

Manuel d'utilisation de la maquette AVION ELECTRIQUE A ENERGIE SOLAIRE Enseignement primaire et collège

Articles	Code
Avion électrique à énergie solaire	14741

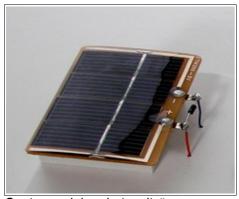
L'énergie solaire

L'énergie solaire est l'énergie que dispense le Soleil dans son rayonnement, direct ou diffus. En fait c'est la mère de la quasi-totalité des énergies utilisées sur terre. Son expression la plus directe est la chaleur des émissions diurnes directes .Mais l'énergie solaire est à l'origine de la différence de température et de pression des masses d'air, donc du vent et de l'énergie éolienne. Elle est la cause de l'évaporation, premier échelon du cycle de l'eau, donc de l'énergie hydraulique. Elle est la matière première de la photo synthèse, permettant la vie et la croissance des végétaux. dits supérieurs. Ce sont ces plantes qui après un processus de décomposition et fossilisation extrêmement long sont à l'origine des hydrocarbures et qui constituent, de nos jours pour une utilisation immédiate, la biomasse.

Les techniques pour capter directement une partie de cette énergie sont disponibles et sont constamment améliorées. On peut distinguer le solaire passif, le solaire photovoltaïque et le solaire thermique.

La maquette présentée ici fonctionne sur le principe du solaire photovoltaïque.

Principe du solaire photovoltaïque


L'effet photovoltaïque a été découvert par Antoine Becquerel en 1839,. L'effet photovoltaïque est obtenu par absorption des photons dans un matériau semi-conducteur qui génère alors une tension électrique.

L'énergie solaire photovoltaïque désigne l'électricité produite par transformation d'une partie du rayonnement solaire avec une cellule photovoltaïque. Les cellules photovoltaïques produisent du courant continu. Ensuite, suivant l'utilisation, plusieurs cellules sont reliées entre-elles sur un module solaire photovoltaïque et plusieurs modules sont regroupés dans une centrale solaire photovoltaïque. On voit donc qu'avec un même procédé, on peut faire fonctionner de simples appareils tels que calculatrices, montres, radios, recharger les batteries d'autres machines électriques, alimenter un réseau domestique ou dans les cas les plus extrêmes, produire du courant pour la haute tension.

Les cellules **ne peuvent pas stocker l'énergie**, mais le rayonnement solaire à l'air libre étant toujours présent, cette fonction est quasiment obsolète et il n'est pas incongru de présenter des cellules comme des piles. La rapidité de charge ou la tension obtenue dépendra uniquement de la qualité de l'ensoleillement.

Ces dernières années les cellules photovoltaïques ont connu des progrès remarquables et ce dans trois domaines :

- le prix du watt produit qui va passer sous la barre des 1 €.
- le rendement (énergie solaire reçue par énergie électrique produite) qui s'éloigne à grand pas des 5% des cellules en silicium des débuts.
- la maniabilité et l'installation. Il existe désormais des modules pliables, enroulables et dernièrement une peinture a été mise au point.

Capteur solaire photovoltaïque

Descriptif et présentation de la maquette

L'avion

Le mot a été crée par Clément Ader (du grec avis = oiseau) qui est considéré comme le premier à avoir effectué un vol en 1890. Le principe qui permet à l'avion de décoller découle de la condition dite « de Kutta ». La vitesse d'écoulement de l'air sur le dessus de l'aile (extrados) est plus élevée que celle du dessous (intrados), du fait de l'incurvation. Cela crée une dépression à l'extrados, qui soulève l'avion.

La vitesse est obtenue grâce à l'hélice, que l'on peut considérer comme une vis sans fin agissant dans le fluide qu'est l'air.

La maquette avion solaire est composée :

- d'un mât comprenant un axe de rotation vertical
- d'une tige en acier
- d'une masselotte d'équilibre
- d'un fuselage, un empennage et deux ailes
- d'un moteur électrique convertissant le courant en mouvement de rotation
- d'une hélice assurant la traction de l'avion
- de deux cellules photo voltaïques situées sur les ailes

Suggestions pour la classe

A l'école primaire

La maquette permet par l'observation d'illustrer la transformation des énergies. L'énergie lumineuse est captée par les panneaux solaires et transformée en énergie mécanique. Cela permet à l'avion de tourner.

Plus généralement on pourra présenter l'énergie solaire.

Au collège

En classe de cinquième, on peut se servir de la maquette pour illustrer la transformation de l'énergie solaire en énergie électrique puis mécanique. En masquant les capteurs on pourra faire voir la différence entre capteur et pile.

A tout moment au collège la maquette permet d'enrichir la culture scientifique de l'élève.

Utilisation de la maquette

Pour illustrer la transformation de l'énergie lumineuse en énergie électrique, on placera la maquette sous les feux d'un projecteur « halogène » de puissance minimale de 100 watts. On fera constater la variation de la vitesse de rotation suivant l'éloignement. Et aussi l'arrêt de l'appareil en l'absence de lumière.

On pourra également essayer la maquette en plein soleil et constater les mêmes phénomènes.