

Manuel d'utilisation

Vibromètre solide

Modèle 407860

Introduction

Nous tenons à vous féliciter pour l'achat du Vibromètre Extech 407860. Le modèle 407860 mesure les niveaux de vibration des machineries industrielles. Les mauvais alignements, un mauvais équilibre, des compromis structurels et autres facteurs peuvent entrainer des augmentations de vibrations indésirables. Le modèle 407860 possède une sensibilité de fréquence conforme à la norme ISO-2954 et offre des fonctionnalités de déplacement, vitesse et d'accélération. Ce mètre est expédié entièrement testé et calibré et vous apportera de nombreuses années de service fiable lorsque correctement utilisé.

Description du mètre

- 1. Connecteur pour la sonde
- 2. Connecteur RS-232
- 3. Ecran LCD
- 4. Touches et sélecteurs de fonction
- 5. Sonde
- 6. Base magnétique
- 7. Couvercle de protection en caoutchouc
- 8. Compartiment à piles (panneau arrière)

Ecran LCD du mètre

5

Raccordement de la sonde

- 1. Notez que ce mètre peut seulement fonctionner avec la sonde à vibration fournie.
- Raccordez le connecteur BNC du cordon de la sonde au connecteur BNC situé sur le côté supérieur du mètre.
- 3. La sonde se raccorde à la machinerie de test de trois manières.
 - a. Connectez l'extrémité magnétique de la sonde à un matériau ferreux de l'équipement en cours de test tel qu'indiqué dans le schéma ci-joint.

b. Tenez la sonde contre l'équipement en cours de test tel qu'indiqué.

c. Dévissez l'embout magnétique de la sonde (tel qu'indiqué sur le schéma) puis utilisez l'adaptateur fileté pour fixer la sonde à une vis, un boulon ou une barre de l'équipement en cours de test.

2	/	^	\langle
Ļ			
(P	

Touche POWER et fonction Mise hors tension automatique

- 1. Appuyez sur la touche **POWER** pour mettre en marche le mètre. Lorsqu'il vous est impossible de mettre en marche le mètre, remplacez la pile de 9V.
- Pour éteindre le mètre, pressez et maintenez enfoncée la touche POWER jusqu'à ce que le mètre émette un bip.
- Le mètre est équipé d'une fonction de mise hors tension automatique permettant d'économiser l'énergie des piles. Au bout de 10 minutes d'inutilisation, le mètre s'éteint automatiquement.
 Remargue : la mise hors tension automatique est désactivée en mode Enregistrement.

Touche FUNCTION

Appuyez sur la touche FUNCTION pour sélectionner RMS, CRETE ou MAX-HOLD.

- 1. RMS Paramètre destiné aux mesures de vibration générales
- 2. CRETE Destiné à la mesure de valeurs de crête. Non disponible en mode Déplacement.
- MAX_HOLD Permet d'afficher la valeur maximale et maintenir son affichage. L'écran mettra seulement à jour les données lorsqu'une nouvelle valeur maximale est mesurée. Non disponible en mode Déplacement.

Touche UNIT

Appuyez sur cette touche pour sélectionner une unité de mesure.

Pressez et maintenez enfoncée cette touche pendant plus de 5 secondes pour changer d'unité.

Mesure	Unités métriques	Unités impériales
Accélération	m/s², G	Pied/s ²
Vitesse	mm/s, cm/s	Pouce/s
Déplacement	mm	Pouce

Touche HOLD

Appuyez sur cette touche pour geler la mesure affichée à l'écran. L'indicateur HOLD s'affiche. Appuyez sur la touche à nouveau pour revenir en mode de fonctionnement normal.

Touche REC

Utilisez cette fonction pour enregistrer la valeur maximale et minimale mesurée.

- 1. Appuyez sur la touche **REC** pour démarrer l'enregistrement. L'indicateur REC s'affiche.
- 2. Appuyez sur la touche **REC** à nouveau pour afficher la valeur MAX enregistrée. Les indicateurs REC et MAX s'affichent.
- 3. Appuyez sur la touche **REC** à nouveau pour afficher la valeur MIN enregistrée. Les indicateurs REC et MIN s'affichent.
- 4. Pressez <u>et maintenez enfoncée</u> la touche **REC** pendant plus de 2 secondes pour quitter le mode Enregistrement.

Remise à ZERO

Le mètre peut ne pas indiquer zéro (ou peut indiquer une valeur proche de zéro) sans aucun signal appliqué au mètre (sans vibrations). Bien que ceci ne constitue pas un problème, cette procédure permet de ramener cette valeur vers zéro et d'améliorer la précision de mesure du mètre.

- 1. Connectez le capteur de vibration au mètre.
- 2. Mettez en marche le mètre puis positionnez le sélecteur de fonction sur ACC et RMS.
- 3. Assurez-vous que le capteur de vibration est parfaitement immobile (sans vibrations).
- 4. Pressez <u>et maintenez enfoncée</u> la touche **HOLD** pendant plus de 5 secondes pour que l'écran affiche la valeur zéro.

Enregistrement chronologique des données

La mémoire d'enregistrement de données interne peut stocker jusqu'à 500 lectures. Les lectures peuvent être enregistrées manuellement, d'une simple pression de touche, ou automatiquement selon un taux d'échantillonnage programmé.

Taux d'échantillonnage

Le taux d'échantillonnage peut être défini sur 0 (manuel), 1, 2, 5, 10, 30, 60, 600, 1800 ou 3600 secondes.

- 1. Lorsque le mètre est éteint, pressez <u>et maintenez enfoncée</u> la touche HOLD et REC.
- 2. Appuyez sur la touche **POWER**.
- 3. Lorsque l'écran affiche le taux d'échantillonnage, relâchez la touche HOLD & REC.
- 4. Utilisez la touche UNIT pour sélectionner le taux d'échantillonnage de votre choix.
- 5. Appuyez sur la touche **REC** pour enregistrer la sélection. Le mètre émet trois bips indiquant que le taux d'échantillonnage a correctement été enregistré.
- 6. Suivez la procédure d'enregistrement de données Auto ou Manuelle de la section suivante.
- Pour revenir en mode de fonctionnement normal, il vous suffit d'éteindre puis de rallumer le mètre.

Enregistrement chronologique des données automatique

- 1. Sélectionnez le taux d'échantillonnage de votre choix tel qu'indiqué (ne pas sélectionner '0').
- 2. Éteignez puis rallumez le mètre.
- 3. Appuyez sur la touche **REC** pour accéder à la fonction d'enregistrement chronologique des données. L'indicateur **REC** s'affiche (coin supérieur gauche).
- 4. Appuyez sur la touche LOGGER pour démarrer l'enregistrement des données. L'écran affiche brièvement le taux d'échantillonnage et l'indicateur REC clignote.
- 5. Un son retentit à chaque enregistrement de mesure.
- 6. Pressez la touche **LOGGER** pendant pour mettre en pause/reprendre l'enregistrement chronologique des données.
- Pressez <u>et maintenez enfoncée</u> la touche **REC** pendant plus de 2 secondes pour quitter le mode Enregistrement chronologique des données.

Enregistrement chronologique des données manuel

- 1. Définissez le taux d'échantillonnage sur '0' tel qu'indiqué ci-dessus.
- 2. Éteignez puis rallumez le mètre.
- 3. Appuyez sur la touche **REC** pour accéder à la fonction Enregistrement chronologique des données. L'indicateur **REC** s'affiche et clignote.
- 4. Appuyez sur la touche LOGGER. L'écran affiche brièvement le taux d'échantillonnage '0'.
- Appuyez sur la touche LOGGER à nouveau pour enregistrer un point. L'indicateur REC clignote et un son retentit. Répétez cette étape pour enregistrer le nombre de lectures de votre choix.
- 6. Pressez <u>et maintenez enfoncée</u> la touche **REC** pendant plus de 2 secondes pour quitter le mode Enregistrement chronologique des données.

Effacement de la mémoire

- 1. Lorsque le mètre est éteint, appuyez et maintenez enfoncée la touche HOLD et REC.
- 2. Appuyez sur la touche **POWER**.
- 3. Lorsque l'écran affiche le taux d'échantillonnage, relâchez la touche HOLD et REC.
- 4. Appuyez <u>et maintenez enfoncée</u> la touche **REC** pendant plus de 5 secondes. L'écran affiche 0 une fois l'effacement de la mémoire terminé.
- 5. Eteignez puis remettez en marche le mètre pour revenir en mode de fonctionnement normal.

Indication de mémoire pleine

Le mètre produit un son continu lorsque la mémoire interne est pleine (500 lectures). Les données peuvent être visualisées, effacées ou transférées vers un ordinateur.

Visualisation de données enregistrées

- 1. Lorsque le mètre est éteint, pressez et maintenez enfoncée la touche HOLD et REC.
- 2. Appuyez sur la touche POWER.
- 3. Lorsque l'écran affiche le taux d'échantillonnage existant, relâchez la touche HOLD et REC.
- 4. Les touches HOLD et FUNCTION permettent de faire défiler les données enregistrées. Lorsque vous appuyez sur une de ces touches, le numéro de référence des données s'affichera brièvement puis la lecture de l'emplacement mémoire sélectionnée s'affiche. La touche HOLD permet d'augmenter le numéro d'emplacement des données et la touche FUNCTION permet de diminuer le numéro d'emplacement des données.

Interface PC

Le mètre est équipé d'un connecteur série RS-232 (situé sur la partie supérieure du mètre près du connecteur d'entrée de la sonde). Cette interface est seulement conçue pour fonctionner avec la suite de logiciels 407001 Extech incluant deux programmes ainsi que le cordon permettant de raccorder le mètre à un ordinateur.

- 1. **407001** A Logiciel d'acquisition de données Extech : ce logiciel permet à l'utilisateur de raccorder le mètre à un ordinateur et de visualiser les lectures en temps réel (ce logiciel ne permet pas de transférer le contenu de la mémoire interne du mètre vers l'ordinateur)
- 2. **DL2005** Logiciel d'export de données : ce logiciel permet à l'utilisateur de transférer le contenu de la mémoire interne du mètre vers un ordinateur

Pour la diffusion de données à un PC via la sortie RS232 jack, l'option 407001-kit USB (RS232 à câble USB et CD de pilotes) avec le logiciel 407001 (disponible gratuitement à www.extech.com) sont requis.

Transfert des données enregistrées vers un ordinateur (nécessite le logiciel DL2005)

La touche **SEND** permet d'exporter le contenu de la mémoire de stockage de données du mètre sur un ordinateur via le logiciel DL2005 optionnel.

- 1. Raccordez le cordon RS-232 à votre ordinateur
- 2. Installez puis lancez le logiciel d'enregistrement chronologique des données DL2005.
- 3. Lorsque **HOLD** et **REC** ne sont pas sélectionnés, pressez <u>et maintenez enfoncée</u> la touche **SEND** pendant plus de 2 secondes. "232" (clignotant) s'affiche.
- 4. Appuyez sur la touche **SEND** à nouveau pour exporter les données vers l'ordinateur raccordé via le port RS-232 du mètre.
- 5. Appuyez sur la touche **ESC** pour revenir en mode de fonctionnement normal.

Remplacement de la pile

Lorsque la pile 9V est déchargée, l'indicateur $\begin{bmatrix} 1 & - \\ + & - \end{bmatrix}$ s'affiche sur l'écran LCD. Suivez la procédure ci-dessous pour remplacer la pile :

- 1. Eteignez le mètre.
- 2. Déconnectez la sonde et le cordon RS-232 du mètre.
- 3. Retirez le couvercle de protection en caoutchouc du mètre en l'étirant depuis la partie inférieure du mètre.
- 4. Ouvrez le compartiment à piles (situé sur la partie inférieure à l'arrière du mètre) avec un tournevis plat ou une pièce de monnaie.
- 5. Remplacez la pile 9 V, replacez le couvercle du compartiment à piles puis replacez le couvercle en caoutchouc.

En qualité de d'utilisateur final, vous êtes légalement tenu (**Ordonnance relative à l'élimination des piles usagées**) de rapporter toutes les piles et les accumulateurs usagés ; **il est interdit de les jeter avec les ordures ménagères** !

Vous pouvez remettre vos piles/accumulateurs usagés aux points de collecte de votre quartier ou à tout point de vente de piles/accumulateurs !

Mise au rebut : Suivez les dispositions légales en vigueur relatives à la mise au rebut de l'appareil à la fin de son cycle de vie

Spécifications

Spécifications générales

Ecran	Ecran LCD 3-1/2 lignes avec graphe	
Gamme de fréquences	10 Hz à 1 KHz (la sensibilité de la fréquence est conforme à ISO-2954)	
Durée d'échantillonnage	Environ une (1) seconde	
Sortie de données Interface P	C série RS-232 isolée	
Data Hold	Permet de geler la lecture affichée	
Mémoire Min/Max	Le mètre enregistre la lecture minimale et maximale pour tout rappel ultérieur	
Enregistreur de données	Possibilité d'enregistrer jusqu'à 500 lectures	
Durée d'échantillonnage de		
l'enregistreur de données	0 (manuel), 1, 2, 5, 10, 30, 60, 600, 1800 et 3600 sec.	
Taille de l'orifice fileté	10-32 UNF	
Mise hors tension automatique	Le mètre s'éteint automatiquement au bout de 10 minutes d'inactivité	
Indicateur de niveau de charge	faible L'indicateur de la pile s'affiche sur l'écran LCD	
Alimentation	Piles de 9 V	
Consommation d'énergie	Env. 8 mA CC	
Température de fonctionnemer	t 0 à 50 °C (32 à 122 °F)	
Humidité d'utilisation	Inférieure à 80 % de HT	
Dimensions	Mètre : 180 x 72 x 32 mm (7,1 x 2,8 x 1,3")	
	Sonde : 18 mm (0.75") diamètre x 40 mm (1,6")	
Poids	Mètre : env. 230 g (0,5 lbs)	
	Sonde avec base magnétique : 110 g (0,24 lbs)	

Fonctions, Unités, Gammes et Précision

Accélération	Unité	Gamme	Précision (% de la lecture)
(RMS ou Crête)	m/s ²	0,5 à 199,9 m/s ²	
	G	0,05 à 20,39G	±(5 % + 2 chiffres)
	Pied/s ²	2 à 656 ft/s ²	
	Accélération Crête gamme : 1,0 à 199,9 m/s ²		
	Point de calibrage : 50 m/s ² @ 160 Hz		
Vitesse	mm/s	0,5 à 199,9 mm/s	
(RMS ou Crête)	cm/s	0,05 à 19,99 cm/s	±(5 % + 2 chiffres)
	pouce/s	0,02 à 7,87 in/s	
	Vitesse Crête gamme : 1,0 à 199,9 mm/s Point de calibrage : 50 mm/s @ 160 Hz		
Déplacement	mm	0 à 1,999 mm	+(5% + 2 chiffres)
(Crête à crête)	pouce	0,078 in	±(5 % + 2 chines)
	Point de calibrage : 0,141 mm @ 160 Hz		
Remarque : la précision est définie de 80 à 160 Hz @ 23 ± 5 °C			

Annexe A : classification des machineries

Lors de l'évaluation des machineries et des équipements, i est utile de connaître leur classement et leur groupe. Il existe quatre groupes de machines et classements reconnus dans le monde (norme ISO 2372 et VDI 2056). Les limites de la sévérité des vibrations (mm/s) sont indiquées dans les tableaux ci-dessous :

GROUPE K - petites machineries jusqu'à 15000 W (par exemple, les moteurs de production)

Etat du test	Sévérité des vibrations (mm/s)
Correct	0 à 0,71
Acceptable	0,72 à 1,80
Permissible	1,81 à 4,5
Dangereux	Supérieure à 4,5

GROUPE M – Machineries de taille moyenne allant jusqu'à 75000 W (par exemple, les moteurs électriques sans fondations spéciales)

Etat du test	Sévérité des vibrations (mm/s)
Correct	0 à 1,12
Acceptable	1,13 à 2,80
Permissible	2,81 à 7,10
Dangereux	Supérieures à 7,10

GROUPE G – Grande machineries sur de solides fondations

Etat du test	Sévérité des vibrations (mm/s)
Correct	0 à 1,80
Acceptable	1,81 à 4,50
Permissible	4,51 à 11,20
Dangereux	Supérieures à 11,20

GROUPE T - Grande machinerie turbo sur des fondations spéciales

Etat du test	Sévérité des vibrations (mm/s)
Correct	0 à 2,80
Acceptable	2,81 à 7,10
Permissible	7,11 à 18
Dangereux	Supérieures à 18

Sensibilité relative Fréquence (Hz) Normale Minimale Maximale 10 1.0 0.8 1.1 1.0 20 0.9 1.1 1.0 40 0.9 1.1 1.0 10 10 80 1.0 1.1 160 0.9 1.0 500 0.9 1.1 10 1000 0.8 1.1

Annexe B : Tableau de Sensibilité relative (ISO 2954)

Annexe C : Glossaire

Vibration : une vibration est une oscillation ou mouvement répétitif d'un objet autour d'une position d'équilibre.

Déplacement : le déplacement est la distance crête à crête depuis une position de référence, un point d'équilibre d'un objet en cours de test.

Amplitude crête à crête : l'amplitude crête à crête est le déplacement d'un objet (voir ci-dessus). Il peut être défini comme la distance depuis le point de déviation positif maximal au point de déviation négatif maximal respectant une position d'équilibrisme de l'objet.

Vitesse : la vitesse est le *rythme de variation* du déplacement. La vitesse est mesurée en pouces/seconde (mm/seconde).

Accélération : l'accélération est le *rythme de variation* de la vitesse. L'unité de mesure de l'accélération est le pied carré par seconde (mètre carré par seconde)

Amplitude de crête : déviation maximale d'un objet depuis sa position d'équilibrire.

RMS: Amplitude Root Mean Square (RMS) représente la racine carrée de la moyenne de la valeur carrée d'une forme d'onde. L'amplitude RMS d'une vibration est 0,707 fois la valeur de l'amplitude de crête. La valeur RMS d'un signal de vibration est une importante mesure de son amplitude.

Copyright © 2014-2015 FLIR Systems, Inc.

Tous droits réservés, y compris le droit de reproduction, en tout ou en partie, sous quelque forme Certifié ISO-9001

www.extech.com