port must be driven by a Xilinx Enable Adapter block. This

block is a required interface to any enabled subsystem that contains a

System Generator block. The Enable Adapter block’s output port must

drive the subsystem’s enable port.

Gateway In
The Xilinx Gateway In block is the input into the Xilinx FPGA part of

your Simulink design. It converts Simulink double precision input to

the System Generator fixed point type, and defines an input port for

the top level of the HDL design generated by System Generator.

98 Xilinx Development System

Xilinx System Generator v2.1 Reference Guide

The block parameters dialog box can be invoked by double-clicking the icon in your

Simulink model.

Figure 3-68: Gateway In block parameters dialog box

Parameters specific to the Gateway In block are:

• IOB Timing Constraint : In hardware, a Gateway In is realized as a set of

input/output buffers (IOBs). There are three ways to constrain the timing on

IOBs. They are None, Data Rate , and Data Rate, Set 'FAST'
Attribute .

If None is selected, no timing constraints for the IOBs are put in the user

constraint file (.ucf) produced by System Generator. This means the paths from

the IOBs to synchronous elements are not constrained.

If Data Rate is selected, the IOBs are constrained at the data rate at which the

IOBs operate. The rate is determined by the System Clock Period provided on the

System Generator block and the sample rate of the Gateway relative to the other

sample periods in the design. For example, the following OFFSET = IN

constraints are generated for a Gateway In named 'Din ' that is running at the

system period of 10 ns:

Offset in constraints

NET "Din<0>" OFFSET = IN : 10.0 : BEFORE "clk";
NET "Din<1>" OFFSET = IN : 10.0 : BEFORE "clk";
NET "Din<2>" OFFSET = IN : 10.0 : BEFORE "clk";
NET "Din_valid" OFFSET = IN : 10.0 : BEFORE "clk";

MATLAB I/O 99

Xilinx Blocks

It should be noted there is a valid bit that accompanies the data signal. It is

constrained at the same rate. For more information concerning the valid bit, refer

to the Hardware Handshaking section in Chapter 1 of this manual.

If Data Rate, Set 'FAST' Attribute is selected, the OFFSET = IN

constraints described above are produced. In addition, a FAST slew rate attribute

is generated for each IOB. This reduces delay but increases noise and power

consumption. For the previous example, the following additional attributes are

added to the .ucf file

NET "Din<0>" FAST;
NET "Din<1>" FAST;
NET "Din<2>" FAST;
NET "Din_valid" FAST;

• Specify IOB Location Constraints : Checking this option allows IOB

location constraints to be specified.

• IOB Pad Locations, e.g. {'Valid Bit', 'MSB',, 'LSB'} :

IOB pin locations can be specified as a cell array of strings in this edit box. The

locations are package-specific. For the above example, if a Virtex-E 2000 in a

FG680 package is used, the location constraints for the Din bus can be specified

in the dialog box as {'A36', 'C36', 'B36', 'D35'} . This is translated

into constraints in the .ucf file in the following way:

Loc constraints

NET "Din<0>" LOC = "D35";
NET "Din<1>" LOC = "B36";
NET "Din<2>" LOC = "C35";
NET "Din_valid" LOC = "A36";

Other parameters used by this block are described in the Common Parameters section

of the previous chapter.

The Gateway In block cannot be placed in an enabled subsystem in System Generator

v2.1. See the Enabled Subsystems section (within the MATLAB I/O library

documentation) explanation for more details.

Gateway Out
The Xilinx Gateway Out block is output from the Xilinx FPGA part of

your Simulink design. It converts System Generator fixed point data

to Simulink double precision. According to its configuration, it can

either define an output port for the top level of the HDL design

generated by System Generator, or be used simply as a test point that

will be trimmed from the hardware representation.

100 Xilinx Development System

Xilinx System Generator v2.1 Reference Guide

The block parameters dialog box can be invoked by double-clicking the icon in your

Simulink model.

Figure 3-69: Gateway Out block parameters dialog box

Parameters specific to the Gateway Out block are:

• IOB Timing Constraint : In hardware, a Gateway Out is realized as a set of

input/output buffers (IOBs). There are three ways to constrain the timing on

IOBs. They are None, Data Rate , and Data Rate, Set 'FAST'
Attribute .

If None is selected, no timing constraints for the IOBs are put in the user

constraint file (.ucf) produced by System Generator. This means the paths from

the IOBs to synchronous elements are not constrained.

If Data Rate is selected, the IOBs are constrained at the data rate at which the

IOBs operate. The rate is determined by System Clock Period provided on the

System Generator block and the sample rate of the Gateway relative to the other

sample periods in the design. For example, the following OFFSET = OUT

constraints are generated for a Gateway Out named 'Dout ' that is running at the

system period of 10 ns:

Offset out constraints

NET "Dout<0>" OFFSET = OUT : 10.0 : AFTER "clk";
NET "Dout<1>" OFFSET = OUT : 10.0 : AFTER "clk";
NET "Dout<2>" OFFSET = OUT : 10.0 : AFTER "clk";
NET "Dout_valid" OFFSET = OUT : 10.0 : AFTER "clk";
NET "Dout_valid" FAST;

It should be noted there is a valid bit that accompanies the data signal. It is

constrained at the same rate. For more information concerning the valid bit, refer

to the Hardware Handshaking section in Chapter 1 of this manual.

If Data Rate, Set 'FAST' Attribute is selected, the OFFSET = OUT

constraints described above are produced. In addition, a FAST slew rate attribute

is generated for each IOB. This reduces delay but increases noise and power

consumption. For the previous example, the following additional attributes are

added to the .ucf file

NET "Dout<0>" FAST;
NET "Dout<1>" FAST;

MATLAB I/O 101

Xilinx Blocks

NET "Dout<2>" FAST;
NET "Dout_valid" FAST;

• Specify IOB Location Constraints : Checking this option allows IOB

location constraints to be specified.

• IOB Pad Locations, e.g. {'Valid Bit', 'MSB',, 'LSB'} :

IOB pin locations can be specified as a cell array of strings in this edit box. The

locations are package-specific. For the above example, if a Virtex-E 2000 in a

FG680 package is used, the location constraints for the Dout bus can be specified

in the dialog box as {'C33', 'B34', 'D33', 'B35'} . This is translated

into constraints in the .ucf file in the following way:

Loc constraints

NET "Dout<0>" LOC = "B35";
NET "Dout<1>" LOC = "D33";
NET "Dout<2>" LOC = "B34";
NET "Dout_valid" LOC = "C33";

Other parameters used by this block are described in the Common Parameters section

of the previous chapter.

The Gateway Out block cannot be placed in an enabled subsystem in System

Generator v2.1. See the Enabled Subsystems section (within the MATLAB I/O library

documentation) explanation for more details.

Quantization Error Blocks

Clear Quantization Error

The Clear Quantization Error block clears the quantization error tracking

mechanism on a trace. Inserting this block has no effect on the

computation other than the error analysis sections.

Quantization Error

The Xilinx Quantization Error block extracts the quantization error

from a fixed point signal. This error is tracked as the difference

between the expected value (exact to machine precision) and the actual

value of the fixed point signal. You may view the quantization error by

sending the output of the block into a display or scope.

Display
This is the Simulink Display block, linked into the Xilinx Blockset’s

MATLAB I/O section as a convenience. It is presented as output to

the Sample Time display (described next).

Sample Time

The Sample Time block reports the sample period of its input. It is meant

to be displayed using the Display block, above.

102 Xilinx Development System

Xilinx System Generator v2.1 Reference Guide

Memory
This section contains Xilinx blocks that use Xilinx memory LogiCOREs.

Dual Port RAM
The Xilinx Dual Port RAM block implements a random access

memory (RAM).

Block Interface

The block has two independent sets of ports for simultaneous reading and writing.

Each port set has one output port and three input ports for address, input data, and

write enable (WE). The Dual Port RAM block supports various Form Factors,

FF = WB / WA where WB is data width of Port B and WA is Data Width of Port A.

The Dual port RAM block allows FF of 1, 2, 4, 8, 16 for Virtex and 1, 2, 4, 8, 16 or 32 for

Virtex-II device families, provided that:

 Mod [(DA x WA) , WB] = 0 for a given FF

where

DA : Depth specified for Port A

The Depth of port B (DB) is inferred from the specified form factor as follows: DB =

DA / FF.

The data input ports on Port A and B can have different arithmetic type and binary

point position for a form factor of 1. For form factors greater than 1, the data input

ports on Port A and Port B should have an unsigned arithmetic type with binary point

at 0. The output ports, labeled A and B, have the same types as the corresponding

input data ports.

The location in the memory block can be accessed for reading or writing by providing

the valid address on each individual address port. A valid address is an unsigned

integer from 0 to d-1, where d denotes the RAM depth (number of words in the RAM)

for the particular port. An attempt to read past the end of the memory is caught as an

error in simulation. The initial RAM contents can be specified through a block

parameter. Each write enable port must be a 1-bit unsigned integer. When the WE port

is 1, the value on the data input is written to the location indicated by the address line.

The output during a write operation depends on the write mode. When the WE is 0,

the output port has the value at the location specified by the address line. Write

contention results in data being not written to the memory location and the

corresponding outputs are flagged as invalid. During a write operation (WE asserted),

the data presented on the input data port is stored in memory at the location selected

Memory 103

Xilinx Blocks

by the port’s address input. During a write cycle, the user can configure the behavior

of the data out ports A/B to one of the following choices:

• Read After Write

• Read Before Write

• No Read On Write

The write modes can be described with the help of the figure below. In the figure, the

memory has been set to an initial value of 5 and the address bit is specified as 4. When

using No Read On Write mode, the output is unaffected by the address line and the

output is the same as the last output when the WE was 0. For the other two modes, the

output is obtained from the location specified by the address line, and hence is the

value of the location being written to. This means that the output can be the old value

which corresponds to Read After Write.

Figure 3-70: Illustration of write modes

104 Xilinx Development System

Xilinx System Generator v2.1 Reference Guide

Virtex, Virtex-E and Spartan-II families support only Read After Write. Virtex-II

supports all modes.

Block Parameters Dialog Box

The block parameters dialog box can be invoked by double-clicking the icon in your

Simulink model.

Figure 3-71: Dual Port RAM block parameters dialog box

Parameters specific to the block are:

• Depth : specifies the number of words in the memory for Port A, which must be a

positive integer. The Port B depth is inferrred from the form factor specified by

the input data widths.

• Initial Value Vector : specifies the initial memory contents. The size and

precision of the elements of the initial value vector are based on the data format

specified for Port A. When the vector is longer than the RAM, the vector’s trailing

elements are discarded. When the RAM is longer than the vector, the RAM’s

trailing words are set to zero.

• Zero Initial Output : when checked, the data out ports have value of zero at

clock 0; otherwise, the ports have a value of NaN (not a number).

• Write Mode (A/B Ports) : specifies the memory behavior to be Read Before

Write, Read After Write, or No Read On Write. There are device specific

restrictions on the applicability of these modes.

Other parameters used by this block are explained in the Common Parameters section

of the previous chapter of the Reference Guide.

Memory 105

Xilinx Blocks

Xilinx LogiCORE

The block uses the Xilinx LogiCORE: Dual Port Block Memory v3.2 The address

width must be equal to

where d denotes the memory depth.

The tables below show the widths that are acceptable for each depth.

The Core datasheet can be found on your local disk at:

%XILINX%\coregen\ip\xilinx\eip1\com\xilinx\ip\blkmemdp_v3_2\do
c\dp_block_mem.pdf

Table: Maximum Width for Various Depth Ranges (Virtex/Virtex-E)

Depth Width

2 to 512 256

513 to 1024 256

1025 to 2048 256

2049 to 4096 192

4097 to 8192 96

8193 to 16K 48

16K+1 to 32K 24

32K+1 to 64K 12

64K+1 to 128K 6

128K+1 to 256K 3

Table: Maximum Width for Various Depth Ranges (Virtex-II)

Depth Width

2 to 512 256

513 to 1024 256

1025 to 2048 256

2049 to 4096 192

4097 to 8192 96

8193 to 16K 48

16K+1 to 32K 24

32K+1 to 64K 12

64K+1 to 128K 6

128K+1 to 256K 3

256K+1 to 512K 6

512K+1 to 1024K 3

d2log

106 Xilinx Development System

Xilinx System Generator v2.1 Reference Guide

FIFO
The Xilinx FIFO block implements a First-In-First-Out memory

queue.

Values presented at the module’s data-input port is written to the

next available empty memory location when the write-enable input

is one. The memory full status output port is assserted to one when

no unused locations remain in the module’s internal memory. The

percent full output port indicates the percentage of internal memory

in use, represented with user-specified precision. By asserting the

read-enable input port, data can be read out of the FFO via the data

output port (dout) in the order in which they were written. The

memory-empty status output (empty) indicates that no more data reside in the

memory.

The FIFO can be implemented either using distributed or block RAM. If distributed

memory is selected, the maximum depth of the FIFO is 256. If block RAM is used, the

maximum depth is 64K words.

Block Parameters Dialog Box

The block parameters dialog box can be invoked by double-clicking the icon in your

Simulink mode.

Figure 3-72: FIFO block parameters dialog box

Parameters specific to the FIFO block are:

• Depth : specifies the number of words that can be stored.

• Bits of Precision to Use for Percent Full Signal : specifies the

number of bits that will be output from the %full port. The binary point for this

unsigned output is always at the top of the word. Thus, if the Bits of
Precision is set to one, the output can take on two values: 0.0 and 0.5, the latter

indicating that the FIFO is at least 50% full. Given two bits of precision, the

possible output values are 0.00, 0.25, 0.50 and 0.75.

Memory 107

Xilinx Blocks

• Store Only Valid Data : when checked, the block will not store any invalid

data words; i.e., when the din sample is invalid, the WE (write enable) input is

disregarded (if 1) and the sample is not written into the FIFO.

• Zero Initial Output : when checked, initial output from the block is 0.

Otherwise, it is NaN (not a number).

• Memory Type : specifies the implementation that must be used either for

distributed or block RAM.

Other parameters used by this block are described in the Common Parameters section

of the previous chapter.

Xilinx LogiCORE

The block always uses the Xilinx LogiCORE: Synchronous FIFO V3.0. The core

datasheet can be found on your local disk at:

%XILINX%\coregen\ip\xilinx\eip1\com\xilinx\ip\sync_fifo_v3_0\d
oc\sync_fifo.pdf

ROM
The Xilinx ROM block is a single port read-only memory (ROM).

Values are stored by word and all words have the same arithmetic type,

width, and binary point position. Each word is associated with exactly

one address. An address can be any unsigned fixed point integer from 0

to d-1, where d denotes the ROM depth (number of words). The

memory contents are specified through a block parameter. The block

has one input port for the memory address and one output port for data out. The

address port must be an unsigned fixed point integer. The block has two possible

Xilinx LogiCORE implementations, using either distributed or block memory.

108 Xilinx Development System

Xilinx System Generator v2.1 Reference Guide

Block Parameters Dialog Box

The block parameters dialog box can be invoked by double-clicking the icon in your

Simulink model.

Figure 3-73: ROM block parameters dialog box

Parameters specific to this block are:

• Depth : specifies the number of words stored; must be a positive integer.

• Initial Value Vector : specifies the initial value. When the vector is longer

than the ROM depth, the vector’s trailing elements are discarded. When the ROM

is deeper than the vector length, the ROM’s trailing words are set to zero.

• Word Type : specifies the data to be Signed or Unsigned.

• Number of Bits per Word : specifies the number of bits in a memory word.

• Binary Point for Words : specifies the location of the binary point in the

memory word.

• Use Distributed Memory (instead of Block RAM) : when checked, the

block is implemented with distributed RAM. Otherwise it is implemented with

Block RAM.

Memory 109

Xilinx Blocks

Other parameters used by this block are explained in the Common Parameters section

of the previous chapter.

Xilinx LogiCORE

The block always uses a Xilinx LogiCORE: Single Port Block Memory V3.2 or

Distributed Memory V5.0. For the block memory, the address width must be equal to

where d denotes the memory depth.

The tables below indicate the widths that are acceptable for each depth.

When the distributed memory parameter is selected, LogiCORE Distributed Memory

V5.0 is used. The depth must be between 16 and 65536, inclusive for Virtex-II and

Table: Maximum Word Width for Various Depth Ranges (Virtex/Virtex-E)

Depth Width

2 to 512 256

513 to 1024 256

1025 to 2048 256

2049 to 4096 192

4097 to 8192 96

8193 to 16K 48

16K+1 to 32K 24

32K+1 to 64K 12

64K+1 to 128K 6

128K+1 to 256K 3

Table: Maximum Word Width for Various Depth Ranges (Virtex-II)

Depth Width

2 to 512 256

513 to 1024 256

1025 to 2048 256

2049 to 4096 256

4097 to 8192 256

8193 to 16K 192

16K+1 to 32K 96

32K+1 to 64K 48

64K+1 to 128K 24

128K+1 to 256K 12

256K+1 to 512K 6

512K+1 to 1024K 3

d2log

110 Xilinx Development System

Xilinx System Generator v2.1 Reference Guide

between 16 to 4096, inclusive for the other FPGA families. The word width must be

between 1 and 1024, inclusive.

The Core datasheet for the Single Port Block Memory may be found locally at:

%XILINX%\coregen\ip\xilinx\eip1\com\xilinx\ip\blkmemsp_v3_2\do
c\sp_block_mem.pdf

The Core datasheet for the Distributed Memory may be found on your local disk at:

%XILINX%\coregen\ip\xilinx\eip1\com\xilinx\ip\c_dist_mem_v5_0\
doc\dist_mem.pdf

Single Port RAM
The Xilinx Single Port RAM block implements a random access

memory (RAM).

Block Interface

The block has one output port and three input ports for address, input data, and write

enable (WE). Values in a Single Port RAM are stored by word, and all words have the

same arithmetic type, width, and binary point position.

The block has two possible implementations, using either block or distributed

memory. Each data word is associated with exactly one address that can be any

unsigned integer from 0 to d-1 , where d denotes the RAM depth (number of words

in the RAM). An attempt to read past the end of the memory is caught as an error in

the simulation. The initial RAM contents can be specified through the block

parameters.

The write enable port must be a 1-bit unsigned integer. When the WE port is 1, the

value on the data input is written to the location indicated by the address line. The

output during a write operation depends on the choice of memory. For distributed

memory, the output port always has the value at the location specified by the address

line. For block memory, the behavior of the output port depends on the write mode

selected. When the WE is 0, the output port has the value at the location specified by

the address line.

Memory 111

Xilinx Blocks

Block Parameters Dialog Box

The block parameters dialog box can be invoked by double-clicking the icon in your

Simulink model.

Figure 3-74: Single Port RAM block parameters dialog box

Parameters specific to this block are:

• Depth : specifies the number of words stored; must be a positive integer.

• Initial Value Vector : specifies the initial value. When the vector is longer

than the RAM, the vector’s trailing elements are discarded. When the RAM is

longer than the vector, the RAM’s trailing words are set to zero.

• Zero Initial Output : when checked, the data out ports have a value of zero

at clock 0; otherwise, they have a value of NaN (“not a number”).

• Write Mode : specifies the memory behavior to be Read Before Write, Read After

Write, or No Read On Write. There are device specific restrictions on the

applicability of these modes.

• Use Distributed Memory (instead of Block RAM) : when checked, the

block is implemented with distributed RAM; otherwise, it is implemented with

Block RAM.

Other parameters used by this block are explained in the Common Parameters section

of the previous chapter.

During a write operation (WE asserted), the data presented to the data input is stored

in memory at the location selected by the address input. During a write cycle, the user

can configure the behavior of the data out port A to one of the following choices:

112 Xilinx Development System

Xilinx System Generator v2.1 Reference Guide

• Read After Write

• Read Before Write

• No Read On Write

The write modes can be described with the help of the figure shown below. In the

figure the memory has been set to an initial value of 5 and the address bit is specified

as 4. When using No Read On Write mode, the output is unaffected by the address line

and the output is the same as the last output when the WE was 0. For the other two

modes, the output is obtained from the location specified by the address line, and

hence is the value of the location being written to. This means that the output can be

either the old value (Read Before Write mode), or the new value (Read After Write
mode).

Figure 3-75: Illustration of write modes

Virtex, Virtex-E, and Spartan-II FPGA families support only Read After Write mode.

Virtex-II supports all modes.

Memory 113

Xilinx Blocks

Xilinx LogiCORE

The block always uses a Xilinx LogiCORE Single Port Block Memory V3.2 or

Distributed Memory V5.0. For the block memory, the address width must be equal to

where d denotes the memory depth.

The tables below show the width that is acceptable for each depth.

When distributed memory parameter is selected, the memory depth must be between

16 and 65536, inclusive for Virtex-II and 16 to 4096, inclusive for the FPGA families.

The word width must be between 1 and 1024, inclusive.

The Core datasheet for the Single Port Block Memory can be found locally at:

Table: Maximum Word Width for Various Depth Ranges (Virtex/Virtex-E)

Depth Width

2 to 512 256

513 to 1024 256

1025 to 2048 256

2049 to 4096 192

4097 to 8192 96

8193 to 16K 48

16K+1 to 32K 24

32K+1 to 64K 12

64K+1 to 128K 6

128K+1 to 256K 3

Table: Maximum Word Width for Various Depth Ranges (Virtex-II)

Depth Width

2 to 512 256

513 to 1024 256

1025 to 2048 256

2049 to 4096 256

4097 to 8192 256

8193 to 16K 192

16K+1 to 32K 96

32K+1 to 64K 48

64K+1 to 128K 24

128K+1 to 256K 12

256K+1 to 512K 6

512K+1 to 1024K 3

d2log

114 Xilinx Development System

Xilinx System Generator v2.1 Reference Guide

%XILINX%\coregen\ip\xilinx\eip1\com\xilinx\ip\blkmemsp_v3_2\do
c\sp_block_mem.pdf

The Core datasheet for the Distributed Memory can be found on your local disk at:

%XILINX%\coregen\ip\xilinx\eip1\com\xilinx\ip\c_dist_mem_v5_0\
doc\dist_mem.pdf

State Machine
The State Machine library provides a method for implementing Mealy and Moore

state machines. These state machines are implemented using block and distributed

RAMs, resulting in a very fast and efficient implementation. For example, a state

machine with 8 states, 1 input, and 2 outputs that are registered can be realized with a

single block RAM that runs at more than 150 MHz in a Xilinx Virtex device.

Mealy State Machine
The Xilinx Mealy State Machine block implements a state machine

whose output depends on both the current state and input.

A block diagram of this type of state machine is shown below:

Figure 3-76: Mealy State Machine block diagram

The block is configured by providing next state and output matrices. These matrices

are defined by the state machine’s next state/output table. For example, consider the

problem of designing a state machine to recognize the pattern ’1011’ within a serial

State Machine 115

Xilinx Blocks

stream of bits. The state transition diagram and equivalent transition table are shown

below.

Figure 3-77: Mealy State Machine example transition diagram and table

The table lists the next state and output that result from the current state and input.

For instance, if the current state is 3 and the input is 1, the next state is 1 and the

output is 1, indicating the detection of the desired sequence. The next state and

output matrices are constructed in the following way:

Figure 3-78: Construction of Next State and Output matrices

116 Xilinx Development System

Xilinx System Generator v2.1 Reference Guide

The rows of the matrices correspond to the current state, and columns correspond to

the input value.

The next state logic and state register in this block are implemented with high speed

dedicated block RAM. The output logic is implemented using a distributed RAM

configured as a lookup table, and therefore has zero latency.

Block Parameters Dialog Box

The block parameters dialog box can be invoked by double-clicking the icon in your

Simulink model.

Figure 3-79: Mealy State Machine block parameters dialog box

The maximum number of states is limited by the depth of the distributed RAM. For

the Virtex family, the maximum number of states supported is 4K and for Virtex-II it is

64K.

Xilinx LogiCORE

This block uses Version 3.2 of the Xilinx Single Port Block Memory LogiCORE and

Version 5.0 of the Xilinx Distributed RAM LogiCORE.

The Core datasheet for the Single Port Block Memory may be found locally at:

%XILINX%\coregen\ip\xilinx\eip1\com\xilinx\ip\blkmemsp_v3_2\do
c\sp_block_mem.pdf

The Core datasheet for the Distributed Memory may be found on your local disk at:

%XILINX%\coregen\ip\xilinx\eip1\com\xilinx\ip\c_dist_mem_v5_0\
doc\dist_mem.pdf

Moore State Machine
The Xilinx Moore State Machine block implements a state machine

whose output depends only on the current state.

State Machine 117

Xilinx Blocks

A block diagram of this type of state machine is shown below:

Figure 3-80: Moore State Machine block diagram

The block is configured by providing a next state matrix and an output array. They

are defined by the state machine’s next state/output table. For example, consider the

problem of designing a state machine to recognize the pattern ’1011’ within a serial

stream of bits. The state transition diagram and equivalent transition table are shown

below.

Figure 3-81: Moore State Machine example transition diagram and table

The table lists the next state and output that result from the current state and input.

For example, if the current state is 4, the output is 1, indicating the detection of the

desired sequence, and if the input is 1, the next state is state 1.

118 Xilinx Development System

Xilinx System Generator v2.1 Reference Guide

The Next State Matrix and the and Output Array are composed in the following way:

Figure 3-82: Construction of Next State and Output matrices

The rows of the matrices correspond to the current state. The next state matrix has

one column for each input value.

The output array has only one column, as the input value does not affect the output of

the state machine.

The next state logic and state register in this block are implemented with high speed

dedicated block RAM. The output logic is implemented using a distributed RAM

configured as a lookup table, and therefore has zero latency.

Block Parameters Dialog Box

The block parameters dialog can be invoked by double-clicking the icon in your

Simulink model.

Figure 3-83: Moore State Machine block parameters dialog box

The maximum number of states is limited by the depth of the distributed RAM. For

the Virtex family, the maximum number of states supported is 4K and for Virtex-II it is

64K.

State Machine 119

Xilinx Blocks

Xilinx LogiCORE

This block uses Version 3.2 of the Xilinx Single Port Block Memory LogiCORE and

Version 5.0 of the Xilinx Distributed RAM LogiCORE.

The Core datasheet for the Single Port Block Memory may be found locally at:

%XILINX%\coregen\ip\xilinx\eip1\com\xilinx\ip\blkmemsp_v3_2\do
c\sp_block_mem.pdf

The Core datasheet for the Distributed Memory may be found on your local disk at:

%XILINX%\coregen\ip\xilinx\eip1\com\xilinx\ip\c_dist_mem_v5_0\
doc\dist_mem.pdf

Registered Mealy State Machine
The Xilinx Registered Mealy State Machine block implements

a state machine whose output depends on both the current

state and input. This block is like the Mealy State Machine

block, except that its output logic is registered.

A block diagram of this type of state machine is shown below:

Figure 3-84: Registered Mealy State Machine block diagram

The block is configured by providing next state and output matrices. These matrices

are defined by the state machine’s next state/output table. For example, consider the

problem of designing a state machine to recognize the pattern ’1011’ within a serial

120 Xilinx Development System

Xilinx System Generator v2.1 Reference Guide

stream of bits. The state transition diagram and equivalent transition table are shown

below.

Figure 3-85: Registered Mealy State Machine example transition diagram and
table

The table lists the next state and output that result from the current state and input.

For instance, if the current state is 3 and the input is 1, the next state is 1 and the

output is 1, indicating the detection of the desired sequence.

State Machine 121

Xilinx Blocks

The Registered Mealy State Machine block is configured with next state and output

matrices obtained from the next state/output table discussed above. These matrices

are constructed as follows:

Figure 3-86: Construction of Next State and Output matrices

The rows of the matrices correspond to the current state, and columns correspond to

the input value.

Block Parameters Dialog Box

The block parameters dialog box can be invoked by double-clicking the icon in your

Simulink model.

Figure 3-87: Registered Mealy State Machine block parameters dialog box

The next state logic, state register, output logic, and output register are implemented

using high speed dedicated block RAM. Of the four blocks in the state machine

library, this is the fastest and most area efficient. However, the output is registered

and thus the input does not affect the output instantaneously.

122 Xilinx Development System

Xilinx System Generator v2.1 Reference Guide

The number of bits used to implement a registered mealy state machine is given by

the equations:

where

N = total number of block RAM bits

k =

s = number of states

i = number of input bits

o = number of output bits

The following table gives examples of Block RAM sizes necessary for various state

machines:

The block RAM width and depth limitations are described in the online help for the

Single Port RAM block.

Xilinx LogiCORE

This block uses Version 3.2 of the Xilinx Single Port Block Memory LogiCORE.

The Core datasheet for the Single Port Block Memory may be found locally at:

%XILINX%\coregen\ip\xilinx\eip1\com\xilinx\ip\blkmemsp_v3_2\do
c\sp_block_mem.pdf

Number of States Number of

Input Bits

Number of

Output Bits

Block RAM Bits

Needed

2 5 10 704

4 1 2 32

8 6 7 5120

16 5 4 4096

32 4 3 4096

52 1 11 2176

100 4 5 24576

depth 2
k() 2

i() 2
k i+

= =

width k o+=

N depth width× k o+() 2
k i+()= =

s2log

State Machine 123

Xilinx Blocks

Registered Moore State Machine
The Xilinx Registered Moore State Machine block implements

a state machine whose output depends only on the current

state. This block is like the Moore State Machine block, except

that its output logic is registered.

A block diagram of this type of state machine is shown below:

Figure 3-88: Registered Moore State Machine block diagram

The block is configured by providing a next state matrix and an output array. They

are defined by the state machine’s next state/output table. For example, consider the

problem of designing a state machine to recognize the pattern ’1011’ within a serial

124 Xilinx Development System

Xilinx System Generator v2.1 Reference Guide

stream of bits. The state transition diagram and next state/output table are shown

below.

Figure 3-89: Registered Moore State Machine example transition diagram and
table

The table lists the next state and output that result from the current state and input.

For example, if the current state is 4, the output is 1 indicating the detection of the

desired sequence, and if the input is 1 the next state is state 1.

State Machine 125

Xilinx Blocks

The Next State Matrix and the Output Array are composed in the following way:

Figure 3-90: Construction of Next State and Output matrices

The rows of the matrices correspond to the current state. The next state matrix has

one columns for each input value. The output array has only one column since the

input value does not affect the output of the state machine.

Block Parameters Dialog Box

The block parameters dialog can be invoked by double-clicking the icon in your

Simulink model:

Figure 3-91: Registered Moore State Machine block parameters dialog box

The next state logic, state register, is implemented using the Xilinx Block RAM

LogiCORE. A separate Block RAM LogiCORE is used to implement the output logic

and output register.

The number of bits used to implement the state logic and state register is given by the

equations:

ds 2
k() 2

i() 2
k i+

= =

ws k=

Ns ds ws× k() 2
k i+()= =

126 Xilinx Development System

Xilinx System Generator v2.1 Reference Guide

where

Ns = total number of next state logic block RAM bits

k =

ds = depth of state logic block RAM

ws = width of state logic block RAM

s = number of states

i = number of input bits

The following table gives examples of Block RAM sizes necessary for various state

machines:

Xilinx LogiCORE

This block uses Version 3.2 of the Xilinx Single Port Block Memory LogiCORE.

The block RAM width and depth limitations are described in the core datasheet for

the Single Port Block Memory, which may be found locally at:

%XILINX%\coregen\ip\xilinx\eip1\com\xilinx\ip\blkmemsp_v3_2\do
c\sp_block_mem.pdf

Number of States Number of

Input Bits

Block RAM Bits

Needed

2 5 64

4 1 8

8 6 1536

16 5 2048

32 4 2560

52 1 768

100 4 14336

s2log

Using the System Generator installer 127

System Generator Software Features

Chapter 4

System Generator Software Features

This chapter briefly describes how to use various features of the System Generator

v2.1. It contains the following sections.

• Using the System Generator installer

• Using Black Boxes

• Use of mixed language projects

• Tips for creating a high performance design

• Use of System Generator-supplied user constraints (.ucf) file

• Files automatically created by System Generator

Using the System Generator installer
The System Generator installer is now contained in a single MATLAB file:

setup.dll.

Download SysgenInstall_v2_1.exe from the Xilinx web site and execute it. This

extracts setup.dll and README.txt to a temporary directory. Since setup.dll is

a MATLAB file, you will need to install the software from within MATLAB. Open the

MATLAB console, then change directories (cd) to the temporary directory where

you extracted setup.dll . Type:

>> setup

at the MATLAB console prompt. This will launch the System Generator installer.

Uninstalling previous System Generator directories
If you have previously installed the System Generator tools, the installer will ask if

you wish to install System Generator v2.1 to the same location. If so, it will warn you

that your old copy will be removed. If you have opened any System Generator

designs in your current MATLAB session, you must close and re-open MATLAB

before uninstalling can proceed.

Note that the System Generator will remove everything in your previously installed

System Generator directory and subdirectories. If you have added any files to the

installed System Generator area, they will be removed. We suggest that you back up

your System Generator designs into another directory, such as the $MATLAB/work
directory.

If you wish to uninstall System Generator v2.1 or previous versions by hand, you may

manually remove the entire directory, starting at the top level of the System Generator

installed area. This is located by default at $MATLAB/toolbox/xilinx .

128 Xilinx Development System

Xilinx System Generator v2.1 Reference Guide

Installed System Generator directory
The installer will create the following directory structure on your PC:

These directories contain the following:

• bin - This is the location of all system files. You should not add, delete, or change

files in this subdirectory.

• examples - This subdirectory contains examples that show how to run the

software. This subdirectory also includes demonstration projects which show

proper use of some of the Xilinx blocks.

• help - The System Generator documentation (.pdf files, viewable in Adobe

Acrobat) is located here.

• scripts - This directory contains auxiliary Perl scripts which are used by the

System Generator. These scripts are described in Chapter 6 of this document.

• vhdl - This directory contains a library of core VHDL files used to construct your

System Generator design.

Using Black Boxes
There are times when a design must include subsystems that cannot be realized with

Xilinx blocks. For example, the design might require a FIR filter whose capabilities

differ from those in the filter supplied in the Xilinx Blockset. Black boxes provide a

way to include such subsystems in designs otherwise built from Xilinx blocks. To add

a black box to a design, do the following:

• Implement the subsystem (your black box) in Simulink. The subsystem can

contain any combination of Xilinx and non-Xilinx blocks.

• Place the Xilinx Black Box token at the top level sheet of the subsystem. This

indicates to System Generator that the user will provide the VHDL or Verilog

HDL necessary to implement that subsystem.

• Double-click on the token to open the Black Box block parameters dialog box.

Enter the information that describes the black box.

• You must manually enter your VHDL or Verilog HDL black box files into your

downstream software tools project after you run the System Generator code-

generation step.

A Black Box Example
The directory: /xilinx/sysgen/examples/black_box , ordinarily stored in

$MATLAB/toolbox) contains an example showing how to use black boxes.

xilinx/

sysgen/

bin

examples

help

scripts

vhdl

Using Black Boxes 129

System Generator Software Features

Note - For this example to run correctly, you must change your directory (cd within

the MATLAB console window) to this directory before launching the example model.

The files contained in this directory are:

• black_box.mdl - the Simulink model with an example black box

• bit_reverse.m - a MATLAB function for reversing bit order

• bit_reverse.vhd - VHDL code for reversing bit order. This file is the actual

black box that must be passed to the Xilinx implementation tools. It imitates the

behavior of the MATLAB function.

The example project displays three windows:

• The top-level model (a model with black box instantiated in it),

• The black box (a new Simulink model), and

• The output simulation scopes.

By running the simulation from the top-level model, you can see the bits reverse in the

output scope. This simulation is running the MATLAB function bit_reverse.

Figure 4-1: Output of example black box function

Black Box window
The Xilinx Black Box token identifies the top level of your black box.

Double-clicking on this token brings up a window which allows you to

configure the black box.

Open the file bit_reverse.vhd in an editor and view the code. You will

see that the name of the component (bit_reverse) is the same name assigned in the

Black Box block parameters dialog box. The user-defined generic (n_bits) is defined

there as well. The others are default generics that correspond to the ports (DIN and

BRN) on the black box. You must make sure the VHDL code you write (to correspond

with your black box) has component and generic names matching those entered in the

configuration window.

Note - The main:process(DIN) section near the bottom of the VHDL file is

where the actual bit reversing functionality takes place.

130 Xilinx Development System

Xilinx System Generator v2.1 Reference Guide

Use of mixed language projects
System Generator v2.1 supports mixed language (VHDL and Verilog HDL) projects,

as explained below.

The System Generator’s code-generation software creates VHDL code from the

system representation (Xilinx Blockset portion) of your design. Even though VHDL is

the only choice for the generated output language, System Generator supports mixed

language designs in two ways:

• You can incorporate Verilog into a System Generator design as a black box.

• You can also incorporate the VHDL created by System Generator into a larger

Verilog system.

In order to mix VHDL and Verilog, you must have a mixed language simulator and a

mixed language synthesis compiler. Tools that support mixed language projects

usually have special restrictions and instructions for their mixed language interfaces,

e.g.,

• instructions for the instantiation location of a Verilog design unit within the

VHDL

• instructions for the instantiation location of a VHDL design unit within the

Verilog

Designs that mix VHDL with Verilog can have problems if parameters or generics are

passed across the language boundaries. System Generator avoids these problems by

ensuring that this situation does not arise.

Incorporating mixed language black boxes
A Verilog black box is configured in almost the same way as a VHDL black box. As

with VHDL, the instructions are entered in the Black Box block parameters dialog box

that is associated to the black box token. Under HDL Language, select Verilog, then

Use of mixed language projects 131

System Generator Software Features

enter information describing clocks, parameter names, types and values as

appropriate.

Figure 4-2: Black Box block parameters dialog box

Creating mixed language synthesis and simulation projects

The following describes how to synthesize mixed language designs using Synplify

and Leonardo Spectrum synthesis compilers, and how to test using the ModelSim

simulator. The XST synthesis compiler does not support mixed language designs.

To synthesize using Synplify, open the project file (for example,

my_project_synplicity.prj) in Synplify. Tell the tool to add your black box files

to the project. The procedure for a Leonardo Spectrum project is analogous, except

that the project filename example is my_project_leon.tcl .

To run a behavioral simulation in ModelSim, edit the vcom.do and vsim.do files

that were produced by System Generator. The vcom.do file must be augmented with

lines to compile the black box VHDL and Verilog. For each black box VHDL file, add a

line of the form

vcom <file>

where <file > is the name of the file. Similarly, each Verilog file needs a line of the

form

vlog <file>

In addition, you must add a

132 Xilinx Development System

Xilinx System Generator v2.1 Reference Guide

vlog<file>

line for each Verilog wrapper that is listed in the verilogFiles file, another file

produced by System Generator. The vsim line in the vsim.do file needs to be

augmented by adding a

-L unisim

suffix.

Tips for creating a high performance design
The following are suggestions for some design practices in System Generator that will

translate to an efficient and high performance design in your FPGA.

• Register inputs and outputs of your design. This can be done by placing a Delay

block with a latency of 1 or a Register block after the Gateway In blocks and

before the Gateway Out blocks. Selecting any of the Register block features will

add extra logic. For example if the Store Only Valid Data option is selected on the

Register block, one level of logic will be added to the clock enable path.

• Double registering the I/Os may also be beneficial. This can be performed by

instantiating two separate Register blocks, or by instantiating two Delay blocks

with latency of 1. This will allow one of the registers to be packed into the IOB

and the other to be placed next to the logic in the FPGA fabric. A Delay block

with latency set to 2 will not give the same results since this block is implemented

using a SRL16 and cannot be packed into an IOB.

• Use the IOB Timing Constraint option:
Data Rate, Set ‘FAST’ Attribute
on all Gateway In and Gateway Out blocks. When this attribute is selected on

the Gateway blocks, the IOB delay is reduced, but the IO noise and power

consumption increases.

• In general it is important to insert pipeline registers wherever possible. Deep

pipelines are efficiently implemented with the Delay blocks since the SRL16

primitive is used. If an initial value is needed on a register, the Register block

supplies this functionality. In addition, the Sync block in the Xilinx Blockset Basic

Elements library can help with retiming your design. The Color Space

Conversion demo provides an example of this. (This demo, as well as others, can

be found through the MATLAB Demos or by typing demo at the MATLAB

console prompt.)

• Up and down samplers have combinational feedthroughs. Whenever possible,

place a register on the output of a sample rate converter. The Xilinx blocks Up

Sample and Down Sample (in the Xilinx Blockset Basic Elements library) provide

more information.

• Saturation arithmetic and rounding have area and performance costs. Use only

if necessary.

• Use global port selections only if necessary. On the System Generator block

parameters dialog box, only select the Create Global Clock Enable Por t

or Create Global Clear Port options if absolutely necessary. Global clock

Using the System Generator Constraints Files 133

System Generator Software Features

enable or clear port may result in large fanout signals, thus degrading system

performance.

Figure 4-3: Use Global Port selections if necessary

• Use cross-probing between the Xilinx Timing Analyzer and Leonardo or
Synplify Pro to identify critical paths. Design hierarchy is preserved when

using the Leonardo or Synplify project files that System Generator creates, thus

making it easy to correlate between the Timing Analyzer report and the Simulink

model. For more information refer to Xilinx Application note 406 at

http://www.xilinx.com/xapp/xapp406.pdf

Using the System Generator Constraints Files
When System Generator transforms a design into HDL, it also writes a constraints file

(also known as a ucf file). Constraints tell downstream tools how to process the

design. With the assistance of constraints, downstream tools can produce a higher

quality implementation than otherwise could have been obtained, and can do so

using considerably less time. Constraints supply the following information:

• The period to be used for the system clock.

• The speed, with respect to the system clock, at which various portions of the

design must run.

• The pin locations at which ports should be placed.

• The speed at which ports must operate.

System Clock Period
The system clock period (i.e., the period of the fastest clock in the design) can be

specified in the System Generator block. System Generator writes this period to the

constraints file, and the downstream tools use the period as a goal when

implementing the design.

The example below shows the constraints that specify the system clock period.

Multicycle Path Constraints
Many designs consist of parts that run at different clock rates. For the fastest parts,

the system clock period is used, and for the remaining parts, the clock period is an

integer multiple of the system clock period. It is important that downstream tools

know what speed each part of the design must achieve. With this information,

efficiency and effectiveness of the tools are greatly increased, resulting in reduced

compilation times and improved hardware realizations.

134 Xilinx Development System

Xilinx System Generator v2.1 Reference Guide

The division of the design into parts, and the speed at which each part must run, are

specified in the constraints file using multicycle path constraints. The example below

shows how this is done.

IOB Timing and Placement Constraints
When translated into hardware, System Generator’s Gateway In and Gateway Out

blocks become input and output ports. The locations of these ports and the speeds at

which they must operate can be entered in the Gateway In and Out configuration

GUIs. Please see the descriptions of the Gateway In block and the Gateway Out block

in the MATLAB I/O library section for more information.

Port location and speed are specified in the constraints file by IOB timing and

placement constraints. The following example shows the details

Example for showing constraints use

Figure 4-4: Example of a multirate design

The up sampler doubles the sample rate, and the down sampler divides the sample

rate by three. In this design, the system clock period is 10 ns (specified in the

parameters dialog box for the System Generator block), so the clock periods are 10 ns

for the FIR, 20 ns for the input register, and 30 ns for the output register. Shown below

are the constraints that carry this information.

Here are the lines from the ucf file that indicate the system clock period is 10 ns.

Global period constraint
NET "clk" TNM_NET = "clk";
TIMESPEC "TS_clk" = PERIOD "clk" 10.0 ns HIGH 50 %;

To build the timing constraints, the blocks in the design are partitioned into timing

groups. Two blocks are in the same timing group if and only if they run at the same

sample rate. In this design the timing groups are named ce1_group, ce2_group, and

ce3_group.

The FIR block runs at the system rate and therefore goes into the ce1_group. The

logic used to generate clocks always runs at the system rate and is therefore in the

ce1_group as well. The constraints for the ce1_group are the following.

ce1_group and inner group constraint
INST "FIR" TNM = "ce1_group";
INST "clock_driver_1" TNM = "ce1_group";
TIMESPEC "TS_ce1_group_to_ce1_group" = FROM "ce1_group" TO
"ce1_group" "TS_clk" * 1;

Using the System Generator Constraints Files 135

System Generator Software Features

The ce2_group contains the blocks operating at twice the system period, i.e., the input

register and the up sampler. Here are the corresponding constraints.

ce2_group and inner group constraint
INST "InReg" TNM = "ce2_group";
INST "Up_Sample" TNM = "ce2_group";
TIMESPEC "TS_ce2_group_to_ce2_group" = FROM "ce2_group" TO
"ce2_group" "TS_clk" * 2;

The ce3_group operates at three times the system period. It contains the down

sampler and the output register, and its constraints are the following.

ce3_group and inner group constraint
INST "Down_Sample" TNM = "ce3_group";
INST "OutReg" TNM = "ce3_group";
TIMESPEC "TS_ce3_group_to_ce3_group" = FROM "ce3_group" TO
"ce3_group" "TS_clk" * 3;

Group to group constraints establish the relative speeds of the groups. Here are the

constraints that relate the speed of ce2_group to ce1_group.

Group-to-group constraints
TIMESPEC "TS_ce1_group_to_ce2_group" = FROM "ce1_group" TO
"ce2_group" "TS_clk" * 1;
TIMESPEC "TS_ce1_group_to_ce3_group" = FROM "ce1_group" TO
"ce3_group" "TS_clk" * 1;
TIMESPEC "TS_ce2_group_to_ce1_group" = FROM "ce2_group" TO
"ce1_group" "TS_clk" * 1;
TIMESPEC "TS_ce2_group_to_ce3_group" = FROM "ce2_group" TO
"ce3_group" "TS_clk" * 2;
TIMESPEC "TS_ce3_group_to_ce1_group" = FROM "ce3_group" TO
"ce1_group" "TS_clk" * 1;
TIMESPEC "TS_ce3_group_to_ce2_group" = FROM "ce3_group" TO
"ce2_group" "TS_clk" * 2;

Port timing requirements can be set in the parameter dialog boxes for Gateway In and

Out blocks. These requirements are translated into port constraints like those shown

below. In this example, the 3-bit DIN input is constrained to operate at its gateway’s

sample rate (corresponding to a period of 20 ns). The 'FAST' attributes indicate that

the ports should be implemented using hardware resources that reduce delay. (The

delay is reduced, but at a cost of increased noise and power consumption.) The

Din_valid lines constrain the companion valid signal that accompanies DIN. For

more information concerning valid signals, see the Hardware Handshaking section.

Offset in constraints
NET "Din<0>" OFFSET = IN : 20.0 : BEFORE "clk";
NET "Din<1>" OFFSET = IN : 20.0 : BEFORE "clk";
NET "Din<2>" OFFSET = IN : 20.0 : BEFORE "clk";
NET "Din_valid" OFFSET = IN : 20.0 : BEFORE "clk";

NET "Din<0>" FAST;
NET "Din<1>" FAST;
NET "Din<2>" FAST;
NET "Din_valid" FAST;

Checking the Specify IOB Location Constraints option for a Gateway In or Gateway

Out block allows port locations to be specified. The locations must be entered as a

136 Xilinx Development System

Xilinx System Generator v2.1 Reference Guide

cell array of strings in the box labeled IOB Pad Locations. Locations are package-

specific; in this example a Virtex-E 2000 in a FG680 package is used. The location

constraints for the Din bus are provided in the dialog box as {'A36', 'C36', 'B36', 'D35'}.

This is translated into constraints in the .ucf file in the following way:

Loc constraints

NET "Din<0>" LOC = "D35";

NET "Din<1>" LOC = "B36";

NET "Din<2>" LOC = "C35";

NET "Din_valid" LOC = "A36";

Important Issues
(1) It is important to note that design hierarchy is used to specify the assignment of

blocks to clock groups. The project files created by System Generator for XST (Xilinx

Synthesis Technology), Synplify and Leonardo Spectrum tell the synthesis tools to

preserve this hierarchy. If hierarchy is not preserved, block names will change and

constraints will no longer work.

(2) XST downcases instance and port names. If the names of blocks in your Simulink

model contain capital letters, you will get warning messages like the following from

the Xilinx downstream software translate step, ngdbuild:

WARNING:NgdBuild:383 - A case sensitive search for the INST,
PAD, or NET element refered to by a constraint entry in the
UCF file that accompanies this design has failed, while a
case insensitive search is in progress. The result of the
case insensitive search will be used, but warnings will
accompany each and every use of a case insensitive result.
Constraints are case sensitive with respect to user-
specified identifiers, which includes names of logic
elements in a design. For the sake of compatibility with
currently existing .xnf, .xtf, and .xff files, Software will
allow a case insensitive search for INST, PAD, or NET
elements referenced in a .ucf file.

WARNING:NgdBuild:384 - Found case insensitive match for INST
name 'Delay1'. INST is 'delay1'.

Constraints Files

System Generator writes constraints to two files. The files are identical except for the

notation used to identify buses. If the design is named my_project , the files are

my_project.ucf and my_project_paren.ucf .

In my_project.ucf , buses are denoted with angle brackets. This file should be

used with XST from within Xilinx ISE 4.1i Project Navigator and with Synplify and

Leonardo Spectrum when using the project files created by System Generator.

In my_project_paren.ucf , buses are denoted with parentheses. This file is

needed only when using Synplify or Leonardo Spectrum from within Project

Navigator. When this is the case, you should discard the original my_project.ucf ,

and rename my_project_paren.ucf to my_project.ucf .

Files automatically created by System Generator 137

System Generator Software Features

Files automatically created by System Generator
When a System Generator project is created, the software produces design VHDL and

cores from the Xilinx CORE Generator. In addition, many other project files are

created. Following is a description of the files you can expect to find in your System

Generator generated project directory. For this example, we will assume your top-

level project name is my_project , and that this project contains one multiplier core:

• my_project.vhd - the top level VHDL file for your project. There are additional

VHDL files included when your design has more hierarchy.

• my_project_xlmult_core1 - files associated with the generated multiplier

core, such as the behavioral simulation models and EDIF file.

• corework - subdirectory containing the CORE Generator log file.

• my_project.ucf - generated constraints file. Buses in this file are denoted with

angle brackets, as described in the previous Constraints Files section. This file

should be used with XST from within Project Navigator and with Synplify and

Leonardo Spectrum when using the project files produced by System Generator.

• my_project_paren.ucf - use this constraints file if you are using the Synplify

or Leonardo synthesis compilers through Xilinx ISE 4.1i Project Navigator. In this

file, buses are denoted with parentheses.

• my_project.npl - project file for opening the design in Xilinx ISE 4.1i Project

Navigator, using the XST synthesis compiler and ModelSim simulator.

• my_project_testbench.vhd - the top level VHDL testbench file, associated

with the top level VHDL source file in the project.

• my_project_<gateways>.dat - stimulus files for inputs to testbenches, or

predicted outputs of testbenches. The .dat files are generated by Simulink

simulation and saved for running in Xilinx testbenches to verify design behavior.

In this example, <gateways> refers to the names of the Xilinx gateway blocks,

which collect and save the data.

• vhdlFiles - a list of VHDL files, and their dependency order, needed for

synthesis projects. System Generator’s Perl scripts read from this file when

creating project files.

• globals - a file containing the characteristics of the design needed by

downstream software tools in order to synthesize and implement.

• my_project_synplicity.prj - a project file for running this design in

Synplify (synthesis tools from Synplicity).

• edif_bit_format.sdc - a Synplify constraints file used to set the bus format to

angle brackets. This file is used by the my_project_synplicity.prj file.

• my_project_leon.tcl - a project file for running this design in Leonardo

Spectrum (synthesis tools from Exemplar).

• my_project_xst.prj - a project file for running this design in XST (Xilinx

Synthesis Technology).

• pn_behavioral.do, pn_posttranslate.do, pn_postmap.do,
pn_postpar.do - compilation and simulation do files for running this design

through simulation at different stages. These 4 files are associated with ModelSim

simulation through the Xilinx ISE 4.1i Project Navigator.

• vcom.do, vsim.do - default behavioral simulation files for use with ModelSim.

138 Xilinx Development System

Xilinx System Generator v2.1 Reference Guide

• sysgen.log - log file.

• xlRunScripts.log - log file showing status of post-processing scripts run by

System Generator.

Xilinx ISE 4.1i Project Navigator 139

Using the Xilinx Software

Chapter 5

Using the Xilinx Software

This chapter describes how to process your System Generator design with the Xilinx

downstream software tools. Sections in this chapter are:

• Xilinx ISE 4.1i Project Navigator

• Using an EDIF software flow

• Simulation

• Xilinx software tools resources

Xilinx ISE 4.1i Project Navigator
During code generation, the System Generator creates several project files for use in

Xilinx and partner software tools. One is for the Xilinx 4.1i ISE Project Navigator tool.

By opening this project file, you can import your System Generator design into the

Project Navigator, and from there, you can synthesize, simulate, and implement the

design in the Xilinx 4.1i software tools environment.

This file is called <name of project>.npl . We will use the name

my_project.npl for the following discussion.

Opening a System Generator project
You may double-click on your .npl file in Windows Explorer. The Project Navigator

file association with .npl will cause Project Navigator to launch, opening your

my_project.npl System Generator design project.

You may also open the Project Navigator tool directly, then choose File >> Open
Project from the top level pulldown menu. Browse to the location of your System

Generator my_project.npl and open it.

Customizing your System Generator project
When first opening your System Generator project, you will receive a warning

indicating that you have not set up a device package. This is because System

Generator did not require that you enter a device package before generating VHDL.

You may now configure the rest of your Xilinx design by opening the Project

140 Xilinx Development System

Xilinx System Generator v2.1 Reference Guide

Navigator properties dialog. Right-click on the device and default package at the top

of the sources window, and select Properties ..

Figure 5-1: Launching Project Navigator properties dialog

This will bring up the Properties dialog. From this window, you can change your part,

package, speed, and synthesis compiler.

Figure 5-2: Customizing Project Navigator properties

Implementing your design
You have many options within Project Navigator for working on your project. You

can open any of the Xilinx software tools such as the Floorplanner, Constraints Editor,

report viewers, etc. To implement your design, you can simply instruct Project

Navigator to run your design all the way from synthesis to bitstream.

Xilinx ISE 4.1i Project Navigator 141

Using the Xilinx Software

In the Sources window, select the top-level VHDL module in your design. Now you

will notice that the Process window shows you all available processes that can be run

on the top-level VHDL module.

Figure 5-3: Processes available to VHDL design source

In the Process window, if you right-click on Generate Programming File and

select Run, you are instructing Project Navigator to run through whatever processes

are necessary to produce a programming file (FPGA bitstream) from the selected

VHDL source. In the messages console window, you will see that Project Navigator is

synthesizing, translating, mapping, routing, and generating a bitstream for your

design.

Now that you have generated a bitstream for your design, you have access to all the

files that were produced on the way to bitstream creation. For example, if you wish to

see how your design was placed on the Xilinx FPGA, you can select the FloorPlanner

view underneath the Place & Route option in the Process window.

Figure 5-4: Launching processes from within Project Navigator

Simulating using ModelSim within the Project Navigator
The System Generator project is already set up to run simulations at four different

stages of Project Navigator implementation. The System Generator creates four

different ModelSim do files which can be run from the Simulation process when your

testbench is selected.

The ModelSim do files created by System Generator are:

• pn_behavioral.do - for a behavioral (VHDL) simulation on the VHDL files in

the project, before any synthesis or implementation.

142 Xilinx Development System

Xilinx System Generator v2.1 Reference Guide

• pn_posttranslate.do - this file will run a simulation on the output of the

Xilinx translation (ngdbuild) step, the first step of implementation.

• pn_postmap.do - to run a simulation after your design has been mapped. This

file also includes a back-annotated simulation on the post-mapped design.

• pn_postpar.do - to run a simulation after your design has been placed and

routed. This file also includes a back-annotated simulation step.

If you select the testbench file in the Project Navigator sources module view, you will

see the four types of simulation available in the Process window.

Figure 5-5: Processes associated with testbench in Project Navigator

The System Generator has already associated the four ModelSim do files with each of

the four types of simulation. To see what do files will run when each type of

simulation is run, you can select one of the simulation steps, right-click, and select

Properties .

Figure 5-6: Properties of simulation process

The simulation properties dialog box will show that the System Generator do file is

already associated as a custom do file for this process.

Figure 5-7: Custom do file associated with simulation process

Now if you double-click on the simulation process you wish to run, the ModelSim

console will open, and the associated custom do file will be used to compile and run

your System Generator testbench. The testbench is using the input stimuli that were

used in Simulink, and comparing the results with the corresponding outputs that

Using an EDIF software flow 143

Using the Xilinx Software

were generated in Simulink. Provided that your design was error free, the ModelSim

console window will report that the simulation finished without errors.

Your installed version of ModelSim (either MXE or ModelSim EE/SE/PE) must be

associated with the Project Navigator tool for this interaction to work. To associate

ModelSim with the Project Navigator, follow the instructions in the Simulation

section, later in this chapter.

Using an EDIF software flow
You may not wish to use the Project Navigator for your VHDL synthesis. If you

choose to run a synthesis compiler in a standalone software tool, then you will

generate EDIF. You may wish to import your EDIF files into the Project Navigator.

To do this, open the Project Navigator and select File >> New Project . A new

project properties dialog will open. Select EDIF as the design flow type.

Figure 5-8: EDIF design flow in Project Navigator

Now you may add your EDIF files to the project as sources. From the Project

Navigator pulldown menu bar, choose Project>>Add Source , and then browse to

your EDIF files.

Simulation
The System Generator creates custom .do files for use with your generated project and

a ModelSim simulator. To use these files, you must have ModelSim (PE or EE/SE) or

the Xilinx Edition of ModelSim (MXE). You may run your simulations from the

standalone ModelSim tool, or you may associate it with the Xilinx 4.1i ISE Project

Navigator, and run your simulations from within Project Navigator as part of the full

software implementation flow.

Compiling your IP
You must compile your IP (cores) libraries with ModelSim before you can simulate.

ModelSim (PE or EE/SE)

To compile your IP with ModelSim (PE or EE/SE) you will need to download a TCL/

TK script from the Xilinx web site, and run it to compile these libraries:

Xilinx Simprim

Unisim

XilinxCoreLib

144 Xilinx Development System

Xilinx System Generator v2.1 Reference Guide

Xilinx supplies two sets of instructions for compiling your IP libraries using TCL/TK

scripts. The instructions can be found at the following locations:

http://support.xilinx.com/techdocs/2561.htm

http://support.xilinx.com/techdocs/8066.htm

MXE libraries

If you plan to use ModelSim XE (Xilinx Edition), download the MXE pre-compiled

libraries from the Xilinx web site. You may find the latest libraries at:

http://support.xilinx.com/support/software/install_info.htm

Unzip these MXE libraries into your MXE installed directory (usually $MXE/
xilinx/vhdl/xilinxcorelib). This is the location where MXE expects to find

your Xilinx compiled libraries, so you do not need to make any changes to your

modelsim.ini file. This file should point to the correct installed location.

Associating ModelSim with ISE 4.1i Project Navigator
If you associate ModelSim with the Xilinx 4.1i ISE Project Navigator, then you may

run your simulations from within Project Navigator as part of the full software

implementation flow.

From Project Navigator, choose the main menu pick Edit >> Preferences . This

will bring up a Preferences dialog box. Choose the Partner Tools tab in this

dialog box. Enter the full path to the version of ModelSim on your PC. You must

include the name of the executable file in this field.

Figure 5-9: Associating the ModelSim simulator in Project Navigator

Xilinx software tools resources 145

Using the Xilinx Software

After you make this association, your System Generator projects within Project

Navigator will automatically use this ModelSim simulator.

Figure 5-10: Processes associated with System Generator testbench in Project
Navigator

Xilinx software tools resources
Documentation, tutorials, and other Xilinx software tools resources can be found

online at

• http://support.xilinx.com/support/techsup/tutorials/
tutorials4.htm

• http://toolbox.xilinx.com/docsan/xilinx4/

146 Xilinx Development System

Xilinx System Generator v2.1 Reference Guide

Chapter 6

Auxiliary Files

Demonstration designs
Several demonstration designs have been created and installed with the System

Generator software. These designs show the capabilities of the System Generator

software and the Xilinx blocks.

These demonstration designs may be accessed by selecting the Demos menu choice

from the MATLAB Help menu.

Figure 6-1: Opening MATLAB demonstration designs

This will launch the MATLAB Demos window, from where you can browse to the

System Generator demonstration designs, under the Xilinx Blockset category..

Figure 6-2: MATLAB Demos window with Xilinx Blockset chosen

Perl scripts 147

Auxiliary Files

You can also launch the MATLAB Demos window from the MATLAB console by

typing:

>> demo

Perl scripts
As a convenience, several Perl scripts are delivered together with the System

Generator software. These Perl scripts generate project files or scripts that support

Xilinx ISE 4.1i Project Navigator, as well as Xilinx partner simulation and synthesis

tools.

These Perl scripts are run automatically by System Generator. We advise that you not

change these scripts. You will probably find that you do not need to run them by

hand. If you wish to do so, you will need to be aware of the following:

It is important to note that these scripts are provided as-is, with no guarantees as to

their results in every possible setting. They have not been tested in every

environment, and there may be some circumstances in which they do not work.

The following scripts are installed with the System Generator and are available in the

default location $MATLAB/toolbox/xilinx/sysgen/scripts :

• syn.pl : generates a project file (.prj file) for use with the synthesis compiler

Synplify from Synplicity

• leon.pl : generates a project file (.tcl file) for use with the synthesis compiler

Leonardo Spectrum from Exemplar

• xst.pl : generates a project file (.prj) for XST (Xilinx Synthesis Technology)

compiler

• pnnpl.pl : generates a project file (.npl) for the Xilinx ISE 4.1i Project Navigator

• pnmtido.pl : generates simulation compilation and simulation files (.do files) for

use with the ModelSim simulation product from Model Technology

A recent version of Perl is necessary to run these scripts. A version is available in your

MATLAB installation (in the location $MATLAB/sys/perl/win32/bin/
perl.exe). The location of the Perl script must be in your $PATH.

The scripts must be run from a shell (for example a DOS prompt, MKS Korn shell, tcsh

shell, etc.) on your PC. You must run them from the same directory where your

System Generator project was written. These scripts will look for System Generator

output files (vhdlFiles and globals , among others) in the directory in which the

script is being run.

Syntax for use of each script can be found by running

perl <scriptname> -h
from a shell window. In this example, <scriptname > denotes the name of the script.

148 Xilinx Development System

Xilinx System Generator v2.1 Reference Guide

	Xilinx System Generator v2.1 for Simulink
	Introduction
	Industry and Product Overview
	System Generator
	System Level Modeling with System Generator
	The System Generator Design Flow
	Arithmetic Data Types
	Hardware Handshaking
	Multirate Systems

	Bit-True and Cycle-True Modeling
	Automatic Testbench Generation

	Xilinx Blockset Overview
	What is a Xilinx Block?
	Instantiating Xilinx Blocks within a Simulink Model
	The Block Parameters Dialog Box
	The Nature of Signals in the Xilinx Blockset
	Use of Xilinx Smart-IP Cores by the System Generator
	Licensed Cores
	Xilinx LogiCORE‘ Versions

	Common Options in Block Parameters Dialog Box
	Arithmetic Type
	Implement with Xilinx Smart-IP‘ Core (if possible)
	Generate Core
	Latency
	Precision
	Number of Bits
	Overflow and Quantization
	Override with Doubles
	Sample Period

	Xilinx Blocks
	Basic Elements
	System Generator
	Addressable Shift Register
	Black Box
	Concat
	Constant
	Convert
	Counter
	Delay
	Down Sample
	Get Valid Bit
	Mux
	Parallel to Serial
	Register
	Reinterpret
	Serial to Parallel
	Set Valid Bit
	Slice
	Sync
	Up Sample

	Communication
	Convolutional Encoder
	Depuncture
	Interleaver Deinterleaver
	Puncture
	RS Decoder
	RS Encoder
	Viterbi Decoder

	DSP
	CIC
	DDS
	FFT
	FIR

	Math
	Accumulator
	AddSub
	CMult
	Inverter
	Logical
	Mult
	Negate
	Relational
	Scale
	Shift
	SineCosine
	Threshold

	MATLAB I/O
	Gateway Blocks
	Enabled Subsystems
	Gateway In
	Gateway Out
	Quantization Error Blocks
	Display

	Memory
	Dual Port RAM
	FIFO
	ROM
	Single Port RAM

	State Machine
	Mealy State Machine
	Moore State Machine
	Registered Mealy State Machine
	Registered Moore State Machine

	System Generator Software Features
	Using the System Generator installer
	Uninstalling previous System Generator directories
	Installed System Generator directory

	Using Black Boxes
	A Black Box Example
	Black Box window

	Use of mixed language projects
	Incorporating mixed language black boxes

	Tips for creating a high performance design
	Using the System Generator Constraints Files
	System Clock Period
	Multicycle Path Constraints
	IOB Timing and Placement Constraints
	Example for showing constraints use
	Important Issues

	Files automatically created by System Generator

	Using the Xilinx Software
	Xilinx ISE 4.1i Project Navigator
	Opening a System Generator project
	Customizing your System Generator project
	Implementing your design
	Simulating using ModelSim within the Project Navigator

	Using an EDIF software flow
	Simulation
	Compiling your IP
	Associating ModelSim with ISE 4.1i Project Navigator

	Xilinx software tools resources

	Auxiliary Files
	Demonstration designs
	Perl scripts

