GF Consumer & Industrial

Power Protection

Série SVT

Onduleur Photovoltaïque

PVINO2KS, PVINO3KS, PVINO4KS, PVINO5KS

Manuel d'utilisation v1 1

Sommaire

Introduction

CONSIGNES DE SECURITE IMPORTANTES

1 Présentation

- 1.1 Dimensions externes
- 1.2 Description de l'onduleur

2. Installation

- 2.1 Retrait de l'emballage
- 2.2 Exigences relatives à l'installation
- 2.3 Montage de l'onduleur
- 2.4 Installation électrique

3. Description des fonctions du panneau de commande

4. Démarrage de l'onduleur

- 4.1 Test de fonctionnement et instructions d'installation
- 4.2 Contrôle des valeurs et mesures détectées par l'onduleur
- 4.3 Description des états de l'onduleur

5. Interface de communication

- 5.1 Interface de communication standard
- 5.2 Autres cartes de communication

6. Diagnostic de l'état de l'onduleur et réparation

7. Spécifications

Introduction

Merci d'avoir acheté cet onduleur. Ce produit est le fruit de nombreuses années d'expérience dans la conception d'appareils d'alimentation électrique. Nous espérons que, grâce à cet appareil, votre système solaire fonctionnera sans problème pendant de nombreuses années. Il est cependant nécessaire de préciser qu'un onduleur est un système électronique complexe, qui est susceptible d'être affecté par des conditions locales très diverses. En cas de question ou de dysfonctionnement, n'hésitez pas à appeler votre revendeur spécialisé. Il/elle vous assistera le plus rapidement et le plus efficacement possible.

Veuillez lire ce guide d'utilisation avec attention afin de vous familiariser avec l'appareil. Veuillez porter une attention toute particulière aux informations concernant l'installation et la mise en service de l'appareil.

LEGENDE SECURITE

Ce manuel contient des instructions importantes qui doivent être suivies durant l'installation et maintenance de l'onduleur SVT. Ce manuel doit être lu attentivement avant l'installation de l'onduleur.

<u>Avertissement</u>: Indique une procédure, condition ou information, s'elle n'est pas respectée, peut causer des blessures ou mort.

<u>Danger</u>: Indique une procédure, condition ou information, s'elle n'est pas respectée, peut causer des dommages ou destruction de l'onduleur.

<u>Attention</u>: Indique une procédure, condition ou information qui doivent être suivies de façon à optimiser l'application.

CONSIGNES DE SÉCURITÉ IMPORTANTES

Généralités

Avertissement! Un mauvais fonctionnement ou une intervention incorrecte peut provoquer de graves blessures et des dommages matériels! Seul un personnel qualifié est autorisé à installer l'onduleur et ce dans la stricte limite des réglementations techniques correspondantes. Ne pas commencer à utiliser l'appareil ou effectuer une intervention de maintenance avant d'avoir lu entièrement ce chapitre!

Avertissement! Ces instructions relatives à la maintenance ne sont destinées qu'à un personnel qualifié. Afin de limiter les risques de choc électrique, ne réalisez aucune intervention de maintenance autre que celles spécifiées dans les instructions d'utilisation, à moins que vous soyez qualifié pour effectuer ces interventions.

Ce manuel contient des instructions importantes concernant les onduleurs SVT PVINO2KS, PVINO3KS, PVINO4KS et PVINO5KS. Elles doivent être suivies pendant les opérations d'installation et de maintenance des appareils.

Boîtier

Seul un installateur qualifié est autorisé à ouvrir la zone de connexion. Ne pas ouvrir la zone de connexion lorsque l'onduleur est sous tension. Seul un personnel de maintenance formé est autorisé à ouvrir la partie supérieure de l'onduleur (étage de puissance) et cela uniquement lorsque l'appareil est hors tension.

Réparation

Seul un personnel de maintenance formé est autorisé à effectuer des réparations sur l'onduleur.

Installation

L'onduleur photovoltaïque doit être installé avec tous les accessoires de protection.

Module photovoltaïque

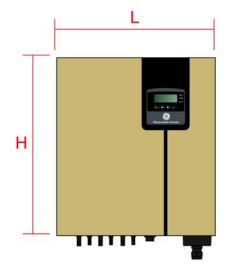
Avant de connecter les modules solaires, vous devez vérifier que les paramètres de tension indiqués par le fabricant correspondent aux paramètres réels.

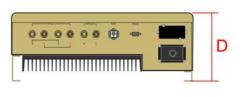
Lorsque les relevés de tension sont effectués, veillez à prendre en compte que la tension de marche à vide des modules solaires est plus élevée lorsque la température est basse et que le niveau d'ensoleillement reste constant. À une température de -25 °C, la tension de marche à vide des modules photovoltaïques ne doit jamais dépasser 500 V. La fiche de données techniques du module solaire vous indiquera les facteurs de température applicables pour confirmer la tension de marche à vide à -25 °C. Si la tension de marche à vide des modules solaires dépasse 500 V, l'onduleur peut être endommagé et la garantie sera annulée.

L'onduleur est équipé d'une unité de surveillance du courant résiduel (RCMU, « Residual Current Monitoring Unit ») conforme à la norme VDE0126-1-1. Ce dispositif permet de mesurer le courant à la terre du générateur photovoltaïque et d'empêcher l'onduleur d'alimenter le réseau électrique en cas de défaillance au niveau de la terre.

Raccordement au réseau électrique

Seuls les sous-traitants possédant la licence appropriée sont autorisés à raccorder l'onduleur au réseau électrique.

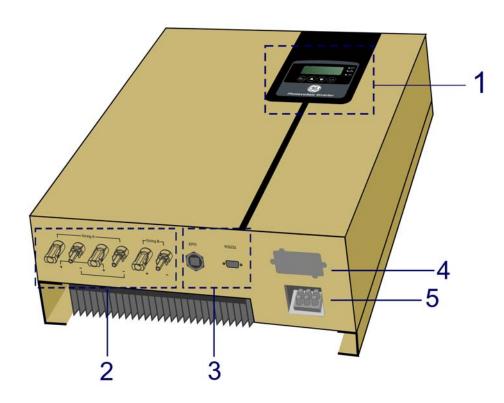



Contactez les autorités locales concernées pour connaître les exigences spécifiques. La compagnie fournissant l'électricité doit délivrer une autorisation avant tout raccordement de l'onduleur au réseau électrique.

4

1. PRÉSENTATION

1.1 Dimensions externes



Vue de face

Vue du dessous

References Dimensions (mm)	PVINO2KS PVINO3KS	PVIN04KS PVIN05KS
L	455	455
Н	430	510
D	170	170

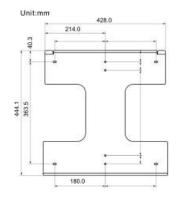
1.2 Description de l'unité

- (1) Écran et LEDs : Affiche les informations relatives au fonctionnement et à l'état de l'onduleur.
- (2) Entrée du générateur solaire : Connecteurs Plug-and-play pour connecter les modules solaires (les onduleurs SVT PVINO2/03KS/05KP ne disposent que d'une entrée pour une chaîne photovoltaïque).
- (3) Port de communication standard: EPO et RS232.
- (4) Port de communication additionnel: USB, RS485, contact sec, TCP/IP.
- (5) Borne de sortie c.a: Sortie c.a pour l'alimentation du réseau.

2. Installation

Lisez les instructions de sécurité (pages 3 à 4) avant d'installer l'onduleur photovolta \ddot{a} que.

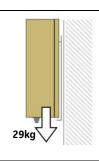
2.1 Retrait de l'emballage


Inspectez l'onduleur photovoltaïque à la réception. L'emballage a été conçu pour protéger votre produit. Des accidents ou des dommages peuvent cependant survenir durant l'expédition. Signalez tout dommage au transitaire et au revendeur. L'emballage est recyclable. Vous pouvez le conserver pour le réutiliser ou le mettre au

Retirez l'onduleur du carton.

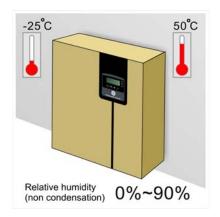
rebut de manière appropriée.

Vérifiez le contenu de l'emballage. Voici le contenu standard :


- √ 1 jeu de câbles avec connecteurs pré-assemblés
- ✓ 1 CD contenant le logiciel de surveillance, les manuels d'utilisation de l'onduleur
 et du logiciel en différentes langues, les certifications de l'onduleur
- ✓ 1 kit d'accessoires du châssis de montage. Voir l'illustration ci-dessous :

2.2 Exigences relatives à l'installation

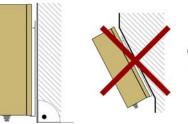
Prenez le poids de l'appareil en compte dans le choix du site et de la méthode d'installation.

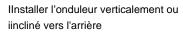

Afin de garantir un fonctionnement adéquat et une durée de vie optimale, positionnez toujours l'onduleur en respectant les exigences suivantes :

(1)

L'onduleur SVT a été conçu pour être installé en extérieur. Choisissez un emplacement (espace clos ou ouvert) où l'appareil n'est pas directement exposé aux rayons du soleil.

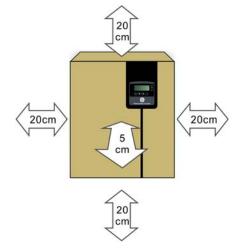
Le rendement du système photovoltaïque peut diminuer si la température ambiante augmente ou si l'appareil est installé dans un espace fermé, chaud et mal ventilé. La température ambiante doit être comprise entre -25 °C et +50 °C.



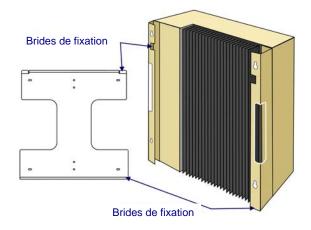

8

(2) L'onduleur SVT est destiné à être monté sur une surface verticale. Si vous installez l'unité à l'extérieur, veillez à ce qu'elle ne soit pas penchée en avant.

Nous vous déconseillons d'installer l'unité à l'extérieur, sur une surface horizontale.

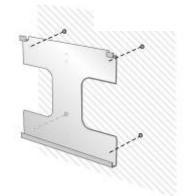

Ne jamais installer l'onduleur horizontalement ou incliné vers l'avant

(3)


Lors du choix du site d'installation, veillez à ce qu'il y ait suffisamment d'espace pour que la chaleur se disperse. Dans des conditions normales, suivez les instructions suivantes pour garantir un espace suffisant autour de l'onduleur :

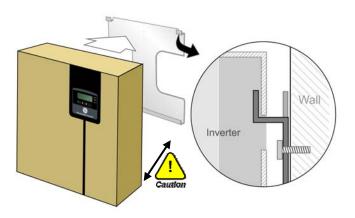
	Dégagement minimum
Côtés	20 cm
Dessus	20 cm
Dessous	20 cm
Avant	5 cm

2.3.1 Procédure d'installation

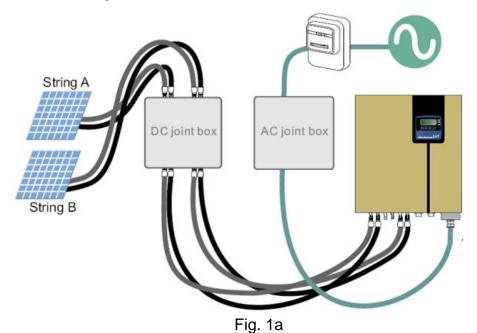

Nous vous recommandons d'utiliser le support de montage mural. Lorsque vous sélectionnez le matériel pour une installation verticale et une installation sur un mur en béton ou en parpaing, veillez à prendre en compte le poids de l'onduleur SVT.

Si vous ne souhaitez pas utiliser le support de montage mural fourni, veillez à respecter les dimensions indiquées sur l'illustration ci-dessus. La procédure de montage de l'onduleur à l'aide du support de montage mural est décrite aux pages suivantes.

Étape 1 Fixer le support de montage mural.


Vous pouvez placer le support sur la surface pour repérer l'emplacement où les trous devront être percés.

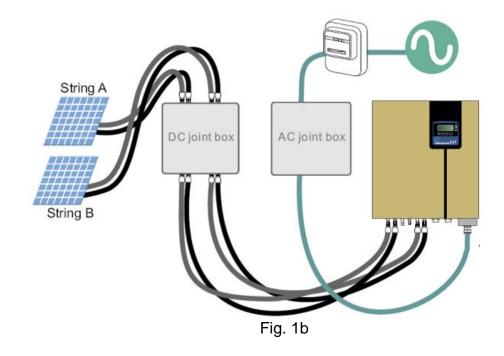
Le type de vis choisi doit être adapté au matériau de la surface et poids de l'appareil. Vissez les vis de telle sorte qu'elles soient correctement positionnées et qu'elles ne soient pas foirées.


Étape 2Vous pouvez maintenant accrocher l'onduleur sur le support de fixation mural en utilisant les plaques de fixation supérieures de manière à ce que l'onduleur ne puisse pas se déplacer latéralement.

Step3: Veillez à ce que l'onduleur soit correctement fixé sur le support.

2.4 Installation électrique

Le diagramme suivant représente de façon schématique l'ensemble de l'installation de l'onduleur SVT (Fig. 1a & b):



Pour effectuer correctement le dimensionnement du câblage, veuillez consulter le tableau ci-dessous

Références	Installation	Diamètre Ф (mm)	Section (mm²)	AWG no.
PVIN02KS/ PVIN03KS	CC	>2.0	>3.5	>14
PVINUZKS/ PVINUSKS	CA	>2.5	>5.0	>12
PVIN04KS/ PVIN05KS	CC	>2.0	>3.5	>14
FVIINU4N3/ FVIINU3N3	CA	>2.59	>5.5	>10

Les connecteurs sont livrés avec des câbles sertis avec une longueur de 3m.

Pour effectuer correctement le dimensionnement du câblage, veuillez consulter le tableau ci-dessous

Références	Installation	Diamètre Φ (mm)	Section (mm²)	AWG no.
PVIN05KP	CC	>2.5	>5.0	>12
PVINUSKP	CA	>2.59	>5.5	> 10

Les connecteurs sont livrés avec des câbles sertis avec une longueur de 3m.

2.4.1 Connexion du générateur photovoltaïque (CC)

2.4.1.1 Conditions requises pour le module photovoltaïque

Les onduleurs SVT PVINO2/03KS /05KP sont destinés à être connectés à une chaîne ou à deux chaînes pour les onduleurs SVT PVINO4KS/05KS (dans ce cas, les modules solaires sont câblés en série)

La structure est homogène (modules de même type, orientation, inclinaison et nombre identiques). Les câbles de connexion des modules photovoltaïques doivent donc être adaptés à ce type de connecteur.

GE fournit les connecteurs assemblés et sertis à des câbles avec une longueur de 3m. Nous recommandons l'utilisation de ces câbles pour les connexions à la boîte de jonction cc.

Liste de câbles et connecteurs fournis avec l'onduleur.

Onduleur	Qté	AWG	Longueur	Schéma
PVIN02KS, PVIN03KS,	3	12	3m	
PVIN04KS	3	12	3m	
PVIN05KS	2	12	3m	
	2	12	3m	
	1	10	3m	
	1	10	3m	
	1	12	0,2m	
	1	12	0,2m	
Tous (Bouchons	3	-	-	8
protection)	3	-	-	8

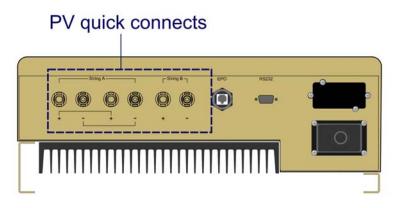
Situation particulière de câblage :

Si l'application a besoin d'un câblage alternatif, veuillez prévoir une attention particulière sur le sertissage des connecteurs. Une mauvaise connexion peut créer des dommages importants à votre installation.

Les références des différents connecteurs sont les suivantes:

Raccord mâle PV-KST4/6 II Raccord femelle PV-KBT4/6 II Bouchons protection PV-SVK4

Prise à encastrer mâle
PV-ADSP4/6
Prise à encastrer femelle


Bouchons protection PV-BVK4

Pour des informations complémentaires, veuillez consulter: www.multi-contact.com

PV-ADBP4/6

2.4.1.2 Câblage du module photovoltaïque

L'onduleur est équipé de dispositifs de connexion photovoltaïque rapide pour connecter jusqu'à deux chaînes photovoltaïques (uniquement avec les onduleurs PVINKO4KS/ PVINKO5KS).

Consignes pour faire correspondre le générateur photovoltaïque à l'entrée de l'onduleur photovoltaïque. Pour déterminer le nombre de panneaux nécessaires dans la chaîne photovoltaïque (panneaux connectés en série), vous devez vous assurer que les trois conditions préalables suivantes sont remplies :

1. Pour éviter d'endommager l'onduleur, veillez que la tension de marche à vide maximum (Voc) de chaque chaîne photovoltaïque soit toujours inférieure à 500 Vcc. Une tension supérieure à 500 Vcc endommagera l'onduleur.

2. Ne pas dépasser la valeur nominale maximum de courant de court-circuit du générateur indiquée sur l'onduleur.

3. Pour optimiser la production d'énergie de votre générateur, assurez-vous que la tension à la puissance maximale (« VMP », « Voltage at Maximum Power »), dans la plupart des cas, ne passe pas en dessous de la barre des 150 Vcc ou ne dépasse pas 450 Vcc.

Suivez les étapes suivantes pour raccorder le générateur photovoltaïque aux onduleurs **PVIN02KS**, **PVIN03KS**:

Étape 1: Assurez vous que le disjoncteur principal de la boîte de jonction CC est en position OFF.

Étape 2: Vérifiez que la polarité des connecteurs du générateur photovoltaïque est correcte et qu'elle ne dépasse pas la tension maximum des chaînes.

Étape 3: Connectez le fil **Positif** (+) de la chaîne photovoltaïque n° 1 au dispositif de connexion positif (+) de l'onduleur photovoltaïque.

Étape 4: Connectez le fil **Négatif** (-) de la chaîne photovoltaïque n° 1 au dispositif de connexion négatif (-) de l'onduleur photovoltaïque.

Étape 5: Si nécessaire, répétez les étapes 2 et 3 pour les autres chaînes photovoltaïques. Vérifiez une seconde fois que les fils sont connectés au bon endroit.

Étape 6: Fermez les fiches d'entrée non utilisées à l'aide des capuchons de protection fournis dans le kit des accessoires.

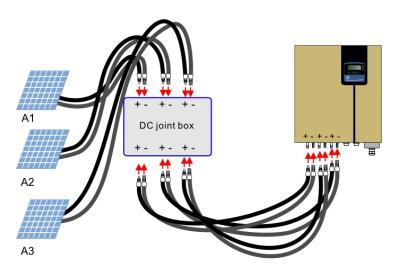


Fig. 2a - Connexions pour un générateur photovoltaïque à trois chaînes

Suivez les étapes suivantes pour raccorder le générateur photovoltaïque aux onduleurs **PVIN02KS**, **PVIN03KS**:

Étape 1: Assurez vous que le disjoncteur principal de la boîte de jonction CC est en position OFF.

Étape 2: Vérifiez que la polarité des connecteurs du générateur photovoltaïque est correcte et qu'elle ne dépasse pas la tension maximum des chaînes.

Étape 3: Connectez le fil **Positif** (+) de la chaîne photovoltaïque n° 1 au dispositif de connexion positif (+) de l'onduleur photovoltaïque.

Étape 4: Connectez le fil **Négatif** (-) de la chaîne photovoltaïque n° 1 au dispositif de connexion négatif (-) de l'onduleur photovoltaïque.

Étape 5: Si nécessaire, répétez les étapes 2 et 3 pour les autres chaînes photovoltaïques. Vérifiez une seconde fois que les fils sont connectés au bon endroit.

Étape 6: Fermez les fiches d'entrée non utilisées à l'aide des capuchons de protection fournis dans le kit des accessoires.

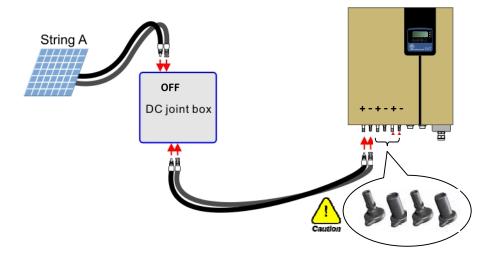


Fig. 2b - Connexions pour un générateur photovoltaïque à une chaîne

Suivez les étapes suivantes pour raccorder le générateur photovoltaïque aux onduleurs **PVIN04KS**, **PVIN05KS**:

Warning

Étape 1: Assurez vous que le disjoncteur principal de la boîte de jonction CC est en position OFF.

Étape 2: Vérifiez que la polarité des connecteurs du générateur photovoltaïque est correcte et qu'elle ne dépasse pas la tension maximum des chaînes.

Étape 3: Connectez le fil **Positif** (+) de la chaîne photovoltaïque n° 1 au dispositif de connexion positif (+) de l'onduleur photovoltaïque.

Étape 4: Connectez le fil **Négatif** (-) de la chaîne photovoltaïque n° 1 au dispositif de connexion négatif (-) de l'onduleur photovoltaïque.

Étape 5: Si nécessaire, répétez les étapes 2 et 3 pour les autres chaînes photovoltaïques. Vérifiez une seconde fois que les fils sont connectés au bon endroit.

Étape 6: Fermez les fiches d'entrée non utilisées à l'aide des capuchons de protection fournis dans le kit des accessoires.

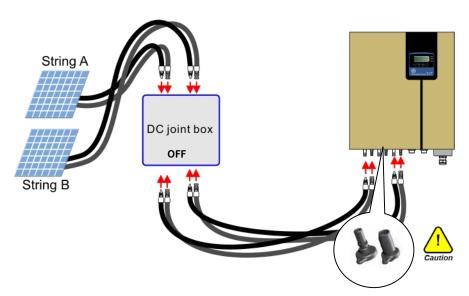


Fig. 2c - Connexions pour un générateur photovoltaïque à deux chaînes

Suivez les étapes suivantes pour raccorder le générateur photovoltaïque à l'onduleur

PVIN05KP:

Étape 1: Assurez vous que le disjoncteur principal de la boîte de jonction CC est en position OFF.

Étape 2: Vérifiez que la polarité des connecteurs du générateur photovoltaïque est correcte et qu'elle ne dépasse pas la tension maximum des chaînes.

Étape 3: Connectez le fil Positif (+) de la chaîne photovoltaïque n° 1 au dispositif de connexion positif (+) de l'onduleur photovoltaïque.

Étape 4: Connectez le fil Négatif (-) de la chaîne photovoltaïque n° 1 au dispositif de connexion négatif (-) de l'onduleur photovoltaïque.

Étape 5: Connectez la connexion positif (+) "String A" de l'onduleur à la connexion positif (+) "String B" de l'onduleur.

Étape 6: Connectez la connexion négatif (-) "String A" de l'onduleur à la connexion négatif (-) "String B" de l'onduleur.

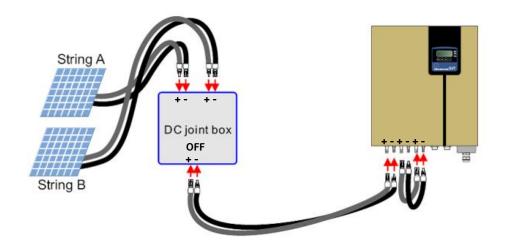


Fig. 2d - Connexions pour un générateur photovoltaïque à 1 chaîne

2.4.1 Raccordement au réseau électrique (réseau c.a)

Pour connecter le câble c.a, procédez de la manière suivante :

Étape 1: Avant de procéder au câblage de l'onduleur photovoltaïque SVT, assurez-vous que les disjoncteurs principaux des boîtes de jonctions CC et CA sont en position OFF.

Étape 2: Mesurez la tension et la fréquence du réseau.

La tension et la fréquence du réseau d'approvisionnement en électricité varient en fonction des pays.

Étape 3: (A) Retirez les vis de fixation du boîtier de l'onduleur et retirez avec précaution le capot.

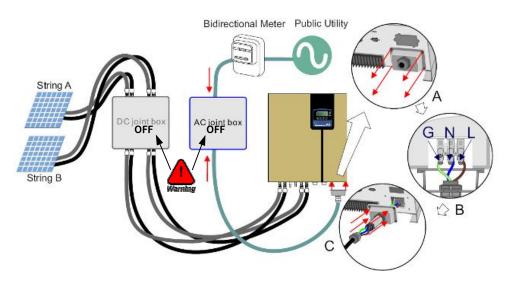
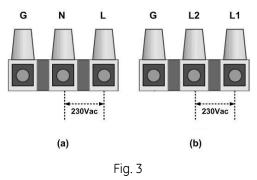



Fig. 3

(B) Insérez les câbles du réseau dans le presse-étoupe. Connectez les en respectant les polarités indiquées sur le bornier.

L signifie LINE (Ligne) (fil marron), N signifie Neutral (Neutre) (fil bleu) et G correspond à la terre du système (fil jaune-vert). Voir l'illustration 3(a).

L signifie LINE1 (fil noir), L2 signifie LINE2 (fil noir) et G correspond à la terre du système (fil jaune-vert). Voir l'illustration 3(b).

(C) Fixez le capot du boîtier de l'onduleur et serrez les quatre vis de manière homogène.

Afin de prévenir les risques de choc électrique, vérifiez que le conducteur de terre est correctement mis à la terre avant de mettre en marche l'onduleur photovoltaïque.

Couple recommandé : 1,2 Nm

3. Description des fonctions du panneau de commande

Symboles de l'écran

Sym	poles de	recran 5 8 6 7			
1 Éc	ran				
9	Symbole	Description			
- 1	LINE	Source réseau			
	₩	Onduleur fonctionnant dans le mode spécifié			
	<i>!!!</i>	Cellule solaire			
LINE A	- PCS - LOAD	Schéma du mode de fonctionnement de l'onduleur			
88	3.88¢₩	Affichage de mesure à quatre chiffres			
Indicat	ion LEDs				
2	<u>‡?</u>	La LED ROUGE s'allume en continu pour indiquer une défaillance au niveau de la terre ou de l'isolation de l'entrée c.c.			
3	(par exemple, la tension ou la fréquence) ne correspond pas aux norme d'entrée de l'onduleur.				
4	La LED VERTE s'allume en continu pour indiquer que la puissance de la				
Touche	s du clavier				
(5)	B	Fonction spéciale d'ouverture/fermeture de session			
6	Aller à la page suivante.				
7	Ţ	Confirmer à nouveau la modification de la configuration de l'onduleur			
8	A	Aller à la page suivante.			

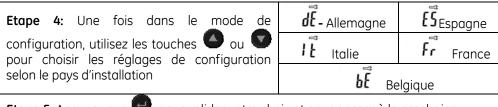
4. Démarrage de l'onduleur

Avant de démarrer l'onduleur, effectuez les vérifications suivantes

- Les vis du capot du boîtier sont correctement serrées.
- Le disjoncteur c.a est sur la position OFF.
- Les câbles c.c (chaînes photovoltaïques) sont correctement connectés et les fiches de connexion c.c non utilisées, situées en bas du boîtier, sont recouvertes d'un capuchon de protection.
- Le câble c.a (réseau) est correctement connecté

Instructions de Configuration

Avant la connexion au réseau, veillez que l'onduleur est configuré correctement selon les spécifications du pays. Pour cela, deux solutions vous sont proposées:



Seulement les installateurs qualifies et formés sont autorisés à utiliser cet outil de configuration et à modifier les réglages concernant le pays d'installation de l'onduleur

Mode de Configuration

Etape 3 : Appuyez et maintenez pendant 5 secondes les 2 touches		= 3
et simultanément. L'écran affichera comme les Fig. 5d	SEŁ	
et Fig. 5e.	Fig. 5d	Fig. 5e

Sélection de Pays

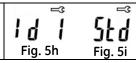
Etape 5: Appuyez sur pour valider votre choix et pour passer à la prochaine étape.

Configuration Entrée CC

Etape 6: Après la sélection du pays, choisissez la configuration d'entrée CC. L'écran affichera comme les Fig. 5f et Fig. 5g.

Fig. 5f Fig. 5g

Etape 7: Utilisez les touches ou choisir la configuration d'entrée CC


5Ed Configuration Standard (PVIN05KS)

PRr Configuration Parallèle (PVIN05KP)

Etape 8: Appuyez sur pour valider votre choix et pour passer à la prochaine étape.

Configuration Identification de l'onduleur

Etape 9: Après la configuration de l'entrée cc, choisissez l'identification de l'onduleur. L'écran affichera comme les Fig. 5h et Fig. 5i.

Etape 10: Utilisez les touches ou pour choisir le numéro d'identification de l'onduleur de 1 d 1 à d200.

Etape 11: Appuyez sur pour valider et sortir du Mode de configuration. L'écran affichera comme la Fig. 5i.

Redémarrage de l'onduleur

Etape 12: Mettre la protection CC en position OFF, attendez que l'écran et les LEDs soient éteintes. Vous pouvez remettre la protection CC en position ON.

Vérification de la nouvelle configuration

Etape 13: Après le redémarrage, appuyez sur la touche L'onduleur affichera les 3 paramètres que vous avez modifiés. Utilisez les touches ou pour les visualiser.

Appuyez à nouveau sur la touche pour sortir du mode de visualisation.

Fig. 5m

4.1 Test de fonctionnement et instructions d'installation

4.1.1 Appliquer la tension de la chaîne photovoltaïque en mettant le disjoncteur c.c sur la position ON. L'onduleur démarre automatiquement dès qu'il reçoit une tension c.c supérieure à 120 V c.c Toutes les LED s'allument.

4.1.2 Au bout de 3 secondes, l'écran affichera les données représentées sur les illustrations. La LED verte clignote pour indiquer que la puissance d'entrée cc est inférieure à la puissance de repos. La LED jaune s'allume en continu pour indiquer qu'il n'y a pas de réseau.

4.1.3 Allumez le disjoncteur c.a. Si les spécifications du réseau (comme la tension, la fréquence etc.) correspondent aux spécifications de l'onduleur, l'écran affichera au bout de 30 secondes les données indiquées sur l'illustration. La LED jaune s'éteindra pour indiquer que les spécifications du réseau sont acceptables pour l'onduleur. Si les spécifications du réseau (comme la tension, la fréquence, etc.) ne correspondent pas aux spécifications de l'onduleur, un code d'erreur ou un statut d'erreur s'affiche alors sur l'écran.

4.1.4 Au bout 5 secondes, si la mise sous tension c.a sans appel de courant de l'onduleur est réussie, l'écran LCD affichera les données indiquées sur l'illustration. La LED verte continue de clignoter.

4.1.5 Au bout de 10 secondes, si la mise sous tension c.a sans appel de courant de l'onduleur est réussie, l'écran LCD affichera les données indiquées sur l'illustration.

4.1.6 Si une défaillance survient au niveau de l'onduleur (par exemple, le courant de sortie est en dehors de la plage), un code ou un statut d'erreur s'affiche alors

à l'écran.

- **4.1.7** Une fois l'opération de démarrage de l'onduleur réussie, l'écran affiche les données représentées sur l'illustration de 4.1.5.
- 4.2 Contrôle des valeurs et les chiffres mesurés détectés par l'onduleur

Si vous désirez contrôler les valeurs détectées par l'onduleur, veuillez utiliser les touches de défilement vers le haut det vers le vers le bas. Lorsque vous appuyez sur la touche de défilement vers le bas, les écrans ci-dessous s'affichent :

- **4.2.1** Tension d'entrée cc de la chaîne A # #500`
- **4.2.2** Tension d'entrée c.c de la chaîne B. **#**
- 4.2.3 Courant d'entrée c.c de la chaîne A. # R 15

- 4.2.4 Courant d'entrée c.c de la chaîne B. # b 15.
- **4.2.5** Puissance de sortie du survolteur A.
- **4.2.6** Puissance de sortie du survolteur B. **# b5.00*****
- **4.2.7** Tension de sortie de l'onduleur (tension réseau).
- **4.2.8** Fréquence de sortie de l'onduleur (fréquence réseau).
- **4.2.9** Courant de sortie fourni pour la charge.
- **4.2.10** Puissance de sortie fourni pour la charge.
- **4.2.11** Énergie (kWh) fournie pour la charge.
- **4.2.12** Température interne de l'onduleur (°C, °F).
- **4.2.13** Température du dissipateur thermique (°C, °F).

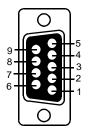
4.3 Description des états de l'onduleur

L'onduleur SVT démarre automatiquement lorsque la puissance cc du panneau photovoltaïque est suffisante. Une fois que l'onduleur photovoltaïque démarre, il passe à un des états suivants :

Mode fonctionnement	Affichage de l'écran	Description
Normal	LINE ————————————————————————————————————	Dans ce mode, l'onduleur fonctionne normalement. Dès que la puissance fournie par le panneau photovoltaïque (PV) est suffisante (500 Vcc>PV>120 Vcc), l'onduleur convertit le courant produit par le panneau photovoltaïque pour le transmettre au réseau. La LED verte s'allume pour indiquer que l'onduleur alimente le réseau en électricité.
Veille	PCS RIGID'	Si la puissance est suffisante, (60 Vcc <pv<120 entre<br="" l'onduleur="" vcc),="">en mode veille et tente de se connecter au réseau.</pv<120>
Erreur	LINE PCS FLOO	Le dispositif de contrôle interne intelligent permet de contrôler en permanence l'état du système et de l'ajuster au besoin. Si l'onduleur détecte une quelconque anomalie tels que des problèmes au niveau du réseau ou une défaillance interne, les informations correspondantes seront affichées sur l'écran et la LED rouge s'allumera.
EPO (Mise hors tension d'urgence)	LINE PCS EPO	Mode « Emergency Power Off » (EPO, Mise hors tension d'urgence). Dans ce mode, l'onduleur n'est plus alimenté par le réseau.
Arrêt		En cas de faible ensoleillement ou d'absence de soleil, l'onduleur cesse automatiquement de fonctionner. Dans ce mode, l'onduleur n'est plus alimenté par le réseau. L'écran et toutes les LED du panneau avant ne fonctionnent plus.

28

5. Interface de communication


5.1 Interface de communication standard

5.1.1 Définition de l'interface RS232

5.1.1.1 L'interface RS232 doit être paramétrée comme suit :

Débit en bauds	9600 bps
Longueur des données	8 bits
Bit d'arrêt	1 bit
Parité	Aucune

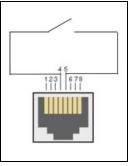
5.1.1.2 Attribution des broches de l'interface RS232 de type vrai. L'illustration ci-dessous décrit l'attribution des broches de l'interface de RS232 de type vrai :

Broche 2: RS232 Rx

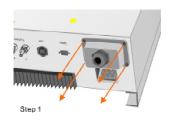
Broche 3: RS232 Tx

Broche 5: Terre

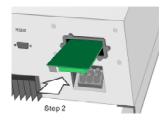
5.1.2 Connecteur EPO (« Emergency Power Off », mise hors tension d'urgence)


RJ45

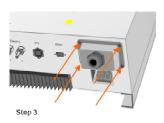
Pour activer la fonction EPO, la broche 4 (mise à la terre) et la broche 5 doivent être court-circuitées.


Assurez-vous que la connexion entre le connecteur RJ45 et les 2 fils est bien réalisée.

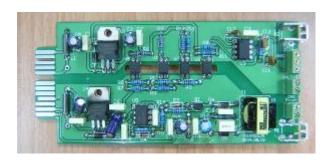
Veuillez tester cette fonction avec votre application lorsque que vous injectez du courant sur le réseau c.a; vérifier si l'onduleur arrête d'injecter du courant.



5.2 Carte de communication additionnelles


5.2.1 Procédure d'installation matérielle

Ouvrez le dessus et les côtés du logement



Insérez la carte de communication dans la fente

Revissez les capots latéraux et supérieur et terminez l'installation

5.2.2 Carte d'interface RS485

- CN1 sert au fonctionnement de la résistance de la borne (qui peut être contrôlé à l'aide du logiciel fourni). Court-circuitez les broches 1-2 pour activer le fonctionnement et court-circuitez les broches 2-3 pour le désactiver.
- CN2 est pour la carte RS485.
- CN3 est pour l'alimentation à distance.

Définition

CN2 1 2 3

1 → Terre

2 → A/Données+

3 → B/Données-

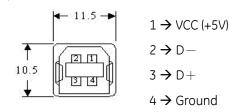
CN3 1 2

 $1 \rightarrow AC+$

2 → AC-

Configuration du pilote

Débit en bauds	9600 bps
Longueur des données	8 bits
Bit d'arrêt	1 bit
Parité	Aucune


5.2.3 Carte USB

CN2 est pour la carte USB

Compatible avec USB 1.1 et USB 2.0

USB, catégorie des périphériques d'interface utilisateur (plug & play)

Attribution des broches de la carte USB :

5.2.4 Carte de contacts secs (carte DCE-B)

Attribution des broches pour la borne à 10 broches :

1 2 3 4	5	6	7	8		
---------	---	---	---	---	--	--

Broche 1 : La tension du réseau est anormale.

Broche 2 : La tension des chaînes photovoltaïques est anormale.

Broche 3: La tension des chaînes photovoltaïques est anormale.

Broche 4 : La fréquence du réseau est anormale.

Broche 5 : Anti-îlot

Broche 6 : Le courant de sortie de l'onduleur est dehors de la plage.

Broche 7: La température du dissipateur thermique est trop élevée.

Broche 8: Commun

- La capacité de chaque contact de relais est de 40 Vcc/25 mA.

- Sortie de signal flexible pour le contact N.F.(Normalement Fermé, fermé en condition

normale) ou N.O. (Normalement ouvert, ouvert en condition normale) en court-circuitant les broches 1-2 ou 2-3 à JP1-5.

5.2.5 Cartes TCP/IP

Carte SNMP/WEB

Pour installer cette carte, reportez-vous au guide d'installation logicielle.

Position: fente 2 (CHB)

Configuration du pilote

Vitesse	10 M pour Ethernet or 10BASE-T
Protocole	TCP/IP

6. Diagnostic de l'état de l'onduleur et réparation

L'onduleur SVT est équipé d'un système de diagnostic automatique qui permet d'identifier un grand nombre de dysfonctionnements potentiels et de les afficher sur l'écran LCD. Par conséquent, il est possible d'isoler rapidement des problèmes techniques et de différencier les codes de maintenance liés à l'installation des codes de maintenance qui sont internes à l'onduleur. Lorsque le système de diagnostic automatique a identifié un problème particulier, le code de maintenance respectif s'affiche sur l'écran.

Tableau 2. Codes d'erreur de l'onduleur et description de ces codes

Écran	Désignation	Description	Réparation			
Er00	Échec du préchargement du BUS cc	L'onduleur est en phase de mise sous tension sans appel de courant, mais le Bus c.c ne peut pas atteindre et maintenir la tension de charge anticipée				
Er03	Tension anormale de l'onduleur	La tension de sortie de l'onduleur est anormale	1. Déconnectez TOUS les PV (+) ou PV (-) 2. Patientez quelques secondes 3. Une fois l'écran éteint, reconnectez et vérifiez à nouveau			
Er07	Surtension du BUS cc	La tension du Bus c.c interne est				
Er08	Sous-tension du BUS cc	plus élevée ou plus basse que prévu				
Er17	ERREUR EEPROM sur la carte de commande	Les données EEPROM sont erronées				
Er19	Échec du déchargement du BUS cc	Les condensateurs du BUS cc ne peuvent pas être déchargés				
Er22	Défaillance au niveau du relais de sortie	Le relais de sortie de l'onduleur est anormal				
Er24	Échec de la détection du courant de sortie	Le courant de sortie ne parvient pas à être détecté.				
Er25	Surintensité du Booster A	Surintensité dans le réseau cc.				
Er26	Surintensité du Booster B	L'intensité du courant dans le réseau cc est plus élevée que le niveau spécifié.				
Er30	La configuration de la carte ne correspond pas aux données EEPROM de la carte de commande	Les données EEPROM sont erronées				
Er06	EPO (Mise hors tension d'urgence)	L'onduleur entre en mode EPO	Corrigez le court-circuit survenu à la borne EPO.			
Er09	Surintensité de sortie de l'onduleur	Surintensité dans le réseau c.a. L'intensité du courant dans le réseau c.a est plus élevée que le niveau spécifié.				
Er11	Surcharge de l'onduleur	Surcharge sur le réseau c.a. La charge sur le réseau c.a est plus élevée que le niveau spécifié.	Mettez le disjoncteur c.a sur la position Off, puis			
Er13	Court-circuit de l'onduleur	Court-circuit sur le réseau c.a.	vérifiez la configuration du système c.a périphérique et			
Er14	Défaillance de la boucle à phase asservie de l'onduleur	Synchronisation impossible entre la phase de l'onduleur et le réseau.	les conditions du réseau.			
Er29	Courant de sortie cc de l'onduleur supérieur aux spécifications	L'élément cc de l'électricité fournie au réseau est en dehors des plages				
Er10	Température de l'onduleur trop élevée	La température interne est trop élevée	Essayez de faire descendre la température ambiante. Déplacer l'onduleur dans un endroit plus frais.			
Er18	Température du dissipateur thermique trop élevée	La température du dissipateur thermique est trop élevée				
Er01, Er	Er01, Er02, Er04, Er05, Er12, Er15, Er16, Er20, Er21, Er23, Er27, Er28, Er31 Réservée					

Si le code d'erreur s'affiche de nouveau, demandez assistance auprès de votre distributeur

Tableau 3. Codes d'alarme en cas de défaillance du réseau et description de ces codes

Écran	Désignation	Description	Réparation	
AL00	Surtension du réseau	La tension du réseau est	Patientez 1 minute. Si le réseau revient à la normale, l'onduleur	
AL01	Sous-tension du réseau	supérieure ou inférieure à la limite autorisée.	redémarrera automatiquement. 2. Vérifiez la connexion au réseau en contrôlant les fils et les connecteurs. 3. Assurez-vous que la tension et la	
AL02	Sur-fréquence de la tension réseau	La fréquence du réseau est supérieure ou		
AL03	Sous-fréquence de la tension réseau	inférieure à la limite autorisée.	fréquence du réseau soient conformes aux spécifications	
AL04	Surtension d'entrée du Booster A		1. Déconnectez TOUS les PV (+) ou PV (-	
AL05	Sous-tension d'entrée du Booster A	Sur ou sous-tension au	2. Vérifiez que la tension PV ouverte es en dehors de la plage 120 Vcc ~ 500 Vcc.	
AL06	Surtension d'entrée du Booster B	niveau de l'entrée cc.		
AL07	Sous-tension d'entrée du Booster B			
AL08	Anti-îlot	Augus rágagu au	Déconnectez TOUS les PV (+) ou PV (- Vérifiez la connexion au réseau en contrôlant les fils et les connecteurs Vérifiez l'état du réseau.	
AL 13	Défaillance phase du réseau	Aucun réseau ou défaillance au niveau de réseau		
AL14	Défaillance au niveau du réseau	reseau	5. vermez retat au reseau.	
AL09	Déséquilibre de la tension de l'onduleur	La tension de l'onduleur est déséquilibrée	Éteignez l'onduleur (débranchez le les modules photovoltaïque) Vérifiez l'état du réseau et redémarrez l'onduleur	
AL10	CFDI	Le courant de fuite sur le conducteur de terre est trop élevé	Débranchez le générateur photovoltaïque de la prise d'entrée, vérifiez le système périphérique c.a. Une fois le problème résolu, rebranchez le générateur photovoltaïque. Vérifiez l'état de l'onduleur photovoltaïque.	
AL11	Isolation défaillante		1. Déconnectez TOUS les PV (+) ou PV (2. Vérifiez l'impédance entre PV (+) et PV (-) et la terre. L'impédance doit être supérieure à 2 $M\Omega$	
AL12, AL15	~ AL 31		Réservée	

Si le code d'erreur s'affiche de nouveau, demandez assistance auprès de votre distributeur

7. Spécifications

Modèle Élément	817502 PVIN02KS	817503 PVIN03KS	817504 PVIN04KS	817505 PVIN05KS		
Puissance nominale c.a	2000	3000	4000	5000		
Puissance c.a de sortie maximum	2200	3300	4200	5300		
Technologie de l'onduleur	Concept sans transformateur, PWM haute fréquence					
	En	trée c.c				
Tension nominale	360 Vcc					
Tension maximum	500 Vcc					
Tension de fonctionnement	120 Vcc~500 Vcc					
Nombre de connexions d'entrée	1	1	2	2		
Courant maximum pour chaque connexion	14,6 A	22 A	14 A	17,65 A		
Plage MPPT	150 Vcc ~ 450 Vcc					
	Sc	rtie c.a				
Phase/Fils	1-phase/2-fils (LN) ou 1-phase/3-fils (LNG)		.NG)			
Tension nominale c.a	230 V c.a adaptable sur 200/208/220/230/240		0/240			
Tension nominale	230 Vc.a (184~253 Vc.a)					
Fréquence nominale	50 ou 60 Hz					
Courant nominal c.a	8,7 A	13 A	17,4 A	21,7 A		
Courant c.a maximum	10,2 A	15,3 A	20,4 A	25,5 A		
Distorsion harmonique	Courant harmonique total : moins de 5% Courant harmonique simple : moins de 3%					
Facteur de puissance	>0,99 avec courant c.a nominal					
	Données relo	itives à l'efficaci	té			
Efficacité Euro	94% Efficacité Euro = 0,03 ç5% + 0,06 ç10% + 0,13 ç20% + 0,1 ç30% + 0,48 ç50% + 0,2 ç100%					
Efficacité de conversion maximum	96%					
	Caractéristique	s environnemen	tales			
Température de fonctionnement	-25 °C ~ +50 °C					
Humidité	30 à 90 % (sans condensation)					
Altitude	0~2000 M					
Niveau sonore	< 35 dBA					
		ques mécanique				
Dimensions (H x W x D)	484 x 455 x 170mm		564 x 455 x 170 mm			
Poids	25 kg 29 kg					
Catégorie de protection	IP65, extérieur					
Refroidissement	Convection naturelle					

Protection				
Réseau	Sous-tension/surtension, sous/surfréquence, défaillance de la mise à la terre, défaillance de l'isolation cc			
Détection des îlots	Passive : Détection de changement brusque de phasage de tension Active : Contrôle réactif de la puissance			
Court-circuit	Entrée cc : Diode d'entrée /Circuit électronique Sortie ca : Relais de sortie/Circuit électronique			
EPO (Mise hors tension d'urgence)	Mise hors tension d'urgence : l'onduleur s'éteint immédiatemen			
Communication				
Interface	Standard : RS232, Ethernet			
interrace	En option : USB, RS485, Contact sec			

Les données et illustrations ne sont pas contractuelles.

Nous nous réservons le droit de procéder à des modifications basées sur le développement technique du produit.