

Agilent 83440B/C/D High-Speed Lightwave Converters

DC-6/20/30 GHz, 1000 to 1600 nm Technical Specifications

Fast optical detector for characterizing lightwave signals

- Fast 15, 22, or 73 ps full-width half-max (FWHM) pulse response
- Broad 6, 20, or 30 GHz bandwidth (3 dB_{opt})
- · Small, convenient package
- Low pulse aberrations
- · Integral bias regulation
- Ideal for high-speed digitizing oscilloscopes

Make lightwave measurements with traditional electrical instruments; the Agilent 83440 family offers a high-speed optical interface for oscilloscopes, spectrum analyzers, and network analyzers.

With as low as 15 ps FWHM pulse response, the 83440 accurately converts modulated optical waveforms to electrical signals, enabling electrical instruments to measure time domain pulse parameters and frequency domain spectral content. Characterize and optimize laser and optical modulator output performance for fiber optic telecommunications.

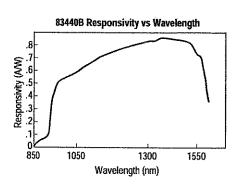
Description

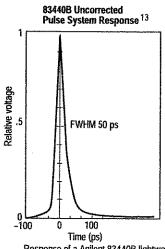
The 83440 lightwave converters are fast, accurate, DC-coupled optical-toelectrical (O/E) converters packaged as small optical probes. They mount directly to electrical instrument front panels to simplify integration and minimize distortion and loss from cables, connectors, and signal conditioning components. A simple internal structure ensures very low signal distortion for improved output signal fidelity. By eliminating all unnecessary components along the signal path, the 83440 family offers very accurate electrical representations of modulated optical waveforms. The 83440 family features hermetically sealed, unamplified, InGaAs photodiodes. The input optical port features the Agilent universal optical interface, compatible with most common optical connectors (see Connectors, page 6), while the output electrical port features a precision 3.5 mm (83440B/C) or 2.4 mm (83440D) microwave coaxial connector.

Time Domain Applications

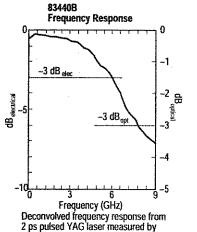
Ideal for high-speed laser and modulator testing, the DC-coupled 83440 family faithfully reproduces incoming optical signals for accurate pulse parameter characterization. Broad bandwidth, nearly Gaussian response characteristics, and low pulse aberrations make these optical detectors an excellent choice for high-speed time domain measurements.

Frequency Domain Applications

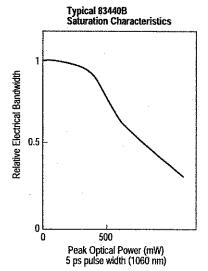

The frequency domain allows users to measure, quantify, and model modulated characteristics such as spectral purity, harmonic content, and noise spectral density. The 83440 family allows electrical frequency domain instruments like network and spectrum analyzers to accept optical input signals for basic lightwave measurements.



Agilent 83440B Specifications and Characteristics


Specifications describe the instrument's warranted performance over the temperature range 0 to 55°C (except where noted). Supplemental Characteristics are intended to provide information useful in applying the instrument by giving typical but non-warranted performance parameters. These are denoted as "typical," "nominal," or "approximate."

Typical Response Curves



Response of a Agilent 83440B lightwave detector on an Agilent 54124 oscilloscope due to a 2 ps pulsed YAG laser.

Deconvolved frequency response from 2 ps pulsed YAG laser measured by Agilent 83440B and Agilent 54124 oscilloscope.

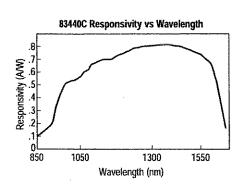
		one to a 2 ps pulsed 1 Ad lasel.	
Time Domain Conversion Gain ^{1,4} (min, into 50 Ω load)		Frequency Domain DC Responsivity ^{1,4} (min)	
		0.70 A/W	0.65 A/W
		-3.1 dB^2	3.7 dB ²
Opt 050: 18.5 V/W	15 V/W	0.33 A/W	0.30 A/W
		-9.6 dB ²	$-10.5 \mathrm{dB}^2$
Pulse Width ³ , 4,10		Bandwidth ^{3,4}	
< 73 ps FWHM ⁶ (calculated:FWHM=0.44/BW _{opt} =0.312/BW _{el})		dc to >6 GHz (3dB optical)
Rise/Fall Time ^{7,10} (10	1-90%)	· · · · · · · · · · · · · · · · · · ·	
<80ps (calculated)			
System Aberrations ⁴ , 10% peak-to-peak ma	¹³ (response to 2 ps FWHM pulse) x, 5% typical	***************************************	
Noise ^{5,11}		Noise Equival	ent Power5.11
2 µW RMS max, equivalent optical noise power		< 18 pW / √Hz	
Dark Current ¹¹			
50 пА max, <15 nA typ	pical		
Maximum Safe Input 10 mW (Peak)	Optical Power +10 dBm (Peak)		

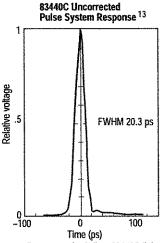
Input Optical Reflection⁸ (HMS-10 optical connector) 0.05% (1250-1600 nm)

2 mW (Peak)

Input Optical Return Loss⁸ (HMS-10 optical connector) >33 dB (1250-1600 nm)

Wavelength Spectral Response⁴ 1000 nm - 1600 nm


Maximum Operating Input Optical Power (Compression Point)


+3 dBm (Peak) See saturation chart for pulsed power characteristics

Agilent 83440C Specifications and Characteristics

Specifications describe the instrument's warranted performance over the temperature range 0 to 55°C (except where noted). Supplemental Characteristics are intended to provide information useful in applying the instrument by giving typical but non-warranted performance parameters. These are denoted as "typical," "nominal," or "approximate."

Typical Response Curves

Response of a Agilent 83440C lightwave detector on an Agilent 54124 oscilloscope due to a 2 ps pulsed YAG laser.

83440C Frequency Response	. 0
	ľ
-3 dB elec	-1
-3 dB _{opt}	-2 dB optical
= -3 dB _{opt}	-3 [±]
\	-4
	5 10 ⁻⁵
Frequency (GHz) Deconvolved frequency response for 2 ps pulsed YAG laser measured be Agilent 83440C and Agilent 54124	rom y oscilloscope.

Time Domain	Frequency Do	Frequency Domain	
Conversion Gain ^{1,4} (min, into 50Ω load)	DC Responsivity ^{1,4} (min)		
1300 nm: 35 V/W 1550 nm: 32.5 V/W	1300 nm 0.70 A/W 3.1 dB ²	1550 nm 0.65 A/W -3.7 dB ²	
D. F 184 cc. 7 / 10	n		

Pulse Width^{3, 4,10}
8and
8 22 ps FWHM⁶ (calculated:FWHM=0.44/BW_{opt}=0.312/BW_{el})
8 dc to:

Bandwidth^{3,4} dc to >20 GHz (-3dB optical)

Rise/Fall Time 7.10 (10-90%) <24ps (calculated)

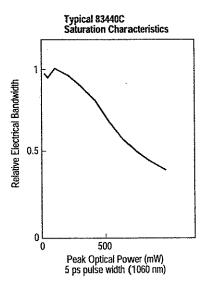
System Aberrations^{4,13} (response to 2 ps FWHM pulse) 10% peak-to-peak max, 5% typical

Noise 5.11
3.7 μW RMS max, equivalent optical noise power

Noise Equivalent Power 5.11

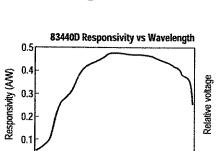
18 pW/√Hz typical

Dark Current¹¹ 20 nA max, 3 nA typical


Maximum Safe Input Optical Power 10 mW (Peak) +10 dBm (Peak)

Maximum Operating Input Optical Power (Compression Point)
2 mW (Peak) +3 dBm (Peak)

See saturation chart for pulsed power characteristics

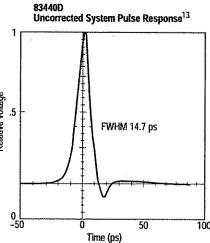

Input Optical Reflection⁸ (HMS-10 optical connector) 0.05% (1250-1600 nm) Input Optical Return Loss⁸ (HMS-10 optical connector) >33 dB (1250-1600 nm)

Wavelength Spectral Response⁴ 1000 nm - 1600 nm

Agilent 83440D **Specifications and Characteristics**

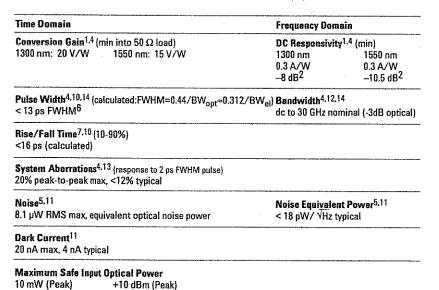
Specifications describe the instrument's warranted performance over the temperature range 0 to 55°C (except where noted). Supplemental Characteristics are intended to provide information useful in applying the instrument by giving typical but non-warranted performance parameters. These are denoted as "typical," "nominal," or "approximate."

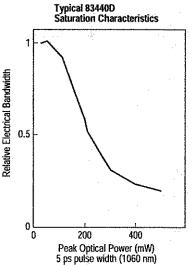
1300


Wavelength (nm)

1550

850


1000


Typical Response Curves

Response of a Agilent 83440D lightwave detector on an Agilent 54124 oscilloscope due to a 2 ps pulsed YAG laser.

83440D Frequency Response						
0		0				
	−3 dB elec	-1				
dB electrical		-2 dB				
dB.	−3 dB _{opt}	-3 ^{EE}				
		-4				
-10 0	10 20 30 40	-5				
Frequency (GHz)						
	Deconvolved frequency response from 2 ps pulsed YAG laser measured by Agilent 83440D and Agilent 54124 oscillo	scope.				

Maximum Operating Input Optical Power (Compression Point) 2 mW (Peak) +3 dBm (Peak)

See saturation chart for pulsed power characteristics

Input Optical Reflection⁸ (HMS-10 optical connector) 0.10 % (1250-1600 nm)

Input Optical Return Loss⁸ (HMS-10 optical connector) >30 dB (1250-1600 nm)

Wavelength Spectral Response⁴

1000 nm - 1600 nm

Using the Agilent 83440B/C/D Lightwave Converter

O/E Conversion Process

The 83440 detects the modulated baseband signal from the lightwave carrier, converting it to an electrical signal for processing. The resultant electrical signal can be analyzed in the time domain or frequency domain using electrical oscilloscopes, signal analyzers, and network analyzers. The 83440B/C/D are DC coupled receivers. For proper operation, a DC path to ground is necessary at the RF output. When using the 83440 with an AC-coupled instrument (except opt 050), a bias tee such as the 11612A is required to supply dc bias return path. Alternatively, an attenuator on the output may be used to provide a dc bias return path.

Supplying +15V to the 83440

Depending on the instruments that the Agilent 83440 will be used with, there are several possible configurations to supply the needed +15V bias voltage to the 83440:

86100B: Use the 83440-60004 cable to connect to the +15V supply at the rear of the 86100B

Agilent Network Analyzers with Probe Power: Use the 83440-60006 cable to connect to the Probe Power Port of the network analyzer.

87421A Power Supply: Use the 83440-60009 cable in series with the 83440-60004 to connect to the power supply

11899A Probe Power Supply: Use the 83440-60006 cable to connect to the stand-alone probe power supply.

General Purpose Variable Power Supply: Use the 83440-60005 cable in series with the 83440-60004 cable.

Physical Characteristics

General

RF Connector ESD Susceptibility at RF Pin9

DC Bias Voltage **Power Consumption**

Weight

Operating Temperature

Compatible Fiber Photodiode Package Output Impedance

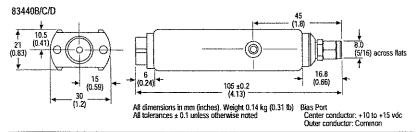
Calibration

Agilent 83440B/C (3.5 mm [m]) or 83440D (2.4 mm [m]), 50Ω

+10 to +15V dc required

< 18 mVA

0.14 kg (0.31 lb)


0-55 deg C

9/125 single mode fiber Hermetically sealed PIN-diode

Unterminated (50Ω terminated for Agilent 83440B Opt 050)

Recommended calibration interval is two years.

Mechanical

Connectors

Optical Input:

81000 KI

Specify optical input connector option when ordering Agilent 83440B/C/D.

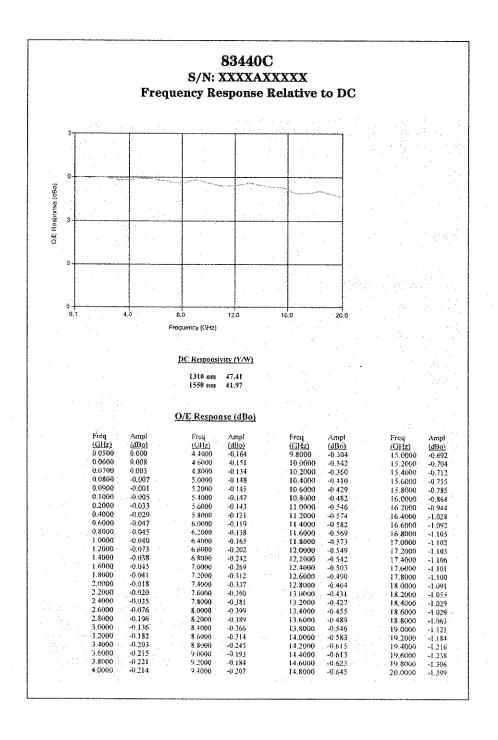
SC connector

81000 AI Diamond HMS-10 81000FI FC/PC connector 81000 SI DIN 47256 connector 81000 VI ST connector

Electrical Output:

3.5 mm (83440B/C) 2.4 mm (83440D)

DC Bias Input: Quick connect (LEMO) bias port


ESD Sensitive Parts⁹

The 83440 features a captive RF connector cap to protect the RF center pin from electrostatic discharge (ESD). Use proper ESD precautions when working with RF and bias ports. Keep RF port capped when not in use.

Shipping Contents

- One 83440 Lightwave Detector with response data sheet (example shown below)
- · User specified optical connector adapter
- Three dc bias cables (83440-60004, 83440-60005, 83440-60006)

Each 83440 is shipped with instrument-specific frequency response and conversion gain (dc responsivity) data.

Ordering Information

Agilent 83440B DC-6 GHz Lightwave Converter

83440B-050, 50Ω termination for use with SDH/SONET filters

Agilent 83440C DC-20 GHz Lightwave Converter

Agilent 83440D DC-30 GHz Lightwave Converter

Note: All 83440 orders must specify an optical connector option.

Recommended Accessories

87421A External 15V fixed power supply External probe power supply 11899A

8493C-003, 006 3.5 mm fixed attenuators (3 dB and 6 dB respectively)

2,4 mm (f) to 3.5 mm (m) coax adapter 11901D

1250-1391

3.5 mm bias network (45 MHz-26.5 GHz) 11612A

5952-9654 Fiber Optics Handbook

DC Bias Cables

83440-60004 SMB (f) to quick connect (LEMO) 83440-60005 SMB (m) to bare wire (ground = black, +15V = clear) 83440-60006 3-pin half-round (f) to quick connect (LEMO)

83440-60009 9-pin D-sub (m) to SMB (m)

Other Agilent O/E Converters

Agilent 11982A DC-15 GHz amplified converter. 300 V/W conversion gain.

Product Overview lit. no. 5966-1583E.

Agilent 83410C 300 kHz-3 GHz amplified receiver (62.5/125 µm fiber).

Technical Specifications lit. no. 5988-4308EN.

Agilent 83411A 300 kHz-6 GHz receiver (62.5/125 µm fiber).

Technical Specifications lit. no. 5988-4308EN.

Agilent 83411B 300 kHz-6 GHz amplified receiver (62.5/125 µm fiber).

Technical Specifications lit. no. 5988-4308EN.

Agilent 83412A 300 kHz-3 GHz amplified receiver (850 nm) (62.5/125 um fiber).

Technical Specifications lit. no. 5988-4308EN.

Agilent 83434A 10 Gb/s lightwave clock and data receiver.

Product Overview lit. no. 5968-9251E.

Agilent 83446A/B 2.4 Gb/s lightwave clock and data receiver.

Product Overview lit. no. 5962-1682E.

Notes

I Stated specs from 83440B/C/D into 50Ω load.

² For an O/E device, responsivity (dB) = 20log $\begin{bmatrix} \text{responsivity A/W} \end{bmatrix}$

 3 Measured on 8703A lightwave component analyzer. Frequency response verified by deconvolving impulse response of 83440C on 54124 oscilloscope due to a 2 ps pulse YAG laser.

⁴See typical performance trace

 5 Thermal noise limited; equivalent optical power limited by 50 Ω input impedance.

⁶ Full-Width Half-Max.

Full-Width Half-Max. 7 Calculated from bandwidth measurements; $tr = \frac{.48}{BW_{opt}} (= \frac{.34}{BW_{elec}})$ Calculation assumes Gaussian pulse.

8 Optical connector limited.

 9 ESD susceptibility limited to RF connector center pin. Overall package (other than bias port and RF connector) withstands >25,000 V ESD.

10 Impulse response calculations verified using 2 ps pulsed YAG laser.

11 At room temperature (23°C ± 3°C)

12 All 83440D units are tested for 30 GHz minimum bandwidth. Measured frequency response data is supplied with each unit.

 13 Uncorrected System aberrations include oscilloscope response and source laser aberrations from 2 ps pulsed YAG laser system. Slower pulse width will generate lower aberration levels; high 83440D detector bandwidth can excite 50 GHz oscilloscope response.

 $^{14}83440\mathrm{D}$ test system consists of 2-3 ps compressed Nd:YAG laser and 54124 50 GHz digitizing oscilloscope. 83440D frequency response is derived from Fourier transform after correcting for oscilloscope and input pulse frequency response. System verified with YAG heterodyne.

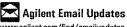
Agilent Technologies'

Test and Measurement Support, Services, and Assistance

Agilent Technologies aims to maximize the value you receive, while minimizing your risk and problems. We strive to ensure that you get the test and measurement capabilities you paid for and obtain the support you need. Our extensive support resources and services can help you choose the right Agilent products for your applications and apply them successfully. Every instrument and system we sell has a global warranty. Support is available for at least five years beyond the production life of the product. Two concepts underlie Agilent's overall support policy: "Our Promise" and "Your Advantage."

Our Promise

Our Promise means your Agilent test and measurement equipment will meet its advertised performance and functionality. When you are choosing new equipment, we will help you with product information, including realistic performance specifications and practical recommendations from experienced test engineers. When you use Agilent equipment, we can verify that it works properly, help with product operation, and provide basic measurement assistance for the use of specified capabilities, at no extra cost upon request. Many self-help tools are available.


Your Advantage

Your Advantage means that Agilent offers a wide range of additional expert test and measurement services, which you can purchase according to your unique technical and business needs. Solve problems efficiently and gain a competitive edge by contracting with us for calibration, extra-cost upgrades, out-of-warranty repairs, and on-site education and training, as well as design, system integration, project management, and other professional engineering services. Experienced Agilent engineers and technicians worldwide can help you maximize your productivity, optimize the return on investment of your Agilent instruments and systems, and obtain dependable measurement accuracy for the life of those products.

By internet, phone, or fax, get assistance with all your test & measurement needs.

Online assistance:

www.agilent.com/comms/lightwave

www.agilent.com/find/emailupdates Get the latest information on the products and applications you select.

Phone or Fax United States:

(tel) 1 800 452 4844

Canada:

(tel) 1 877 894 4414 (fax) (905) 282 6495

China:

(tel) 800-810-0189 (fax) 1-0800-650-0121

Europe:

(tel) (31 20) 547 2323 (fax) (31 20) 547 2390

Japan

(tel) (81) 426 56 7832 (fax) (81) 426 56 7840

Korea.

(tel) (82-2) 2004-5004 (fax)(82-2) 2004-5115

Latin America:

(tel) (305) 269 7500 (fax) (305) 269 7599

Taiwan:

(tel) 080-004-7866 (fax) (886-2) 2545-6723

Other Asia Pacific Countries:

(tel) (65) 375-8100 (fax) (65) 836-0252 Email: tm_asia@agilent.com

Product specifications and descriptions in this document subject to change without notice.

© 1991, 1992, 1996, 2000, 2001, 2002 Agilent Technologies, Inc. Printed in USA August 29, 2002 5988-7788EN

Agilent Technologies