

Montage

Connexion

Commande

Détection de pannes

Exemples

Recommandations de sécurité

Veuillez lire attentivement les recommandations de sécurité suivantes afin d'éviter tout dommage aux personnes et aux biens.

Prescriptions

Pour toute opération effectuée sur l'appareil, veuillez prendre en considération

- les règles sur la prévention des accidents,
- les règles sur la protection de l'environnement,
- les règles de l'Institut National de Recherche et de Sécurité pour la prévention des accidents du travail et des maladies professionnelles,
- les règles de sécurité DIN, EN, DVGW,TRGI,TRF et VDE

Ce manuel d'instructions vise exclusivement les techniciens habilités.

- Toute opération électrotechnique doit être effectuée par un technicien en électrotechnique.
- La première mise en service de l'appareil doit être effectuée par le fabricant ou par un technicien désigné par celui-ci.

Utilisation conforme à l'usage prévu

Le régulateur solaire doit uniquement être utilisé dans des installations solaires standards et ce, en respectant les caractéristiques techniques figurant dans le présent manuel.

Toute utilisation non-conforme entraînera une exclusion de garantie.

Sommaire

Recom	nmandations de sécurité	2
Présen	tation des fonctions et caractéristiques techniques	3
I.	Installation	
1.1	Montage	4
1.2	Branchement électrique	4
1.2.1	Bus de communication	5
1.2.2-9	Système solaire 1-9	6
2.	Commande et fonction	10
2.1	Touches de réglage	10
2.2	Écran System-Monitoring	
2.2.1	Affichage de canaux	
2.2.2	Réglette de symboles	10
2.2.3	System-Screen	11
2.3	Témoins lumineux	
3.	Première mise en marche	12
4.	Paramètres de réglage et canaux d'affichage	13
4. I	Présentation des canaux	13
4.1.1-7	Canaux d'affichage	15
4.1.6-22	2 Canaux de réglage	16
5.	Détection de pannes	21
5. l	Divers	22
6.	Accessoires	24
Achev	é d'imprimé	24

Sous réserve d'erreurs et de modifications techniques

Déclaration de conformité

Nous, l'entreprise Riello Spa, Via Ing. Pilade Riello 7, 37048 Legnago (VR), déclarons sous notre entière responsabilité que le produit SUN 2 PRO 2R est conforme aux règles techniques suivantes:

EN 55 014-1 EN 60 730-1

La marque **C E** est apposée sur ledit produit conformément aux dispositions des directives suivantes:

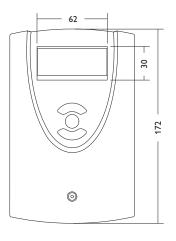
89/336/EWG 73/ 23/EWG

DESCRIPTION	CODE
SUN 2 PRO 2R	4383380

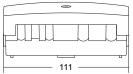
Présentation des fonctions

- Écran System Monitoring
- Jusqu'à 4 sondes de température Pt1000
- 2 relais semi-conducteur pour le réglage de vitesse
- 9 systèmes de base au choix
- Bilan calorimétrique
- VBus®
- Contrôle de fonctionnement
- Fonction thermostat
- · Horloge temps réel
- Simple à manipuler
- Boîtier facile à monter et à design exceptionnel

I x SUN 2 PRO 2R


I x sachet d'accessoires

- I x fuse de rechange T4A
- 2 x vis et cheville
- 4 x serre-fils et vis
- I x condensateur 4,7 nF


Supplémentaire dans le paquet complet:

- 2 x sonde FKP6
- 2 x sonde FRP6

Caractéristiques techniques Boîtier:

en plastique, PC-ABS et PMMA

Protection: IP 20 / DIN 40050

Temp. ambiante: 0 ... 40 °C

Dimensions: I72 x III x 49 mm

Montage: mural, possibilité d'installation dans un tableau de commande

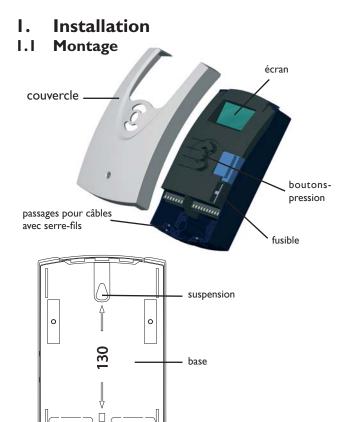
Affichage: écran System Monitor pour visualiser l'ensemble de l'installation, affichage de 16 segments, affichage de 7 segments, pictogrammes

Maniement: avec les 3 boutons-pression sur le devant du boîtier

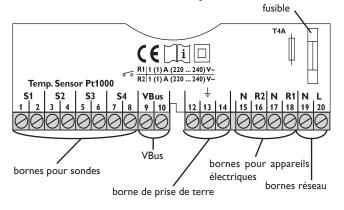
Fonctions: régulateur différentiel de température avec fonctions optionnelles. Contrôle de fonctionnement conformément aus directives BAW, totaliseur d'heures de fonctionnement de la pompe solaire, fonction capteur tubulaire, réglage de vitesse, fonction thermostat et bilan calorimétrique

Entrées:

pour 4 sonde de température Pt1000 **Sorties:** 2 relais semiconducteurs **Bus:** VBus®


Alimentation:

220 ... 240V~


Capacité totale de coupure: 2 (2) A (220 ... 240) V~

Capacité de coupure par relais

relais semiconducteur: I (I) A (220 ... 240)V~

1.2 Branchement électrique

attache

Composantes à haute tension!

Des décharges électrostatiques peuvent endommager les composantes électroniques!

Note:

Les relais sont à semi-conducteur et sont conçus pour le réglage de vitesse. Pour qu'ils puissent fonctionner

correctement, leur charge minimum doit être égale à 20 W (puissance absorbée par les appareils électriques). En cas de branchement de relais auxiliaires, de vannes motorisées etc..., le condensateur fourni avec le matériel de montage doit être branché parallèle à la sortie de relais correspon-

Attention: En cas de branchement de relais auxiliaires ou de vannes, régler la vitesse minimale à 100 %

Avertissement! Débrancher le régulateur du réseau électrique avant de l'ouvrir!

Réaliser le montage de l'appareil dans une pièce intérieure sèche. Afin d'assurer le bon fonctionnement de l'appareil, veiller à ne pas exposer ce dernier à des champs électromagnétiques trop élevés. Le régulateur doit pouvoir être séparé du réseau électrique par le biais d'un dispositif supplémentaire (avec une distance minimum de séparation de 3 mm sur tous les pôles) ou par le biais d'un dispositif de séparation, conformément aux règles d'installation en vigueur. Lors de l'installation, veiller à maintenir le câble de connexion au réseau électrique séparé des câbles des sondes.

- 1. Desserrer la vis cruciforme du couvercle et retirer celuici en tirant vers le bas.
- 2. Marquer le point de fixation supérieur (pour la suspension) et pré-monter la cheville avec la vis correspondante.
- 3. Placer le boîtier sur le point de fixation supérieur et marquer le point de fixation inférieur (pour l'attache) (distance entre les trous de 130 mm); ensuite, placer la cheville inférieure.
- 4. Accrocher le boîtier en haut et fixer-le avec la vis de fixation inférieure

L'alimentation électrique du régulateur doit passer par un interrupteur externe (dernière étape de l'installation!) et la tension d'alimentation doit être comprise entre 220 et 240V~ (50...60 Hz). Des câbles flexibles doivent être fixés au boîtier avec les serre-fils compris dans les accessoires et les vis correspondantes.

Le régulateur est équipé de 2 relais auxquels des appareils électriques comme des pompes, des soupapes etc. peuvent être branchés

Relais I

18 = conducteur R1

17 = conducteur neutre N

13 = borne de prise de terre

Relais 2

16 = conducteur R2

15 = conducteur neutre N

14 = borne de prise de terre

Brancher les sondes de température (SI à S4) sur les bornes suivantes sans tenir compte de leur polarité:

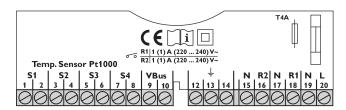
1/2 =sonde 1 (p. ex. sonde du capteur <math>1)

3 / 4 = sonde 2 (p. ex. sonde du réservoir I)

5/6 = sonde 3 (p. ex. sonde du capteur 2)

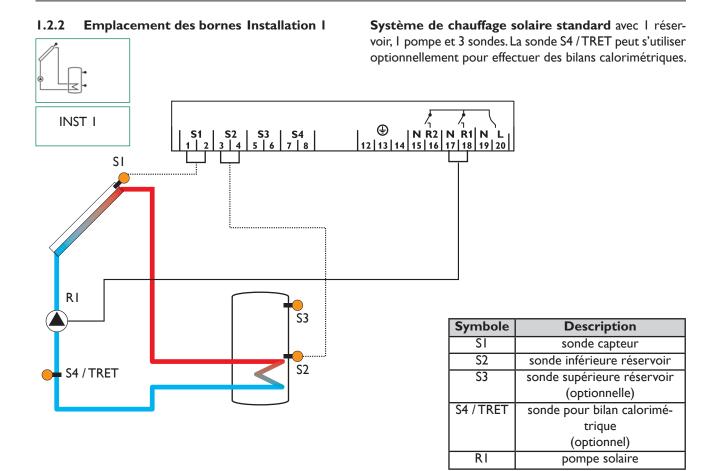
7/8 = sonde 4 (p. ex. sonde TRET)

Le raccordement au réseau s'effectue aux bornes:

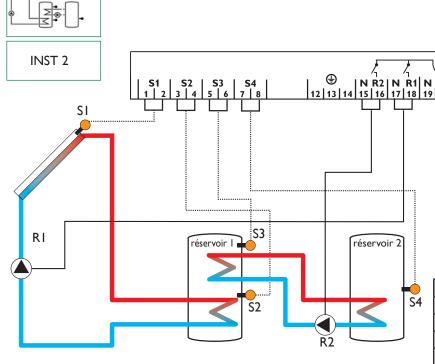

19 = conducteur neutre N

20 = conducteur L

12 = borne de prise de terre (=)

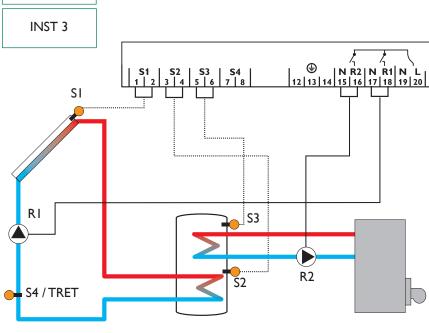


1.2.1 Bus de communication

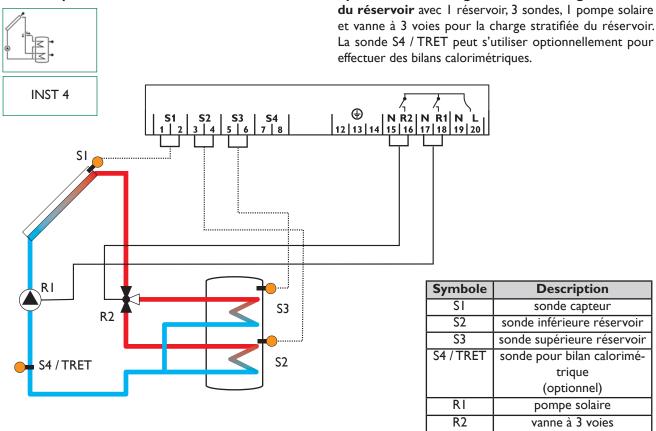

Le régulateur est équipé du **VBus**® lui permettant de transmettre des données à des modules externes et d'alimenter ces derniers en énergie électrique. Le VBus® se branche sur les deux bornes 9 et 10 marquées du mot "VBus" (pôles interchangeables). Ce bus de données permet de brancher un ou plusieurs modules VBus® sur le régulateur, tels que:

- calorimètre
- grand panneau d'affichage / Smart Display
- Datalogger
- dispositif de téléaffichage de données

1.2.3 Emplacement des bornes Installation 2

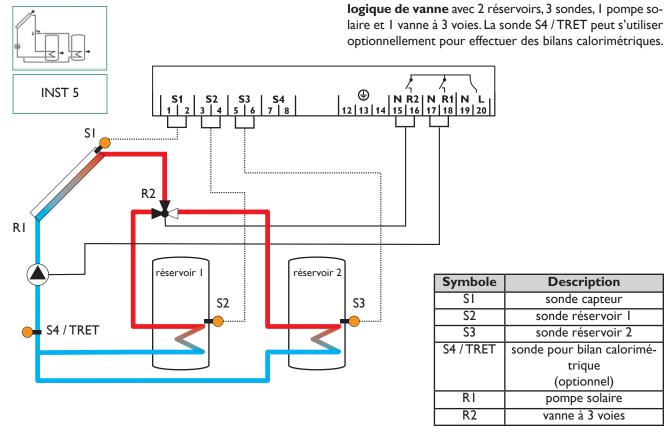

Système de chauffage solaire et échange de chaleuravec réservoir existant avec 2 réservoir, 4 sondes et 2 pompes.

Symbole	Description
SI	sonde capteur
S2	sonde inférieure réservoir
S3	sonde supérieure réservoir
S4	sonde réservoir2
RI	pompe solaire
R2	pompe pour échange de
	chaleur

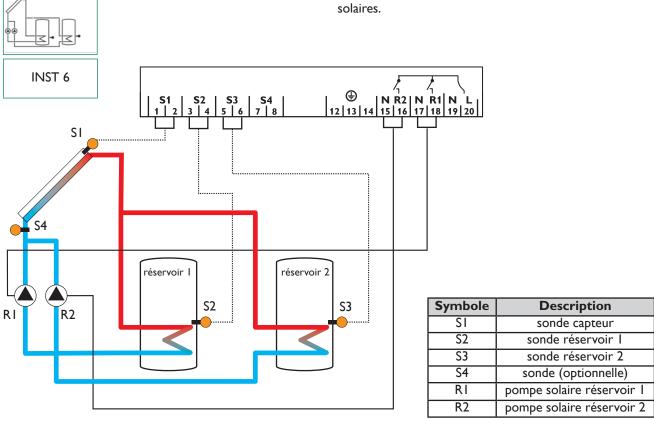

1.2.4 Emplacement des bornes Installation 3

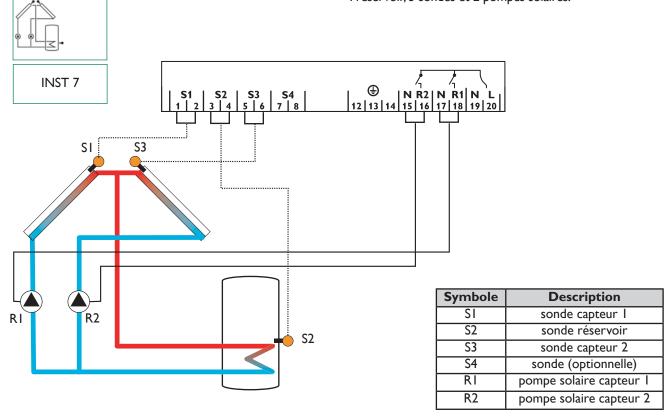
Système de chauffage solaire et chauffage d'appoint avec I réservoir, 3 sondes et chauffage d'appoint. La sonde S4/TRET peut s'utiliser optionnellement pour effectuer des bilans calorimétriques.

Symbole	Description				
SI	sonde capteur				
S2	sonde inférieure réservoir				
S3	sonde supérieure réservoir				
S4 / TRET	sonde pour bilan calori-				
	métrique				
	(optionnel)				
RI	pompe solaire				
R2	pompe de charge				
	chauffage d'appoint				

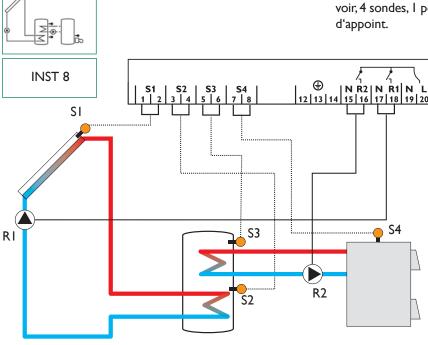


Système de chauffage solaire et charge stratifiée


Système de chauffage solaire à 2 réservoirs avec

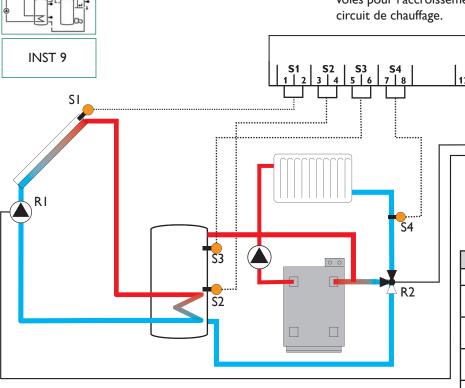

1.2.6 Emplacement des bornes Installation 6

Système de chauffage solaire à 2 réservoirs avec logique de pompe avec 2 réservoirs, 3 sondes et 2 pompes solaires



1.2.7 Emplacement des bornes Installation 7

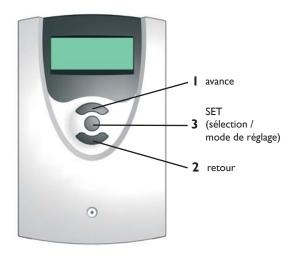
Système de chauffage solaire avec capteurs est/ouest, I réservoir, 3 sondes et 2 pompes solaires.



Système de chauffage solaire avec chauffage d'appoint par chaudière combustible solide avec I réservoir, 4 sondes, I pompe solaire et I pompe pour le chauffage d'appoint.

Symbole	Description
SI	sonde capteur
S2	sonde inférieure réservoir
S3	sonde supérieure réservoir
S4	sonde pour chaudière
	combustible solide
RI	pompe solaire
R2	pompe pour chaudière
	combustible solide

1.2.9 Emplacement des bornes Installation 9

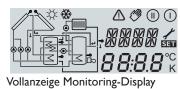


Système de chauffage solaire et accroissement de la température du retour du circuit de chauffage avec I réservoir, 4 sondes, I pompe solaire et I vanne à 3 voies pour l'accroissement de la température du retour du circuit de chauffage.

Symbole Description sonde capteur S2 sonde inférieure réservoir S3 sonde supérieure réservoir S4 retour circuit de chauffage RΙ pompe solaire R2 vanne à 3 voies

2. Commande et fonction

2.1 Touches de réglage


Brancher l'appareil au réseau électrique. Le régulateur met en marche une phase d'initialisation. Après cette phase d'initialisation, le régulateur passe au mode de fonctionnement automatique avec les réglages de fabrication.

Le régulateur se manie avec les 3 touches de réglage situéessous l'écran d'affichage. La touche "avance" (1) sert à avancer dans le menu d'affichage ou à augmenter des valeurs de réglage. La touche "retour" (2) sert à effectuer l'opération inverse.

Pour régler des valeurs, appuyer 2 secondes sur la touche I. Dès que l'écran affiche une valeur de réglage, le symbole san apparaît. Pour passer maintenant au mode de réglage, appuyez sur la touche 3

- Sélectionner le canal avec les touches I et 2
- Appuyer brièvement sur la touche 3, le symbole sti clignote (mode sti)
- Régler la valeur avec les touches I et 2
- Appuyer sur la touche 3, l'indication si réapparaît et reste affichée, la valeur réglée est enregistrée

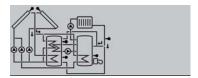
2.2 Écran System-Monitoring

2.2.1 Affichage de canaux

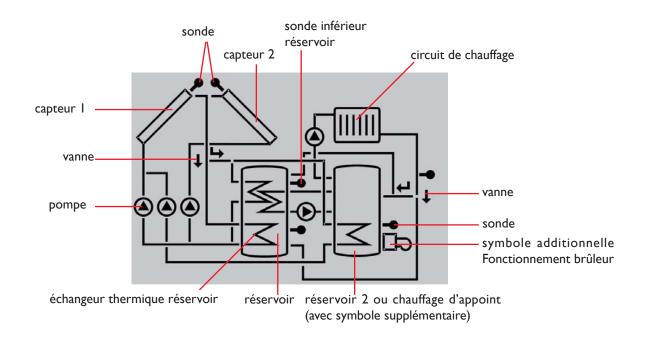
2.2.2 Réglette de symboles

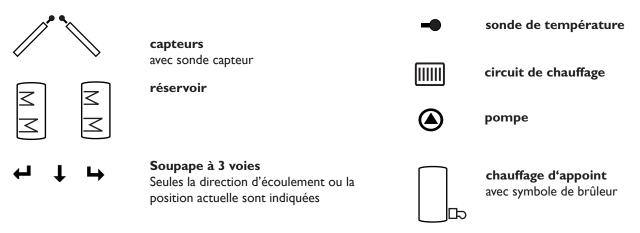
réglette de symboles

L'écran System-Monitoring se compose de 3 champs: l'indicateur de canaux, la réglette de symboles et l'indicateur de schémas de systèmes (schéma actif des systèmes).


L'indicateur de canaux est constitué de deux lignes. La ligne supérieure est une ligne alphanumérique d'affichage de 16 segments (affichage de texte). Cette ligne affiche surtout des noms de canaux / des niveaux de menu. La ligne inférieure est une ligne d'affichage de 7 segments qui affiche des valeurs de canaux et des paramètres de réglage.

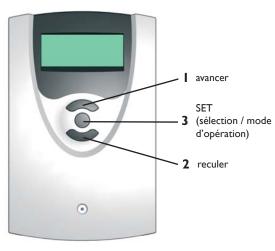
Les températures et les différences de température sont affichées avec les unités ${}^{\circ}C$ ou K.


Les symboles supplémentaires de la **réglette de symboles** indiquent l'état actuel du système.


Symbole	normal	clignotant
	Relais I activé	
	Relais 2 activé	
*	Limitation maximale du réservoir activée / température maximale du réservoir dépassée	Fonction de refroidissement du capteur activée Fonction de refroidissement du réservoir activée
**	Option antigel activée	Limitation minimale du capteur activée Fonction antigel activée
⚠		Déconnexion de sécurité du capteur activé ou déconnexion de sécurité du réservoir
<u>^</u> + √		Sonde défectueuse
△ +Ø		Fonctionnement manuel activé
SET		Un canal de réglage est modifié Mode SET

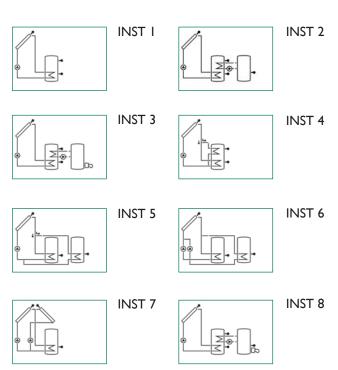
2.2.3 System-Screen

L'indicateur de schémas de systèmes (schéma actif des systèmes) indique les schémas sélectionnés. Cet indicateur se compose de plusieurs symboles d'éléments des systèmes qui, selon l'état actuel du système de chauffage, clignotent, restent affichés ou sont masqués.



2.3 Témoins lumineux

- Les pompes clignotent pendant la phase d'initialisation
- Les sondes clignotent lorsque les canaux d'affichage correspondants sont sélectionnés sur l'écran.
- Les sondes clignotent très vite lorsque l'une d'entre elles est défectueuse.
- Le symbole de brûleur clignote lorsque le chauffage d'appoint est activé.


3. Première mise en marche

Lors de la première mise en service, réglez avant tout le schéma de système désiré

- I. Brancher l'appareil au réseau électrique. Le régulateur met en marche une phase d'initialisation. Après cette phase d'initialisation, le régulateur passe au mode de fonctionnement automatique avec les réglages de fabrication. Le schéma de système préréglé est INST 1.
- 2. Régler l'heure dans le canal HRE. En appuyant 2 secondes sur la touche **SEI**, les heures s'affichent et clignotent; en appuyant de nouveau sur la même touche, ce sont les minutes qui s'affichent et qui clignotent. Pour régler l'heure, utiliser les touches I et 2 et sauvegarder avec la touche **SEI**.
- 3. Sélectionner INST
 - Passer au mode SET (cf. 2.1)
 - Sélectionner le schéma de système avec l'indice Inst
 - Enregistrer le réglage effectué en appuyant sur la touche SET

Maintenant, le régulateur est en ordre de marche avec les réglages de fabrication pour un fonctionnement optimal.

INST 9

Présentation des systèmes:

4. Paramètres de réglage et canaux d'affichage

4.1 Présentation des canaux

Légende:

X

Le canal correspondant est présent.

x*

Le canal correspondant est présent uniquement lorsque l'option respective est activée.

Indication:

S3 et S4 s'affichent uniquement lorsque les sondes de température sont branchées.

1

Le canal correspondant est présent uniquement lorsque l'option "Bilan calorimétrique" (OCAL) est **activée**.

2

Le canal correspondant est présent uniquement lorsque l'option "Bilan calorimétrique" (OCAL) est **désactivée**..

MEDT

Der Kanal Frostschutzgehalt (MED%) wird nur eingeblendet wenn die Frostschutzart (MEDT) nicht Wasser oder Tyfocor LS / G-LS (MEDT 0 oder 3) ist. Nur bei Verwendung von Frostschutzmitteln im Solarkreis wird die Einstellung des Frostschutzgehaltes sinnvoll.

Canal					Description	Do go					
Canai	- 1	2	3	4	5	6	7	8	9	Description	Page
CAP	Х	×	×	×	×	×		×	х	température capteur I	15
CAP I		i					х	<u> </u>		température capteur I	15
TR	×						×			température réservoir l	15
TIR			х	×				х	×	température réservoir I en bas	15
TRI		×	İ		х	×	i e	İ		température réservoir I en bas	15
TSR		×	х	х				х	х	température réservoir I en haut	15
TR2		×		i	х	×		İ		température réservoir 2 en bas	15
TCCS		İ		İ	Ì			х		température chaudière combustible solide	15
TRCC		İ		İ	Ì			İ	х	température circuit de chauffage	15
CAP2		İ		İ	Ì		х	İ		température capteur 2	15
S3	х			i	Ì			İ		température sonde 3	15
TRET	①		①	i				İ		température sonde de retour	15
S4	2	<u> </u>	2	2	2	×	х	i		température sonde 4	15
n %	×			×	×			<u> </u>	×	vitesse relais I	15
nI%		×	×			×	×	×		vitesse relais I	15
n2 %		×				×	×	×		vitesse relais 2	15
hP	х			×	×			<u> </u>	×	heures de fonctionnement relais I	16
h PI		×	×			×	×	×		heures de fonctionnement relais I	16
h P2		х	х			×	х	х		heures de fonctionnement relais 2	16
kWh	①		①	0	①			İ		quantité de chaleur transportée kWh	16
MWh	①		1	0	①					quantité de chaleur transportée MWh	16
HRE					×					heure actuelle	15
INST					1-9					installation	12
DT O	х	х	х				х	х	х	différence temp. d'enclenchement	17
DTIO				х	х	х		ĺ		différence temp. d'enclenchement I	17
DT F	х	х	х				х	х	х	différence temp. de déclenchement I	17
DT N	х	×	х				х	х	х	différence nominale de température	17
AUG	х	х	х				х	х	х	Augmentation	17
DTIF				х	х	×		ĺ		différence temp. de déclenchement	17
AUGI				х	х	х				Augmentation I	17
DTIS				х	×	×				différence nominale de température I	17
R MX	х	×	×				х	х	х	température maximale réservoir I	17
RIMX				х	х	х				température maximale réservoir I	17
DT2O				х	х	х				différence temp. d'enclenchement 2	17
DT2F				х	х	х				différence temp. de déclenchement 2	17
DT2N				х	х	х				différence nominale de température 2	17
AUG2				х	х	х				Augmentation 2	17
R2MX				х	х	×				température maximale réservoir 2	17
LIM	х	×	х	х	х	×		х	х	température d'arrêt d'urgence capteur I	18
LIMI							×	ĺ		température d'arrêt d'urgence capteur l	18

SUN 2 PRO 2R

Carral	INST							Description	Do go		
Canal	- 1	2	3	4	5	6	7	8	9	Description	Page
ORC	×	×	×	×	×	×		×	×	option refroidissement du capteur I	18
ORCI						ĺ	х			option refroidissement du capteur I	18
CMX	x*	x*	x*	x*	x*	x*		x*	x*	température maximale capteur I	18
CMXI							x*			température maximale capteur l	18
OCN	×	×	х	×	×	×		×	x	option limitation minimal capteur I	18
OCNI	^	_^	^	_^	_^	<u> </u>	×	_^	_ ^	option limitation minimal capteur I	18
CMN	x*	x*	x*	x*	x*	x*		x*	x*	température minimale capteur I	18
CMNI		- ^			<u> </u>	<u> </u>	x*	<u> </u>		température minimale capteur I	18
							1		1		-
OFA	Х	X	Х	Х	X	X		X	Х	option antigel capteur I	18
OFAI		ψ	x*	*	*	*	Х	*	*	option antigel capteur I	18
CAG	x*	x*	ΧŤ	x*	x*	x*	- V	x*	x*	température antigel capteur I	18
CAGI						<u> </u>	x*			température antigel capteur I	18
LIM2							х			température d'arrêt d'urgence capteur 2	18
ORC2							х			option refroidissement du cap. capteur 2	18
CMX2							x*			température maximale capteur 2	18
OCN2		i			1	1	×	1		option limitation minimale capteur 2	l 18
CMN2							x*			température minimale capteur 2	18
					1	·			l		
OFA2							Х			option antigel capteur 2	18
CAG2							x*			température antigel capteur 2	18
PRIO				х	х	х				priorité	19
DARR				х	х	х				temps d'arrêt	19
DCIR				х	х	×				temps de circulation	19
OREF	х	×	х	х	х	х	х	х	х	option refroid. par circulation du retour	19
ОСТ	х	×	×	х	х	х	х	х	х	option capteurs tubulaires	19
DT3O		×						х		différence de temp. d'enclenchement 3	17
DT3F		×						×		différence de temp. de déclenchement 3	17
DT3N		×						×		température nominale DT3	17
AUG3		×				ĺ		×		Augmentation DT3	17
MX3O		×				ĺ		×		seuil d'enclenchement temp. max.	17
MX3F		х						х		seuil de déclenchement temp. max.	17
MN3O		×						×		seuil d'enclenchement temp. min.	17
MN3F		×						×		seuil de déclenchement temp. min.	17
NH E			х							temp. d'enclenchement thermostat l	20
NHA			×			<u> </u>				temp. de déclenchement thermostat l	20
tl O			х			Ļ		Ļ		temps d'enclenchement I thermostat	20
tl F			×			<u> </u>		<u> </u>		temps de déclenchement I thermostat	20
t2 O			×			<u> </u>		<u> </u>		temps d'enclenchement 2 thermostat	20
t2 F			х			ļ		<u> </u>		temps de déclenchement 2 thermostat	20
t3 O			Х			<u> </u>		<u> </u>		temps d'enclenchement 3 thermostat	20
t3 F			Х			<u> </u>				temps de déclenchement 3 thermostat	20
n2MN		х				х	Х	х		vitesse minimale relais 2	20
MANI	Х	×	Х	х	х	х	Х	х	Х	mode manuel relais I	20
MAN2	×	×	Х	х	х	х	Х	X	Х	mode manuel relais 2	20
LANG	×	×	Х	×	X	×	Х	×	Х	Langue	20
PROG										Numéro de programme	
VERS					Numéro de version						

4.1.1 Affichage de la température du capteur

CAP, CAPI, CAP2:

Température capteur Gamme d'affichage: -40...+250 °C

Indique la température actuelle du capteur.


 CAP : température du capteur (système solaire à l capteur)

CAPI: température du capteur ICAP2: température du capteur 2

4.1.2 Affichage de la température du réservoir

TRTIR, TSR, TRI, TR2:

Température réservoir Gamme d'affichage: -40...+250 °C

Indique la température actuelle du réservoir.

 TR : température du réservoir (système solaire à l réservoir)

TIR : température du réservoir en bas
TSR : température du réservoir en haut
TRI : température du réservoir I
TR2 : température du réservoir 2

4.1.3 Affichage sonde 3 et sonde 4

S3, S4:

Température de la sonde Gamme d'affichage: -40...+250 °C

Indique la température actuelle des sondes supplémentaires (sans fonction de réglage):

S3 : température de la sonde 3S4 : température de la sonde 4

Indication:

S3 et S4 s'affichent uniquement lorsque les sondes de température sont branchées

4.1.4 Affichage des autres températures

TCCS, TRCC, TRET:

Température de mesure Gamme d'affichage: -40...+250 °C

Indique la température de la sonde correspondante.

• TFSK : température chaudière combustible solide

• TRCC :température retour du circuit de chauffage

• TRET : température du retour

4.1.5 Affichage de la vitesse actuelle de la pompe

n %, n1 %, n2 %:

Vitesse de la pompe Gamme d'affichage: 30...100%

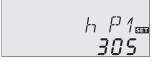
Indique la vitesse actuelle de la pompe correspondante.

 n % : vitesse actuelle de la pompe (système avec l pompe)

• n1 % : vitesse actuelle de la pompe - pompe 1

• n2 %: vitesse actuelle de la pompe - pompe 2

4.1.6 Heure


Ce canal vous indique l'heure actuelle.

En appuyant 2 secondes sur la touche **SET**, les heures s'affichent et clignotent; en appuyant de nouveau sur la même touche, ce sont les minutes qui s'affichent et qui clignotent. Pour régler l'heure, utiliser les touches I et 2 et sauvegarder avec la touche **SET**.

4.1.7 Compteur d'heures de fonctionnement

hP/hPI/hP2:

compteur d'heures de fonctionnement Canal d'affichage

Le compteur d'heures de fonctionnement fait la somme des heures de fonctionnement solaire du relais correspondant (h P / h P1 / hP2). L'écran affiche des heures complètes.

La somme des heures de fonctionnement peut être remise à zéro. Dès qu'un canal d'heure de fonctionnement est sélectionné, le symbole san apparaît sur l'écran et reste affiché. Pour passer au mode RESET du totaliseur, appuyez sur la touche SET (3) pendant 2 secondes. Le symbole san clignote et les heures de fonctionnement se remettent à 0. Pour terminer l'opération RESET, appuyez sur la touche san.

Pour interrompre l'opération RESET, n'appuyez sur aucune touche pendant 5 secondes. Le régulateur passe automatiquement au mode d'affichage initial.

4.1.8 Bilan calorimétrique

OCAL: Bilan calorimétrique Gamme réglage: OFF ...ON Réglage de fabrication: OFF

Dans les installations (INST) I, 3, 4 et 5 il est possible de réaliser un bilan calorimétrique en combinaison avec un débitmètre. Pour cela, il est nécessaire d'activer l'option "Bilan calorimétrique" dans le canal **OCAL**.

DMAX: débit en l/min Gamme de réglage: 0...20 en pas de 0.1 Réglage de fabrication: 6,0

Le débit est affiché dans le débitmètre (l/min); il se règle dans le canal **DMAX**. Le type et la concentration d'antigel du liquide caloporteur sont affichés dans les canaux **GELT** et **GEL%**.

GELT: type d'antigel Gamme de réglage: 0...3 Réglage de fabrication: I

Type d'antigel:

0 : eau

I : glycol propylénique

2 : glycol éthylénique 3 : Tyfocor® LS / G-LS

GEL%: concentration d'antigel en % (Vol)
MED% est masqué avec
MEDT 0 et 3
Gamme de réglage: 20 ...70
Réglage de fabrication: 45

kWh/MWh: quantité de chaleur en kWh / MWh Canal d'affichage

La quantité de chaleur transportée se mesure avec le débit donné et les sondes de référence SI (départ) et S4 (retour). Cette quantité s'affiche en kWh dans le canal d'affichage kWh et en MWh dans le canal MWh. Le rendement thermique total s'obtient avec la somme des deux canaux.

La quantité de chaleur obtenue peut être remise à zéro. Dès qu'un canal d'affichage de quantité de chaleur est sélectionné, le symbole san apparaît sur l'écran et reste affiché. Pour passer au mode RESET du compteur, appuyer sur la touche SET (3) pendant environ 2 secondes. Le symbole san clignote et la valeur de quantité de chaleur est remise à 0. Pour terminer l'opération RESET, appuyez sur la touche san.

Pour interrompre l'opération RESET, n'appuyez sur aucune touche pendant environ 5 secondes. Le régulateur passe alors automatiquement au mode d'affichage initial.

4.1.9 Réglage ΔT

DT O / DTIO / DT2O / DT3O.

Différence temp. d'enclenchement Gamme de réglage: I,0 ... 20,0 K Réglage de fabrication: 6.0

DT F / DT IF / DT2F / DT3F:

Différence température de déclenchement Gamme réglage: 0,5 ... 19,5 K Réglage de fabrication: 4.0 K

DT N / DTIN / DT2N / DT3N:

Différence temp. nominale Gamme réglage: 1,5 ... 30,0 K Réglage de fabrication: 10.0

AUG / AUGI / AUG2 / AUG3:

Augmentation Gamme de réglage: I ... 20 K Réglage de fabrication: 2 K

Au départ, la régulation fonctionne comme une régulation de différence standard. Lorsque la différence d'enclenchement (DTO / DTIO / DT2O) est atteinte, la pompe se met en marche et démarre après son impulsion de démarrage (10 s)* avec une vitesse minimale (nMN) de 30 %. Lorsque la différence de température atteint la valeur nominale préréglée (DT N / DTIN / DT2N / DT3N), la vitesse augmente d'un cran (10 %). En cas d'augmentation de 2 K (AUG / AUGI / AUG2 / AUG3) de la différence, la vitesse augmente chaque fois de 10 % jusqu'à 100 % maximum. Pour effectuer des ajustages dans le régulateur, utilisez le paramètre "Aug". Si la différence de température atteint une valeur inférieure à la différence de température de déclenchement préréglée (DT F / DTIF / DT2F) le régulateur s'éteint. DTO et DTN sont verrouillées: DTN doit être inférieure de 0,5 K à **DT O**.

Indication: La différence de température d'enclenchement doit être supérieure d'au moins I K à la différence de température de déclenchement.

4.1.10 Température maximale du réservoir

R MX / RIMX / R2MX:

Temp, maximale réservoir Gamme de réglage: 2 ... 95 °C Réglage de fabrication: 60 °C

Lorsque la température maximale réglée est dépassée, le réservoir ne se recharge pas afin d'empêcher une surchauffe. Si la température maximale du réservoir est dépassée, le symbole * apparaît sur l'écran.

Indication: le régulateur est équipé d'un dispositif de déconnexion de sécurité qui empêche toute nouvelle charge du réservoir dans le cas où celui-ci atteindrait des températures autour de 95°C

4.1.11 Réglage ΔT (chaudière combustible solide et échange de chaleur)

Limitation de la température maximale

MX30 / MX3F:

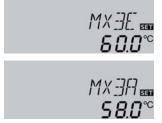
Limitation de température maximale Gamme de réglage 0,0 ... 95,0 °C Réglage d'usine: MX3E 60,0 °C MX3A 58,0 °C

Limitation de la température maximale

MN3O / MN3F:

Limitation de température minimale Gamme de réglage 0,0 ... 90,0 °C

Réglage d'usine:


ANL = 2MN3E 5,0 °C

MN3A 10,0 °C

ANL = 8

MN3E 60,0 °C

MN3A 65,0 °C

Le régulateur est équipé d'un dispositif de réglage de différence de température indépendant qui permet de régler les limitations de température minimale et maximale séparément ainsi que les températures d'enclenchement et de déclenchement correspondantes. Ce dispositif est valable uniquement dans les systèmes Arr = 2 und 8 (p. ex. pour la chaudière à combustible solide ou le réglage d'échange de chaleur).

Lorsque la valeur préréglée MX30 est dépassée, le relais 2 est déactivé. Lorsque le paramètre MX3F est dépassée vers le bas, le relais est réactivé.

Sonde de référence:

S3 - INST 8 (TSR)

S4 - INST 2 (TR2).

Lorsque la valeur préréglée MN3O est dépassée vers le bas, le relais 2 est déactivé. Lorsque le paramètre MN3F est dépassé, le relais 2 est réactivé.

Sonde de référence:

S4 - ANL 8 (TSSC)

S3 - ANL 2 (TSR).

Les différences de température d'enclenchement et de déclenchement **DT3O** et **DT3F** valent, en même temps, pour les limitations de température maximale et minimale.

4.1.12 Température limite du capteur Arrêt d'urgence du capteur

LIM / LIMI /LIM2:

Température limite capteur Gamme réglage: 110 ... 200 °C, Réglage de fabrication: 140 °C

4.1.13 Refroidissement du système

OCX / OCXI / OCX2:

Option refroidissement syst. Gamme réglage: OFF ... ON Réglage de fabrication: OFF

CMX / CMXI / CMX2:

Temp. maximale capteur Gamme réglage: 100... 190 °C Réglage de fabrication: 120 °C

4.1.14 Option: limitation minimale du capteur

OCN / OCNI / OCN2:

Limitation minimale capteur Gamme de réglage: OFF / ON Réglage de fabrication: OFF

CMN / CMN1 / CMN2:

Température minimale capteur Gamme de réglage: 10 ... 90 °C Réglage de fabrication: 10 °C

4.1.15 Option: fonction antigel

OFA / OFA I / OFA2:

Fonction antigel Gamme de réglage: OFF / ON Réglage de fabrication: OFF

CAG / CAG1 / CAG2:

Température antigel Gamme réglage: -10 ... 10 °C Réglage de fabrication: 4,0 °CC

Lorsque la température limite du capteur réglée (LIM / LIM1 / LIM2) est dépassée, la pompe solaire (R1 / R2) s'arrête afin d'empêcher une surchauffe endommageante des composantes solaires (arrêt d'urgence du capteur). La température limite est réglée à 140 °C en usine, mais elle peut être modifiée dans la gamme de réglage 110...200 °C. Si la température limite du capteur est dépassée, le symbole \triangle (clignotant) apparaît sur l'écran.

Lorsque le réservoir atteint sa température maximale, le système de chauffage solaire est débranché. Lorsque la température du capteur augmente jusqu'à la température maximale réglée (CMX / CMXI / CMX2), la pompe solaire se met en marche jusqu'à ce que la température du capteur soit de nouveau inférieure à cette valeur limite de température. Pendant ce temps, la température du réservoir peut continuer à augmenter (température maximale du réservoir activée en dernier lieu), mais uniquement jusqu'à 95 °C (arrêt d'urgence du réservoir). Lorsque le réservoir a une température supérieure à sa température maximale (R MX) et que la température du capteur est inférieure d'au moins 5K à celle du réservoir, le système de chauffage solaire continue à être branché jusqu'à ce que le réservoir se refroidisse à travers le capteur et les tuyauteries et atteigne une température inférieure à la température maximale réglée (R MX / RMX I / RMX2) (uniquement lorsque l'option OREF est activée).

Lorsque le dispositif de refroidissement du système est activé, le symbole apparaît sur l'écran et clignote. Grâce à la fonction de refroidissement, le système de chauffage solaire reste en ordre de marche plus longtemps lors de journées chaudes d'été et apporte un allégement thermique au champs des capteurs et au liquide caloporteur.

La température minimale du capteur est une température minimale d'enclenchement qui doit être dépassée pour que la pompe solaire (R1 / R2) puisse se mettre en marche. La température minimale empêche que la pompe ne se mette en marche trop fréquemment en cas de températures basses du capteur. Lorsque le capteur a une température inférieure à la température minimale, le symbole apparaît sur l'écran et clignote.

Lorsque la température antigel réglée est dépassée vers le bas, la fonction antigel met en marche le circuit de chauffage entre le capteur et le réservoir pour empêcher le liquide caloporteur de geler ou de "s'épaissir". Lorsque la température antigel réglée est dépassée de l °C, le circuit de chauffage s'éteint.

Indication:

Etant donné que la quantité de chaleur disponible pour la fonction antigel est celle limitée du réservoir, il est conseillé de n'employer cette fonction que dans des régions ayant peu de jours avec des températures tournant autour du point de congélation par an.

4.1.16 Chauffage intermittent:

Valeurs de réglage:

Priorité [PRIO]

Pause chauffage intermittent: [DARR]
Temps de chauffage intermittent: [DCIR]

La logique de priorité du SUN 2 PRO 2R:

Priorité:

Pause chauffage intermittent / temps de chauffage intermittent / température d'augmentation du capteur:

4.1.17 Fonction de refroidissement par circulation de retour

OREF:

Option refroidissement par circulation de retour Gamme de réglage: OFF ...ON Réglage de fabrication: OFF

4.1.18 Fonction capteurs tubulaires

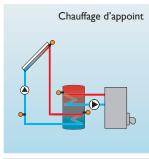
O CT:

Fonction capteur tubulaire Gamme de réglage: OFF ...ON Réglage de fabrication: OFF

réglage d'usine gamme de réglage

(1 /INST 5,6) (2 / INST 4) 0-2 2 min. 1-30 min. 15 min. 1-30 min.

Les options et paramètres ci-dessus s'utilise uniquement dans les systèmes à multiples réservoirs. (Système INST = 4, 5, 6). So on règle **priorité 0** tous les réservoirs ayant une différence de température par rapport au capteur sont chauffés en ordre numérique (réservoir I ou 2; INST = 4, 5). Par principe, un seul réservoir peut se charger à la fois. En revanche, dans le systèmes INST = 6, il est possible d'éffectuer une charge parallèle.

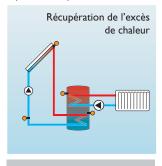

Le régulateur contrôle si un réservoir peut être chauffé (différence de mise en marche). Lorsque le réservoir prioritaire ne peut pas être chauffé, les réservoirs non-prioritaires sont contrôlés. S'il est possible de chauffer un réservoir non-prioritaire, celui-ci est chauffé pendant le "temps de chauffage intermittent" (DCIR). Après cela, le chauffage est interrompu. Le régulateur contrôle l'augmentation de la température du capteur. Lorsque celle-ci augmente de la "température d'augmentation du capteur" (DT-CAP 2 K, valeur fixe.) pendant la "pause de chauffage intermittent" (DARR), le temps de pause est remis à 0. La pause de chauffage intermittent commence de nouveau. Lorsque la condition de mise en marche n'est pas remplie, le chauffage du réservoir non-prioritaire est continu. Si le réservoir prioritaire atteint sa température maximale, le chauffage intermittent n'est pas effectué.

Lorsque le réservoir atteint sa température maximale réglée (RMAX, R1MX, R2MX) la pompe solaire reste activée pour empêcher le capteur de surchauffer. Pendant ce temps, la température du réservoir peut continuer à augmenter, mais uniquement jusqu'à 95 °C (arrêt d'urgence du réservoir). Dès que cela sera possible (cela dépendra des conditions climatiques extérieures), la pompe solaire se remettra en marche jusqu'à ce que le réservoir se soit refroidit à travers le capteur et les tuyauteries et ait atteint sa température maximale réglée..

Si le régulateur détecte une augmentation de température de 2 K par rapport à la température du capteur enregistrée, la pompe solaire se met en marche à 100 % pendant 30 secondes pour déterminer la température moyenne actuelle. Dès que le temps de fonctionnement de la pompe solaire s'écoule, la température du capteur est enregistrée comme nouveau point de référence. Lorsque cette même température du capteur (nouveau point de référence) est de nouveau dépassée de 2 K, la pompe se remet en marche pendant 30 secondes. Si, pendant le temps de fonctionnement de la pompe solaire ou pendant le temps d'arrêt de l'appareil, la différence d'enclenchement entre le capteur et le réservoir est dépassée, le régulateur passe automatiquement au mode de charge de la pompe.

Si la température du capteur diminue de 2 K pendant le temps d'arrêt de l'appareil, le moment de la mise en marche de la fonction de capteur tubulaire est recalculée.

4.1.19 Fonction thermostat (INST = 3)


TH O:

Température d'enclenchement thermostat Gamme de réglage: 0,0...95,0°C Réglage de fabrication: 40,0 °C

t1 O, t2 O, t3 O:

Temps d'enclenchement thermostat Gamme de réglage: 00:00 ... 23:45 Réglage d'usine: 00:00

TH F:

Température de déclenchement thermostat Gamme de réglage: 0,0...95,0°C Réglage de fabrication: 45,0 °C

tl F, t2 F, t3 F:

thermostat Gamme de réglage: 00:00...23:45 Réglage d'usine: 00:00 La fonction thermostat fonctionne indépendamment de l'activité solaire et peut s'employer, par exemple, pour un chauffage d'appoint ou pour récupérer l'excès de chaleur.

- THO < Fonction thermostat employée pour un chauffage d'appoint
- TH F THO > Fonction thermostat employée pour récupérer l'excès de chaleur

Lorsque la 2ème sortie de relais est connectée, le symbole ® s'affiche sur l'écran.

Pour verrouiller la fonction thermostat, 3 fenêtres temporelles t1...t3 sont à votre disposition. Si vous souhaitez activer cette fonction entre 6:00 et 9:00, par exemple, réglez t l O sur 6:00 et t1 F sur 9:00. La fonction thermostat est réglée en usine de manière à être activée en permanence. Lorsque Temps de déclenchement toutes les fenêtres temporelles s'arrêtent à 00:00, cela signifie que la fonction thermostat est activée en permanence (réglage d'usine).

4.1.20 Réglage de vitesse

nMN, nIMN, n2MN:

Réglage de vitesse Gamme de réglage: 30...100

Réglage de fabrication: 30

Les canaux de réglage nMN ou nIMN et n2MN, affiche la vitesse de rotation minimale de la pompe reliée aux sorties RI/R2.

ATTENTION:

En cas d'utilisation d'appareils dont la vitesse de rotation n'est pas réglable (p. ex. des vannes), réglez leur valeur à 100% pour déactiver le dispositif de réglage de vitesse de rotation.

Pour effectuer des opérations de contrôle, il est possible de régler le mode d'opération du régulateur manuellement. Pour cela, sélectionnez la valeur de réglage MAN1 / MAN2. Celle-ci permet les entrées de donnée suivantes:

4.1.21 Mode d'opération MANI/MAN2:

Mode d'opération Gamme de réglage: OFF,AUTO,ON Réglage de fabrication: **AUTO**

4.1.22 Langue (LANG)

LANG:

Réglage de langue Gamme de réglage: dE, En, It, Fr Réglage de fabrication: dE

MAN1 / MAN2

Mode d'opération

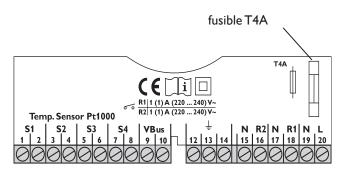
relais hors circuit Δ (clignotant) + 🥙 OFF

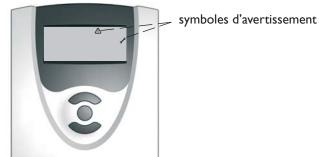
relais en mode automatique AUTO:

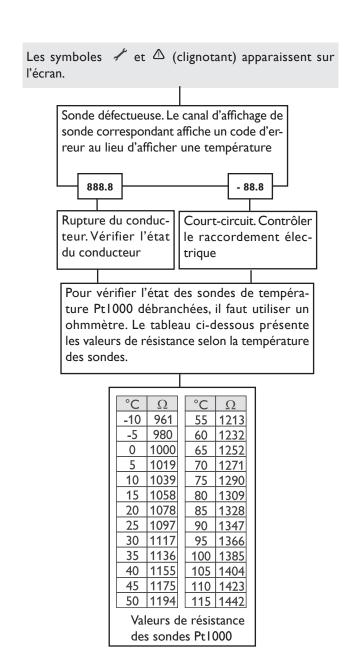
relais en circuit (clignotant) + ON

Le réglage de langue pour le menu s'effectue dans ce canal.

• dE: allemand

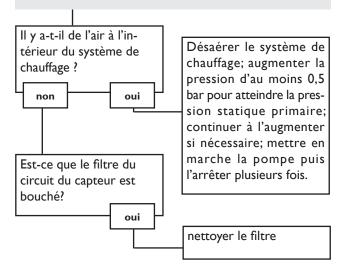

· En: anglais

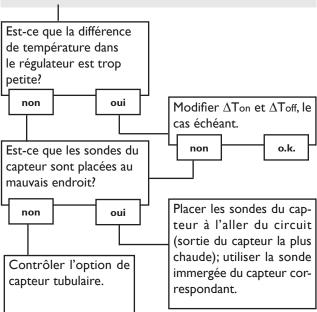

• It : italien


• Fr: français

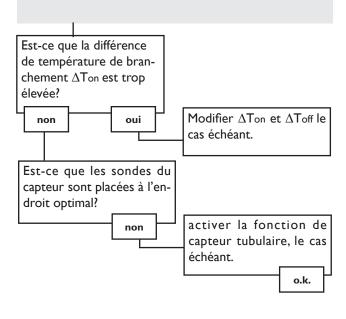
5. Détection de pannes

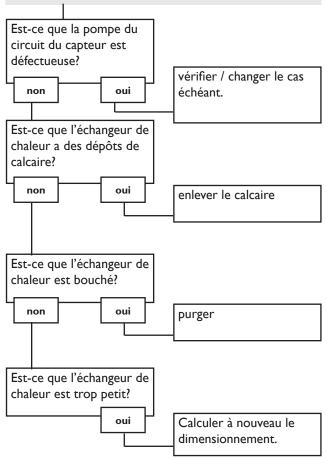
En cas de panne, les signes suivants s'affichent sur l'écran:

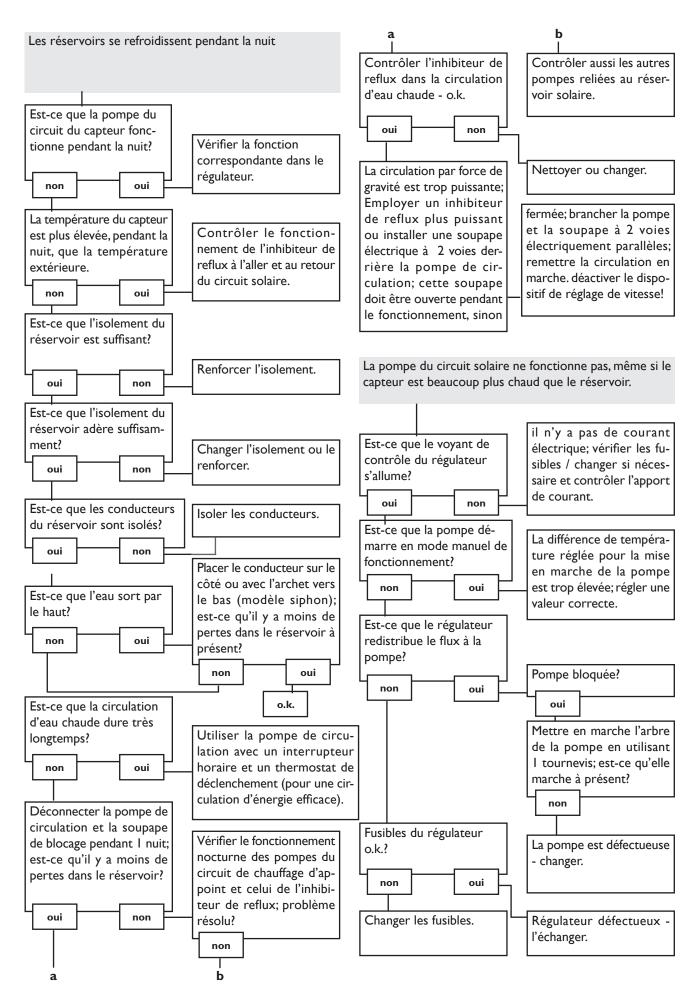




5.1 Divers


La pompe est chaude même si le transport thermique du capteur au réservoir n'a pas lieu; l'aller et le retour sont aussi chauds l'un que l'autre; éventuellement apparition de bulles dans la conduite.


La pompe marche pour une courte période, s'arrête, marche de nouveau, etc. (comportement pendulaire).



La pompe met du temps à se mettre en marche.

La différence de température entre le réservoir et le capteur augmente beaucoup pendant le fonctionnement; le circuit du capteur n'arrive pas à évacuer la chaleur.

6. Accessoires

Sondes

Notre offre comprend des sondes à haute température, des sondes de contact pour surface plate, des sondes à température extérieure, des sondes à température intérieure, des sondes de contact pour tuyau et des sondes de radiation, également disponibles comme sondes complètes avec douille.

Protection contre les surtensions

Il est conseillé d'employer la boîte de protection contre les surtensions **SPI** pour protéger les sondes de température sensibles situées dans le capteur de surtensions extérieures (produites, par exemple, par des éclairs dans les environs).

Con Con

Débitmètre

Si vous souhaitez réaliser un bilan de quantité de chaleur, employez un débitmètre pour mesurer le débit dans votre système de chauffage.

Votre distributeur:

Riello Spa

Via Ing. Pilade Riello 7 37048 Legnago (VR) Tel.: 0442-630111

www.riello.it info@riello.it

Fax: 0442-22378

Indication importante

Les textes et les illustrations de ce manuel ont été réalisés avec le plus grand soin et les meilleures connaissances possibles. Étant donné qu'il est, cependant, impossible d'exclure toute erreur, veuillez prendre en considération ce qui suit :Vos projets doivent se fonder exclusivement sur vos propres calculs et plans, conformément aux normes et directives DIN valables. Nous ne garantissons pas l'intégralité des textes et des dessins de ce manuel; ceux-ci n'ont qu'un caractère exemplaire. L'utilisation de données du manuel se fera à risque personnel. L'éditeur exclue toute responsabilité pour données incorrectes, incomplètes ou erronées ainsi que pour tout dommeage en découlant.

Remarque

Le design et les caractéristiques du régulateur sont suceptibles d'être modifiés sans préavis. Les images sont susceptibles de différer légèrement du modèle produit.

Achevé d'imprimer

Ce manuel d'instructions pour le montage et l'utilisation de l'appareil est protégé par des droits d'auteur, toute annexe inclue. Toute utilisation en dehors de ces mêmes droits d'auteur requiert l'autorisation de la société Riello Spa. Ceci s'applique en particulier à toute reproduction / copie, traduction, microfilm et à tout enregistrement dans un système électronique.

Éditeur: Riello Spa