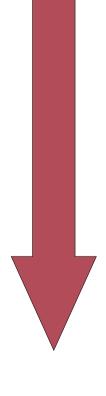
Votre interlocutrice:

Dr Christine DENIS

Pharmacien
Responsable Stérilisation CHRU de Lille (France)
Chargée de mission Association Française de Stérilisation
Membre du Comité exécutif du WFHSS

L'emballage en stérilisation: Comment sortir de l'empirisme???

AIOS Octobre 2012


Emballages...sortir de l'empirisme

Le domaine de la stérilisation est en pleine mutation et a amorcé son évolution vers:

- une approche plus scientifique
- une remise en cause de certaines habitudes empiriques...

Etat d'avancement :

•Stérilisation:

•Validation des méthodes de stérilisation vapeur, basse température....

•Lavage:

- •Validation des laveurs, des irrigateurs Usons...
- •Recherche de protéines résiduelles

.

Emballage??

Emballages...sortir de l'empirisme

Emballages:

- Habitudes +++
- Faut maintenant démontrer que les habitudes :
 - ☐ Soit reposent sur une réalité scientifique
 - □ Soit en changer au profit de pratiques validées scientifiquement
- = evidence based pratice

Comment sortir de l'empirisme?

- Normes
 - □ EN 868 mais pour fournisseurs
 - □ EN ISO 11607 depuis avril 2006 : permet des avancées pour les utilisateurs
- Collaboration avec les fournisseurs/ fabricants pour obtenir des informations sur les performances des emballages

La norme EN868

- C'est une norme pour les fabricants
- Peu d'intérêt pour les utilisateurs

La norme EN ISO 11607

■ Intérêt:

- □ Redéfinit plus judicieusement les termes:
 - SE (système d'emballage) = SBS (système barrière stérile) + EP (emballage de protection)
- □ Demande aux utilisateurs de valider leurs systèmes d'emballage en proposant une méthodologie (certes très générale....)

Sortir de l'empirisme : Illustration par 2 exemples:

Validation des emballages (dans une stérilisation): comment faire en pratique???

 Détermination des dates limites d'utilisation (DLU)

Validation des emballages

Pourquoi valider son système d'emballage??

Pour se conformer à

- EN ISO 11607-2
- ISO9001 (2008)
- EN ISO 13485 (2010)

Tout procédé d'emballage non validable n'est plus acceptable...

Comment valider son système d'emballage??

■ Selon exigences de l'EN ISO 11607-2

■ À étudier.....

Exigences générales de ISO 11607-2 :

- 1. S'inscrire dans **Système de Management de la Qualité** (mais certification non indispensable)
- 2. Échantillons : plan d'échantillonnage pour la sélection et le test des systèmes d'emballage basé sur méthode statistique validée

3. Tests:

- Méthodes doivent être elles-mêmes validées et documentées
- doit prendre en compte
 - Logique de sélection de tests appropriés
 - Établissement de critères d'acceptation ou pass/fail
 - Détermination de la sensibilité, de la répétabilité et de la reproductibilité de la méthode
- À réaliser sur des échantillons conditionnés à 23 +/-1°c et 50 +/-2% humidité relative

4. Documents:

tous les documents utilisés pour démontrer la conformité aux exigences de l' ISO 11607-2 doivent être gardés pendant une période définie (selon réglementation, date limite d'utilisation, traçabilité...)

ISO EN 11607: Les procédés d'emballage (1/5)

1. Généralités:

- Les SBS préformés ou prêts à l'utilisation doivent être validés (blister, sachet, gaine, feuilles et pliage, conteneur....)
- Le processus de validation doit inclure une QI (qualification installation), une QO(qualification opérationnelle) et une QP (qualification de performance)

ISO EN 11607: Les procédés d'emballage (2/5)

2. QI:

- Voir en particulier:
 - □ Description de l'équipement
 - ☐ Conditions d'installation (branchement électrique...)
 - Consignes de sécurité
 - Manuel d'utilisation
 - □ Validation du logiciel
 - ☐ Conditions environnementales (propreté, T°, humidité)
 - ☐ Formation des opérateurs
- Les paramètres critiques doivent être suivis
- Les alarmes, systèmes de sécurité... doivent être testés; vérifier le déclenchement en cas de dépassement des limites fixées pour paramètres critiques
- Les éléments de mesure, contrôle... doivent être calibrés
- Consignes de maintenance et nettoyage doivent être écrites
- Si logiciel : doit être également validé

ISO EN 11607: Les procédés d'emballage (3/5):

3. QO:

- les paramètres du processus doivent tous être testés afin d'assurer que les SBS produits répondent aux exigences quelles que soient les conditions de fabrication (worse case).
- Les SBS ou SBS préformés doivent être produits aux conditions limites (basses et hautes) afin de vérifier que leurs propriétés sont conformes aux exigences dans les 2 cas
 - □ Pour la mise en forme/assemblage:
 - SBS doit être complètement formé/assemblé
 - doit être de taille compatible avec le DM
 - Les dimensions sont correctes
 - □ Pour le scellage:
 - Scellage continu de largeur comprise dans les limites définies
 - Pas de plis, ni de canaux
 - Pas de perforations, ni déchirures
 - Pas de séparation des couches

ISO EN 11607: Les procédés d'emballage (4/5)

- Doit démontrer que le processus produira toujours des SBS corrects dans les conditions normales de production
- Doit prendre en compte:
 - Les paramètres du processus établis en QO
 - Les exigences pour l'acceptabilité du produit et du pack
 - Preuves d'assurance de contrôle du procédé:
 - Répétabilité
 - Stabilité
- « challenger » le procédé en simulant des conditions qui peuvent être rencontrées pendant la production (simulations de pannes, de remise en marche...)
 - Faire 3 au moins séries consécutives de production
- Établir les procédures de production
- Indiquer comment se fait l'échantillonnage test
- Prévoir le suivi et l'enregistrement des paramètres essentiels

ISO EN 11607: Les procédés d'emballage (5/5)

- 5. Approbation officielle du la validation du procédé
- 6. Écrire les procédures pour le fonctionnement en routine
- 7. Reprendre la démarche en cas de changement

Comment valider son système d'emballage en pratique??

- Directive émise par DGSV (Allemagne) couvrant la validation de 3 systèmes d'emballage:
 - □ Remplissage et thermoscellage de sachets ou de gaines
 - □ Emballage plié (au moyen de feuilles)
 - □ Remplissage et fermeture des conteneurs réutilisables
- Existe en allemand et en français

Conditions préalables à la validation d'un procédé d'emballage:

- Utiliser des matériaux d'emballage appropriés et spécifiés pour les procédés prévus (scellage et stérilisation)
- Obtenir les attestations des fabricants ou attestations de conformité normative à EN868 2 à10 et EN ISO 11607-1 pour ce qui est des propriétés de barrière microbienne et de la compatibilité avec le procédé de stérilisation

Combien de validations?

Soudeuse 1	STEAM (vapeur d'eau)			FORM (formaldéhyde)	EO (oxyde d'éthylène)	VH2O2 (vapeur peroxyde d'hydrogène)
	134 °C 5 min	134 °C 18 min	121 °C 20 min			
Matériau A (Sachet papier-plastique plat)	×	×	×	×		
Matériau B (Sachet papier-plastique avec soufflet latéral)	×	×*	×	×		
Matériau C (Tyvek®)						
Matériau D (Sachet papier)	X*					

Ne faire que les cas les plus défavorables (à motiver...)

Validation d'un procédé d'emballage:

- Elaboration du plan de validation
- Réalisation de la validation
 - □ Qualification de l'installation, QI
 - □ Qualification opérationnelle, QO
 - □ Qualification des performances, QP
- Elaboration du rapport de validation
- Acceptation de la validation
- Définition des contrôles de routine
- Définition de la revalidation/de la requalification des performances

Elaboration du plan de validation:

Doit contenir les indications suivantes:

- Responsabilités
- Description du processus d'emballage
- Description des matériaux/équipements
- Description des processus de stérilisation
- Etapes de la qualification (QI, QO et QP)

Exemple pour « thermoscellage de sachets et gaines »

Responsabilités:		
□ Établissement		
□ Emplacement		
 Personnes en charge de la validation 		
Description du conteneur:		
□ Fabricant, fournisseur, interlocuteur		
□ Fournisseur autorisé par le fabricant?		
□ Désignation		
□ Nom du fabricant visible sur le produit (ISO11607-1)		
□ Certificat AQ du fabricant*		
□ Conformité CE*		
□ Conformité ISO 11607-1 (oui /non/preuves)*		
□ Conformité EN868-8*		
 Informations relatives aux processus de nettoyage selon ISO17664 		
Compatibilité avec le procédé de stérilisation*		
□ Consommables associés		
(* = obligatoires)		
	l L	

	Description de la barrière microbienne:
	☐ Genre (filtre UU, filtre réutilisable, pliage,valves)
	□ Fabricant , désignation…
	□ Conformité CE*
	□ Conformité ISO 11607-1 (oui /non/preuves)*
	□ Conformité EN868-2*
	□ Certificat AQ du fabricant*
	□ Compatibilité avec le procédé de stérilisation*
	□ Compatibilité avec les conteneurs utilisés
	□ retraitable
•	Description des dispositifs d'inviolabilité:
	Description du procédé de stérilisation:
	 Quel procédé (peut y en avoir plusieurs)
	□ Validé? (quand ? Par qui? numéro du dernier
	rapport de validation)
	Etapes de qualification: QI/QO/QP
	□ Réalisé
	Ou déjà réalisé lors de validation du
	□ Conforme /non conforme

Exemple pour « remplissage et fermeture de conteneurs réutilisables»

■ Re	sponsabilités:
	Établissement
	Emplacement
	Personnes en charge de la validation
De	scription du matériau:
	Fabricant, fournisseur, interlocuteur
	Désignation
	Certificat AQ du fabricant*
	Conformité CE*
	Spécification du matériau (papier crêpé, non tissé, SMS)*
	Spécifications ou fiches techniques du fabricant (oui,non, preuves)
	Conformité ISO 11607-1 (oui /non/preuves)*
	Grammage*
	Compatibilité avec le procédé de stérilisation*
	Marquage (référence, quantié,fabricant, lot,taille, date fabrication, conditions de stockage)
	scription du système de fermeture avec et sans
ind	icateur:
	Compatibilité avec le matériau d'emballage Conformité indicateur chimique EN ISO 11140-1
	Comonnic indicated chimique Livico 11140-1
(*)	= obligatoires)

Description du procédé de stérilisation:
 Quel procédé (peut y en avoir plusieurs)
 Validé? (quand ? Par qui? numéro du dernier rapport de validation)
Etapes de qualification: QI/QO/QP
□ Réalisé
□ Ou déjà réalisé lors de validation du
□ Conforme /non conforme

Réalisation de la validation: QI

- « Processus permettant l'obtention de preuves documentées comme quoi l'équipement a été fourni et installé conformément à ses spécifications »
- Les équipements techniques (ex soudeuses) sont correctement installés et les opérateurs sont formés
- Pour processus manuels (feuilles, conteneurs): QI =
 preuve de formation des opérateurs

QI:

Thermoscellages sachets et gaines:

- Instructions de travail écrites
- Informations générales
- Conditions d'installation
- Documentation
- Caractéristiques sécurité
- Paramètres critiques:
 - □ Lesquels?Température scellage, pression scellage, durée , vitesse de défilement
 - ☐ Sont ils surveillés??
 - □ Alarmes?
 - ☐ Maintenance de la soudeuse?
- Formation des opérateurs

Emballage plié:

- Instructions de travail écrites
- Formation des opérateurs

Conteneur:

- Instructions de travail écrites
- Formation des opérateurs

Réalisation de la validation: QO

Processus d'obtention de preuves documentées comme quoi l'équipement installé fonctionne dans les limites déterminées lorsqu'il est utilisé conformément à son mode opératoire. »

Processus mécaniques (scellages):

- Détermination de la température de scellage optimale (par des essais aux températures limites inférieure et supérieure) et calcul de la moyenne
- obtention d'un scellage intact sur toute la largeur
- •Pas de perforations , ni déchirures
- •Pas de délamination ou séparation des matériaux

Processus manuels:

- détermination des configurations d'emballage les plus critiques (plateau le plus grand, le plus lourd, grands instruments encombrants....)
- •les emballer selon les instructions de travail
- Vérifier:
 - •Fermeture continue
 - •Absence de perforations et déchirures
 - •Absence de détérioration visible
- Valider sur 10 échantillons

Réalisation de la validation: QP

« Processus d'obtention de preuves documentées comme quoi l'équipement, installé et utilisé conformément à son mode opératoire, fonctionne de façon constante conformément aux critères prédéterminés et qu'il donne par conséquent un produit conforme à ses spécifications. »

Processus mécaniques (scellages):

- Contrôle par test de résistance des soudures (EN 868-5, Annexe D15)
 - Sur emballages stérilisés au moyen du programme défini (dans une charge différente, afin de tenir compte de tous les facteurs)
 - sceller 3 sachets papier-plastique de même composition,
 - résistance maximale doit être > ou = 1,5 N/15 mm de largeur (si 'un seul des 3 échantillons est inférieure à 1,5 N/15 mm: l'ensemble de la QP a échoué)
- vérifier les propriétés qualitatives stipulées par l'EN ISO 11607-2, § 5.3.2b :
 - •scellage intact sur toute la largeur du scellage
 - pas de rainures ni de scellages ouverts
 - · pas de perforations ni de déchirures
 - pas de délamination ni de séparation des matériaux.

Réalisation de la validation: QP

Processus manuels:

•Contrôle:

- prélever, au cours du travail en routine, des systèmes d'emballage stérilisés : 1 échantillon par cycle, pour 3 cycles (charges) différents. La documentation des charges (protocoles) des processus de stérilisation fait partie intégrante de la validation.
 - •Pour chaque système d'emballage (échantillon), vérifier que les propriétés qualitatives sont bien remplies:
 - fermeture continue,
 - pas de perforations ou de déchirures (ne s'applique pas aux conteneurs réutilisables),
 - pas d'autres détériorations visibles ou anomalies du matériau
- Ces propriétés qualitatives doivent être vérifiées et documentées au moyen de procédés ou d'essais adéquats. Les systèmes d'emballage doivent être ouverts, contrôlés et documentés point par point.

Enfin:

- Rapport de validation
- Acceptation de la validation
- Définition des contrôles de routine
- Définition des requalification de performance :
 - selon planification (annuel), le rapport doit confirmer qu'il n'y a pas eu de changement de matériau , processus...
 - □ En cas de changement (d'emballage; d'équipement soudeuse, stérilisateur...)
 - Déterminer l'influence sur le processus d'emballage
 - Refaire QO si emballage, QI/QO si équipement

Donc:

- □ Ne demande pas de moyens particuliers
- Mise en œuvre facile quand on suit la logique de la démarche
- □ A la portée de toutes les stérilisations

LIMITES:

■ Feuilles:

le mode de pliage n'est pas vraiment validé...

- Conteneurs:
 - □ Comment vérifier que la fermeture est continue???

Détermination des dates limite d'utilisation (DLU) en stérilisation

Pourquoi se poser cette question?

- Les professionnels nous interrogent très fréquemment
- Pratiques hétérogènes:
 - □industrie 5 ans, pour les DMS à UU
 - □ Hôpitaux : 1 à 6 mois
- Essayer de sortir de l'empirisme

Actuellement:

- Utilisation de la directive appliquée dans les établissements hollandais et belges.
 - ☐ Prend en compte: emballage, conditions de stockage
 - □ Système de points

Feuille x = 10 points

Sachet Y = 20points.....

Stockage en arsenal stérile = x points

☐ En fonction du total de points on obtient une DLU

Mais comment ont été attribués les points????....

Bonnes Pratiques de Stérilisation (France)
 (2001): DLU obligatoire, mais aucune indication sur la méthode de détermination

■ EN ISO 11607 : pas d'indication

■ En pratique : 1 à 6 mois

Comment évoluer dans la réflexion?

- Comparer avec les DMS fournis par l'industrie (qui utilisent souvent les mêmes emballages que les hôpitaux...)
- Se baser sur des données scientifiques

Comparaison entre DM industriels et DM de la stérilisation:

DM de la stérilisation:

Le pharmacien de la stérilisation est responsable de la stérilité jusqu'à l'utilisation.

Il doit vérifier les conditions de transport interne et les conditions de stockage

 Va-t-il diminuer la durée de validité des DM quand les conditions de stockage sont mauvaises ? OUI (selon le barème actuel de la grille hollandaise— guide AFNOR)

DM industriels:

Le pharmacien est responsable de la stérilité des DMS (livrés dans un emballage de protection) jusqu'à l'utilisation.

Il doit vérifier les conditions de transport interne et les conditions de stockage

 Va-t-il diminuer la durée de validité des DM industriels quand les conditions de stockage sont mauvaises ? NON

Où est la cohérence ???

Comparaison entre DM industriels et DM de la stérilisation:

Etiquetage DM industriels: « STERILE IF NOT DAMAGED »

N° de lot

DLU

(date de fabrication)

Etiquetage DM de la stérilisation:

- Mention du fabricant:
 - feuilles : « rien »
 - sachets:
 - Mention « stérile si l'emballage n'est pas endommagé » ou « ne pas utiliser si l'emballage est endommagé» (exigé par la NF EN 868-5)
 - N°lot fabricant
- Etiquette stérilisation:
 - DLU
 - □ n° lot de stérilisation

A prendre en compte dans la réflexion

Si les DLU sont courtes, beaucoup de DM sont stérilisés pour rien:

- Impact financier direct (cout de la stérilisation)
- Impact financier indirect (usure accélérée des instruments)
- Impact environnemental

Comment obtenir les données scientifiques nécessaires??

- Dans hôpitaux??
 difficile, pas de moyens pour réaliser des tests de ce type
- Auprès des Fournisseurs/fabricants d'emballages

La norme EN ISO 11607:

- Les fournisseurs doivent faire des tests de barrière stérile, résistance mécanique (déchirement, allongement.....) sur des échantillons ayant subi 1 cycle de stérilisation
- Mais pas de test de durée de validité après mise en forme et stérilisation dans des conditions de production

Demandes aux fournisseurs:

- fournir des études sur le maintien de la stérilité lors d'un test « shelf life » après mise en œuvre (emballage d'un plateau opératoire pour les feuilles et emballage d'un instrument pour les sachets), stérilisation selon les recommandations en vigueur (134°C 18minutes) et stockage conforme aux BPPH.
- Essais menés sur une durée de stockage de au moins 6 mois

Synthèse des données fournisseurs obtenues (durée de validité avec emballage mis en œuvre dans les conditions d'utilisation) :

2 tests nous intéressent particulièrement pour évaluer le maintien de stérilité:

BFE = efficacité de barrière bactérienne

- = mesure du % d'efficacité de filtration de la feuille
- =(Colonies sans filtre- colonies avec filtre/ colonies sans filtre) x100
- Plus il est élevé meilleure est l'efficacité
- Avant et après stérilisation
- Pour feuilles -Repris dans la norme ISO11607
- Pas pour les sachets..

Shelf life ou maintien de stérilité

- Test non normalisé mais très proche de nos conditions d'utilisation
- Emballage par pliage en double épaisseur, stérilisation et stockage avec manipulation hebdomadaire
- Calcul du % de paquets non contaminés à l'issue du test

ATTENTION : vérifier si les paramètres de stérilisation correspondent à ceux en vigueur....

No.

SACHETS papier/plastique:

Fournisseur	BFE	Shelf life	Indications de durée de validité	
Sendal	Aucune donnée	Aucune donnée	Aucune donnée	
Hartmann	Aucune donnée	Aucune donnée	Aucune donnée	
Amcor	Test BFE sur le papier	Aucune donnée	Aucune donnée	
MMM Schaerer Mayfield	Aucune donnée	Aucune donnée	Aucune donnée	

FEUILLES papier crêpé et NT avec cellulose:

Fournisseur	BFE Sur l'emballage double épaisseur après stérilisation	Shelf life	Conditions emballage et sté	Conditions de Stockage
Arjo Wiggins (fabricant)	Génération I (crêpé) >99.9% Génération II (crêpé avec synthétique) 99.8% Génération III (NT cellulose et fibres synthétiques) 94.7%	30J et 180J 100%/100%	Paniers sous double emb – stérilisation 134°C/18min.	Manutention 1x /semaine

49

FEUILLES non tissé synthétique polypropylène:

Fournisseur	BFE Sur l'emballage double épaisseur après stérilisation	Shelf life	Conditions emballage et sté	Stockage
Kimberley	98.9 à 99.9% selon la référence	30 jours	132°C/4min	Idem hôpital

Synthèse des données des fabricants:

- Très léger....
- Ne correspond pas toujours à nos pratiques
- Indispensable de travailler en collaboration pour leur faire comprendre nos besoins d'information
- Nous avons déjà commencé…

Quand ces données sont connues:

- Il nous reste à :
 - □ Mettre en place des conditions de stockage et transport qui n'altèrent pas l'intégrité des emballages
- Se dire que si l'intégrité est maintenue, le SMS joue forcément son rôle de barrière stérile pendant toute la durée testée par le fabricant

Les conditions de stockage :

Rappel des conditions de stockage correctes

- Local réservé aux DMS, accès contrôlé
- Matériaux lisses non générateurs de particules (inox de préférence) sans angles vifs risquant de déchirer les emballages,
- Humidité contrôlée : 40 à 75%
- Température contrôlée : 18 à 25°C
- Manipuler les emballages avec des mains propres et désinfectées (SHA près des étagères)

Impact des conditions de stockage?

- Revue de littérature par Terry McAuley,
 Melbourne, Australie Healthcare Infection 2009. 14:131-137
- Rien n'est démontré....

Propositions:

1. Pour les fournisseurs :

faire des études complémentaires sur

- □ Les qualités de barrière stérile en conditions réelles
- La durée de maintien de l'état stérile « shelf life » sur des DM emballés, stérilisés et conservés plusieurs mois , dans les conditions simulant l'emploi (manipulations régulières des emballages)
- Etudes à mener sur une durée de 1 an voire plus
- Pour tous les types d'emballage
- → Mettre résultats à disposition des utilisateurs

2. Pour les établissements de soins :

Etiquetage

- ⇒Étiqueter « stérile si emballage intact et conditions de stockage respectées »
- ⇒ Rappeler également dans les fiches d'instruction que l'EP doit être maintenu jusqu'à l'utilisation

■ Conditions de transport et stockage:

- ⇒ auditer les conditions de transport et les conditions de stockage pour identifier les risques d'incidents lors du transport, stockage, manipulations diverses avant emploi

Propositions pour la détermination d'une DLU :

Changer de concept...

- La grille hollandaise est basée sur les qualités physiques des emballages : le vieillissement naturel des matériaux entraînerait une diminution des propriétés barrière et réduirait la durée de conservation de l'état stérile
- aller vers la philosophie de la norme ISO 11607 : la perte de l'état stérile est davantage liée à des incidents mécaniques qu'au vieillissement des matériaux

nécessité d'une analyse des risques et la validation des méthodes d'emballage

Propositions pour la détermination d'une DLU :

- la durée de validité de l'état stérile peut être fixée à 6 mois
- Valeur donnée dans l'attente d'études complémentaires venant des laboratoires (qui permettraient allongement)

Etude en cours sur ULTRA (AMCOR)

- Le maintien de la stérilité en conditions réelles au delà de 6 mois est déjà démontrée
- Le test se poursuit...

Propositions pour la détermination d'une DLU :

Rôle de l'EP:

assure la protection mécanique du SBS et diminue les risques de rupture mais n'augmente pas la qualité intrinsèque de la barrière stérile donc ne peut augmenter la DLU.

Conclusion:

- Mieux maîtriser l'étape d'emballage est possible et doit s'inscrire dans les objectifs d'un service de stérilisation.
- Une collaboration avec des fabricants soucieux de la qualité et capables d'apporter les preuves de performances de leurs produits est une condition sine qua non.

Merci pour votre attention !!!

Grazie per la vostra attenzione!!!

