

REGULADOR DE ENERGÍA REACTIVA

COMPUTER plus T8/14 (Medida Trifásica -Maniobra por Contactores)

MANUAL DE INSTRUCCIONES

M98223001-01-12A

ÍNDICE

1	REG	GULADORES ENERGÍA REACTIVA COMPUTER PLUS T	7
2	CAF	RACTERÍSTICAS TÉCNICAS	9
	21	DIMENSIONES Y EILACIONES	10
3	ESQ	UEMA DE CONEXIONES TIPO	
	3.1 3.2 <i>3.2.1</i> <i>3.2.2</i> <i>3.2.3</i> 3.3	TARJETAS Y FUNCIONES DESIGNACIÓN DE BORNES Carta C: Alimentación y medida Carta B: Relés Carta A: Comunicaciones, medida de I en condensadores y medida de I de fugas ESQUEMA BÁSICO DE CONEXIÓN	
4	AJU	STES Y PUESTA EN MARCHA	17
•	4.1 4.2 4.3	COMPROBACIONES ANTES DE DAR TENSIÓN AL EQUIPO PUESTA EN TENSIÓN DEL REGULADOR AJUSTES DEL REGULADOR	17 19 19
5	INS	FRUCCIONES BÁSICAS DE NAVEGACIÓN POR LOS MENÚS	20
	5.1 5.2 5.3 5.4	NAVEGACIÓN POR LOS MENÚS: FUNCIONES DE LAS TECLAS Menú principal y menú por defecto Opciones básicas del Menú Principal ¿Cómo editar campos numéricos o literales?	20 20 21 22
6	ESQ	UEMAS DE LOS SUBMENÚS	22
	6.1 6.2 6.3 6.4 6.5 6.6	MENÚ DE MEDIDA MENÚ DE CONFIGURACIÓN DEL APARATO MENÚ DE CONFIGURACIÓN DE ALARMAS MENÚ DE ESTADO DE ALARMAS MENÚ DE ARMÓNICOS MENÚ DE TEST	
7	CON	NFIGURACIÓN DEL APARATO: MENÚ CONFIG	28
	7.1 7.2 7.2.2 7.2.3 7.2.4 7.2.5	CONTRASEÑA AJUSTE "PLUG & PLAY Plug &Play Paso 1 Plug &Play Paso 2 Plug & Play Paso 3 Interpretación de los ajustes realizados por Plug & Play Valores por defecto supuestos por Plug & Play	29 29 30 32 33 33 34 35

7.	2.6 Plug & Play en caso de Computer plus T8-CDI y T14 CDI	
7.3	AJUSTE MANUAL.	
7	3.1 Consideraciones generales del menú de configuración	
7	3.2 Entrar en menú de configuración	
7	3.3 Ajuste de Pot. Condensadores	
7	3.4 Ajuste de la tensión nominal de los condensadores y configuración	
7	3.5 Ajuste de las conexiones de transformadores de corriente (TC)	
7	3.6 Ajustes de las relaciones de transformación	40
7	3.7 Ajuste del cos φ objetivo	41
7	3.8 Ajuste de tiempos Tact y Trec	
7	3.9 Ajuste del modo de compensación	
7	3.10 Ajuste de Fecha y Hora	
7	3.11 Ajuste de Display	
7	3.12 Ajuste de Comunicaciones	45
7	3.13 Ajuste de Borrado / Reprog	45
7	3.14 Ajuste del módulo CDI	46
7	3.15 Ajuste de las conexiones de los transformadores de corriente para el módulo CDI	47
8 V	ISUALIZACIÓN DE VARIABLES: MENÚ MEDIDA	48
8.1	Entrada en el menú de medida	
8.2	Parámetros medibles	49
9 C	ONFIGURACIÓN DE ALARMAS	53
9.1	ENTRADA EN EL MENÚ DE CONFIGURACIÓN DE ALARMAS	53
9.2	OPCIONES DE CONFIGURACIÓN DE ALARMAS	53
9.3	CONFIGURACIÓN DE LAS DISTINTAS ALARMAS	
9.4	CASOS PARTICULARES DE ALARMAS	
9.4	4.1 Alarma Ifuga (A)	56
9.4	4.2 Alarma IC fuera de margen	
9.4	4.3 Alarma de Fallo de Corriente	57
9.4	4.4 Alarma de Fallo del Transformador Diferencial (Sólo en tipos T-CDI)	57
9.5	PROGRAMACIÓN DEL RELÉ DE ALARMA	57
10	VISUALIZACIÓN DEL ESTADO DE LAS ALARMAS	58
10.1	Entrada en el menú de visualización de alarmas	58
10.2	OPCIONES DE VISUALIZACIÓN DE ALARMAS	
10	0.2.1 Parámetros mostrados en las pantallas de estado de alarmas	59
10	0.2.2 Alarma de I fuga	60
10	0.2.3 Alarma de IC fuera de margen	61
10	0.2.4 Alarma de Fallo de Corriente	61

11	VISUALIZACIÓN DE ARMÓNICOS	62
11.1 11.2	Entrada en el menú de visualización de armónicos Opciones de visualización de armónicos	62 62
12	TEST	64
12.1 12.2 12.3	Entrada en el menú de Test 2 Test de cos φ y test de resonancia 3 Test de condensadores	65 65 66
13	INTEGRACIÓN DEL COMPUTER PLUS EN EL PROGRAMA SCADA POWER STUDIO	68
14	CONSIGNAS DE SEGURIDAD	68
15	MANTENIMIENTO	69
16	SERVICIO TÉCNICO	69

INTRODUCCIÓN

CIRCUTOR S.A. agradece su confianza al seleccionar uno de nuestros reguladores de la serie **Computer plus**

Estos equipos están construidos con las más recientes tecnologías incluyendo un potente DSP para cálculo de los algoritmos óptimos para conseguir la mejor corrección del cos φ.

Los equipos cumplen con la Norma de Seguridad Eléctrica EN 61010 de acuerdo con la exigencia de la Directiva de Baja Tensión (LVD 73/23/CE), así como la Directiva de EMC (2004/108/CE) y por tanto está homologada para uso de la marca CE.

El propósito de este manual de usuario es describir los principios de operación de los reguladores de la serie **Computer plus** y mostrar al usuario los procedimientos de instalación, puesta en marcha y funcionamiento.

SEGURIDAD

	La instalación y mantenimiento del equipo debe llevarla a cabo personal
iPRECAUCIÓN!	debidamente formado y autorizado, de acuerdo con las Normas nacionales e
	internacionales.

	Antes de efectuar cualquier operación de mantenimiento en los equipos de
¡PELIGRO!	regulación del cos φ , asegúrese de desconectar el interruptor principal. Después de la desconexión esperar al menos 5 minutos para asegurar que los condensadores se han descargado debidamente.

Durante las operaciones de instalación, mantenimiento o puesta en marcha de los equipos regulados por un **Computer plus** deben observarse las siguientes precauciones de seguridad:

- Antes de conectar los equipos asegurarse que las conexiones de tierra se han hecho correctamente. Una conexión defectuosa a tierra del equipo puede causar un mal funcionamiento y entraña un peligro de descarga eléctrica para el usuario o quien lo manipule.
- ✓ El mantenimiento debe llevarse a cabo con las precauciones necesarias para evitar electrocución y choque eléctrico. Se recomienda que antes de intervenir se asegure de que el equipo ha sido desconectado y se ha dejado transcurrir el tiempo necesario para que los condensadores se han descargado totalmente. Se recomienda el uso de gafas de seguridad y guantes cuando sea necesario.
- ✓ Si los equipos de compensación de energía reactiva se conectan en ausencia de carga pueden producirse resonancias, por lo que los armónicos de tensión pueden resultar amplificados y pueden producirse daños en el equipo de compensación y en otros equipos conectados a la red.
- ✓ Deben seguirse los procedimientos de arranque y parada indicados en el manual para evitar daños al equipo y/o equipos adyacentes.
- ✓ El ajuste o la substitución de componentes o partes del equipo debe hacerse con recambios originales y siguiendo los procedimientos del manual de instrucciones correspondiente.

1 REGULADORES ENERGÍA REACTIVA COMPUTER PLUS T

Los reguladores de la serie **Computer plus** son reguladores de factor de potencia que incorporan los últimos avances en la tecnología de compensación de energía reactiva y filtrado de armónicos, tanto en sistemas con contactores como en sistemas rápidos. El núcleo del controlador es un procesador DSP de última generación que permite la ejecución rápida y eficaz de algoritmos avanzados de control.

Los reguladores de los tipos **Computer plus T**, a los que se refiere este manual, son reguladores para maniobra con contactores. Para el modelo rápido véase manual M98223301-01-AAx. (AAx: AA son las dos últimas cifras del año de revisión y x es un carácter alfabético, A...Z, que indica versión).

Fig. 1 .- Esquema de principio de la conexión

Tipos y funciones básicas:

ΤΙΡΟ	TENSIÓN (V c.a.)	MANDO	MEDIDA	OTRAS FUNCIONES
Computer plus T8	110-480	Relés 8 pasos	Trifásica	Tipo básico
Computer plusT8-CDI	110-480	Relés 8 pasos	Trifásica	Tipo básico + Comunicaciones + Medida de fugas + Medida de Icondensadores
Computer plus T14	110-480	Relés 14 pasos	Trifásica	Tipo básico
Computer plus T14-CDI	110-480	Relés 14 pasos	Trifásica	Tipo básico + Comunicaciones + Medida de fugas + Medida de Icondensadores

2 CARACTERÍSTICAS TÉCNICAS

Alimentación auxiliar:	110 a 480 V c.a. (5060 Hz) (± 10%)								
	Consumo del equipo:								
	 Sin relés: 6,6 VA / 230 V ÷ 19 VA / 400 V ÷ 24,9 VA / 480 V 								
	 Con 8 relés conectados: 10,2 VA / 230 V ÷ 26,6 VA / 400 V ÷ 34,6 VA / 480 V Con 4 relés conectados: 40.0 V/A / 200 V ÷ 26,6 VA / 400 V ÷ 34,6 VA / 480 V 								
	• Con 14 reles conectados: 12,9 VA / 230 V ÷ 33 VA / 400 V ÷ 43 VA / 480 V								
Circuito de tension:									
Margen de medida	Del 5% al 120 % para Un = 300 V c.a. (fase-neutro)								
	Del 5% al 120 % para Un = 520 V c.a. (fase-fase)								
Consumo máximo	< 0,6 VA								
Frecuencia	45 65 Hz								
Circuito de intensidad :									
Corriente nominal	Transformadores In / 5 A c.a. ó In / 1 A c.a.								
Sobrecarga admisible	6 A permanente, 100 A t < 1 s								
Consumo (/5 A y/ 1 A)	< 0,45 VA								
Sistema de control integrado	FCP ó Lineal / 4 cuadrantes								
Algoritmos de control	Trifásico								
Relé de salida:									
Tensión máxima Ui	277 V c.a. / 30 V c.c.								
Corriente térmica Ith	6 A								
AC11 le/Ue	6 A / 250 V c.a.								
DC11 le/Ue	6 A / 30 V c.c.								
Vida mecánica	1.10 ⁷ maniobras								
Vida eléctrica	3 · 10 ^⁴ maniobras								
Entorno:									
Temperatura de trabajo	-10º a +50 ºC								
Temperatura de almacenamiento	-20º a +65 ºC								
Humedad relativa máxima	95 % sin condensación								
Altitud máxima de funcionamiento	2000 m (s.n.m.)								
Categoría de instalación	Categoría de instalación III, según IEC 61010								
Grado de contaminación	2 según IEC 61010								
Índice de protección	IP 51 frontal – IP 20 parte posterior								

Seguridad:								
Categoría de instalación	Categoría de instalación III, según IEC 61010							
Protección al choque eléctrico	Por doble aislamiento clase II							
	Diseñado e identificado con distintivo CE							
Características mecánicas:								
Conexión	Borneros de conexión directa para hilo rígido de 2,5 mm (4,5 mm ²) o flexible (AWG 11)							
Material caja	Plástico V0 autoextinguible							
Dimensiones	Según fig. 2							
Peso	0,607 kg (8 relés) / 0,640 kg (14 relés)							
Normativas:								
EMC	IEC 61000-4-2, IEC 61000-4-3, IEC 61000-4-4, IEC 61000-4-5, IEC 61000-4-11							

2.1 Dimensiones y fijaciones

Fig. 2 .- Dimensiones externas

La instalación del equipo se realiza en panel (138⁺¹ x 138⁺¹ mm según DIN 43 700)

3 ESQUEMA DE CONEXIONES TIPO

3.1 Tarjetas y funciones

El **Computer plus** puede llevar distintas tarjetas o cartas según las funciones que tiene disponibles.

Carta A: Comunicaciones. Medida de Corriente en los Condensadores y Medida de Fugas

Carta B: Relés

Carta C: Fuente de alimentación y medida

Los tipos $Computer \ plus \ T8$ y T14 llevan sólo las cartas B y C

Los tipos **Computer plus T8-CDI** y **T14-CDI** llevan las cartas A, B y C

3.2 Designación de bornes

3.2.1 Carta C: Alimentación y medida

BORNES CARTA C	FUNCIÓN
1	Alimentación
2	Alimentación
3	Tensión 1
4	Tensión 2
5	Tensión 3

6	Neutro
7	Secundario 1 Corriente IA
8	Secundario 2 Corriente IA
9	Secundario 1 Corriente IB
10	Secundario 2 Corriente IB
11	Secundario 1 Corriente IC
12	Secundario 2 Corriente IC
13	Contacto NC Relé alarma
14	Común Relé alarma
15	Contacto NA Relé alarma

3.2.2 Carta B: Relés

BORNES CARTA B	DESIGNACIÓN	FUNCIÓN
16	СОМ	Común Relés
17	RL1	Relé 1
18	RL2	Relé 2
19	RL3	Relé 3
20	RL4	Relé 4
21	RL5	Relé 5
22	RL6	Relé 6
23	RL7	Relé 7
24	RL8	Relé 8
25	RL9	Relé 9 (*)
26	RL10	Relé 10 (*)
27	RL11	Relé 11 (*)
28	RL12	Relé 12 (*)
29	RL13	Relé 13 (*)
30	RL14	Relé 14 (*)

(*) Disponible sólo en modelos Computer plus T14 y T14-CDI

3.2.3 Carta A: Comunicaciones, medida de I en condensadores y medida de I de fugas

31	32	33	34	35	36	37	38	39	40	41	42	43	44	_	45	46	47	48	49	50
A+	B-	S	A+	B-	S	COM	D1	D2	D3	D4	D5	S1	S2		S1	S2	S1	S2	S1	S2
CPC-NET		(COM	1		DIG	ITAL	INP	UTS			F		IC	C1	10	2	IC	3	

BORNES CARTA A	DESIGNACIÓN	FUNCIÓN	
31	A+	Borne A+ RS-485 (control de los condensadores. Sólo versiones TF)	
32	В-	Borne B- RS-485 (control de los condensadores. Sólo versiones TF)	
33	S	Borne S - RS-485 (control de los condensadores. Sólo versiones TF)	
34	A+	Borne A+ Comunicaciones RS-485	
35	В-	Borne B- Comunicaciones RS-485	
36	S	Borne S Comunicaciones RS-485	
37	СОМ	Común de Entradas Digitales	
38	D1	Entrada Digital 1	
39	D2	Entrada Digital 2	
40	D3	Entrada Digital 3	
41	D4	Entrada Digital 4	
42	D5	Entrada Digital 5	
43	IF - S1	Transformador diferencial, I de fugas. Secundario 1	
44	IF - S2	Transformador diferencial, I de fugas. Secundario 2	
45	IC1 - S1	Transformador de medida I condensadores, fase 1. Secundario 1	
46	IC1 - S2	Transformador de medida I condensadores, fase 1. Secundario 2	
47	IC2 - S1	Transformador de medida I condensadores, fase 2. Secundario 1	
48	IC2 - S2	Transformador de medida I condensadores, fase 2. Secundario 2	
49	IC3 - S1	Transformador de medida I condensadores, fase 3. Secundario 1	
50	IC3 - S2	Transformador de medida I condensadores, fase 3. Secundario 2	

3.3 Esquema básico de conexión

- Los transformadores de corriente se deben instalar en la línea general de la acometida, de forma que circule por ellos la corriente total de la instalación (corriente de cargas + corriente propia de los condensadores).

15

AJUSTES Y PUESTA EN MARCHA 4

Vea las instrucciones de seguridad en la introducción de este manual. Debe respetar aquellas condiciones para garantizar un funcionamiento seguro del aparato, y mantenerlo en buen estado en cuanto a la seguridad. El aparato no debe usarse y programarse hasta su colocación definitiva dentro del cuadro eléctrico, con las protecciones adecuadas.

Si se utiliza el equipo de forma no especificada por el fabricante, la protección del equipo puede resultar comprometida.

Si observa que el aparato presenta roturas, quemaduras o daños visibles, es probable que los circuitos internos hayan sufrido algún desperfecto y pueden haberse perdido las protecciones de seguridad. En tal caso debe desconectar la alimentación del mismo y debe ponerse en contacto con el Servicio Técnico autorizado para su sustitución.

4.1 Comprobaciones antes de dar tensión al equipo.

Antes de dar tensión al equipo, deben comprobarse los siguientes puntos:

a.- Alimentación auxiliar:

-	Tensión:	110 - 480 V c.a. (± 10%)
-	Frecuencia:	50 60 Hz
b Tensión	nominal en circuito de medida de tensión:	
-	Tensión nominal máxima:	$U_{\text{f-N}}$: 300 V c.a. / $U_{\text{f-f}}$: 520 V c.a.
-	Frecuencia:	45 65 Hz
c Corrien	te nominal en circuito de medida de corriente:	
-	Secundarios / 5 A:	5 A c.a.
-	Secundarios / 1 A:	1 A c.a.
d Condic	iones de trabajo:	
-	Temperatura de funcionamiento:	-10º a +50 ºC
-	Humedad relativa:	< 95 % sin condensación

e.- Seguridad:

- Diseñado para instalaciones CAT III 300 / 520 V c.a. según EN 61010.
- Protección contra choque eléctrico por doble aislamiento clase II.

La instalación del equipo se realiza en panel (taladro según DIN 43 700):

- Taladro panel 138⁺¹ x 138⁺¹ mm

Todas las conexiones quedan en el interior del cuadro eléctrico.

Tener en cuenta que con el equipo conectado, los bornes pueden ser peligrosos al tacto, y la apertura de cubiertas ó eliminación de elementos puede dar acceso a partes peligrosas al tacto. El equipo no debe ser utilizado hasta que haya finalizado por completo su instalación.

El equipo debe conectarse a un circuito de alimentación protegido con fusibles tipo gl (IEC 269) ó tipo M (IEC 127), de valores comprendidos entre 0,5 y 2 A. Debe preverse un interruptor magnetotérmico o dispositivo equivalente para poder desconectar el equipo de la red de alimentación. El circuito de alimentación y de medida de tensión, así como las conexiones de los distintos relés, se conectará con cable de sección mínima de 1 mm² (AWG 17). La línea de conexión del secundario del transformador de corriente debe tener una sección mínima de 2 mm² (AWG 14) y soportar un mínimo de 60 °C.

Para conectar un regulador **Computer plus** a un equipo de compensación de reactiva siga los siguientes pasos:

- Conectar los terminales de alimentación (1 y 2 carta C) a la fuente de tensión de mando
- Conectar los terminales VL1, VL2, VL3 y el neutro N (si existe) a las fases y neutro de la red.

- MUY IMPORTANTE!!!:

El aparato considera como fase 1 aquella que se conecte a VL1, como fase 2 la que se conecte a VL2 y como fase 3 la que se conecte a VL3 del regulador. (Cables L1, L2 y L3 de la acometida de potencia).

- Conectar los transformadores de corriente T1, T2 y T3, procurando que coincidan con las fases 1, 2 y 3 respectivamente. Si no se acierta, el aparato será capaz de detectarlo en el ajuste "Plug and Play", o bien se podrá ajustar manualmente por medio de la opción *Conexión Trafos V-I* en la carpeta *Config.*
- Procurar que los cables (S1-S2) procedentes de los secundarios de los transformadores de corriente vayan a los bornes señalizados S1-S2 del **Computer plus**. Si no se acierta, el aparato será capaz de detectarlo en el ajuste "Plug and Play", o bien se podrá ajustar manualmente por medio de la opción *Conexión Trafos V-I* en la carpeta *Config*.

4.2 Puesta en tensión del regulador.

- Una vez conectados los cables de alimentación y de medida, puede procederse a dar tensión al aparato.
- Al dar tensión al Computer plus y después de un tiempo de arranque de unos 10 segundos, el aparato empieza a indicar los valores medidos. Es probable que algunas de las indicaciones sean incoherentes (cos φ fuera de los márgenes razonables, potencias activas de signo negativo, etc.). Esto se debe habitualmente a que algunas conexiones no se han hecho correctamente (transformadores de corriente conectados a fase equivocada o inversión de S1-S2).

Cualquiera de estos errores puede ser subsanado sin cambiar el cableado, simplemente entrando en el menú de configuración del aparato, opción *Conexión Trafos V-I* (ver apartado 7.3), o bien ejecutando la opción "Plug and Play" (ver apartado 7.2).

NOTA: Si al conectar el aparato parece que no funciona, recuerde hay que poner el aparato en RUN (apartado 7.3.9)

4.3 Ajustes del regulador.

ATENCIÓN:

Normalmente el regulador sale de fábrica con las salidas de relés deshabilitadas. Por tanto al dar tensión y antes de efectuar la configuración no debería conectar ningún paso de condensador. Si conecta algún condensador es síntoma de que el regulador se ha ajustado ya previamente.

Cuando el regulador va montado en una batería CIRCUTOR se ha efectuado previamente un ajuste y para el ajuste definitivo in situ, bastará con efectuar la opción "Plug & Play" ver apartado 7.2

Si está seguro de que el regulador no se ha ajustado y conecta algún condensador, esto indica que algo funciona de forma errónea. En este caso debería revisar el ajuste del mismo según las instrucciones del apartado 7.

Para proceder al ajuste del aparato siga los siguientes pasos:

- Dar tensión al equipo y siga las instrucciones de ajuste del apartado 7.
- Configure las alarmas según sus necesidades siguiendo las instrucciones del apartado 8.
- Si dispone de una red de comunicaciones y desea integrar el equipo de compensación de FP en el SCADA Power Studio, siga las instrucciones de apartado 11.

5 INSTRUCCIONES BÁSICAS DE NAVEGACIÓN POR LOS MENÚS

5.1 Navegación por los menús: Funciones de las teclas

El **Computer plus** dispone de cuatro teclas **dinámicas**, marcadas como **F1 F2 F3** y **F4**. La palabra **dinámicas** significa que las funciones de estas teclas no son siempre las mismas, sino que cambian en cada pantalla. La función de cada tecla viene indicada en la línea inferior de la pantalla correspondiente. Así por ejemplo en las pantallas de las figs. 5 y 6, las funciones de las teclas corresponden a las indicaciones de los recuadros de la parte inferior de la pantalla.

En general, desde cualquier pantalla, se puede regresar a la pantalla de menú principal, pulsando repetidamente la tecla **F1** hasta que aparezca la pantalla de la fig.6.

5.2 Menú principal y menú por defecto

Normalmente al dar tensión el aparato hace un test inicial y mientras dura éste muestra la pantalla de inicio (Fig. 3). Al cabo de unos 5 segundos presenta una pantalla informativa (fig. 4) donde se muestra el modelo del aparato, la versión de software, el idioma en que está configurado, la fecha y hora y el número de serie.

Fig. 3.- Pantalla de inicio

Fig. 4 Pantalla informativa	Fig. 4	Panta	lla inforn	nativa
-----------------------------	--------	-------	------------	--------

Después de unos 5 segundos mostrando la pantalla informativa el aparato salta a la **pantalla por defecto** (fig.5). Si el aparato estuviera en **MODO STOP**, aparecerá un mensaje indicándolo en la parte superior de la pantalla (zona de indicación de relés de la fig.5). En tal caso, debe revisarse el ajuste (ver apartado 7).

1 2	3	4	5	6	7	8
kW III	17	9.3	7 0	søl	I	0.97
kvarili	4	7.3	9			ind
kVA III	18	5.5	6 PI	- III		0.97
Menú	1	e		Ŧ	1	

Fig. 5.- Pantalla por defecto

Medida	Con	fig	Config A
Alarmas) Arm	ónicos	Test
[nfo	-		ОК

Fig. 6.- Menú principal

En todas las pantallas, aparecerán al pie de la pantalla las opciones de navegación por los distintos menús, opciones que deberemos seleccionar pulsando las teclas **F1 F2 F3** o **F4** según la opción deseada. Así, para pasar de la pantalla por defecto (fig.5) a la pantalla de menú principal (fig.6), deberemos pulsar la tecla **F1**.

El **Computer plus** salta automáticamente a la pantalla por defecto cuando no se ha pulsado una tecla durante dos minutos.

5.3 Opciones básicas del Menú Principal

Después de dar tensión al **Computer plus** y una vez completado el proceso de arranque basta con pulsar varias veces la tecla **F1** para acceder al menú principal (fig.6).

En la pantalla del menú principal aparecen 6 carpetas que corresponden a las **funciones básicas** que puede ejecutar el **Computer Plus**. Dichas funciones son:

- **Medida**: Muestra los parámetros medidos (Tensiones y corrientes), y otros calculados (Potencias, factor de potencia, etc.)
- **Config**: (Configuración). Permite ajustar el aparato y adaptarlo a las condiciones de aplicación.
- **Config Al**: (Configuración Alarmas). Permite ajustar los valores máximos y mínimos de disparo, retardos, etc.
- Alarmas: Muestra el estado de las alarmas
- Armónicos: Muestra los armónicos de tensión y corriente de las tensiones y corrientes medidas.
- **Test:** Permite probar en forma manual la conexión y desconexión de pasos y ver como se comporta el sistema.

Al pie del menú principal aparecen las opciones del menú elegibles con las teclas **F1 F2 F3** y **F4**. El significado de las diferentes opciones de menú es el siguiente:

Info Accede a una pantalla en que se india el nombre del equipo junto con el modelo, la versión y el número de serie.

Permiten desplazarse por el menú principal y seleccionar la opción deseada.

Una vez seleccionada una opción permite confirmar y entrar en el menú deseado.

5.4 ¿Cómo editar campos numéricos o literales?

 En muchos menús aparece la necesidad de editar campos numéricos o literales. La forma general de hacer esto suele ser:

Edit

0K

- Pulsar la tecla **Edit** , luego suele aparecer un menú como: Esc. AT
- Con seleccionar el campo que se desea editar y luego pulsar
- Entonces aparece un nuevo menú tal como Esc 🔺 🕨 OK
- Si se trata de editar números, con la tecla cambiamos el número a editar, que aparecerá subrayado y con vamos cambiando el valor numérico de forma cíclica (0 a 9). Cuando se tenga el valor deseado pasar al siguiente carácter y al final pulsar
- Si el valor que hemos editado es incorrecto o esta fuera de límites, al pulsar os conservará el valor anterior.
- Si se trata de editar campos con distintas opciones, aparece el menú
 Esc
 OK
 , y
 se puede cambiar la opción deseada con la tecla
 Cuando se tenga el valor deseado pasar al siguiente campo y al final pulsar

6 ESQUEMAS DE LOS SUBMENÚS

Cada una de las **funciones básicas** descritas en el menú principal (carpetas) tiene una serie de opciones o submenús que permiten configurar el aparato, visualizar distintos parámetros o consultar los estados de las diferentes variables que controla el **Computer Plus**. A continuación se dan en forma esquemática las distintas opciones de los submenús, cuya descripción detallada se verá en el apartado 7.

ОК

6.1 Menú de medida

En el menú de medida se pueden consultar todos los parámetros medidos y calculados por el aparato. El esquema es el que muestra la fig.7

6.2 Menú de configuración del aparato

En el menú de configuración se podrán ajustar las distintas opciones del **Computer Plus**. Este menú está protegido por contraseña. Se pueden recorrer los menús y ver como están configurados los parámetros, pero para modificarlos, desde cualquiera de las pantallas, se deberá escoger la opción **Edit**. Antes de permitir cualquier cambio se pide introducir una contraseña. La contraseña estándar es la secuencia de teclas **F1 F3 F2 F4**. El esquema del menú es el que muestra la fig.8 (para más detalles ver el apartado 7).

NOTA: Las comunicaciones sólo están disponibles en las versiones de Computer plus T8-CDI y T14 CDI

Fig.8.- Árbol del menú de configuración del aparato

6.3 Menú de configuración de alarmas

En el menú de configuración de alarmas se podrán visualizar y rearmar las distintas alarmas de que dispone el **Computer Plus**. Este menú está protegido por contraseña. Se pueden recorrer los menús y ver como están configuradas las alarmas, pero para modificarlas se deberá escoger la opción **Edit** y antes de permitir el cambio se pide introducir una contraseña. La contraseña estándar es la secuencia de teclas **F1 F3 F2 F4**. El esquema del menú es el que muestra la fig.9

NOTA: Los parámetros I fuga, THDIC e Ic, sólo están disponibles en las versiones de Computer plus T8-CDI y T14 CDI Fig.9.- Árbol del menú de configuración de Alarmas

6.4 Menú de estado de Alarmas

Este menú permite la visualización y el rearme de alarmas que hayan disparado, pero no permite cambiar los límites ni el estado de habilitación. El esquema del menú es el que muestra la fig.10.

NOTA: Los parámetros I fuga, THDIC e Ic, sólo están disponibles en las versiones de Computer plus T8-CDI y T14 CDI

Fig.10.- Árbol menú de Alarmas

6.5 Menú de Armónicos

Este menú permite la visualización de 32 armónicos de las diferentes magnitudes que mide el **Computer** plus.

NOTA: Los parámetros IC1, IC2, IC3 y THDIC sólo están disponibles en las versiones de Computer plus T8-CDI y T14 CDI

Fig.11.- Árbol del menú de Armónicos

6.6 Menú de Test

El menú Test permite la actuación en modo manual del aparato. Las opciones de este menú están pensadas para realizar diferentes pruebas del sistema de compensación incluyendo pruebas de predicción de armónicos. Cuando se entra en este menú el aparato actúa en manual y por tanto deja de regular.

Fig.12.- Árbol del menú de Test

7 CONFIGURACIÓN DEL APARATO: MENÚ CONFIG

El **Computer plus** tiene que ser programado para adaptarse a la instalación que se desea compensar. Esta adaptación requiere la elección de una serie de parámetros, tales como número de pasos de condensador, potencia de cada paso, relación de transformación de los transformadores de corriente, etc. Todos estos parámetros pueden ser ajustados de dos formas distintas:

- Ajuste automático con la opción Plug & Play
- Ajuste Manual

Antes de entrar en el ajuste propiamente dicho es conveniente conocer el árbol del menú de ajuste descrito en el apartado 6.2.

7.1 Contraseña

Siempre que se quiera cambiar la configuración aparecerá una pantalla como la de la fig.13, pidiendo la contraseña. Para que el aparato permita la programación debe introducirse la secuencia de teclas F1
 F3 F2 F4. Si el aparato tuviera pasos conectados, los desconectará, y luego entrará en la pantalla de configuración. El icono de la derecha, en forma de candado, indica si el aparato está bloqueado o desbloqueado para la edición de parámetros configurables.

Fig.13.- Petición de contraseña

7.2 Ajuste "Plug & Play

Una de las prestaciones más importantes del **Computer plus** respecto a otros reguladores de menores prestaciones es su comodidad a la hora de configurarlo. El **Computer plus** posee una opción llamada **Plug & Play** en el menú de configuración. Está opción requiere introducir los siguientes datos:

- Potencia de los condensadores
- Tensión y conexión de los condensadores (estrella o triángulo).

ATENCIÓN!!:

1) Durante el ajuste Plug&Play el aparato conectará algún paso de condensador para poder medir la relación de transformación de los transformadores de corriente (TC)

2) Normalmente el dato de los kvar de cada paso junto con la tensión nominal de los condensadores aparece en la etiqueta de los mismos.

A partir de estos datos el aparato es capaz de configurar el resto de parámetros con sólo pulsar una tecla, ahorrando tiempo y evitando errores. Una vez calculada la configuración necesaria en la instalación y antes de empezar la regulación en modo automático, el aparato muestra por pantalla un pequeño informe de cómo han quedado configurados los distintos parámetros y pide confirmación.

Los pasos a seguir para configurar el aparato en modo Plug & Play son los siguientes:

7.2.1 Plug&Play Paso 1

- Ir al menú principal (fig.14)
- Mediante las flechas seleccionar la carpeta y pulsar OK. Aparecerá la pantalla de la fig.15

Fig. 14.- Menú principal

Pot. Condensadores	-
V Condensador	
Plug & Play	Ŧ
riug & riay Menúl 🛛 🛛 🔻	∃Гок

Fig.15.- Menú de configuración

- Seleccionar la opción Pot. Condensadores y pulsar OK. Aparecerá la pantalla de la fig.16.
- Pulsar Edit y, si la edición está bloqueada, aparecerá la pantalla de contraseña. Proceder como se ha indicado en el apartado 7.1. Después de dar la contraseña válida se pasa a la pantalla de la fig.17

Fig.16.- Programación de la potencia de condensadores

6.25	12.5	25.0	50.0	100
50.0	50.0	50.0		
				_
Total	<u>343</u>	<u>3.75</u>	<u>kvar</u>	6
Esc		E	dit	OK

Fig.17.- Programación de la potencia de condensadores

En la pantalla de la fig.17, cada recuadro representa un paso de condensador y el número en su interior nos dice los kvar nominales de dicho condensador. Con la flecha podemos cambiar el paso a ajustar. Así si queremos ajustar el primero, pulsamos Edit cuando éste está resaltado y aparece la pantalla de la fig.18, donde podemos cambiar los kvar del paso que está resaltado.

30

30.0	30.0	30.0	30.0	30.0
30.0	30.0	30.0	0	
Total	241	0.00	kvar	6
Era			F	OK

Fig.18.- Programación de la potencia de condensadores

30.0	60.0	60.0	60.0	60.0
60.0	60.0	60.0		
Total	451	1.00	kvar	6
	0.000		13.1.30	

Fig.19.- Programación de la potencia del segundo paso

En la pantalla de la fig.18 con la flecha se cambia de dígito y con la flecha cambia el valor.
 De esta forma se programa el valor en kvar de cada paso y al final se confirma con OK.

NOTA: Una vez programado el primer paso, todos los siguientes cambian el valor y se suponen iguales al primero (30 kvar en el caso de la fig.18). Reaparece entonces la pantalla de la fig.17 y podríamos programar el siguiente paso. Supóngase por ejemplo que es de 60 kvar. Pasaríamos a seleccionar el segundo paso con repetiríamos la operación para programar el 60. Al terminar hay que pulsar **OK** y vamos a la pantalla de la fig.19, donde todos los pasos siguientes han tomado también el valor 60.

- Número de pasos: Obsérvese que en las pantallas anteriores aparecen 8 recuadros si se trata de un Computer plus T8 y aparecerían 14 si fuese un Computer plus T14. Si el equipo tuviera menos pasos, por ejemplo 6 pasos en un Computer plus T8, se debe programar el paso N+1 como cero (en el ejemplo de la fig.20, el paso 7) y entonces el regulador sabe cual es el número de pasos que tiene (en nuestro ejemplo 6 pasos). La fig. 21 da un ejemplo para un Computer plus T14 programado con 10 pasos (el paso 11 y siguientes son cero)

Fig.20.- Programación para un equipo de 6 pasos (paso 7 = 0 kvar) en un **Computer plus T8**

Esc		E	dit 📗	OK
Total	571).00	kvar	6
0.0	0.0	0.0	0.0	
60.0	60.0	60.0	60.0	60.0
30.0	60.0	60.0	60.0	60.0

Fig.21.- Programación para un equipo de 10 pasos (paso 11 = 0 kvar) en un **Computer plus T14**

7.2.2 Plug&Play Paso 2

Tensión nominal de los condensadores y configuración: El segundo paso del Plug&Play es elegir la tensión nominal de los condensadores y la conexión estrella o triángulo. Normalmente este dato junto con la potencia nominal aparece en la etiqueta de dichos condensadores. En general si no se dice lo contrario la conexión es triángulo. Para introducir estos datos en el regulador, hay que ir a la carpeta

 $\widehat{\mathsf{Config}}$, pulsar $\widehat{\mathsf{OK}}$ y aparece la pantalla de la fig.22. Seleccionar la opción V Cond y pulsar $\widehat{\mathsf{Ok}}$. Aparece la pantalla de la fig.23. Pulsar $\widehat{\mathsf{Edit}}$ y aparece la pantalla de la fig.24. Seleccionar el campo a editar con \checkmark y después pulsar nuevamente $\widehat{\mathsf{Edit}}$ y aparece la pantalla de la fig.25. La edición de números es la habitual, con la flecha \checkmark se cambia de dígito y con la flecha \checkmark cambia el valor. Al final se confirma con $\widehat{\mathsf{Ok}}$. En el apartado de Unidad se puede elegir V o kV y en Conex se puede elegir Δ o Y

Fig.22.- Programación de la configuración de los condensadores

Fig.24.- Programación de la configuración de los condensadores

Fig.23.- Programación de la configuración de los condensadores

Fig.25.- Programación de la configuración de los condensadores

7.2.3 Plug & Play Paso 3

Una vez configuradas las potencias y la configuración de condensadores, se puede lanzar el ajuste automático. Para ello seleccionar la opción Plug&Play del menú principal (fig.26) y pulsar OK.
 Aparece la pantalla de la fig.27. Confirmar el ajuste pulsando Do. Si hubiera pasos conectados aparecerá la pantalla de la fig. 28 o en caso de ser primer ajuste aparecerá la de la fig.29.

Fig.26.- Lanzar el ajuste automático Plug&Play

Fig.28.- Plug&Play en caso que hubiera pasos conectados

Plug & Play	
	 <u>6</u>

Fig.27.- Para inicio de Plug&Play pulsar Do

Plug & Play	
Inicio de Plug and Play	
Asignando tensiones	
	6
Esc	

Fig.29.- Inicio de Plug&Play

 El ajuste Plug&Play prosigue asignando las fases y el sentido de los transformadores, asignando cada transformador a su fase y calculando la relación de transformación, siempre suponiendo transformadores In/5A. Los resultados de los ajustes automáticos los va mostrando el aparato en sucesivas pantallas, que se han representado en las fig.30 a 33.

Fig.32.- Plug&Play. Información de secuencia de fases y primario del trafo de corriente

Plug &	Play I		
Rest	ultados:		
V1-IA	V2-IC	V3-IB	
\$1-\$2	\$1-\$2	\$2- \$1	6
Esc			

Fig.31.- Plug&Play. Información de asignación de fases

Plug & Pl	ay C		3
Dir -	-> 123		
Prim I =	1000		
Fin de Plu	ig and l	Play	6
Esc	1	Run	Do

Fig.33.- Final de Plug&Play.

7.2.4 Interpretación de los ajustes realizados por Plug & Play

La pantalla de la fig.30 nos informa de la fase a la cual se han conectado los transformadores de corriente (TC). Si sale IA, IB e IC emparejados con V1, V2, V3 y todos en el orden S1-S2, quiere decir que cada TC se ha conectado a la fase correcta y en sentido correcto. Pero si sale como la fig.31, por ejemplo, indicaría que la corriente de la fase C se ha conectado en lugar de la B y viceversa, y además en la fase 3 los terminales de secundario del TC están invertidos.

NOTA: Esta información suele ser correcta si durante el ajuste Plug&Play la carga es inductiva o ligeramente capacitiva (cos fi entre 0,65 inductivo y 0,98 capacitivo). De todas formas si se duda de que

34

las conexiones supuestas están bien, puede repetirse el ajuste Plug&Play, y si da lo mismo existe un elevado grado de probabilidad de que las conexiones sean como las ha detectado el aparato en su ajuste automático.

- La pantalla de la fig. 32 nos informa de la secuencia de fases con que se han conectado los cables de V1, V2 y V3 y de la relación de transformación del TC que ha calculado el aparato.
- Al final del ajuste automático aparece la pantalla de la fig.33, indicando Fin del Plug&Play.
- Si al final del ajuste automático aparece algún mensaje de error debe reintentar el ajuste automático y si el error persiste deberá realizarse el ajuste manual, según lo descrito en el apartado 7.3.
- Si al finalizar el ajuste automático no aparece mensaje de error, pulsaremos la tecla RUN que nos permitirá valorar si los valores de coseno de fi y el nº de pasos a conectar son lógicos (ver fig. 33b). Si consideramos estos valores correctos, volveremos a pulsar la tecla Run y el regulador empezará a funcionar.

7.2.5 Valores por defecto supuestos por Plug & Play

Hay algunos parámetros que afectan a la compensación y que el Plug & Play configura por defecto.

Los valores por defecto de los parámetros se dan en la tabla 7.1

Parámetro	Significado	Valores por defecto	
cos φ objetivo	Valor deseado de cos ϕ	1	
Conexión por defecto de los condensadores	Configuración estrella o triángulo	Triángulo	
Tact	Tiempo de conexión/desconexión entre pasos	10 s	
Trec	Tiempo de reconexión de un mismo paso	50 s	
Relación transformadores de tensión V1/V2	Relación de transformación si hay transformadores de medida de la tensión (generalmente es 1 salvo en MT o AT)	1/1	
Secundario de los trafos de corriente	Valor nominal del secundario del TC (Puede ser /5 ó /1)	/5	
Idioma menús		Castellano	
Parámetros del canal de comunicaciones	Parámetros del canal de comunicaciones para conexión a Power Studio	Periférico…1 Baud rate… 19200 Paridad… No Long. Dato… 8 bits Bits Stop… 1	

Tabla 7.1.- Parámetros configurados por defecto

7.2.6 Plug & Play en caso de Computer plus T8-CDI y T14 CDI

En el caso de disponer de un Computer plus T8-CDI o T14 CDI, al que se le haya conectado la señal del secundario de 3 transformadores de intensidad para medir la corriente consumida por cada fase de la batería automática de condensadores, y se haya habilitado dicha función durante la configuración del regulador, éste efectuará un segundo proceso de Plug & Play para la determinación del valor del primario de los transformadores de intensidad instalados para medir la corriente consumida por la batería automática, y asignando las fases y el sentido de dichos transformadores, siempre suponiendo transformadores In/5A. Para habilitar esta función se procederá como se decribe a continuación.

Dentro de la carpeta
 Config
 Seleccionar la opción
 Configuración CII (fig.33b), y pulsar
 Aparecerá la pantalla de la fig.33c.

Fig. 33b.- Menú de configuración

PrimIC	00005	
Sec IC	5	
Conex	si	
PrimIF	500 🔒	
Menú	Edit	

Fig. 33c.- Menú de configuración CDI

- Pulsar Edit y, si la edición está bloqueada, aparecerá la pantalla de contraseña. Proceder como se ha indicado en el apartado 7.1. Después de dar la contraseña válida se pasa a la pantalla de la fig.33d.
- Seleccionar la opción **CONEX** mediante la tecla **T**, y pulsar **Edit** para programar **5 i** en caso de gue estuviese programado como **NO**, por medio de la tecla **T**. Al final se confirma con **OK**.

PrimIC	00005
Sec IC	5
Conex	si
PrimIF	500 🔒
Menú 🗛	Edit OK

Fig. 33d.- Menú de configuración CDI

 En este caso, el ajuste Plug&Play continuaría desde la pantalla de la fig. 33, mostrándose los resultados de los ajustes automáticos en sucesivas pantallas, de igual manera que para el Plug&Play de los transformadores exteriores.

7.3 Ajuste manual.

Aunque la forma más cómoda de ajustar el **Computer plus** es la opción **Plug & Play**, el aparato permite también la configuración manual de todos y cada uno de los parámetros.

7.3.1 Consideraciones generales del menú de configuración

- Para editar cualquiera de los campos seguir el procedimiento indicado en al apartado 5.4.
- Al finalizar el ajuste de cualquier pantalla de configuración (validación final de los ajustes pulsando OK), siempre aparecerá la pantalla de la fig.33b, indicando cos φ por fase y trifásico y en video inverso los pasos que introducirá en caso de poner en marcha. En la barra de menús aparecen las opciones de seguir editando, si se pulsa Edit o poner el aparato en marcha si se pulsa Run. Si se ha finalizado el proceso de configuración y los valores indicados en dicha pantalla parecen lógicos, tanto a nivel de valores de cos φ como de pasos de condensador que serán conectados, pulsar Run, si no es el caso, hay que pulsa Edit para regresar al menú de configuración y comprobar si se ha cometido algún error.

12	345	678
cosø 1	0 . 77 ind	cosø III
cosø 2	0 . 76 ind	0.77
cosø 3	0 . 77 ind	ind
Edit		Run

Fig. 33e.- Final de cualquier pantalla de configuración

7.3.2 Entrar en menú de configuración

- Para entrar en configuración, ir al menú principal (fig.34). Mediante las flechas

seleccionar la carpeta y pulsar **OK**. Aparecerá una lista de opciones como la mostrada en la pantalla de la fig.35

37

Medida	Con	fig	Config Al
Alarmas	Armo	ónicos	Test
nfo	-		OK

Fig. 34.- Menú principal

Pot. Condensadores		F
V Condensador		
Plug & Play		
Menú	Ŧ	ОК

Fig 35 -	Menú	de	configuración
1 19.00.	INICI IU	чc	configuration

- Se puede explorar y ver como está programado cualquiera de los parámetros, pero cuando se intente editar un campo aparecerá una pantalla pidiendo una contraseña (pantalla de la fig.36). Para dar la contraseña proceda como se indica en el apartado 7.1.
- Si el equipo estuviera ya en funcionamiento, antes de permitir el ajuste aparecerá la pantalla de la fig.37.

Passw		
F1 F2	F3 F4	8

Fig.36.- Petición de contraseña

Por Favor, Espere	
D	
HOCCODOCT JORD & JORT J	
pesconectando paterra	

Fig. 37.- Entrada en ajuste en caso que hubiera pasos conectados.

- Los parámetros mínimos a configurar para poder poner el **Computer plus** en funcionamiento son:
 - Pot. Condensadores
 - V. Condensadores
 - Conexión Trafos V-I
 - Rel. Transformación
 - Compensación
 - Coseno φ objetivo
 - tact, trec
- Aparte de los parámetros mínimos del listado anterior, el Computer plus tiene una serie de parámetros, que denominamos parámetros subjetivos, porque no influyen propiamente en la compensación. Estos parámetros son:

38

- Fecha / Hora
- Display
- Comunicaciones
- Borrado / Reprog

7.3.3 Ajuste de Pot. Condensadores

Este apartado permite ajustar la potencia de cada uno de los pasos de condensador en que se divide un equipo de compensación.

El método de ajuste es el mismo que el descrito en el apartado 7.2.1 para el ajuste Plug&Play

NOTA: Las potencias que pueden ponerse en cada paso pueden ser cualesquiera, no obstante lo más común es que se coloquen en orden creciente y respeten una relación 1:1:1:1; 1:2:2:2 o 1:2:4:4. No obstante son posibles otras relaciones cualesquiera como 1:1:2:2:3:3:5:8

7.3.4 Ajuste de la tensión nominal de los condensadores y configuración

El segundo paso del ajuste es elegir la tensión nominal de los condensadores y el tipo de conexión (estrella o triángulo). Normalmente este dato junto con la potencia nominal aparece en la etiqueta de los condensadores.

El método de ajuste es el mismo que el descrito en el apartado 7.2.2 para el ajuste Plug&Play.

7.3.5 Ajuste de las conexiones de transformadores de corriente (TC)

- Entrar en el menú de configuración siguiendo el procedimiento del apartado 7.3.2
- Elegir la opción Conexión Trafos V-I y pulse Ok. Aparecerá la pantalla de la fig.39. En ella se supone que las fases conectadas a los bornes de entrada VL1, VL2 y VL3 se corresponden con las fases donde se conectan los trafos de corriente A, B y C. Por esto por defecto se emparejan VL1 con IA, VL2 con IB y VL3 con IC. El aparato mide según este supuesto y muestra en la parte superior de la pantalla los cos φ que lee y a la derecha muestra la secuencia de fases que ve (123 ó 132). La secuencia la mide de las tensiones. Si sale 132 y se quiere corregir se deberán cambiar entre sí los cables de tensión de VL2 y VL3 y luego marcará 123.

Fig. 38.- Conexión de transformadores

0.97ind	0.6 cap	0.6 cap	cosø
VL1	VL2	VL3	C
IA	IB	IC	123
\$1-\$2	\$1-\$2	\$1-\$2	6
Menú		E	dit

Fig.39.- Menú de conexión de transformadores

- En la pantalla de la fig.39 vemos que posiblemente no están bien emparejados los cables de VL1, VL2 y VL3 con los correspondientes trafos de corriente. Esto lo vemos porque los cos φ no son coherentes con lo que esperamos (una fase inductiva y dos capacitivas). Entonces debemos editar esta pantalla y cambiar por ejemplo IB por IC y probar de invertir S1-S2 en cualquiera de ellos, hasta obtener unas medidas de cos φ coherentes.
- Para editar la pantalla pulsar la opción Edit y aparecerá una pantalla como la fig.40. Con la flecha podemos cambiar el campo a editar y pulsando nuevamente Edit podemos cambiar IB por IC por ejemplo, o S1-S2 por S2-S1.
- Si no se conoce como están conectados los cables de los transformadores de corriente (TC) deberemos ir tanteando hasta obtener una indicación de cos φ coherente. Supongamos que esto se consigue con la configuración de la fig.41. Esto indicaría que los TC de las fases 2 y 3 están cambiados y que además el secundario de los mismos está invertido S1 por S2.

0.97ind	0.6 cap	0.6 cap	cosø
VL1	VL2	VL3	\mathbf{C}
IA	IB	IC	123
\$1-\$2	\$1-\$2	\$1-\$2	6
Esc	E E	Edit (DK

Fig. 40.- Menú de conexión de transformadores cambiado

0.97ind	0.96ind	0.97ind	cosø
VL1	VL2	VL3	C
IA	IC	IB	123
S1-S2	\$2-\$1	\$2-\$1	6
Esc	► E	Edit (DK

Cuando hayamos encontrado la configuración que da cos φ coherente pulsamos Ok y tendríamos ajustadas las conexiones de los transformadores.

7.3.6 Ajustes de las relaciones de transformación

Se pueden ajustar las relaciones de transformación de las entradas de tensión y corriente. Por regla general sólo habrá transformadores de tensión en los sistemas de media o alta tensión (MT o AT). En los casos de baja tensión, habitualmente la relación es 1 a 1.

Así pues se pueden configurar los valores nominales de primario y secundario de los transformadores de tensión y de corriente.

- Entrar en el menú de configuración siguiendo el procedimiento del apartado 7.3.2
- De la lista de opciones seleccionar Rel Transformación (pantalla fig.42) y pulsar OK aparecerá la pantalla de la fig.43

40

Fig. 42.- Menú Rel. Transformación

procedimiento indicado en al apartado 5.4.

Prim V	006300
Sec V	110
Prim I	00200
Sec I	5 🔒
Esc	▲ ► OK

Fig. 44.- Menú Rel Transformación

Prim V	000001	
Sec V	001	
Prim I	00005	
Sec I	5 6	
Menu	Edit	

Fig. 43.- Editar Menú Rel. Transformación

Pulsar Edit y aparecerá la pantalla de la fig.44. Para cambiar cualquiera de los campos seguir el

1 2	8 4 5 6	78
k⊌III	179.37 cosø	III 0.97
kvarili	47.39	ind
kVA III	185.56 PF III	0.97
Edit		Run

Fig. 45.- Editar Menú Rel Transformación

Al final del ajuste pulsar **OK** y aparecerá la pantalla de la fig.45, indicando kW, kvar, kVA y cos φ y en video inverso los pasos que introducirá en caso de poner en marcha. En la barra de menús aparecen las opciones de seguir editando, si se pulsa Edit o poner el aparato en marcha si se pulsa Run . Si los valores medidos parecen lógicos se da Run, si no hay que comprobar si se ha cometido algún error.

7.3.7 Ajuste del cos φ objetivo

Se puede ajustar el cos φ objetivo. Para ello seguir el siguiente procedimiento:

- Entrar en el menú de configuración siguiendo el procedimiento del apartado 7.3.2
- De la lista de opciones seleccionar coseno q Objetivo (pantalla fig.46) y pulsar OK . Entonces aparecerá la pantalla de la fig.47

41

Rel. Transformación	F
coseno ø Objetivo	H
Tact, Trec	Ŧ
Menú 🔺 🔻	OK

Fig. 46.- Menú Rel Transformación

cos ø	1.00
Tipo	ind
	6

Fig. 47.- Editar Menú Rel Transformación

 Pulsar Edit para ajustar al valor deseado. Para cambiar cualquiera de los campos seguir el procedimiento indicado en al apartado 5.4.

7.3.8 Ajuste de tiempos Tact y Trec

Se pueden ajustar los tiempos de actuación (conexión y desconexión de pasos) y de reconexión (reconexión de un paso previamente conectado. Para ello seguir el siguiente procedimiento:

- Entrar en el menú de configuración siguiendo el procedimiento del apartado 7.3.2.
- Seleccionar la opción **Tact, Trec** y pulsar **OK** Aparecerá la pantalla de la fig.49.
- Pulsar Edit para ajustar al valor deseado. Para cambiar cualquiera de los campos seguir el procedimiento indicado en al apartado 5.4.

Fig. 48.- Menú Tact, Trec

Fig. 49.- Editar Menú Tact, Trec

7.3.9 Ajuste del modo de compensación

Se pueden ajustar varios parámetros relativos al modo de compensación. Para ello seguir el siguiente procedimiento:

- Entrar en el menú de configuración siguiendo el procedimiento del apartado 7.3.2.
- Seleccionar la opción Compensación (fig.50) y pulsar Ok Aparecerá la pantalla de la fig.51
- Pulsar Edit para ajustar los valores deseados de los parámetros.

Fig. 50.- Menú Tact, Trec

Comp	TRIF		
Man	FCP		
Contrl	SEC		
Modo	STOP 6		
Menú	Edit		

Fig. 51.- Editar Menú Tact, Trec

- Las opciones a elegir son:

TRIF... En el caso del Computer plus T8 o T14 con salidas de relé no hay elección posible.

FCP o LINEAL... Esta opción se refiere a si la entrada de pasos es en modo FIFO (FCP) o LIFO (LINEAL). Modo FIFO significa que el primero en entrar es el primero que se desconecta y LINEAL significa que el último de entrar es el primero en desconectar.

SEC ... En el caso del Computer plus T8 o T14 con salidas de relé no hay elección posible

Modo... Puede elegir entre **RUN** o **STOP**, lo cual permite la puesta en marcha o paro del **Computer plus**.

- Para cambiar cualquiera de los campos seguir el procedimiento indicado en al apartado 5.4.

7.3.10 Ajuste de Fecha y Hora

- Entrar en el menú de configuración siguiendo el procedimiento del apartado 7.3.2.
- Seleccionar la opción Fecha y Hora (fig.52) y pulsar Ok Aparecerá la pantalla de la fig.53
- Pulsar Edit para ajustar los valores deseados de día/mes/año y hora:minuto:segundo.
- Para cambiar cualquiera de los campos seguir el procedimiento indicado en al apartado 5.4.

Hora	08:05:30

Fig. 52.- Menú Ajuste de Fecha y Hora

Fig. 53.- Editar Menú Ajuste de Fecha y Hora

7.3.11 Ajuste de Display

- Entrar en el menú de configuración siguiendo el procedimiento del apartado 7.3.2.
- Seleccionar la opción Display (fig.54) y pulsar Ok Aparecerá la pantalla de la fig.55
- Pulsar Edit para ajustar los valores deseados de los parámetros.

Fig. 54.- Menú Ajuste de Display

Contr	50
Brillo	ON
Idioma	Español
Menú	Edit

Fig. 55.- Editar Menú Ajuste de Display

- Se pueden ajustar los siguientes parámetros:

Contr ... Ajusta el contraste de la pantalla. Ajustable entre 00 y 99

Brillo... Esta opción ajusta la retro-iluminación de la pantalla. Las opciones de ajuste son:

ON... Siempre encendida

OFF... Siempre apagada

10, 90 ó 180... Segundos de encendido desde la pulsación de la última tecla

Idioma... Elegible entre Español e Inglés

- Para cambiar cualquiera de los campos seguir el procedimiento indicado en al apartado 5.4.

44

7.3.12 Ajuste de Comunicaciones

Esta opción permite ajustar los parámetros de la comunicación cuando el **Computer plus** se integra en una red con "Power Studio Scada". Para ajustar proceder de la siguiente forma:

- Entrar en el menú de configuración siguiendo el procedimiento del apartado 7.3.2.
- Seleccionar la opción Comunicaciones (fig.56) y pulsar Ok Aparecerá la pantalla de la fig.57
- Pulsar Edit para ajustar los valores deseados de los parámetros.

Perif	001
Baud	19200
Par	Ninguna
Bits	8,1 🔒
Menú	Edit

Fig. 56.- Menú Ajuste de Comunicaciones

Fig. 57.- Editar Menú Ajuste de Comunicaciones

- Se pueden ajustar los siguientes parámetros:

Perif ... Ajusta el número de periférico cuando el **Computer plus** está en una red de instrumentos conectados a "Power Studio Scada". Ajustable entre 001 y 255

Baud...Esta opción ajusta la velocidad de las comunicaciones (Baud rate). Las opciones son: 9600, 19200, 38400 y 57600

Par... Ajusta la paridad. Las opciones son: Ninguna, Par, Impar

Bits... Ajusta el número de bits y los bits de Stop. Las opciones son: 8bits, 1stop u 8bits, 2stop

- Para cambiar cualquiera de los campos seguir el procedimiento indicado en al apartado 5.4.

7.3.13 Ajuste de Borrado / Reprog

Esta opción permite borrar los registros de máximos o mínimos y permite entrar en reprogramación del aparato.

- Entrar en el menú de configuración siguiendo el procedimiento del apartado 7.3.2.
- Seleccionar la opción Borrado/Reprog (fig.58) y pulsar Ok Aparecerá la pantalla de la fig.59
- Pulsar Edit para ajustar los valores deseados de los parámetros.

45

Display	F
Comunicaciones	
Borrado / Reprog	Ŧ
Menú 🔺	OK

Máx no Energ. no Reprog no A Menú Edit

Fig. 58.- Menú Borrado / Reprog

Fig. 59.- Editar Menú de Borrado / Reprog

Se pueden ajustar los siguientes parámetros:

Máx... Permite el borrado de los valores máximos o mínimos registrados

Energ.... Permite la puesta a cero de los contadores de energía

Reprog... Esta opción permite la puesta al día del software del aparato, si se dispone del software adecuado. Esta opción está disponible sólo para el servicio técnico CIRCUTOR.

7.3.14 Ajuste del módulo CDI

En caso de disponer de un regulador tipo Computer plus T8-CDI y T14 CDI, es posible programar la habilitación de la función de medida de la corriente absorbida por cada fase de la batería automática de condensadores, el valor del primario de los transformadores de intensidad a utilizar para medir dicha corriente, y, en caso de instalar un transformador diferencial para el control de la intensidad de fuga de la batería de condensadores, el número de espiras de dicho transformador diferencial. Para ajustar proceder de la siguiente forma:

- Entrar en el menú de configuración siguiendo el procedimiento del apartado 7.3.2.
- Seleccionar la opción Configuración CUI (fig.59b) y pulsar Ok. Aparecerá la pantalla de la fig.59c

Fig. 59b.- Menú de configuración

PrimIC	00005
Sec IC	5
Conex	si
PrimIF	500 🔒
Menú	Edit

Fig. 59c.- Menú de configuración CDI

- Pulsar **Edit** para ajustar los valores deseados de los parámetros.

- Se pueden ajustar los siguientes parámetros:

PrimIC...Valor nominal del primario de los transformadores de corriente.

- Sec IC... Valor nominal del secundario de los transformadores de corriente.
- **Conex**... Habilitación de la función de medida de la corriente absorbida por cada fase de la batería automática de condensadores.
- PrimIF... Ajusta el número de espiras del transformador diferencial. En caso de ser del tipo WG de CIRCUTOR, éste debe ser 500, y en caso de del tipo WN de CIRCUTOR, éste debe ser 1000.
- Para cambiar cualquiera de los campos seguir el procedimiento indicado en al apartado 5.4.

7.3.15 Ajuste de las conexiones de los transformadores de corriente para el módulo CDI

- Entrar en el menú de configuración siguiendo el procedimiento del apartado 7.3.2
- Seleccionar la opción Con. Trafos Cond V-I (fig.59d) y pulsar Ok. Aparecerá la pantalla de la fig.59e

IK

Menú		E	dit
\$1-\$2	\$1-\$2	\$1-\$2	â
IcĤ	IcB	Ict	123
VL1	VL2	VL3	\mathbf{C}

Fig. 59d.- Conexión de transformadores CDI

Fig. 59e.- Menú de conexión de transformadores CDI

- En esta pantalla se supone que las fases conectadas a los bornes de entrada VL1, VL2 y VL3 se corresponden con las fases donde se conectan los trafos de corriente A, B y C. Por esto por defecto se emparejan VL1 con IcA, VL2 con IcB y VL3 con IcC.
- Visualmente se debería comprobar la correcta situación de los transformadores de corriente, y en caso necesario, se deberá editar esta pantalla y efectuar los cambios necesarios.
- Para editar la pantalla pulsar la opción Edit y aparecerá una pantalla como la fig.59f. Con la flecha podemos cambiar el campo a editar y pulsando nuevamente Edit podemos cambiar IB por IC por ejemplo, o S1-S2 por S2-S1.

VL1	VL2	VL3	C
LCH S1-S2	Lob S1-S2	51-52	123
Esc	E E	dit	OK

Fig. 59f.- Menú de conexión de transformadores CDI

 Cuando hayamos definido la configuración coorecta, Ok y tendríamos ajustadas las conexiones de los transformadores para los módulos CDI.

8 VISUALIZACIÓN DE VARIABLES: MENÚ MEDIDA

El **Computer plus** dispone de un menú con una serie de opciones para la medida de las variables más importantes de la instalación donde regula el factor de potencia.

Para tener una idea general de las opciones de medida disponibles vea el esquema del apartado 6.1

8.1 Entrada en el menú de medida

Para entrar en el menú de medida, ir al menú principal (fig.60). Mediante las flechas

seleccionar la carpeta y pulsar **OK**. Aparecerá una lista de opciones como la mostrada en la pantalla de la fig.61

Fig. 60.- Menú principal

Potencia, cosø, FPIII	-
Estado III	
Estado	
Menú 🛛 🔻	OK

Fig.61.- Menú de configuración

8.2 Parámetros medibles

- Las opciones disponibles y los parámetros que permiten medir se resumen en la tabla 8.1.
- La selección de una de las opciones puede hacerse de dos formas distintas:
 - A) Búsqueda del parámetro específico y pulsar OK
 - B) Paso de cada pantalla a la siguiente o a la anterior con las flechas de navegación.

Opciones	Pantalla	Parámetros mostrados en pantalla
Potencia, cos φ, FPIII	Fig. 62	Muestra las potencias activa, reactiva y aparente trifásicas y el cos ϕ y FP trifásicos.
Estado III	Fig. 63	Muestra el número de pasos conectados, los kvarC III conectados y la frecuencia.
Estado	Fig. 64	Muestra los kvarC conectados de cada una de las fases.
cos φ	Fig. 65	Muestra el cos ϕ de cada fase y el cos ϕ III
FP	Fig. 66	Muestra el FP de cada fase y el FP III
V fase-fase	Fig. 67	Muestra las tensiones fase – fase de la instalación.
V fase-neutro	Fig. 68	Muestra las tensiones fase – neutro de la instalación.
l línea	Fig. 69	Muestra las corrientes de línea de cada una de las fases.
I neutro	Fig. 70	Muestra la corriente de neutro de la instalación (parámetro calculado, no medido).
I Cond	Fig. 71	Muestra las corrientes de cada una de las fases del equipo de condensadores.
I fuga, I N Cond	Fig. 72	(*) Muestra la corriente de fuga (medida) y la corriente de neutro (calculada) del equipo de condensadores.
Potencia III	Fig. 73	Muestra las potencias activa, reactiva y aparente trifásicas.
kW	Fig. 74	Muestra la potencia activa de cada una de las fases.
kvar	Fig. 75	Muestra la potencia reactiva de cada una de las fases.
kVA	Fig. 76	Muestra la potencia aparente de cada una de las fases.
Temperatura	Fig. 77	Muestra la temperatura en el interior del Computer. Esta temperatura suele estar unos 10 °C por encima de la temperatura del entorno en el armario.
Energía III importada	Fig. 78	Muestra las energías en kWh, kvarLh y kvarCh, importadas desde la última puesta a cero de los contadores.
Energía III exportada	Fig. 79	Muestra las energías en kWh, kvarLh y kvarCh, exportadas desde la última puesta a cero de los contadores.

(*) Sólo en tipos Computer plus T8-CDI y T14-CDI

Tabla 8.1.- Opciones del menú medida y datos medidos

1 2	3	4	5	6	7	8
kW III	17	9.3	7 0	osøll	Ľ	0.97
kvarili	4	7.3	9			ind
kVA III	18	5.5	6 PI	F III		0.97
Menú		13		ę.	1	

Fig. 62.- Potencia, $\cos \phi$, FPIII

1	2	3	4	5	б	7	8
kvar	C1		1	16.	41	l kv:	ar
kvar	C2			15.	62	tky:	ar
kvar	C3		1	15.	03	kv:	ar
Mer	ıú	1	e l		Ŧ	M	áx

Fig. 64.- Estado

1 2	3	4	5	6	7	8
PF1	0.9	5			PI	F III
PF2	0.9	6				0.97
PF3	0.9	7				
Menú	1	6		Ŧ	M	ínL

Fig. 66.- FP

3	4	5	6	7	8
			55	5	
	4	16.	60	•kv:	ar
	5	50.	00	Hz	
	L		Ŧ]M	ax
	3	34 4 5	3 4 5 46. 50. ▲	3 4 5 6 55 46.60 50.00	3 4 5 6 7 55 46.60k% 50.00Hz ▲ ▼ M

Fig.63.- Estado III

1 2	3	4	5	6	7	8	
cosø 1	0.9)7 in	d		C 0	sø	III
cosø 2	0.9) 6 in	d			0.9	97
cosø 3	0.9)7 in	d			'n	nd
Menú			1	7	M	ínl	2

Fig.65.- $\cos \phi$

1 2	3	4	5	б	7	8
V 12		40) 0 .	96	i V	
V 23		39	99.	93	ŧŲ	
V 31		40)o .	53	ŧŲ	
Menú	29	ų.	- 39	Y	M	áx

Fig.67.- V fase-fase

1	2	3	4	5	б	7	8
V1			23	31.	50)Ų	
V 2			23	30.	90)Ų	
V3			23	31.	25	şŲ.	
Mer	ιú	18		16	Ŧ	M	áx

Fig. 68.- V fase-neutro

Fig. 70.- I Neutro

1234	56	7	8	9	10	11	12	13	14
IN				1	• 6	6	H		
I fuga			3	0	.ε	;0	mł	ł	
Manúl			זר	-	-			15	228

Fig. 72.- I fuga, I N Cond

1 2	3	4	5	6	7	8
IL1		26	57.	50) Ĥ	
IL2		26	57.	80) A	
IL3		26	57.	25	5A	
Menú				Ŧ	M	áx

Fig.69.- I Línea

123456	7 8 9 10 11 12 13 14
IC1	94.648
102	94.88A
IC3	94.748
Menú 🖌 🖌	Máx

Fig.71.- I Cond

1 2	3	4	5	6	7	8
kW III		17	'9.	37	'k₩	
kvar III		đ	17.	39	lind	
kVA III		18	5.	56	i kVA	
Menú		13		Ŧ	Má	x

Fig.73.- Potencia III

51

1 i	2 3	4	5	6	7	8
kW1		E	50.	06	ikW	01
kW 2		5	59.	36	ikW	
k₩ 3		5	59.	94	ŀk₩	
Menú	i la	L	16	Ŧ	M	áx

Fig. 74.- kW

	2	3	4	5	6	7	8
kVA1			6	1.	92	!k₩	l
kVA2			6	1.	83	kVI	1
kVA3			6	1.	80	•kVI	ł
Meni	ίſ	18Å	8	18	Ŧ	M	áx

Fig. 76.- kVA

1	2	3	4	5	б	7	8
Wh III		83	154	198	322	!kW	h
varhL			40	94	172	ky:	arh
varhC			2	204	173	kv:	arh
Menú	1				Ŧ		

Fig. 78.- Energía III importada

-	2	3	4	5	6	7	8
kvar	1		35	15.	05	i ind	
kvar	2		3	17.	31	l ind	
kvar	3		- 22	15.	02	? ind	
Mer	ıú		8		7	M	áxL

Fig.75.- kvar

Fig.77.- Temperatura

1	2	3	4	5	б	7	8
Wh III	5433			15	548	k₩	lh
varhl				4	194	-kv	arh
varhl					24	-kv	arh
Mer	ΝÚ		8		Ŧ		

Fig.79.- Energía III exportada

Algunos parámetros registran los valores máximos o mínimos e indican la fecha y hora en que se produjeron. En las pantallas de los parámetros que lo permiten aparece la opción Max o Min; Error! Marcador no definido. (ver figs. 62 a 79). Al seleccionar Max o Min; Error! Marcador no definido. aparecen en pantalla los valores registrados con posibilidad de ver el día y la hora en que se han producido (ver figs. 80 y 81). Para salir de estos submenús pulsar Esc; Error! Marcador no definido.

52

Máx	
V 12	420.000
V 23	420.000
V 31	420.00
Esc	Día

Máx	Día
V 12	15/03/08
V 23	15/03/08
V 31	15/03/08
Esc	Hora

Fig. 80.- Pantalla de máximos

Fig.81.- Pantalla de máximos: Fecha y hora

9 CONFIGURACIÓN DE ALARMAS

El **Computer plus** dispone de una serie de alarmas que pueden configurarse a voluntad. Para tener una idea general de las opciones de alarma disponibles vea el esquema del apartado 6.3

9.1 Entrada en el menú de configuración de alarmas

- Para entrar en el menú de configuración de alarmas, ir al menú principal (fig.82). Mediante las flechas

seleccionar la carpeta wostrada en la pantalla de la fig.83.

Fig. 82.- Menú principal

Fig.83.- Menú de configuración de alarmas

 Se puede explorar y ver como está programada cualquiera de las alarmas, pero cuando se intente editar un campo aparecerá una pantalla pidiendo una contraseña (pantalla de la fig.13). Para dar la contraseña proceda como se indica en el apartado 7.1.

9.2 Opciones de configuración de alarmas

 La tabla 9.1 describe de forma resumida cada una de las opciones de alarmas que pueden configurarse y la tabla 9.2 indica el significado de las distintas opciones elegibles.

53

Opciones	Parámetros de alarma programables
Habilitar Global	Permite la habilitación global de todas las alarmas.
Temperatura (°C)	Límites de alarma por temperatura (HI-LO), tiempo de retardo (DelayT) y tipo de actuación (NO, NC, DIS)
$f_{1}(\alpha, (\Lambda))$ (1) (2)	Límite de alarma por I fuga (HI-LO), tiempo de retardo (DelayT) y tipo de actuación (NO, NC, DIS)
$(V \text{ or } Q \neq 1)$	Alarma disponible sólo en los tipos Computer plus T8-CDI, T14-CDI.
(Vel 9.4.1)	El valor LO debería programarse siempre a cero.
Tensión F-F (V)	Límites de alarma por tensión fase-fase (HI-LO), tiempo de retardo (DelayT) y tipo de actuación (NO, NC, DIS).
	Límites de alarma por THDV (HI-LO), tiempo de retardo (DelayT) y tipo de actuación (NO, NC, DIS)
	El valor LO debería programarse siempre a cero.
	Límites de alarma por corriente total armónica (HI-LO), tiempo de retardo (DelayT) y tipo de actuación (NO, NC,
	DIS). El valor LO debería programarse siempre a cero.
	Límites de alarma por incremento de THDI (HI-LO) cuando se conecta un paso de C. En este caso, en lugar del
Salto THDII % (2)	retardo, se podrá programar el número de veces que debe detectarse la anomalía antes de disparar la alarma
	(N Rep). Asimismo puede programarse el tipo de actuación (NO, NC, DIS). El valor LO debería programarse
	siempre a cero.
	Límites de alarma por THDIC (HI-LO), tiempo de retardo (DelayT) y tipo de actuación (NO, NC, DIS)
THDIC% ^{(1) (2)}	Alarma disponible sólo en los tipos Computer plus T8-CDI, T14-CDI.
	El valor LO debería programarse siempre a cero.
kvar no compensados	El valor LO indica el nivel de alarma cuando no hay pasos entrados y el nivel HI indica el nivel de alarma cuando
	hay pasos entrados. Se puede programar tiempo de retardo (DelayT) y tipo de actuación (NO, NC, DIS)
COS (0	Los valores se ordenan desde -1 a +1. Los valores – indican capacitivo y los valores + indican inductivo. Se puede
του φ	programar tiempo de retardo (DelayT) y tipo de actuación (NO, NC, DIS)
	Los límites de alarma por IC (HI-LO) se programan en %. En este caso, en lugar del retardo, se podrá programar el
IC fuera de margen ⁽¹⁾	número de veces que debe detectarse la anomalía antes de disparar la alarma (N Rep) y el tipo de actuación (NO,
(Ver 9.4.2)	NC, DIS)
	Alarma disponible sólo en los tipos Computer plus T8-CDI, T14-CDI.
Corriente IL (A)	Límites de alarma por IL (HI-LO), retardo y tipo de actuación (NO, NC, DIS)
	Permite asignar cuales de las alarmas provocan la conmutación del relé. El relé conmuta cuando se da cualquiera
Configuración relé	de las alarmas asignadas, siempre y cuando estén éstas habilitadas y la habilitación global esté también activada
	(función "O" de todas las alarmas asignadas a relé)
Alarma Fallo de Corriente	No programable. No aparece en los menús. Detecta que la corriente en una de las tres fases es inferior al 1%
(ver 9 4 3)	del valor nominal (primario del TC). En caso de que las tres fases fallen, el Computer plus desconecta todos los
(101 0.1.0)	condensadores y deja de regular.
Notas	
(1) Estos parámetros sólo e	stán disponibles en los tipos Computer plus T8-CDI, T14-CDI
(2) En estos parámetros no	tiene sentido una alarma por mínimo, por tanto debería programarse siempre LO a cero.
(3) Todas las alarmas exception	to Ifuga tienen un retardo minimo de 1 s y las relacionadas con THD(I) y THD(V) de 2 s.

(3) Todas las alarmas excepto lfuga tienen un retardo mínimo de 1 s y las relacionadas con THD(I) y THD(V) de 2 s.

Tabla 9.1.- Opciones del menú configuración de alarmas y descripción

Tabla 9.2.- Significado de las leyendas en el menú de alarmas

9.3 Configuración de las distintas alarmas

Seleccionar una de las opciones que aparecen en la lista de alarmas (fig.84). Cuando se la opción esté seleccionada aparecerá en video inverso.

- Para seleccionar una opción pulse OK.
- En las figs. 85 a 87 se ven las pantallas típicas de configuración y edición de alarmas. La edición de cualquiera de los campos se hace siguiendo un procedimiento análogo al descrito en el apartado 5.4.
 Pulsando Edit se entra en la pantalla y pueden editarse los campos HI, LO, DelayT y Habil.
- Como regla general, la tecla sirve para moverse entre opciones, la tecla Edit sirve para editar el campo seleccionado y Ok para confirmar la elección.
- El significado de las distintas opciones de los menús se indica en la tabla 9.2

Habilitar Global	
Temperatura (°C)	
I fuga (A)	
Menú 🛛 🔻	ОК

Fig.84.- Menú general de alarmas

no

Fig.85.- Configuración de habilitación global

Menú					
Habil	DIS A				
DelayT	0005				
10	000350				
HI	000450				

 II
 000450

 L0
 000350

 DelayT
 0005

 Habil
 DIS from the second seco

Fig.86.- Configuración de pantalla tipo de alarma

Fig.87.- Edición de pantalla tipo de alarma

9.4 Casos particulares de Alarmas

Algunas alarmas tienen ciertas particularidades. Concretamente en este apartado se describen las tres alarmas con un comportamiento singular

9.4.1 Alarma Ifuga (A)

Esta alarma permite desconectar un condensador defectuoso si se detecta que es el causante de una fuga. Para ello, cuando el **Computer plus (con módulo CDI y transformador diferencial exterior instalado)** detecta una fuga dispara la alarma, desconecta totalmente la batería de condensadores y empieza un procedimiento de detección del condensador/es que está/n generando la fuga. Durante dicho procedimiento, la pantalla del regulador mostrará el mensaje *PROC ALARMA I FUGA* en la barra superior, y se irán conectando y desconectando los condensadores de manera secuencial para encontrar cuál o cuáles son los causantes de la fuga, así como si la fuga no esta provocada por ningún condensador.

Al finalizar el procedimiento de búsqueda, el equipo desactivará la utilización de los condensadores que provocaban la fuga, y seguirá su funcionamiento normal sin activar estos condensadores y rearmando la alarma, indicando por pantalla la señalización *ALARMA* en la barra superior, alternándose con la habitual indicación de escalones conectados, y con la luz del display en parpadeo. Ssi el usuario quiere volver a activar los condensadores, tendrá que ir a la pantalla de visualización de alarmas oportuna (ver apartado 10.2.2), resetear a alarma, y posteriormente volver a definir el valor de la potencia de dichos condensadores, **fot. Condensadores**, donde estos condensadores aparecerán con el valor **0.0**.

Si el equipo no encuentra ningún condensador causante de la fuga, pero sigue detectando fuga, **quedará** en modo STOP con la batería desconectada y se notificara la alarma, indicando por pantalla la señalización *ALARMA* en la barra superior, alternándose con el texto *MODO STOP*, y con la luz del display en parpadeo. En la pantalla de lfuga un literal nos especificará que hay fuga pero no proviene de ningun condensador "Err. Ifuga". Para volver a poner en funcionamiento la batería, debe primero eliminarse el motivo de la fuga, y proceder posteriormente al reseteo de esta alarma (ver apartado 10.2.2).

56

9.4.2 Alarma IC fuera de margen

Esta alarma permite detectar un condensador defectuoso si la corriente reactiva que proporciona al conectarlo está muy por debajo o muy por encima de lo que se espera de él, según su potencia nominal programada en el Menú de Configuración. Concretamente, los valores Hi y LO se programan en este caso en %, y supuestamente HI ha de ser superior a 100% y LO ha de ser inferior a 100% (Por ejemplo para un 20% de desviación se programaría HI a 120% y LO a 80%).

9.4.3 Alarma de Fallo de Corriente

Esta alarma no es en realidad programable. El **Computer plus** esta configurado por defecto de tal forma que si se detecta en una de las tres fases una corriente inferior a 50 mA (1% de la corriente nominal, en caso de un transformador de corriente lp/5) hará saltar la alarma. Si además fallan las corrientes de las tres fases, el **Computer plus** desconecta todos los pasos y deja de regular.

9.4.4 Alarma de Fallo del Transformador Diferencial (Sólo en tipos T-CDI)

Esta alarma no es programable. El **Computer plus** esta configurado por defecto de tal forma que si se detecta que el circuito secundario del transformador diferencial WG está abierto, y la alarma de l fuga está habilitada, dará alarma. El estado de esta alarma se verá en la pantalla de la fig. 96.

9.5 Programación del relé de alarma

El relé de alarma es único y puede actuar con cualquier combinación "O" de las alarmas programadas.

- Para entrar en el menú de configuración del relé, dentro de la lista de Config. Alarmas, seleccionar la opción Configuración Relé y pulsar Ok ver fig.88.
- Aparece la lista de alarmas (fig.89) y permite asignar cuales de las alarmas provocan la conmutación del relé (ON) y cuales no (OFF). El relé conmuta cuando se da cualquiera de las alarmas asignadas, siempre y cuando estén éstas habilitadas y la habilitación global esté también activada.

Fig.88.- Configuración de pantalla tipo de alarma

Temperatura (°C)	OFF
THOW 2	OFF -

Fig.89.- Edición de pantalla tipo de alarma

10 VISUALIZACIÓN DEL ESTADO DE LAS ALARMAS

El Computer plus dispone de un menú para visualizar el estado de las alarmas.

ATENCIÓN!!

- Cuando hay una alarma disparada y la alarma global esta habilitada parpadea la luz del display para avisar de esta situación.
- Las alarmas no son programables en el menú de visualización. Para programarlas entrar en el menú config Al
- Para tener una idea general de las opciones disponibles en le menú de visualización vea el esquema del apartado 6.4

10.1 Entrada en el menú de visualización de alarmas

- Para entrar en el menú de visualización de alarmas, ir al menú principal (fig.90). Mediante las flechas

Alarmas

seleccionar la carpeta

Fig. 90.- Menú principal

y pulsar **OK**. Aparecerá una lista de opciones como la

Fig.91.- Opciones de visualización de alarmas

10.2 Opciones de visualización de alarmas

- Las opciones disponibles y su significado se resumen en la tabla 10.1.
- La selección de una de las opciones puede hacerse de dos formas distintas:

A) Búsqueda de la alarma específica en la lista y pulsar OK

B) Paso de cada pantalla a la siguiente o a la anterior con las flechas de navegación

Opciones	Observaciones	Significado
		Muestra el estado de la habilitación global de alarmas.
		Puede mostrar las siguientes indicaciones:
Estado Global		ON Habilitación global activada y alguna alarma disparada
Estado Ciobal		OFF Habilitación global activada pero ninguna alarma disparada
		DIS Habilitación global desactivada (Todas las alarmas
		deshabilitadas)
Temperatura (°C)		El comportamiento general del menú de visualización de alarmas
l fuca (Δ)	Disponible sólo en los tipos Computer	es el siguiente: Al seleccionar la alarma en la pantalla de la fig. 91,
	plus T8-CDI, T14-CDI.	muestra si la alarma está o no disparada o si está deshabilitada.
Tensión F-F (V)	Tensión fase-fase	ON Habilitada y disparada
THDV %		OFF Habilitada y no disparada
THDIL x IL (A)		DIS Alarma deshabilitada
Salto THDIL%		Si la alarma está ON, pulsando Día , Hora muestra cuando se
	Disponible sólo en los tipos Computer	produjo la alarma, y pulsando Dato se muestra el valor máximo y/o
	plus T8-CDI, T14-CDI	mínimo que alcanzó la variable y que causó el disparo.
kvar no compensados		Con la tecla dinámica CLR se puede resetear la alarma, aunque
cos φ		esta volverá a disparar si persiste la anomalía.
IC fuera de margen	Disponible sólo en los tipos Computer	Para salir de la visualización de una alarma en particular se pulsará
	plus T8-CDI, T14-CDI	Esc y para volver al menú principal hay que pulsar Menúl.
		Las alarmas de L fuga y de IC fuera de margen tienen
Corriente IL (A)		comportamientos particulares que se describen en los apartados
		10.2.2 y 10.2.3
		Permite ver cuales de las alarmas provocan la conmutación del
		relé. El relé conmuta cuando ocurre cualquiera de las alarmas
Estado rele	Rele con contacto conmutado	asignadas (función "O" de todas las alarmas) y el relé de dicha
		alarma esta configurado como ON.
		Dispara en caso de que la corriente medida en una de las tres
Fallo do corriento	Esta alarma no es programable, sino	fases esté por debajo del umbral de detección de corriente del
ralio de corriente	que es propia del sistema	aparato Ver apartado 10.2.4

Tabla 1	10.1	Oncionos	dolr	monú	do	vieuol	izoción	do alar	mac
labla	10.1	Opciones	uerr	nenu	ue	visuai	Izacion	ue alan	mas.

10.2.1 Parámetros mostrados en las pantallas de estado de alarmas.

Cuando se explora el estado de las alarmas aparece una pantalla del tipo de la fig.92. En ellas se muestra la variable, el tipo de actuación (NO, NC o DIS), los valores HI y LO programados y el estado ON, OFF, DIS, etc. En caso de que la alarma esté ON se puede consultar la fecha (Día), hora (Hora) y el valor que hizo disparar la alarma. Con la opción Dato los campos HI y LO muestran los valores de disparo.

Los textos que aparecen en pantalla y su significado son los que se describen en la tabla 10.2.

HI	Valor alto que ha hecho saltar la alarma. En caso de no haber saltado alarma, no se visualiza ningún valor.
LO	Valor bajo que ha hecho saltar la alarma. En caso de no haber saltado alarma, no se visualiza ningún valor.
	ON: Alarma habilitada y activada
Estado	OFF: Alarma habilitada pero desactivada
	DIS: Alarma deshabilitada

Tabla 10-2.- Significado de las leyendas de las figs. 92 y 93

Fig. 92.- Pantalla de estado de una alarma (Caso DIS o OFF)

Fig.93.- Pantalla de estado de una alarma (Caso ON)

10.2.2 Alarma de I fuga.

Como se ha dicho en el apartado 9.4.1, el **Computer plus** trata esta alarma de una forma particular. Concretamente, permite desconectar un condensador defectuoso si se detecta que es el causante de una fuga. Para ello, si detecta una fuga, dispara la alarma. Acto seguido deja de regular y va desconectando uno a uno los condensadores que tenía conectados, hasta localizar el que causa la fuga (ver apartado 9.4.1 para tener una explicación completa del modo de funcionamiento de esta alarma).

Fig. 94.- Pantalla de la alarma I fuga

I fuga	(A)			Err.]	[fuga
Cap 1	OFF	OFF	OFF	OFF	OFF
Cap 6	OFF	OFF	OFF		
Esc		LT.		C	LR

Fig. 95.- Pantalla de la alarma I fuga

Para la alarma de l fuga, el menú de visualización de alarmas abre una pantalla como la de la fig.94 ó de la fig.95.

La de la fig.94 corresponde al caso en que haya un condensador defectuoso que ha provocado la fuga, la casilla del cual se mostrará totalmente negra. La opción CLR permite rearmar cuando el condensador ha sido reemplazado (si no se reemplaza volverá a disparar).

La de la fig.95 corresponde a la situación en la que el regulador no encuentra ningún condensador causante de la fuga, pero sigue detectando fuga. Para volver a poner en funcionamiento la batería, debe primero eliminarse el motivo de la fuga, y proceder posteriormente al reseteo de esta alarma por medio de la opción CLR.

10.2.3 Alarma de IC fuera de margen.

La alarma IC fuera de margen muestra si alguno de los condensadores consume una corriente anormal. Cuando dicha corriente se desvía más del % programado aparece la pantalla de la fig.95, mostrando cual es el condensador defectuoso. En el caso de la fig.95 se observa que C7 muestra la alarma disparada (ON).

Esc		47		C	LR
Cap 11	OFI	FOFF	OFF	OFF	30 11
Сар б	OFI	FON	OFF	OFF	OFF
Cap 1	OFI	FOFF	OFF	OFF	OF F
IC fue	ra d	e marge	n		

Fig. 96.- Pantalla de la alarma IC fuera de margen

10.2.4 Alarma de Fallo de Corriente.

En caso de que la corriente en una de las tres fases no alcance el 1% del valor nominal aparece la pantalla de la fig.96b.

En los tipos T-CDI, esta pantalla muestra también el fallo del transformador diferencial. Si dicho transformador tiene el secundario abierto, mostrará ON en la línea de I fuga.

Fallo de corrien	te
l linea	OFF
l fuga	OFF
Esc AV	

Fig. 96b.- Pantalla de la alarma de fallo de corriente

11 VISUALIZACIÓN DE ARMÓNICOS

El **Computer plus** incluye también un apartado de visualización de armónicos. Permite visualizar los valores numéricos, tanto de tensiones como de corrientes y verlos también en forma de gráfico de barras.

11.1 Entrada en el menú de visualización de armónicos

- Para entrar en el menú de visualización de armónicos, ir al menú principal (fig.97). Mediante las flechas

seleccionar la carpeta Armónicos y pulsar **OK**. Aparecerá una lista de opciones como la mostrada en la pantalla de la fig.98

Fig. 97.- Menú principal

Fig. 98.- Opciones de visualización de armónicos

11.2 Opciones de visualización de armónicos

- Las opciones disponibles y su significado se resumen en la tabla 11.1.
- La elección de una de las opciones debe hacerse seleccionando la opción deseada en la lista de la pantalla fig.98 mediante las teclas dinámicas y pulsar OK cuando la opción deseada aparece en video inverso.

Opciones	Observaciones	Parámetros medibles
Armónicos V1		Muestra los armónicos de tensión de la fase 1
Armónicos V2		Muestra los armónicos de tensión de la fase 2
Armónicos V3		Muestra los armónicos de tensión de la fase 3
Armónicos I1		Muestra los armónicos de corriente de línea de la fase 1
Armónicos I2		Muestra los armónicos de corriente de línea de la fase 2
Armónicos I3		Muestra los armónicos de corriente de línea de la fase 3
Armónicos IC1		Muestra los armónicos de corriente de la fase 1 del equipo de
AIMONICOS IC I		condensadores
Armónicos IC2	Disponible sólo en los tipos	Muestra los armónicos de corriente de la fase 2 del equipo de
AIIIIOIIICOS IOZ	Computer plus T8-CDI,	condensadores
Armónicos IC3	T14-CDI	Muestra los armónicos de corriente de la fase 3 del equipo de
Amonicos ios		condensadores
тноу		Muestra el THD de tensión de cada una de las tensiones fase-
		neutro: V1, V2, V3
тно		Muestra el THD de corriente de cada una de las corrientes de línea:
וטווו		11, 12, 13
	Disponible sólo en los tipos	Muestra el THD de corriente de cada una de las corrientes del
THDIC	Computer plus T8-CDI,	equipo de compensación: IC1_IC2_IC3
	T14-CDI	

Tabla 11.1.- Opciones del menú de visualización de armónicos

 Para cada una de las variables existe la opción de mostrar valores numéricos o gráfico de barras (ver figs. 99 y 100)

1 2	3 4	5	6 7	8
HV1 2	0.5	2.2	5.0	2.4
HV1 6	5.2	2.6	7.2	2.3
HV1 10	6.9	2.5	3.5	1.2
Menú	Más	Gr	af	

Fig. 99.- Visualización numérica de armónicos

Fig. 100.- Visualización gráfica de armónicos

 En cada pantalla de visualización numérica de armónicos se muestra una tabla con el valor de 12 armónicos (ejemplo en la fig.99, en la fila HV1 2 aparecen los valores de los armónicos de tensión de la

63

fase 1 de orden 2 a 5. En la siguiente fila aparecen desde orden 6 a 9, etc.). Pulsando la tecla **Más** se puede ver hasta el armónico de orden 33.

- En las pantallas de visualización numérica aparece la tecla dinámica Graf. Pulsando dicha tecla aparecen los armónicos en forma de gráfico de barras (fig.100) y con las teclas podemos cambiar el cursor de armónicos. En la parte derecha de la pantalla aparece el orden del armónico (parte inferior) y el valor del % (parte superior).
- Con la tecla Zoom puede ampliarse la escala vertical. (fig.101)

1 2 3. 4 5 6 7 8 THOT1 27.5% THDI2 27.02 27.9% THOI3 Máx Menú

Fig. 101.- Visualización gráfica de armónicos con zoom

Fig. 102.- Visualización de THDV o THDI

- En las pantallas que muestran THD, tanto de tensiones como de corrientes (fig.102) aparece la opción
 Máx , que permite ver los valores máximos del THD . Luego se puede consultar la fecha y hora en que se produjo el máximo con las teclas dinámicas Día y Hora
- Para retroceder en cualquiera de los submenús de visualización de armónicos pulsar Esc o Menú

12 TEST

El **Computer plus** dispone de un potente menú de Test, que le permite chequear el equipo de compensación de reactiva y comprobar su adecuación a la instalación que debe compensar. Este menú está pensado para poder comprobar, tanto el estado de los componentes de la batería antes de su puesta en marcha, como la posible aparición de resonancias entre el equipo y determinadas cargas de la instalación. El menú de Test dispone de tres posibles opciones:

- Test de cos φ
- Test de resonancia
- Test de condensadores

64

12.1 Entrada en el menú de Test

Para entrar en el menú de test, ir al menú principal (fig.103). Mediante las flechas seleccionar la carpeta y pulsar OK .Aparecerá una lista con las tres opciones descritas anteriormente (fig.104)

Para elegir una cualquiera de las opciones, seleccionarla mediante las teclas dinámicas y y luego pulsar OK Error! Marcador no definido..

12.2 Test de $\cos \varphi$ y test de resonancia

Estas dos opciones deben manejarse conjuntamente. El propósito de las mismas es poder ejecutar la conexión y desconexión manual de condensadores, al mismo tiempo que se visualizan los cos φ o los THDV y THDI de cada fase. Esto permite comprobar si el equipo de compensación actúa correctamente y si la conexión de determinada cantidad de condensadores puede provocar resonancias en la instalación. La forma de proceder para cada una de estas comprobaciones es como sigue:

En la opción de Test cos φ el Computer Plus muestra los cos φ de todas las fases y el tipo (inductivo o capacitivo), así como el cos φ III (total) y también, su tipo (fig.105).

1234	5678	9 10 1	1 12 13 14
cosø 1	0.97 in	d	cosø III
cosø 2	0.96 in	d	0.97
cosø 3	0.97 in	d	ind
Esc	-	3. 1 .5	80

1234	5678	9 10 11	12 13 14
THDV1	7.3T	'HDT1	27.5
THDV2	7.5 T	HDI2	27.0
THDV3	7.9T	HDI3	27.9
Esc		an t a	30 -7 5

Fig.105.- Test de $\cos \varphi$

Fig.106.- Test de resonancia

- Con las teclas + se tiene la opción de conectar o desconectar pasos de condensador de forma secuencial; Error! Marcador no definido.. Para Esto permite comprobar como cambian los cos φ al introducir o quitar pasos. Esto permite a veces detectar que hay transformadores de corriente mal conectados o si la compensación es la esperada o no; Error! Marcador no definido..
- Se puede pasar de la pantalla de visualización del Test de cos φ a Test de resonancia con las teclas dinámicas v
- La opción Test de resonancia permite comprobar si la conexión de determinada cantidad de condensadores puede provocar resonancias en la instalación. El Computer plus muestra en este menú los valores de THDV y THDI de cada una de las fases y al igual que anteriormente, con las teclas

 +
 , se tiene la opción de conectar y desconectar pasos de forma secuencial (fig.106);Error! Marcador no definido..
- Si se observa que al sobrecompensar la instalación o para alguna combinación de condensadores conectados, el THDI aumenta significativamente, esto hace pensar que se produce una resonancia, y si el equipo no dispone de filtros, esto indicaría la conveniencia de disponer de ellos.

12.3 Test de condensadores

- La última opción en el menú de Test es el **Test de condensadores**. Este menú está pensado para poder comprobar la potencia de los condensadores, uno a uno.
- Cuando se entra en el menú Test de condensadores (OK sobre la opción mostrada en la fig.107), el Computer plus muestra la pantalla de la fig. 108. Si hay condensadores conectados sólo deja activo el botón .
 Manteniendo pulsado este botón se van desconectando los condensadores secuencialmente, previa introducción de la contraseña (ver apartado 7.1)

- Una vez desconectados todos los condensadores aparecen activos 2 botones más (fig.109)

Fig.107.- Selección de Test de condensadores

1 2 3	4 5	б	78
kvarC1 T	0.0	R	0.0
kvarC2 T	0.0	R	0.0
kvarC3 T	0.0	R	0.0
Esc Sig		+	—

Fig.109.- Menú Test de condensadores

1 2 3	4 5 6	78
kvarC1 T	0.0 R	0.0
kvarC2 T	0.0 R	0.0
kvarC3 T	0.0 R	0.0
Esc		—

Fig.108.- Desconexión de los condensadores

1 2	3	4	5	б	7	8
kvarC1	T	80	. 0	R	10	76.4
kvarC2	Т	80	. 0	R	2	75.6
kvarC3	Т	80	. 0	R	Contract of the second s	75.0
Esc	Sig					

	Fig.110	Menú	Test	de	condensadores	S
--	---------	------	------	----	---------------	---

- Mediante el botón ;Error! Marcador no definido. Sig el Computer Plus va subrayando el número del condensador que se quiera conectar con el botón o desconectar con el botón (fig. 110 muestra el paso 3 conectado y el paso 4 seleccionado) y muestra en dos columnas los kvar teóricos (kvarC1 T) y los reales (kvarC1 R). De esta forma se puede comprobar paso a paso si los condensadores tienen la capacidad esperada. La desconexión y conexión de pasos respetará los tiempos tact y trec.
- Para salir de este menú pulsar Error! Marcador no definido. Esc.
- Para volver al menú principal desde el menú de Test pulsar <u>Error! Marcador no definido.Menú</u>.
 Error! Marcador no definido.

13 INTEGRACIÓN DEL COMPUTER PLUS EN EL PROGRAMA SCADA POWER STUDIO

Los **Computer plus** tipos **T8-CDI o T14-CDI** disponen de un canal comunicaciones RS-485, lo cual permite integrarlos como un periférico más en el software SCADA "Power Studio" de CIRCUTOR.

La conexión puede hacerse directamente a un bus RS-485 o puede integrarse a una red Ethernet mediante un conversor de RS-485 a Ethernet / Modbus (TCP2RS-TCP de CIRCUTOR).

Las características de la comunicación se definen en la opción de Comunicaciones dentro del menú de Configuración. En este submenú se deciden el número de periférico (número identificativo del equipo en la red del Power Studio Scada), la velocidad de transmisión y las características de la trama de comunicación a enviar (paridad, bits de stop, etc.).

Para más detalles sobre el software SCADA consulte el manual de software Power Studio.

14 CONSIGNAS DE SEGURIDAD

Se deben de tener en cuenta las normas de instalación que se describen en los apartados anteriores de AJUSTES Y PUESTA EN MARCHA, ESQUEMAS DE CONEXIÓN y CARACTERÍSTICAS TÉCNICAS del equipo.

Con el equipo conectado, los bornes pueden ser peligrosos al tacto, y la apertura de cubiertas o eliminación de elementos puede dar acceso a partes peligrosas al tacto. Este equipo se suministra en condiciones de buen funcionamiento.

En caso de alimentación a 110 Vca, el máximo número de relés que se pueden utilizar es de 12 en los modelos **Computer plus T14 y Computer plus T14-CDI**.

15 MANTENIMIENTO

El regulador **Computer plus T** no precisa un mantenimiento especial. Es preciso evitar en la medida de lo posible todo ajuste, mantenimiento o reparación con el equipo abierto, y si es ineludible deberá efectuarlo personal cualificado bien informado de la operación a seguir.

Antes de efectuar cualquier operación de modificación de las conexiones, reemplazamiento, mantenimiento o reparación, debe desconectarse el aparato de toda fuente de alimentación. Cuando se sospeche de un fallo de funcionamiento del equipo o en la protección del mismo debe dejarse el equipo fuera de servicio, asegurándose contra cualquier conexión accidental. El diseño del equipo permite una substitución rápida del mismo en caso de avería.

16 SERVICIO TÉCNICO

En caso de cualquier duda de funcionamiento o avería del equipo avisar al servicio técnico de CIRCUTOR S.A.

CIRCUTOR S.A. - Servicio Posventa Vial Sant Jordi, s/n 08232 - Viladecavalls Tel.: 93 745 29 00 Fax: 93 745 29 14 E-mail : <u>central@circutor.es</u>