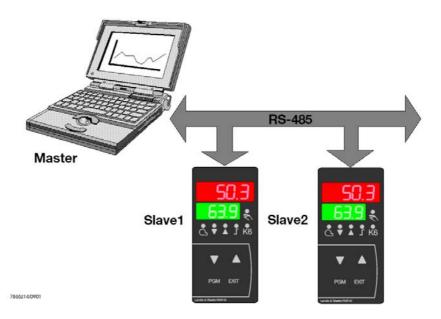
SIEMENS

Interface RS-485

RWF40...


The RS-485 interface is used for integrating RWF40... controllers into data networks via MOD bus protocol.

Application examples:

- Process visualization
- Plant control
- Reporting

Master-slave principle

Communication between a PC (master) and a device (slave) via MOD bus is based on the master-slave principle in the form of data query / instruction – reply.

A master computer controls the exchange of data and can address up to 99 controllers via device addresses (slaves).

The transmission mode used is the RTU (remote terminal unit) mode. Data are transmitted in binary format (hexadecimal) with 8 bits. The LSB (least significant bit) is transmitted first. ASCII mode is not supported.

Data format

The data format describes the structure of the transmitted byte.

Data word	Parity bit	Stop bit 1/2 bit	Number of bits
8 bit	Not	1	9

Device address

The slaves' device addresses can be selected between 1 and 99. Device address 0 is reserved.

A maximum of 31 slaves can be addressed via the RS-422 / RS-485 interface.

There are 2 choices of data exchange:

Query Data query / instructions delivered by the master to a slave via the respective device address. The addressed slave responds.

Broadcast Master instructions to all slaves via device address 0. The addressed slaves do not respond. A data query with device address 0 does not make sense. A certain setpoint can be transmitted to all slaves, for example. In that case, correct adoption of the value by the slaves should be checked by subsequent setpoint readout.

Both the start and end of a data block are characterized by transmission pauses. The maximum period of time that may elapse between 2 successive characters is 3 times the period of time required for the transmission of one character.

The character transmission time (period of time required for the transmission of 1 character) is dependent on the Baud rate and the type of data format.

Using a data format of 8 data bits, no parity bit and 1 stop bit, the character transmission time is calculated as follows:

Character transmission time [ms] = 1000 * 9 bits / Baud rate

Process

Data query by the master Transmission time = n characters * 1000 * x bits / Baud rate

> Identification of end of data query 3 characters * 1000 * x bits / Baud rate

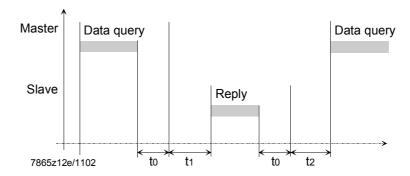
Handling of data query by the slave (\leq 250 ms)

Reply by the slave Transmission time = n characters * 1000 * x bits / Baud rate

> Identification of end of reply 3 characters * 1000 * x bits / Baud rate

Example

Identification of the data query or end of the reply with a data format of 10 / 9 bits.


Waiting time = 3 characters * 1000 * x bits / Baud rate

Baud rate	Data format [bits]	Waiting time [ms]
9.600	9	2.813
19.200	9	1.406

Data query sequence

Time sequence

The time sequence of a data query looks as follows:

- t0 Identification of end = 3 characters (time is dependent on the Baud rate)
- t1 This time is dependent on internal handling. The maximum handling time is 250 ms
- t2 This is the time required by the device to switch from the transmitting mode back to the receiving mode.

This time must be observed by the master before it makes a new data query. It must always be maintained, even if the new data query is sent to some other device.

 $t2 \geq 20 \ ms$

Communication during the slave's internal handling time

The master is not allowed to make any data queries during the slave's internal handling time.

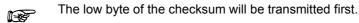
Data queries made during that period of time will be ignored by the slave.

Communication during the slave's response time

The master is not allowed to make any data queries during the slave's response time. Data queries made during that period of time cause all data currently on the bus to become obsolete.

Structure of the data blocks

All data blocks use the same structure:


Data structure	Slave address	Fu	Inction code	D	ata field	Checks	sum CRC16		
	1 byte		1 byte		x byte	2	bytes		
	Every data block	contains 4	fields:						
	Slave address	Device a	address of a c	ertain slav	e				
	Function code	Function code Function selection (reading or writing words)							
	Data field	- Woi - Nur	s the following rd address nber of words rd value	informatio	on:				
	Checksum	Identific	ation of transn	nission err	ors				
Fault handling									
Error codes	3 different error co	odes are u	used:						
	1 Invalid funct 2 Invalid para 8 Write acces	meter add	lress neter rejected						
Reply in the event of fault	Slave address		Function (X OR 80 h	Er	Error code		Checksum CRC16		
	1 byte		1 byte		1 byte		2 bytes		
Example	The function code set to 1. Data query:	e is OR lin	ked with 0 x 8	0, that is, t	the MSB (mo	ost significa	nt bit) will be		
	01 0)2	00	70	00	04	CRC16		
	Reply:				·				
	01 8	2	01 C	RC16					
Special cases	In the following ca - The checksur	n (CRC16			4	in a d			

- The instruction given by the master is incomplete or overdefined
- The number of words or bits to be read is zero

The checksum (CRC16) is used to detect transmission errors. If the evaluation reveals an error, the relevant device will not respond.

Calculation

CRC =	0xFFF					
	CRC = CRC XOR ByteOfMessage					
	For (1 to 8)					
	CRC = SHR (CRC)					
	if (flag to the right = 1)					
	then	else				
	CRC = CRC XOR					
0xA001						
while (not all ByteOfMessage edited)					

Example

Data query:

Reading 2 words from address 6 (CRC16 = 0x24A0)

0B	03	00	06	00	02	A0	24
						CR	C16

Reply:

(CRC16 = 0x6105)

0B	03	04	00	00	42	C8	61	05
			Wo	rd 1	Wo	rd 2	CR	C16

The following functions for the device will be available:

Function number	Function
0x03 / 0x04	Reading n words (n \leq 12)
0x06	Writing 1 word
0x10	Writing n words (n \leq 2)

This function is used to read n words from a certain address.

Data query	Slave addre		nction 0x03 or 0x04	Address first v		Numbo wore (max.	ds		ecksum RC16
	1 byte		1 byte	2 by	tes	2 byt	es	2	bytes
Reply	Slave addre		nction 0x03 or 0x04	Number of bytes read		Word value(s)		Checksum CRC16	
	1 byte		1 byte	1 b	yte	x byte	e(s)	2	bytes
Example	Reading the 2 Word address Data query:								
	0B	03	00	08	3	00	04		CRC16
	Reply:				i			<u> </u>	
	0B	03	08	0000	42C8	0000		816	CRC16
				Setpoint	1 (100)	Setp	oint 2 (1	50)	J
Writing 1 word									
	With the "Wo	rdwriting	" function, the	e data blo	cks for in	struction a	and reply	are io	dentical.
Instruction	Slave addre	ss Fur	nction 0x06	Word a	ddress	Word v	value		ecksum RC16
	1 byte		1 byte	2 by	tes	2 byt	es	2	bytes
Reply	Slave addre	ss Fur	nction 0x06	Word a	ddress	Word v	value		ecksum RC16
	1 byte		1 byte	2 by	tes	2 byt	es	2	bytes
Example	Write limit val Word address			(AL1) (= :	275)				
	Instruction: (v	vrite the	first part of th	e value)					
	0B	06	00	00		80	00		CRC16
	Reply (like in	struction):						
	0B	06	00	00	2	80	00		CRC16
	Instruction: (v	vrite the	second part o	of the valu	e)				
	0B	06	00	00)	43	89		CRC16
	Reply (like in	struction):						
	0B	06	00	0		43	89		CRC16

Writing n words

Instruction	Slave address	Function 0x10	Address of first word	Number words	\$	Number of bytes (max. 2)	Word value(s	s) sum CRC16	
	1 byte	1 byte	2 bytes	2 byte	S	1 byte	x byte(s	s) 2 bytes	
Reply	Slave addre	ess Funct	ion 0x10	Address first wo		Number of words		Checksum CRC16	
	1 byte	1	byte	2 byte	S	2 by	tes	2 bytes	
Example	Write switch- Word addres Instruction:		d (Hys1 = -1	0)					
	·								
	0B 10	00 18	00 0	2 04	00	00 0	20	CRC16	
	Reply:								
	0B	10	00	18		00	02	CRC16	
Data type "char"	The high byte	e must be tra	ansmitted fi	rst.					
		Configuratio MOD bus:	n code C11			4 00 02 04 (0903		
Data type "float"	IEEE-754 for that the orde M-23 bit norr E-exponent (rmat. Before r correspond malized man (complemen	e transmittir ds to the pre tissa t to base 2)	g a value, esentation	the	bytes must	be excha	works with the anged in a way stration below).	
	Master					Write			
	Example: Transmissior	n of decimal MOD bus:	value "550'	-), Ox()0, 0x44, 0>	(09		
	Following is type and type	•	•	ocess valu	es (v	ariables) w	ith their a	ddresses, data	
	Where:								
	R / W Rea float Floa	ad only acce ad and write at value (4 b eger (2 bytes	access oytes / 2 wo	rds)					
	The process	values are s	subdivided	nto logic a	reas.				

Address tables

Process data

Address	Data type	Access		Parameter	Value range	Default value
0x0000	float	R/O		Actual value E1		
0x0002	float	R/O		Actual value E2		
0x0004	float	R/O		Actual value E3		
0x0006	float	R/W		Current setpoint		
0x0008	float	R/W	SP1	First setpoint	SPLSPH	0
0x000A	float	R/W	SP2 (=dSP)	Second setpoint	SPLSPH	0

Parameter level

Address	Data type	Access		Parameter	Value range	Default value
0x000C	float	R/W	AL	Limit value limit comparator	-19999999	0
0x000E	float	R/W	Pb1	Proportional band	0.19999	10
0x0010	float	R/W	dt	Derivative action time	09999	80
0x0012	float	R/W	rt	Integral action time	09999	350
0x0014	float	R/W	db	Dead band (neutral zone)	0.0100.0	1
0x0016	float	R/W	tt	Actuator running time	103000	15
0x0018	float	R/W	Hys1	Switch-on threshold	0199.9	-5
0x001A	float	R/W	Hys2	Switch-off threshold, bottom	0Hys3	3
0x001C	float	R/W	Hys3	Switch-off threshold, top	0.0999.9	5
0x001E	float	R/W	q	Reaction threshold	0.0999.9	0
0x0020	float	R/W	Н	Heating curve slope	0.04.0	1.0
0x0022	float	R/W	Р	Parallel displacement	-9090	0
				room temperature		

Configuration level

Address	Data	Access		Parameter	Value range	Default
	type				_	value
0x0024	char [4]	R/W	C111			9030
0x0026	char [4]	R/W	C112			0010
0x0028	char [4]	R/W	C113			0110
0x002A	char [4]	R/W	C000			0000
0x002C	float	R/W	SCL	Normalization start value: Input 1	-19999999	0
0x002E	float	R/W	SCH	Normalization end value: Input 1	-19999999	100
0x0030	float	R/W	SCL2	Normalization start value: Input 2	-19999999	0
0x0032	float	R/W	SCH2	Normalization end value: Input 2	-19999999	100
0x0034	float	R/W	SPL	Start value setpoint limitation	-19999999	0
0x0036	float	R/W	SPH	End value setpoint limitation	-19999999	100
0x0038	float	R/W	OFF1	Offset input 1	-19999999	0
0x003A	float	R/W	OFF2	Offset input 2	-19999999	0
0x003C	float	R/W	OFF3	Offset input 3	-19999999	0
0x003E	float	R/W	HYST	Hysteresis of limit comparator	09999	1
0x0040	float	R/W	df1	Filter time constant input 1	0.0100.0	1.0
0x0042	float	R/W	dF3	Filter time constant input 3	01440	1278
0x0044	float	R/W	dtt	Bus detection timer	07200 *	30
0x0046	float	R/O	oLLo	Start value actual value limit	-19999999	-1999
0x0048	float	R/O	oLHi	End value actual value limit	-19999999	9999

* Timer = 0 means switched off

This parameter can only be changed via the management system

Device data

Address	Data type	Access	Parameter	Value range	Default value
0x0300	word [13]	R/O	Device data		
0x0300			char SWVersion [11+1] Software version		
0x0306			char VDNNr [13+1] VdN number		

Remote operation

Address	Data	Access		Parameter	Value range	Default
	type					value
0x0400	float	R/O	TEMP	Actual value E3 (unfiltered)		
0x0500	word	R/W	REM	Activation remote operation	02 *	0
0x0501	word	R/W	ROFF			0
0x0502	float	R/W	RHYS1	Switch-on threshold REMOTE	01999	HYS1
0x0504	float	R/W	RHYS2 Switch-off threshold bottom REMOTE		0RHYS3	HYS2
0x0506	float	R/W	RHYS3 Switch-off threshold top REMOTE		09999	HYS3
0x0508	float	R/W	SPR Setpoint REMOTE		SPLSPH	SP1
0x050A	word	R/W	RK1	Burner control remote operation	01	0
0x050B	word	R/W	RK2 Relay K2 remote operation		01	0
0x050C	word	R/W	RK3 Relay K3 remote operation		01	0
0x050D	word	R/W	RK6 Relay LK remote operation		01	0
0x050E	word	R/W	RSTEP Step control remote operation -10010		-100100	0
0x050F	float	R/W	RY Positioning output remote operation		0100	0

* 0 = local

1 = remote setpoint

2 = fully remote

** 1 = controller OFF

Device state

Address	Data type	Access		Parameter						
0x0200	word	R/O	Outp	outs an	d state	S				
	B15 B14 B13 B1	2 B11 B10 B9 B8	B7	B6	B5	B4	B3	B2	B1	B0
	B8 Hysteresis li		B0	•	out 1 of					
	(for remote o	, ,	B1	•	out 3 of					
	B9 Managemen	-	B2	-	out 2 of					
	(for remote o		B3	Outp	out 4 of	Ť				
	B10 Self-optimiza									
	B11 Second setp									
		alue range crossing input 1								
		alue range crossing input 2 alue range crossing input 3								
	B14 Measured va B15 Reserved	alue range crossing input 5								
	DIO Reserved									
0x0201	word	R / O	Bina	iry sign	al and	hardw	are ide	entifica	ation	
	·									
	B15 B14 B13 B1	2 B11 B10 B9 B8	B7	B6	B5	B4	B3	B2	B1	B0
	B15 Reserved		B0	•	•		2-stage		e	
	B14 Interface pre		B1		•		active			
	B13 Analog outp	ut present	B2		ry inpu					
			B3		ry inpu					
			B4	-			ion acti	-		
			B5				tput ac			
			B6 B7				r outpu	t activ	e	
			В/	LIMI	t comp	arator	active			

General

RAM parameter for re-

mote operation

Parameter «RemoteStatus» is used to switch between the operating modes «LOCAL», «REMOTE SETPOINT» and «FULLY REMOTE». The change is always accomplished via the MOD bus.

In the event the master fails or communication is lost, the RWF40... will switch to operating mode «LOCAL». The time for detecting a failure is set via the interface.

Remote		Default after
parameter		«Power-up»
REM	Operating mode «LOCAL», «REMOTE SETPOINT» or	= 0
	«FULLY REMOTE»	
SPR	Setpoint remote	= SP1
RHYS1	Switch-on threshold remote	= Hys1
RHYS2	Lower switch-off threshold remote	= Hys2
RHYS3	Upper switch-off treshold remote	= Hys3
ROFF	Controller ON (0) / OFF (1) in operating modes	= 0 1)
	«REMOTE SETPOINT» and «FULLY REMOTE»	
RSTEP	Number of control cycles (opening / closing) (FULLY	= 0 ²)
	REMOTE)	
RK1	Release of burner (FULLY REMOTE)	= 0 3)
RK2	Controlling element opens (FULLY REMOTE)	= 0 3)
RK3	Controlling element closes (FULLY REMOTE)	= 0 3)
RK6	Value of «K6» in operating modes «SETPOINT	= 0
	REMOTE» and «FULLY REMOTE»	
RY	Degree of modulation for the analog output (FULLY	= 0
	REMOTE) in %	

¹⁾ Controller active

- ²⁾ No travel command (K2 + K3 = deenergized)
- ³⁾ When the operating mode changes (e.g. LOCAL → FULLY REMOTE), the relay information and the degree of modulation will be predefined, depending on the operating state of the plant.

Dtt	Bus detection timer	(value will also be maintained after a power failure)	
-----	---------------------	---	--

The remote parameters are stored in RAM and will no longer be available after a power failure.

After «Power-up», the default values will be used.

Operating mode «LOCAL»	The previous functions of the RWF40 are maintained (apart from memory usage). The RWF40 can be parameterized and uploaded via the MOD bus, whereby the out- puts cannot be changed. After «Power-up», the RWF40 will normally assume oper- ating mode «LOCAL».
Operating mode «REMOTE SETPOINT»	The RWF40 monitors cyclic bus communication via the «Dtt» parameter (bus detec- tion timer). Operating mode «REMOTE SETPOINT» is active as long as the bus calls within the predefined period of time. If the time limit is crossed, the RWF40 will switch to operating mode «LOCAL» and continues to operate using the parameters of local operation.
	Like in operating mode «LOCAL», the control functions of the RWF40 are maintained. With regard to setpoint and switching thresholds, only «RSP» and «RHYS1RHYS3» are active. The setpoints (SP1 and SP2), the external setpoint, the weather-compensated setpoint, the analog / binary setpoint shift and the associated changeover functions are not available.
	After the controller's «Power-up», setpoint «SP1» and switching thresholds «Hys1Hys3» will be copied to RAM as remote parameters in a one-time operation. These remote parameters can then only be changed via the management system.
	The control algorithm can be deactivated by the management system via parameter «ROFF=1». In that case, the RWF40 will switch the burner off and causes the controlling element to travel to the fully closed position. The controller terminates manual operation (analog safety shutdown). Self-optimization is not possible in this operating mode.
	The management system controls contact «RK6» (relay «K6»).
Operating mode «FULLY REMOTE»	The RWF40 monitors cyclic bus communication via the «Dtt» parameter (bus detec- tion timer). Operating mode «FULLY REMOTE» is active as long as the bus calls within the predefined period of time. If the time limit is crossed, the RWF40 will switch to operating mode «LOCAL» and continues to operate using the parameters of local op- eration.
	The management system switches the burner (RK1, relay «K1»), controls the actuator (RK2 and RK3, relays «K2 / K3»), or defines the degree of modulation in the case of an analog output, and controls contact «RK6» (relay «K6»). Using parameter «ROFF=1», control of the burner and controlling element can be switched off by the management system. In that case, the RWF40 deactivates the burner and causes the controlling element to travel to the fully closed position. Manual operation and self-optimization are not possible in this operating mode.
	2-stage burner: If, with a 2-stage burner, relay positions «RK2» and «RK3» are identical, the settings are «K2 = deenergized» and «K3 = energized» (closing).
	The analog output is set as follows, depending on the relay positions «RK2» and
	«RK3»: K2 = energized, K3 = deenergized \rightarrow analog output = 10 V or 20 mA K2 = deenergized, K3 = energized \rightarrow analog output = 0 V or 0 / 4 mA
	Setting the «RY» by the management system has no impact.

Mudulating burner	Modulating controller: The management system predefines the value (degree of modulation) for the analog output via «RY». Setting the «RK2» and «RK3» by the management system has no impact. Both relays «K2» and «K3», are deenergized. Floating step controller: The management system controls the actuator («RK2» and «RK3», relays «K2» / «K3»). Setting the «RY» by the management system has no impact. In that case, the analog output delivers 0 V or 0 / 4 mA. The RWF40 always checks to ensure that «RK2» and «RK3» (opening / closing) are not activated simultaneously. In such a case, the response is «K2 = K3 = deener- gized». If both relay contacts change their position during the controller's sequence time, the output is «K2 = K3 = deenergized». This time contact interval («K2 = K3 = off» for one scanning time) is also permitted in 2-stage operation.
Control strategy for floating output with modulating burner operation	The remote relay commands «RK2» and «RK3» (relays «K2» / «K3») control the opening and closing travel of the controlling element. Using parameter «RSTEP», the management system predefines the required number of control cycles. Output «K2» (opening) is controlled by a travel command and a positive number. Output «K3» (closing) is controlled by a travel command and a negative number. The number gives the number of RWF40 scanning cycles (210 ms) with which the output is controlled. The travel command with number 0 deenergizes immediately «K2» and «K3». If a new travel command is given before the control time has elapsed, the RWF40 ascertains the direction of rotation requested by the command. If the direction of rotation does not change, the control time will immediately be replaced by the new value. If the direction of rotation must be reversed, the control time is used (time contact interval). If, simultaneously with the control strategy for the floating output, outputs «K2» and «K3» (via «RK2» and «RK3») are directly set by the management system, the relay information from the control strategy and output information «K2» and «K3» have a logic «OR» connection. «RK2» and «RK3» (opening / closing) must never be energized simultaneously. In such a case, the response is «K2 = K3 = denergized».
Supervision of actual value by setpoint- dependent switching thresholds	In operating mode «FULLY REMOTE», the management system ensures burner con- trol. The RWF40 monitors the actual value to make certain the switching hystereses will be observed. If the actual value crosses the upper switch-off threshold, the management system will be locked (status flag, «Management system locked» can be read via the interface). The management system is released again when the actual value returns to a level below the switch-on threshold. If supervision of the actual value is not desired, the switching hystereses in the RWF40 must be set to the respective maximum value. In operating mode «REMOTE SETPOINT», the control algorithm ensures this kind of supervision.