EQUIPO SOLAR COMPACTO TERMOSIFÓN MODELOS DEPÓSITO ALTO:

Familia Ultraselec	tiva		
TA150UFM	TA200 UFM	TA250 UFM	TA300 UFM
TA150UF	TA200UF	TA250UF	TA300UF
	TA200 UFX		TA300 UFX
Familia Selectiva			
TA150PFM	TA200 PFM	TA250 PFM	TA300 PFM
TA150PF	TA200PF	TA250PF	TA300PF
	TA200 PFX		TA300 PFX

Manual de Instalación y uso

MTTA_V1.4_2012 1/32

MTTA_V1.4_2012 2/32

1.1. COMPONENTES Y CARACTERÍSTICAS FÍSICAS

1.1.1.CONTENIDO

Cada modelo equipo viene compuesto por los siguientes elementos:

	Modelo de captador	Nº captadores	Modelo de acumulador	Peso en vacio (kg)
T150UF/T150PSF	T20US/T20PS	1	ATF150I	142
T150UFM/T150PFM	T25US/T25PS	1	ATF1301	144
T200UFX/T200PFX	T20US/T20PS	1		161
T200UF/T200PF	T25US/T25PS	1	ATF200I	163
T200UFM/T200PFM	T20US/T20PS	2		201
T250UF/T250PF	T25US/T25PS	1	ATF250I	183
T250UFM/T250PFM	T20US/T20PS	2	ATFZOU	221
T300UFX/T300PFX	T25PS/T25PS	1		198
T300UF/T300PF	T20US/T20PS	2	ATF300I	236
T300UFM/T300PFM	T25US/T25PS	2		240

Y estándar en todos los equipos, los siguientes accesorios dependiendo del modelo:

CONTENIDO	150 L	200 L	250 L	300 L
Caja de accesorios	1	1	1	1
Conexión corta	1	1	1	1
Conexión larga	1	1	1	1
Válvula de descarga térmica 90°C 6 bar	Opcional	Opcional	Opcional	Opcional
Válvula mezcladora termostática	Opcional*	Opcional*	Opcional*	Opcional*
Resistencia eléctrica 1.500 W + termostato	Opcional	Opcional	Opcional	Opcional

^{*}La válvula mezcladora termostática es obligatoria en los equipos sin control previo de temperatura según normativa vigente.

MTTA_V1.4_2012 3/32

1.1.2.CAPTADOR SOLAR

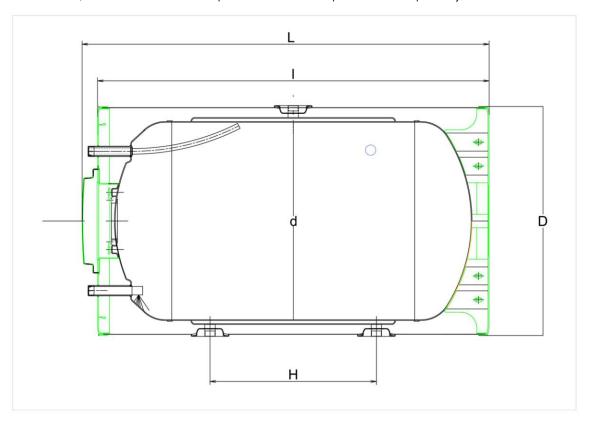
Desarrollado para aplicaciones de aprovechamiento a baja temperatura (inferior a 100° C), su diseño está basado en el efecto "invernadero" y en el de superficies absorbentes.

En su fabricación se emplean los materiales más avanzados para obtener una larga vida útil y el máximo rendimiento energético. Las principales características de los captadores solares Termicol T20PS, T25PS, T20US, T25US se muestran a continuación:

	T20PS	T25PS	T20US	T25US	
Largo (mm)		2.1	30		
Ancho (mm)	970	1200	970	1200	
Espesor (mm)	85				
Superficie total (m²)	2,07	2,56	2,07	2,56	
Superficie de apertura (m²)	1,92	2,39	1,92	2,39	
Superficie del absorbedor (m²)	1,88 2,36 1,88		1,88	2,36	
Rendimiento Óptico	0,76	0,75	0,80	0,79	
Factor de pérdidas K ₁ (W/ K*m ²)	6,66	5,48	3,93	3,49	
Factor de pérdidas K ₂ (W/ K*m ²)	0,007	0,022	0,028	0,018	
Peso en vacío (kg)	37	39	37	39	
Capacidad de fluido (lit.)	1,02	1,27	1,02	1,27	
Caudal recomendado (lit./h*m²)		4	0		
Material del absorbedor		Alumini	o/Cobre		
Tratamiento del absorbedor	Pintura	a Solar		niento electivo	
Espesor aleta de aluminio (mm)		0	,4		
Nº canales	8	10	8	10	
Diámetro de canales (mm)			3		
Diámetro tubo colector (mm)		1	8		
Carcasa	Aluminio				
Material cubierta		Vidrio templado 3,2 mm			
Aislamiento	40) mm, lana de	roca semirrígi	da	

1.1.3.DEPÓSITO TERMOACUMULADOR

ACUMULADOR ATF150 I, ATF200I, ATF250, ATF300I (CIRCULACIÓN INDIRECTA)


Están fabricados en chapa de **acero vitrificado** para evitar problemas de oxidación y corrosión, y garantizar una larga vida del depósito.

Como protección catódica se le ha dotado de un ánodo de magnesio que será conveniente verificar una vez cada año.

La principal característica de los acumuladores para equipos termosifón de Termicol, es que **no necesitan vaso de expansión** para su normal funcionamiento. Una cámara de vapor en la envolvente del depósito facilita la expansión del fluido del circuito primario.

MTTA_V1.4_2012 4/32

Además, los acumuladores Termicol disponen de asas laterales que facilitan la manipulación y elevación de los mismos.

	ATF 150I	ATF 200I	ATF 250I	ATF 300I		
Volumen nominal	150 litros	200 litros	250 litros	300 litros		
T ^a máx. cto. 1 ^o	110 °C	110 °C	110 °C	110 °C		
Presión max. cto. 1º	250 kPa (2,5 bar)	251 kPa (2,5 bar)	251 kPa (2,5 bar)	252 kPa (2,5 bar)		
Superficie de intercambio	0,81 m ²	$0,97 \mathrm{m}^2$	1,38m ²	1,78 m ²		
Volumen cto. 1º	6,7 litros	10 litros	11,2 litros	16,6 litros		
Ta máx. cto. 2º	90 °C	90 °C	90 °C	90 °C		
Presión max. cto. 2º	800 kPa (8 bar)	801 kPa (8 bar)	801 kPa (8 bar)	802 kPa (8 bar)		
Longitud Total (L)	1.023 mm	1.268 mm	1.521 mm	1.784 mm		
Longitud interior (I)	974 mm	1224 mm	1482 mm	1740 mm		
Diámetro exterior (D)		575	mm			
Diámetro interior (d)		500	mm			
Longitud E/S intercambiador (H)	418 mm	523 mm	948 mm	1038 mm		
Peso en vacío (kg)	76	95	115	130		
Protección interior		Tratamiento vitri	ficado DIN 4753			
Aislamiento	25 mm. poliuretano inyectado superaislante (sin CFC ni HCFC)					
Protección exterior	Acero galvanizado y lacado					
Protección catódica		Ánodo de	magnesio			

1.1.4. SISTEMAS DE SEGURIDAD Y PROTECCIÓN

Los sistemas termosifón de Termicol están equipados con sistemas de protección que aseguran la durabilidad de los materiales con los que está fabricado. En concreto son tres los elementos que protegen su equipo

- Ánodo de sacrificio: cuyo consumo retrasa la degradación por corrosión de su aparato y que debe revisarse y, en su caso, sustituirse anualmente en función de la dureza del aqua de consumo
- Manguitos antielectrolíticos: se colocan en las tomas de agua fría y caliente para evitar la corrosión galvánica.
- Válvulas de seguridad: protegen al equipo contra sobrepresiones tanto en el circuito de consumo como en el circuito de calentamiento
 - Circuito de consumo: su equipo está dotado con una válvula Caleffi 312 tarada para evitar presiones superiores a 6 bar (600 kPa)
 - Circúito de calentamiento (primario): para evitar roturas en el intercambiador de calor la válvula de protección en este circuito es Caleffi 253 tarada a 2,5 bar (250 kPa)

MTTA_V1.4_2012 5/32

Válvula Circuito Primario

Materiales

Cuerpo: latón EN 12165 CW 617N cromado
Eje: latón EN 12164 CW615N
Junta del obturador: elastómero de alta resistencia
Resorte: acero UNI 3823
Mando: PA6G30

Fluido utilizable: agua o soluciones de glicol Porcentaje máximo de glicol: 50%

Presión nominal: PN 10 Campo de temperatura: -30÷160°C

Categoría PED: IV
Certificación: TÜV según SV100 7.7

N° TÜV SV 07 2009 · SOL · H · p Conexiones: 1/2" H x 3/4" H

nexiones: 1/2" H x 3/4" H 3/4" H x 1" H

Prestaciones

Sobrepresión de apertura: 10% Diferencial de cierre: 20% Potencia de descarga: 1/2" - 50 kW 3/4" - 100 kW

Código						
Tarado	2,5 bar	3 bar	4 bar	6 bar	8 bar	10 bar

Válvula Circuito Secundario

Materiales:

Cuerpo: 1/2"-3/4"; latón EN 12165 CW617N 1"-1 1/4"; latón EN 1982 CB753S

Tapa: latón EN 12165 CW617N 513-514 (1/2"); PA 6 G 30

Eje: latón EN 12164 CW614N Junta del obturador: EPDM

Junta del obturador: EPDM Membrana: EPDM Resorte: acero 3823

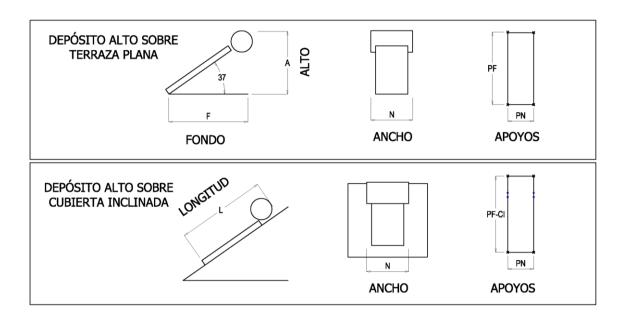
Mando: 311-312-313-314-513 (1/2")-514; ABS 513 (1" y 1 1/4")-527; PA 6 G 20

Presión nominal:

Campo de temperatura:

PN 10

5÷110°C


Prestaciones:

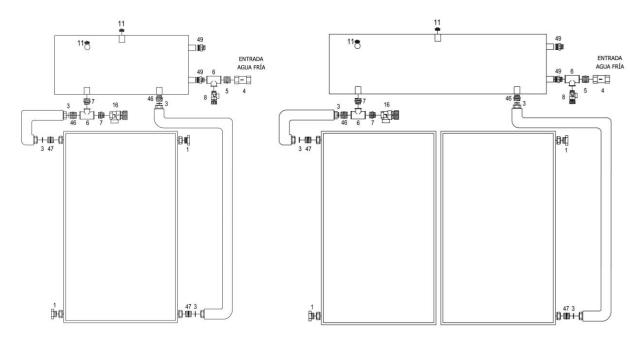
Sobrepresión de apertura: 527; 10% 311-312-313-513-514; 20%

Diferencial de cierre: 20% Fluidos utilizables: agua y aire Categoría PED: IV

MTTA_V1.4_2012 6/32

1.2. DIMENSIONES DE LOS EQUIPOS

VOLUMEN	F	A	L	N	PN	PF	PF-CI
TA150UF/PF	2156	2063	2848	1023	740	1899	2280
TA150UFM/PFM	2156	2063	2848	1200	740	1899	2280
TA200UFX/PFX	2156	2063	2848	1268	740	1899	2280
TA200UF/PF	2156	2063	2848	1268	740	1899	2280
TA200UFM/PFM	2156	2063	2848	1990	740	1899	2280
TA250UF/PF	2156	2063	2848	1521	1275	1899	2280
TA300UFX/PFX	2156	2063	2848	1784	1275	1899	2280
TA300UF/PF	2156	2063	2848	1990	1275	1899	2280
TA300UFM/PFM	2156	2063	2848	2450	1275	1899	2280


MTTA_V1.4_2012 7/32

1.3. ELEMENTOS DE CONEXIONADO

Se suministra un kit de conexión compuesto de racorería, valvulería y accesorios especialmente diseñados para su rápida y fácil instalación. También se incluyen los ramales de conexión entre el acumulador y los captadores.

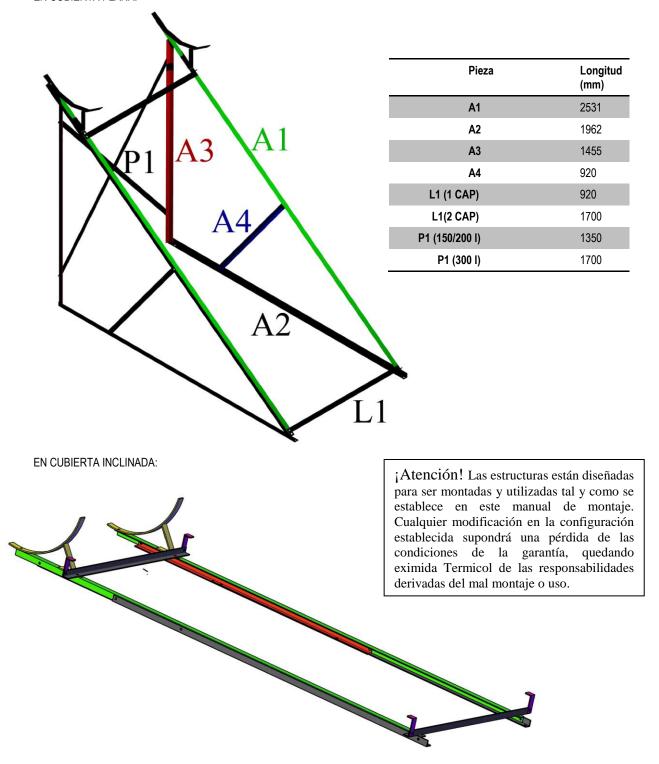
Una vez realizadas todas las conexiones y realizadas las pruebas de comprobación de que no existen fugas, deberán aislarse todas las conexiones tuberías. Los ramales de conexión del equipo ya vienen aislados y protegidos contra la intemperie, por lo que no será necesario realizar ninguna protección posterior.

En el siguiente esquema se muestran los elementos de conexionado del equipo termosifón en sus versiones con uno y dos captadores:

1	RACOM-06	TAPÓN COMPRESIÓN TUBO COBRE 18	2
3	CONX-02	JUNTA DE CARTÓN	4
4	VALVRET-02	VÁLVULA ANTIRETORNO 3/4" H	1
5	MACHON-01	MACHÓN 3/4"	1
6	TEH-03	TE LATÓN 3/4" -1/2"-3/4" H	2
7	MACHON-02	MACHÓN 3/4" - 1/2"	2
8	VALVSEGU-06	VÁLVULA DE SEG. 8 ATM. 1/2" M	1
11	TAPONM-04	TAPÓN 3/4"	2
16	VALVSEGU-02	VÁLVULA DE SEG. 2,5 ATM A 1/2" H	1
46	RACOM-11	MACHÓN PLANO ¾"- ¾"	2
47	RACOM-08	MACHÓN PLANO ¾"-18 mm	2
49	MANGUIT-03	MANGUITO DIELECTRICO ¾ M-H	2

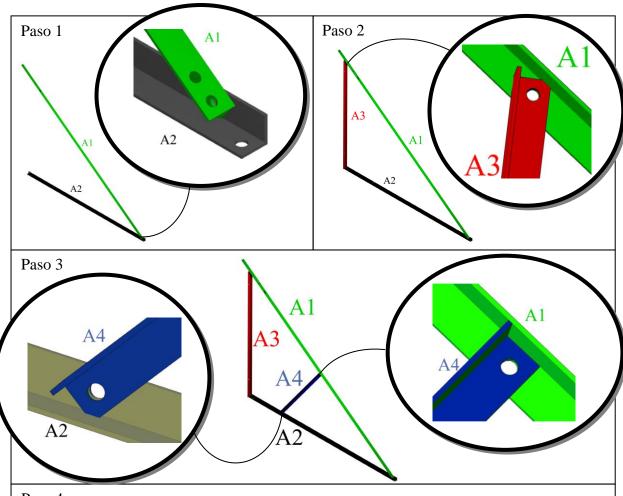
MTTA_V1.4_2012 8/32

1.4. ESTRUCTURA SOPORTE

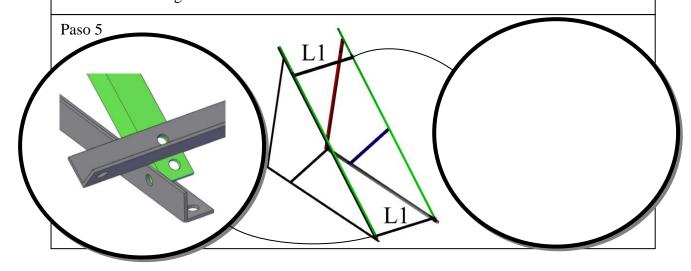

La estructura de apoyo del equipo está diseñada con perfiles de acero, normalizados, cortados, taladrados y zincados, para resistir los efectos de la intemperie.

La unión entre las distintas barras que componen la estructura se realiza mediante tornillería de acero inoxidable.

Los perfiles vienen identificados mediante un código alfanumérico para facilitar el montaje de la estructura. Cada barra de los laterales coincide en el índice con su homóloga al lateral contrario distinguiéndose estas con un subíndice: "W" si es la barra del lateral que habrá de estar en la cara oeste (una vez orientado el equipo al sur) y "E" si es la barra que quedará en el lateral este.

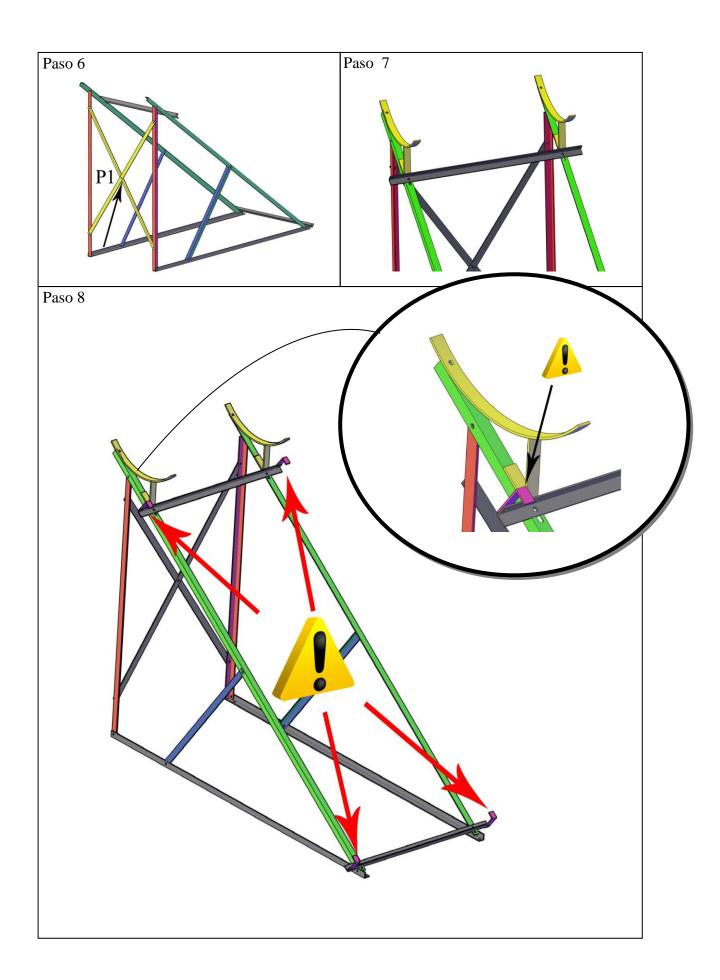

Existe la posibilidad de montar las estructuras en dos configuraciones según sea la cubierta del edificio plana o inclinada. En ambas configuraciones las piezas utilizadas son las mismas pero colocadas de diferente forma según se indica a continuación.

EN CUBIERTA PLANA:

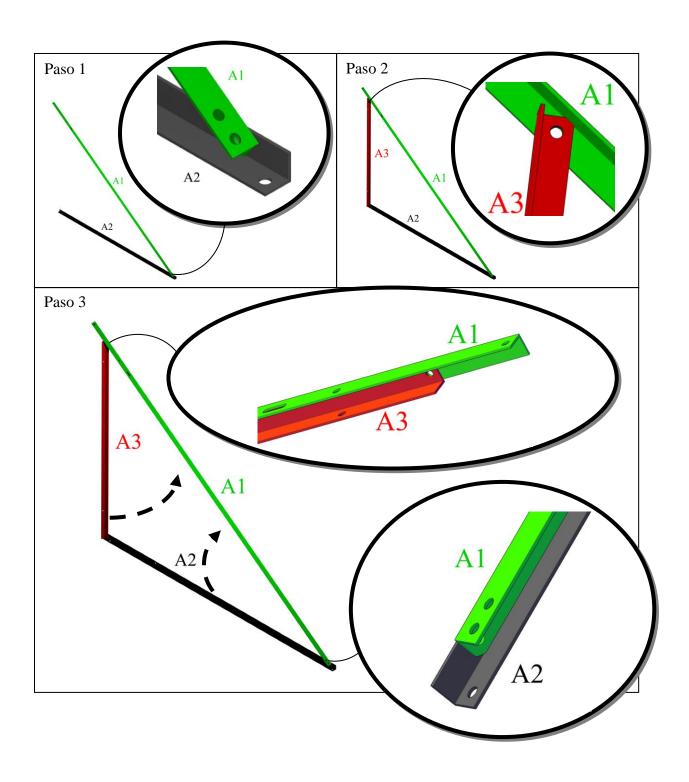


MTTA_V1.4_2012 9/32

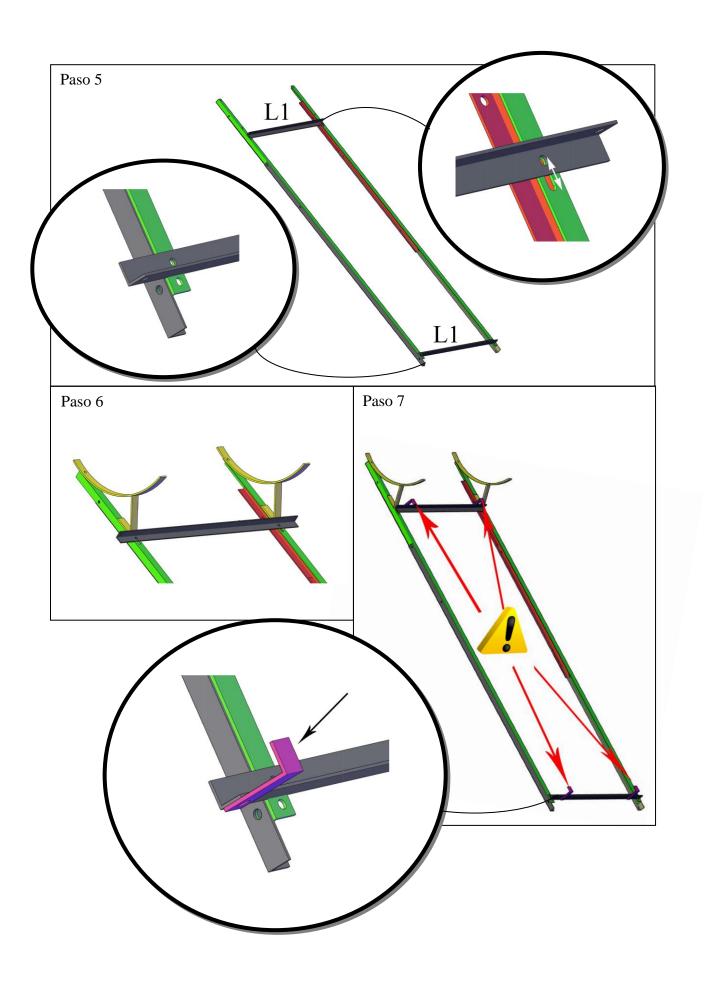
PASOS DE MONTAJE DE LA ESTRUCTURA EN CUBIERTA PLANA



Paso 4 Montar el lateral opuesto siguiendo los mismos pasos teniendo en cuenta que las barras de uno son como imágenes reflejadas en un espejo respecto a su homóloga en del otro.


MTTA_V1.4_2012 10/32

MTTA_V1.4_2012 11/32



MTTA_V1.4_2012 12/32

PASOS DE MONTAJE DE LA ESTRUCTURA EN CUBIERTA INCLINADA

MTTA_V1.4_2012 13/32

MTTA_V1.4_2012 14/32

1.5. INSTRUCCIONES DE MONTAJE DEL EQUIPO TERMOSIFÓN

1.5.1. UBICACIÓN DEL EQUIPO

Antes de proceder a la ubicación del equipo debe tenerse en cuenta tanto la accesibilidad necesaria para las labores de mantenimiento como la resistencia estructural del lugar de la instalación. Debe instalarse con la estructura soporte suministrada por Termicol y preferiblemente en una zona elevada (terraza, azotea, etc.).

Mida con detenimiento el espacio disponible y deje una distancia de seguridad de al menos 50 cm hasta la pared o el obstáculo más próximo en la parte trasera del equipo. Respecto a la separación de paredes situadas al sur, guarde las distancias mínimas para evitar sombreados que reduzcan las prestaciones del equipo.

El equipo debe quedar instalado lo más cerca posible de los puntos de consumo de forma que la longitud de tubería que el agua caliente deba recorrer sea la menor posible.

Deberá estar orientado al Sur geográfico (permitiéndose pequeñas desviaciones siempre que no se incumpla la normativa vigente) y libre de sombras de otros objetos en los 180° de su parte frontal. Si no se dispone de una brújula, puede situar una varilla en posición vertical a las 12 horas solares (14 en verano y 13 en invierno). La sombra proyectada por esta quedará perpendicular a la cara activa del captador.

El ángulo de inclinación de los equipos con depósito alto es 40º (inclinación adecuada para usos durante todo el año).

Las estructuras de los equipos están calculadas teniendo en cuenta la normativa vigente aplicable relativa a seguridad estructural.

Relativo a la carga de viento el cálculo establece una resistencia hasta vientos con velocidades equivalentes a 1 kN/m² (102 kgf/m²)

Relativo a la carga de nieve, la estructura es apta para soportar una carga de nieve no superior a 0,3 kN/m² (30 kgf/m²).

Se recomienda revisar los valores históricos de cargas de viento y nieve de la zona donde vaya a ubicarse el equipo y reforzar, en los casos en los que se puedan superar estos valores, las estructuras soporte.

Por último, revise la cubierta donde vaya a realizar la instalación comprobando la inexistencia de hielo que pueda provocar accidentes por deslizamiento tanto del equipo como de los operarios que tengan que instalarlo.

1.5.2. MANIPULACIÓN Y MONTAJE DEL EQUIPO

MANIPULACIÓN Y ALMACENAJE

Los productos suministrados por Termicol vienen perfectamente embalados para su correcta conservación durante el transporte y el almacenaje:

Captadores: Protegidos en las esquinas con cartón y porexpan y embalados con film retráctil

Acumuladores: Embalados en una caja de cartón de alta resistencia que evita rayaduras de la cubierta y favorece su apilamiento

Accesorios: Empaquetados en una caja de cartón que evita su perdida y facilita el transporte.

Se deben tener en cuenta las siguientes recomendaciones:

Es recomendable mantener los distintos elementos en su embalaje original para evitar pérdidas y/o roturas. Cuando tenga que almacenar los equipos durante un tiempo prolongado, no olvide que algunos elementos tienen superficies vidriadas. El vidrio, a pesar de su gran resistencia, es un elemento susceptible de ser dañado por la caída de objetos o golpes incontrolados. Ubique el material en una zona reservada y de poco transito.

Para apoyar varios captadores en vertical sobre una pared deben colocarse con una inclinación de entre 70° y 80°, y con la cubierta de vidrio orientada hacia la pared.

Aunque pueden moverse en cualquier posición, es preferible que el acumulador sea trasladado en posición vertical. El desplazamiento interno puede realizarse por medio de una carretilla elevadora si se asegura previamente el palé.

Ninguno de los componentes del equipo posee elementos especiales de cuelgue, por lo que, en caso necesario, deberá efectuarse su elevación incorporando un sistema de sujeción que los inmovilice completamente. Esta actividad ha de ser realizada por un profesional.

MTTA V1.4 2012 15/32

MONTAJE

Es conveniente cubrir los captadores una vez retirado el embalaje durante la instalación y hasta el llenado del sistema; con esto evitamos sobre-calentamientos y quemaduras accidentales.

Instalación de la estructura

Cubiertas planas: la estructura que se suministra es resistente a las condiciones más adversas y se ha diseñado para repartir el peso del equipo en los cuatros apoyos de estructura.

Cubiertas inclinadas

- Si se fija el equipo a la cubierta a través de bancadas de apoyo (de mortero, ladrillo u hormigón), los cuatro "pies de estructura" transmitirán el peso del equipo a las bancadas. Estos apoyos se realizaran sin dañar la impermeabilidad ni interferir el drenaje ni dañar las tejas o los elementos que conformen la cubierta.
- Si se fija el equipo a la cubierta a través de pletinas de acero inoxidable, éstas irán fijadas a la cubierta mediante espirros, taco químico o cualquier sistema de fijación que asegure la estanqueidad.

Conexión de los captadores:

Las conexiones de los captadores están preparadas para un montaje rápido y sencillo. En los terminales de la izquierda de los captadores se encontrará premontados la pieza hembra de los racores de compresión, mientras que en la derecha la finalización será macho. Aproxime los captadores entre sí centrándolos con respecto a la estructura y realice un primer apriete manual. Posteriormente termine de apretar con una herramienta adecuada, asegurándose de que el enrosque quede correctamente posicionado.

Conexión de tuberías.

Los ramales de conexión de los equipos Termicol están dotados de racores rápidos de compresión, los cuales se encuentran premontados. Para realizar su conexión, aproxime el anillo cortante al machón cónico y fíjela mediante la tuerca libre. Apriete con una herramienta adecuada asegurándose de que el enrosque quede correctamente posicionado.

Si tiene que realizar pasamuros para realizar la conexión del equipo con la red de agua caliente de la vivienda, asegúrese de colocar elementos aislantes que eviten la entrada de agua o humedad a la misma. La utilización de resinas impermeabilizantes o productos similares es adecuada para estos casos.

Asegúrese de que el aislamiento de los conductos de agua fría y agua caliente estén aislados según indica el reglamento vigente. Una tubería mal aislada puede suponer una gran pérdida de energía, así como dejar desprotegida la misma en los casos en los que las temperaturas desciendan por debajo de 0°C. Además, las protecciones deben extenderse a cualquier sistema de purga que se coloque en el circuito hidráulico de acometida y consumo.

Tal y como se especifica en la normativa vigente, en la toma de entrada de agua fría y de agua caliente deberá colocarse un manguito electrolítico que evite la parición de pares galvánicos que puedan corroer estos puntos del acumulador. Su no colocación supondrá la pérdida de los derechos establecidos en la garantía.

Por motivos de seguridad, conectar los captadores al sistema de acumulación mediante un conductor metálico de 16 mm² de sección. Así mismo, se recomienda conectar el equipo al sistema de protección contra rayos del edificio. Los tubos metálicos de los cables entubados del circuito solar se deberán conectar a la barra ómnibus equipotencial principal mediante un conductor (verde/amarillo) de al menos 16 mm² CU (H07 V-U o R). La puesta a tierra también puede realizarse mediante una pica de tierra, tendiendo el cable de puesta a tierra por fuera de la casa. Además, deberá conectarse la puesta a tierra a la barra ómnibus equipotencial principal mediante un cable de idéntica sección transversal. No obstante, consulte a técnicos especialistas en materia de protección contra rayos siempre que los captadores vayan a montarse sobre subestructuras metálicas.

La conexión de las válvulas de seguridad y las líneas de purga se conectarán de manera que se evite la acumulación de suciedad en ellas. Por consiguiente, se deben seguir las instrucciones de colocación tanto en lo referente a su ubicación en el equipo como en lo que respecta a posición, evitando que la zona de descarga quede dirigida hacia arriba.

Aislar convenientemente las líneas de purga y válvulas de seguridad con objeto de evitar un eventual congelamiento que pueda impedir su correcto funcionamiento. En el caso de las válvulas de seguridad coloque la parte de descarga orientada hacia abajo para evitar que el fluido pueda acumularse dentro de ella y dañe el dispositivo si se produjera la congelación del mismo.

No colocar llaves de corte que impidan el funcionamiento de los dispositivos de seguridad y expansión diseñados para proteger el equipo. Cualquier elemento que impida su correcto funcionamiento invalidaría automáticamente la garantía del equipo.

Todas aquellas líneas de purga que puedan colocarse en la instalación deben de disponerse de tal forma que el vapor o medio de transferencia que puedan expulsar no causen ningún riesgo para las personas, materiales o medio ambiente. Para ello, reconducir las salidas hacia sumideros de evacuación.

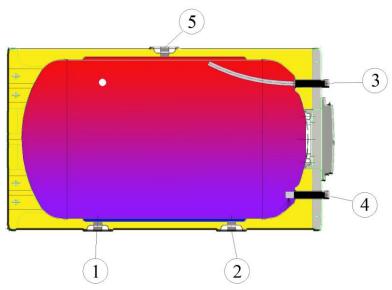
MTTA V1.4 2012 16/32

1.5.3.LLENADO

El llenado debe realizarse a primeras horas de la mañana, durante la puesta de sol o durante el resto del día si se mantienen los captadores tapados. Deberá siempre llenarse el circuito secundario antes que el primario.

Circuito primario: circuito formado por los captadores y las tuberías que los unen, en el que el fluido de trabajo recoge la energía térmica producida en los captadores y la transfiere al acumulador solar.

Circuito secundario/consumo: circuito en el que se recoge la energía captada en el circuito primario y se transfiere al circuito de consumo


Si la presión de entrada a la vivienda es superior a 400 kPa (4 bares), es recomendable instalar un reductor de presión que proteja a todo el sistema.

La tubería de cobre del circuito primario solar deberá estar aislada con coquilla de 25 mm., si dicha tubería discurre por el interior de la vivienda, o de 35 mm si lo hace por el exterior. Este aislamiento se protegerá adecuadamente y estará soportada de acuerdo a lo que marque la normativa vigente.

En la entrada del agua de red al depósito, se montará un grupo de seguridad formado por válvula de seguridad tarada a 8 bar, válvula antiretorno y dispositivo de vaciado.

Con objeto de aislar al acumulador y permitir realizar reparaciones o mantenimientos sin necesidad de vaciar toda la instalación, deberá instalarse una válvula de corte tanto en la entrada de agua fría como en la salida de caliente.

La zona lateral del depósito tiene 4 tomas de conexionado (ver esquema adjunto).

Las dos tomas superiores (1 y 2) son salidas de la doble envolvente del circuito primario:

- En la toma "1" se coloca una T y la válvula de seguridad de 2,5 bar.
- La toma "2" se conecta al captador en su parte inferior (manguito largo).
- Las tomas centrales (3 y 4) se conectan a la red de consumo de la vivienda:
- La toma "3" es para la salida del agua de consumo, donde debe colocarse una válvula mezcladora termostática y la válvula de descarga térmica (opcional).
- La toma "4" es para la entrada de agua de red, donde se coloca el grupo de seguridad y retención.

Una vez realizadas las pertinentes pruebas de presión en la instalación se procederá al llenado del circuito primario.

El **Ilenado del circuito primario** en los equipos termosifón debe realizarse con mezcla de agua y anticongelante no tóxico. Se recomienda utilizar el proporcionado por Termicol fabricado a base de propilenglicol y con un porcentaje de anticorrosivos que ayudan a proteger el equipo y a alargar su vida media. En la siguiente tabla se puede ver el nivel de protección según la concentración. Recuerde que un nivel alto de concentración puede disminuir el rendimiento del sistema.

% en Volumen	20	25	30	35	40	45	50
Tª Protección (°C)	-8	-11	-15	-18	-23	-28	-36

Debido a las limitaciones impuestas por la válvula de seguridad del circuito primario, se limita la concentración máxima del fluido caloportador a un 50%, de forma que un porcentaje superior podría deteriorar esta irreversiblemente.

Para el llenado del equipo, introducir por la toma superior (5) la cantidad necesaria de mezcla de fluido anticongelante, según las temperaturas mínimas de la zona y de acuerdo con las instrucciones del fabricante del anticongelante.

Una vez lleno completamente el circuito primario, se instala la válvula de seguridad de 250 kPa (2,5 bar) según se indica en el esquema de despiece de la página 7.

En un funcionamiento normal del equipo, se forma una cámara gaseosa en la parte superior del intercambiador que hace de vaso

MTTA V1.4 2012 17/32

de expansión del circuito primario. El límite de esta cámara siempre se encuentra por encima de la zona de circulación lo que permite el paso libre del fluido del circuito primario por efecto termosifón.

No es recomendable el uso de este tipo de equipos en zonas con alto riesgo de heladas. No obstante, si la época del año y/o la zona donde está ubicado el equipo es susceptible de bajas temperaturas (menores de 0°C), siga las siguientes pautas de seguridad para evitar daños por congelación durante las primeras horas de funcionamiento del sistema:

No deje el circuito primario lleno de agua después de hacer la prueba de estanqueidad. Si fuera necesario, realice esta prueba con agua un porcentaje suficiente de anticongelante, que se determinará según sean las temperaturas alcanzadas en la zona de instalación del equipo.

Aisle convenientemente las tuberías de agua fría para evitar que se produzca congelación en éstas.

Mezcle el fluido solar previamente en un recipiente y posteriormente introdúzcalo en el circuito primario. De este modo evitará zonas de baja concentración de fluido durante los primeros días de funcionamiento.

1.6. VALORES OPERACIONALES Y LÍMITES DE FUNCIONAMIENTO

Circuito primario:

La presión en el circuito primario de los **equipos termosifón** varía desde 100 kPa (1 bar) hasta 250 kPa (2,5 bar). La temperatura del circuito secundario puede variar entre la temperatura del agua de red de la zona y 100 °C, aunque los equipos están preparados para soportar valores sensiblemente superiores en épocas de bajo consumo. En este sentido, se recomienda colocar a la salida del agua caliente del acumulador una válvula de descarga térmica.

Circuito secundario:

La presión máxima de funcionamiento del circuito secundario es de 800 kPa (8 bar). Los equipos están protegidos por un grupo de seguridad y retención tarado a 800 kPa (8 bar), colocado a la entrada de agua fría de red. Aun así, si la presión de la red de abastecimiento es superior a 400 kPa (4 bar) se aconseja la instalación de un reductor de presión a la entrada de agua fría al acumulador. Debido a las características específicas de funcionamiento del equipo, no se cerrará el suministro de agua fría al mismo salvo para labores de mantenimiento y reparación.

En la siguiente tabla se resumen los valores nominales de funcionamiento para los equipos solares:

	Circuito primario	Circuito secundario/consumo	
Equipos termosifón	Tmáx = 110 °C; Tmin = -18 °C*	Tmáx > 90 °C ; Tmin = 4 °C	
	Pmáx = 250 kPa ; Pinicial = 100 kPa	Pmáx = 800 kPa ; Ptrabajo = 200 a 600 kPa	

^{*}Esta temperatura podrá cambiar en función de la concentración de fluido solar que se añada en el circuito primario. ver especificaciones del fluido solar

1.7. RECEPCIÓN Y PRUEBAS FUNCIONALES DE LA INSTALACIÓN

El instalador se responsabilizará de la ejecución de las pruebas funcionales, del buen funcionamiento de la instalación y del estado de la misma en el momento de su entrega a la propiedad.

El instalador, salvo orden expresa, entregará la instalación llena y en funcionamiento.

Con el fin de probar su estanqueidad, todas las redes de tuberías deben ser probadas hidrostáticamente antes de quedar ocultas por obras de albañilería o por el material aislante.

Las pruebas se realizarán de acuerdo con UNE 100.151 "Pruebas de Estanqueidad en Redes de Tuberías".

De igual forma, se probarán hidrostáticamente los equipos y el circuito de energía auxiliar cuando corresponda.

Se comprobará que las válvulas de seguridad funcionan y que las tuberías de descarga de las mismas no están obturadas y en conexión con la atmósfera. La prueba se realizará incrementando hasta un valor de 1,1 veces el de tarado y comprobando que se produce la apertura de la válvula.

Se comprobará la correcta actuación de las válvulas de corte, llenado, vaciado y purga de la instalación.

Al objeto de la recepción de la instalación se entenderá que el funcionamiento de la misma sea correcto, cuando la instalación satisfaga las pruebas parciales incluidas en el presente capítulo.

Se comprobará que alimentando (eléctricamente) las bombas del circuito, entran en funcionamiento y el incremento de presión indicado con los manómetros se corresponde en la curva con el caudal de diseño del circuito.

Se colocará a la salida del equipo y antes de la red de consumo un elemento de seguridad que limite la temperatura del agua como sistema de protección contra quemaduras.

Le ofrecemos una lista de comprobación para que puntee todos aquellos aspectos del sistema que creemos importantes revisar antes de dar por terminada la ejecución de la instalación. La lista tiene dos partes que le ayudaran a finalizar el trabajo.

MTTA V1.4 2012 18/32

La primera parte le permitirá hacer una revisión previa nada más terminar el montaje y llenado del equipo

La segunda deberá repasarla después de dejar evolucionar el equipo al menos durante una hora en un día soleado. Esta comprobación no será válida a menos que el equipo haya estado expuesto a una radiación directa mínima.

COMPROBACIÓN PREVIA	
Tuberias	
Existencia de sifones invertidos	
Fugas en las conexiones	
Aislamiento correctamente colocado	
Acumulador	
Anclajes correctos	
Válvulas de seguridad revisadas	
Nivelado correcto	
Captador/es	
Uniones	
Nivelado correcto	
Vidrios limpios	
Conductor contra descargas atmosféricas colocado	
COMPROBACIÓN DE FUNCIONAMIENTO	
Ramal de entrada al captador fría	
Ramal de salida del captador caliente	
Aumento de la temperatura del agua de consumo después de 1 hora de funcionamiento (con sol directo)- Realizar una extracción.	

1.8. CONEXIONES ENTRE EQUIPOS

El número máximo recomendado de conexiones **en paralelo** entre equipos de igual modelo es de tres, con el circuito hidráulico compensado. En este caso se unirán todas las entradas de agua fría del equipo entre sí y a su vez todas las salidas de agua caliente hacia la instalación de consumo. Para unir los equipos entre sí en los casos descritos, puede utilizarse tubería de 20 mm. de diámetro interior.

Debido al diseño de funcionamiento de estos equipos, produciendo agua por encima de 50° C incluso en días de baja radiación, no se aconseja el montaje de más de dos equipos **en serie**. Para ello, se debe unir la salida de agua caliente del primer equipo a la entrada de agua fría del segundo. Así, la conexión de entrada de agua de red se realiza por el primer equipo, y la salida de agua caliente a consumo se produce por el segundo.

1.9. CONEXIÓN AL SISTEMA DE ENERGÍA AUXILIAR

El conexionado del sistema de energía auxiliar se realizará en serie con by-pass auxiliar.

Se recomienda el uso de calentadores modulantes termostáticos, donde el agua procedente del equipo solar se conecta en serie con la energía auxiliar. Si el agua proveniente del equipo solar tiene la temperatura adecuada, entonces el calentador no actúa. Si el agua viene precalentada pero sin la temperatura exigida, entonces el calentador modula y aporta la energía necesaria para alcanzar la temperatura de consigna. La caldera o calentador modulante termostático ha de estar dimensionada para dar la potencia máxima en las condiciones más desfavorables, que se producen en días en los que la radiación es prácticamente nula o en días en los que se realizan las labores de mantenimiento de la instalación solar.

En cualquier caso consulte al fabricante del sistema auxiliar su capacidad trabajar con agua precalentada.

La conexión en paralelo no es aconsejable aunque se podrá realizar si se da alguna de las siguientes circunstancias:

- Que no sea posible regular la temperatura de salida del agua.
- Si el sistema de energía auxiliar está constituido por uno o varios calentadores no modulantes.
- Si existe una preinstalación solar que dificulte o impida el conexionado en serie.

MTTA V1.4 2012 19/32

1.10. DESMONTAJE Y RECICLADO DEL SISTEMA

DESMONTAJE

Cuando sea necesario realizar el desmontaje del equipo instalado para su traslado a otra ubicación o porque ha llegado al final de su vida útil, siga los siguientes pasos:

- Vac\(\text{e}\) e el circuito primario recogiendo el fluido solar en una garrafa para evitar derrames incontrolados de este en la vivienda
- Cierre las llaves de la entrada de agua fría, retire la conexión y vacíe el acumulador solar por la zona dispuesta para el vaciado procurando verter el agua en alguna zona que suponga su aprovechamiento en otra aplicación y teniendo cuidado de no inundar alguna zona delicada de la vivienda.
- Retire los ramales de conexión del circuito primario utilizando dos llaves para no dañar los tubos, sobre todo en la parte que conectan a los captadores
- Afloje las garras de sujeción de la estructura y retire los captadores. Si el equipo va a ser reubicado en otro lugar, proteja los captadores tanto de la radiación solar como de posibles golpes que puedan dañarlos
- Retire las conexiones del acumulador a la red consumo.
- Desatornille los elementos de fijación del acumulador a la estructura y retire el acumulador de esta. Utilice una grúa si fuera necesario para evitar riesgos innecesarios.
- Afloje los tornillos de la estructura empezando a retirar las barras que la conforman en el siguiente orden para los equipos de cubierta plana
- Pletinas traseras (pieza PC2)
- Largueros de apoyo de los captadores (piezas C11)
- Anclajes del acumulador (pieza PE1)
- Resto de barras

Procure embalar todas las partes del equipo para evitar su deterioro en el trasporte, poniendo especial cuidado en los captadores y el acumulador.

RECICLADO

Los productos con los que están fabricados los elementos de los equipos termosifón son en su mayor parte reciclables. El despiece de los captadores solares puede realizarse por completo. Es posible separar los distintos materiales y ser enviados a un centro de reciclaje para su aprovechamiento posterior.

MTTA_V1.4_2012 20/32

1.11. RECOMENDACIONES DE USO

Es muy importante que tenga en cuenta que los equipos termosifón están diseñados para calentar diariamente un volumen de agua determinado. El volumen del acumulador ofrece una estimación diaria bastante aproximada de lo que el equipo puede ofrecer, en media anual. Sin embargo, dependiendo de las condiciones de radiación, climáticas y del consumo, estas prestaciones pueden cambiar radicalmente. En la siguiente tabla se especifica la estimación del aporte que le proporcionará el equipo a 45°C de temperatura y considerando una temperatura media en el agua de la red de abastecimiento de 15°C según el modelo de equipo escogido.

	Modelo de captador	Nº captadores	Modelo de acumulador	Rango de carga medio diario admisible (I/día)*
TA150UF	T20US	1	ATF150I	120
TA150PF	T20PS	I	ATFIOU	100
TA150UFM	T25US	1	ATF150I	140
TA150PFM	T25PS	I	ATFIOU	130
TA200UFX	T20US	1	ATF200I	150
TA200PFX	T20PS	I	ATF2001	140
TA200UF	T25US	1	ATF200I	180
TA200PF	T25PS	I	ATF2001	160
TA200UFM	T20US		ATF200I	210
TA200PFM	T20PS	2	ATF2001	190
TA250UF	T25US	1	ATF250I	210
TA250PF	T25PS	I	A1F2501	200
TA250UFM	T20US	2	ATF250I	240
TA250PFM	T20PS	2	A1F2501	230
TA300UFX	T25US	1	ATF300I	250
TA300PFX	T25PS	I	ATF300I	240
TA300UF	T20US	0	ATE2001	280
TA300PF	T20PS	2	ATF300I	260
TA300UFM	T25US	2	ATE2001	300
TA300PFM	T25PS	2	ATF300I	290

Téngase en cuenta que la interpretación de esta tabla pasa por tener en cuenta que el rango de carga mostrado es la cantidad media de agua que se podría asegurar en un día medio diario para una radiación fijada. La modificación de cualquiera de los parámetros supondrá una variación en los valores expuestos.

Dado que todos los modelos han sido ensayados en base a la norma EN12976, los resultados de carga y prestaciones energéticas de estos vienen dados por los resultados de dicho ensayo. Por consiguiente, y en cumplimiento de la normativa, se reflejan a continuación estos datos proporcionados por el Centro Nacional de Energías Renovables (CENER) para cada uno de los equipos:

MTTA V1.4 2012 21/32

FAMILIA TA-UF

TA150UF

El rango de cargas recomendado por el sistema (en I/día) a la temperatura especificada: 120 I/dia a 45°C

El rendimiento térmico y fracción solar del sistema de acuerdo para cargas en el rango de cargas recomendado.

Datos de rendimiento térmico a largo plazo y fracción solar determinados a partir del ensayo para los volúmenes de carga de 120 l/día para las localidades y condiciones de referencia de la norma EN12976:

Indicadores de rendimiento del sistema únicamente solar o de precalentamento solar sobre la base anual de un volumen de demanda de: Performance indicators for solar-only and solar preheat Systems on annual base for a demand solume of:					l/día l/day
Localidad / Location (latitud / latitude)	Q₄ [MJ]	Q _L [MJ]	f _{sol} [%]	Q _р . [М.	
Stockholm (59,6°N)	6698	2974	44,4		
Würzburg (49,5°N)	6423	3106	48,4		
Davos (46,8°N)	7267	4317	59,4		
Athens (38,0°N)	4991	3845	77,0		

TA150UFM

El rango de cargas recomendado por el sistema (en I/día) a la temperatura especificada: 140 I/dia a 45°C

El rendimiento térmico y fracción solar del sistema de acuerdo para cargas en el rango de cargas recomendado.

Datos de rendimiento térmico a largo plazo y fracción solar determinados a partir del ensayo para los volúmenes de carga de 140 l/día para las localidades y condiciones de referencia de la norma EN12976:

Indicadores de rendimient sobre la base anual de un v Performance indicators for sol volume of :	140 l/día l/day			
Localidad / Location (latitud / latitude)	Q₄ [MJ]	Q∟ [MJ]	f _{sol} [%]	Q _{par} [MJ]
Stockholm (59,6°N)	7814	3730	47,7	
Würzburg (49,5°N)	7494	3832	51,1	
Davos (46,8°N)	8479	5486	64,7	
Athens (38,0°N)	5823	4716	81,0	

TA200UFX

El rango de cargas recomendado por el sistema (en I/día) a la temperatura especificada: 150 I/dia a 45°C

El rendimiento térmico y fracción solar del sistema de acuerdo para cargas en el rango de cargas recomendado.

Datos de rendimiento térmico a largo plazo y fracción solar determinados a partir del ensayo para los volúmenes de carga de 150 l/día para las localidades y condiciones de referencia de la norma EN12976:

Indicadores de rendimiento sobre la base anual de un v Performance indicators for sola volume of :	150 l/día l/day			
Localidad / Location (latitud / latitude)	Q₄ [MJ]	Q∟ [MJ]	f _{sol} [%]	Q _{par} [MJ]
Stockholm (59,6°N)	8372	3187	38,1	
Würzburg (49,5°N)	8029	3371	42,0	
Davos (46,8°N)	9084	4525	49,8	
Athens (38,0°N)	6239	4374	70,1	

MTTA_V1.4_2012 22/32

TA200UF

El rango de cargas recomendado por el sistema (en I/día) a la temperatura especificada: 180 I/dia a 45°C

El rendimiento térmico y fracción solar del sistema de acuerdo para cargas en el rango de cargas recomendado.

Datos de rendimiento térmico a largo plazo y fracción solar determinados a partir del ensayo para los volúmenes de carga de 180 l/día para las localidades y condiciones de referencia de la norma EN12976:

Indicadores de rendimiento del sistema únicamente solar o de precalentamento solar sobre la base anual de un volumen de demanda de: Performance indicators for solar-only and solar preheat Systems on annual base for a demand volume of :					'día 'day
Localidad / Location (latitud / latitude)	Q _d [MJ]	Q₁ [M]]	f _{sol} [%]	Q _{par} [MJ]	
Stockholm (59,6°N)	10047	4174	41,5		
Würzburg (49,5°N)	9635	4374	45,4		
Davos (46,8°N)	10901	6014	55,2		
Athens (38,0°N)	7487	5540	74,0		

TA200UFM

El rango de cargas recomendado por el sistema (en I/día) a la temperatura especificada: 210 I/dia a 45°C

El rendimiento térmico y fracción solar del sistema de acuerdo para cargas en el rango de cargas recomendado.

Datos de rendimiento térmico a largo plazo y fracción solar determinados a partir del ensayo para los volúmenes de carga de 210 l/día para las localidades y condiciones de referencia de la norma EN12976:

Indicadores de rendimiento sobre la base anual de un vo Performance indicators for sola volume of :	210 l/día			
Localidad / Location (latitud / latitude)	Q₄ [MJ]	Q₁ [MJ]	f _{sol} [%]	Q _{par} [MJ]
Stockholm (59,6°N)	11721	5649	48,2	
Würzburg (49,5°N)	11240	5788	51,5	
Davos (46,8°N)	12718	8329	65,5	
Athens (38,0°N)	8734	7117	81,5	

Al sistema TA200UFM se le ha realizado el ensayo de sobretemperaturas al tener la relación Área/Volumen mayor de la familia ultraselectiva TA UF. Lo resultados del mismo son:

La radiación solar total en el plano del captador durante el ensayo de protección contra sobretemperatura ha sido de 104,3 MJ/m2, alcanzando una temperatura máxima de salida en el acumulador solar de 83,8 °C. Cuando el sistema opere varios días sin extracción de agua hasta una radiación solar acumulada en el plano del captador superior a 104,3 MJ/m2, esto puede dar lugar a sobretemperaturas en el sistema. Antes de que ocurra esto, se deberá extraer agua del acumulador solar hasta un volumen aproximadamente de 3 veces su contenido.

MTTA_V1.4_2012 23/32

TA250UF

El rango de cargas recomendado por el sistema (en I/día) a la temperatura especificada: 210 I/dia a 45°C

El rendimiento térmico y fracción solar del sistema de acuerdo para cargas en el rango de cargas recomendado.

Datos de rendimiento térmico a largo plazo y fracción solar determinados a partir del ensayo para los volúmenes de carga de 210 l/día para las localidades y condiciones de referencia de la norma EN12976:

Indicadores de rendimiento sobre la base anual de un v Performance indicators for solo volume of :	210 l/día l/day			
Localidad / Location (latitud / latitude)	Q ₄ [MJ]	Q∟ [MJ]	f _{sol} [%]	Q _{par} [MJ]
Stockholm (59,6°N)	11721	4385	37,4	
Würzburg (49,5°N)	11240	4649	41,4	
Davos (46,8°N)	12718	6233	49,0	
Athens (38,0°N)	8734	6049	69,3	

TA250UFM

El rango de cargas recomendado por el sistema (en I/día) a la temperatura especificada: 240 I/dia a 45°C

El rendimiento térmico y fracción solar del sistema de acuerdo para cargas en el rango de cargas recomendado.

Datos de rendimiento térmico a largo plazo y fracción solar determinados a partir del ensayo para los volúmenes de carga de 240 l/día para las localidades y condiciones de referencia de la norma EN12976:

ndicadores de rendimiento obre la base anual de un v erformance indicators for sola olume of :	240 l/día l/day			
Localidad / Location (latitud / latitude)	Q₄ [MJ]	Q₁ [MJ]	f _{sol} [%]	Q _{par} [MJ]
Stockholm (59,6°N)	13396	6128	45,7	
Würzburg (49,5°N)	12846	6329	49,3	
Davos (46,8°N)	14535	8968	61,7	
Athens (38,0°N)	9982	7863	78,8	

TA300UFX

El rango de cargas recomendado por el sistema (en I/día) a la temperatura especificada: 250 I/dia a 45°C

El rendimiento térmico y fracción solar del sistema de acuerdo para cargas en el rango de cargas recomendado.

Datos de rendimiento térmico a largo plazo y fracción solar determinados a partir del ensayo para los volúmenes de carga de 250 l/día para las localidades y condiciones de referencia de la norma EN12976:

Indicadores de rendimient sobre la base anual de un v Performance indicators for so volume of :	250 l/día l/day			
Localidad / Location (latitud / latitude)	Q ₄	Q ι [M]]	f _{sol} [%]	Q _{par} [MJ]
Stockholm (59,6°N)	13954	4514	32,4	
Würzburg (49,5°N)	13381	4809	35,9	
Davos (46,8°N)	15140	6333	41,8	
Athens (38,0°N)	10398	6561	63,1	

MTTA_V1.4_2012 24/32

TA300UF

El rango de cargas recomendado por el sistema (en I/día) a la temperatura especificada: 280 I/dia a 45°C

El rendimiento térmico y fracción solar del sistema de acuerdo para cargas en el rango de cargas recomendado.

Datos de rendimiento térmico a largo plazo y fracción solar determinados a partir del ensayo para los volúmenes de carga de 280 l/día para las localidades y condiciones de referencia de la norma EN12976:

Indicadores de rendimient sobre la base anual de un v Performance indicators for sol volume of :	280 l/día l/day			
Localidad / Location (latitud / latitude)	Q₄ [MJ]	Q₁ [M]]	f _{sol} [%]	Q _{par} [MJ]
Stockholm (59,6°N)	15629	6587	42,1	
Würzburg (49,5°N)	14987	6882	45,9	
Davos (46,8°N)	16957	9517	56,1	
Athens (38,0°N)	11646	8696	74,7	

TA300UFM

El rango de cargas recomendado por el sistema (en I/día) a la temperatura especificada: 300 I/dia a 45°C

El rendimiento térmico y fracción solar del sistema de acuerdo para cargas en el rango de cargas recomendado.

Datos de rendimiento térmico a largo plazo y fracción solar determinados a partir del ensayo para los volúmenes de carga de 300 l/día para las localidades y condiciones de referencia de la norma EN12976:

Indicadores de rendimient sobre la base anual de un va Performance indicators for sol volume of :	300	l/día l/day			
Localidad / Location (latitud / latitude)	Q₄ [MJ]	Q∟ [MJ]	f _{sol} [%]	Q _{ра} [М]	
Stockholm (59,6°N)	16745	7726	46,1		
Würzburg (49,5°N)	16058	7973	49,7		
Davos (46,8°N)	18168	11328	62,4		
Athens (38,0°N)	12478	9881	79,2		

MTTA_V1.4_2012 25/32

FAMILIA TA-PF

TA150PF

El rango de cargas recomendado por el sistema (en I/día) a la temperatura especificada: 100 I/dia a 45°C

El rendimiento térmico y fracción solar del sistema de acuerdo para cargas en el rango de cargas recomendado.

Datos de rendimiento térmico a largo plazo y fracción solar determinados a partir del ensayo para los volúmenes de carga de 100 l/día para las localidades y condiciones de referencia de la norma EN12976:

Indicadores de rendimiento sobre la base anual de un vo Performance indicators for solar volume of :	100	I/día I/day			
Localidad / Location (latitud / latitude)	Q₄ [MJ]	Q _∟ [MJ]	f _{sol} [%]	Q _Р [М.	
Stockholm (59,6°N)	5582	2181	39,1		
Würzburg (49,5°N)	5353	2301	43,0		
Davos (46,8°N)	6056	3111	51,4		
Athens (38,0°N)	4159	2975	71,5		

TA150PFM

El rango de cargas recomendado por el sistema (en I/día) a la temperatura especificada: 130 I/dia a 45°C

El rendimiento térmico y fracción solar del sistema de acuerdo para cargas en el rango de cargas recomendado.

Datos de rendimiento térmico a largo plazo y fracción solar determinados a partir del ensayo para los volúmenes de carga de 130 l/día para las localidades y condiciones de referencia de la norma EN12976:

Indicadores de rendimiento sobre la base anual de un v Performance indicators for sola volume of :	130 l/día //day			
Localidad / Location (latitud / latitude)	Q₄ [MJ]	Q∟ [MJ]	f _{sol} [%]	Q _{par} [MJ]
Stockholm (59,6°N)	7256	3035	41,8	
Würzburg (49,5°N)	6958	3165	45,5	
Davos (46,8°N)	7873	4402	55,9	
Athens (38,0°N)	5407	4049	74,9	

TA200PFX

El rango de cargas recomendado por el sistema (en I/día) a la temperatura especificada: 140 I/dia a 45°C

El rendimiento térmico y fracción solar del sistema de acuerdo para cargas en el rango de cargas recomendado.

Datos de rendimiento térmico a largo plazo y fracción solar determinados a partir del ensayo para los volúmenes de carga de 140 l/día para las localidades y condiciones de referencia de la norma EN12976:

Indicadores de rendimiento sobre la base anual de un v Performance indicators for sola volume of :	olumen de deman	da de:		140 l/día l/day
Localidad / Location (latitud / latitude)	Q₄ [MJ]	Q∟ [MJ]	f _{sol} [%]	Q _{par} [MJ]
Stockholm (59,6°N)	7814	2632	33,7	
Würzburg (49,5°N)	7494	2799	37,3	
Davos (46,8°N)	8479	3686	43,5	
Athens (38,0°N)	5823	3789	65,1	

MTTA_V1.4_2012 26/32

TA200PF

El rango de cargas recomendado por el sistema (en I/día) a la temperatura especificada: 160 I/dia a 45°C

El rendimiento térmico y fracción solar del sistema de acuerdo para cargas en el rango de cargas recomendado.

Datos de rendimiento térmico a largo plazo y fracción solar determinados a partir del ensayo para los volúmenes de carga de 160 l/día para las localidades y condiciones de referencia de la norma EN12976:

Indicadores de rendimiento sobre la base anual de un v Performance indicators for solo volume of :	olumen de deman	da de:		160 l/día l/day
Localidad / Location (latitud / latitude)	Q _d [MJ]	Q₁ [MJ]	f _{sol} [%]	Q _{par} [MJ]
Stockholm (59,6°N)	8931	3331	37,3	
Würzburg (49,5°N)	8564	3521	41,1	
Davos (46,8°N)	9690	4742	48,9	
Athens (38,0°N)	6655	4624	69,5	

TA200PFM

El rango de cargas recomendado por el sistema (en I/día) a la temperatura especificada: 190 I/dia a 45°C

El rendimiento térmico y fracción solar del sistema de acuerdo para cargas en el rango de cargas recomendado.

Datos de rendimiento térmico a largo plazo y fracción solar determinados a partir del ensayo para los volúmenes de carga de 190 l/día para las localidades y condiciones de referencia de la norma EN12976:

Indicadores de rendimiento sobre la base anual de un vo Performance indicators for sola volume of :	olumen de deman	da de:		190 l/día
Localidad / Location (latitud / latitude)	Q₄ [MJ]	Q∟ [MJ]	f _{sol} [%]	Q _{par} [MJ]
Stockholm (59,6°N)	10605	4531	42,7	
Würzburg (49,5°N)	10170	4710	46,3	
Davos (46,8°N)	11507	6615	57,5	
Athens (38,0°N)	7903	5999	75,9	

Al sistema TA200PFM se le ha realizado el ensayo de sobretemperaturas al tener la relación Área/Volumen mayor de la familia selectiva TA PF. Lo resultados del mismo son:

La radiación solar total en el plano del captador durante el ensayo de protección contra sobretemperatura ha sido de 104,3 MJ/m2, alcanzando una temperatura máxima de salida en el acumulador solar de 71,5 °C.

Cuando el sistema opere varios días sin extracción de agua hasta una radiación solar acumulada en el plano del captador superior a 104,3 MJ/m2, esto puede dar lugar a sobretemperaturas en el sistema. Antes de que ocurra esto, se deberá extraer agua del acumulador solar hasta un volumen aproximadamente de 3 veces su contenido.

MTTA_V1.4_2012 27/32

TA250PF

El rango de cargas recomendado por el sistema (en I/día) a la temperatura especificada: 200 I/dia a 45°C

El rendimiento térmico y fracción solar del sistema de acuerdo para cargas en el rango de cargas recomendado.

Datos de rendimiento térmico a largo plazo y fracción solar determinados a partir del ensayo para los volúmenes de carga de 200 l/día para las localidades y condiciones de referencia de la norma EN12976:

Indicadores de rendimiento del sistema únicamente solar o de precalentamento solar sobre la base anual de un volumen de demanda de: Performance indicators for solar-only and solar preheat Systems on annual base for a demand volume of :				200 l/día //day
Localidad / Location (latitud / latitude)	Q _d [MJ]	Q _∟ [MJ]	f _{sol} [%]	Q _{par} [MJ]
Stockholm (59,6°N)	11163	3671	32,9	
Würzburg (49,5°N)	10705	3903	36,5	
Davos (46,8°N)	12112	5146	42,5	
Athens (38,0°N)	8319	5319	63,9	

TA250PFM

El rango de cargas recomendado por el sistema (en I/día) a la temperatura especificada: 230 I/dia a 45°C

El rendimiento térmico y fracción solar del sistema de acuerdo para cargas en el rango de cargas recomendado.

Datos de rendimiento térmico a largo plazo y fracción solar determinados a partir del ensayo para los volúmenes de carga de 230 l/día para las localidades y condiciones de referencia de la norma EN12976:

Indicadores de rendimient sobre la base anual de un v Performance indicators for sol volume of :	olumen de deman	ıda de:		230	l/día l/day
Localidad / Location (latitud / latitude)	Q₄ [MJ]	Q ι	f _{sol} [%]	Q _{par} [MJ]	
Stockholm (59,6°N)	12838	5084	39,6		
Würzburg (49,5°N)	12311	5342	43,4		
Davos (46,8°N)	13929	7340	52,7		
Athens (38,0°N)	9566	6913	72,3		

TA300PFX

El rango de cargas recomendado por el sistema (en I/día) a la temperatura especificada: 240 I/día a 45°C

El rendimiento térmico y fracción solar del sistema de acuerdo para cargas en el rango de cargas recomendado.

Datos de rendimiento térmico a largo plazo y fracción solar determinados a partir del ensayo para los volúmenes de carga de 240 l/día para las localidades y condiciones de referencia de la norma EN12976:

Indicadores de rendimient sobre la base anual de un Performance indicators for so volume of :	240 I/día //day			
Localidad / Location (latitud / latitude)	Q₄ [MJ]	Q∟ [MJ]	f _{sol} [%]	Q _{par} [MJ]
Stockholm (59,6°N)	13396	3916	29,2	
Würzburg (49,5°N)	12846	4168	32,4	
Davos (46,8°N)	14535	5430	37,4	
Athens (38,0°N)	9982	5859	58,7	

MTTA_V1.4_2012 28/32

TA300PF

El rango de cargas recomendado por el sistema (en I/día) a la temperatura especificada: 260 I/día a 45°C

El rendimiento térmico y fracción solar del sistema de acuerdo para cargas en el rango de cargas recomendado.

Datos de rendimiento térmico a largo plazo y fracción solar determinados a partir del ensayo para los volúmenes de carga de 260 l/día para las localidades y condiciones de referencia de la norma EN12976:

Indicadores de rendimient sobre la base anual de un v Performance indicators for sol volume of :	volumen de demar	nda de:		260 I/día <i>I/day</i>
Localidad / Location (latitud / latitude)	Q₄ [MJ]	Q. [MJ]	f _{sol} [%]	Q _{par} [MJ]
Stockholm (59,6°N)	14512	5404	37,2	
Würzburg (49,5°N)	13917	5714	41,1	
Davos (46,8°N)	15746	7726	49,1	
Athens (38,0°N)	10814	7507	69,4	

TA300PFM

El rango de cargas recomendado por el sistema (en I/día) a la temperatura especificada: 290 I/día a 45°C

El rendimiento térmico y fracción solar del sistema de acuerdo para cargas en el rango de cargas recomendado.

Datos de rendimiento térmico a largo plazo y fracción solar determinados a partir del ensayo para los volúmenes de carga de 290 l/día para las localidades y condiciones de referencia de la norma EN12976:

,,,,,					
Indicadores de rendimient sobre la base anual de un v Performance indicators for sol volume of :	volumen de deman	da de:		290	l/día l/day
Localidad / Location (latitud / latitude)	Q₄ [MJ]	Q∟ [MJ]	f _{sol} [%]	Q _{р:} [М:	
Stockholm (59,6°N)	16187	6606	40,8		
Würzburg (49,5°N)	15522	6917	44,6		
Davos (46,8°N)	17563	9582	54,6		
Athens (38,0°N)	12062	8878	73,6		

La diferencia entre las necesidades energéticas para calentar el volumen total y el aporte que le proporcionarán los captadores solares debe compensarse con la utilización de un sistema de calentamiento auxiliar con energía convencional. Éste también tendrá que usarse en momentos en los que, por aumentos puntuales de los ocupantes de la vivienda, se eleve el consumo de agua caliente sanitaria (ACS). Su empleo debe realizarse observando en lo posible unos buenos criterios de ahorro, puesto que en ningún caso es aconsejable derrochar unos bienes tan preciados como son la energía o el agua.

- Para conseguirlo le recomendamos que:
- Se duche en vez de bañarse y, siempre que le sea posible en las horas de mayor radiación.
- No deje correr el agua cuando no la esté utilizando. Regule el caudal a las necesidades de cada momento.
- Asegúrese que la presión del agua en su vivienda no es excesiva. Si tiene un grupo de presión regúlelo adecuadamente. Si se suministra directamente de la red, instale un reductor de presión.
- Para afeitarse llene el lavabo, no lo haga con el grifo abierto.
- Lave los platos con el fregadero lleno, no lo haga con el grifo abierto.
- Utilice el agua caliente a una temperatura conveniente (aproximadamente 42 °C), adecuando su sistema de calentamiento auxiliar a la misma
- Compruebe periódicamente la no-existencia de fugas en sus instalaciones.
- Aísle adecuadamente los tramos de tuberías por donde circule agua caliente.
- Si no va a utilizar su equipo durante un periodo prolongado, debe cubrir los paneles.
- Tenga presente que no hay energía más barata, renovable y menos contaminante que la que no se gasta, e intente ajustar su consumo a lo que le proporcione la energía solar.

MTTA V1.4 2012 29/32

- Como podrá apreciar en las especificaciones técnicas de los componentes que forman los equipos, los valores límite para los que se fueron diseñados están por encima de los valores nominales de funcionamiento. Esto permite que el equipo trabaje bajo condiciones de seguridad en un rango acotado de valores de presión y temperatura.
- Para instalaciones de carácter estacional se recomienda tapar los captadores durante las épocas en las que no se vaya a utilizar el equipo, siempre que esté en lugar fácilmente accesible y no existan riesgos de accidente. Otra opción es realizar un vaciado del circuito primario, operación que habrá de ser realizada por una empresa instaladora.

MTTA_V1.4_2012 30/32

1.12. PROGRAMA DE VIGILANCIA Y MANTENIMIENTO

El objeto de este apartado es definir las operaciones que deben seguirse para el adecuado mantenimiento de los equipos solares Termicol, y de esta forma contribuir al buen funcionamiento, durabilidad, fiabilidad y disponibilidad de los mismos, aumentando de esta forma el ahorro energético y económico.

En el programa de mantenimiento se definen tres grados de actuación para englobar todas las operaciones necesarias realizar durante la vida útil de la instalación, para garantizar el correcto funcionamiento de la instalación solar, así como su durabilidad, fiabilidad y disponibilidad.

Se establecen tres grados de actuación y para cada uno de los ellos se establecen los objetivos que se deben conseguir, las acciones a realizar y quien las debe ejecutar.

Vigilancia

El programa de vigilancia es el definido en el manual de uso y normalmente será llevado a cabo por el usuario. Las operaciones a realizar se enumeran a continuación:

- Captadores: observar si se produce humedad o condensación.
- Acumulador: observar si aparecen fugas en las conexiones.
- Conexiones: observar si hay fugas, si el aislamiento está húmedo o si la pintura que lo cubre está muy deteriorada.
- Estructura: observar si hay corrosión y si los tornillos están bien apretados.

Mantenimiento preventivo

- El mantenimiento preventivo son operaciones de inspección visual, verificación de actuaciones y otras, que aplicadas a la instalación deben permitir mantener dentro de los límites aceptables las condiciones de funcionamiento, prestaciones, protección y durabilidad de la misma
- El mantenimiento preventivo contempla, al menos una revisión anual de la instalación para aquellas instalaciones con una superficie de captación inferior a 20 m² y al menos una revisión cada seis meses para instalaciones con superficie de captación superior a 20 m².
- El mantenimiento preventivo será realizado por personal técnico cualificado y especializado con conocimientos de la tecnología solar térmica.
- Cualquier acción de una empresa no cualificada supondrá la anulación de la garantía.
- La instalación tendrá un libro de mantenimiento en el que se reflejen todas las operaciones realizadas.
- El mantenimiento preventivo incluye las operaciones y sustitución de material fungible o desgastado por el uso, necesarias para asegurar que la instalación funcione.

Mantenimiento correctivo

- Son operaciones realizadas como consecuencia de la detección, en el plan de vigilancia ó en el mantenimiento preventivo, de cualquier anomalía en el funcionamiento de la instalación solar.
- El mantenimiento correctivo será realizado por personal técnico cualificado y especializado con conocimientos de la tecnología solar térmica. La instalación tendrá un libro de mantenimiento en el que se reflejen todas las operaciones realizadas.
- El mantenimiento correctivo incluye la visita a la instalación solar, cada vez que el usuario así lo requiera por avería grave de la
 instalación solar, así como el análisis y presupuesto de los trabajos y reposiciones necesarios para el correcto funcionamiento de la
 misma.
- Si el usuario está de acuerdo con el presupuesto se procederá a la reparación de la instalación solar y el usuario abonará a la empresa mantenedora el precio convenido.

MTTA V1.4 2012 31/32

Para facilitar la planificación de las labores de mantenimiento presentamos una tabla de acciones y su periodicidad de ejecución

PLAN DE VIGILANCIA

Elemento de la instalación	Operación	Frecuencia (meses)	Descripción
CAPTADORES	Limpieza de cristales	A determinar	Con agua y productos adecuados
	Cristales	3	IV condensaciones en las horas centrales del día.
	Juntas		IV Agrietamientos y deformaciones
	Absorbedor	3	IV Corrosión, deformación, etc.
	Conexiones	3	IV Fugas
	Estructura	3	IV degradación, indicios de corrosión.
CIRCUITO PRIMARIO	Tubería, aislamiento	6	IV Ausencia de humedad y fugas.
CIRCUITO SECUNDARIO	Termómetro	Diaria	IV temperatura
	Tubería y aislamiento	6	IV ausencia de humedad y fugas
	Acumulador solar	3	Purgado de la acumulación de lodos de la parte inferior del depósito

PLAN DE MANTENIMIENTO

Captadores

Capiadores		
Equipo	Frecuencia (meses)	Descripción
Captadores	6	IV diferencias sobre original. IV diferencias entre captadores.
Cristales	6	IV condensaciones y suciedad
Juntas	6	IV agrietamientos, deformaciones
Absorbedor	6	IV corrosión, deformaciones
Carcasa	6	IV deformación, oscilaciones, ventanas de respiración
Conexiones	6	IV aparición de fugas
Estructura	6	IV degradación, indicios de corrosión, y apriete de tornillos
Captadores*	12	Tapado parcial del campo de captadores
Captadores*	12	Destapado parcial del campo de captadores
Captadores*	12	Vaciado parcial del campo de captadores
Captadores*	12	Llenado parcial del campo de captadores

Acumulador

/ tournalador		
Equipo	Frecuencia (meses)	Descripción
Depósito	12	Presencia de lodos en fondo
Ánodos de sacrificio	12	Comprobación del desgaste
Aislamiento	12	Comprobar que no hay humedad
Intercambiador de serpentín	12	CF eficiencia y prestaciones Limpieza

Circuito hidráulico y válvulas

Equipo	Frecuencia (meses)	Descripción
Fluido refrigerante	12	Comprobar su densidad y pH
Estanqueidad	24	Efectuar prueba de presión
Aislamiento al exterior	6	IV degradación protección uniones y ausencia de humedad
Aislamiento al interior	12	IV uniones y ausencia de humedad
Válvula de corte	12	CF actuaciones (abrir y cerrar) para evitar agarrotamiento
Válvula de seguridad	12	CF actuación

MTTA_V1.4_2012 32/32