

VÁLVULAS DE MARIPOSA NELDISC® DE ASIENTO METÁLICO Series LW y LG, con certificación ASME

Instrucciones de instalación, mantenimiento y funcionamiento 2 LW 71 es Edición 5/02

Índice

1	CON	ISIDERACIONES GENERALES 3	6	DES	SMONTAJE Y MONTAJE DEL ACTUADOR . 1	0
	1.1	Alcance del manual 3		6.1	Consideraciones generales1	C
	1.2	Descripción de la válvula3		6.2	Desmontaje del actuador 1	C
	1.3	Marcas de la válvula3		6.3	Separación de los actuadores EC y EJ 1	1
	1.4	Especificaciones técnicas4		6.4	Montaje del actuador en la válvula 1	
	1.5	Aprobaciones de la válvula4		6.5	Instalación de los actuadores EC y EJ 1	
	1.6	Marca CE4		6.6	Ajuste de los tornillos de tope 1	
	1.7	Reciclaje y deshecho de una válvula			6.6.1 Consideraciones generales 1	
		defectuosa4			6.6.2 Actuadores no tabulados1	
	1.8	Precauciones de seguridad4			6.6.3 Cambio de la posición de montaje . 1	
2	TRA	NSPORTE, RECEPCIÓN Y ALMACENAJE 5			6.6.4 Actuador de cilindro de doble	
3		TALACIÓN 5			acción B1C1	3
	3.1	Consideraciones generales 5			6.6.5 Actuador de diafragma de doble	
	3.2	Instalación en la tubería5			acción EC1	3
	3.3	Actuador7			6.6.6 Actuador de cilindro con muelle de	
4	PUE	STA EN MARCHA7			retorno B1J1	3
5	MAN	NTENIMIENTO 7			6.6.7 Actuador de cilindro con muelle de	
	5.1	Consideraciones generales7			retorno B1JA1	3
		5.1.1 Separación de la válvula de la			6.6.8 Actuador de diafragma con	
		tubería7			muelle de retorno EJ1	4
	5.2	Sustitución de la empaquetadura del			6.6.9 Operador de la serie M1	
		prensaestopas7			6.6.10 Palanca manual RH1	
	5.3	Fugas de la válvula8			6.6.11 Operador eléctrico1	
	5.4	Sustitución del anillo del asiento 8	7	HER	RRAMIENTAS1	
	5.5	Sustitución del disco, los ejes y los	8		DIDOS DE PIEZAS DE REPUESTO1	
		cojinetes9	9		ANO DE MONTAJE Y LISTA DE PIEZAS 1	
		5.5.1 Desmantelamiento de la válvula 9	10		ENSIONES Y PESOS1	
	5.6	Rearmado de la válvula9	11		DIFICACIÓN DE TIPOS2	

LEA PRIMERO ESTAS INSTRUCCIONES

Las presentes instrucciones ofrecen información sobre una manipulación y un funcionamiento seguros de la válvula.

Si requiere una asistencia adicional, contacte con el fabricante o su representante. En la contratapa encontrará impresas las direcciones y los números de teléfono.

CONSERVE ESTAS INSTRUCCIONES

Sujeto a cambios sin previo aviso.

Todas las marcas comerciales son propiedad de sus respectivos propietarios.

1 CONSIDERACIONES GENERALES

1.1 Alcance del manual

Este manual de instalación, mantenimiento y funcionamiento ofrece información esencial sobre las válvulas de mariposa de las series LW y LG de Neldisc[®]. También se ofrece una breve información sobre los actuadores y los instrumentos utilizados con las válvulas de las series LW y LG. Para más información, consultar los respectivos manuales de instrucciones de los actuadores y equipos de control.

NOTA:

Como el uso de una válvula es específico para cada aplicación, deben considerarse diversos aspectos en la selección y uso de la válvula. Debido a la naturaleza del producto, este manual no puede cubrir todas las situaciones individuales que puedan producirse durante la instalación, uso o mantenimiento de la válvula.

Si tiene alguna duda acerca del uso de la válvula o de su adecuación a su caso específico, contacte con Metso Automation para una mayor información.

1.2 Descripción de la válvula

Las válvulas Neldisc de la serie LW son válvulas de mariposa de asiento metálico de tipo disco y las válvulas de la serie LG son de tipo asa.

El disco es elíptico y con doble montaje excéntrico. Cuando la válvula está cerrada, el disco elíptico del eje mayor desplaza hacia el exterior el anillo del asiento, lo que hace que éste entre en contacto con el disco en el eje menor. Cuando se abre la válvula, se deshace el contacto y el anillo del asiento vuelve a su forma circular original (ver Fig. 1).

La unión entre el disco y los ejes se realiza mediante pasadores y no hay ningún agujero en todo el disco.

En la codificación de tipos que aparece en la placa de identificación de la válvula se incluyen los detalles de construcción de las diferentes válvulas individuales. Para interpretar la codificación de tipos, consulte la Sección 11 de este manual.

La válvula funciona tanto en aplicaciones de control como de cierre.

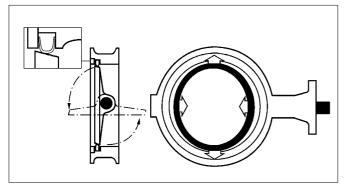


Fig. 1. Construcción de una válvula de mariposa

1.3 Marcas de la válvula

Las marcas del cuerpo están fundidas o estampadas en el mismo. La válvula también tiene una placa de identificación (ver Fig. 2).

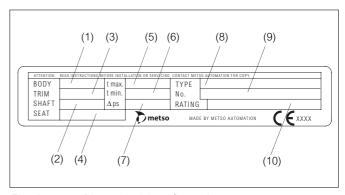


Fig. 2. Placa de identificación

Las placas de identificación tienen las siguientes marcas:

- 1. Material del cuerpo
- 2. Material del eje
- 3. Material de la guarnición
- 4. Material del asiento
- 5. Temperatura máxima de operación
- 6. Temperatura mínima de operación
- 7. Diferencial máximo de presión de cierre
- 8. Designación de tipo
- Número de lista de piezas de fabricación de la válvula
- 10. Clase de presión

1.4 Especificaciones técnicas

Tipo: Válvula de mariposa de alto ren-

dimiento con asiento metálico

LW: tipo disco LG: tipo asa

Clase de presión

Cuerpo y guarnición: LW5C, LG5C:

ASME 150 LW5D, LG5D: ASME 300

Rango de temperatura: -200 °C - +600 °C

(para más de +600 °C, con-

tacte con el fabricante)

Sistema antifugas -200 °C - +320 °C

Dirección de flujo: Libre

Dimensiones: Ver páginas 17 a 31 Pesos: Ver páginas 17 a 31

1.5 Aprobaciones de la válvula

Baumuster/Bauteilprüfung

(TRB 801 Nr. 45 y VdTÜV-Merkblatt 1065).

TA-Luft, capítulo 3.1.8.4

Ensayo de incendio según BS 6755 y API 607.

1.6 Marca CE

La válvula cumple los requisitos de la Directiva europea 97/23/CE sobre equipos de presión e incluye la correspondiente marca de acuerdo con la Directiva.

1.7 Reciclaje y deshecho de una válvula defectuosa

La mayoría de componentes de la válvula se pueden reciclar si se clasifican de acuerdo con el material.

La mayoría de componentes tienen una marca de material. Junto con la válvula se suministra una lista de material. Además, se puede solicitar al fabricante las instrucciones de reciclaje, separado y deshecho. También se pueden devolver las válvulas al fabricante para su reciclaje y deshecho pagando una tarifa.

1.8 Precauciones de seguridad

ATENCIÓN:

No exceda los límites de prestación de la válvula

Exceder los límites señalados en la válvula puede causar averías y conducir a pérdidas de presión incontroladas.

Ello puede causar daños materiales o personales.

ATENCIÓN:

No desmantele la válvula ni la extraiga de la tubería mientras esté presurizada

Desmantelar o extraer una válvula presurizada puede conducir a pérdidas de presión incontroladas. Aísle siempre la porción correspondiente de la tubería, libere la presión de la válvula y vacíela totalmente de medio antes de desmantelarla.

Preste atención al tipo de medio que esté empleando. Proteja al personal y al ambiente contra cualquier sustancia nociva o venenosa.

Asegúrese de que el medio no pueda entrar en la tubería durante el mantenimiento de la válvula.

En caso de hacerlo, se podrían producir daños materiales o personales.

ATENCIÓN:

Cuidado con el movimiento cortante de los discos

Mantenga las manos o cualquier otra parte del cuerpo, herramientas y otros objetos fuera de un orificio de flujo abierto. No deje objetos extraños dentro de la tubería.

Cuando la válvula se acciona, el disco funciona como un elemento de corte.

La posición del disco también puede variar durante el movimiento de la válvula.

Cierre y separe la alimentación de presión del actuador durante el mantenimiento de la válvula.

En caso de no hacerlo, se podrían producir daños materiales o personales.

ATENCIÓN:

Cuidado con las emisiones de ruido

La válvula puede producir ruido en la tubería. El nivel de ruido depende de la aplicación. Se puede medir o calcular mediante el programa de computación de Metso Automation. Observe las regulaciones laborales vigentes sobre emisiones de ruido.

ATENCIÓN:

Tenga cuidado con una válvula muy fría o muy caliente

El armazón de la válvula puede estar muy frío o muy caliente durante su uso.

Protéjase frente a quemaduras por frío o calor.

ATENCIÓN:

Al manipular la válvula o el conjunto completo, tenga presente su peso total

Nunca levante la válvula o el conjunto de la válvula por el actuador, el posicionador, el final de carrera o sus tuberías.

Coloque las cuerdas de levantamiento de forma segura alrededor del armazón de la válvula (ver Fig. 3). Podrían producirse daños materiales o personales en caso de caerse alguna pieza.

NOTA:

No gire el disco más de 90° ya que el asiento podría resultar dañado. La construcción de la válvula permite que el disco funcione solamente entre 0 y 90°.

2 TRANSPORTE, RECEPCIÓN Y ALMACENAJE

Compruebe que la válvula y los dispositivos adjuntos no se han dañado durante el transporte.

Guarde la válvula cuidadosamente antes de su instalación, preferiblemente en interiores en un lugar seco.

No traslade la válvula hasta su ubicación prevista y no retire los protectores del puerto de flujo hasta que la válvula esté instalada.

La válvula se entrega en la posición cerrada. Las válvulas equipadas con un actuador con muelle de retorno se entregan en la posición determinada por el muelle. Durante su almacenaje, la válvula debe estar ligeramente cerrada.

3 INSTALACIÓN

3.1 Consideraciones generales

Retire los protectores del puerto de flujo y compruebe que la válvula esté limpia e intacta por dentro.

ATENCIÓN:

Al manipular la válvula o el conjunto completo, tenga presente su peso total.

Siga los métodos de levantamiento que se muestran en la Fig. 3.

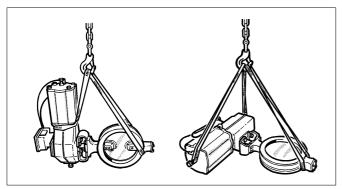


Fig. 3. Levantamiento de la válvula

3.2 Instalación en la tubería

Aclare o sople la tubería cuidadosamente antes de instalar la válvula.

Las partículas extrañas, como arenilla o trozos de electrodos de soldadura, puede dañar la superficie de sellado del disco y el asiento.

La válvula puede instalarse en cualquier posición y ofrece estanqueidad en ambas direcciones.

Instale la válvula en la tubería de forma que el eje quede en horizontal, si es posible.

No obstante, no recomendamos instalar la válvula con el actuador abajo porque cualquier suciedad de la tubería podría penetrar en la cavidad del cuerpo y dañar la empaquetadura del prensaestopas.

Si la válvula dispone de una guarnición para el equilibrado de flujos (codificación tipo S-...), ésta debe estar en el lado de aguasabajo del cuerpo de la válvula. La válvula debe montarse de forma que la placa perforada no recoja las impurezas de la tubería (ver Fig. 4).

Seleccione las juntas de las bridas de acuerdo con las condiciones de funcionamiento.

No trate de corregir el defecto de alineación de la tubería mediante el empernado de las bridas.

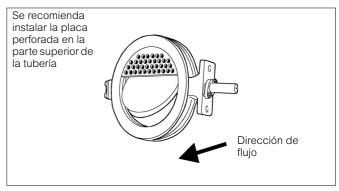


Fig. 4. Posición de la guarnición para el equilibrado de flujos

Quizás sea necesario sujetar firmemente la tubería para proteger la válvula de tensiones excesivas. Una sujeción firme también reduce la vibración de la tubería y por lo tanto garantiza el correcto funcionamiento del posicionador. No ajuste los soportes a los pernos de las bridas ni al actuador.

Se recomienda que la longitud de cualquier tubería recta que haya delante de la válvula de control sea como mínimo de 2 veces el diámetro de la tubería.

El flujo causa una torsión denominada dinámica contra el disco de la válvula que intenta cerrar la válvula. En los codos de tubería, la presión sobre el lado exterior es mayor que la presión sobre el lado interior.

Si la válvula de mariposa se instala inmediatamente después de un codo de tubería, el eje de la válvula debe apuntar hacia el punto central de la tubería (ver Fig. 5). Esto es especialmente importante cuando la válvula de mariposa se utiliza como válvula de control.

El eje de válvula de una válvula de mariposa montado detrás de una bomba centrífuga debe ser perpendicular al eje de la bomba (ver Fig. 6).

Si se instala de esta manera, los discos de la válvula recibirán la carga de una forma mucho más uniforme y se eliminarán así las vibraciones de otro modo posibles en las posiciones intermedias.

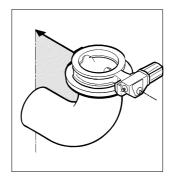


Fig. 5. Montaje detrás de un codo de tubería

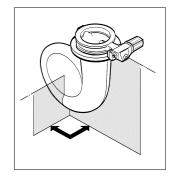


Fig. 6. Montaje detrás de una bomba centrífuga

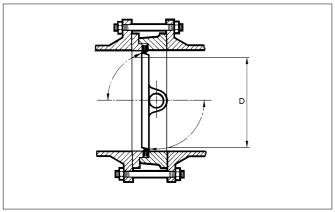


Fig. 7. Dimensiones mínimas del interior de la tubería

Tabla 1. Dimensiones mínimas del interior de la tubería (mm)

Tamaño de la válvula	D					
Talliallo de la valvula	LW5C, LG5C	LW5D, LG5D				
3	69	69				
4	90	90				
5	112	112				
6	144	143				
8	193	190				
10	243	241				
12	290	287				
14	329	321				
16	374	-				

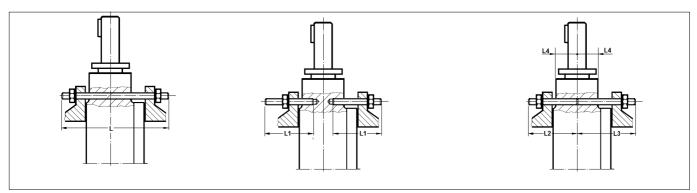


Fig. 8. Longitud de los espárragos

Tabla 2. Dimensiones de los espárragos (mm)

LWE NDC	LW5C, ASME 150			LW5D, BRIDA ASME 300					
LW5_ NPS	Rosca	L	Cantidad	Rosca	L	Cantidad	L1	Cantidad	
3	5/8UNC	140	4	3/4UNC	160	8	Los espárragos traspasan el cuerpo en la zona del cuello (longitud L)		
4	5/8UNC	150	8	3/4UNC	170	8			
5	3/4UNC	160	8	-	-	-	-	-	
6	3/4UNC	160	8	3/4UNC	190	12		os traspasan el	
8	3/4UNC	170	8	7/8UNC	220	12	cuerpo en la zona del cuello (longitud L)		
10	7/8UNC	190	12	1-8UN	250	14	100	4	
12	7/8UNC	200	12	1 1/8UN	270	12	120	8	
14	1-8UN	230	12	1 1/8UN	280	16	120	8	
16	1-8UN	250	16	1 1/4-8UN	330	16	140	8	

LOT NDO	LG5C, BRIDA ASME 150				LG5D, BRIDA ASME 300							
LG5_NPS	Rosca	L2	Cantidad	L3	Cantidad	L4	Rosca	L2	Cantidad	L3	Cantidad	L4
3	5/8UNC	60	4	80	4	16	3/4UNC	70	8	90	8	16
4	5/8UNC	65	8	85	8	19	3/4UNC	75	8	95	8	19
5	3/4UNC	70	8	90	8	20	-	-	-	-	-	-
6	3/4UNC	70	8	90	8	20	3/4UNC	90	12	100	12	25
8	3/4UNC	75	8	95	8	23	7/8UNC	110	12	110	12	34
10	7/8UNC	85	12	105	12	26	1-8UN	125	16	125	16	42
12	7/8UNC	90	12	110	12	30	1 1/8UN	135	16	135	16	45
14	1-8UN	105	16	125	16	35	1 1/8UN	140	20	140	20	56
16	1-8UN	115	16	135	16	38	1 1/4-8UN	160	20	170	20	61

Cuando se monte la válvula ésta debe estar en posición cerrada y cuidadosamente centrada entre las bridas de la tubería de modo que el disco giratorio no toque los rebordes de la tubería ni las juntas de las bridas.

En válvulas con determinados tamaños nominales, algunos pernos de las bridas no traspasan el cuerpo de la válvula. Por ello el cuerpo de la válvula tiene agujeros (ver Sección 3.2.1).

Asegúrese de que el disco puede girar hasta la posición abierta tras el apriete preliminar de los pernos de las bridas. Los actuadores de las válvulas de control suelen estar equipados con topes de posición que normalmente permiten que el disco sólo se abra 80°.

La longitud de los espárragos de la Tabla 2 se basa en:

- □ grosor de las juntas de 1,5 mm
- □ tuercas gruesas con arandelas
- □ grosor de brida de bridas Weldneck según ASME

3.3 Actuador

Cuando instale el actuador en la válvula, asegúrese de que el conjunto funcione adecuadamente. Consulte las instrucciones de instalación en la Sección 6.

Respete el espacio necesario para la extracción del actuador.

Para el cilindro del actuador se recomienda la posición vertical

El actuador no debe tocar la tubería, puesto que la vibración de la misma podría dañarlo o interferir en su funcionamiento.

En algunos casos se recomienda proveer al actuador de un soporte adicional, por ejemplo si se utiliza un actuador de gran tamaño o cuando la tubería vibra mucho. Para más información, póngase en contacto con Metso Automation.

4 PUESTA EN MARCHA

Asegúrese de que no quedan objetos extraños ni suciedad en el interior de la válvula o tubería. Aclare cuidadosamente con agua la tubería. Mantenga la válvula unos 30-40° abierta durante la limpieza.

Cuando ponga en funcionamiento la bomba, asegúrese de que la válvula de la tubería esté cerrada o, como mucho, 20º abierta.

Un martillo de agua, que sigue al encendido de las bombas de gran capacidad, crea un pico de torsión en el disco. Esto puede dañar la conexión entre el disco y el eje si la válvula está 30-90° abierta.

La construcción de la empaquetadura tiene carga móvil. Por lo tanto, no es necesario apretar los tornillos de la empaquetadura durante el mantenimiento.

5 MANTENIMIENTO

ATENCIÓN:

Cumpla las precauciones de seguridad enumeradas en la Sección 1.8 antes de empezar a trabajar.

ATENCIÓN:

Por motivos de seguridad, las placas de retención siempre DEBEN instalarse de acuerdo con la Sección 5.2.

5.1 Consideraciones generales

Las válvulas de mariposa no requieren ningún mantenimiento regular. Si por cualquier motivo la válvula requiriera servicios de mantenimiento, unas pocas y simples medidas suelen ser suficientes.

Los números entre paréntesis hacen referencia a la lista de piezas y al plano de montaje de la válvula de la Sección 9.

NOTA:

Si envía la válvula al fabricante para su reparación, no la desmonte. Limpie la válvula cuidadosamente, incluido su interior. Por motivos de seguridad, informe al fabricante del tipo de medio utilizado en la válvula.

NOTA:

Use siempre repuestos originales para asegurarse de que la válvula funcionará correctamente.

5.1.1 Separación de la válvula de la tubería

ATENCIÓN:

No desmantele la válvula ni la separe de la tubería mientras esté presurizada.

Por lo general, es más práctico extraer el actuador y los dispositivos auxiliares (ver Sección 6) antes de separar la válvula de la tubería.

Si el paquete de la válvula es pequeño o de difícil acceso, podría resultar más práctico extraer todo el paquete al mismo tiempo.

Asegúrese de que la válvula no esté presurizada y que la tubería esté vacía.

Asegúrese de que el medio no fluya hacia la tubería mientras se realiza el mantenimiento de la válvula. La válvula debe estar en posición cerrada para extraerla.

Sostenga con cuidado la válvula con un montacargas. Amarre las cuerdas cuidadosamente y desatornille los pernos de las bridas de la tubería. Asegúrese de que las cuerdas estén bien colocadas. Levante la válvula correctamente (ver Fig. 3).

5.2 Sustitución de la empaquetadura del prensaestopas

ATENCIÓN:

No desmantele la válvula ni la extraiga de la tubería mientras esté presurizada.

Se utilizan anillos en V de teflón como empaquetadura del prensaestopas estándar y anillos de grafito para construcciones a altas temperaturas. La construcción estándar de la empaquetadura tiene carga móvil. Por lo tanto, no es necesario apretar los tornillos de la empaquetadura durante el mantenimiento.

La empaquetadura del prensaestopas (20) debe ser sustituida si se produce una fuga, incluso después de apretar las tuercas hexagonales (25).

- □ Asegúrese de que la válvula no está presurizada.
- □ Afloje las tuercas (25) y retire los kits TA-Luft (44), las placas de retención (42) y el prensaestopas (9).
- □ Retire los anillos viejos de la empaquetadura (20). Asegúrese de no dañar las superficies del eje y del orificio escariado de los anillos de la empaquetadura. No es necesario cambiar el anillo de antiextrusión (22).
- □ Limpie la empaquetadura del prensaestopas y el orificio escariado del anillo de la empaquetadura. Instale un nuevo juego de empaquetaduras (anillo en V o grafito). Deslice los anillos de grafito sobre el eje. Asegúrese de que no haya rebabas en la ranura que puedan dañar la empaquetadura.
- □ Instale el prensaestopas.
- □ Monte las placas de retención con el texto "UPSIDE" en la parte superior (ver Fig. 9).
- □ Monte los kits TA-Luft.
- Coloque las tuercas en los espárragos y apriete las empaquetaduras del prensaestopas cuando la válvula no esté presurizada. Utilice las torsiones recomendadas, que se corresponden con valores de tuercas lubricadas (ver Tabla 3).

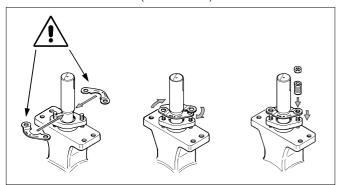


Fig. 9. Montaje de la placa de retención

5.3 Fugas de la válvula

Las fugas de la válvula no siempre están causadas por un anillo o disco del asiento dañado. El motivo también puede ser que el disco no esté en la posición cerrada.

- Compruebe la posición del actuador en relación con la válvula. Los tornillos podrían estar flojos o el soporte dañado.
- □ Compruebe el ajuste en la posición cerrada (ver Sección 6.4).

La línea paralela al disco del cabezal del eje de la válvula muestra aproximadamente la posición cerrada del disco (ver Fig. 10).

Los choques de presión pueden provocar el aflojamiento de la conexión por pasador entre el disco y el eje; por consiguiente, el eje se mueve mientras el disco permanece en su lugar y esto evita el cierre completo del disco.

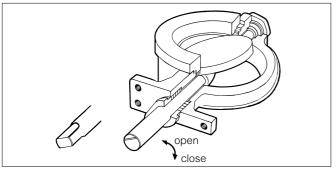


Fig. 10. Posiciones abierta y cerrada de la válvula

Si el motivo de la fuga no se hace evidente tras esta acción, se debe desmontar la válvula para sustituir las piezas.

Tabla 3. Torsiones de las roscas de la empaquetadura del prensaestopas

Anillo en V de teflón

LW5C, LG5C	LW5D, LG5D	Diámetro del eje	Rosca	Torsión Nm
Tamaño	Tamaño	mm		Nm/lbf ft
3	3	15	5/16	3,5 / 2,6
4, 5, 6	4	20	5/16	4.3 / 3,2
8	5	25	3/8	9,3 / 6,8
10	-	30	3/8	10,8 / 8,0
12	8	35	3/8	12,2 / 9,0
14	-	40	3/8	13,7 / 10,1
16	10	45	1/2	32 / 24
	12	50	1/2	38 / 28
	14/16	55	1/2	46 / 34

Empaquetadura de grafito

LW5C, LG5C	LW5D, LG5D	Diámetro del eje	Rosca	Torsión
Tamaño	Tamaño	mm		Nm/lbf ft
3	3	15	5/16	7,4 / 5,5
4, 5, 6	4	20	5/16	9,3 / 6,9
8	5	25	3/8	13,3 / 9,8
10	-	30	3/8	15,4 / 11,4
12	8	35	3/8	17,5 / 13,0
14	-	40	3/8	19,6 / 14,5
16	10	45	1/2	44 / 32
	12	50	1/2	52 / 38
	14/16	55	1/2	59 / 43

5.4 Sustitución del anillo del asiento

ATENCIÓN:

No desmantele la válvula ni la extraiga de la tubería mientras esté presurizada.

- □ Asegúrese de que la válvula no esté presurizada.
- Extraiga la válvula de la tubería. La válvula debe estar en posición cerrada durante la extracción. Siga los métodos de levantamiento que se indican en la Sección 3.
- □ Extraiga el anillo de la abrazadera (2) desatornillando los tornillos (27).
- □ Retire el sello viejo del cuerpo (19) y el anillo del asiento (4).
 - Cambie el anillo del asiento si está dañado.
- □ Limpie todas las superficies de los asientos y compruebe la superficie del anillo del asiento.
- □ Compruebe también el estado del disco. Todo disco dañado debe ser sustituido (ver Sección 5.5).

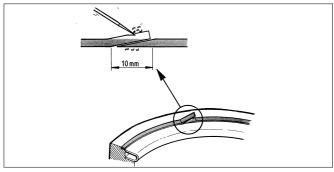


Fig. 11. Montaje del sello del cuerpo

- □ Verifique el estado de la conexión por pasador. Repárela si es necesario (ver Sección 5.5).
- Monte un nuevo sello autoadhesiva (19) en el cuerpo.
 La superficie debe estar limpia y libre de grasas.
 Maneje los extremos del sello como se muestra en la Fig. 11.
- Pulverice una fina capa de fluido lubricante seco, por ejemplo Molykote 321R o equivalente, sobre la ranura del asiento, las superficies del anillo de la abrazadera y el anillo del asiento.
- □ Centre el anillo del asiento (4) cuidadosamente en su ranura y gire el disco para mantener un ligero contacto con el asiento.
- □ Monte el anillo de la abrazadera y apriete los tornillos (27) ligeramente.
- ☐ Gire el disco hasta que quede un poco abierto y tire de él para colocar el asiento en la posición correcta.
- Apriete los tornillos (27) en diagonal y uniformemente. Los valores de las torsiones recomendadas para los tornillos se incluyen en la Tabla 4. Una brida apretada de modo irregular puede dañar el anillo del asiento. En el caso de las válvulas de tipo asa, las cabezas de los tornillos deben estar por debajo de la superficie de la brida.

Tabla 4. Torsión de los tornillos del anillo de la abrazadera

Tamaño del tornillo	Torsión, Nm / lbf ft
10-32	9 / 6,6
5/16	16 / 11,8
3/8	25 / 18,4
1/2	40 / 29,5
5/8	70 / 51,6

- □ Compruebe la posición entre el anillo del asiento y el disco. La válvula se cierra en el sentido de las aquias del reloj (ver Fig. 10).
- □ Monte el actuador en la válvula. Ajuste el límite de posición cerrada y verifique el límite de posición abierta (ver Sección 6.4).

5.5 Sustitución del disco, los ejes y los cojinetes

5.5.1 Desmantelamiento de la válvula

La conexión por pasador del disco debe abrirse mediante perforación para cambiar el disco (3), los ejes (11, 12) y los cojinetes (15, 16).

- Extraiga la válvula de la tubería y el actuador de la válvula.
- □ Extraiga el anillo de la abrazadera (2) y el anillo del asiento (4) de acuerdo con la Sección 5.4.

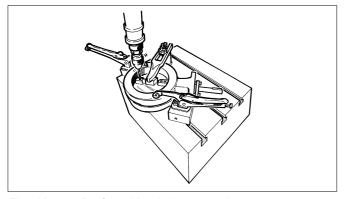


Fig. 12. Perforación de los pasadores

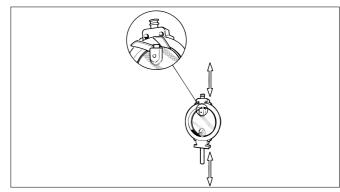


Fig. 13. Protección del disco durante el desmontaje y montaje

- □ Coloque la válvula horizontalmente sobre una superficie sólida de forma que el lado plano del disco descanse sobre la superficie (ver Fig. 12).
- □ Con cuidado, perfore los orificios en el centro de los pasadores (14). Escoja una broca 0,2-0,5 mm más pequeña que el diámetro del pasador.
- □ Perfore orificios profundos, pero no lo suficiente como para alcanzar el disco.
- □ Tire de los pasadores.
- □ Desmonte la empaquetadura del prensaestopas incluido el anillo antiextrusión (22) el anillo de la chapa (21) de acuerdo con la Sección 5.2.
- □ Extraiga los tornillos (26) y la brida ciega (10) y retire la junta (18).
- □ Instale bandas de goma u otra protección entre el reborde del disco y el cuerpo, y extraiga los ejes (ver Fig. 13).
- □ Extraiga los cojinetes (15, 16).
- □ Limpie y compruebe todas las piezas cuidadosamente.

5.6 Rearmado de la válvula

- Sustituya las piezas dañadas por nuevas.
- En primer lugar, ajuste el disco y el eje juntos. En caso de que los orificios de los pasadores hayan resultado dañados durante la extracción de los pasadores viejos, se pueden perforar orificios para pasadores más grandes. Lime cualquier rebaba de los ejes.

El material del cojinete de las válvulas de construcción estándar es acero inoxidable impregnado de teflón. Los cojinetes para válvulas de altas temperaturas (construcciones N y H) están fabricadas en aleación de cobalto y se montan en el cuerpo junto con los ejes.

□ Monte los cojinetes en el cuerpo (ver Fig. 14).

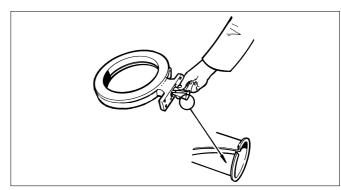


Fig. 14. Montaje de cojinetes estándar

□ Construcciones de altas temperaturas: Monte el cojinete en el eje. Pulverice una fina capa de un fluido lubricante seco, por ejemplo Molykote 321R o

equivalente, sobre la superficie interior del cojinete y la ranura del cojinete del eje. Ejerza presión sobre el cojinete con un anillo de apriete sobre la ranura del cojinete del eje e instale cuidadosamente el eje con los cojinetes en el cuerpo a través del anillo de apriete (ver Fig. 15).

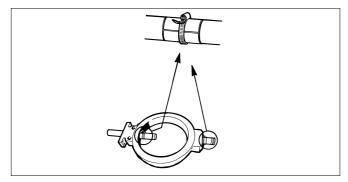


Fig. 15. Montaje de los cojinetes metálicos

- Coloque el disco horizontalmente sobre una superficie de forma que el lado plano del disco descanse sobre la superficie. Levante el cuerpo alrededor del disco de modo que los agujeros del eje queden alineados con los agujeros del disco. Proteja el disco (ver Fig. 13).
- Empuje los ejes hacia las perforaciones del disco. Alinee los agujeros de los pasadores. La posición del eje (11) con respecto al disco debe ser conforme a la Fig. 10.

NOTA:

Utilice únicamente pasadores suministrados por el fabricante.

NOTA:

Los pasadores se deben apretar con la fuerza suficiente para deformarlos, de forma que la conexión no tenga juego.

Sostenga bien el disco en posición horizontal durante el montaje de los pasadores. Inserte los nuevos pasadores en los agujeros y ejerza presión sobre los mismos hasta alcanzar la forma final (ver Fig. 16). Utilice una herramienta inferior al diámetro del pasador. Consulte en la Tabla 5 las fuerzas.

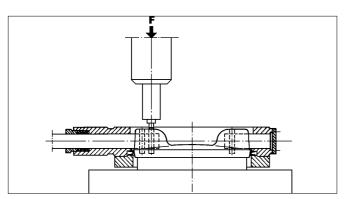


Fig. 16. Presión sobre los pasadores

Tabla 5. Presión sobre los pasadores, fuerzas

Diámetro del pasador mm	Fuerza Fuerza kN/t	Diámetro del pasador mm	Fuerza Fuerza kN/t
5	45 / 5	10	125 / 14
6	60 / 6,7	12	180 / 20,2
8	80 / 9	15	280 / 31,5

Instale la junta (18) y la brida ciega (10).
 Los tornillos de la brida ciega deben apretarse uni-

- formemente. Una brida apretada de modo irregular dañará el asiento.
- □ Instale el anillo del asiento. Para más información, consulte la Sección 5.4.
- □ Instale el sello del cuerpo (19) y el anillo de la abrazadera (2). Para más información, consulte la Sección 5.4.
- □ Instale la empaquetadura del prensaestopas (ver Sección 5.2).
- □ Compruebe la línea de contacto entre el anillo del asiento y el disco (ver Fig. 10).

6 DESMONTAJE Y MONTAJE DEL ACTUADOR

6.1 Consideraciones generales

ATENCIÓN:

Al manipular la válvula o el conjunto completo, tenga presente su peso total.

NOTA:

No gire el disco más de 90° ya que el asiento podría resultar dañado. La construcción de la válvula permite que el disco funcione solamente entre 0 y 90°.

6.2 Desmontaje del actuador

ATENCIÓN:

El actuador no se puede extraer de la válvula cuando la tubería esté presurizada debido a una torsión dinámica.

NOTA:

Antes de desmontarlo, observe atentamente la posición de la válvula con respecto al actuador y al posicionador/final de carrera para garantizar que el paquete se volverá a montar correctamente.

El actuador se monta en fábrica en la válvula y los tornillos de límite de carrera se ajustan por adelantado. Como resultado de la torsión dinámica, no se puede extraer el actuador de la válvula cuando la tubería está bajo presión.

- Desconecte el actuador de la fuente de alimentación; separe el conducto de suministro de aire y los cables o conductos de señal de control de sus conectores.
- □ Afloje los tornillos de la guía.
- □ Extraiga el actuador con la ayuda de un extractor apropiado. Puede pedir la herramienta correcta al fabricante (ver Fig. 17).
- □ Retirar el soporte y el acoplamiento, si los hubiere.

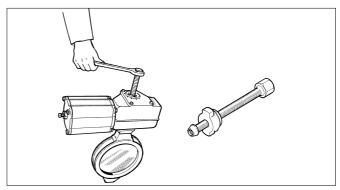


Fig. 17. Extracción del actuador con un extractor

6.3 Separación de los actuadores EC y EJ

- Extraiga el posicionador, o cualquier otro accesorio, del actuador y extraiga la placa de acoplamiento del eje motor.
- □ Afloje el cojinete haciendo girar el tornillo de ajuste en sentido contrario a las agujas del reloj. El tornillo de ajuste también actúa como extractor.
- □ Finalmente, separe el actuador de la válvula, una vez quitados los tornillos que sujetan el actuador en la válvula.
- Observe las respectivas posiciones entre el actuador y la válvula y también entre la llave y la ranura antes de retirarlo. Volver a colocar el actuador es luego más fácil.

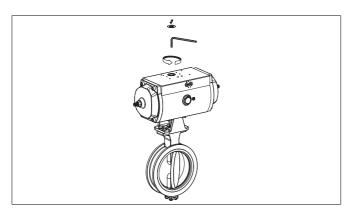


Fig. 18. Separación del actuador EC/EJ

6.4 Montaje del actuador en la válvula

- □ Haga girar la válvula hasta la posición cerrada antes de montar el actuador.
- □ Limpie el eje y el agujero del eje y lime todas las rebabas que podrían afectar al montaje. Proteja contra la corrosión las superficies de las juntas, por ejemplo con Cortec VCI 369.
- Si se requiere un cojinete entre el agujero del eje del actuador y el eje de la válvula, móntelo primero en el agujero del eje del actuador.
- □ La ranura de la válvula se encuentra en el lado opuesto al lado plano del disco. El agujero del eje del actuador tiene dos ranuras separadas a 90°.
- □ En el caso de actuadores de cilindro de doble acción, B1C, y actuadores de cilindro con muelle de retorno, B1J (resorte para cerrar), escoja la ranura que coloque el pistón en su posición más superior (en el extremo superior del cilindro) cuando la válvula esté cerrada.
 - En el caso de actuadores de cilindro con muelle de retorno B1JA (resorte para abrir), escoja la ranura que coloque el pistón en su posición más inferior cuando la válvula esté abierta.
 - En válvulas de funcionamiento manual, se debe cerrar el disco haciendo girar el volante manual en el sentido de las agujas del reloj.
- Compruebe visualmente que el actuador esté correctamente posicionado en relación con la válvula. Apriete todos los tornillos de fijación lo más fuerte posible.
- □ Ajuste los tornillos de tope hasta la posición cerrada (ver Sección 6.4).
- □ Normalmente el ángulo de abertura de una válvula de control está limitado por un perno a 80°. El ángulo de abertura de una válvula de cierre es de 90°.
- □ Si se requiere una extensión del eje, comente el tamaño de esta extensión con el fabricante de la válvula.

6.5 Instalación de los actuadores EC y EJ

El actuador está adjunto al soporte a través de una interfaz de montaje estándar ISO 5211. El actuador está adaptado al eje de la válvula con un cojinete independiente. El cojinete (II + II) tiene forma de cono de dos piezas, que se fija con firmeza con un tornillo de ajuste (I) alrededor del eje de la válvula.

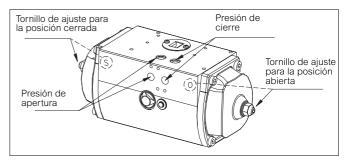


Fig. 19. Conexiones del actuador

- Monte el cojinete y el tornillo de ajuste desde la interfaz de montaje del actuador, según la Fig. 21. Inserte pasadores cilíndricos (III) en las ranuras del cojinete, que deben situarse en las ranuras correspondientes del actuador durante la sujeción. Antes de la instalación del cojinete y del tornillo de ajuste, elimine las impurezas, como material viejo de cierre roscado de las roscas del tornillo de ajuste, y aplique Loctite 243 o un sellador similar cuidadosamente sobre las roscas, tal como se muestra en la Fig. 21. Gire el tornillo de ajuste desde el interior del eje del actuador mediante una llave hexagonal apropiada, Fig. 21.
- Antes de la instalación, revise la correcta posición del eje de la válvula. En el cojinete tipo chaveta hay cuatro ranuras para chaveta, de las cuales dos han sido diseñadas para válvulas con chaveta DIN y dos para ejes de válvula con chaveta ANSI (por ejemplo, válvulas M1 y M2). La ranura para chaveta DIN está situada en el centro del medio cojinete y la ranura para chaveta ANSI, en el punto de división entre las dos mitades del cojinete. La Fig. 20 muestra la posición de la ranura para chaveta cuando el actuador está en posición cerrada.
- □ La posición abierta y cerrada del actuador se pueden identificar bien con aire comprimido, ver Fig. 19, o bien comprobando la posición del puntero en el extremo del eje motor. El actuador está cerrado si el puntero en la placa de acoplamiento es transversal a la dirección del eje principal del actuador.

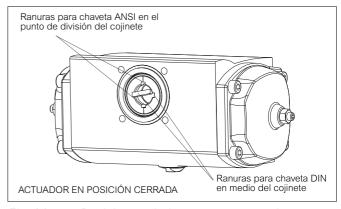


Fig. 20 Posiciones de las ranuras para chaveta en el actuador

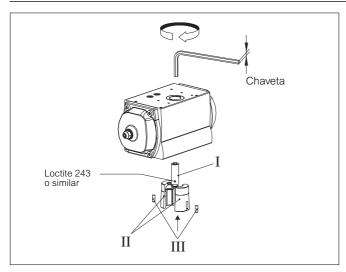


Fig. 21. Instalación del cojinete de cono

- ☐ En el cojinete, es más fácil que la conexión del cabezal portadisco compruebe la posición correcta. Use el puntero del extremo del eje motor para ver la posición correcta.
- Monte el actuador en el soporte de la válvula con cuatro tornillos. El tornillo de ajuste del cojinete debería ser aflojado antes del montaje para permitir que el eje se ajuste fácilmente en el actuador.
- La construcción del actuador permite el movimiento axial del eje motor. Antes de apretar el tornillo, compruebe que el eje motor está en la posición superior de su movimiento axial, que es su posición normal (la posición de montaje se muestra en la Fig. 22). La comprobación es importante, puesto que el eje del actuador cae ligeramente cuando se aprieta el tornillo. El movimiento axial del eje motor se puede observar y medir antes del montaje en una válvula. El eje motor del actuador está en la posición superior cuando su superficie superior se ajusta a la Tabla 6 (ver Fig. 22).
- □ El eje motor encontrará automáticamente su posición correcta cuando se apriete el tornillo de ajuste, si se usa la herramienta de instalación (ver Figura 22). La herramienta de instalación está montada en lugar de la placa de acoplamiento utilizando tornillos M4 con el eje motor en la posición superior (antes de instalar la válvula).

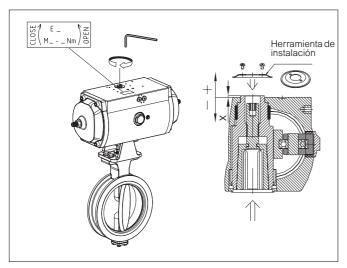


Fig. 22. Apriete del cojinete de cono

Tabla 6. Caras de montaje, tornillos de ajuste y distancias del eje motor

Tamaño	Montaje	Rosca	Chaveta	Nm	~X pos. superior (mm)	~X pos. inferior (mm)
EC/EJ05	F05	M12	6	25	4,0	1
EC/EJ07	F07	M16	8	50	1,5	-2
EC/EJ10	F10	M20	10	100	2,5	-2
EC/EJ12	F12	M24	14	200	3,5	-2
EC/EJ14	F14	M36	19	700	4,5	-2

Apriete los tornillos de tal forma que la herramienta quede apretada contra la superficie superior de la caja.

Instale el actuador sobre la válvula y coloque los tornillos. Finalmente, apriete el tornillo de ajuste según la Tabla 6. La torsión necesaria también está marcada en una placa cerca del eje motor en la caja del actuador. La herramienta de instalación se retira y la placa de acoplamiento se vuelve a montar. La válvula puede funcionar mal si el apriete de la conexión se ha realizado de forma incorrecta.

Finalmente, las posiciones extremas de la válvula se ajustan con los tornillos de tope en los extremos del actuador. La ubicación de los tornillos para ajustar las posiciones abierta y cerrada de la válvula está marcada con letras en los extremos de la caja del actuador (ver Figura 19).

6.6 Ajuste de los tornillos de tope

6.6.1 Consideraciones generales

Cierre la válvula de mariposa con asiento metálico girando el disco con una torsión contra el asiento. Seleccione la torsión adecuada en las Tablas 7 y 8 para el ajuste del tornillo de tope hasta la posición cerrada del actuador.

Intente no exceder los valores indicados ya que una torsión excesiva ejercería demasiada presión sobre el asiento y la junta entre el disco y el eje.

Tras cambiar el asiento y montar el actuador, reajuste siempre el tornillo de tope.

6.6.2 Actuadores no tabulados

Cierre la válvula según la torsión tabulada Mc y ajuste los topes en consecuencia. Anote la torsión incrementada creada por el actuador cuando la válvula está cerrada.

NOTA:

Metso Automation no asume responsabilidad por la compatibilidad de actuadores no instalados por Metso Automation.

6.6.3 Cambio de la posición de montaje

ATENCIÓN:

No se debe extraer el actuador de la válvula en una tubería presurizada como resultado de la torsión dinámica.

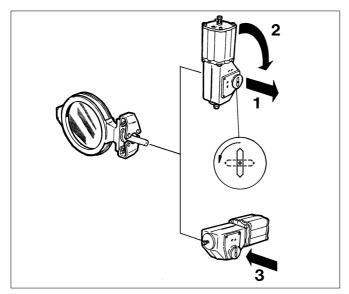


Fig. 23. Cambio de la posición de montaje

Extraiga siempre el actuador del eje de la válvula antes de montarlo en otra ranura. Reajuste el límite de posición cerrada según se indica.

Si se acciona manualmente, la válvula debería cerrarse cuando el volante manual se gira en sentido de las agujas del reloj. En cilindros de doble acción, el pistón debe estar en la posición superior del cilindro cuando la válvula está cerrada.

En esta posición, el actuador crea una torsión máxima. No gire el disco más de 90° ya que el asiento podría resultar dañado.

6.6.4 Actuador de cilindro de doble acción B1C

- □ Aplique la presión de cierre tabulada Pc a la conexión de aire en la base del cilindro.
- Una vez retirado el tornillo de tope, compruebe a través del agujero de conexión de aire que el pistón no toca el extremo del cilindro.
 - En caso afirmativo, afloje los tornillos del soporte y gire el actuador en el sentido de las agujas del reloj para aumentar el margen de ajuste.
- □ Gire el tornillo de tope de posición cerrada hasta que toque el pistón, y luego gírelo 1/4 de vuelta en sentido inverso y ciérrelo. Aplique Loctite 225 u otro sellador no endurecedor para que sea estanco. El sellador no debe penetrar en el cilindro.
- □ Se requiere un tornillo extra largo para ángulos de abertura < 80°.



Fig. 24. Actuador de cilindro, serie B1C

6.6.5 Actuador de diafragma de doble acción EC

Siga las instrucciones de la Sección 6.6.4. Véase también la Fig. 19.

6.6.6 Actuador de cilindro con muelle de retorno B1J

Resorte para cerrar

- □ Antes de montar el cilindro, atornille completamente el tornillo de tope de posición cerrada.
- □ La tabla al dorso indica *) resorte cuando la torsión creada por el resorte no supera la torsión de cierre máxima permitida Mc. De lo contrario, aplique la presión tabulada Pc en la conexión de aire del extremo del cilindro contra la fuerza del resorte. El tornillo de tope no se puede extraer cuando el cilindro está presurizado. Abra el tornillo de tope hasta que no toque el pistón.
- ☐ Gire el tornillo de tope de posición cerrada hasta que toque el pistón, y luego gírelo 1/4 de vuelta en sentido inverso y ciérrelo. Aplique Loctite 225 u otro sellador no endurecedor para que sea estanco. El sellador no debe penetrar en el cilindro.
- □ Tras el ajuste, verifique el margen de ajuste a través del agujero de la conexión de aire. El pistón no debe tocar el extremo del cilindro. Si es necesario, incremente el margen aflojando los tornillos del soporte y girando el actuador en el sentido de las agujas del reloj.

Se requiere un tornillo extra largo para ángulos de abertura < 80°.

Fig. 25. Actuador de cilindro, serie B1J

6.6.7 Actuador de cilindro con muelle de retorno B1JA

Resorte para abrir

- Cuando el actuador no está presurizado, la válvula está abierta. Desatornille el tornillo de tope de límite de cierre (caja del actuador). Aplique una presión de cierre tabulada Pc a la conexión de aire en el extremo inferior del cilindro contra la fuerza del resorte para cerrar la válvula.
- Verifique a través del agujero del tornillo de tope que el pistón no toca el extremo superior del cilindro. En caso afirmativo, afloje los tornillos del soporte y gire el actuador en el sentido de las agujas del reloj para aumentar el margen de ajuste.

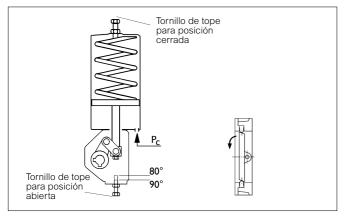


Fig. 26. Actuador de cilindro, serie B1JA

□ Gire el tornillo de tope de posición cerrada hasta que toque el pistón, y luego gírelo 1/4 de vuelta en sentido inverso y ciérrelo. Aplique Loctite 225 u otro sellador no endurecedor para que sea estanco. El sellador no debe penetrar en el cilindro.

Se requiere un tornillo extra largo para ángulos de abertura $< 80^{\circ}$.

6.6.8 Actuador de diafragma con muelle de retorno EJ

Resorte para cerrar

Siga las instrucciones de la Sección 6.6.6. Véase también la Fig. 19.

Resorte para abrir

Siga las instrucciones de la Sección 6.6.7. Véase también la Fig. 19.

6.6.9 Operador de la serie M

- Cierre la válvula según la torsión primaria tabulada
 M1 (torsión del volante manual) que se indica en las
 Tablas 7 y 8.
- Apriete el tornillo de tope de posición cerrada hasta que toque el punto de enlace, luego gírelo 1/4 de vuelta en sentido inverso y séllelo con Loctite 225.

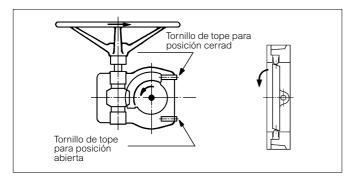


Fig. 28. Actuador, serie M

6.6.10 Palanca manual RH

- □ Monte la palanca manual en la válvula, pero no apriete los tornillos hexagonales (A). Gire la palanca con la fuerza F de la Tabla 6.
- Cuando se aplique una torsión de cierre, gire el piñón de la carcasa (B) del límite de cierre para contactar con el brazo de la palanca. Apriete los tornillos hexagonales (A).

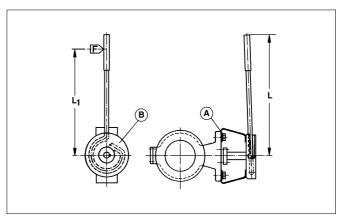


Fig. 29. Palanca manual, serie RH

Tabla 7. Palanca manual RH, valores de ajuste

Tamaño	L	L1	Torsión		ı	F
DN	mm	mm	Nm	lbf ft	N	lbf
80	400	350	40	30	115	26
100	400	350	70	52	200	45
125	400	350	100	74	285	63
150	500	450	135	100	300	67

6.6.11 Operador eléctrico

Las instrucciones de ajuste se proporcionan en un folleto independiente, código D304568, suministrado por el fabricante.

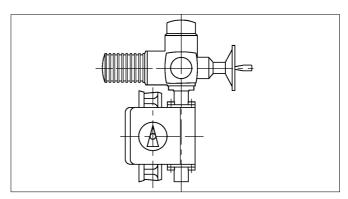


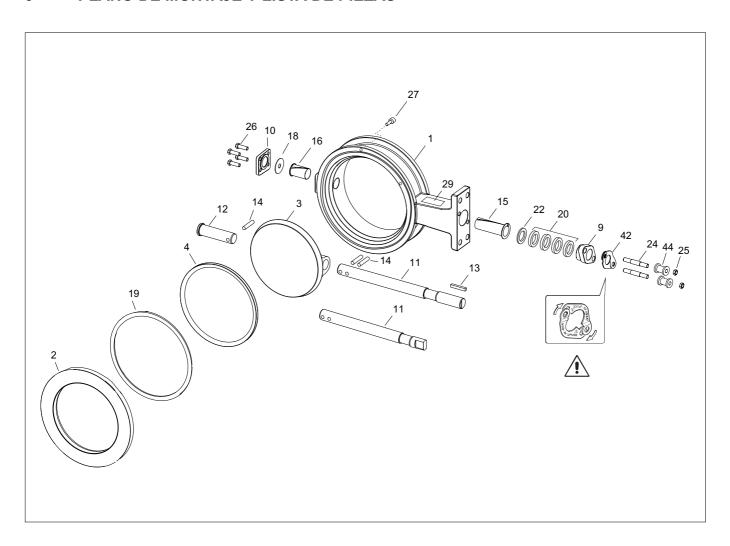
Fig. 27. Operador eléctrico

7 HERRAMIENTAS

No se necesita ninguna herramienta especial para el mantenimiento de la válvula.

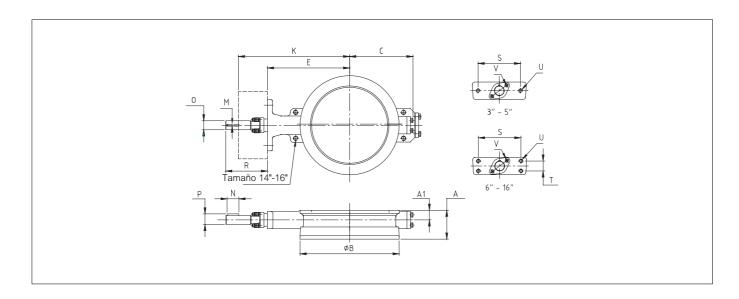
No obstante, recomendamos un extractor para retirar el actuador de la válvula. La herramienta se puede pedir al fabricante.

8 PEDIDOS DE PIEZAS DE REPUESTO

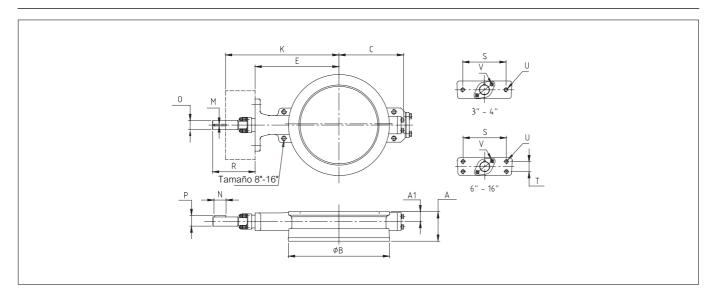

Cuando pida piezas de repuesto, incluya siempre la siguiente información:

- Designación del tipo de válvula (ver la placa de identificación o los documentos).
- □ Número de la lista de piezas, número de pieza, nombre de la pieza y cantidad deseada, o
- □ Número de este manual, número de pieza, nombre de la pieza y cantidad deseada.

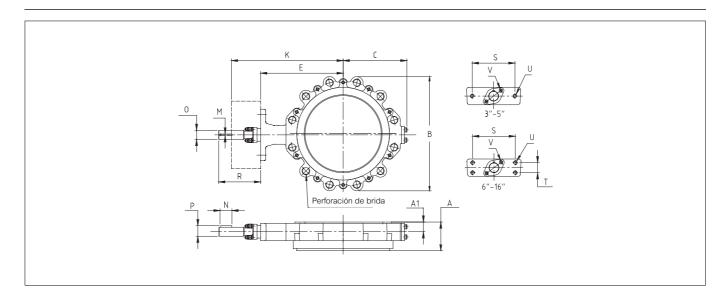
Tabla 8. Torsiones de cierre, series LW5C, LG5C, LW5D y LG5D


*) resorte = torsión del resorte no adecuada para lograr la estanqueidad según ISO 5208 Tipo D, BS 6755 Parte **) LW5D_16 y LG5D_16 tienen un tamaño reducido hasta 14". Torsiones de cierre según el tamaño de 14".

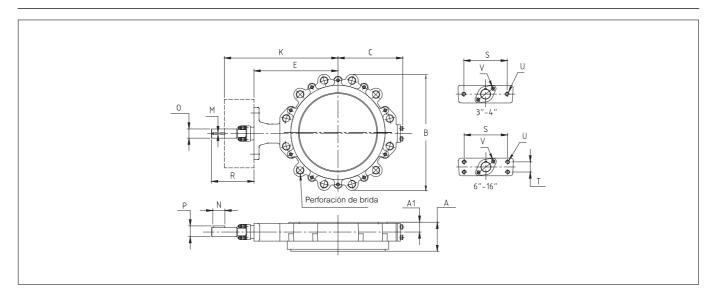
9 PLANO DE MONTAJE Y LISTA DE PIEZAS


Artículo	Ctdad.	Descripción	Repuestos recomendados
1	1	Cuerpo	
2	1	Anillo de la abrazadera	
3	1	Disco	
4	1	Anillo del asiento	×
9	1	Prensaestopas	
10	1	Brida ciega	
11	1	Eje motor	
12	1	Eje	
13	1	Llave	
14	3	Pasador	
15	1	Cojinete	
16	1	Cojinete	
18	1	Junta	X
19	1	Sello del cuerpo	X
20	1	Empaquetadura del prensaestopas	X
21	1	Anillo de la chapa	
22	1	Anillo antiextrusión	
24	2	Espárrago	
25	2	Tuerca hexagonal	
26		Tornillo hexagonal	
27		Tornillo de clavija hexagonal	
29	1	Placa de identificación	
42	2	Placa de retención	
44	2	Kit TA-Luft	

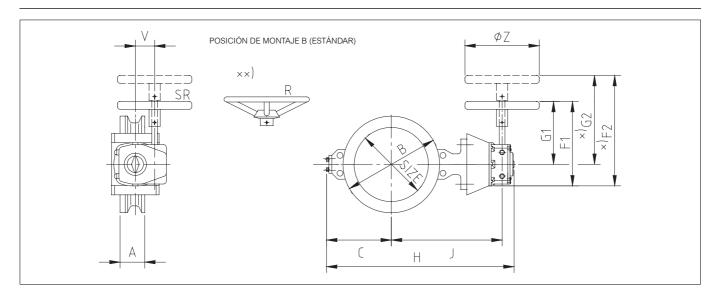
10 DIMENSIONES Y PESOS


LW5CB, ASME 150

				Dime	ensiones	, mm				U	v		Dime	ensiones	, mm		Dana
Tamaño	A 1	Α	S-L_5C A (K2)	В	С	E	к	s	Т	Rosca	Rosca	0	R	М	N	Р	Peso kg
3	18	48	49	128	80	168	248	70	-	3/8	5/16	15	105	4.76	25	17.0	4
4	20	54	56	158	100	182	272	90	-	1/2	5/16	20	125	4.76	35	22.2	6
5	22	56	64	190	135	205	295	90	-	1/2	5/16	20	125	4.76	35	22.2	9
6	23	57	70	212	150	227	317	110	32	1/2	5/16	20	125	4.76	35	22.2	15
8	24	64	71	268	160	257	347	110	32	1/2	3/8	25	135	6.35	46	27.8	20
10	29	71	76	320	210	290	400	130	32	1/2	3/8	30	160	6.35	51	32.9	30
12	32	81	83	378	275	320	430	130	32	1/2	3/8	35	160	9.52	58	39.1	45
14	36	92	92	438	290	355	475	160	40	5/8	3/8	40	188	9.52	68	44.2	70
16	44	102	102	485	320	405	525	160	40	5/8	1/2	45	200	12.7	80	50.4	95


LW5DB, ASME 300

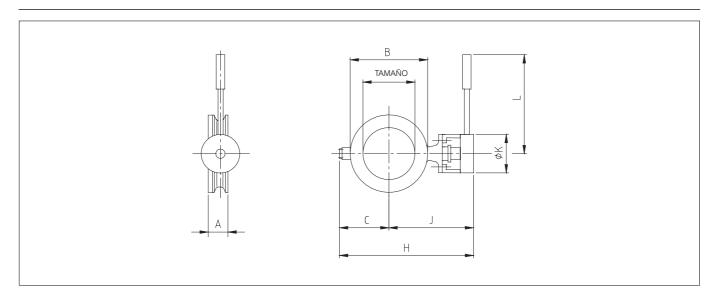
				Dime	ensiones	, mm				u	v		Dime	ensiones	, mm		D
Tamaño	A1	А	S-L_5D A	В	С	E	к	s	Т	Rosca	Rosca	0	R	М	N	Р	Peso kg
3	18	48	49	128	80	168	248	70	-	3/8	5/16	15	105	4.76	25	17.0	4
4	20	54	56	158	100	182	272	90	-	1/2	5/16	20	125	4.76	35	22.2	6
6	27	59	76	218	145	232	322	110	32	1/2	3/8	25	135	6.35	46	27.8	20
8	34	73	87	276	205	274	364	130	32	1/2	3/8	35	146	9.52	58	39.1	36
10	41	83	114	335	260	320	440	160	40	5/8	1/2	45	200	12.7	80	50.4	55
12	46	92	114	395	300	360	500	160	55	7/8	1/2	50	230	12.7	90	55.5	80
14	57	117	127	450	330	400	540	160	55	7/8	1/2	55	230	12.7	90	60.6	100
16	66	133	140	505	370	440	580	160	55	7/8	1/2	55	230	12.7	90	60.6	120


LG5C, ASME 150

T #				Dimer	nsiones	, mm				U Rosca	V Rosca				Dime	nsiones	s, mm		Peso
Tamaño	A 1	Α	S-L_5C A (K2)	В	С	E	к	s	т	UNC	UNC	UNC	Qty	0	R	м	N	Р	kg
3	17	48	49	205	120	168	248	70	-	3/8	5/16	5/8	4	15	105	4.76	25	17.0	9
4	21	54	56	235	135	182	272	90	-	1/2	5/16	5/8	8	20	125	4.76	35	22.2	14
5	22	56	64	270	145	205	295	90	-	1/2	5/16	5/8	8	20	125	4.76	35	22.2	20
6	22	57	70	300	160	227	317	110	32	1/2	5/16	3/4	8	20	125	4.76	35	22.2	24
8	25	64	71	360	185	257	347	110	32	1/2	3/8	3/4	8	25	135	6.35	46	27.8	34
10	28	71	76	425	220	290	400	130	32	1/2	3/8	7/8	12	30	160	6.35	51	32.9	43
12	32	81	83	485	275	320	430	130	32	1/2	3/8	7/8	12	35	160	9.52	58	39.1	75
14	36	92	92	555	310	355	475	160	40	5/8	3/8	1	12	40	188	9.52	68	44.2	95
16	41	102	102	610	340	405	525	160	40	5/8	1/2	1	16	45	200	12.7	80	50.4	150

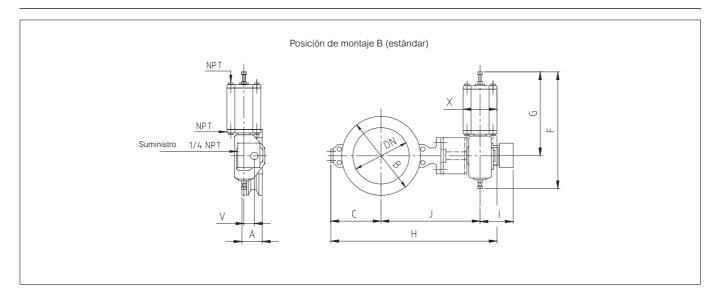
LG5D, ASME 300

Tamaño				Dimer	nsiones	, mm				U Rosca	V Rosca			D	imensi	ones, m	m		Peso
Tamano	A1	А	S-L_5D A	В	С	E	к	s	т	UNC	UNC	UNC	Qty	o	R	М	N	Р	kg
3	17	48	49	205	120	168	248	70	-	3/8	5/16	3/4	8	15	105	4.76	25	17.0	9
4	21	54	56	235	135	182	272	90	-	1/2	5/16	3/4	8	20	125	4.76	35	22.2	14
6	24	59	76	290	160	232	322	110	32	1/2	3/8	3/4	12	25	135	6.35	46	27.8	24
8	34	73	87	365	205	274	364	130	32	1/2	3/8	7/8	12	35	146	9.52	58	39.1	45
10	41	83	114	435	260	320	440	160	40	5/8	1/2	1	16	45	200	12.7	80	50.4	85
12	46	92	114	500	300	360	500	160	55	7/8	1/2	1-1/8	16	50	230	12.7	90	55.5	145
14	57	117	127	565	330	400	540	160	55	7/8	1/2	1-1/8	20	55	230	12.7	90	60.6	190
16	62	133	140	649	370	440	580	160	55	7/8	1/2	1-1/4	20	55	230	12.7	90	60.6	275



LW5C + Serie M

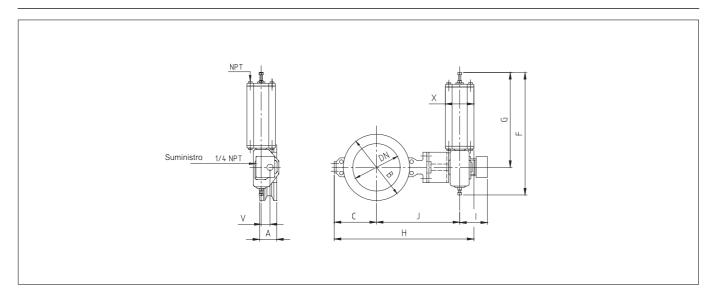
VÁLVULA	TAMAÑO	OPERADOR /	L_5C_	S-L_5C_		LW_{-}			LG_{-}				Dimer	siones	s, mm			LW5C-M	LG5C-M
VALVULA	IAWANO	ISO 5211	Α	A (K2)	В	С	Н	В	С	Н	F1	G1	F2 (x	G2 (x	J	٧	Z	kg	kg
LW5C_/LG5C_	3	M07/F07	48	49	128	80	390	205	120	430	196	152	-	-	275	39	125	8	13
	4	M07/F07	54	56	158	100	435	235	135	470	196	152	-	-	299	39	125	10	18
	5	M07/F07	56	64	190	135	495	270	145	505	196	152	-	-	322	39	125	13	24
	6	M07/F07	57	70	212	150	530	300	160	540	196	152	-	-	344	39	125	19	28
	8	M10/F10 o M10E/F10	64	71	268	160	580	360	185	605	227	169	297	239	387	52	200	26	40
	10	M12/F12 o M12E/F12	71	76	320	210	695	425	220	705	285	210	357	282	440	67	250	42	55
	12	M14/F14 o M14E/F14	81	83	378	275	805	485	275	805	378	279	435	354	480	90	457	65	95
	14	M14/F16 o M14E/F16	92	92	438	290	865	555	310	885	378	279	435	354	525	90	457	95	120
	16	M16/F16 o M16E/F16	102	102	485	320	970	610	340	990	549	391	642	466	575	154	610	140	195


LW5D + Serie M

VÁLVULA	TAMAÑO	OPERADOR /	L_5D	S-L_5D		LW5)_		LG5E)_			Dimen	siones	, mm			LW5DM	LG5DM
VALVOLA	IAWANO	ISO 5211	Α	Α	В	С	Н	В	С	Н	F1	G1	F2 (x	G2 (x	J	٧	Z	kg	kg
LW5D_/LG5D_	3	M07/F07	48	49	128	80	390	205	120	430	196	152	-	-	275	39	125	8	13
	4	M07/F07	54	56	158	100	435	235	135	470	196	152	-	-	299	39	125	10	18
	6	M10/F10 o M10E/F10	59	76	218	145	540	290	160	555	227	169	297	239	327	52	200	26	30
	8	M14/F14 o M14E/F14	73	87	278	205	670	365	205	670	378	279	435	354	414	90	457	56	65
	10	M14/F16 o M14E/F16	83	114	335	260	800	435	260	800	378	279	435	354	490	90	457	75	105
	12	M15/F16 o M15E/F16	92	114	395	300	910	500	300	910	457	331	532	406	550	123	457	115	180
	14	M15/F16 o M15E/F16	117	127	450	330	980	565	330	980	457	331	532	406	590	123	457	135	225
	16	M15/F16 o M15E/F16	133	140	505	370	1060	650	370	1060	457	331	532	406	630	123	457	155	310

LW5C + RH

VÁLVULA	TAMAÑO	PALANCA	L_5C_	S-L_5C_		LW_			LG_		Dime	nsiones	s, mm	LW5CRH	LG5CRH
VALVOLA	IAWANO	MANUAL	Α	A (K2)	В	С	Н	В	С	Н	J	K	L	kg	kg
LW5C_/LG5C_	3	RH 415	49	49	128	80	355	205	120	395	275	100	400	5	10
	4	RH 420	52	56	158	100	410	235	135	445	310	100	400	7	15
	5	RH 420	56	64	190	135	495	270	145	505	330	100	400	11	22
	6	RH 520	56	70	212	150	530	300	160	540	370	130	500	17	26

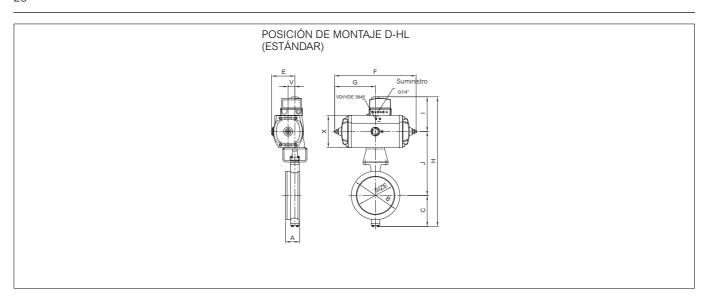


LW5C + B1C

Wilanda	DN	A -41	L_5	S-L_5		LW_			LG_			I	Dimen	siones	s, mm			LW5C-B1C	LG5C-B1C
Válvula	DN	Actuador	Α	Α	В	С	Н	В	С	Н	F	G	ı	J	V	Х	NPT	kg	kg
L_5CB	3	B1C9	48	49	128	80	445	205	120	485	450	315	220	307	43	110	1/4	20	25
	4	B1C9	54	56	158	100	490	235	135	525	450	315	220	331	43	110	1/4	22	30
	4	B1C11	54	56	158	100	510	235	135	545	535	375	225	337	51	135	3/8	28	36
	5	B1C9	56	64	190	135	550	270	145	560	450	315	220	351	43	110	1/4	25	35
	5	B1C11	56	64	190	135	570	270	145	580	535	375	225	360	51	135	3/8	31	41
	6	B1C9	57	70	212	150	585	300	160	595	450	315	220	376	43	110	1/4	30	40
	6	B1C11	57	70	212	150	605	300	160	615	535	375	225	382	51	135	3/8	37	47
	6	B1C13	57	70	212	150	640	300	160	650	640	445	240	398	65	175	3/8	53	63
	8	B1C11	64	71	268	160	645	360	185	670	535	375	225	412	51	135	3/8	42	56
	8	B1C13	64	71	268	160	680	360	185	705	640	445	240	428	65	175	3/8	58	72
	8	B1C17	64	71	268	160	715	360	185	740	785	555	255	443	78	215	1/2	82	96
	10	B1C13	71	76	320	210	785	425	220	795	640	445	240	481	65	175	3/8	68	83
	10	B1C17	71	76	320	210	820	425	220	795	785	555	255	496	78	215	1/2	90	105
	12	B1C13	81	83	378	275	880	485	275	880	640	445	240	511	65	175	3/8	82	112
	12	B1C17	81	83	378	275	915	485	275	915	785	555	255	526	78	215	1/2	105	135
	12	B1C20	81	83	378	275	935	485	275	935	880	590	270	545	97	215	1/2	130	160
	14	B1C17	92	92	438	290	975	555	310	995	785	555	255	571	78	215	1/2	135	155
	14	B1C20	92	92	438	290	995	555	310	1015	880	590	270	590	97	215	1/2	155	175
	14	B1C25	92	92	438	290	1040	555	310	1060	1075	725	310	613	121	265	1/2	215	235
	16	B1C20	102	102	485	320	1075	610	340	1095	880	590	270	640	97	215	1/2	180	230
	16	B1C25	102	102	485	320	1120	610	340	1140	1075	725	310	663	121	265	1/2	235	285

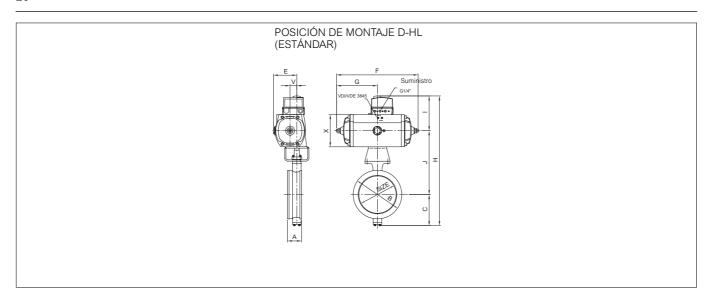
LW5D + B1C

Vábada	Tamaño	A =4= d= #	L_5	S-L_5		LW_			LG_			Din	nensio	nes, m	ım		NPT	LW5D-B1C	LG5D-B1C
Válvula	Tamano	Actuador	Α	Α	В	С	Н	В	С	Н	F	G	I	J	٧	х	NPI	kg	kg
L_5DB	3	B1C9	48	49	128	80	445	205	120	485	450	315	220	307	43	110	1/4	20	25
	4	B1C9	54	56	158	100	490	235	135	525	450	315	220	331	43	110	1/4	22	30
	4	B1C11	54	56	158	100	510	235	135	545	535	375	225	337	51	135	3/8	28	36
	6	B1C9	59	76	218	145	605	290	160	620	450	315	220	387	43	110	1/4	35	39
	6	B1C11	59	76	218	145	640	290	160	655	535	375	225	403	51	135	3/8	41	45
	6	B1C13	59	76	218	145	675	290	160	690	640	445	240	418	65	175	3/8	57	61
	8	B1C11	73	89	278	205	745	365	205	745	535	375	225	445	51	135	3/8	57	66
	8	B1C13	73	89	278	205	780	365	205	780	640	445	240	460	65	175	3/8	73	82
	8	B1C17	73	89	278	205	795	365	205	795	785	555	255	479	78	215	1/2	97	106
	10	B1C17	83	114	335	260	910	435	260	910	785	555	255	536	78	215	1/2	116	145
	10	B1C20	83	114	335	260	930	435	260	930	880	590	270	555	97	215	1/2	135	165
	10	B1C25	83	114	335	260	975	435	260	975	1075	725	310	578	121	265	1/2	195	225
	12	B1C20	92	114	395	300	1030	500	300	1030	880	590	270	615	97	215	1/2	160	225
	12	B1C25	92	114	395	300	1075	500	300	1075	1075	725	310	638	121	265	1/2	220	285
	14	B1C20	117	127	450	330	1100	565	330	1100	880	590	270	655	97	215	1/2	180	270
	14	B1C25	117	127	450	330	1145	565	330	1145	1075	725	310	678	121	265	1/2	240	330
	16	B1C20	133	140	505	370	1180	650	370	1180	880	590	270	695	97	215	1/2	200	260
	16	B1C25	133	140	505	370	1225	650	370	1225	1075	725	310	718	121	265	1/2	260	415

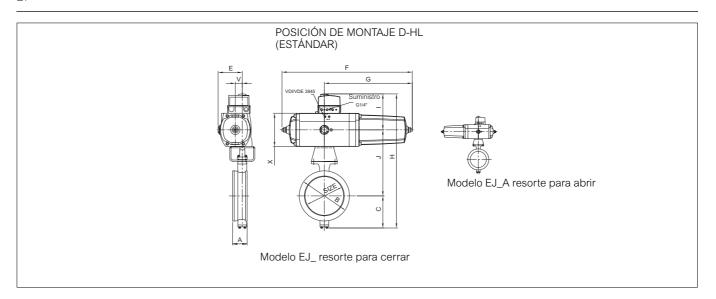


LW5C + B1J

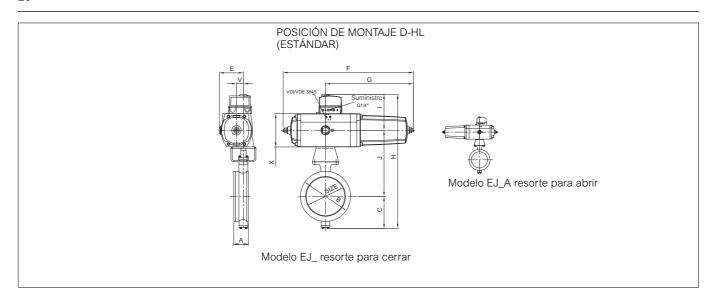
	_ ~		L_5	S-L_5		LW_			LG_			Dim	ensior	nes, m	m		NDT	LW5C-B1J	LG5C-B1J
Válvula	Iamano	Actuador	Α	Α	В	С	Н	В	С	Н	F	G	ı	J	٧	Х	NPT	kg	kg
L_5CB	3	B1J8	48	49	128	80	460	205	120	500	555	420	220	307	43	135	3/8	27	32
	4	B1J8	54	56	158	100	505	235	135	540	555	420	220	331	43	135	3/8	29	37
	4	B1J10	54	56	158	100	530	235	135	565	640	480	225	337	51	175	3/8	42	50
	5	B1J8	56	64	190	135	560	270	145	570	555	420	220	351	43	135	3/8	32	42
	5	B1J10	56	64	190	135	585	270	145	595	640	480	225	360	51	175	3/8	45	55
	6	B1J8	57	70	212	150	600	300	160	610	555	420	220	376	43	135	3/8	37	47
	6	B1J10	57	70	212	150	625	300	160	635	640	480	225	382	51	175	3/8	51	61
	6	B1J12	57	70	212	150	660	300	160	670	815	620	240	398	65	215	1/2	79	89
	8	B1J10	64	71	268	160	665	360	185	690	640	480	225	412	51	175	3/8	56	70
	8	B1J12	64	71	268	160	700	360	185	725	815	620	240	428	65	215	1/2	84	98
	8	B1J16	64	71	268	160	740	360	185	765	990	760	255	443	78	265	1/2	128	142
	10	B1J12	71	76	320	210	805	425	220	815	815	620	240	481	65	215	1/2	94	109
	10	B1J16	71	76	320	210	845	425	220	855	990	760	255	496	78	265	1/2	132	147
	12	B1J12	81	83	378	275	900	485	275	900	815	620	240	511	65	215	1/2	108	138
	12	B1J16	81	83	378	275	940	485	275	940	990	760	255	526	78	265	1/2	150	180
	12	B1J20	81	83	378	275	1025	485	275	1025	1230	940	270	545	97	395	3/4	230	260
	14	B1J16	92	92	438	290	1000	555	310	1020	990	760	255	571	78	265	1/2	180	200
	14	B1J20	92	92	438	290	1085	555	310	1105	1230	940	270	590	97	395	3/4	255	275
	14	B1J25	92	92	438	290	1160	555	310	1180	1490	1140	310	613	121	505	3/4	435	455
	16	B1J20	102	102	485	320	1165	610	340	1185	1230	940	270	640	97	395	3/4	280	330
	16	B1J25	102	102	485	320	1240	610	340	1260	1490	1140	310	663	121	505	3/4	455	505


LW5D + B1J

V/411.	T	A -41	L_5	S-L_5		LW_			LG_			Dim	ensior	nes, m	m		NDT	LW5D-B1J	LG5D-B1J
Válvula	Iamano	Actuador	Α	Α	В	С	Н	В	С	Н	F	G	ı	J	V	Х	NPT	kg	kg
L_5DB	3	B1J8	48	49	128	80	460	205	120	500	555	420	220	307	43	135	3/8	27	32
	4	B1J8	54	56	158	100	505	235	135	540	555	420	220	331	43	135	3/8	29	37
	4	B1J10	54	56	158	100	530	235	135	565	640	480	225	337	51	175	3/8	42	50
	6	B1J10	59	76	218	145	625	290	160	640	640	480	225	387	51	175	3/8	55	60
	6	B1J12	59	76	218	145	660	290	160	675	815	620	240	403	65	215	1/2	70	75
	6	B1J16	59	76	218	145	700	290	160	715	990	760	255	418	78	265	1/2	125	130
	8	B1J12	73	89	278	205	765	365	205	765	815	620	240	445	65	215	1/2	88	98
	8	B1J16	73	89	278	205	805	365	205	805	990	760	255	460	78	265	1/2	140	150
	8	B1J20	73	89	278	205	890	365	205	890	1230	940	270	479	97	395	3/4	220	230
	10	B1J16	83	114	335	260	935	435	260	935	990	760	255	536	78	265	1/2	160	190
	10	B1J20	83	114	335	260	1020	435	260	1020	1230	940	270	555	97	395	3/4	235	265
	10	B1J25	83	114	335	260	1095	435	260	1095	1490	1140	310	578	121	505	3/4	415	445
	12	B1J20	92	114	395	300	1120	500	300	1120	1230	940	270	615	97	395	3/4	260	325
	12	B1J25	92	114	395	300	1195	500	300	1195	1490	1140	310	638	121	505	3/4	440	505
	14	B1J20	117	127	450	330	1190	565	330	1190	1230	940	270	655	97	395	3/4	280	370
	14	B1J25	117	127	450	330	1265	565	330	1265	1490	1140	310	678	121	505	3/4	460	550
	16	B1J20	133	140	505	370	1265	650	370	1265	1230	940	270	695	97	395	3/4	300	360
	16	B1J25	133	140	505	370	1285	650	370	1285	1490	1140	310	718	121	505	3/4	480	540


LW5C + EC

V/4 h l =	T ~-	A -41	L_5	S-L_5		LW_			LG_			I	Dimen	siones	s, mm			VDI/VDE	LW5C-EC	LG5C-EC
Válvula	Tamaño	Actuador	Α	Α	В	С	Н	В	С	Н	E	F	G	I	J	٧	Х	3845	kg	kg
L_5CB	3	EC07	48	49	128	80	560	205	120	600	81	300	150	172	307	24	117	G1/4	14	19
	4	EC10	54	56	158	100	640	235	135	675	112	405	203	191	350	32	155	G1/4	24	32
	5	EC10	56	64	190	135	700	270	145	710	112	405	203	191	373	32	155	G1/4	27	38
	5	EC12	56	64	190	135	745	270	145	755	145	495	248	214	395	42	200	G1/4	44	55
	6	EC10	57	70	212	150	735	300	160	745	112	405	32	191	395	32	155	G1/4	33	43
	6	EC12	57	70	212	150	780	300	160	790	145	495	248	214	417	42	200	G1/4	50	60
	8	EC12	64	71	268	160	820	360	185	845	145	495	248	214	447	42	200	G1/4	55	70
	8	EC14	64	71	268	160	880	360	185	905	196	675	338	243	477	56	259	G1/4	95	110
	10	EC14	71	76	320	210	985	425	220	995	196	675	338	243	530	56	259	G1/4	105	120
ĺ	12	EC14	81	83	378	275	1080	485	275	1080	196	675	338	243	560	56	259	G1/4	120	150


LW5D + EC

Vábada	Tamaño	Actuador	L_5	S-L_5		LW_			LG_				Dimen	siones	, mm			VDI/VDE	LW5D-EC	LG5D-EC
Válvula	Tamano		' Α	Α	В	С	Н	В	С	Н	E	F	G	ı	J	٧	х	3845	kg	kg
L_5DB	3	EC07	48	49	128	80	560	205	120	600	81	300	150	172	307	24	117	G1/4	14	19
	4	EC10	54	56	158	100	640	235	135	675	112	405	203	191	350	32	155	G1/4	24	32
	6	EC12	59	76	218	145	780	290	160	795	145	495	248	214	422	42	200	G1/4	55	60
	8	EC12	73	89	276	205	885	365	205	885	145	495	248	214	464	42	200	G1/4	73	83
	8	EC14	73	89	276	205	945	365	205	945	196	675	338	243	494	56	259	G1/4	113	123
	10	EC14	83	114	335	260	1075	435	260	1075	196	675	338	243	570	56	259	G1/4	130	160

LW5C + EJ

Vábada	Tamaño	Actuador	L_5	S-L_5		LW_			LG_			С	Dimens	siones	, mm			VDI/VDE	LW5C-EJ	LG5C-EJ
Válvula	Tamano	Actuador	Α	Α	В	С	Н	В	С	Н	E	F	G	ı	J	٧	Х	3845	kg	kg
L_5CB	3	EJ07	48	49	128	80	560	205	120	600	81	443	293	172	307	24	117	G1/4	18	23
	4	EJ10	54	56	158	100	640	235	135	675	112	606	403	191	350	32	155	G1/4	30	38
	5	EJ10	56	64	190	135	700	270	145	710	112	606	403	191	373	32	155	G1/4	33	44
	5	EJ12	56	64	190	135	745	270	145	755	145	770	522	214	395	42	200	G1/4	63	74
	6	EJ12	57	70	212	150	780	300	160	790	145	770	522	214	417	42	200	G1/4	70	80
	8	EJ14	64	71	268	160	880	360	185	905	196	1030	692	243	477	56	259	G1/4	132	145
	10	EJ14	71	76	320	210	985	425	220	995	196	1030	692	243	530	56	259	G1/4	142	155

LW5D + EJ

Válvula	Tamaño	Actuador	Actuador L_5 S-L_5			LW_			LG_			D	imens	iones	, mm			VDI/VDE	LW5D-EJ	LG5D-EJ
Vaivuia	Tuillano	Actuation	Α	Α	В	С	Н	В	С	Н	E	F	G	ı	J	٧	Х	3845	kg	kg
L_5DB	3	EJ07	48	49	128	80	560	205	120	600	81	443	293	172	307	24	117	G1/4	18	23
	4	EJ10	54	56	158	100	640	235	135	675	112	606	403	191	350	32	155	G1/4	30	38
	6	EJ12	59	76	218	145	780	290	160	795	145	770	522	214	422	42	200	G1/4	75	80
	8	EJ14	73	89	276	205	945	365	205	945	196	1030	692	243	494	56	259	G1/4	175	185

11 CODIFICACIÓN DE TIPOS

VÁLVULA DE MARIPOSA NELDISC® Series LW y LG, con certificación ASME

ĺ	1.	2.	3.	4.	5.	6.	7.	8.	9.	10.	11.	12.		13.	14.
I		LW	5	С	В	Α	08	Р	Α	С	Α	G	/	05	

I	1º signo	CONSTRUCCIÓN DEL DISCO
	EN S	Guarnición para el equilibrado de flujos en el lado de aguasabajo del cuerpo de la válvula

2.	DISEÑO / SERIE DE PRODUCTO
LW	Válvula de mariposa con asiento metálico de tipo disco y agujero completo
LG	Válvula de mariposa con asiento metálico de tipo asa y agujero completo

3.	CARA A CARA
5	API 609, categoría B
Υ	Especial

4.	RANGO DE PRESIÓN
С	ASME clase 150, con certificación completa
D	ASME clase 300, con certificación completa

5.	CONEXIÓN VÁLVULA-ACTUADOR
В	Eje motor con ranura / soporte estándar Neles

6.	CONSTRUCCIÓN
А	ESTÁNDAR - cojinetes AISI 316 + teflón - cuerpo y juntas de la brida ciega de grafito - empaquetadura TA-Luft con carga móvil
С	CRIOGÉNICO - cubierta de protección ampliada y eje motor - de lo contrario según construcción A
N	SERVICIO AMPLIADO (máx. +430 °C) - superficies del cojinete del eje nitradas - cojinetes de aleación de cobalto - cuerpo y juntas de la brida ciega de grafito - empaquetadura TA-Luft con carga móvil
Н	ALTA TEMP - superficies del cojinete del eje recubiertas con Celsit - cojinetes de aleación de cobalto - cuerpo y juntas de la brida ciega de grafito - empaquetadura TA-Luft con carga móvil
Υ	Especial

	7.	TAMAÑO (pulg)
I		03, 04, 05 (clase 150 sólo cuerpo), 06, 08, 10, 12, 14, 16

	MATERIALES												
8º signo	CUERPO	9º signo	DISCO	10º signo	EJES Y PASADORES								
А	CF8M	Α	F316 o CF8M	С	Gr. 630								
Р	WCB				(17-4PH)								

MATERIALES NO ESTÁNDAR						
8º signo	ARMAZÓN	9º signo	DISCO	10° signo	EJES Y PASADORES	
F	LCC	В	F316/CF8M + aleación de cobalto	Н	Nimonic 80A	
N	WC6	N	SS 410 o CA6NM	N	XM-19 (Nitronic 50)	
U	C12			J	SS 329 (SIS 2324)	
S	C5				Sólo para LW5C_	

11º signo	ASIENTO ESTÁNDAR	11º signo	ASIENTO NO ESTÁNDAR
А	Incoloy 825, cromado duro	Н	Nimonic 80A, cromado duro
С	Incoloy 825, cromado duro impregnado de polímeros	K	W. No. 2.4681, UNSR31233 (ULTIMET)

12.	OPCIONES DE DISEÑO	
Т	Empaquetadura de anillo en V de teflón	
G	Empaquetadura de grafito; construcción segura antiincendios	
Υ	Especial	

13.	SUPERFICIE DE BRIDAS	
-	ASME B16.5, superficie plana, acabado suave (Ra 3.2 - 6.3), estándar, sin signo	
20	Superficie plana, acabado estándar (Ra 10 - 12.5)	
05	Junta del anillo	
Υ	Especial	

14.	PERFORACIÓN DE BRIDA
-	Según el rango de presión de la válvula, estándar, sin signo
Υ	Especial

Metso Automation Inc.

Europe, Levytie 6, P.O. Box 310, 00811 Helsinki, Finland. Tel. +358 20 483 150. Fax +358 20 483 151

North America, 44 Bowditch Drive, P.O. Box 8044, Shrewsbury, MA 01545, USA. Tel. +1 508 852 0200. Fax +1 508 852 8172

Latin America, Av. Independéncia, 2500- Iporanga, 18087-101, Sorocaba-São Paulo, Brazil.

Tel.+55 15 3235 9700. Fax:+55 15 3235 9748/49

Asia Pacific, 238A Thomson Road, #25-09 Novena Square Tower A, 307684 Singapore. Tel. +65 6511 1011. Fax +65 6250 0830

Middle East, Roundabout 8, Unit AB-07, P.O. Box 17175, Jebel Ali Freezone, Dubai, United Arab Emirates.

Tel. +971 4 883 6974. Fax +971 4 883 6836

www.metsoautomation.com

