

<u>Eau</u>

Retour d'expérience sur la mesure des débits en continu en réseau d'assainissement par RADAR

LILLE METROPOLE COMMUNAUTE URBAINE

Direction de l'Eau

Veille Hydraulique et Métrologie

Abderraouf CHAREF

Chiffres clés

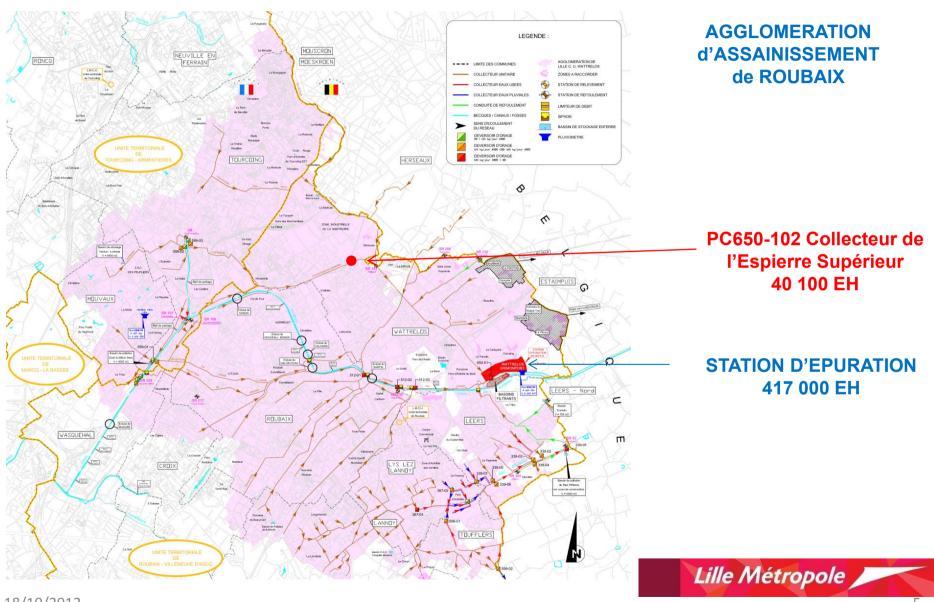
- •1,1 millions d'habitants
- •85 communes
- •612 km²
- •15 agglomérations d'assainissement
- •10 stations d'épurations
- •4 500 km de réseau

- •800 déversoirs d'orage, dont 80 équipés
- •550 ouvrages d'assainissement (station de pompage, bassin, vanne, mini-step, lagune)
- •21 pluviomètres

Sommaire

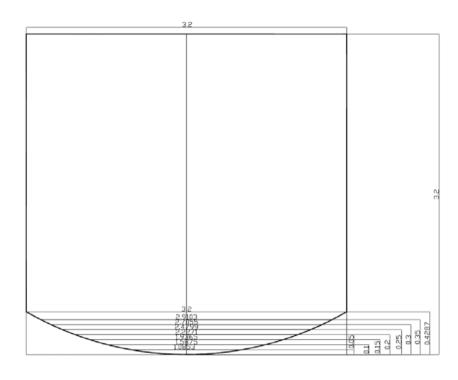
- Objectifs de l'étude
- Localisation géographique
- Profil du collecteur
- Instrumentation "immergée"
- Armoire de commande
- Capteurs de mesure

- •Instrumentation "sans contact RADAR"
- Données enregistrées
- Comparaison
- Bilan financier
- Conclusion



Objectifs de l'étude

- •En collaboration avec l'Agence de l'Eau Artois-Picardie, une alternative aux techniques de mesures de vitesse "Doppler" et "temps de transit" est proposée: la technique de mesure de vitesse sans contact avec l'effluent: le **RADAR**
- •Choix d'un site de mesure: point caractéristique de l'agglomération d'assainissement de Roubaix **PC650-102 Bd Egalité WATTRELOS**
- •Site équipé de capteurs pour la mesure de débit temps sec temps de pluie
- •Ajout d'une mesure de vitesse RADAR



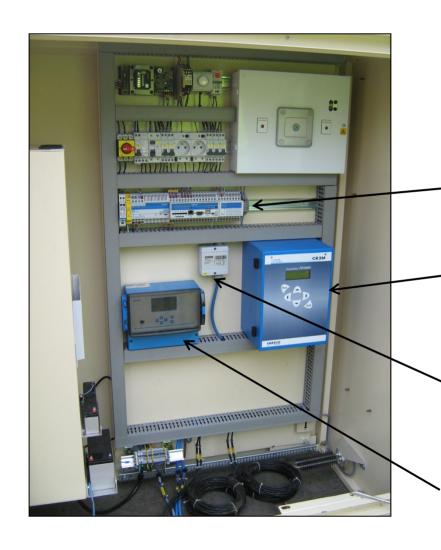
Localisation géographique

Profil du collecteur

CONDTIONS:

- ·Longueur droite suffisante
- Pas d'envasement
- ·Présence de vaguelettes à la surface
- •Possibilité de mise en charge
- •Par temps sec h=0,20m v=0,6 m/s soit Q=130 l/s

Cadre: hauteur 3,20m largeur 3,20m


Radier incurvé

Surface maximale: 9,78 m²

Débit pouvant atteindre 20 m³/s

Instrumentation "immergée"

Automate de télégestion iRIO (NAPAC – PERAX)

Débitmètre ALNAEE (FARECO – CR2M):

•2 cordes "temps de pluie"

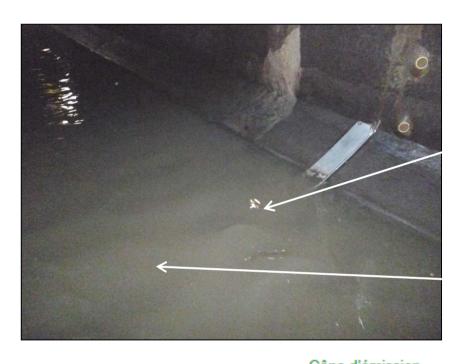
1 capteur de niveau piézométrique NivuBar Plus (NIVUS)

Débitmètre OCM - F (NIVUS):

1 capteur de vitesse à effet Doppler "temps sec"

Armoire de commande

PC650-102 Boulevard de l'Egalité WATTRELOS



Armoire de commande Comptage EDF intégré, ligne téléphonique GSM

Capteurs de mesure "Doppler"

Mesure par temps sec

Mesure de débit par temps sec:

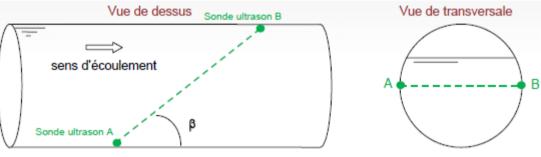
Capteur de vitesse à effet Doppler posé sur un cerclage au radier du collecteur

Modèle KDA (NIVUS)

Mesure de niveau pièzométrique sur cerclage à 5cm du radier

sens d'écoulement Angle de propagation Angle d'émission de l'onde Extrait fiche technique N°5 GRAIE

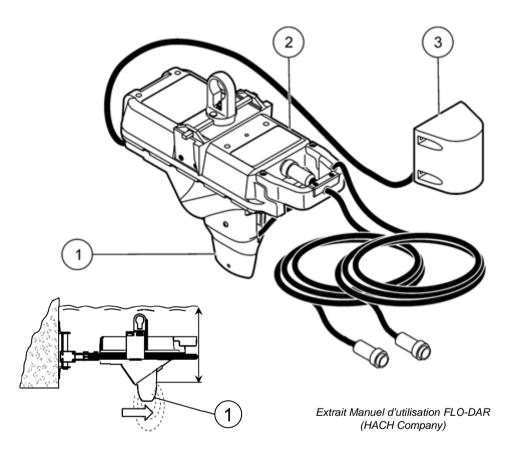
Modèle NivuBar Plus II (NIVUS)



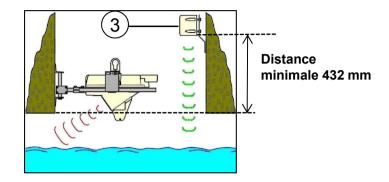
Capteurs de mesure "temps de transit"

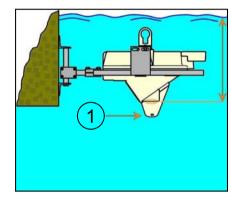
Mesure par temps de pluie

Mesure de débit par temps de pluie:



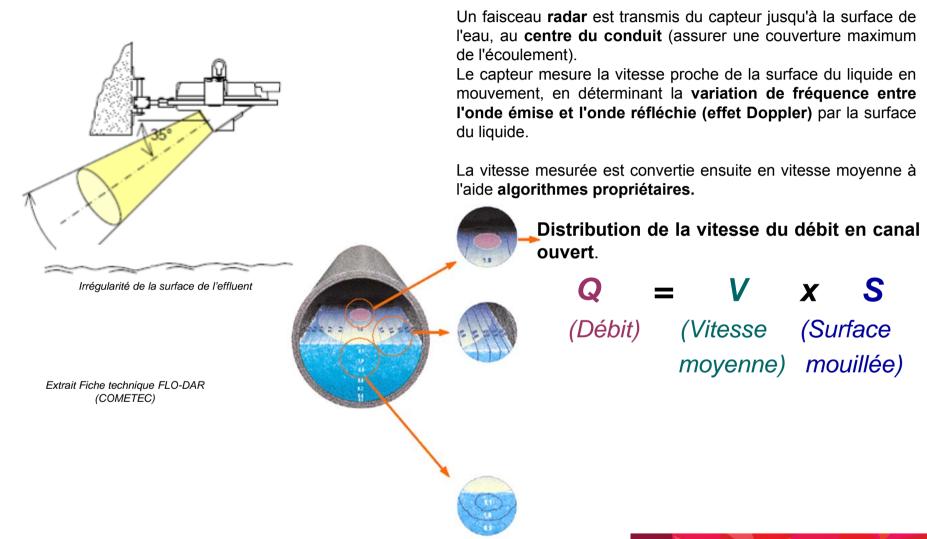
Extrait fiche technique N°4 GRAIE


Sonde haute à 0,90 m


Sonde basse à 0,50 m

Capteurs de mesure

- 1. Capteur de vitesse de mise en charge (SVS)
- 2. Capteur de vitesse Flo-Dar
- 3. Capteur de hauteur ultrasonique déporté


L'état de surcharge est détecté par:

- les électrodes du capteur SVS
- le capteur de pression.

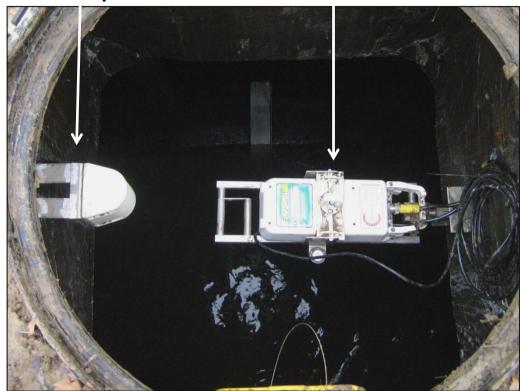
Extrait Fiche technique FLO-DAR (COMETEC)

Principe de la mesure de la vitesse RADAR

Travaux génie civil

Création du regard

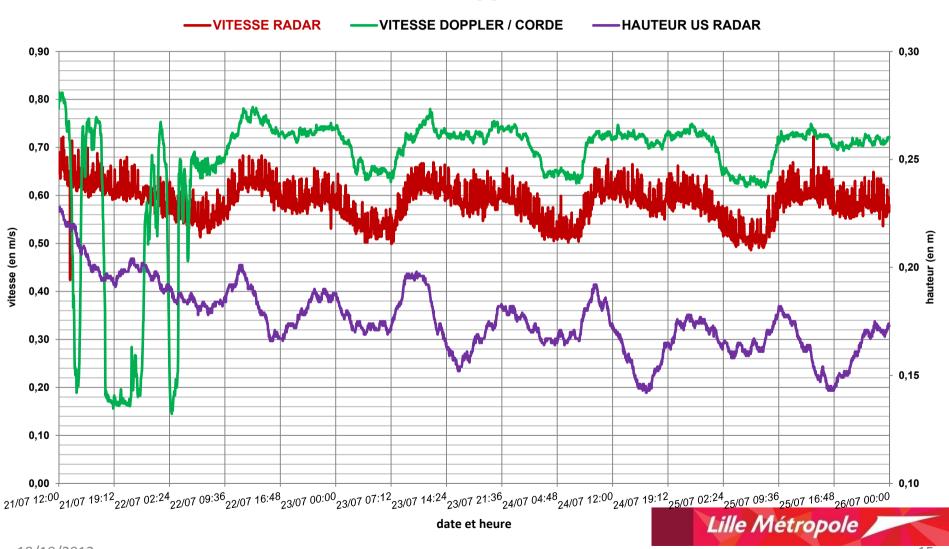
Modification de l'armoire de commande



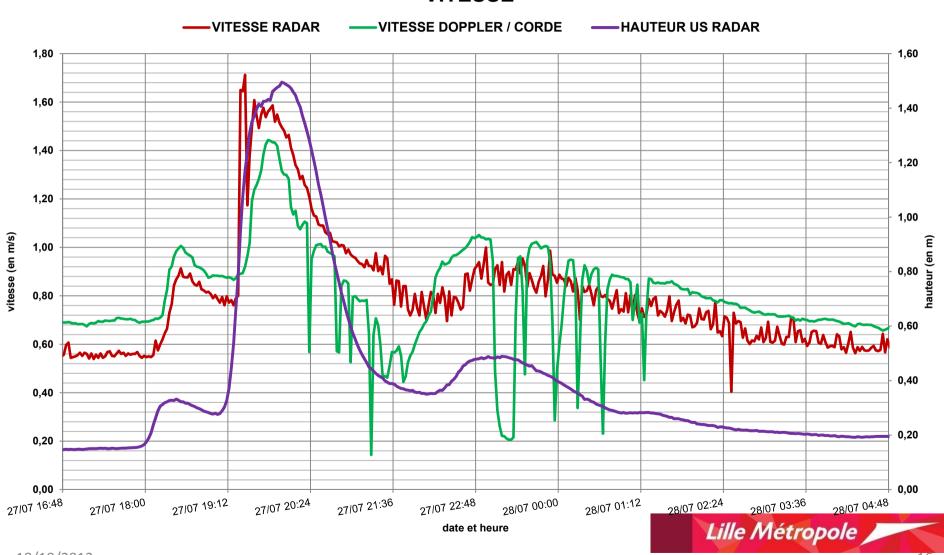
Instrumentation du site

Mesure de niveau ultrasonique

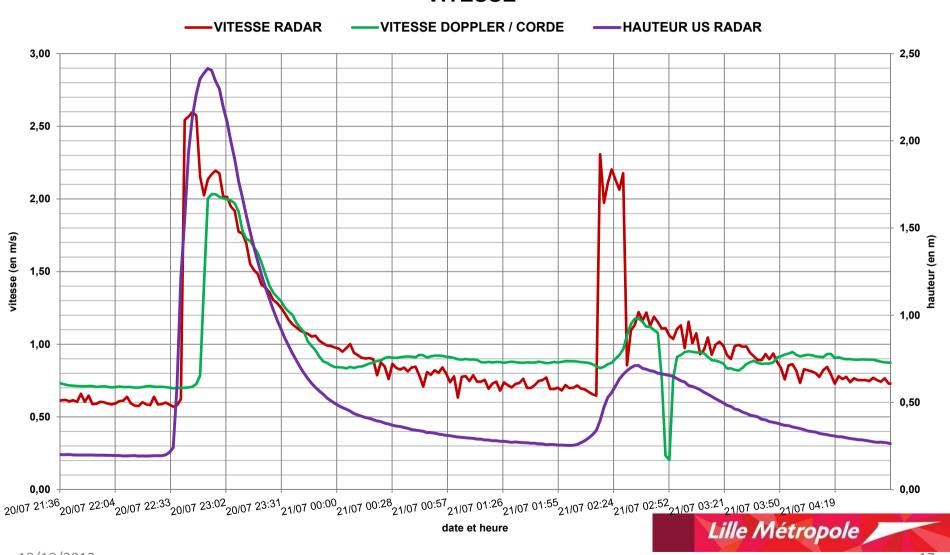
Capteur de vitesse FLO-DAR



Capteur de vitesse de mise en charge (SVS)


Données enregistrées

Journée type "temps sec" VITESSE


Données enregistrées

Journée type "temps de pluie" VITESSE

Données enregistrées

Temps de "forte pluie" VITESSE

COMPARAISON

AVANTAGES

- Facilité d'installation,
- Sécurité du personnel intervenant,
- Accessible depuis la surface,
- Mesure sans contact avec l'effluent: entretien réduit,
- Mesure précise ne nécessitant pas de calibration.

INCONVENIENTS

- La mesure fonctionne seulement si la surface présente des irrégularités,
- Implantation au centre du collecteur (création de regard),
- Ne permet pas une mesure précise lors des mises en charge,
- Prix.

Bilan financier

ACHAT FLO-DAR

Capteur FLO-DAR 4000LR (6m)	17 745 €HT
Kit de fixation inox pour 4000LR	955 €HT
Câble de 18m sans connecteur	726 €HT
Capteur SVS mesure de vitesse électromagnétique	2 614 €HT
Câble SVS (18 mètres)	378 €HT
1000-3ST Boîtier transmetteur / acquisition de données	8 347 €HT
Afficheur multifonctions	1 838 €HT
TOTAL FLO-DAR version 4000LR	32 604 €HT

Capteur FLO-DAR pack SI (tout compris) hors capteur SVS et afficheur	15 000 €HT
Création d'un regard	5 000 €HT

ACHAT DOPPLER

Capteur vitesse Doppler (corrélation de vitesse)	3 500 €HT
Câble de 20m	90 €HT
Convertisseur de mesure de débit	4 000 €HT
Capteur de niveau ultrasonique	440 €HT
Convertisseur pour la mesure de niveau	700 €HT
Câble 20m	115 €HT
TOTAL "Doppler"	8 845 €HT

ACHAT « temps de transit »

Débitmètre, logger et écran graphique 2 cordes	8 050 €HT
Sonde à sceller	1 320 €HT
Support pour sondes	1 040 €HT
TOTAL "temps de transit"	12 500 €HT

TOTAL DOPPLER – TEMPS DE TRANSIT 21 500 €HT

Hors prix de pose

Tarif au 01/04/2012

Bilan financier

		DOPPLER /	
	FLO-DAR	Temps de transit	
 Entretien semestriel 	500 €HT / an	2 500 €HT / an	
 Vérification annuelle 	375 €HT / an	750 €HT / an	
 Soit environ 	900 €HT / an	3 250 €HT / an	
• Durée de vie	10 ans	5 ans	
 Coût global sur 5 ans 	25 000 €HT 42 100 €HT	37 600 €HT	

Conclusion

Le choix de la technique de mesure dépend de :

- Profil du collecteur (taille, envasement, débit temps sec (H, V), accessibilité, surface de l'effluent, etc...),
- Contraintes lors de l'installation (implantation du site, travaux de génie civil, création d'un regard au centre de la conduite)
- **Sécurité** du personnel
- Coût global

Merci de votre attention

