■ CENTRALE DE MESURE

ENERIUM

Table des matières

INTRODUCTION	.5 9. MESURES (ECRAN DE)	29
	9.1 Accès	
1. BUT DU MANUEL	.7 9.2 Ecran « Mesures »	29
	9.3 Les informations	29
2. SECURITE	9.4 Retour	31
	9.5 Notes	
3. GARANTIE, RESPONSABILITE ET		
PROPRIETE	9 10. ENERGIES (ECRAN D')	33
3.1 Garantie	10.1 Appèn	
3.2 Droits de propriété		33
		33
3.3 Copyright	9 10.4 Deteur	
3.4 Marques déposées	10 F Notes	
3.5 Fin de vie des appareils	9	
4. COLISAGE1	11. SERVICES (ECRAN DE)	37
4. COLISAGE	11.1 Accès	
DECODIDITION MATERIES I.E.	11.2 Foren « Comissos »	
DESCRIPTION MATERIELLE1	11.3 Les informations	
	11.4 Retour	
5. PRESENTATION GENERALE1	13	
5.1 Présentation´	13 12. ALARMES (ECRAN D')	30
5.2 Comparatif des modèles	12.1 Accès	
	12.2 Ecran « Alarmes »	
6. LA FACE AVANT1	12.3 Les informations	
6.1 Eléments	15 12.4 Retour	
6.2 Ecran LCD		40
6.3 Interface optique	16	4.4
6.4 Cordon optique	15. ECRANS PERSONNALISES	
6.5 Touche OK	13.1 ACCES	
6.6 Touches de navigation	13.2 Ectati « Ectatis personnalises »	41
	13.3 FIIICIPE	
7. LA FACE ARRIERE1	13.4 Les écrans	
7.1 Eléments	19.3 REIOH	42
7.1 Elements	10	
7.3 Bornier de la source auxiliaire	14. CONFIGURATION (ECRAN DE).	
	14.1 Acces	
7.4 Cartes optionnelles		43
7.5 Le bornier RS485		43
7.6 Le connecteur <i>Ethernet</i>	14.4 Communication distante Ethernet	44
	14.5 Affichage	45
DESCRIPTION LOGICIELLE2	14.6 Réseau électrique	
	14.7 Valeurs par défaut	
8. ECRAN PRINCIPAL2	25 14.8 Notes	
8.1 Ecran d'accueil2		
8.2 Menu principal2		۵ ۱
8.3 Abréviations		
8.4 Synoptique des menus	10.1 /10003	
	13.2 Ecian « Hannoniques »	
	15.3 Retour	50

16. FRESNEL ET JAUGES 16.1 Accès	
16.2 Ecran « Fresnel et jauges»	51
16.3 Retour	
17. COURBES DE CHARGE	55
18. COURBES D'ENREGISTREMENT 18.1 Grandeurs enregistrées	
18.2 Les modes de synchronisation	
18.3 Modes de fonctionnement des courbes	01
d'enregistrement	58
18.4 Indicateurs de la courbe d'enregistrement	58
INSTALLATION	59
19. MONTAGE MECANIQUE	
19.1 Découpe	
19.2 Suite des opérations	61
20. RACCORDEMENT ELECTRIQUE	
20.1 Remarques préalables20.2 Connexion des entrées tensions et couran	
20.2 Commodon des entrees tensions et courant	
20.3 Connexion RS485	
20.4 Connexion d'Ethernet	
20.5 Connexion des cartes d'entrées et de sorti	
20.6 Connexion de la source auxiliaire	
UTILISATION	69
21. MODE OPERATOIRE	71
21.1 Procédure complète	
21.2 Comment faire pour	71
22. COMMUNICATION LOCALE OU	
2.0. 7 =	73
22.1 Applications <i>E.set</i> et <i>E.view</i>	73
ModBus/RTU	73
23. MAINTENANCE	75
CARACTERISTIQUES TECHNIQUES	77
24. CARACTERISTIQUES	
24.1 Mesures 24.2 Courbes de charge	
24.3 Alarmes	
24.4 Sorties analogiques	
24.5 Courbes d'enregistrement	80
24.6 Electriques	
24.7 Cartes optionnelles	
24.8 Métrologiques24.9 Mécaniques	
24.10 Contraintes d'environnement	
	25

25. GRANDEURS MESUREES	87
25.1 Tension simple	87
25.2 Tensions composées	87
25.3 Courant	
25.4 Puissance active	87
25.5 Sens de transit des puissances	88
25.6 Puissance réactive	
25.7 Puissance Apparente	
25.8 Facteur de Puissance	
25.9 Cos(φ)	
25.10 Facteur de Crête	
25.11 Tan(φ)	
25.12 Fréquence	
25.13 Harmoniques	
25.14 Taux d'harmonique	
25.15 Energie et Comptage Energie	
25.16 Déséquilibre	90
25.17 Ordre de phase	
25.18 Compteur Horaire	
25.19 Grandeur moyenne	
25.20 Calcul des minima	
25.21 Minima de grandeurs	92
25.22 Minima de grandeurs moyennes	
25.23 Calcul des maxima	
25.24 Maxima de grandeurs	
25.25 Maxima de grandeurs moyennes	93
26. INDEX	95

Introduction

1. BUT DU MANUEL

Ce manuel est destiné à toute personne désirant utiliser une centrale de mesure *ENERIUM 50* ou *ENERIUM 150* dans le cadre des mesures des grandeurs du réseau (V, U, I, F, P, Q, S, FP, tg ϕ , THD, etc.) et des énergies.

Le présent manuel renseigne sur :

- Les fonctions du produit.
- La mise en œuvre et l'utilisation du produit.
- Les caractéristiques du produit.

La société *ENERDIS* édite ce manuel dans le but de fournir des informations simples et précises.

La société *ENERDIS* ne peut de ce fait assurer aucune responsabilité pour toute mauvaise interprétation. Bien que tous les efforts aient été faits pour proposer un manuel aussi exact que possible, ce dernier peut toutefois comporter des inexactitudes techniques et/ou des erreurs typographiques.

Le propriétaire du produit est tenu de conserver le présent manuel pendant toute la durée d'utilisation du produit.

Toute information ou modification relative à ce manuel devra être adressée à :

ENERDIS

Le Responsable de la Publication 1 à 9 rue d'Arcueil BP 675 92542 MONTROUGE Cedex FRANCE

2. SECURITE

Vous venez d'acquérir une centrale de mesure de type *ENERIUM 50* ou *150* et nous vous remercions de votre confiance.

Pour obtenir le meilleur service de votre appareil :

- Lisez attentivement cette notice de fonctionnement.
- Respectez les précautions d'emploi qui y sont mentionnées.

Signification du symbole. Attention ! consulter le manuel de référence avant d'utiliser l'appareil. Dans le présent manuel de référence, les instructions précédées de ce symbole, si elles ne sont pas bien respectées ou réalisées, peuvent occasionner un accident corporel ou endommager l'appareil et les installations.

Cet appareil est destiné à être utilisé dans les conditions de la catégorie d'installation III, degré de pollution 2, conformément aux dispositions de la norme CEI 61010-1. Il est sorti de l'usine en parfaites conditions de sécurité technique. Afin de conserver ces conditions et de garantir une utilisation sûre de l'appareil, l'utilisateur doit se conformer aux indications et aux symboles contenus dans le présent manuel.

Avant l'installation, vérifier que la tension d'utilisation et la tension du réseau coïncident.

Avant toute intervention, vérifier que l'appareil est débranché de toutes les sources de tension.

Lorsque l'utilisation en toute sécurité n'est plus possible, l'appareil doit être mis hors service et assuré contre une utilisation accidentelle.

L'utilisation en toute sécurité n'est plus garantie dans les cas suivants :

- L'appareil est visiblement endommagé,
- L'appareil ne fonctionne plus :
 - Après un stockage prolongé dans des conditions défavorables,
 - Après de graves dommages subis pendant le transport.

Sécurité des opérateurs

Lire attentivement les recommandations suivantes avant d'installer et d'utiliser l'appareil.

L'appareil décrit dans ce manuel est destiné à être exclusivement utilisé par un personnel préalablement formé. Les opérations d'entretien doivent être exclusivement réalisées par du personnel qualifié et autorisé. Pour une utilisation correcte et sûre et pour toutes interventions de maintenance, il est essentiel que le personnel respecte les procédures normales de sécurité.

Précautions en cas de panne

Lorsque l'on suspecte que l'appareil n'est plus sûr (par exemple à cause de dommages subis pendant le transport ou lors de son utilisation), il doit être mis hors service. Il est nécessaire de s'assurer qu'il ne sera pas utilisé accidentellement. L'appareil sera confié à des techniciens autorisés en vue du contrôle.

Instruction pour l'installation

A réception de l'appareil, contrôler qu'il est intact et n'a subi aucun dommage pendant le transport. En cas de problème, contacter le service après ventes pour les éventuelles réparations ou remplacements.

Instruction pour le nettoyage

Lorsque l'appareil est déconnecté du réseau d'alimentation, utiliser exclusivement un chiffon sec pour nettoyer la surface extérieure. Ne pas utiliser de produits abrasifs, ni de solvants. Ne pas mouiller les bornes de branchement.

3. GARANTIE, RESPONSABILITE ET PROPRIETE

3.1 Garantie

La garantie s'exerce, sauf stipulation expresse pendant douze mois après la date de mise à disposition du matériel (extrait de nos Conditions Générales de Vente, communiquées sur demande).

3.2 Droits de propriété

Tous les manuels et documentation de toute nature sont la propriété de la société *ENERDIS* et sont protégés par le droit d'auteur, tous droits réservés. Ils ne peuvent être distribués, traduits ou reproduits, en tout ou en partie, de quelque manière que ce soit et sous quelque forme que ce soit.

3.3 Copyright

Tous droits réservés. La reproduction, l'adaptation ou la traduction du présent manuel sans autorisation écrite préalable est interdite, dans les limites prévues par les lois gouvernant les droits de copyright.

Copyright ENERDIS - 2007.

Première édition, septembre 2007.

3.4 Marques déposées

ENERIUM est une marque déposée par ENERDIS.

3.5 Fin de vie des appareils

Les produits que nous commercialisons n'entrent pas dans le champ du décret n°2005-829 relatif à la composition des équipements électriques et électroniques et à l'élimination des déchets issus de ces équipements.

Conformément à l'article L541-2 du code de l'environnement, il appartient au détenteur du déchet d'en assurer ou d'en faire assurer l'élimination.

4. COLISAGE

L'équipement est livré conformément à votre commande. Il doit, au minimum, comporter les éléments suivants.

Désignation	Q ^{té}
Centrale de mesure <i>ENERIUM</i> Type 50 ou 150.	1
CD ROM contenant :	1
- le présent manuel au format pdf.	
- Le logiciel de configuration E.set.	
- Le driver USB pour l'accessoire tête optique.	
Manuel de mise en service simplifié (format A4)	1
Sachet plastique avec les équipements variables selon le modèle.	1
Pièces de fixation sur tableau pour les modèles <i>ENERIUM 50 ou 150</i>	2

Equipement variable

Désignation	Q ^{té}
Connecteur(s) débrochable(s) associé(s) aux cartes optionnelles.	0 à 2

Description matérielle

5. Presentation generale

5.1 Présentation

L'ENERIUM est une centrale de mesure au format 96 x 96, conforme à la norme DIN 43700, pour réseaux électriques de tous types, destinée à toutes les applications de mesure, d'affichage et de supervision des réseaux basse et moyenne tension.

La centrale de mesure *ENERIUM* s'adresse aussi bien aux sociétés gérant la surveillance et la réduction des coûts énergétiques dans un cadre environnemental et de développement durable, qu'aux industriels disposant de réseaux électriques complexes justifiant une surveillance et un dimensionnement précis.

Ainsi, plus de 50 grandeurs du réseau (U, V, I, P, Q, S, FP, tg ϕ , THD, énergie active, réactive et apparente, THD, etc.) sont élaborées.

Les informations recueillies sont disponibles sur la face avant de l'appareil par l'intermédiaire d'un afficheur LCD monochrome graphique, ainsi que sur une sortie numérique de type RS485 au protocole ModBus/RTU ou Ethernet au protocole Modbus/TCP RTU, tandis qu'une ou plusieurs sorties optionnelles autorisent un report d'alarme délivrent des impulsions de comptage ou gèrent des sorties analogiques.

Sa programmation permet une adaptation précise de l'appareil à l'environnement.

La centrale de mesure se décline en deux modèles dénommés *ENERIUM 50* et *ENERIUM 150*.

Vue générale de la centrale ENERIUM 150.

Comparatif des 5.2 modèles

Le tableau présenté ci-dessous donne les principales caractéristiques des versions 50 et 150. Les caractéristiques techniques et électriques détaillées font l'objet du chapitre 24 en page 79.

	ENERIUM 50	ENERIUM 150
Mesures		
Calcul du courant de neutre Oui		ui
Gestion réseau 3 ou 4 fils	0	ui
Tan φ	0	ui
Rang d'harmoniques	25	50
Réseau 400 Hz	0	ui
Interface homme-machine		
Ecrans personnalisables	0	ui
Cartes entrée-sortie (I/O)		
Carte optionnelle (1)	1	
Alarmes		
Alarmes élémentaires	1	6
Alarmes globales	8	
Journal des événements FIFO	Oui	
Courbes		
Courbes de charge	8 grandeurs parm	i 10 possibles (2)
Courbes d'enregistrement	Non	Oui
Interface de communication		
Optique (face avant)	0	ui
Ethernet (ModBus / TCP RTU) (3)	Oui	
RS 485 (ModBus RTU) (3)	Oui	
Paramétrage adresse IP en façade	Oui	
Graphiques		
Diagrammes de Fresnel	Non	Oui
Jauges	Non	Oui
Histogrammes (harmoniques)	Non	Oui

⁽¹⁾ Les cartes optionnelles sont de type 2 sorties analogiques, 2 sorties TOR, 2 entrées TOR et 1 entrée TOR + 1 (1) Les carties optionnelles sont de type 2 sontes analogiques, 2 sontes 10K, 2 entrées 10K et 1 en sortie TOR. (2) P+, P-, Q1, Q2, Q3, Q4, S+, S-, E-TOR1, E-TOR2. (3) Les interfaces de communication RS 485 et Ethernet ne peuvent être présentes en même temps.

6. LA FACE AVANT

6.1 Eléments

Ce paragraphe présente les éléments accessibles en face avant pour chacun des deux modèles disponibles.

Vue de la face avant de l'ENERIUM 50 ou 150.

Rep.	Fonction	Voir §
1.	Ecran de visualisation LCD.	6.2
2.	Touche de validation "OK".	6.5
3.	Interface optique.	6.3
4.	Touches de navigation.	6.6

6.2 Ecran LCD

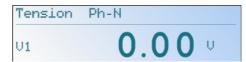
Cet écran affiche :

- L'ensemble des grandeurs mesurées et calculées (voir chapitres 9 à 13 en pages 29 à 41).
- Les grandeurs de paramétrage (voir chapitre 14, en page 43).

L'écran LCD de type positif, transmissif, est un module d'affichage graphique, rétro-éclairé en permanence par des leds blanches.

Le contraste est ajustable localement ou par l'envoi d'un mot de commande sur la communication locale ou distante. Ce réglage est possible directement avec les logiciels *E.set* ou *E.view* (se référer à la notice correspondante).

Le menu principal se présente comme suit :


Le menu principal.

Tous les écrans affichés peuvent être visualisés dans l'une des cinq langues, que sont le français, l'anglais, l'allemand, l'italien et l'espagnol. La langue est paramétrable (voir paragraphe 14.5.3, en page 45).

Pour l'*ENERIUM* 50, les icônes **l** et **l** ne sont pas disponibles.

6.2.1 La partie supérieure

En partie supérieure de tous les écrans se trouve le titre de l'écran affiché ("Tension Ph-N" dans la figure ci-dessous).

Exemple d'affichage avec le titre de l'écran en partie supérieure.

6.2.2 La partie centrale

On y trouve les mesures ou les menus comme dans les exemples suivants.

Le détail des écrans relatifs :

- Aux mesures, fait l'objet des chapitres 9 à 13 en pages 29 à 41.
- Au paramétrage, fait l'objet du chapitre 14, en page 43.

La partie centrale affiche les mesures.

6.2.3 La partie inférieure

Elle regroupe les pictogrammes d'information, de position fixe. Ceux-ci sont listés dans le tableau suivant.

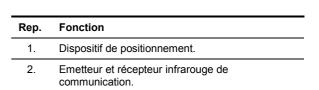
La figure ci-dessous donne l'ensemble des icônes visualisables en partie basse de l'écran LCD.

Les icônes en partie inférieure de l'écran (visualisation de toutes les icônes pour illustration uniquement).

Icône	Signification
	Au moins une alarme globale active. Pictogramme clignotant.
\bigotimes	Ordre des phases incorrect ; les entrées tensions sont mal branchées. Pictogramme fixe.
	Un test du câblage par vérification de l'ordre des phases sur les voies tension est effectué en continu. Le calcul est réalisé sur 3 périodes et toutes les 10 périodes du signal de référence en entrée.
←→	Communication en cours sur l'un des ports de communication (distant ou local). Pictogramme clignotant.
I	Mode de défilement automatique des écrans actifs. Pictogramme fixe.
НE	Réseau de type capacitif. Pictogramme fixe. Ce pictogramme possède la même position sur l'écran que le pictogramme suivant.
7000	Réseau de type inductif. Pictogramme fixe. Ce pictogramme possède la même position dans l'écran que le pictogramme précédent.
G	Réseau générateur. Il n'y a pas de pictogramme pour un réseau récepteur. Pictogramme fixe.

6.2.4 Informations complémentaires

A la mise sous tension de la centrale, un écran d'accueil est affiché pendant quelques secondes. Cet écran est composé du logo *ENERDIS* et du modèle de la centrale. Apparaît ensuite le dernier écran affiché avant la dernière coupure de la source auxiliaire. Si le dernier écran était un écran de paramétrage, c'est le menu principal qui est alors affiché.


Par ailleurs, il est possible de lire le numéro de l'écran affiché dans le champ mémoire *ModBus*. Il est également possible de forcer l'affichage d'un écran par l'envoi d'un mot de commande sur la communication locale ou distante (voir document MSO-7388 - Mapping et mots de commande. Contacter *ENERDIS* pour l'obtention de ce document).

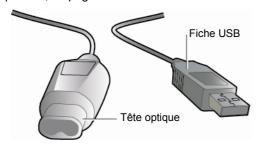
6.3 Interface optique

6.3.1 Présentation

L'interface optique est composée des éléments suivants :

Vue rapprochée de l'interface optique avant.

6.3.2 Fonction


L'interface optique permet le paramétrage et la relève des mesures mémorisées par l'*ENERIUM* en local avec un PC, par l'intermédiaire du cordon optique (voir paragraphe 6.4, en page 17).

6.4 Cordon optique

Le cordon optique est un accessoire vendu séparément. Il se positionne sur l'interface optique de l'*ENERIUM* en vue du transfert d'informations entre un PC et l'*ENERIUM*. Le connecteur de type USB, du cordon optique, est relié au PC. Le protocole de communication entre l'*ENERIUM* et le PC est de type *ModBus en mode RTU*.

Pour le paramétrage de la communication, voir le chapitre 22, en page 73.

Le cordon optique.

6.5 Touche OK

Cette touche valide le choix sélectionné ou les paramètres entrés. Elle permet également l'entrée ou la sortie du mode édition.

Localisation de la touche OK.

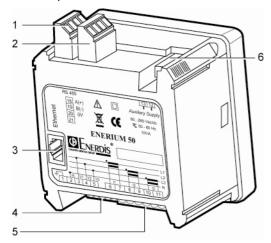
6.6 Touches de navigation

Ces touches permettent la navigation dans les différents menus.

6.6.1 Fonction XE "Menu:Déplacement"

Touche.	Fonction	
1	Déplacement du curseur vers la gauche.	
	Retour au menu précédent.	
	Déplacement du curseur vers la droite.	
$\overline{}$	Menu : déplacement du curseur vers le bas.	
	Paramétrage : décrémentation de la valeur.	
	Menu : déplacement du curseur vers le haut.	
	Paramétrage : incrémentation de la valeur.	

6.6.2 Utilisation


Le diagramme du paragraphe 8.4 en page 27 précise l'utilisation des touches de navigation dans le cadre de la sélection des menus.

7. LA FACE ARRIERE

7.1 Eléments

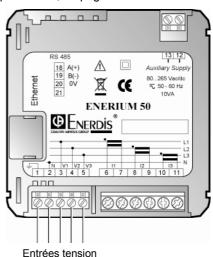
La figure ci-dessous visualise les éléments décrits dans ce chapitre.

Vue arrière de l'ENERIUM toutes versions.

Rep.	Fonction	Voir §	Page
1.	Bornier RS485 (si pas de connecteur Ethernet).	7.5	22
2.	Bornier de carte optionnelle.	7.4	20
3.	Connecteur Ethernet (si pas de bornier RS485).	7.6	22
4.	Bornier des entrées " tension".	7.2.1	19
5.	Bornier des entrées " courant".	7.2.2	19
6.	Bornier de la source auxiliaire.	7.3	20

7.2 Borniers de mesure

Sur ce bornier seront raccordées les entrées de surveillance du réseau, à savoir celles surveillant les tensions de ligne et celles en provenance des transformateurs de courant.

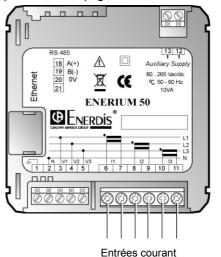

Le paragraphe 20.2 en page 63, détaille les différents raccordements autorisés.

7.2.1 Entrées en tension

Les bornes « Entrées en tension » sont libellées 1 à 5 sur l'étiquette en partie arrière de l'*ENERIUM*.

Les caractéristiques électriques des entrées tension sont données au paragraphe 24.6.3, en page 81.

Les caractéristiques du bornier sont données au paragraphe 24.6.3, en page 81.


Détail du bornier des entrées tension.

7.2.2 Entrées courants

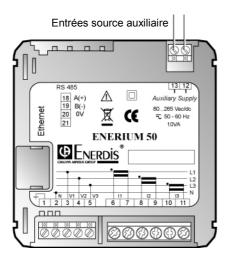
Les bornes « Entrées en courant » sont libellées 6 à 11 sur l'étiquette en partie arrière de l'*ENERIUM*.

Les caractéristiques électriques des entrées courant sont données au paragraphe 24.6.4 en page 81.

Les caractéristiques du bornier sont données au paragraphe 24.6.4, en page 81.

Détail du bornier des entrées courant.

7.3 Bornier de la source auxiliaire


Les bornes « Source auxiliaire » sont libellées 12 et 13 sur l'étiquette en partie arrière de l'*ENERIUM*.

Deux types d'alimentation sont disponibles :

- Alimentation haut niveau: l'alimentation s'effectue indifféremment, sur ce même bornier et sans aucune modification, en alternatif ou en continu.
- Alimentation continue bas niveau: l'alimentation s'effectue exclusivement en continu. La polarité est quelconque.

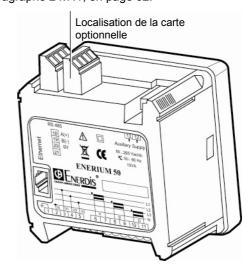
Les caractéristiques électriques des alimentations sont données au paragraphe 24.6.6, en page 82.

Les caractéristiques des bornes sont données au paragraphe 24.6.6, en page 82.

Localisation du bornier de la source auxiliaire.

Suite à une coupure de la source auxiliaire, les données stratégiques sont mémorisées. Voir le paragraphe 24.6.7, en page 82.

7.4 Cartes optionnelles


Quatre modèles de cartes sont disponibles :

- Carte 2 sorties analogiques (paragraphe 7.4.1);
- Carte 2 sorties TOR (paragraphe 7.4.2);
- Carte 2 entrées TOR (paragraphe 7.4.3);
- Carte 1 entrée et 1 sortie TOR (paragraphe 7.4.4).

Une carte optionnelle peut être installée à l'intérieur de l'*ENERIUM*. Un cache protège la position non utilisée.

Le bornier de chacune de ces cartes est accessible en partie supérieure de l'*ENERIUM*.

Les caractéristiques des bornes sont données au paragraphe 24.7.1, en page 82.

Localisation des cartes optionnelles.

7.4.1 Carte 2 sorties analogiques

Cette carte dispose de deux sorties analogiques indépendantes, chacune générant un courant continu proportionnel à une des grandeurs élaborées par l'ENERIUM. A chaque sortie analogique, l'utilisateur affecte par la communication locale ou distante :

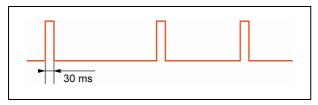
- Une grandeur à surveiller (V, U, I, P, Q, S, FP, cos (φ), Tan (φ) et fréquence).
- Les valeurs min et max de l'entrée.

La fonction de transfert est toujours du type simple pente. Lorsque la grandeur d'entrée atteint et dépasse la valeur maximale de l'entrée, la sortie reste bloquée à la valeur max de la sortie. Lorsque la grandeur d'entrée atteint et dépasse la valeur minimale de l'entrée, la sortie reste bloquée à la valeur minimale de la sortie.

Il est possible de bloquer une sortie analogique avec une valeur comprise entre le minimum et le maximum autorisé, par l'envoi d'un mot de commande sur une communication locale ou distante. La sortie se débloque automatiquement au bout de 10 minutes ou après le redémarrage du produit.

Le détail de la gestion de chacune des deux sorties analogiques (grandeur affectée, etc.) est défini par l'intermédiaire des mots de commande *ModBus* (voir document MSO-7388 – Mapping et mots de commande. Contacter *ENERDIS* pour l'obtention de ce document).

Le détail du câblage fait l'objet du paragraphe 20.5.1, en page 67.


Les caractéristiques électriques des sorties analogiques sont données au paragraphe 24.7.2, en page 82. La sortie analogique peut rester ouverte en permanence.

7.4.2 Carte 2 sorties TOR

Cette carte dispose de deux sorties logiques (TOR) individuelles indépendantes, chacune programmable en mode alarme ou impulsionnel.

A chacune d'elles, l'utilisateur affecte par la communication locale ou distante l'un des deux modes de sortie :

- Mode alarme: la sortie est activée lorsqu'une grandeur mesurée ou calculée par l'ENERIUM franchit un seuil (maximal ou minimal) qui lui est affecté, pendant un temps supérieur à la temporisation configurée. Cette alarme élémentaire est désactivée, lorsque la grandeur franchit à nouveau le seuil, à l'hystérésis près.
- Mode impulsionnel: la sortie impulsion est de type relais. A l'état repos, le relais est ouvert. Une impulsion est considérée émise lorsque le relais se ferme. Les impulsions sont comptabilisées à partir de l'énergie vue du côté primaire du transformateur. Ce comptage peut être dirigé vers un compteur d'impulsions (le CCT ENERDIS par exemple).

Exemple de chronogramme en mode impulsionnel.

Pour gérer la sortie impulsion, il faut associer (lors du paramétrage) à cette sortie une énergie parmi l'énergie active triphasée en mode générateur, l'énergie active triphasée en mode récepteur, l'énergie réactive triphasée des quadrants 1, 2, 3, et 4, l'énergie apparente triphasée en mode générateur et l'énergie apparente triphasée en mode générateur.

Le poids d'impulsion est également paramétrable parmi les valeurs 1, 10, 100, 1k, 10k et 100k.

La largeur d'impulsion est commune à toutes les sorties et elle est programmable à 30 ms puis de 50 à 500 ms, par pas de 50 ms, par la communication locale ou distante.

L'émission des impulsions sur une seconde est lissée à la milliseconde près.

Il est possible de bloquer la sortie impulsion dans l'état Haut ou dans l'état Bas, par l'envoi d'un mot de commande, ou par les logiciels *E.set* et *E.view*, sur la communication locale ou distante. La sortie se débloque automatiquement au bout de 10 minutes, ou après le redémarrage du produit.

Chaque sortie logique est constituée par un relais statique assurant un isolement entre la commande et la sortie. Il agit comme un simple contact, qui se ferme pour émettre une impulsion ou activer une alarme.

Le détail de la gestion de chacune des deux sorties TOR (grandeur affectée, etc.) est défini par l'intermédiaire des mots de commande *ModBus* (voir document MSO-7388 – Mapping et mots de commande. Contacter *ENERDIS* pour l'obtention de ce document).

Le détail du câblage fait l'objet du paragraphe 20.5.2, en page 67.

Les caractéristiques électriques des entrées TOR sont données au paragraphe 24.7.4, en page 83.

7.4.3 Carte 2 entrées TOR

Cette carte dispose de deux entrées (TOR) indépendantes, chacune programmable en mode impulsionnel ou synchronisation. A chacune d'elles, l'utilisateur affecte par la communication locale ou distante l'un des deux modes d'entrée :

 Mode impulsionnel: lorsque l'entrée est configurée en mode Impulsion, les impulsions reçues sont multipliées par le poids de impulsion sur cette entrée et sont ensuite additionnées dans un compteur total. Le poids de l'impulsion est paramétrable de 0,0001 à 999,9999.

Il est possible d'initialiser les compteurs avec une valeur quelconque, par l'envoi d'un mot de commande (voir document MSO-7388 Mapping et mots de commande. Contacter *ENERDIS* pour l'obtention de ce document), ou par les logiciels *E.set* et *E.view*, par la communication locale ou distante.

Mode Entrée de synchronisation: l'entrée est utilisée pour synchroniser les enregistrements ou pour gérer des alarmes. Elle peut également servir à synchroniser l'horloge interne de l'ENERIUM; l'horloge est alors paramétrée en entrée de synchronisation externe. Lorsqu'une impulsion est détectée sur cette entrée, l'ENERIUM remet automatiquement son horloge interne à l'heure ronde (les minutes et les secondes valent zéro), si son horloge interne a moins de 5 secondes d'écart en plus ou en moins avec l'heure ronde. Il est également possible de lire l'état de l'entrée dans le mapping ModBus (voir document MSO-7388 - Mapping et mots de commande. Contacter ENERDIS pour l'obtention de ce document).

Le détail de la gestion de chacune des deux entrées logiques (TOR) est défini par l'intermédiaire des mots de commande *ModBus* (voir document MSO-7388 - Mapping et mots de commande. Contacter *ENERDIS* pour l'obtention de ce document).

Le détail du câblage fait l'objet du paragraphe 20.5.3, en page 67.

Les caractéristiques électriques des entrées TOR sont données au paragraphe 24.7.3, en page 82.

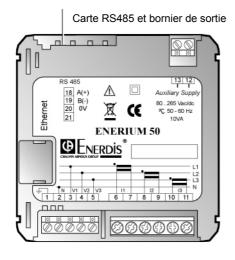
7.4.4 Carte 1 entrée TOR et 1 sortie TOR

Cette carte dispose d'une unique entrée logique tout ou rien (TOR) et d'une unique sortie logique tout ou rien (TOR).

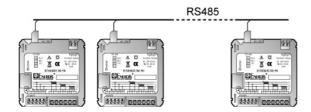
Les caractéristiques électriques de cette carte sont similaires aux cartes « 2 entrées TOR » et « 2 sorties TOR » ci-avant.

7.5 Le bornier RS485

Disponible en option, ce bornier est raccordé au bus RS 485.


L'option RS 485 n'est pas présente si l'option Ethernet l'est.

Le paramétrage de l'option RS 485 est donné au paragraphe 14.3, en page 43.


Les caractéristiques des bornes sont données au paragraphe 24.6.5.1, en page 81.

Le bornier RS 485 assure le transfert des informations entre le PC et l'*ENERIUM* dans le cadre :

- du paramétrage de l'ENERIUM.
- de la relève des mesures temps réel ou mémorisées dans l'ENERIUM.

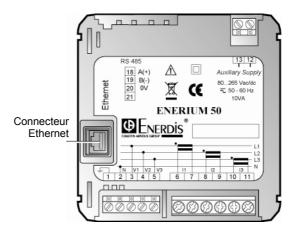
Localisation du bornier de la carte RS 485.

Jusqu'à 247 ENERIUM peuvent être reliés sur la même ligne de communication RS485.

Le détail du câblage fait l'objet du paragraphe 20.3, en page 65.

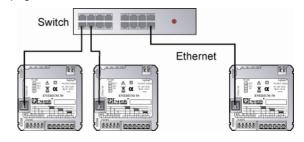
7.6 Le connecteur Ethernet

Disponible en option, ce connecteur est raccordé au réseau Ethernet local.


L'option Ethernet n'est pas présente si l'option RS 485 l'est.

Le paramétrage de l'option Ethernet fait l'objet du paragraphe 14.4, en page 44.

Les caractéristiques du connecteur sont données au paragraphe 24.6.5.2, en page 82.


Le connecteur Ethernet assure le transfert des informations entre le PC et l'*ENERIUM* dans le cadre :

- du paramétrage de l'ENERIUM.
- de la relève des mesures temps réel ou mémorisées dans l'ENERIUM.

Localisation du connecteur Ethernet.

Le détail du câblage fait l'objet du paragraphe 20.4, en page 66.

Nota: un câble croisé est préconisé pour une communication directe entre un PC et l'*ENERIUM*.

Description logicielle

8. ECRAN PRINCIPAL

Il est considéré que le montage mécanique (chapitre 19, en page 61), le branchement électrique (chapitre 20, en page 63) ont été effectués.

Ce chapitre détaille les menus accessibles par l'opérateur à partir de l'écran principal.

8.1 Ecran d'accueil

Dès le branchement, un écran de chargement est affiché pendant quelques secondes. Toutes les fonctions de la centrale sont alors activées.


Une barre de progression située sous la ligne « Enerium 50 » ou « Enerium 150 » selon le modèle, indique la mise en situation de l'équipement.

L'écran d'accueil.

8.2 Menu principal

Le menu principal est ensuite affiché.

Le menu principal.

8.2.1 Les icônes

Le menu principal affiche les huit menus (six menus seulement sur *l'ENERIUM 50*) accessibles par l'opérateur par l'intermédiaire d'icônes listées dans le tableau ciaprès.

A noter que la partie supérieure de l'écran indique, dans la langue paramétrée (voir paragraphe 14.5.3, en page 45) l'intitulé de l'icône sélectionnée.

Icône	Fonction	Page
_	Mesures : affiche les écrans des grandeurs mesurées (U, I, P, THD, etc.).	29
W	Energie : affiche les écrans des compteurs d'énergies actives, réactives et apparentes cumulées par le produit.	33
6	Services : affiche les écrans de grandeurs (les compteurs horaires du temps de fonctionnement de l'appareil et l'horodatage interne) liées à la maintenance du produit.	37
_	Alarmes: affiche les écrans de visualisation des alarmes (visualisation de l'état des alarmes et des relais associés des sorties TOR) et d'acquittement des alarmes mémorisées éventuelles.	39
2	Ecrans personnalisés : affiche les écrans paramétrables par l'utilisateur par l'intermédiaire de la communication locale ou distante.	41
۶	Configuration: affiche le menu de modification de paramètres de configuration (rapport TP – TC, communication, défilement affichage, langue, mot de passe).	43
سنال.	Harmoniques: affiche l'amplitude des harmoniques du rang 1 à 50 sous forme d'histogrammes pour les grandeurs électriques V1, V2, V3, U12, U23, U31, I1, I2 et I3 (ENERIUM 150 uniquement).	49
\(\right)	Fresnel et jauges : affiche les diagrammes de Fresnel de grandeurs électriques V, U et I ainsi que des bargraphes pour les grandeurs électrique V, U, I et P (ENERIUM 150 uniquement).	51

Rappel : la sélection d'une icône se faisant à l'aide de la touche de navigation (voir § 6.6, en page 17).

Lorsqu'une icône est sélectionnée, celle-ci change d'aspect par l'apparition d'un détourage sous la forme d'un bouton en relief.

L'action sur la touche "**OK**" visualise le menu relatif à l'icône sélectionnée.

Les touches "**Haut**" et "**Bas**" permettent le déplacement d'une ligne à l'autre.

Un appui sur la touche "**OK**" affiche l'écran sélectionné.

8.2.2 Icônes en bas d'écran

Ces icônes se situent dans la partie inférieure des différents écrans. Elles présentent des informations comme suit :

Icône	Fonction
	Au moins une alarme globale active. Pictogramme clignotant.
\bigotimes	Ordre des phases incorrect ; les entrées en tension sont mal branchées. Pictogramme fixe.
	Un test du câblage par vérification de l'ordre des phases sur les voies tension est effectué en continu. Le calcul est réalisé sur 3 périodes et toutes les 10 périodes du signal de référence en entrée.
←→	Communication en cours sur l'un des ports de communication (distant ou local). Pictogramme clignotant.
 	Mode de défilement automatique des écrans est actif. Pictogramme fixe.
4l-	Réseau de type capacitif. Ce pictogramme a la même position sur l'écran que le pictogramme suivant.
7000	Réseau de type inductif. Ce pictogramme a la même position dans l'écran que le pictogramme précédent.
G	Réseau générateur. Il n'y a pas de pictogramme pour un réseau récepteur. Pictogramme fixe.

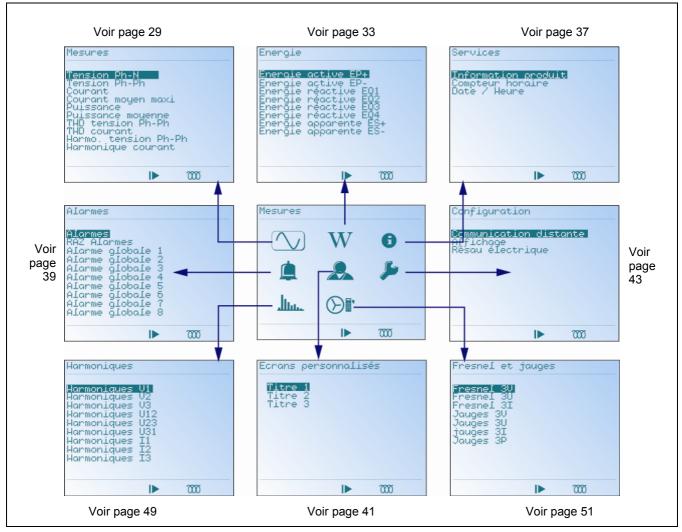
8.3 Abréviations

L'afficheur de l'*ENERIUM* utilise des abréviations de symboles électriques. Ces symboles, également utilisés dans la présente notice, sont les suivants :

8.3.1 Unités

Symboles	Désignation
%	Symbole du pourcent.
Α	Symbole du courant efficace vrai en Ampère.
V	Symbole de la tension efficace vraie en Volt.
Hz	Fréquence du réseau.
VA	Puissance apparente (totale si 3 φ).

Symboles	Désignation
VAR	Puissance réactive (totale si 3 φ).
W	Puissance active (totale si 3 φ).
kVAh	Energie apparente totale en kilo.
MVAh	Energie apparente totale en méga.
kVARh	Energie réactive totale en kilo.
MVARh	Energie réactive totale en méga.
kWh	Energie active totale en kilo.
MWh	Energie active totale en méga.


8.3.2 Grandeurs électriques

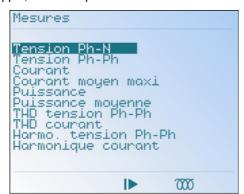
Symboles	Désignation
F	Symbole de la fréquence en Hertz.
FP	Facteur de puissance (ratio de la puissance active sur la puissance apparente).
Hxx Ia	Taux d'harmonique (%) de rang 'xx' en courant dans le conducteur a (a = 1, 2 ou 3).
Hxx Uab	Taux d'harmonique (%) de rang 'xx' en tension entre phases composées (ab = 12, ou 23 ou 31).
lx	Courant (A) instantané du conducteur x (x = 1, 2, 3).
In	Courant (A) retournant par le neutre (valeur uniquement disponible sur les réseaux 4 fils).
Ix Max Moy	Valeur maximum du courant moyen (A) (x = 1, 2, 3 ou N)
Р	Puissance active (W).
Pmoy	Puissance active (W) moyennée sur une durée définie. Pmoy
Q	Puissance réactive (VAR).
S	Puissance apparente (VA).
Smoy	Puissance apparente (VA) moyennée sur une durée définie.
THD Ix	Taux de distorsion harmonique (%) du courant dans le conducteur x (x = 1, 2 ou 3).
THD Uab	Taux de distorsion harmonique (%) de la tension composée (ab = 12, 23 ou 31).
Uab	Tension composée vraie (V) entre phases (ab = 12, ou 23 ou 31).
Vx	Tension simple (V) entre phase (x = 1, 2 ou 3) et neutre.
VT	Tension efficace vraie (V) entre le neutre et la terre.

8.4 Synoptique des menus

L'ensemble des menus accessibles à partir du menu principal est présenté ci-dessous. Par souci d'efficacité, le renvoi aux chapitres concernés est également spécifié.

Ordinogramme de l'ensemble des principaux menus accessibles sur l'ENERIUM.

9. MESURES (ECRAN DE)


Cet écran affiche le menu de sélection des mesures de base (V, U, I, P, Q, S, PF, THD, H, etc.).

9.1 Accès

Il se fait, à partir du menu principal par sélection de l'icône \(\sqrt{j} \) et appui sur la touche **OK**.

9.2 Ecran « Mesures »

A l'appel, l'écran se présente comme suit :

L'écran Mesures à l'appel.

Toutes les informations affichées sont récupérables par la communication locale ou distante.

9.3 Les informations

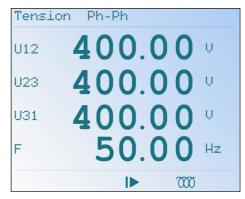
Ce paragraphe présente chacun des écrans accessibles à partir de l'écran Mesures après appui sur la touche **OK**.

Pour chacun des écrans décrits, le passage aux écrans suivants et précédents peut s'effectuer par appui sur les touches ▲▼.

Voir le paragraphe 9.5.1 en page 31, en ce qui concerne les règles d'affichage des valeurs.

Voir le paragraphe 8.2.2, en page 26, relatif à la signification des icônes en bas d'écran.

9.3.1 Tension Ph-N


Affichage de la tension simple de chacune des phases par rapport au neutre. La valeur ${\tt VT}$ représente la tension de terre par rapport au neutre.

Exemple d'un écran Tension Ph-N.

9.3.2 Tension Ph-Ph

Affichage de la tension entre phases composée (U_{12} , U_{23} , U_{31}) et de la fréquence.

Exemple d'un écran Tension Ph-Ph.

9.3.3 Courant

Affichage du courant dans chacune des lignes.

Exemple d'un écran Courant.

9.3.4 Courant moyen maxi

Affichage du courant maximum moyen dans chacune des lignes. La durée d'intégration est définie par la communication locale ou distante.

Exemple d'un écran Courant moyen maxi.

Voir le paragraphe 25.19 en page 91 pour le mode de calcul des moyennes par l'*ENERIUM*.

9.3.5 Puissance

Un exemple d'affichage est présenté ci-dessous.

Exemple d'un écran Puissance.

Affichage de :

s: puissance apparente.

- p : puissance active. Cette valeur peut être négative si la charge fonctionne en générateur. L'icône @ est alors affichée en bas de l'écran
- Q : puissance réactive. Cette valeur sera positive si la charge est du type inductif; l'icône affichée en bas de l'écran sera (M). Cette valeur sera négative si la charge est du type capacitif; l'icône affichée en bas de l'écran sera (II).
- FP: facteur de puissance (ratio de la puissance active sur la puissance apparente). Cette valeur peut être négative si la charge fonctionne en générateur. L'icône @ est alors affichée en bas de l'écran

Avec l'icône (c) et l'icône (m) ou (1), l'utilisateur connaît à tout moment le quadrant dans lequel travaille la charge. La page 33 rappelle la position des quadrants.

9.3.6 Puissance moyenne

Affichage des puissances moyennes active (P) et apparente (S) sur une durée définie par la communication locale ou distante.

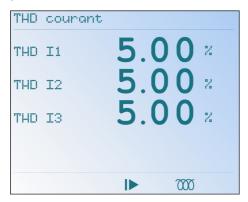
Exemple d'un écran Puissance moyenne.

Voir le paragraphe 25.19 en page 91 pour le mode de calcul des moyennes par l'*ENERIUM*.

9.3.7 THD tension Ph-Ph

Affichage des taux de distorsion harmoniques sur les trois tensions composées.

La fonction *Harmoniques* affiche graphiquement les harmoniques uniquement pour l'*ENERIUM 150* (voir chapitre 15, page 49).



Exemple d'un écran THD tension Ph-Ph.

9.3.8 THD courant

Affichage des taux de distorsion harmoniques sur les trois courants ; le taux de distorsion harmonique du courant de neutre n'est pas mesuré et donc non affiché.

Exemple d'un écran THD courant.

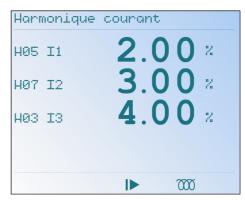
La fonction *Harmoniques* affiche graphiquement les harmoniques uniquement pour l'*ENERIUM 150* (voir chapitre 15, page 49).

9.3.9 Harmo, Tension Ph-Ph

Affichage des plus forts taux d'harmoniques et de leurs rangs sur les trois tensions composées. Chaque indication se lit comme suit (exemple) :

 H03 U12 : plus fort taux d'harmoniques harmonique sur le rang 3 de la tension composée U12.

Exemple d'un écran Harmo. Tension Ph-Ph.



La fonction *Harmoniques* affiche graphiquement les harmoniques uniquement pour l'*ENERIUM 150* (voir chapitre 15, page 49).

9.3.10 Harmo. courant

Affichage des plus forts taux d'harmoniques et de leurs rangs sur les trois courants. Chaque indication se lit comme suit (exemple) :

• H02 I1 : plus fort taux d'harmoniques sur le rang 2 du courant I1.

Exemple d'un écran Harmonique courant.

La fonction *Harmoniques* affiche graphiquement les harmoniques, uniquement pour l'*ENERIUM* 150 (voir chapitre 15, page 49).

9.4 Retour

Un appui sur la touche ◀ permet le retour à l'écran « Mesures ». Deux appuis successifs sur la touche ◀ permettent le retour à l'écran principal (§ 8.2, en page 25)

9.5 Notes

9.5.1 Règle d'affichage des tensions

L'affichage d'une tension (simple ou composée) est réalisé sur quatre digits, avec une virgule flottante. Le tableau suivant présente la position de la virgule et l'unité utilisée en fonction de la valeur mesurée.

V <	Affichage
10	9,999 V
100	99,99 V
1 000	999,9 V
10 000	9,999 kV
100 000	99,99 kV
1 000 000	999,9 kV
10 000 000	9,999 MV
100 000 000	99,99 MV

9.5.2 Règle d'affichage des courants

L'affichage d'un courant est réalisé sur quatre digits, avec une virgule flottante. Le tableau suivant présente la position de la virgule et l'unité utilisée en fonction de la valeur mesurée.

I <	Affichage	
10	9,999 A	
100	99,99 A	
1 000	999,9 A	

10 000	9,999 kA
100 000	99,99 kA
1 000 000	999,9 kA
10 000 000	9,999 MA
100 000 000	99,99 MA

9.5.3 Règle d'affichage de la fréquence

L'affichage de la fréquence est réalisé sur quatre digits, avec une virgule fixe. Voici la position de la virgule et l'unité utilisée : 99,99 Hz.

9.5.4 Règle d'affichage des puissances

L'affichage d'une puissance (active, réactive ou apparente) est réalisé sur quatre digits, avec une virgule flottante. Le tableau suivant présente la position de la virgule et l'unité utilisée en fonction de la valeur mesurée.

P <	Affichage
10	9,999 u
100	99,99 u
1 000	999,9 u
10 000	9,999 ku
100 000	99,99 ku
1 000 000	999,9 ku
10 000 000	9,999 Mu
100 000 000	99,99 Mu

Pour une puissance active, « u » est le W. Pour une puissance réactive, u est le VAR. Pour une puissance apparente, « u » est le VA.

9.5.5 Règle d'affichage des harmoniques

L'affichage d'un harmonique (de rang x) ou d'un taux global de distorsion d'harmoniques est réalisé sur quatre digits. La virgule s'ajuste en fonction de la valeur mesurée.

9.5.6 Règle d'affichage du facteur de puissance

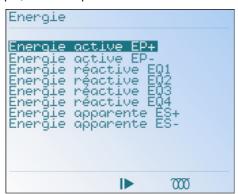
L'affichage d'un facteur de puissance est réalisé sur trois digits, avec une virgule fixe (9,99). L'unité est représentée par un logo.

Dans le cas d'un facteur de puissance inductif, l'unité est le pictogramme . Dans le cas d'un facteur de puissance capacitif, l'unité est le pictogramme .

9.5.7 Règle d'affichage du compteur horaire

L'affichage du compteur horaire est réalisé sur dix digits, avec une virgule fixe et l'unité utilisée : 99999999,99 h.

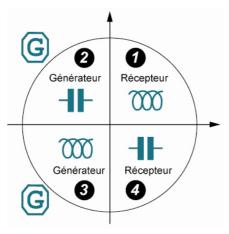
10. ENERGIES (ECRAN D')


Cet écran affiche le menu de sélection des mesures des énergies actives, réactives et apparentes.

10.1 Accès

Il se fait, à partir du menu principal par sélection de l'icône W et appui sur la touche **OK**.

10.2 Ecran « Energie »


A l'appel, l'écran se présente comme suit :

L'écran Energie à l'appel.

Toutes les informations affichées sont récupérables par la communication locale ou distante.

Rappel des quadrants utilisés par l'ENERIUM.

10.3 Les informations

Ce paragraphe présente chacun des écrans accessibles à partir de l'écran Energie après appui sur la touche **OK**.

Pour tous les affichages, le passage direct à l'écran suivant ou précédent est possible avec les touches $\blacktriangle \Psi$.

Voir le paragraphe 10.5.1, en page 35, en ce qui concerne les règles d'affichage des valeurs.

Voir également le paragraphe 8.2.2, en page 26, pour la signification des icônes en bas d'écran.

10.3.1 Energie active EP+

Affichage de deux compteurs d'énergie active positive en mode récepteur cumulée (quadrants 1 et 4) depuis la mise sous tension de l'*ENERIUM*. La valeur totale est égale au groupement des deux valeurs comme suit (exemple) :

MWh 231 kWh 457.897

indique un comptage de 231 457.897 kWh.

Exemple d'un écran Energie active EP+.

10.3.2 Energie active EP-

Affichage de deux compteurs d'énergie active négative en mode générateur cumulée et absolu (quadrants 2 et 3) depuis la mise sous tension de l'*ENERIUM*. La

valeur totale est égale au groupement des deux valeurs comme suit (exemple) :

MWh 231 kWh

457.897

indique un comptage de 231 457.897 kWh.

Exemple d'un écran Energie active EP.

10.3.3 Energie réactive EQ1

Affichage de deux compteurs d'énergie réactive positive cumulée en mode récepteur (quadrants 1) depuis la mise sous tension de l'*ENERIUM*. La valeur totale est égale au groupement des deux valeurs comme suit (exemple) :

MVARh 231 kVARh 457.897

indique un comptage de 231 457.897 kVARh.

Exemple d'un écran Energie réactive EQ1.

10.3.4 Energie réactive EQ2

Affichage de deux compteurs d'énergie réactive positive cumulée en mode générateur (quadrant 2) depuis la mise sous tension de l'*ENERIUM*.

Les données se lisent de manière identique à la description faite au paragraphe 10.3.3.

10.3.5 Energie réactive EQ3

Affichage de deux compteurs d'énergie réactive négative cumulée en mode générateur (quadrant 3) depuis la mise sous tension de l'*ENERIUM*.

Les données se lisent de manière identique à la description faite au paragraphe 10.3.3.

10.3.6 Energie réactive EQ4

Affichage de deux compteurs d'énergie réactive négative cumulée en mode récepteur (quadrant 4) depuis la mise sous tension de l'*ENERIUM*.

Les données se lisent de manière identique à la description faite au paragraphe 10.3.3.

10.3.7 Energie apparente ES+

Affichage de deux compteurs d'énergie apparente cumulée et absolue en mode récepteur (quadrants 1 et 4) depuis la mise sous tension de l'*ENERIUM*. La valeur totale est égale au groupement des deux valeurs comme suit (exemple) :

MVAh 231 kVAh 457.897

indique un comptage de 231 457.897 kVAh.

Exemple d'un écran Energie apparente ES+.

10.3.8 Energie apparente ES-

Affichage de deux compteurs d'énergie apparente cumulée et absolue en mode générateur (quadrant 2 et 3) depuis la mise sous tension de l'*ENERIUM*.

Les données se lisent de manière identique à la description faite au paragraphe 10.3.7.

10.4 Retour

Un appui sur la touche ◀ permet le retour à l'écran « Energie ». Deux appuis successifs sur la touche ◀ permettent le retour à l'écran principal.

10.5 Notes

10.5.1 Règle d'affichage des énergies

L'affichage d'un compteur d'énergie (actif, réactif ou apparent) est réalisé sur deux lignes.

Sur une première ligne, est affiché la partie haute du compteur d'énergie, sous la forme 999999 Muh. Sur une seconde ligne, est affiché la partie basse du compteur d'énergie, sous la forme 999,999 kuh. La lettre « u » est définie comme suit :

Energie	Unité
Active	W
Réactive	VAR
Apparente	VA

11. SERVICES (ECRAN DE)

Cet écran affiche le menu de sélection des informations relatives à l'appareil, aux compteurs horaires du temps de fonctionnement de l'appareil et à l'horodatage interne.

11.1 Accès

Il se fait, à partir du menu principal par sélection de l'icône et appui sur la touche **OK**.

11.2 Ecran « Services »

A l'appel, l'écran se présente comme suit :

L'écran Services à l'appel.

Toutes les informations affichées sont récupérables par la communication locale ou distante. Aucune modification des valeurs affichées n'est possible.

11.3 Les informations

Ce paragraphe présente chacun des écrans accessibles à partir de l'écran Services après appui sur la touche **OK**.

Pour tous les affichages, le passage direct à l'écran suivant ou précédent est possible avec les touches ▼▲.

Voir également le paragraphe 8.2.2, en page 26, pour la signification des icônes en bas d'écran.

11.3.1 Information produit

Les informations suivantes sont affichées :

Exemple d'un écran Information produit.

Rep.	Indication
1.	Type de l' <i>ENERIUM</i> (50, 150) et fréquence réseau.
2.	Numéro de série de l' <i>ENERIUM</i> .
3.	Numéro de la version du logiciel embarqué.
4.	Indique « Vide » si aucune carte de communication n'est installée, sinon indique l'adresse ModBus pour l'option RS 485 ou l'adresse IP pour l'options Ethernet (voir paragraphe 14.3, en page 43 et au paragraphe 14.4, en page 44).
5	Indique « Vide » si aucune carte d'entrée/sortie n'est installée, sinon indique le type de la carte entrée/sortie insérée (voir paragraphe 7.4, en page 20).

11.3.2 Compteur horaire

Trois compteurs horaires sont visualisés. Les informations, uniquement consultables en lecture, sont affichées sur dix digits, avec virgule fixe comme suit :

Exemple d'un écran Compteur horaire.

Rep.	Indication
1.	Compteur horaire "Temps de fonctionnement" : temps de présence de la tension d'alimentation (source auxiliaire) sur l' <i>ENERIUM</i> (voir paragraphe 7.3, en page 20). Cette indication est utile pour la maintenance de l' <i>ENERIUM</i> .
2.	Compteur horaire "Présence réseau": temps pendant lequel, au moins une tension simple, parmi V1[1s], V2[1s] et V3[1s] est différente de zéro. Cette indication est utile pour la maintenance de la charge surveillée.
3.	Compteur horaire "En charge" : temps pendant lequel, au moins un courant, parmi l1[1s], l2[1s] et l3[1s], est différent de zéro. Cette indication est utile pour la maintenance de la charge surveillée.

11.3.3 Date/Heure

Les informations suivantes, uniquement consultables en lecture, sont affichées :

Exemple d'un écran Date/Heure.

Rep.	Indication
1.	Date.
2.	Heure.

La grandeur date / heure est comptabilisée sous la forme du nombre de secondes écoulées depuis le 1er janvier 1970. ::

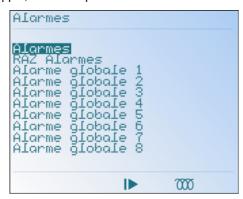
Le format à l'affichage de la date est "jj mmm aaaa", pour toutes les langues.

La date et l'heure ne sont modifiables que par la communication locale ou distante.

11.4 Retour

Un appui sur la touche ◀ permet le retour à l'écran « Services ». Deux appuis successifs sur la touche ◀ permettent le retour à l'écran principal.

12. ALARMES (ECRAN D') 🔔


Cet écran affiche le menu de sélection des alarmes (visualisation de l'état des alarmes et des relais associés des sorties TOR) et remise à zéro des alarmes mémorisées éventuelles.

12.1 Accès

Il se fait, à partir du menu principal par sélection de l'icône et appui sur la touche **OK**.

12.2 Ecran « Alarmes »

A l'appel, l'écran se présente comme suit :

L'écran Alarmes à l'appel.

Toutes les informations affichées sont récupérables par la communication locale ou distante.

12.3 Les informations

Ce paragraphe présente chacun des écrans accessibles à partir de l'écran Alarmes après appui sur la touche **OK**.

Pour chacun des écrans décrits, le passage aux écrans suivants et précédents s'effectue par appui sur le touches $\blacktriangle \nabla$.

Voir également le paragraphe 8.2.2, en page 26, pour la signification des icônes en bas d'écran.

12.3.1 Alarmes

Les informations suivantes sont affichées :

Exemple d'un écran Alarmes.

Cet écran visualise, pour chacune des huit alarmes globales, l'état de l'alarme active ou ayant été activée dans une première colonne, et l'état des sorties TOR (relais) associées (paragraphe 7.4.2, en page 21) dans une seconde colonne.

Indication	Explicatif		
Numéro	Numéro de l'alarme globale (une alarme globale est éventuellement la combinaison de 2 alarmes élémentaires).		
Statut	Etat de l'alarme (active ou non active) dans la centrale.		
	- alarme non programmée		
	O alarme programmée non active.		
	 alarme programmée active. 		
Relais	Etat du relais associé (paragraphe 7.4.2, en page 21).		
	- relais non associé à l'alarme.		
	O relais associé à l'alarme, mais non actif.		
	 relais associé à l'alarme et actif. 		
	_		

La définition des alarmes (numéro, NO/NF, temporisation, seuil, grandeur mesurée) n'est possible que par la communication locale ou distante (voir chapitre 22, en page 73.).

12.3.2 RAZ Alarmes

Cet écran permet la réinitialisation des alarmes (acquittement de l'alarme des sorties TOR associées) dès validation du choix OUI.

Exemple d'un écran RAZ Alarmes.

Pour réinitialiser les alarmes, procéder comme suit :

- 1. L'écran RAZ Alarmes est affiché.
- 2. Appuyer sur **OK** pour entrer dans la procédure.
- Appuyer sur ▶ pour mettre OUI en surbrillance (fond noir).

Pour quitter cette procédure sans réinitialiser les alarmes, appuyer sur ◀ pour mettre NON en surbrillance (fond noir).

- 4. Appuyer sur OK pour valider le choix.
- 5. Retourner à l'écran précédent par appui sur ◀.

12.3.3 Alarme globale (1 à 8)

Chacun de ces huit écrans visualise, pour chacune des 8 alarmes globales, l'état (activé, désactivé) de cette alarme, le relais de commande associée, l'équation logique correspondante et des alarmes élémentaires.

Une alarme globale est activée par une combinaison d'alarmes élémentaires, combinaison définie à partir de l'application *E.set* ou *E.view* (voir le manuel correspondant).

Exemple d'un écran d'alarme globale.

Indication	Explicatif			
Statut	Etat de cette alarme globale (active ou non active) dans la centrale.			
	- alarme non programmée			
	 alarme programmée non active. 			
	 alarme programmée active. 			
Relais	Etat du relais associé à cette alarme globale.			
	- relais non associé à l'alarme.			
	O relais associé à l'alarme, mais non actif.			
	 relais associé à l'alarme et actif. 			
Alarme él.	Nom de la grandeur électrique associée, ex V1.			
Statut	Etat de la sortie de l'alarme élémentaire associé à cette alarme globale.			
	- sortie non associée à l'alarme.			
	O sortie associée à l'alarme, mais non active.			
	 sortie associée à l'alarme et active. 			
Equation	Equation logique ET ou OU.			

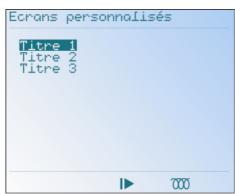
L'activation d'une alarme globale est signalée localement par le clignotement du rétroéclairage de la zone d'affichage.

Ainsi, si une alarme globale est activée, l'écran de l'*ENERIUM* va clignoter. Le clignotement est arrêté suit à une remise à zéro (RAZ) du mot d'état des alarmes (commande disponible sous *E.set*, *E.view* ou dans le document MSO-7388 – Mapping et mots de commande).

12.4 Retour

Un appui sur la touche ◀ permet le retour à l'écran « Alarmes ». Deux appuis successifs sur la touche ◀ permettent le retour à l'écran principal.

13. ECRANS PERSONNALISES


Cet écran affiche le menu de sélection de l'un des trois groupes d'écrans définis par l'intermédiaire de la communication locale ou distante.

13.1 Accès

Il se fait, à partir du menu principal par sélection de l'icône et appui sur la touche **OK**.

13.2 Ecran « Ecrans personnalisés »

Avant toute programmation, l'écran se présente comme suit :

L'écran « Ecrans personnalisés » à l'appel.

13.3 Principe

Chacun des trois écrans, dénommés de base Titre 1, Titre 2 et Titre 3, peut être librement configuré, par l'utilisateur par l'intermédiaire de la communication locale ou distante. Chacun de ces titres regroupe, dans un écran spécifique à l'utilisateur, un ensemble de quatre mesures que l'utilisateur souhaite voir affiché simultanément. Toutes les combinaisons d'affichage de données sont possibles, à partir des grandeurs mesurées par l'ENERIUM (voir le document MSO-7388 — Mapping et mots de commande. Contacter ENERDIS pour l'obtention de ce document).

La visualisation de ces trois écrans se fait :

- Soit manuellement, par accès à ce menu et sélection de l'un de trois écrans.
- Soit par défilement automatique programmé d'un, de deux ou de ces trois écrans.

Le logiciel *E.set* ou *E.view* assure le paramétrage de ces écrans personnalisables.

13.4 Les écrans

Ce paragraphe présente chacun des écrans accessibles à partir de l'écran Ecrans personnalisés (après appui sur la touche **OK**, dans leur configuration en sortie d'usine.

Exemple d'un écran Personnalisé.

Rappel: le libellé de Titre est défini par l'application *E.set* ou *E.view* (voir ce manuel).

13.4.1 Titre 1: « S-P-Q-Tan(φ) »

Lorsque non redéfini par l'utilisateur, cet écran affiche :

- Ligne 1 : S triphasé.
- Ligne 2 : P triphasé.
- Ligne 3 : Q triphasé.
- Ligne 4 : Tan (φ).

13.4.2 Titre 2: « V1-U12-I1-FP1 »

Lorsque non redéfini par l'utilisateur, cet écran affiche :

- Ligne 1 : V1.
- Ligne 2 : U12.

- Ligne 3: I1.
- Ligne 4 : FP1.

13.4.3 Titre 3: « In: H03 H05 H07 H09 »

Lorsque non redéfini par l'utilisateur, cet écran affiche les harmoniques de rang 3, 5, 7 et 9 présents sur le courant de neutre ln.

- Ligne 1: H03.
- Ligne 2: H05.
- Ligne 3: H07.
- Ligne 4: H09.

13.5 Retour

Un appui sur la touche ◀ permet le retour à l'écran « Ecrans personnalisés ». Deux appuis successifs sur la touche ◀ permettent le retour à l'écran principal.

14. CONFIGURATION (ECRAN DE)

Cet écran affiche le menu *Configuration* de l'*ENERIUM*.

14.1 Accès

Il se fait, à partir du menu principal par sélection de l'icône et appui sur la touche **OK**.

14.2 Ecran « Configuration»

A l'appel, l'écran se présente comme suit :

L'écran de configuration.

Si un mot de passe a déjà été défini, celui-ci est nécessaire préalablement à l'accès à l'écran Configuration. Pour ce faire, utiliser les touches ▼▲ pour modifier la valeur en surbrillance (fond noir) et ◀▶ pour changer la position du curseur. Appuyer sur OK pour valider. Si le mot de passe a été perdu, le logiciel *E.set* permet de le relire.

Le mot de passe est défini comme indiqué au paragraphe 14.5.5, en page 46). Le mot de passe par défaut est 0000.

Un mot de passe peut être demandé avant l'entrée à l'écran de Configuration.

14.3 Communication distante RS 485

Ces informations définissent les caractéristiques de la communication distante RS485 (voir paragraphe 20.3, en page 65) entre l'*ENERIUM* et l'équipement de relève.

Procéder comme suit :

- 1. L'écran Configuration est affiché.
- Sélectionner la ligne Communication distante avec les touches ▲▼ et appuyer sur OK pour afficher l'écran Communication distante.

L'écran Communication RS485.

14.3.1 Adresse JBus

- L'écran Communication distante étant affiché, appuyer sur OK pour sélectionner Adresse JBus.
- Appuyer sur **OK** pour sélectionner la valeur (adresse) à modifier.
- 3. Utiliser les touches ▼▲ pour modifier la valeur en surbrillance sur fond noir et ◀▶ pour changer la position du curseur. Les adresses admissibles vont de 001 à 247, bornes comprises.
- 4. Appuyer sur OK pour valider.

14.3.2 Vitesse (Bauds)

- Sélectionner la ligne Vitesse (Bds) avec les touches ▼▲ et appuyer sur OK.
- Utiliser les touches ▼▲ pour modifier la valeur affichée (vitesse de transmission en Bauds).
 Les valeurs prédéfinies sont 2400, 4800, 9600, 19200, 38400 et 115200.
- 3. Appuyer sur **OK** pour valider.

14.3.3 Parité

- Sélectionner la ligne Parité avec les touches
 ▼▲ et appuyer sur OK.
- Utiliser les touches ▼▲ pour modifier la valeur affichée (parité). Les valeurs prédéfinies sont Sans, Impaire et Paire.
- 3. Appuyer sur **OK** pour valider.

14.3.4 Bit de stop

- Sélectionner la ligne Bits de stop avec les touches ▼▲ et appuyer sur OK.
- Utiliser les touches ▼▲ pour modifier la valeur affichée (nombre de bits de stop). Les valeurs affichables sont 1 et 2.
- 3. Appuyer sur **OK** pour valider.

14.3.5 Retournement (ms)

- Sélectionner la ligne Retournement (ms) avec les touches ▼▲ et appuyer sur OK.
- 2. Utiliser les touches ▼▲ pour modifier la valeur affichée (temps de retournement en ms). Les valeurs affichables vont de 0 à 500 par pas de 50. Le temps de retournement, exprimé en millisecondes, correspond au temps d'attente entre le moment où la trame RS485 a été reçue et le moment où l'ENERIUM répond. Cette valeur est à définir en fonction du nombre d'ENERIUM connectés sur la ligne RS485 et la qualité du bus de terrain
- 3. Appuyer sur **OK** pour valider.

14.3.6 Retour

Appuyer une fois sur la touche ◀ pour retourner au menu « Configuration ».

Appuyer 2 fois sur la touche ◀ pour retourner au menu principal.

14.4 Communication distante Ethernet

Ces informations définissent les caractéristiques de la communication distante Ethernet (voir paragraphe 20.4, en page 66) entre l'*ENERIUM* et l'équipement de relève.

Procéder comme suit :

- 1. L'écran Configuration est affiché.
- Sélectionner la ligne Communication distante avec les touches ▼▲ et appuyer sur OK pour afficher l'écran Communication distante.

L'écran Communication Ethernet.

14.4.1 Adresse IP

- L'écran Communication distante étant affiché, appuyer sur OK pour sélectionner la ligne Adresse IP.
- 2. Appuyer sur **OK** pour sélectionner la valeur (adresse) à modifier.
- 3. Utiliser les touches ▼▲ pour modifier la valeur en surbrillance sur fond noir et les touches ◀▶ pour changer la position du curseur.
- 4. Appuyer sur **OK** pour valider.

14.4.2 Masque

- Sélectionner la ligne Masque avec les touches
 ▼▲ et appuyer sur OK.
- Utiliser les touches ▼▲ pour modifier la valeur en surbrillance sur fond noir et les touches ◀▶ pour changer la position du curseur.
- 3. Appuyer sur OK pour valider.

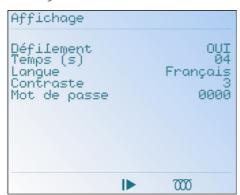
14.4.3 Passerelle

- Sélectionner la ligne Passerelle avec les touches ▼▲ et appuyer sur OK.
- Utiliser les touches ▼▲ pour modifier la valeur en surbrillance sur fond noir et les touches ◀▶ pour changer la position du curseur.
- 3. Appuyer sur **OK** pour valider.

14.4.4 Retour

Appuyer une fois sur la touche ◀ pour retourner au menu « Configuration ».

Appuyer 2 fois sur la touche ◀ pour retourner au menu principal.


14.5 Affichage

Ces informations définissent les caractéristiques d'affichage suivantes :

- Défilement: activation ou désactivation du défilement des écrans personnalisés.
- Temps: durée d'affichage de chacun des écrans personnalisés.
- · Langue : langue d'affichage des messages.
- Contraste : niveau de contraste de l'afficheur LCD.
- Mot de passe: définition d'un mot de passe d'accès à l'écran Configuration.

Procéder comme suit pour accéder à ces sousmenus :

- 1. L'écran Configuration est affiché.
- 2. Sélectionner la ligne Affichage avec les touches ▼▲ et appuyer sur OK pour afficher l'écran Affichage.

L'écran Affichage.

14.5.1 Défilement

Active ou désactive la possibilité de défilement des écrans de mesure ainsi que le temps d'affichage éventuel. Procéder comme suit :

 L'écran Affichage étant affiché, appuyer sur OK pour sélectionner Défilement.

- Appuyer sur **OK** pour sélectionner la valeur à modifier.
- 3. Utiliser les touches ▼▲ pour modifier la valeur affichée. Les valeurs affichables sont Oui et Non.

NON: les écrans d'affichage ne défileront pas. Seul l'écran manuellement sélectionné sera continuellement affiché.

OUI: les écrans d'affichage ayant été définis, par *E.view, E.set*, comme devant être affichés les uns à la suite des autres seront cycliquement affichés à une périodicité définie par la valeur Temps (voir cidessous). Ces écrans seront prédominants par rapport à l'affichage normal.

Tous les écrans de visualisation peuvent être mis dans cette liste, dans n'importe quel ordre et éventuellement plusieurs fois.

Il est possible de paramétrer un défilement automatique d'un maximum de 16 écrans de visualisation. La liste des écrans à faire défiler est configurable par l'intermédiaire de la communication locale ou distante.

Un appui sur n'importe quelle touche permet de bloquer le mode de défilement automatique et permet donc de naviguer dans les différents écrans avec les touches. Si aucune touche n'est appuyée pendant 10 secondes et que le mode de défilement automatique est toujours actif, alors les écrans défilent à nouveau automatiquement les uns après les autres.

4. Appuyer sur **OK** pour valider.

14.5.2 Temps (s)

Définit le temps d'affichage de chacun des écrans sélectionnés. Procéder comme suit :

- Sélectionner la ligne Temps (ms) avec les touches ▼▲ et appuyer sur OK.
- Utiliser les touches ▼▲ pour modifier la valeur soulignée et ◀▶ pour changer la position du curseur.

Les valeurs admissibles vont de 01 à 10.

3. Appuyer sur **OK** pour valider.

14.5.3 Langue

Définit la langue d'affichage des messages. Procéder comme suit :

- Sélectionner la ligne Language par exemple avec les touches ▼▲.
- Utiliser les touches ▼▲ pour modifier la langue active.

Les langues disponibles sont le français, l'anglais, l'espagnol, l'allemand et l'italien.

3. Appuyer sur **OK** pour valider.

14.5.4 Contraste

Définit le niveau de contraste de l'afficheur LCD. Procéder comme suit :

- 1. Sélectionner la ligne Contraste et appuyer sur OK.
- Utiliser les touches ▼▲ pour modifier le niveau de contraste. Un niveau 0 correspond à un écran pâle (contraste faible); un niveau 7 affiche un écran plus sombre (contraste fort).
- 3. Appuyer sur **OK** pour valider.

14.5.5 Mot de passe

Si le mot de passe est différent de « 0000 », (paramétrage en sortie d'usine correspondant à un accès libre), un mot de passe sera demandé lors de l'entrée dans l'écran de *Configuration*.

Procéder comme suit :

- Sélectionner la ligne Mot de passe avec les touches ▼▲ et appuyer sur OK.
- Utiliser les touches ▼▲ pour modifier la valeur en surbrillance (fond noir) et ◀▶ pour changer la position du curseur.

La plage des codes admissibles est celle de la table ASCII.

Si un code autre que 0000 est activé, l'accès à l'écran Configuration ne sera possible qu'après demande de ce mot de passe.

3. Appuyer sur **OK** pour valider.

Le mot de passe n'est actif que 30 secondes environ après sa définition. Ainsi, après un retour immédiat à l'écran d'accueil du menu de *Configuration*, ce dernier pourra être redéfini sans demande du mot de passe si les 30 secondes ne sont pas encore écoulées.

14.5.6 Retour

Il est impératif de retourner au menu principal par appuis successifs sur la touche ◀ de manière à quitter le mode *Configuration* et interdire l'accès à ce mode si un mot de passe a été entré (paragraphe 14.5.5, page 46).

Aucun retour automatique au menu principal n'est prévu. Toutefois, si l'alimentation électrique de la centrale de mesure est interrompue, la centrale redémarre sur le menu principal et non pas sur le dernier écran affiché comme habituellement.

14.6 Réseau électrique

Ces informations définissent les rapports de transformations des transformateurs de tension et de courant utilisés aux borniers des entrées tension et courant (voir paragraphe 20.2, en page 63).

En effet, toutes les mesures étant vues côté primaire des transformateurs client, les valeurs des transformateurs client sont paramétrées dans l'*ENERIUM*. Le produit du primaire de TC par le primaire de TP ne doit pas être supérieur à 693,0 MW (puissance triphasée maximale = $\sqrt{3}$ x 693 MW = 1,2 GW).).

Procéder comme suit :

- 1. L'écran Configuration est affiché.
- 2. La ligne Réseau électrique étant sélectionnée, appuyer sur **OK** pour afficher l'écran Réseau électrique.

L'écran Réseau électrique.

14.6.1 Primaire TP

Définit la tension maximale du primaire (tension composée) du transformateur de tension. Procéder comme suit :

- 1. L'écran Réseau électrique étant affiché, appuyer sur **OK** pour sélectionner Primaire TP.
- Appuyer sur **OK** pour sélectionner la valeur à modifier.
- Utiliser les touches ▼▲ pour modifier la valeur affichée et ◀▶ pour changer la position du curseur.

Cette valeur correspond à la tension de travail maximale indiquée sur le primaire du transformateur de tension.

Le primaire (en tension composée) du transformateur TP est compris entre 100 V et 650 000 V. Le primaire du TP peut être réglé par pas de 1 V.

4. Appuyer sur **OK** pour valider.

14.6.2 Secondaire TP

Définit la tension maximale du secondaire du transformateur de tension. Procéder comme suit :

- Sélectionner la ligne Secondaire TP avec les touches ▼▲ et appuyer sur OK.
- Utiliser les touches ▼▲ pour modifier la valeur soulignée et ◀▶ pour changer la position du curseur.

Cette valeur correspond à la tension de travail maximale indiquée sur le secondaire du transformateur de tension.

Le secondaire (tension composée) du transformateur TP est compris entre 100 V et 480 V. Le secondaire de TP peut être réglé par pas de 1 V.

3. Appuyer sur **OK** pour valider.

14.6.3 Primaire TC

Définit le courant maximal du primaire du transformateur de courant. Procéder comme suit :

- Sélectionner la ligne Primaire TC avec les touches ▼▲ et appuyer sur OK.
- Utiliser les touches ▼▲ pour modifier la valeur soulignée et ◀▶ pour changer la position du curseur.

Cette valeur correspond au courant de travail maximal indiqué sur le primaire du transformateur de courant.

Le primaire du transformateur TC est compris entre 1 A et 25 000 A. Le primaire TC peut être réglé par pas de 1 A.

3. Appuyer sur **OK** pour valider.

14.6.4 Secondaire TC

Définit le courant secondaire du transformateur de courant. Procéder comme suit :

- Sélectionner la ligne Secondaire TC avec les touches ▼▲ et appuyer sur OK.
- Utiliser les touches ▼▲ pour modifier la valeur soulignée.

Cette valeur correspond au courant de travail maximal indiqué sur le secondaire du transformateur de courant.

Le secondaire du transformateur TC est compris entre 1 A et 5 A. Le secondaire TC peut être réglé par pas de 1 A.

3. Appuyer sur **OK** pour valider.

14.6.5 3 fils / 4 fils

Définit le type de réseau à surveiller. Procéder comme suit :

- Sélectionner la ligne 3 fils / 4 fils avec les touches ▼▲ et appuyer sur OK.
- Utiliser les touches ▼▲ pour modifier la sélection affichée.

3 fils : neutre non distribué.

4 fils : neutre distribué.

3. Appuyer sur **OK** pour valider.

14.6.6 Retour

Appuyer sur la touche ◀ pour retourner à l'écran « Configuration ».

Appuyer deux fois sur la touche ◀ pour retourner au menu principal.

14.7 Valeurs par défaut

Ce tableau indique les valeurs par défaut du menu de Configuration à la livraison de l'appareil.

Communication RS 485 (*)		
Adresse	001	
Vitesse	9600	
Parité	Sans	
Bit de stop	1	
Retournement	50	

Communication Ethernet (*)			
Adresse IP	000.000.000		
Masque	255.255.000.000		
Passerelle	000.000.000		

(*) Les communications RS 485 et Ethernet ne peuvent être présentes en même temps.

Affichage	
Défilement	NON
Temps	03
Langue	Français
Contraste	3
Mot de passe	0000

Réseau électrique	
Primaire TP	400
Secondaire TP	400
Primaire TC	5000
Secondaire TC	5
3 fils / 4 fils	4 fils

14.8 Notes

Si certains paramètres sont modifiables directement à partir des touches de navigation de l'afficheur, d'autres ne peuvent être définis que par l'intermédiaire de la communication locale ou distante.

Pour la communication locale ou distante, consulter le chapitre 22, en page 73.

Le paramétrage par communication locale ou distante peut être effectué par les logiciels *E.set* ou *E.view*. Ils permettent le paramétrage (*E.set*) ou le paramétrage et la visualisation (*E.view*) à distance par l'intermédiaire d'une liaison numérique (RS485, modem, optique, etc.).

Tout autre logiciel ou automate compatible avec la norme ModBus RTU permet le paramétrage de l'*ENERIUM*.

Le lecteur se référera au manuel spécifique à cette application.

Il est admis que l'*ENERIUM* est alimenté (voir paragraphe 20.6, page 68) et raccordé aux équipements périphériques (voir chapitre 20, en page 63). Toutefois, le paramétrage peut être effectué sans que les équipements périphériques ne soient raccordés.

Pour des informations complémentaires relatives au protocole MODBUS/RTU et MODBBUS/JCP/RTU, contacter *ENERDIS* afin d'obtenir le document MSO-7388 – Mappings et mots de commande.

15. HARMONIQUES

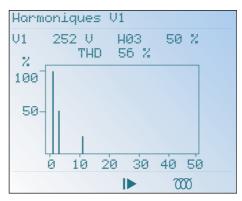
Cet écran affiche le menu des *Harmoniques* sur un *ENERIUM 150* uniquement. Il permet la visualisation graphique des harmoniques, rang par rang, des trois tensions simples, des trois tensions composées, des trois courants et des taux de distorsions correspondants.

15.1 Accès

Il se fait, à partir du menu principal par sélection de l'icône et appui sur la touche **OK**.

15.2 Ecran « Harmoniques »

A l'appel, l'écran se présente comme suit :


L'écran Harmoniques.

L'utilisation se fait comme suit

- 1. L'écran Harmonique est affiché.
- Sélectionner la ligne souhaitée avec les touches ▼▲
 et appuyer sur OK pour afficher l'écran
 correspondant. Se référer aux paragraphes suivants
 pour le détail.

15.2.1 Harmoniques V1

Appuyer sur la touche **OK** pour afficher les harmoniques et les données complémentaires relatives à la tension simple V1. L'affichage se présente, par exemple comme suit :

L'écran Harmoniques V1.

- L'axe horizontal indique les rangs des harmoniques et de 1 à 50 pour l'ENERIUM 150. Le rang 0 correspond à la composante continue et les rangs 1 à 50 correspondent aux harmoniques.
- L'axe vertical (0-100 %) indique le taux des harmoniques en pourcentage par rapport au fondamental (rang 1).
- V1 : tension simple instantanée en volts.
- Hxx: valeur en pourcentage relative à l'harmonique la plus importante relevée entre les rangs 1 et 50.
- THD: distorsion harmonique totale (voir formule utilisé au paragraphe 25.14, en page 90.

15.2.2 Harmoniques V2

Affiche les harmoniques et les données complémentaires relatives à la tension simple V2. Se référer au paragraphe 15.2.1 - Harmoniques V1, en page 49 pour le détail.

15.2.3 Harmoniques V3

Affiche les harmoniques et les données complémentaires relatives à la tension simple V3. Se référer au paragraphe 15.2.1 - Harmoniques V1, en page 49 pour le détail.

15.2.4 Harmoniques U12

Affiche les harmoniques et les données complémentaires relatives à la tension composée U12. Se référer au paragraphe 15.2.1 - Harmoniques V1, en page 49 pour le détail.

15.2.5 Harmoniques U23

Affiche les harmoniques et les données complémentaires relatives à la tension composée U23. Se référer au

paragraphe 15.2.1 - Harmoniques V1, en page 49 pour le détail.

15.2.6 Harmoniques U31

Affiche les harmoniques et les données complémentaires relatives à la tension composée U31. Se référer au paragraphe 15.2.1 - Harmoniques V1, en page 49 pour le détail.

15.2.7 Harmoniques I1

Affiche les harmoniques et les données complémentaires relatives au courant I1. Se référer au paragraphe 15.2.1 - Harmoniques V1, en page 49 pour le détail.

15.2.8 Harmoniques I2

Affiche les harmoniques et les données complémentaires relatives au courant I2. Se référer au paragraphe 15.2.1 - Harmoniques V1, en page 49 pour le détail.

15.2.9 Harmoniques I3

Affiche les harmoniques et les données complémentaires relatives au courant I3. Se référer au paragraphe 15.2.1 - Harmoniques V1, en page 49 pour le détail.

15.3 Retour

Appuyer deux fois sur la touche ◀ pour retourner au menu principal.

16. Fresnel et jauges

Cet écran affiche le menu de *Fresnel et jauges* sur un *ENERIUM 150* uniquement. Il permet la visualisation graphique :

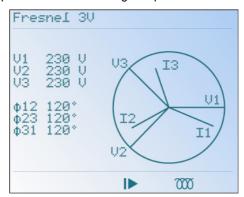
- Des trois tensions simples, composées et des courants sous la forme d'un diagramme de Fresnel.
- Des trois tensions simples, composées, des courants et des puissances (P1, P2, P3) sous la forme de bargraphes.

16.1 Accès

Il se fait, à partir du menu principal par sélection de l'icône () et appui sur la touche **OK**.

16.2 Ecran « Fresnel et jauges»

A l'appel, l'écran se présente comme suit :


L'écran Fresnel et jauges.

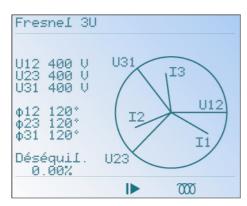
L'utilisation se fait comme suit

- 1. L'écran Fresnel et jauges est affiché.
- Sélectionner la ligne souhaitée avec les touches ▼▲
 et appuyer sur OK pour afficher l'écran
 correspondant. Se référer aux paragraphes suivants
 pour le détail.

16.2.1 Fresnel 3V

Appuyer sur la touche **OK** pour afficher le diagramme de Fresnel des trois tensions simples et les données complémentaires. L'affichage se présente comme suit :

Exemple d'un diagramme de Fresnel 3V.


Les informations sont les suivantes :

- V1 : tension simple instantanée V1 en volts.
- V2 : tension simple instantanée V2 en volts.
- V3 : tension simple instantanée V3 en volts.
- Φ12: déphasage, en degrés, de la tension simple V1 par rapport à la tension simple V2.
- Φ23 : déphasage, en degrés, de la tension simple V2 par rapport à la tension simple V3.
- Φ31 : déphasage, en degrés, de la tension simple V3 par rapport à la tension simple V1.

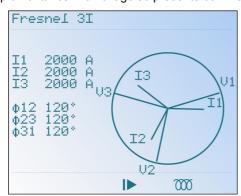
Appuyer sur la touche ◀ pour retourner à l'écran précédent.

16.2.2 Fresnel 3U

Appuyer sur la touche **OK** pour afficher le diagramme de Fresnel des trois tensions composées et les données complémentaires. L'affichage se présente comme suit :

Exemple d'un diagramme de Fresnel 3U.

Les informations sont les suivantes :


- U12 : tension composée instantanée U12 en volts. .
- U23 : tension composée instantanée U23 en volts.
- U31 : tension composée instantanée U31 en volts.
- Φ12: déphasage, en degrés, de la tension composée U12 par rapport à la tension composée U23.
- Φ23 : déphasage, en degrés, de la tension composée U23 par rapport à la tension composée U31.
- Φ31 : déphasage, en degrés, de la tension composée
 U31 par rapport à la tension composée U12.

L'indication **Déséquil**. Indique le taux de déséquilibre entre les tensions composées. Un réseau correctement équilibré possède un taux proche de zéro.

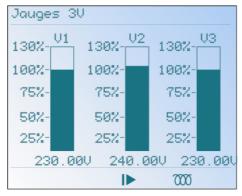
Appuyer sur la touche ◀ pour retourner à l'écran précédent.

16.2.3 Fresnel 3I

Appuyer sur la touche **OK** pour afficher le diagramme de Fresnel des trois courants et les données complémentaires. L'affichage se présente comme suit :

Exemple d'un diagramme de Fresnel 31.

Les informations sont les suivantes :


- I1 : courant instantané I1 en ampères.
- 12 : courant instantané 12 en ampères.
- 13 : courant instantané 13 en ampères.
- Φ12 : déphasage, en degrés, du courant simple l1 par rapport au courant l2.

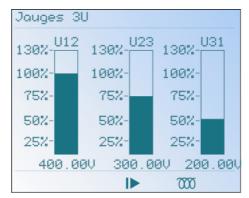
- Φ23 : déphasage, en degrés, du courant simple l2 par rapport au courant l3.
- Φ31 : déphasage, en degrés, du courant simple l3 par rapport au courant l1.

Appuyer sur la touche ◀ pour retourner à l'écran précédent.

16.2.4 Jauges 3V

Appuyer sur la touche **OK** pour afficher le bargraphe des trois tensions simples. L'affichage se présente ainsi :

Exemple d'un barographe 3V.

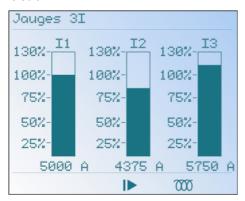

L'indication « 0 - 130 % » du bargraphe indique la valeur instantanée mesurée par rapport à la valeur primaire TP programmée dans Configuration / Réseau électrique.

Par exemple, pour un TP primaire programmé à 400 V, le 100% de la jauge correspond à $400 V/_{\sqrt{2}}$.

Appuyer sur la touche ◀ pour retourner à l'écran précédent.

16.2.5 Jauges 3U

Appuyer sur la touche **OK** pour afficher le bargraphe diagramme des trois tensions composées. L'affichage se présente comme suit :

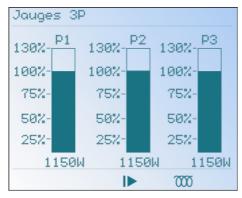

Exemple d'un bargraphe 3U.

L'indication « 0 - 130 % » du bargraphe indique la valeur instantanée mesurée par rapport à la valeur primaire TP programmée dans Configuration / Réseau électrique.

Par exemple, pour un TP primaire programmé à 400 V, le 100% de la jauge correspond à 400 V.

16.2.6 Jauges 3I

Appuyer sur la touche **OK** pour afficher le bargraphe diagramme des trois courants. L'affichage se présente comme suit :


Exemple d'un bargraphe 31.

L'indication « 0-130 % » du bargraphe indique la valeur instantanée mesurée par rapport à la valeur TC primaire programmée dans *Configuration / Réseau électrique*.

Par exemple, pour un TC primaire programmé à 5 000 A, le 100 % correspond à 5 000 A.

16.2.7 Jauges 3P

Appuyer sur la touche **OK** pour afficher le bargraphe diagramme des trois puissances actives. L'affichage se présente comme suit :

Exemple d'un barographe 3P.

L'indication « 0-130 % » du bargraphe indique la valeur instantanée mesurée par rapport aux valeurs primaires TC et TP programmées dans *Configuration / Réseau électrique*.

Par exemple, pour un TC primaire programmé à 5 000 A et un TP primaire programmé à 400 V, le 100 % correspond à $\frac{5000*400}{\sqrt{3}}$, soit 1 154,7 kW.

16.3 Retour

Appuyer deux fois sur la touche ◀ pour retourner au menu principal.

17. Courbes de Charge

Cette courbe n'est pas affichable sur l'écran de l'*ENERIUM* mais par l'intermédiaire d'une application spécifique (*E.view* ou toute application développée par l'utilisateur).

La centrale peut activer ou non l'enregistrement d'une courbe de charge. Cette courbe de charge enregistre de une à huit grandeurs parmi les dix grandeurs suivantes P+, P-, Q1, Q2, Q3, Q4, S+, S-, TOR1, et TOR2. Le temps d'intégration de ces grandeurs est paramétrable parmi les temps 5, 10, 12, 15, 20, 30 et 60 minutes.

Chaque enregistrement est composé d'un horodatage (date et heure), d'un statut et des grandeurs sélectionnées (huit au maximum). Les grandeurs sont toujours classées dans l'ordre suivant : P+, P-, S+, S-, Q1, Q4, Q2, Q3, TOR1 et TOR2.

La profondeur d'enregistrement est uniquement fonction du temps d'intégration paramétré. Le nombre de grandeurs sélectionnées ne modifie pas la profondeur d'enregistrement.

Tps (1)	5	10	12	15	20	30	60
Pfd (2)	17	34	40	51	68	102	204

(1): Temps d'intégration en minutes

(2): Profondeur d'enregistrement en jours.

Les logiciels *E.set* et *E.view* fournissent automatiquement la profondeur d'enregistrement selon le temps d'intégration sélectionné.

Le statut contient le marquage des événements suivants : perte de synchro, retour de synchro et changement de configuration et coupure secteur.

Il est possible de réinitialiser en totalité les courbes de charge par l'envoi d'un mot de commande sur la communication locale ou distante. Une entrée matérielle est affectée à une des grandeurs TOR1 à 2, par l'envoi d'un mot de commande sur la communication locale ou distante.

Pour des informations complémentaires, contacter *ENERDIS* pour obtenir :

- le document MSO-7389 relatif à la gestion des courbes de charge.
- le document MSO-7388 relatif au mapping et mots de commande.

18. Courbes d'enregistrement

Cette fonction n'est uniquement disponible que sur un ENERIUM 150.

Ces courbes ne sont pas affichables sur l'écran de l'ENERIUM mais par l'intermédiaire d'une application spécifique (E.view ou toute application développée par l'utilisateur).

Le produit peut enregistrer jusqu'à quatre courbes d'enregistrements. La période d'enregistrement peut être différente d'une courbe à l'autre. Cette période d'enregistrement est choisie, pour chacune des courbes, entre 1 et 59 secondes par pas de une seconde ou parmi les valeurs prédéfinies suivantes 1, 2, 3, 4, 5, 6, 10, 12, 15, 20, 30 et 60 min.

La profondeur d'enregistrement est uniquement fonction de la période d'enregistrement. Le système est conçu pour sauvegarder un maximum de 4 032 valeurs.

Exemple : pour une période d'enregistrement paramétrée à 1 seconde, le registre de stockage sera rempli au bout de 4 032 secondes, soit 1 heure, 7 minutes et 12 secondes.

Selon les périodes d'enregistrement admises de 1 seconde à 60 minutes, la période d'enregistrement va de 1 heure, 7 minutes et 12 secondes à 168 jours.

Les logiciels *E_Set* et *E_View* donnent automatiquement la profondeur d'enregistrement selon la période d'enregistrement sélectionnée.

18.1 Grandeurs enregistrées

Peuvent ainsi être enregistrées dans une courbe d'enregistrement les mesures suivantes :

- Tensions simples moyennes.
- · Tensions composées moyennes.
- Courants moyens.
- Courants à la seconde.
- Puissance active triphasée à la seconde.
- Puissance apparente triphasée à la seconde.
- Puissance réactive triphasée à la seconde.
- Facteur de puissance global à la seconde.
- Facteur de déséguilibre à la seconde.

- Puissances actives moyennes sur chacune des phases et triphasées en mode générateur et en mode récepteur.
- Facteurs de puissance moyens sur chacune des phases et globaux en mode générateur et en mode récepteur.
- Cos(φ) moyens sur chacune des phases et global en mode générateur et en mode récepteur.
- Les TAN (φ) moyennes triphasé en mode générateur et récepteur.
- Fréquence moyenne.
- Facteurs de crête moyens.
- THD moyens en tension simple, en tension composée et en courant de chacune des phases.

18.2 Les modes de synchronisation

Il existe trois types de synchronisation pour gérer le lancement ou l'arrêt des enregistrements des grandeurs électriques préalablement sélectionnées:

- Pour le premier type appelé "Synchronisation sur date", l'enregistrement des données commence ou s'arrête lorsque l'ENERIUM atteint la date et l'heure programmées.
- Pour le second type appelé "Synchronisation sur entrée TOR", l'enregistrement des données commence ou s'arrête lorsque l'entrée TOR sélectionnée change d'état.
- Pour le troisième type appelé "Synchronisation sur alarme", l'enregistrement des données commence ou s'arrête lorsque l'alarme globale sélectionnée est activée.

18.3 Modes de fonctionnement des courbes d'enregistrement

Il existe cinq modes de fonctionnement des courbes d'enregistrement :

- Mode sans arrêt: les enregistrements s'effectuent de façon circulaire dans la courbe, l'enregistrement le plus ancien étant effacé par le dernier enregistrement (courbe de type FIFO). Dans ce mode, les trois types de synchronisation sont autorisés pour le lancement de l'enregistrement. Par contre, seule l'écriture d'un mot de commande sur la communication distante ou locale peut arrêter l'enregistrement des données.
- Mode avec arrêt sur buffer plein : les trois types de synchronisation sont autorisés pour le lancement de l'enregistrement. L'enregistrement s'arrête lorsque le registre de stockage est plein.
- Mode avec arrêt immédiat sur synchro: les enregistrements s'effectuent également de façon circulaire dans la courbe, l'enregistrement le plus ancien étant effacé par le dernier enregistrement (courbe de type FIFO). L'enregistrement débute dès qu'une grandeur est affectée à la courbe. L'écriture d'un mot de commande sur la communication distante ou locale, une "Synchro sur entrée TOR" ou encore une "Synchro sur alarme" peut arrêter immédiatement l'enregistrement des données.
- Mode avec arrêt sur synchro centré 25%-75%: les enregistrements s'effectuent de la même manière que dans le troisième mode. Mais l'arrêt de l'enregistrement intervient seulement lorsque 75 % de la courbe d'enregistrement contient les données enregistrées après la commande d'arrêt, qui peut être l'écriture d'un mot de commande sur la communication distante ou locale, une "Synchro sur entrée TOR" ou encore une "Synchro sur alarme".
- Mode avec arrêt sur synchro centré 50%-50%: les enregistrements s'effectuent de la même manière que dans le troisième mode. Mais l'arrêt de l'enregistrement intervient lorsque 50 % de la courbe d'enregistrement contient les données enregistrées après la commande d'arrêt, qui peut être l'écriture d'un mot de commande sur la communication distante ou locale, une "Synchro sur entrée TOR" ou encore une "Synchro sur alarme".

18.4 Indicateurs de la courbe d'enregistrement

Etat de la courbe d'enregistrement

Cet indicateur permet de connaître l'état de la courbe d'enregistrement. L'état est :

- "Non programmé" si la courbe n'est pas programmée, c'est-à-dire si la grandeur affectée à la courbe est "aucune".
- "En attente" si une courbe est programmée et en attente de la synchro de départ.
- "En cours" si la courbe enregistre périodiquement des valeurs.
- "Terminé" si une commande d'arrêt est arrivée ou si la courbe s'est arrêtée d'elle-même.

Taux de remplissage de la courbe

Cet indicateur permet de connaître le taux de remplissage de la courbe. Pour les courbes gérées en mode FIFO, ce taux reste bloqué à 100%, lorsque les enregistrements écrasent les plus anciens.

Lors de la programmation d'une nouvelle courbe d'enregistrement, cela entraîne automatiquement l'arrêt et la remise à zéro de la courbe précédemment en cours d'enregistrement ou enregistrée. La remise à zéro d'une courbe de tendance peut être lancée en "manuel", par l'écriture d'un mot de commande sur la communication distante ou locale.

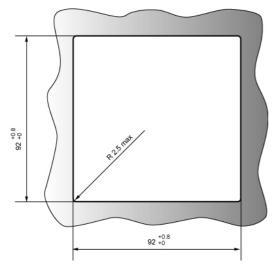
Toutes les courbes programmées reprennent leurs enregistrements après une coupure de la source auxiliaire, sans effectuer de marquage.

Il est possible d'arrêter immédiatement l'enregistrement d'une courbe par l'envoi d'un mot de commande sur la communication locale ou distante.

La mise à l'heure du produit n'entraîne aucun changement des programmations. De plus, aucun marquage n'est réalisé dans les courbes en cas de changement d'heure.

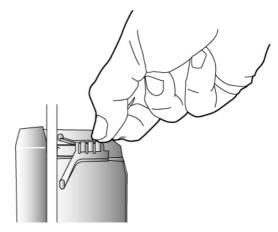
Pour plus d'information, contacter ENERDIS pour obtenir le document MSO-7390 relatif aux courbes d'enregistrement et le document MSO-7388 relatif au mapping et mots de commande.

Installation


19. MONTAGE MECANIQUE

Ce chapitre détaille le montage mécanique de l'ENERIUM. Les cotes dimensionnelles sont présentées au paragraphe 24.9, en page 84.

19.1 Découpe


Le montage de cette version se fait exclusivement sur panneau. Procéder comme suit :

 Réaliser une découpe comme indiqué en figure suivante.

Cotes dimensionnelles de la découpe du panneau.

- Insérer l'ENERIUM dans la découpe, par la partie externe.
- 3. Glisser les deux fixations de tableau et les pousser jusqu'à maintien correct de l'*ENERIUM*.

Mise en place d'une fixation de tableau, en soulevant l'extrémité avant de la glisser comme indiqué ci-dessus.

19.2 Suite des opérations

Elle consiste au montage électrique de *l'ENERIUM* et de ses éléments annexes (transformateurs de tension, transformateurs de courant, etc.).

20. RACCORDEMENT ELECTRIQUE

Ce chapitre détaille le montage électrique de l'ENERIUM.

20.1 Remarques préalables

20.1.1 Précautions de sécurité

Avant de procéder à l'installation électrique de l'équipement et de ses éléments périphériques, vérifier le l'alimentation électrique est débranchée et cadenassée conformément aux règles de l'art et de la sécurité.

20.1.2 Valeurs maximales applicables

Se référer au *Chapitre 24 - Caractéristiques techniques*, en page 79.

A noter que tout dépassement des valeurs maximales applicables peut entraîner une détérioration définitive de l'appareil.

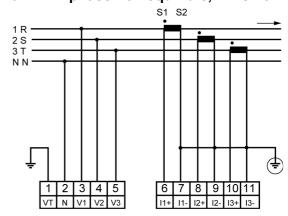
20.1.3 Protection des entrés U et I

L'insertion de fusibles sur les entrées tension ainsi qu'un système de court-circuitage des entrées courant est fortement recommandé.

20.1.4 Câbles et borniers

Les connexions sont effectuées sur :

- Des borniers à vis démontable pour câbles de 2,5 mm² pour les cartes optionnelles et la communication distance RS485.
- Des borniers à vis fixes pour câbles de 2,5 mm² pour l'alimentation électrique de la centrale et les entrées de mesure de tension.
- Des borniers à vis fixes pour fils rigides ou fils souples de section 6 mm² pour les entrées de mesure de courant.

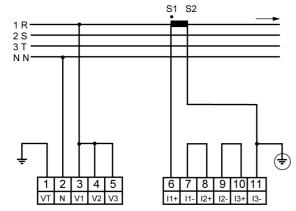

20.1.5 Précautions contre les parasites électriques

Bien que l'ENERIUM soit immunisé contre les perturbations électriques courantes, il est souhaitable d'éviter la proximité immédiate d'organes générateurs de forts parasites électriques (contacteurs de forte puissance, jeux de barre, etc.). La qualité de la communication sur le bus informatique dépend beaucoup du respect de ces précautions

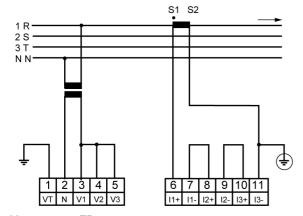
20.2 Connexion des entrées tensions et courants

Les entrées tension et courant seront connectées en fonction du type de montage sélectionné. Voir le paragraphe 7.2 en page 19, pour la localisation du bornier et le détail technique. Les abréviations sont comme suit :

20.2.1 Triphasé non équilibré, 4 fils - 3 TC

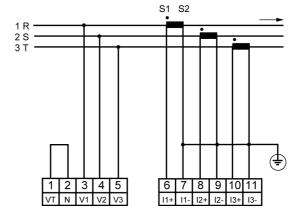


Montage sans TP.

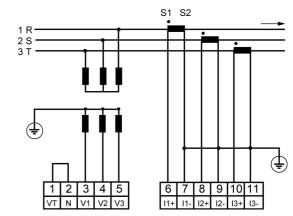

S1 S2 1 R 2 S 3 T N N 1 2 3 4 5 VT N V1 V2 V3 6 7 8 9 10 11 11+ 11- 12+ 12- 13+ 13-

20.2.2 Triphasé équilibré, 4 fils - 1 TC

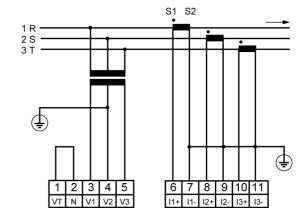
Montage avec TP en étoile.



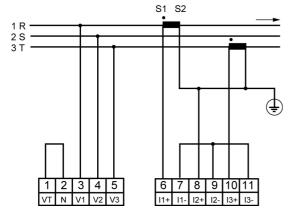
Montage sans TP.



Montage avec TP.

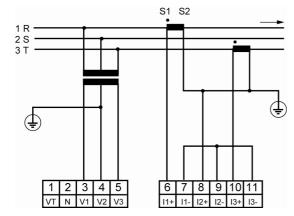

20.2.3 Triphasé non équilibré, 3 fils - 3 TC

Montage sans TP.

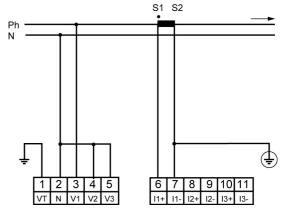


Montage avec TP en étoile.

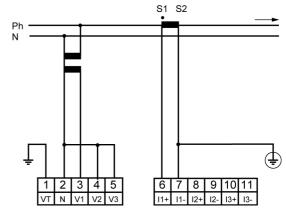
Montage avec TP en triangle.


20.2.4 Triphasé non équilibré, 3 fils - 2 TC

Montage sans TP.



Montage avec TP en étoile.



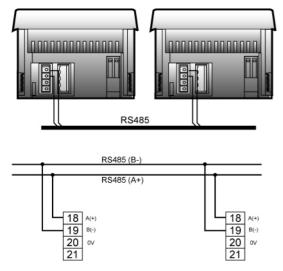
Montage avec TP en triangle.

20.2.5 Montage monophasé

Montage sans TP.

Montage avec TP.

20.3 Connexion RS485

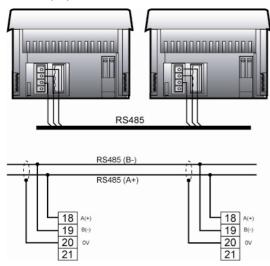

La sortie *RS485* ne peut être présente lorsque la carte *Ethernet* est présente.

Seul des essais sur le réseau réel pourront valider la meilleure combinaison (vitesse, longueur du réseau, adaptation d'impédance, etc.).

Voir le paragraphe 7.5, en page 22 pour la localisation du bornier et le détail technique.

20.3.1 En milieu non perturbé

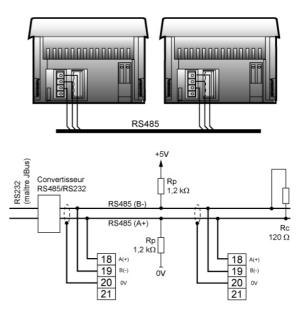
Pour un réseau RS485 en milieu électrique non perturbé, il faudra utiliser, si possible, un câble en paire torsadée. Ce câble sera relié aux bornes 18 (A+) et 19 (B-). La convention adoptée pour les bornes (A) et (B) correspond à la norme El485 (§ 3.2) précisant qu'un niveau logique « 1 » sur la ligne correspond à VB>VA et un niveau logique « 0 » correspond à VA>VB.



Connexion de la liaison RS485 (raccordement standard).

20.3.2 En milieu perturbé

Avec blindage

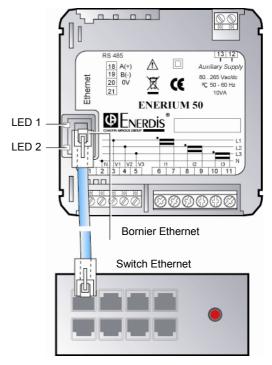

Dans le cas d'un environnement électrique particulièrement perturbé, il faudra utiliser une paire torsadée blindée et relier le blindage de ce câble à la borne 0 V (20) de l'*ENERIUM*.

Connexion de la liaison RS485 en milieu électrique perturbé (présence d'un blindage).

Avec blindage et résistances (polarisation et charge))

Afin d'améliorer la qualité de la transmission en milieu perturbé, il est de plus possible de polariser la ligne en un unique point. Cette polarisation impose le niveau de repos en l'absence de transmission par deux résistances de 1,2 k Ω , entre la ligne du 0 V et la ligne du 5 V. Ces résistances sont parfois incluses dans les convertisseurs RS485/RS232. Il est parfois nécessaire de réaliser l'adaptation de la ligne en raccordant, aux deux extrémités du bus, une résistance de 120 Ω .

Connexion de la liaison RS485 en milieu électrique perturbé avec résistances de charge et de polarisation.


20.4 Connexion d'Ethernet

La sortie *Ethernet* ne peut être présente lorsque la carte RS485 est présente.

Relier la prise *Ethernet RJ45* de chacun des *ENERIUM* à une entrée RJ45 d'un switch (ou hub) par l'intermédiaire d'un câble Ethernet (câble droit pour le raccordement à un switch, câble croisé pour le raccordement à un PC).

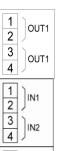
Voir le paragraphe 7.6, en page 22 pour la localisation du bornier et le détail technique.

Connexion de la liaison Ethernet à un switch.

20.4.1 LED 1: LED de connexion

Couleur	Signification
Eteinte	Pas de connexion.
Orange	Connexion à 10 Mb par seconde.
Verte	Connexion à 100 Mb par seconde.

20.4.2 LED 2 : LED d'activité


Couleur	Signification
Eteinte	Pas d'activité.
Orange	Half duplex.
Verte	Full duplex.

20.5 Connexion des cartes d'entrées et de sorties

Ces cartes sont optionnelles.

Les figures suivantes représentent les étiquettes associées aux différentes cartes optionnelles.

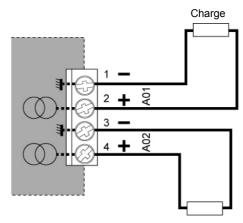
Etiquette carte option 2 sorties TOR

Etiquette carte option 2 entrées TOR

Etiquette carte option 1 entrée TOR et 1 sortie TOR

Etiquette carte option 2 sorties analogiques

20.5.1 Carte 2 sorties analogiques



Il sera indispensable de paramétrer cette carte par la communication locale ou distante.

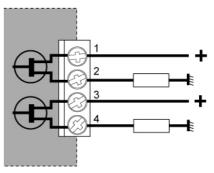
Voir le paragraphe 7.4.1, en page 20 pour le détail technique relatif à ces sorties analogiques.

Connecter la charge et le câble de liaison comme suit :

Sortie carte	Borne	Fonction
A01	1	Point froid sortie analogique A01.
A01	2	Point chaud sortie analogique A01.
A02	3	Point froid sortie analogique A02.
A02	4	Point chaud sortie analogique A02.

Connexion des sorties analogiques.

20.5.2 Carte 2 sorties TOR



Se référer au paragraphe 7.4.2, en page 21 pour le détail technique relatif à ces sorties TOR.

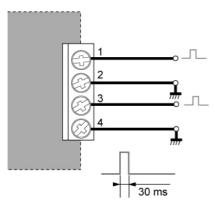
Il sera indispensable de paramétrer cette carte par la communication locale ou distante.

Connecter la charge et le câble de liaison comme suit :

Sortie carte	Borne	Fonction
OUT1	1-2	Sortie TOR n°1.
OUT2	3-4	Sortie TOR n°2.

Exemple de connexion des sorties tout ou rien. Les polarités sur les bornes 1-2 ou 3-4 sont indifférentes.

20.5.3 Carte 2 entrées TOR



Voir le paragraphe 7.4.3, en page 21 pour le détail technique relatif à ces entrées TOR.

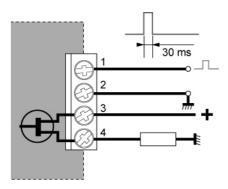
Il sera indispensable de paramétrer cette carte par la communication locale ou distante.

Connecter le signal d'entrée au câble de liaison comme suit:

Entrée carte	Borne	Fonction
IN1	1-2	Entrée signal A et masse. Polarités indifférentes.
IN2	3-4	Entrée signal B et masse. Polarités indifférentes.

Exemple de connexion des entrée tout ou rien (TOR) en mode impulsionnel. Les polarités sur les bornes 1-2 ou 3-4 sont indifférentes.

20.5.4 Carte 1 entrée TOR et 1 sortie TOR



Voir le paragraphe 7.4.4, en page 21 pour le détail technique.

Il sera indispensable de paramétrer cette carte par la communication locale ou distante.

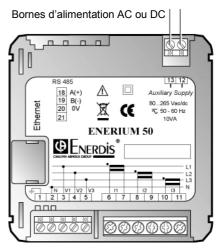
Connecter l'entrée et la sortie comme suit :

Sortie carte	Borne	Fonction
IN1	1	Voir paragraphe 20.5.3.
IN2	2	_
OUT3	3	Voir paragraphe 20.5.2.
OUT4	4	_

Exemple de connexion de l'entrée et de la sortie logiques. Les polarités sur les bornes sont indifférentes.

20.6 Connexion de la source auxiliaire

Attention : l'*ENERIUM* est livré avec l'un de ces deux types d'alimentation. Le type d'alimentation est notifié sur l'étiquette arrière.


20.6.1 Alimentation haut niveau

Borne 12	Polarité indifférente. Voir le paragraphe 7.3, en
Borne 13	page 20 pour le détail technique.

20.6.2 Alimentation continue bas niveau

Borne 12	Polarité indifférente. Voir le paragraphe 7.3, en
Borne 13	page 20 pour le détail technique.

Connecter l'alimentation électrique alternative ou continue comme illustré ci-après.

Connexion de l'alimentation.

Une protection par fusible est impérative.

Utilisation

21. MODE OPERATOIRE

21.1 Procédure complète

Ce paragraphe détaille la procédure complète d'utilisation d'un *ENERIUM*.

21.1.1 Montage mécanique

Se référer au chapitre 19, en page 61.

21.1.2 Montage électrique

Se référer au chapitre 20, en page 63.

21.1.3 Paramétrage

Se référer au chapitre 14, page 43.

21.1.4 Consultation des mesures

Utiliser l'une des méthodes suivantes :

Type d'ENERIUM	Voir §		
Manuellement sur l'afficheur	Chapitre « Description logicielle », page 23		
Localement (PC et liaison optique)	22, page 73		
A distance par liaison RS485	22, page 73		
A distance par liaison Ethernet	22, page 73		

21.2 Comment faire pour ...

21.2.1 Afficher les informations

Afficher	§	Page
Adresse ModBus (définir)	14.3	43
Adresse ModBus (lire)	11.3.1	37
Adresse Ethernet (définir)	14.4	44
Adresse Ethernet (lire)	11.3.1	37
Affichage (défilement et temps)	14.5	45
Alarmes (remise à zéro)	12.3.2	40
Alarmes actives sur sortie TOR	12.3.1	39
Bit de stop (RS485)	14.3	43

Afficher	§	Page
Configurer le boîtier	21.1.3	71
Courants (I)	9.3.3	30
Courants moyens maximum	9.3.4	30
Courbe de charge	17	55
Courbe d'enregistrement	18	57
Date système	11.3.3	38
Défilement automatique écrans	14.5	45
Diagramme de Fresnel	16.2	51
Ecrans personnalisés	13.2	41
Energie active EP+	10.3.1	33
Energie active EP1	10.3.2	33
Energie apparente	10.3.7	34
Energie réactive	10.3.3	34
Ethernet – définir adresse IP	14.4	44
Ethernet – lire adresse IP	11.3.1	37
Fresnel (diagramme)	16.2	51
Harmonique de la tension Ph-Ph	9.3.9	31
Harmonique du courant (I)	9.3.10	31
Heure système	11.3.3	38
Jauges	16.2.4	52
Langue d'affichage	14.5.3	45
Mot de passe	14.5.5	46
Numéro de série du boîtier	11.3.1	37
Numéro de version du logiciel	11.3.1	37
Parité (RS485)	14.3	43
Puissance moyenne (P, S)	9.3.6	30
Puissances (S, P, Q, FP)	9.3.5	30
Réseau électrique	14.6	46
Remise à zéro des alarmes	12.3.2	40
Retournement (temps – RS485)	14.3	43
RS485 (paramétrage)	14.3	43
Temps de fonctionnement boîtier	11.3.2	38
Temps de présence du réseau	11.3.2	38
Temps en charge	11.3.2	38

Afficher	§	Page
Tensions Ph-N (U)	9.3.1	29
Tensions Ph-Ph (V)	9.3.2	29
THD de la tension Ph-Ph	9.3.7	30
THD du courant (I)	9.3.8	31
Type Enerium	11.3.1	37
Vitesse de transmission RS485	14.3	43

21.2.2 Modifier les paramètres

Afficher	§	Page
Communication distante RS 485 *	14.3	43
Communication distante Ethernet *	14.4	44
Affichage	14.5	45
Réseau électrique	14.6	46

 $^{(\}sp{*})$ Les interfaces RS 485 et Ethernet ne peuvent présentes en même temps.

22. COMMUNICATION LOCALE OU DISTANTE

La communication locale ou distante, soit par l'intermédiaire de l'application *E.set* ou *E.view*, soit à partir de toute application spécifique utilisant le protocole ModBus en mode RTU, (Interfaces optique ou RS485) ou Modbus TCP en mode RTU (Interface Ethernet), permet le paramétrage et la relève de l'ENERIUM.

Pour des informations complémentaires relatives au protocole ModBus/RTU et ModBus/TCP/RTU, contacter ENERDIS pour obtenir le document MS0-7388 – Mapping et mots de commande.

22.1 Applications *E.set* et *E.view*

Le lecteur doit se référer au manuel de référence spécifique à ces deux logiciels.

22.2 Application spécifique compatible ModBus/RTU

22.2.1 Communication locale par l'interface optique

Le support de communication est décrit aux paragraphes 6.3 et 6.4, en pages 16 et 17.

La communication est effectuée en mode half duplex.

Les fonctions implémentées dans les produits sont :

- Fonction 03 : Lecture de N mots.
- Fonction 04 : Lecture de N mots.
- Fonction 08 : Lecture des compteurs de diagnostic (Pour le détail voir ci-dessous).
- Fonction 16 : Ecriture de N mots.

Les compteurs de diagnostics sont :

- Remise à zéro des compteurs.
- Nombre de trames recues sans CRC.
- Nombre de trames reçues avec CRC.
- Nombre de réponses d'exception.

- Nombre de trames adressées à la station (hors diffusion).
- Nombre de demandes de diffusion reçues.
- Nombre de réponse NAQ.
- Nombre de réponse esclave non prêt.
- Nombre de caractères non traités.
- Nombre de réponses hors fonction 8.

Le format de transmission est figé comme suit :

- Vitesse de 38400 bauds.
- 1 bit de start
- 8 bits de données.
- Sans parité.
- 1 bit de stop.
- Temps de retournement de 0 ms (voir le paragraphe 22.2.2, en page 73, pour le temps de traitement interne)

La centrale répond à tous les numéros d'esclave entre 1 et 247.

Il est également possible de télécharger, via uniquement l'interface optique, une nouvelle application dans la centrale. Dans ce cas, un protocole différent de *ModBus* est utilisé.

22.2.2 Communication distante par l'interface RS485

Le support de communication est décrit au paragraphe 7.5, en page 22.

La communication est effectuée en mode half duplex.

Les fonctions implémentées dans les produits sont :

- Fonction 03 : Lecture de N mots.
- Fonction 04 : Lecture de N mots.
- Fonction 08 : Lecture des compteurs de diagnostic (Pour le détail voir ci-dessous).
- Fonction 16 : Ecriture de N mots.

Les compteurs de diagnostics sont :

- Remise à zéro des compteurs.
- Nombre de trames reçues sans CRC.

- Nombre de trames recues avec CRC.
- Nombre de réponses d'exception.
- Nombre de trames adressées à la station (hors diffusion).
- Nombre de demandes de diffusion reçues.
- Nombre de réponse NAQ.
- Nombre de réponse esclave non prêt.
- Nombre de caractères non traités.
- Nombre de réponses hors fonction 8.

Le traitement d'une trame adressée à l'esclave 00 (c'està-dire à tous les esclaves présents sur le réseau) est réalisé. Le produit ne renvoie alors aucune réponse.

Le format de transmission est figé avec 1 bit de start et 8 bits de données. Par contre, le numéro d'esclave, la parité, le nombre de bits de stop, le temps de retournement et la vitesse de transmission sont paramétrables.

L'adresse du produit sur le réseau *ModBus* est paramétrable de 1 et 247, par pas de 1.

La vitesse de communication est paramétrable parmi les valeurs 2400, 4800, 9600, 19200, 38400 et 115 200 bauds.

La parité de communication est paramétrable parmi les valeurs suivantes paire, impaire et sans parité.

Le nombre de bits de stop de communication est paramétrable parmi les valeurs 1 et 2.

Le temps de retournement est un temps d'attente entre la réception du dernier des trois caractères de fin de trame et l'émission du premier caractère de la trame de réponse. Le temps de retournement est paramétrable de 0 à 500 ms, par pas de 50 ms.

Nota : un temps de retournement configuré de 0 ms n'est pas le temps réel de retournement, qui est alors égal au temps de traitement interne de la trame, soit environ 35 ms. Pour les autres valeurs, le temps paramétré est le temps réel de retournement.

Les valeurs par défaut font l'objet du paragraphe 14.7, en page 47.

22.2.3 Communication distante par l'interface Ethernet

Le support de communication est décrit au paragraphe 7.6, en page 22.

Selon l'état du réseau, la communication est effectuée en mode half ou full duplex.

Une adresse IP valant 000.000.000.000 configure l'ENERIUM en DHCP (Dynamic Host Configuration Protocol). Une adresse IP est alors automatiquement assignée au produit par le serveur DHCP du réseau.

Pour déterminer l'adresse IP et le masque attribués, il faut utiliser les application *E.set* ou *E.view* et lancer la commande *Recherche* sous *Réseau/Nouveau canal* avec *Type de canal* paramétré à *Ethernet* et *Numéro de port* défini à 502.

Connaissant le numéro de série de l'équipement recherché, il suffit d'établir la correspondance entre l'adresse IP et le numéro de série pour connaître l'adresse IP de l'équipement.

Il est possible de paramétrer l'adresse IP, le masque de sous-réseau et la passerelle par l'IHM (voir paragraphe 14.4, en page 44) ou par la communication locale ou distante.

23. MAINTENANCE

Aucune pièce électronique ou électrique n'étant échangeable par l'utilisateur final, la centrale de mesure devra être retournée au centre de réparation et de service après vente *Manumesure*.

Caractéristiques techniques

24. CARACTERISTIQUES

L'ENERIUM mesure et calcule plus de 50 grandeurs électriques. Toutes ces grandeurs sont des valeurs efficaces (RMS).

Les grandeurs dites instantanées sont rafraîchies toutes les secondes, sauf pour les THD, qui le sont toutes les six secondes.

Les grandeurs mini et maxi sont réactualisées si besoin chaque seconde.

Les grandeurs moyennes sont calculées sur un temps programmable allant de 0 à 30 minutes. Cette grandeur est rafraîchie à chaque dixième de période.

24.1 Mesures

	18	MIN	MAX	MOY	MIN MOY	MAX MOY
V1, V2, V3, Vterre	•	•	•	•		•
U12, U23, U31	•	•	•	•		•
I1, I2, I3, In	•	•	•	•		•
P1, P2, P3	•		• (1)	• (1)		
Pt	•	• (1)	• (1)	• (1)		• (1)
Q1, Q2, Q3	•		• (1)	• (1)		
Qt	•	• (1)	• (1)	• (1)		• (1)
S1, S2, S3	•		•	•		
St	•		•	•		•
FP1, FP2, FP3	•			• (1)		
FPt	•			• (1)		• (1)
Cosφ1, Cosφ2, Cosφ3,	•			• (1)		
Cosφt,	•			• (1)	• (1)	• (1)
Tan φ,	•			• (1)	• (1)	• (1)
Fréquence	•	•	•	•		
Facteur crête V1, V2, V3	•			•		•
Facteur crête I1, I2, I3	•			•		•
Déséquilibre U	•			•		•
Harmonique (2) 1 à 50 V1, V2, V3, U12, U23, U31, I1, I2, I3	•					•
THD V1, V2, V3, U12, U23, U31, I1, I2, I3	•			•		•
Compteurs horaires : présence réseau, en charge, source auxiliaire	•					
Energie Active, Récepteur, Générateur	•					
Energie Réactive Qcad1 Qcad2, Qcad3, Qcad4	•					
Energie apparente, récepteur, générateur	•					
Entrée impulsion de comptage TOR1, TOR2	•					

⁽¹⁾ mesure également en mode générateur et récepteur (2) jusqu'au rang 25 pour ENERIUM 50

24.2 Courbes de charge

Valeurs moyennes	
Pt Gen, Pt Rec	•
Qcad1 Qcad2, Qcad3, Qcad4	•
St Gen, St Rec	•
Entrées TOR1, TOR2,	•

24.3 Alarmes

Valeurs 1 sec	
V1, V2, V3, Vterre	•
U12, U23, U31	•
I1, I2, I3, In	•
Pt	•
Qt	•
St	•
FPt	•
Cos ot	•
Tan φ	•
Fréquence	•
Déséquilibre U	•
3 compteurs horaires : présence réseau, en charge, source Aux.	•
Valeurs moyennes	
Pt Gen, Qt Rec	•
Qt Gen, Qt Rec	•
St	•

24.4 Sorties analogiques

Valeurs 1 sec	
V1, V2, V3, Vterre	•
U12, U23, U31	•
I1, I2, I3, In	•
P1, P2, P3	•
Pt	•
Q1, Q2, Q3	•
Qt	•
S1, S2, S3	•
St	•

FP1, FP2, FP3	•
FPt	•
Cos \phi1, Cos \phi2, Cos \phi3	•
Cos ot	•
Tan φ	•
Fréquence	•

24.5 Courbes d'enregistrement

(non disponibles sur ENERIUM 50)

(Horr disponibles sur ENERTOW 60)	
Valeurs 1 sec	
I1, I2, I3, In	•
Pt	•
Qt	•
St	•
FPt	•
Déséquilibre U	•
THD V1, V2, V3	•
THD U12, U23, U31	•
THD I1, I2, I3	•
Valeurs moyennes	
V1, V2, V3,	•
I1, I2, I3, In	•
P1 Gen, P1 Rec, P2 Gen, P2 Rec, P3 Gen, P3 Rec, Pt Gen, Pt Rec	•
FP1 Gen, FP1 Rec, FP2 Gen, FP2 Rec, FP3 Gen, FP3 Rec, FPt Gen, FPt Rec	•
Cosφ1 Gen, Cosφ1 Rec, Cosφ2 Gen, Cosφ2 Rec, Cosφ3 Gen, Cosφ3 Rec, Cosφt Gen, Cosφt Rec	•
Fréquence	•
Facteur crête V1, V2, V3	•
Facteur crête I1, I2, I3	•
THD U12, U23, U31	•
THD I1, I2, I3	•
THD V1, V2, V3	•

24.6 Electriques

24.6.1 Afficheur

- Afficheur LCD, monochrome (128 lignes, 160 pixels), rétroéclairé par DEL blanches. Contraste ajustable par communication locale ou distante ou via le clavier local.
- Sur le menu principal, affichage de 6 à 8 icônes permettant la sélection aisée des grandeurs à visualiser.
- Affichage des grandeurs V, U, I, F, P, Q, S, FP, Tan φ, THD, des énergies et des harmoniques.
- Affichage de pictogrammes (alarme, ordre des phases, communication, défilement automatique, réseau inductif, réseau capacitif, réseau générateur),
- Affichage des textes dans 5 langues (allemand, anglais, espagnol, français, italien).
- Forçage possible de l'écran après mise sous tension par communication locale ou distante.
- Défilement automatique d'écrans spécifiques à l'utilisateur.

24.6.2 Touches

- Touche « OK » de validation de choix.
- Joystick (4 touches ▲▼◀▶) de sélection et de navigation.

24.6.3 Entrées mesures tension

Variable	Plage
Tension simple nominale	57,7 / 230 V
Tension composée nominale	100 V / 400 V
Tension composée maximale	120 V / 480V (soit 100/400V +20%)
Facteur de crête	2
Fréquence	42,5Hz (soit 50Hz ^{-15%}) à 69Hz (soit 60Hz ^{+15%})
Tension composée maximale de mesure	650,0kV (vu côté primaire du transformateur client)
Surtension permanente	2 fois la tension composée d'entrée nominale, soit 800V.
Consommation par phase	<0,2 VA
Impédance	500 kΩ
Bornes non débrochables	5 points de raccordement. Bornes à vis, à cage mobile.
	Connexion de fils rigides ou souples de 0 à 2,5 mm ² (22-14 AWG).
	Couple de serrage maximum admissible sur la borne : 0,4 Nm.
Plage de réglage	TP primaire de 100 V à 650 000 V par pas de 1 V.
	TP secondaire de 100 V à 480 V par pas de 1 V.

24.6.4 Entrées mesures courant

24.0.4 Littlees illesures courant		
Variable	Plage	
Courant d'entrée nominal	5 A	
Courant d'entrée maximal	6,5A (soit 5A ^{+30%})	
Facteur de crête	3	
Fréquence	42,5Hz (soit 50Hz ^{-15%}) à 69Hz (soit 60Hz ^{+15%})	
Courant maximal de mesure	25,0 kA (vu côté primaire du transformateur client).	
Consommation	<0,15 VA	
Surintensité transitoire	50 fois le courant nominal, soit 250A, d'une durée de 1s supportée 5 fois de suite toutes les 5 minutes.	
Puissance active maximale triphasée	1,2 GW (vue côté primaire du transformateur client).	
Bornes non débrochables	6 points de raccordement. Bornes à vis, à cage mobile.	
	Connexion de fils rigides ou souples de section de 0,5 à 6mm² (20-10 AWG).	
	Couple de serrage maximum admissible sur la borne : 0,8 Nm.	
Plage de réglage	TC primaire de 1 A à 25 000 A par pas de 1 A.	
	TC secondaire de 1 A à 5 A par pas de 1 A.	

24.6.5 Communication

24.6.5.1 Sortie RS485

La carte RS485 ne peut être présente en même temps que la carte Ethernet.

Item	Caractéristiques
Protocole	ModBus mode RTU.
Vitesse	2400, 4800, 9600, 19 200 et 115 200 Bauds.
Parité	sans, paire ou impaire.
Nombre de bits de stop	1 ou 2
Branchement	2 fils + blindage, half duplex
Bornes débrochables	3 points de raccordement. Bornes à vis.
	Connexion de fils rigides ou souples de 0,2 à 2,5 mm² (22-14 AWG)
	Couple de serrage maximum admissible sur la borne : 0,4 Nm.

24.6.5.2 Sortie Ethernet

La carte Ethernet ne peut être présente en même temps que la carte RS485.

Item	Caractéristiques
Protocole	ModBus / TCP en mode RTU.
Vitesse	10/100 Base T
Longueur maximale	Transmission sur 100 m max.
Branchement	Prise RJ45 à 8 points.

24.6.5.3 Interface optique

Item	Caractéristiques
Protocole	ModBus en mode RTU.
Format de transmission	Figé à une vitesse de 38400 bauds, 1 bit de start, 8 bits de données, sans parité, 1 bit de stop et un temps de retournement de 0 ms. Réponse à tous les numéros d'esclave entre 1 et 247.
Entrée/sortie numérique	Optique (infrarouge) assurant la transmission optique bidirectionnelle.
Branchement	Par cordon optique sans contact électrique.

24.6.6 Source d'alimentation auxiliaire

Source	Caractéristiques
Alternative / continue (haut niveau) (*)	80 Vac/dc (soit 100 Vac/dc ^{-20%}) à 265 Vac/dc (soit 230 Vac/dc ^{+15%}).
	Fréquence comprise entre 42,5 Hz (soit 50 Hz ^{-15%}) et 69 Hz (soit 60 Hz ^{+15%}) en ac.
Continue bas niveau (*)	19 Vdc (soit 24 Vdc $^{-20\%}$) à 58 Vdc (soit 48 Vdc $^{+20\%}$).
Consommation	<15 VA – 10 W.
Bornes non débrochables	2 points de raccordement. Bornes à vis, à cage mobile.
	Connexion de fils rigides ou souples de 0 à 2,5 mm² (22-14 AWG).
	Couple de serrage maximum admissible sur la borne : 0,4 Nm.
	*** * * * * * * * * * * * * * * * * * *

(*): l'un ou l'autre modèle. Alimentation montée par le fabricant.

24.6.7 Rétention des informations

Les informations sauvegardées suite à une coupure d'alimentation sont :

- Le paramétrage.
- Les valeurs moyennes.
- Les valeurs minimales.
- Les valeurs maximales.
- Les compteurs d'énergies.
- Les compteurs d'impulsions.
- Les files d'événements.

- Les compteurs horaires.
- Les courbes de charge.
- Les courbes d'enregistrement.

Item	Caractéristiques
Rétention des informations	10 ans à 25 °C.
Rétention date/heure	5 jours.

24.7 Cartes optionnelles

24.7.1 Caractéristiques des bornes

Item	Caractéristiques
Nombre de cartes optionnelles admissibles :	1 par <i>ENERIUM</i> .
Bornes débrochables	2 x 2 points de raccordement. Bornes à vis.
	Connexion de fils rigides ou souples de 0,2 à 2,5 mm² (22-14 AWG).
	Couple de serrage maximum admissible sur la borne : 0,4 Nm.

24.7.2 Carte 2 sorties analogiques

	• •
Item	Caractéristiques
Nombre de sorties	2.
Signal de sortie	Courant continu.
Charge résistive maximale	10 V / I sortie
Charge capacitive maximale	0,1 μF.
Temps de réponse	500 ms.
Isolement entre sorties	1 kV – 1 min.
Limites (min et max)	-22 mA, ≤ I _{sortie} ≤+ 22 mA.

24.7.3 Carte 2 entrées TOR

Item	Caractéristiques	
Nombre d'entrées	2.	
Signal d'entrée	Continu.	
Amplitude du signal d'entrée	Entre 19,2 Vdc (soit 24 Vdc ^{-20%}) et 72 Vdc (soit 60 Vdc ^{+20%}).	
Interprétation des niveaux	Amplitude < 5 V : le niveau logique lu est "0".	
	Amplitude > 10 V : le niveau logique lu est "1".	
	La largeur du signal doit être au minimum de 30 ms.	
Puissance absorbée	<0,5 W par entrée numérique.	
Isolement entre sorties	2,2 kV – 1 min.	
Type de protection	Optocoupleur.	

24.7.4 Carte 2 sorties TOR

Item	Caractéristiques
Nombre de sorties	2.
Courant maximal admissible	≤ 100 mA.
Signal de sortie	Signal continu variant de 19,2Vdc (soit 24 Vdc ^{-20%}) à 265 Vdc (soit 220 Vdc ^{+20%}).
	Signal alternatif de fréquence est comprise entre 42,5 Hz et 69 Hz, variant de 19,2 Vac (soit 24 Vac 20%) à 265 Vac (soit 230 Vac +15%).
Sortie en mode impulsion	Conforme à la norme CEI 62053- 31 (1998).
Isolement entre sorties	2,2 kV – 1 min.
Type de contact	Contact sec.
Type de protection	Relais statique (transistor MOS bidirectionnel).

24.7.5 Carte 1 entrée et 1 sortie TOR

Caractéristiques électriques identiques à celles des cartes « 1 entrée TOR » et « 1 sortie TOR » décrites au paragraphe 24.7.3 en page 82 et 24.7.4 en page 83.

Les différences résident dans le nombre d'entrées et de sorties disponibles sur la carte, à savoir :

- Nombre d'entrées TOR : 1

- Nombre de sorties TOR : 1

24.8 Métrologiques

(A 23°C \pm 2°C, 50Hz (sauf pour la grandeur F)).

 $V_{\text{nom}}/U_{\text{nom}}$ = 230 V / 400 V pour TP secondaire > 100 V

 V_{nom}/U_{nom} = 57,7 V / 100 V pour TP secondaire = 100 V

 $I_{nom} = 5A$

Grandeur	Conditions	Précision
V	V compris entre [10% et 120%] de V_{nom}	$\pm 0.2\%$ de la mesure $\pm 0.02\%$ de V _{nom}
U	U compris entre [10% et 120%] de U _{nom}	$\pm 0.2\%$ de la mesure $\pm 0.02\%$ de U_{nom}
1	I compris entre [5% et 130%] de I_{nom}	$\pm 0.2\%$ de la mesure $\pm 0.02\%$ de l $_{nom}$
F	F compris entre [42,5Hz et 69Hz]	± 0,1Hz
CH	-	± 250ppm
Р	FP égal 1	
	V compris entre [99% et 101%] de V_{nom}	
	I compris entre [5% et 130%] de I_{nom}	$\pm 0.5\%$ de la mesure $\pm 0.02\%$ de P_{nom}

	FP compris entre [0,5 inductif et 0,8 capacitif]	
	V compris entre [99% et 101%] de V _{nom}	
	I compris entre [10% et 130%] de I _{nom}	$\pm 0.5\%$ de la mesure $\pm 0.05\%$ de P_{nom}
Q	Sin (φ) = 1	
	V compris entre [99% et 101%] de V_{nom}	
	I compris entre [5% et 130%] de I_{nom}	±1% de la mesure
	I compris entre [2% et 5%[de I _{nom}	$\pm 1,5\%$ de la mesure
	Sin (φ) compris entre [0,5 inductif et 0,5 capacitif]	
	V compris entre [99% et 101%] de V_{nom}	
	I compris entre [10% et 130%] de I_{nom}	$\pm 1\%$ de la mesure
	I compris entre [5% et 10%[de I _{nom}	$\pm 1,5\%$ de la mesure
	Sin (φ) compris entre [0,25 inductif et 0,25 capacitif]	
	V compris entre [99% et 101%] de V_{nom}	
	I compris entre [10% et 130%] de I _{nom}	$\pm 3,5\%$ de la mesure
S	V compris entre [99% et 101%] de V _{nom}	±0,5% de la mesure
	I compris entre [5% et 130%[de I _{nom}	$\pm 0,02\%$ de S_{nom}
Cos(\phi)	Cos(φ) compris entre [0,5 inductif et 0,5 capacitif]	
	V compris entre [99% et 101%] de V _{nom}	
	I compris entre [5% et 130%] de I _{nom}	±0,02 points
	Cos(φ) compris entre [0,2 inductif et 0,2 capacitif]	
	V compris entre [99% et 101%] de V _{nom}	
	I compris entre [5% et 130%] de de I _{nom}	±0,05 points
Tan(φ)	Tan(φ) comprise entre [1,732 inductif et 1,732 capacitif]	
	V compris entre [99% et 101%] de V_{nom}	
	I compris entre [5% et 130%] de I _{nom}	±0,02 points
	Tan(φ) comprise entre [4,90	
	inductif et 4,90 capacitif]	
	inductif et 4,90 capacitif] V compris entre [99% et 101%] de V _{nom}	

Grandeur	Conditions	Précision
FP	FP compris entre [0,5 inductif et 0,5 capacitif]	
	V compris entre [99% et 101%] de V_{nom}	
	I compris entre [5% et 130%] de I_{nom}	±0,02 points
	FP compris entre [0,2 inductif et 0,2 capacitif]	
	V compris entre [99% et 101%] de V_{nom}	
	I compris entre [5% et 130%] de I_{nom}	±0,05 points
E active	FP égal 1	
	V compris entre [99% et 101%] de V_{nom}	
	I compris entre [5% et 130%] de I_{nom}	\pm 0,5% de la mesure
	I compris entre [1% et 5%[de I _{nom}	± 1% de la mesure
	FP compris entre [0,5 inductif et 0,8 capacitif]	
	V compris entre [99% et 101%] de $V_{\text{no m}}$	
	I compris entre [10% et 130%] de I_{nom}	\pm 0,6% de la mesure
	I compris entre [2% et 10%[de I _{nom}	± 1% de la mesure
E réactive	Sin (φ) = 1	
	V compris entre [99% et 101%] de V_{nom}	
	I compris entre [5% et 130%] de I_{nom} = 5 A	± 1% de la mesure
	I compris entre [2% et 5%[de I _{nom}	± 1,5% de la mesure
	FP compris entre [0,5 inductif et 0,5 capacitif]	
	V compris entre [99% et 101%] de V_{nom}	
	I compris entre [10% et 130%] de I _{nom}	\pm 1% de la mesure
	I compris entre [5% et 10%[de I _{nom}	± 1,5% de la mesure
	FP compris entre [0,25 inductif et 0,25 capacitif]	
	V compris entre [99% et 101%[de V_{nom}	
	I compris entre [10% et 130%] de I _{nom}	$\pm3\%$ de la mesure

Grandeur	Conditions	Précision
E apparente	V compris entre [99% et 101%] de V_{nom}	± 0,5% de la mesure
	I compris entre [5% et 130%] de $\rm I_{nom}$	
Harmoniq	FP égal 1	\pm 0,5 points
ues par rang	V compris entre [99% et 101%] de V_{nom}	
	I compris entre [5% et 130%] de $\rm I_{nom}$	
THD	FP égal 1	\pm 0,5 points
	V compris entre [99% et 101%] de V_{nom}	
	I compris entre [5% et 130%] de I_{nom}	
Heure	T = 23 °C	\pm 20ppm
		$\begin{array}{l} \text{(soit} \pm 52 \text{ secondes} \\ \text{sur 30 jours)} \end{array}$

24.9 Mécaniques

Dimensions hors tout (mm):	96*96*55 (H, L, P)
Masse :	<600 g.
Montage :	en tableau selon DIN 43700.
Format :	DIN 96 x 96.
Dimension de la découpe :	92 x 92 mm.
Fixation :	par fixation d'angle (montage en tableau).
Etiquette signalétique	sur la partie arrière de l'équipement.
Numéro d'appareil	sur la partie arrière de l'équipement.
	D D

Figure 24-1 : cotes dimensionnelles en millimètres.040

24.10 Contraintes d'environnement

24.10.1 Contraintes climatiques

Température d'utilisation :	-10 à 55 °C.
Humidité en utilisation :	Jusqu'à 95% à 40 °C.
Température de stockage :	-25 à +70 °C.

24.10.2 Contraintes sécuritaires

Degré de pollution :	2
Tenue au feu :	Conforme à la norme UL94 pour le niveau de sévérité V1.
Catégorie d'installation	III

24.10.3 Contraintes mécaniques

Indice de protection :	Selon la CEI 60529, pour le niveau de sévérité suivant : Indice IP 51 (en face avant). Indice IP 20 (en face arrière).
Chocs mécaniques :	Selon CEI 61010-1.
Vibrations :	CEI 60068-2-6 (méthode A).
Chute libre avec emballage	À une hauteur de 1 m, selon la norme NF H 0042-1.

24.10.4 Compatibilité électromagnétique

Selon norme CEI 61326-1

24.11 Accessoires

Cordon optique :	pour communication locale. Connexion au PC par prise USB 1.1 minimum. Câble vendu séparément.
Logiciel :	logiciel de configuration E.view ou E.set.

25. GRANDEURS MESUREES

Ce chapitre présente les formules mathématiques utilisées pour le calcul des différentes mesures par l'ENERIUM.

25.1 Tension simple

Les mesures sont réalisées à partir des mesures de tensions simples « 10 périodes » pour une fréquence réseau paramétrée à 50Hz et « 12 périodes » pour une fréquence réseau paramétrée à 60Hz. Les formules sont :

$$V_{L}[1s] = \sqrt{\frac{1}{5}} \times \sum_{1}^{5} V_{L}^{2}[10T]$$
 (Pour F=50Hz) ou $V_{L}[1s] = \sqrt{\frac{1}{5}} \times \sum_{1}^{5} V_{L}^{2}[12T]$ (Pour F=60Hz)

$$\begin{split} &\text{Avec } V_{L}[10\,T] \!\!=\!\! \sqrt{\frac{1}{10}} \!\!\times\!\! \sum_{1}^{10} \! V_{L}^{2}\![T]} \;,\; V_{L}[12\,T] \!\!=\!\! \sqrt{\frac{1}{12}} \!\!\times\!\! \sum_{1}^{12} \! V_{L}^{2}\![T] \\ &\text{et } V_{L}[T] \!\!=\!\! \sqrt{\frac{1}{128}} \!\!\times\!\! \sum_{1}^{128} \! v_{L}^{2} \end{split}$$

L = 1, 2, 3, T

25.2 Tensions composées

Les mesures sont réalisées à partir des mesures de tensions composées « 10 périodes » pour une fréquence réseau paramétrée à 50Hz et « 12 périodes » pour une fréquence réseau paramétrée à 60Hz. Les formules sont :

$$U_{ab}[1s] = \sqrt{\frac{1}{5}} \times \sum_{1}^{5} U_{ab}^{2}[10T]$$
 (Pour F=50Hz) ou $U_{ab}[1s] = \sqrt{\frac{1}{5}} \times \sum_{1}^{5} U_{ab}^{2}[12T]$ (Pour F=60Hz)

$$\begin{split} \text{Avec} \ \ &U_{ab}[10\,T] = \sqrt{\frac{1}{10}} \times \sum_{1}^{10} U_{ab}^{\,2}[T] \ , \\ &U_{ab}[12\,T] \!\!=\!\! \sqrt{\frac{1}{12}} \!\!\times\! \sum_{1}^{12} U_{ab}^{\,2}[T] \end{split}$$

et
$$U_{ab}[T] = \sqrt{\frac{1}{128}} \times \sum_{1}^{128} (v_a - v_b)^2$$

ab = 12, 23 ou 31

25.3 Courant

Les mesures sont réalisées à partir des mesures de courants « 10 périodes » pour une fréquence réseau paramétrée à 50Hz et « 12 périodes » pour une fréquence réseau paramétrée à 60Hz. Les formules sont :

$$I_{L}[1s] = \sqrt{\frac{1}{5}} \times \sum_{1}^{5} I_{L}^{2}[10T]$$
 (Pour F=50Hz) ou $I_{L}[1s] = \sqrt{\frac{1}{5}} \times \sum_{1}^{5} I_{L}^{2}[12T]$ (Pour F=60Hz)

Avec
$$I_{L}[10T] = \sqrt{\frac{1}{10}} \times \sum_{1}^{10} I_{L}^{2}[T]$$

et
$$I_L[12T] = \sqrt{\frac{1}{12}} \times \sum_{1}^{12} I_L^2[T]$$

L = 1, 2, 3, N

Pour L=1,2 et 3 :
$$I_L[T] = \sqrt{\frac{1}{128}} \times \sum_{1}^{128} i_L^2$$

et pour L = N
$$I_L[T] = \sqrt{\frac{1}{128}} \times \sum_{1}^{128} (i_1 + i_2 + i_3)^2$$

25.4 Puissance active

Les mesures sont réalisées à partir des mesures de puissances actives « 10 périodes » pour une fréquence réseau paramétrée à 50Hz et « 12 périodes » pour une fréquence réseau paramétrée à 60Hz. Les formules sont :

$$P_L[1s] = \frac{1}{5} \times \sum_{1}^{5} P_L[10T]$$
 (Pour F=50Hz) ou $P_L[1s] = \frac{1}{5} \times \sum_{1}^{5} P_L[12T]$ (Pour F=60Hz)

Avec
$$P_L[10T] = \frac{1}{10} \times \sum_1^{10} P_L[T]$$
,
$$P_L[12T] = \frac{1}{12} \times \sum_1^{12} P_L[T]$$

et
$$P_L[T] = \frac{1}{128} \times \sum_{1}^{128} v_L \times i_L$$

L = 1, 2, 3.

P[1s] est la somme des puissances actives à la seconde : $P[1s] = P_1[1s] + P2[1s] + P3[1s]$

25.5 Sens de transit des puissances

Les produits mesurent le sens de transit des puissances "à la seconde".

- Si P[1s] est positif, alors le sens de transit des puissances est Récepteur.
- Si P[1s] est négatif, alors le sens de transit des puissances est Générateur.

25.6 Puissance réactive

Les produits mesurent les puissances réactives "à la seconde" sur chacune des phases $Q_1[1s]$, $Q_2[1s]$ et $Q_3[1s]$, ainsi que la puissance réactive triphasée "à la seconde" Q[1s].

Les mesures sont réalisées à partir d'autres mesures, selon la formule suivante :

$$Q_{L}[1s] = Signe Q_{L}[1s] \sqrt{S_{L}^{2}[1s] - P_{L}^{2}[1s]}$$

L = 1, 2 ou 3

 $SigneQ_L[1s]$ est le signe de la puissance réactive, élaborée à partir de la transformée de Hilbert simplifiée.

Pour F = 50 Hz:

$$SigneQ_L[1s] = \text{ Signe de } \sum_{i=1}^{6400} \sqrt{v_{(i-1)}*(i_1-i_{(i-2)})}$$

Pour F = 60 Hz:

$$SigneQ_L[1s] = \text{ Signe de } \sum_{i=1}^{7800} \sqrt{i_{(i-1)}*(i_1-i_{(i-2)})}$$

Q[1s] est la somme des puissances réactives "à la seconde" Q[1s] = $Q_1[1s] + Q_2[1s] + Q_3[1s]$.

25.7 Puissance Apparente

Les produits mesurent les puissances apparentes "à la seconde" sur chacune des phases $S_1[1s]$, $S_2[1s]$ et $S_3[1s]$, ainsi que la puissance apparentes triphasée "à la seconde" S[1s].

Les mesures sont réalisées à partir d'autres mesures, selon la formule suivante:

$$S_I[1s] = V_I[1s] \times I_I[1s]$$
. L = 1, 2 ou 3

S[1s] est la somme des puissances apparentes "à la seconde" S[1s] = $S_1[1s] + S_2[1s] + S_3[1s]$.

25.8 Facteur de Puissance

Les produits mesurent les facteurs de puissance "à la seconde" sur chacune des phases $FP_1[1s]$, $FP_2[1s]$ et $FP_3[1s]$, ainsi que le facteur de puissance triphasé "à la seconde" FP[1s].

Les mesures sont réalisées à partir d'autres mesures selon la formule suivante.

$$FP_L[1s] = \frac{P_L[1s]}{S_L[1s]}$$
 L = 1, 2, 3 ou rien pour le

triphasé

A chacune de ces grandeurs est associé le quadrant. Si $P_x[1s]$ et $Q_x[1s]$ (x=1,2,3 ou rien pour la grandeur triphasée) sont de même signe, alors le quadrant est selfique ; sinon, il est capacitif.

25.9 Cos(φ)

Les produits mesurent les $cos(\phi)$ "à la seconde" sur chacune des phases $cos(\phi_1)[1s]$, $cos(\phi_2)[1s]$, $cos(\phi_3)[1s]$, ainsi que le $cos(\phi)$ global "à la seconde" appelé $cos(\phi_9)[1s]$.

Les $cos(\phi)$ sont calculés selon la formule suivante :

$$\cos(\varphi_L)[1s] = \frac{1}{5} \times \sum_{1}^{5} \cos(\varphi_L)[10T]$$
 (Pour F=50Hz)

ΟU

$$\cos(\varphi_L)[1s] = \frac{1}{5} \times \sum_{1}^{5} \cos(\varphi_L)[12T]$$
 (Pour F=60Hz)

L = 1, 2 et 3

et

$$\cos(\varphi_{global})[1s] = \frac{\cos(\varphi_1)[1s] + \cos(\varphi_2)[1s] + \cos(\varphi_3)[1s]}{3}$$

avec

$$\cos(\varphi_L)[10T] = \cos($$
 Angle $_V_L$ $_Fondamenta$ $l[10T] -$ Angle $_I_L$ $_Fondamenta$ $l[10T])$ et

 $\cos(\varphi_L)[12T] = \cos(Angle \ _V_L \ _Fondamenta \ l[12T] - Angle \ _I_L \ _Fondamenta \ l[12T])$

A chacune de ces grandeurs est associé le guadrant.

- Si l'angle φ est compris entre 0° et 90° ou entre 180° et 270°, alors le quadrant est selfique.
- Si l'angle φ est compris entre 90° et 180° ou entre 270° et 360°, alors le quadrant est capacitif.

25.10 Facteur de Crête

Les mesures sont réalisées à partir des mesures de puissances actives « 10 périodes » pour une fréquence réseau paramétrée à 50Hz et « 12 périodes » pour une fréquence réseau paramétrée à 60Hz. Les formules sont :

25.10.1 Pour les tensions

$$FC_{VL}[1s] = \frac{1}{5} \times \sum_{1}^{5} FC_{VL}[10T]$$
 (Pour F=50Hz) ou

$$FC_{VL}[1s] = \frac{1}{5} \times \sum_{1}^{5} FC_{VL}[12T]$$
 (Pour F=60Hz)

avec
$$FC_{VL}[10T] = \frac{Vcr\hat{e}te[10T]}{V[10T]}$$

et
$$FC_{VL}[12T] = \frac{Vcr\hat{e}te[12T]}{V[12T]}$$

avec
$$V[10T] = \sqrt{\frac{1}{1280} \times \sum_{1}^{1280} v_L^2}$$

et
$$V[12T] = \sqrt{\frac{1}{1536} \times \sum_{1}^{1536} v_L^2}$$

avec $Vcr\hat{e}te[10T] = max[abs(v_T)]$

et $Vcr\hat{e}te[12T] = max[abs(v_L)]$

L = 1, 2, 3

25.10.2 Pour les courants

$$FC_{II}[1s] = \frac{1}{5} \times \sum_{1}^{5} FC_{II}[10T]$$
 (Pour F=50Hz)

OU
$$FC_{IL}[1s] = \frac{1}{5} \times \sum_{1}^{5} FC_{IL}[12T]$$
 (Pour F=60Hz)

avec
$$FC_{IL}[10T] = \frac{Icrête[10T]}{I[10T]}$$

et
$$FC_{IL}[12T] = \frac{Icr\hat{e}te[12T]}{I[12T]}$$

avec

$$I[10T] = \sqrt{\frac{1}{1280} \times \sum_{L}^{1280} i_{L}^{2}} \text{ et } I[12T] = \sqrt{\frac{1}{1536} \times \sum_{L}^{1536} i_{L}^{2}}$$

Avec
$$Icr\hat{e}te[10T] = max[abs(i_L)]$$
 et $Icr\hat{e}te[12T] = max[abs(i_L)]$
L = 1, 2, 3

25.11 Tan(φ)

Le produit mesure le Tan(φ) globale "à la seconde".

A chacune de ces grandeurs est associé le quadrant. Si P[1s] et Q[1s] (Grandeur triphasée) sont de même signe, alors le quadrant est selfique, sinon il est capacitif.

$$tg(\varphi_g)[ls] = \frac{Q[ls]}{P[ls]}$$

25.12 Fréquence

Les mesures sont réalisées à partir des mesures de puissances actives « 10 périodes » pour une fréquence réseau paramétrée à 50Hz et « 12 périodes » pour une fréquence réseau paramétrée à 60Hz. Les formules sont :

$$F[1s] = F_\acute{e}chantillonnage \times \frac{10T}{Nbre_Echantillons_sur_10T}$$

Avec l'asservissement suivant : F_échantillonnage = 128 * F[1s]

25.13 Harmoniques

Les produits mesurent le taux des harmoniques H_x "à la seconde", rang par rang, sur les trois tensions simples V_1 , V_2 , V_3 , sur les trois tensions composées U_{12} , U_{23} , U_{31} et sur les trois courants I_1 , I_2 , I_3 , conformément à la norme CEI 61000-4-7 (édition 2). Les mesures sont réalisées à partir des harmoniques hx[10T], selon la formule suivante :

$$H_{x}[1s] = \sqrt{\frac{\sum_{1}^{5} h_{x}^{2}[10T]}{\sum_{1}^{5} h_{1}^{2}[10T]}}$$

Lorsque la tension simple, la tension composée ou le courant est égal à 0, alors le taux d'harmonique de la grandeur concernée n'est pas calculé et il vaut 0.

Dans le cas de l'ENERIUM 50, la mesure est réalisée jusqu'au rang 25. Dans le cas de l'ENERIUM 150, la mesure est réalisée jusqu'au rang 50.

25.14 Taux d'harmonique

Les mesures sont réalisées à partir des harmoniques rang par rang "à la seconde" déjà calculées, selon la formule suivante :

$$THD = 100 \times \sqrt{\frac{\sum_{n=2}^{50} H_n^2}{H_1^2}}$$

Lorsque la tension simple, la tension composée ou le courant est égal à 0, alors le taux d'harmonique de la grandeur concernée n'est pas calculé et il vaut 0.

25.15 Energie et Comptage Energie

Les produits calculent "à la seconde" l'énergie active EP[1s], l'énergie réactive EQ[1s] et l'énergie apparente ES[1s].

Les mesures sont réalisées à partir d'autres mesures déjà calculées, selon la formule suivante :

$$EX[1s] = M[1s] \times \frac{N_{ech}}{3600 \times F_{ech}} \ . \qquad {\rm X = P, \, Q \, \, ou \, \, S.} \label{eq:expectation}$$

Les énergies sont mesurées en valeurs absolues, elles sont donc toujours positives.

M est la grandeur mesurée "à la seconde" (Puissance active, réactive ou apparente). N_{ech} est le nombre d'échantillons recueillis pendant la fenêtre de prise des échantillons. F_{ech} est la fréquence d'échantillonnage.

Selon le quadrant, l'énergie mesurée est additionnée dans un compteur total.

- Si P[1s] est positif, la mesure d'énergie EP[1s] est additionnée au compteur d'énergie active en mode récepteur CEP_R et la mesure d'énergie ES[1s] est additionnée au compteur d'énergie apparente en mode récepteur CES_R.
- Si P[1s] est négatif, la mesure d'énergie EP[1s] est additionnée au compteur d'énergie active en mode générateur CEP_G et la mesure d'énergie ES[1s] est additionnée au compteur d'énergie apparente en mode générateur CES_G.
- Si P[1s] et Q[1s] sont positifs, la mesure d'énergie EQ[1s] est additionnée au compteur d'énergie réactive du premier quadrant CEQ₁. Si P[1s] est négatif et que Q[1s] est positif, la mesure d'énergie EQ[1s] est additionnée au compteur d'énergie réactive du second quadrant CEQ₂. Si P[1s] est

positif et que et Q[1s] est négatif, la mesure d'énergie EQ[1s] est additionnée au compteur d'énergie réactive du troisième quadrant CEQ₄. Si P[1s] et Q[1s] sont négatifs, la mesure d'énergie EQ[1s] est additionnée au compteur d'énergie réactive du quatrième quadrant CEQ₃.

Il est possible de remettre à zéro tous les compteurs d'énergie, par l'envoi d'un mot de commande sur la communication locale ou distante. Il est également possible de réinitialiser avec une valeur, un compteur indépendamment d'un autre, toujours par l'envoi d'un mot de commande sur la communication locale ou distante.

25.16 Déséquilibre

Les produits calculent toutes les secondes le taux de déséquilibre en tension appelé Des[1s], à partir des mesures des tensions composées "à la seconde" et selon l'algorithme suivant :

Soit les grandeurs Fact1 et Fact2, telles que :

$$Fact1 = U_{12}^{2}[1s] + U_{23}^{2}[1s] + U_{31}^{2}[1s]$$

$$Fact2 = U_{12}^{4}[1s] + U_{23}^{4}[1s] + U_{31}^{4}[1s]$$

Soit la grandeur Fact3, telle que :

Si
$$(3 \times Fact1^2 - 6 \times Fact2) < 0$$

Alors $Fact3 = 0$

Sinon
$$Fact3 = \sqrt{3 \times Fact1^2 - 6 \times Fact2}$$

Soit la grandeur Fact4, telle que :

Si
$$(6 \times Fact2 - 2 \times Fact1^2) < 0$$

Alors $Fact4 = 0$

Sinon
$$Fact4 = \sqrt{6 \times Fact2 - 2 \times Fact1^2}$$

Si
$$Fact4 > 0$$
 Alors
$$Des[1s] = 1000 \times \frac{(Fact1 - Fact3)}{Fact4}$$

Sinon
$$Des[1s] = 0$$

25.17 Ordre de phase

Cette fonction réalise le test du câblage, par la vérification de l'ordre des phases sur les voies tension. Le calcul est réalisé sur 3 périodes et toutes les 10 périodes du signal de référence en entrée. Si l'ordre des phases est incorrect, alors un pictogramme est allumé dans le bandeau bas des écrans de visualisation.

25.18 Compteur Horaire

Les produits intègrent trois compteurs horaires.

- Un premier compteur totalise le temps pendant lequel le produit est sous tension, c'est-à-dire le temps pendant lequel la source auxiliaire est présente. Ce compteur est appelé compteur horaire de "présence source auxiliaire".
- Un deuxième compteur totalise le temps pendant lequel la mesure "une seconde" d'au moins une tension simple, parmi V₁[1s], V₂[1s] et V₃[1s], est différente de zéro. Ce compteur est appelé compteur horaire de "présence réseau".
- Un troisième compteur totalise le temps pendant lequel la mesure "une seconde" d'au moins un courant, parmi l₁[1s], l₂[1s] et l₃[1s], est différente de zéro. Ce compteur est appelé compteur horaire de "présence charge".

25.19 Grandeur moyenne

Les moyennes sont des moyennes glissantes, remises à jour tous les dixièmes de la durée d'intégration. La durée d'intégration est commune à toutes les grandeurs. Cette durée d'intégration est choisie parmi les valeurs prédéfinies suivantes 1, 2, 3, 4, 5, 6, 10, 12, 15, 20, 30 et 60 mn.

Toutes les valeurs moyennes peuvent être réinitialisées par l'écriture d'un mot de commande sur la communication distante ou locale. La réinitialisation consiste à mettre la valeur 0 dans la grandeur, à l'exception des moyennes des grandeurs du type FP_x et cos (ϕ_x) , pour qui la réinitialisation consiste à mettre la valeur 1.

25.19.1 Moyennes quadratiques

Les produits calculent les moyennes quadratiques de grandeurs "à la seconde" dans les quatre quadrants. Ces moyennes sont les suivantes :

- V₁[moy], V2[moy], V3[moy]
- U12[moy], U23[moy], U31[moy]
- I1[moy], I2[moy], I3[moy], IN[moy]

Les moyennes listées ci-dessus sont calculées selon la formule suivante :

$$X[moy] = \sqrt{\frac{1}{N} \times \sum_{i=1}^{N} X[1s]_{i}^{2}}$$

25.19.2 Moyennes arithmétiques (A)

Les produits calculent les moyennes arithmétiques de grandeurs "à la seconde" dans les quatre quadrants. Ces moyennes sont les suivantes :

- S1[moy], S2[moy], S3[moy], S[moy]
- F[moy], Des[moy]
- THDV1[moy], THDV2[moy], THDV3[moy]
- THDU12[moy], THDU23[moy], THDU31[moy]
- THDI1[moy], THDI2[moy], THDI3[moy]
- FCV1[moy], FCV2[moy], FCV3[moy]
- FCI1[moy], FCI2[moy], FCI3[moy]

Les moyennes listées ci-dessus sont calculées selon la formule suivante :

$$X[moy] = \frac{1}{N} \times \sum_{i=1}^{N} X[1s]_i$$

25.19.3 Moyennes arithmétiques (B)

Les produits calculent les moyennes arithmétiques de grandeurs "à la seconde" dans les deux quadrants, en mode récepteur. Ces moyennes sont les suivantes :

- P₁R[moy], P2R[moy], P3R[moy], PR[moy]
- Q1R[moy], Q2R[moy], Q3R[moy], QR[moy]

Dans le cas où $P_x[1s]$ est positif ou nul (mode récepteur), c'est la valeur mesurée "à la seconde", qui est prise en compte dans la moyenne. Lorsque $P_x[1s]$ est négatif (mode générateur), c'est la valeur 0 qui est prise en compte dans la moyenne.

25.19.4 Moyennes arithmétiques (C)

Les produits calculent les moyennes arithmétiques de grandeurs "à la seconde" dans les deux quadrants, en mode récepteur. Ces moyennes sont les suivantes :

- FP1R[moy], FP2R[moy], FP3R[moy], FPR[moy]
- cos(φ1)R[moy], cos(φ2)R[moy], cos(φ3)R[moy], cos(φg)R[moy]

Dans le cas où $P_x[1s]$ est positif ou nul (mode récepteur), c'est la valeur mesurée "à la seconde", qui est prise en compte dans la moyenne. Lorsque $P_x[1s]$ est négatif (mode générateur), c'est la valeur 1 qui est prise en compte dans la moyenne.

25.19.5 Moyennes arithmétiques (D)

Les produits calculent les moyennes arithmétiques de grandeurs "à la seconde" dans les deux quadrants, en mode générateur. Ces moyennes sont les suivantes :

- P₁G[moy], P2G[moy], P3G[moy], PG[moy],
- Q1G[moy], Q2G[moy], Q3G[moy], QG[moy]

Dans le cas où $P_x[1s]$ est négatif (mode générateur), c'est la valeur mesurée "à la seconde", qui est prise en compte dans la moyenne. Lorsque $P_x[1s]$ est positif ou nul (mode récepteur), c'est la valeur 0 qui est prise en compte dans la moyenne.

25.19.6 Moyennes arithmétiques (E)

Les produits calculent les moyennes arithmétiques de grandeurs "à la seconde" dans les deux quadrants, en mode générateur. Ces moyennes sont les suivantes :

- FP₁G[moy], FP2G[moy], FP3G[moy], FPG[moy]
- cos(φ1)G[moy], cos(φ2)G[moy], cos(φ3)G[moy], cos(φg)G[moy]

Dans le cas où $P_x[1s]$ est négatif (mode générateur), c'est la valeur mesurée "à la seconde", qui est prise en compte dans la moyenne. Lorsque $P_x[1s]$ est positif ou nul (mode récepteur), c'est la valeur 1 qui est prise en compte dans la moyenne.

25.20 Calcul des minima

Chaque minimum est horodaté (date et heure de la détection du minimum). Tous les minima peuvent être réinitialisés par l'écriture d'un mot de commande sur la communication distante ou locale. La réinitialisation consiste à mettre la valeur 0 dans la grandeur, à l'exception des minima des grandeurs du type FP $_{\rm x}$ et cos $(\phi_{\rm x})$, pour qui la réinitialisation consiste à mettre la valeur 1.

25.21 Minima de grandeurs

25.21.1 Minima (A)

Les produits calculent les minima de grandeurs "à la seconde" dans les quatre quadrants. Ces minima sont les suivants :

V₁[min], V2[min], V3[min]

- U12[min], U23[min], U31[min]
- I1[min], I2[min], I3[min], IN[min]
- F[min]

Les minima listés ci-dessus sont élaborés selon l'algorithme suivant :

Si (X[1s] < X[min])

Alors $(X[\min] = X[1s])$

avec $X = U_{ab}$, I_L ou F

ab=12, 23 ou 31

L = 1, 2 ou 3.

25.21.2 Minima (B)

Les produits calculent également les minima de grandeurs "à la seconde" dans les deux quadrants correspondants au mode récepteur. Ces minima sont les suivants :

- P₁R[min], P₂R[min], P3R[min], PR[min]
- Q1R[min], Q2R[min], Q3R[min], QR[min]

Les minima listés ci-dessus sont élaborés selon l'algorithme suivant :

Si (X[1s] < XR[min]) ET $(P[1s] \ge 0)$

Alors (XR[min] = X[1s]) avec X = P ou Q.

25.21.3 Minima (C)

Les produits calculent également les minima de grandeurs "à la seconde" dans les deux quadrants correspondants au mode générateur. Ces minima sont les suivants :

- P₁G[min], P₂G[min], P₃G[min], PG[min],
- Q₁G[min], Q₂G[min], Q₃G[min], QG[min]

Les minima listés ci-dessus sont élaborés selon l'algorithme suivant :

Si (X[1s] < XG[min]) ET (P[1s] < 0)

Alors $(XG[\min] = X[1s])$ avec X = P ou Q.

25.22 Minima de grandeurs movennes

25.22.1 Minima (A)

Les produits calculent également les minima de grandeurs moyennes dans les deux quadrants correspondants au mode récepteur. Ces minima sont les suivants :

- FP1R[min moy], FP2R[min moy], FP3R[min moy], FPR[min moy]
- cos(φ1)R[min moy], cos(φ2)R[min moy], cos(φ3)R[min moy], cos(φg)R[min moy]

Les minima listés ci-dessus sont élaborés selon l'algorithme suivant :

Si (X[moy] < XR[min moy]) ET $(P[moy] \ge 0)$

Alors $(XR[\min moy] = X[moy])$ avec X = FP ou $\cos(\varphi_0)$.

25.22.2 Minima (B)

Les produits calculent également les minima de grandeurs moyennes dans les deux quadrants correspondants au mode générateur. Ces minima sont les suivants :

- FP₁G[min moy], FP2G[min moy], FP3G[min moy], FPG[min moy]
- cos(φ1)G[min moy], cos(φ2)G[min moy], cos(φ3)G[min moy], cos(φg)G[min moy]

Les minima listés ci-dessus sont élaborés selon l'algorithme suivant :

Si (X[moy] < XG[min moy]) ET (P[moy] < 0)

Alors $(XG[\min moy] = X[moy])$ avec X = FP ou $cos(\varphi)$.

25.23 Calcul des maxima

Chaque maximum est horodaté (date et heure de la détection du maximum). Tous les maxima peuvent être réinitialisés par l'écriture d'un mot de commande sur la communication distante ou locale. La réinitialisation consiste à mettre la valeur 0 dans la grandeur, à l'exception des maxima des grandeurs du type FP $_x$ et cos (ϕ_x), pour qui la réinitialisation consiste à mettre la valeur 1.

25.24 Maxima de grandeurs

25.24.1 Maxima (A)

Les produits calculent les maxima de grandeurs "à la seconde" dans les quatre quadrants. Ces maxima sont les suivants :

- V₁[max], V2[max], V3[max]
- U12[max], U23[max], U31[max]
- I1[max], I2[max], I3[max], IN[max]
- F[max]
- S1[max], S2[max], S3[max], S[max]

Les maxima listés ci-dessus sont élaborés selon l'algorithme suivant :

Si (X[1s] > X[max])

Alors $(X[\max] = X[1s])$

avec $X = U_{ab}$, I_L , F ou S ab=12, 23 ou 31 L = 1, 2 ou 3.

25.24.2 Maxima (B)

Les produits calculent également les maxima de grandeurs "à la seconde" dans les deux quadrants correspondants au mode récepteur. Ces maxima sont les suivants :

- P₁R[max], P₂R[max], P3R[max], PR[max]
- Q1R[max], Q2R[max], Q3R[max], QR[max]

Les maxima listés ci-dessus sont élaborés selon l'algorithme suivant :

Si (X[1s] > XR[max]) ET $(P[1s] \ge 0)$

Alors (XR[max] = X[1s]) avec X = P ou Q.

25.24.3 Maxima (C)

Les produits calculent également les maxima de grandeurs "à la seconde" dans les deux quadrants correspondants au mode générateur. Ces maxima sont les suivants :

- P₁G[max], P2G[max], P3G[max], PG[max],
- Q1G[max], Q2G[max], Q3G[max], QG[max]

Les maxima listés ci-dessus sont élaborés selon l'algorithme suivant :

Si (X[1s] > XG[max]) ET (P[1s] < 0)

Alors (XG[max] = X[1s]) avec X = P ou Q.

25.25 Maxima de grandeurs moyennes

25.25.1 Maxima (A)

Les produits calculent les maxima de grandeurs moyennes dans les quatre quadrants. Ces maxima sont les suivants :

- V₁[max moy], V2[max moy], V3[max moy]
- U12[max moy], U23[max moy], U31[max moy]
- I1[max moy], I2[max moy], I3[max moy], IN[max moy]
- Des[moy]
- THDV1[moy], THDV2[moy], THDV3[moy]
- THDU12[moy], THDU23[moy], THDU31[moy]
- THDI1[moy], THDI2[moy], THDI3[moy]
- FCV1[moy], FCV2[moy], FCV3[moy]
- FCI1[moy], FCI2[moy], FCI3[moy]
- S[max moy]

Les maxima listés ci-dessus sont élaborés selon l'algorithme suivant :

Si (X[moy] > X[max moy])

Alors $(X[\max moy] = X[moy])$

25.25.2 Maxima (B)

Les produits calculent également les maxima de grandeurs moyennes dans les deux quadrants correspondants au mode récepteur. Ces maxima sont les suivants :

- PR[max moy], QR[max moy],
- FPR[max moy], cos(φg)R[max moy]

Les maxima listés ci-dessus sont élaborés selon l'algorithme suivant :

Si
$$(X[moy] > XR[max moy])$$
 ET $(P[moy] \ge 0)$

alors
$$(XR[\max moy] = X[moy])$$

25.25.3 Maxima (C)

Les produits calculent également les maxima de grandeurs moyennes dans les deux quadrants correspondants au mode générateur. Ces maxima sont les suivants :

- PG[max moy], QG[max moy],
- FPG[max], cos(φg)G[max]

Les maxima listés ci-dessus sont élaborés selon l'algorithme suivant :

Si
$$(X[moy] > XG[max moy])$$
 ET $(P[moy] < 0)$

alors
$$(XG[\max moy] = X[moy])$$
.

26. INDEX

%	26	Alternatif	20	Carte sorties TOR	83
3/4 fils	20	Bas niveau		Courbes d'enregistrement	
Configuration	47	Continu		Courbes de charges	
Par défaut		Haut niveau		Electriques	
A 26		Polarité		Entrées courant	
Abréviations	26	Allemand		Entrées tension	
Activation		Langue	45	Ethernet	
Alarme globale	40	Arrière		Interface optique	
Adresse		Face	19	LCD	81
ENERIUM	74	ASCII		Mécaniques	
ModBus		Avant		Mesures	
Adresse		Face	15	Métrologiques	
Par défaut	47	Bit de stop		Rétention des informations .	
Adresse IP		Communication distar	nte 44	RS485	
Communication distante.	44	Par défaut		Sorties analogiques	80
Par défaut		Blocage		Source alimentation auxiliair	
Affichage		Impulsions	21	Tableau	14
Communication distante.	45	Sorties analogiques	20	Touches	81
Contraste	45	Bornier		Carte	
Défilement	45	Ethernet	22	Entrée/Sortie	37
Langue	45	RS485	22	Entrée/Sortie TOR	
Mot de passe	46	Bornier		Entrées TOR	21
Par défaut	47	Carte optionnelle	19, 20	Sorties analogiques	20
Temps	45	Entrées courant	19	Sorties TOR	21
Afficheur		Entrées tension	19	Carte E/S TOR	
Caractéristiques	81	Ethernet	19	Caractéristiques	83
Alarme		RS485	19	Carte entrées TOR	
Synchronisation	57	Source auxiliaire	19, 20	Caractéristiques	82
Alarme élémentaire		Borniers		Carte optionnelle	
Alarme globale		Types	63	Bornier19	9, 20
Statut	40	Branchement		Carte sorties analogiques	
Alarme globale		Ethernet		Caractéristiques	82
Activation		RS485		Carte sorties TOR	
Alarme élémentaire		But du manuel		Caractéristiques	83
Clignotement		Câblage (test)	26	Cartes analogique	
Ecran		Câble		Connexion	67
Equation		RS485		Cartes E/S TOR	
Etat		Câble torsadé		Connexion	68
Icône		Câble torsadé blindé	66	Cartes entrées TOR	
Relais		Câbles		Connexion	67
Statut	40	Dimension	63	Cartes sorties TOR	
Alarmes		Calcul des maxima		Connexion	
Caractéristiques		Formules mathématiq	ues 93	Catégorie d'installation	8
Ecran		Calcul des minima		CEI 61010-1	
Etat		Formules mathématiq	ues 92	Changement de configuration .	
Icône		Caractéristiques		Colisage	
Numéro		Afficheur		Comment faire pour	71
RAZ		Alarmes		Communication	
Relais		Carte E/S TOR		Carte	
Statut	39	Carte entrées TOR		Distante	
Alimentation		Carte sorties analogic	ues 82	Locale ou distante	73

Communication distante	Formules mathématiques 87	Ecrans personnalisés	
Adresse IP44	Fresnel 52	Energies	
Adresse JBus44	Harmoniques 50	Fresnel et jauges	51
Affichage45	Courant instantané26	Harmoniques	49
Bit de stop44	Courant moyen26	Mesures	29
Configuration43	Courant moyen maxi	RAZ alarmes	
Ethernet44, 74	Courant neutre26	Services	
Masque44	Courants	Ecran accueil	16
Parité44	Fresnel 52	Ecran LCD	
Passerelle45	Jauges 53	Ecran LCD	15
Réseau électrique46	Règles d'affichage31	Ecrans personnalisés	
Retournement44	Courbes d'enregistrement	Ecran	41
RS 48543	Caractéristiques80	Icône	
RS48573	Ecran57	En charge	38
Vitesse44	Indicateurs58	Energie	
Communication en cours	Mode avec arrêt buffer 58	Icône	25
Icône26	Mode avec arrêt centré 25 58	Energie active	
Communication en cours	Mode avec arrêt centré 50 58	Energie active EP	
Icône16	Mode avec arrêt immédiat 58	Energie active EP+	33
Communication Ethernet	Mode sans arrêt58	Energie apparente	
Par défaut47	Modes de fonctionnement 58	Energie apparente ES	
Communication locale	Période57	Energie apparente ES+	
Interface optique73	Taux de remplissage 58	Energie et comptage	
Communication RS 485	Courbes de charge	Formules mathématiques	٩n
Par défaut47	Caractéristiques80	Energie réactive	
Compteur horaire	Ecran55	Energie réactive EQ	24
	_		34
Affichage informations38	Curseur	Energies	22
En charge38	Déplacement 17	Ecran	
Formules mathématiques91	Date	Règles d'affichage	35
Présence réseau38	Afficher 38	ENERIUM	٥-
Temps de fonctionnement 38	Format38	Accessoires	
Compteurs	Modifier38	Adresse	
Energie active33	Synchronisation57	Caractéristiques	
Energie apparente34	Déblocage	Caractéristiques mécanique	
Energie réactive34	Sorties analogiques20	Découpe	
Initialiser21	Découpe61	Fixation tableau	
Configuration	Défilement	Maintenance	
3/4 fils47	Affichage45	Montage mécanique	
Changement55	Automatique45	Numéro	
Communication distante43	Par défaut47	Raccordement électrique	
Ecran43	Défilement automatique	Туре	
Icône25	Icône26	Utilisation	
Mot de passe46	Défilement automatique	ENERIUM 150	13
Primaire TC47	Icône16	ENERIUM 150	
Primaire TP46	Déphasage	Comparaison	
Secondaire TC47	Fresnel (courant simple) 52	ENERIUM 50	13
Secondaire TP46	Fresnel (tension composée) 52	ENERIUM 50	
Valeurs par défaut47	Fresnel (tension simple) 51	Comparaison	14
Connexion .	Déplacement	Enregistrement	
Cartes analogique67	Curseur17	Profondeur55	5, 57
Cartes E/S67	Menu 17	Entrée TOR	,
Cartes E/S TOR68	Déséquilibre52	Synchronisation	57
Cartes entrées TOR67	Formules mathématiques 90	Entrée/Sortie TOR	
Cartes sorties TOR67	DHCP74	Carte	21
Ethernet66	Dimensions	Entrées courant	21
RS48565	DIN 4370013	Bornier	10
Source auxiliaire68	Distribué (neutre) 47	Caractéristiques	
Contraste	Droits de propriété9	Entrées courants	01
	E.set73	Connexions	63
Affichage45 Par défaut47	E.view73	Entrées tension	บ3
			40
Réglage niveau45	Ecran	Bornier	
Contraste LCD15	Accueil	Caractéristiques	
Copyright9	Alarme globale40	Protection	63
Cordon optique16, 17	Alarmes	Entrées tensions	
Cos(φ)	Configuration43	Connexions	63
Formules mathématiques 88	Courbes d'enregistrement 57	Entrées TOR	
Courant30	Courbes de charge55	Carte	21

Gestion21	Ecran	51 I	ndicateurs	
Mode impulsionnel21	Icône	25	Courbes d'enregistrement	58
Mode synchronisation21	Full duplex	74 I	nformation produit	37
Equation	Fusible	I	nformations	
Alarme globale40	Protection	68	Durée de rétention	82
Espagnol	Garantie	. 9 I	nstallation	
Langue45	Gestion		Instructions	
Ethernet	Entrées TOR		Nettoyage	
Adresse IP44		21 I	nterface optique15,	16
Adresse par défaut47			Caractéristiques	82
Bornier19, 22		21	Communication locale	73
Caractéristiques82	Grandeur moyenne	I	talien	
Communication distance74	Formules mathématiques	91	Langue	45
Communication distante44	Grandeurs électriques	26 I	x 26	
Connexion66	Grandeurs enregistrées	57 .	Jauges 3I	53
LED67	Grandeurs mesurées		Jauges 3P	53
Masque44	Half duplex73,		Jauges 3U	
Masque par défaut47	Harmoniques		Jauges 3V	52
Passerelle45	Courant	31 .	JBus	
Passerelle par défaut47	Ecran		Adresse	
Face	Formules mathématiques		‹VAh	
Arrière19	Icône	25 l	<varh< td=""><td>26</td></varh<>	26
Avant15	Pourcentage	49 l	‹Wh	26
Facteur de crête	Rangs	49 l	Language	
Formules mathématiques89	Règles d'affichage	32	Affichage	45
Facteur de puissance26	Taux		Langue	
Formules mathématiques 88	Tension Ph-Ph	31	Affichage	45
Règles d'affichage32	THD	49	Français, italien, allemand,	
Fin de vie9	Harmoniques I	50	espagnol	45
Format13	Harmoniques U		Par défaut	47
Format de transmission	Harmoniques V		Largeur	
RS48574			Impulsions	21
Formules mathématiques	Afficher		LCD	15
Calcul des maxima93			Arrêter clignotement	
Calcul des minima92			Caractéristiques	
Compteur horaire91	Hubb		Clignotement	
Cos(φ)88	Hxx Ia		Contraste	15
Courant87	Hxx Uab		Mot de commande	
Déséquilibre90			Rétroéclairage	
Energie et comptage90		ı	LED Ethernet	
Facteur de crête89	Harmoniques		Livraison	٠.
Facteur de puissance88	Icônes		valeurs par défaut	47
Fréquence89	Alarme globale 16,	26 1	Maintenance	••
Grandeur moyenne91	Alarmes		ENERIUM	75
Harmoniques89	Communication en cours. 16,		Manuel (but)	
Maxima des grandeurs93			Manumesure	
Maxima grandeurs moyennes 93			Marques déposées	
•			Masque	0
Minima des grandeurs92 Ordre de phase91	Energie		Communication distante	11
Puissance active87			Par défaut	
	Harmoniques		Maxima des grandeurs	
Puissance apparente88 Puissance réactive88	Mesure		Formules mathématiques	aз
	Ordre des phases16,		Maxima grandeurs moyennes	90
Sens transit puissances88			Formules mathématiques	റാ
Tan(φ)89			•	93
Taux d'harmoniques90			Mécaniques	0.4
Tension simple87	Réseau inductif 16,		Caractéristiques	04
Tensions composées87		25 I	Menu Dringing! 15	25
FP26		24	Principal15,	∠5
Français	Associer grandeur		Venus	27
Langue45			Synoptique	21
Fréquence26			Mesures	٦^
Formules mathématiques89			Caractéristiques	
Règles d'affichage32	Entrées TOR		Ecran	
Fresnel 3I52			Icône	25
Fresnel 3U51	Poids		Métrologie	۰-
Fresnel 3V51	Sorties TOR		Caractéristiques	გ3
Fresnel et jauges	In 26		Minima des grandeurs	

Formules mathématiques	92	Poids		Icône	.26
ModBus/RTU		Impulsions	. 21	Réseau inductif	
Monophasé	65	Polarité		Icône	.16
Montage mécanique	61	Alimentation		Résistance	
Mot de commande		Pourcentages des harmoniques	49	De polarisation	.66
LCD	15	Présence réseau	. 38	Rétention des informations	
Mot de passe		Présentation	. 13	Caractéristiques	.82
0000	46	Primaire TC		Retour de synchronisation	.55
Affichage	46	Configuration	. 47	Retournement	
Configuration	46	Par défaut	. 47	Communication distante	.44
Délai	46	Primaire TP		Par défaut	
Par défaut	47	Configuration	. 46	Rétroéclairage	.15
Mot état des alarmes	40	Par défaut		RJ 45	
MVAh	26	Protection		RS 485	
MVARh	26	Entrées tension	. 63	Adresse JBus	.44
MWh	26	Fusible	. 68	Adresse par défaut	.47
NAQ	74	Parasites électriques	. 63	Bit de stop	
Navigation		Puissance active		Bit de stop par défaut	
Touche	17	Formules mathématiques	. 87	Communication distante	
Nettoyage		Puissance apparente		Parité	
Neutre		Formules mathématiques	88	Parité par défaut	
Distribué	47	Puissance réactive	. 00	Retournement	
Non distribué		Formules mathématiques	88	Retournement par défaut	
Niveau contraste	-T/	Puissance		Vitesse	
Réglage	45	Puissance active		Vitesse par défaut	
Non distribué (neutre)		Puissance apparente		RS232	
Numéro écran	47			RS485	
	16	Puissance moyenne			
Lire		Puissance réactive	. 26	Bornier19,	
Numéro ENERIUM:		Puissances	=0	Caractéristiques	
OK		Jauges		Communication distance	
Touche	17	Règles d'affichage	. 32	Connexion	
Optique		Q 26		Format de transmission	
Cordon16,		Raccordement électrique	. 63	Résistance de polarisation	
Interface	16	Rangs des harmoniques	. 49	Sortie	.65
Ordre de phase		RAZ		S 26	
Formules mathématiques	91	Alarmes	. 40	Secondaire TC	
Ordre des phases		Mot état des alarmes	. 40	Configuration	.47
Icône16,	26	Règle d'affichage		Par défaut	.47
P 26		Compteur horaire	. 32	Secondaire TP	
Panne	8	Courants	. 31	Configuration	.46
Par défaut		Energies		Par défaut	.47
3/4 fils		Facteur de puissance		Sécurité	
Affichage	47	Fréquence		Sécurité des opérateurs	
Communication Ethernet		Harmoniques		Sens transist puissances	
Communication RS 485		Puissances		Formules mathématiques	88
Contraste	-T/	Tensions	-	Services	.00
Défilement		Relais	. 31	Ecran	37
			20	Icône	
Langue		Alarme (associée)		Smoy	
Mot de passe		Alarme globale			.20
Primaire TC		Sorties TOR	. 21	Sorties analogiques	00
Primaire TP	47	Réseau capacitif	00	Blocage	.20
Réseau électrique	47	Icône	. 26	Caractéristiques	
Secondaire TC		Réseau capacitif		Carte	
Secondaire TP		Icône	. 16	déblocage	
Temps		Réseau électrique		Définition grandeur	
Parasites électriques	63	3/4 fils		Valeurs affectées	
Parité		Communication distante		Valeurs min/max	.20
Communication distante	44	Par défaut	. 47	Sorties TOR	
Par défaut:	47	Primaire TC	. 47	Carte	
Passerelle		Primaire TP	. 46	Gestion	
Communication distante	45	Secondaire TC		Mode alarme	
Par défaut		Secondaire TP		Mode Associer grandeur	
Période		Réseau générateur		Mode impulsionnel	
Courbes d'enregistrement	57	Icône	26	Relais	
Période d'enregistrement		Réseau générateur	0	Seuil max/min	
Perte de synchronisation		Icône	16	Source alimentation auxiliaire	۱ ک.
Pmov		Réseau inductif	. 10	Caractéristiques	മാ
I III∪ ¥	<u>_</u> U	rrescau iriuuciii		oai autoliotiques	. 02

Source auxiliaire	Temps d'intégration 55	De navigation15, 17
Bornier19, 20	Temps de fonctionnement 38	OK15, 17
Connexion68	Tension26	Touches
Statut	Tension composée	Caractéristiques81
Alarme globale40	Fresnel 52	TP primaire
Switch66	Tension composée vraie 26	Configuration46
Synchronisation	Tension efficace vraie 26	TP secondaire
Entrées TOR21	Tension Ph-N29	Configuration46
Modes57	Tension Ph-Ph29	Transfert
Perte55	Tension simple26	PC-ENERIUM22
Retour55	Formules mathématiques 87	Transformateur
Sur alarme57	Fresnel 51	Courant46
Sur date57	Tension simple instantanée 49	Tension46
Sur entrée TOR57	Tension U	Triphasé équilibré64
Types57	Harmoniques49	Triphasé non équilibré63, 64, 65
Synoptique des menus27	Tension V	Type ENERIUM:37
Tableau caractéristiques14	Harmoniques49	υ΄
Tan(φ)	Tensions	Harmoniques49
Formules mathématiques 89	Compteur horaire 32	Unités
Taux d'harmoniques	Règles d'affichage31	Utilisation69
Formules mathématiques 90	Tensions composées	V 26
Taux de déséquilibre52	Formules mathématiques 87	Harmoniques49
Taux des harmoniques49	Tensions U	VA26
Taux d'harmonique26	Jauges 51, 52	Valeurs par défaut
Taux distorsion harmonique26	Tensions V	Configuration47
TC primaire	Jauges 51, 52	VAR26
Configuration47	Test du câblage26	Vitesse
TC secondaire	THD49	Communication distante44
Configuration47	Courant31	Par défaut47
Temps	Tension Ph-Ph30	Vitesse de communication74
Affichage45	THD lx26	W26
Par défaut 47	Touche	

ENERDIS

1 à 9 rue d'Arcueil BP675 F – 92542 MONTROUGE Cedex Tel : +33 (0)1 47 46 78 00 Fax : +33 (0) 1 42 53 64 78 http://www.enerdis.fr