

ING. ANTONIO VILLEGAS CASAS

SISTEMAS MEXICANOS DE DIAGNÓSTICO AUTOMOTRIZ S.A. DE C.V.

1

Objetivos

Mostrar la importancia del buen entendimiento de los monitores continuos y no continuos de sistemas OBDII

Contenido

- ·Introducción OBDII
- ·Conector
- ·Protocolos
- ·Modos de diagnóstico
- ·Modo 01 (datos)
 - Constantes
 - ·Variable
 - Monitores Continuos y no continuos

Definiciones

Estándar: Lineamientos de funcionamiento y/o fabricación, para que alguna entidad tenga las mismas funciones y características sin importar quien o en donde se realice

OBD: Sistema integrado al vehículo para su diagnóstico continuo con capacidad de comunicarse con el usuario para informar que hay alguna falla

Protocolo de comunicación (protocolo): Formato de comunicación para el intercambio de información entre sistemas (computadoras automotrices)

Y#X

PASADO Finales 80's-1995 OBDI

Evolución del diagnóstico

PRESENTE 1996- 2012 OBDII FUTURO
INMEDIATO
OBD-REMOTO

Control de inyección y chispa Monitoreo de variables para control de motor

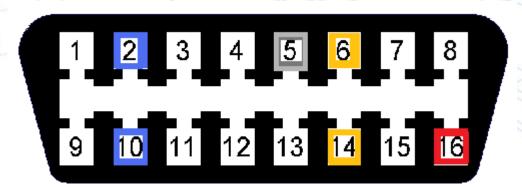
Control de chispa, inyección, emisiones, estabilidad, confort, seguridad, eficiencia, potencia, etc...

Aprovechamiento de TI y redes globales, así como el mantener los monopolios

PASADO Finales 80's-1995 OBDI Evolución del diagnóstico PRESENTE 1996-2012 OBDII

FUTURO INMEDIATO

Sin protocolos estandarizados para el diagnostico Un estándar para el diagnostico (control de emisiones), OBDII Otros estándares para diagnostico extendido y programación


Aprovechamiento del conocimiento acumulado para extender las posibilidades de diagnostico aprovechando la comunicación de alta velocidad intervehicular, diagnostico y la web, así como la comunicación inalámbrica y los GPS

Conector de diagnóstico Tipo A (SAE J1962 equivalente ISO 15031-3)

Pin 2 - J1850 Bus+ (PWM)

Pin 4 - Tierra de Chasis

Pin 5 - Tierra de Señal

Pin 6 - CAN High (J-2284)

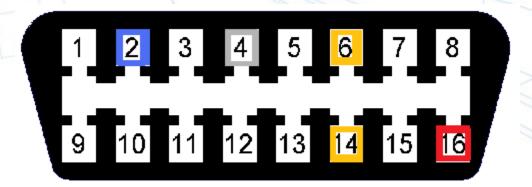
Pin 7 - Linea K ISO 9141-2

Pin 10 - J1850 Bus-

(PWM)

Pin 14 - CAN Low (J-2284)

Pin 15 - Línea L ISO 9141-2


Pin 16 - Voltaje de batería

Vehículos FORD (Mercury, Mazda, Jaguar)

Conector de diagnóstico Tipo A (SAE J1962 equivalente ISO 15031-3)

Pin 2 - J1850 Bus+ (VPW)

Pin 4 - Tierra de Chasis

Pin 5 - Tierra de Señal

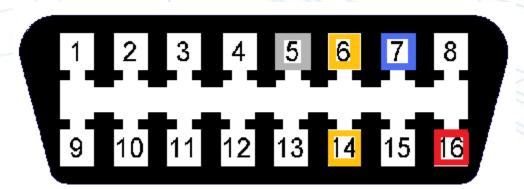
Pin 6 - CAN High (J-2284)

Pin 7 - Linea K ISO 9141-2

Pin 10 - J1850 Bus

Pin 14 - CAN Low (J-2284)

Pin 15 - Línea L ISO 9141-2


Pin 16 - Voltaje de batería

Vehículos GM Americanos (Pontiac, Buick, Cadillac)

Conector de diagnóstico Tipo A (SAE J1962 equivalente ISO 15031-3)

Pin 2 - J1850 Bus+

Pin 4 - Tierra de Chasis

Pin 5 - Tierra de Señal

Pin 6 - CAN High (J-2284)

Pin 7 - Línea K ISO 9141-2

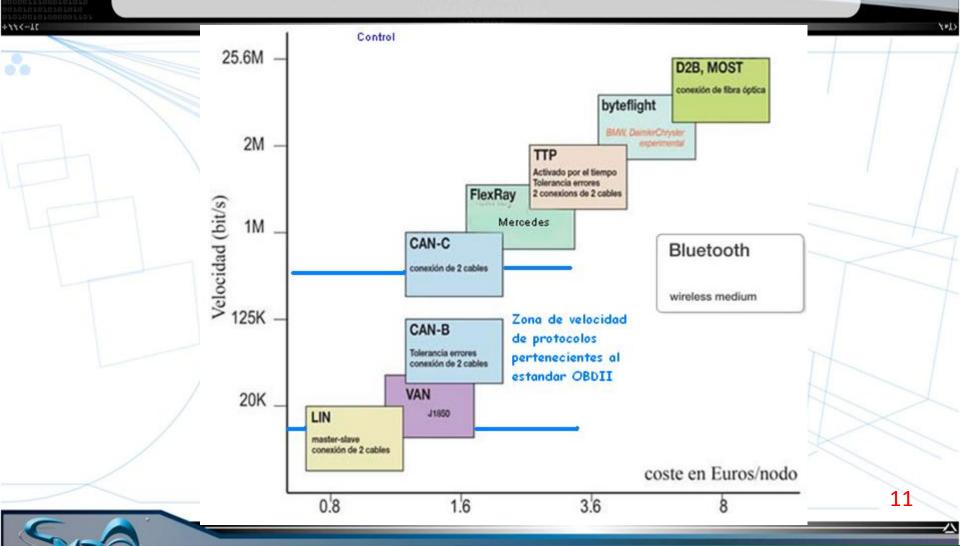
Pin 10 - J1850 Bus-

Pin 14 - CAN Low (J-2284)

Pin 15 - Línea L ISO 9141-2

Pin 16 - Voltaje de batería

Vehículos Europeos-Asiaticos (BWM, VW, Audi, Nissan, Honda, etc...)

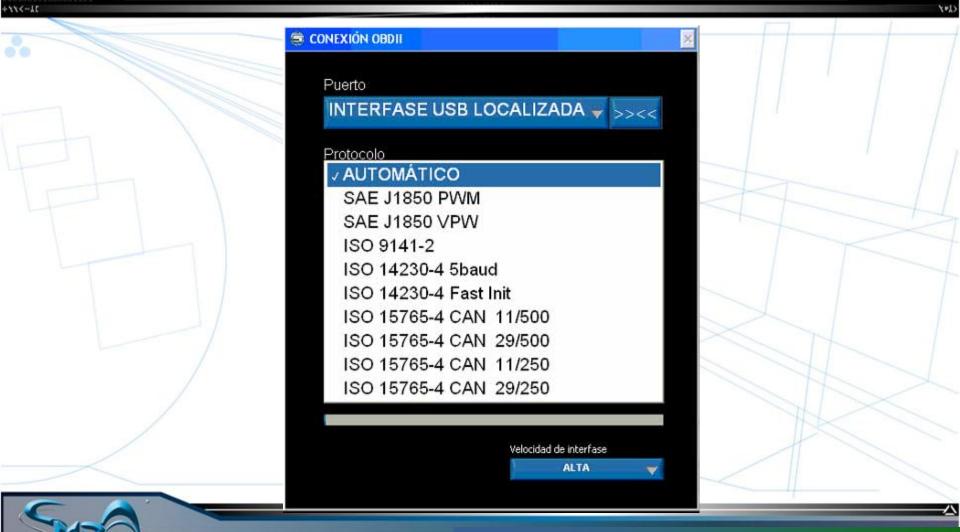


Protocolos	ORDIT

Nombre	Pines	Velocidad	Tipo (ver apéndice)
ISO9141-2	7	10.4 kbit/s	Pasivo
ISO14230-2	7	10.4 kbit/s	Pasivo
J1850-VPW	2	10.4 kbit/s	Activo
J1850-PWM	2, 10	41.6 kbit/s	Activo
ISO15765-4	6,14	500 kbit/s	Activo
ISO15765-4	6,14	250 kbit/s	Activo

Excepciones conector/OBDII

Algunos Vehículos No OBDII con conector J1962-Tipo A


- Camionetas 3 1/2 GM (1996-2001)
- Algunos vehículos de origen europeo (previos al 2003)
 - Vehículos brasileños (VW y Opel previos al 2003)
 - Chevy (previos al 2005)

Vehículos sin conector J1962 que soportan el estandar OBDII

- Tsuru II (posterior al 2004)

Estándar

J1979 (modos de diagnostico, equivalente ISO/DIS 15031-5)

Modo U1	Lineas de datos
Modo 02	Cuadro congelado
Modo 03	Códigos de falla actuales
Modo 04	Borrado de códigos de falla
Modo 05	Monitoreo de resultado de sensores de oxigeno
Modo 06	Monitoreo de resultado de pruebas de monitores

Solicitud de control de sistema, prueba o componente

Solicitud de información del vehículo

Códigos de falla del ultimo ciclo

Modo 07

Modo 08

Modo 09

14

Modo 01

Líneas de datos

Variable numérica: Valor numérico de algún sensor y/o actuador

Constantes: Son datos que no cambian

PID 1C Requerimientos OBD soportados por el vehículo

PIDs 13, 1D Sensores de oxigeno presentes

Estado de variables: Condición especifica de alguna variable

PID 03 Sistema de control de combustible

- OL Circuito abierto
- •CL Circuito cerrado
- OL-Drive Circuito abierto debido a condiciones de manejo

Modo 01 Variable numérica: Valor numérico de algún sensor y/o actuador

Variable	Valor	Unidad
√ Valor de Carga Calculado	93	%
√ Temperatura de Refrigerante de Motor (ECT)	94	°C
✓ Reg. de Combustible Periodo Corto - B1	14	%
✓ Reg. de Combustible Periodo Largo - B1	32	%
✓ Presión Absoluta en el Multiple de Admisión (MAP)	20	kPa
√ Velocidad Motor - Alta Resolución	11	RPM
√ Velocidad del Vehículo - Baja Resolución	52	km/h
√ Avance del Tiempo de Chispa °	8	0
√ Temperatura del Aire de Entrada (IAT)	15	9C
✓ Posición Absoluta del Acelerador (TPS)	39	%

Pruebas de Monitoreo Continuo	Condición	Estado	=
Monitoreo de Perdida de Combustión	SOPORTADO	TERMINADO	Ť.
Monitoreo del Sistema de Combustible	SOPORTADO	NO TERMINADO	
Monitoreo del Sistema de Compresión	NO SOPORTADO	NO APLICA	10
Pruebas de Monitoreo No Continuo	Condición	Estado	100
Monitoreo de Catalizador Calentado	NO SOPORTADO	NO APLICA	1
Monitoreo de Sistema de Emisiones Evap	SOPORTADO	TERMINADO	
Monitoreo del Sistema de Aire Secundario	NO SOPORTADO	NO APLICA	+

Modo 01 Variable numérica: Valor numérico de algún sensor y/o actuador

Modo 01

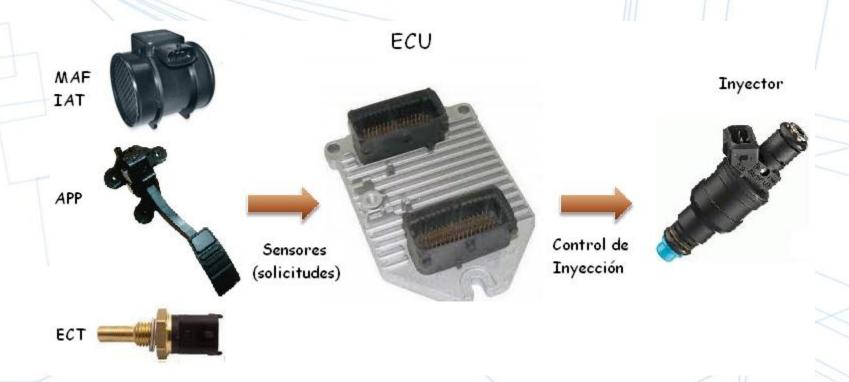
Líneas de datos

Estado de sistema de combustible 1 y 2 (1 y 2 bancos respectivamente) PID 03

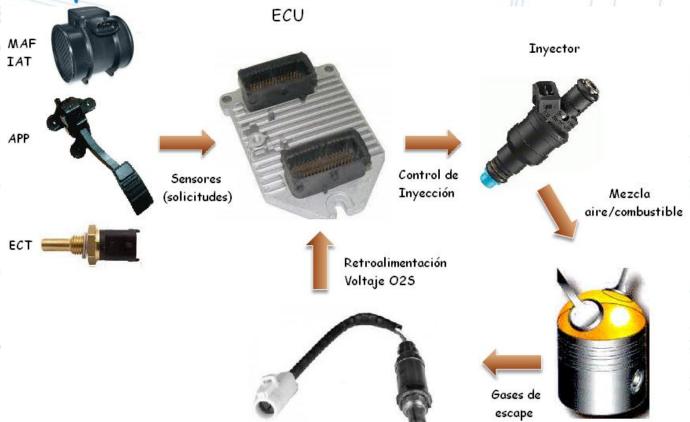
OL Circuito abierto – no se han sido satisfechas las condiciones para cerrar el circuito

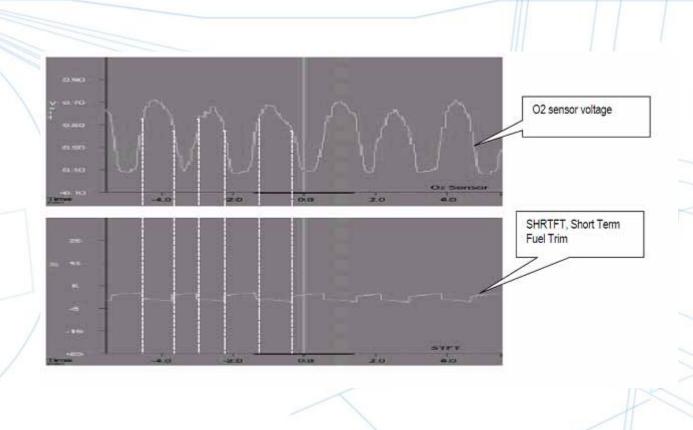
CL Circuito cerrado – usando sensores de oxigeno para retroalimentación de control de combustible

OL-DRIVE Circuito abierto debido a condiciones de manejo (ejemplo: solicitud de potencia, desaceleración)

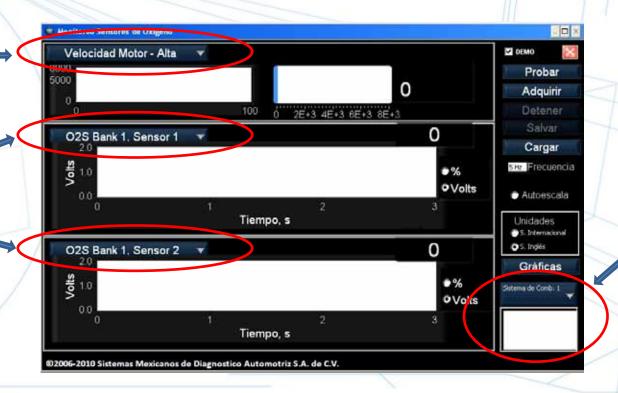

OL-Fault Circuito abierto – debido a falla en el sistema

CL-Fault Circuito cerrado – pero con al menos un sensor de oxigeno


Esquema de control de combustible ciclo abierto



Esquema de control de combustible ciclo cerrado



Monitoreo de Sensores de Oxigeno

Selección de variable de referencia

Selección de hasta dos sensores de O2 para monitoreo simultanea

Simultaneamente

de monitorea el estado de (los) sistema (s) de control de combustible

Modo 01

Líneas de datos

Estado de monitores: Autopruebas que verifican el estado de sistemas con estrategias propias del fabricante para la identificación de fallas

Monitores Continuos (instantáneos)

Perdida de detonación (Misfire)
Sistema de combustible (Fuel System)
Componente Comprensivo (Comprehensive component)

Modo 01

Líneas de datos

Monitores Continuos

Perdida de detonación (Misfire)

¿Qué protege?

¿Cómo lo hace?

Acciones de falla

Catalizador

Sensor cigüeñal (variación de velocidad)

Sensor de detonación

Des habilitación Cilindros (sin inyección de comb.)

Diagnostico erróneo: Falla en computadora

Posibles fallas: Cable de bujías, distribuidor, bobina(s), baja compresión,

inyector, entre otros...

Modo 01 Líneas de datos Monitores Continuos Ejemplo de consideraciones (manual de reparación)

Monitor	Codigos	Ejecución	Sensores OK	Duración
Perdida de detonación (Misfire)	P0300-P0308	Cada 200 o 1000 revs	CKP, CMP	Todo el ciclo de manejo, 2 ciclos de manejo para Reportar códigos
Sistema de combustible (Fuel system)	P0171-P0174 P0172-P0175	Continuo con circuito cerrado	Presión de riel de combustible	2 segundos para reportar falla
Componente Comprensivo (comprehesive component)	P0112, P0113, P0117, P0118, P0102, P0103, P0122, P0123	Continuo		5 segundos para reportar falla

Modo 01

Líneas de datos

Monitores no continuos (uno o varios ciclos de manejo)

Convertidor catalítico (Catalyst)

Convertidor catalítico calentado (Heated Catalyst)

Sistema evaporativo (evaporative system)

Sistema de aire secundario (Secondary air system)

Sistema de refrigerante de A/C (A/C system refrigerant)

Sistema de sensor de oxigeno (Oxigen sensor)

Sistema de calentador de sensor de oxigeno (Oxigen sensor heater)

Sistema EGR (EGR system)

Modo 09

Identificadores

VIN

Numero identificador del vehículo: 93CXM19246C132303

Cal ID

Identificador de calibración: JMB*36761500

CVN

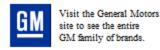
Numero verificador de calibración: 17 91 BC 82

http://tis2web.service.gm.com/tis2web

SPS Info

Service and Parts Operations

To obtain the latest electronic controller calibration information for your vehicle, enter the vehicle's 17 character Vehicle Identification Number (VIN) and select 'Get CAL ID'.


To obtain the Calibration Verification Number (CVN) for any calibration part number, enter the part number of the calibration ID and select 'Get CVN.'

VIN:

Get CAL ID

Part Number:

Get CVN

Softwar	Description	
Application Part Number	93317781	
Software Version Number	4	

Selected Options:

VIN:	93CXM19246C132303
Salesmake:	Chevrolet(GMdoBrazil)
Model Year:	2006
Model:	CORSA-C
Engine:	T 18 NE
Controller:	ECM Engine Control Module
Function:	Programming
Type of Fuel:	Gasoline without alcohol (E0) Other countries
Type of Transmission:	Easytronic

Sistema del Número Identificador del Vehículo (VIN)

Posición	Definición	Caracter	Descripción
1	País de origen	1 3	Estados Unidos México
2	Fabricante	G	General Motors
3	Haga	B C D	Chevrolet Carro Incompleto de Chevrolet GMC Carro Incompleto de GMC
4	Sistema de amplificación hidráulica	B C D E	3001-4000/Hydraulic 4001-5000/Hydraulic 5001-6000/Hydraulic 6001-7000/Hydraulic
5	Tipo de Línea/Chasis del Vehículo	С	Cab/4x2 Convencional
6	Serie	1 2	tonelada del 1/2 3/4 tonelada
7	Tipo de la Carrocería	4 9	Cabina Regular Cabina Extendida
8	Tipo del Motor	L R	(Lh3) Gas 4.3L (L31) Gas 5.7L
9	Dígito de Verificación		Dígito de Verificación
10	Año Modelo	X	1999
11	Localización de Planta	Z G	Fort Wayne, Indiana Silao, México
12-17	Número de la Secuencia de la Planta	0.5	Número de la Secuencia de la Planta

Estándar

J2190 Modos de prueba para diagnostico extendido

Este estándar nos indica los modos para que el equipo de diagnóstico

Ejemplos

Modo 10	Inicializar sesión de diagnostico
---------	-----------------------------------

Modo 13 Códigos de falla act	tuales
------------------------------	--------

31

Anexo 1

P0300 Falla Detectada en Cilindro Aleatorio/Múltiple P0171 Sistema Muy Pobre - Bloque 1 P0172 Sistema Muy Rico - Bloque 1 Sistema Muy Pobre - Bloque 2 P0174 P0175 Sistema Muy Rico - Bloque 2 P0112 Circuito Sensor 1 de Temperatura de Aire de Admisión (Señal Baja) Circuito Sensor 1 de Temperatura de Aire de Admisión (Señal Alta) P0113 Circuito de Temperatura del Refrigerante del Motor (Señal Baja) P0117 Circuito de Temperatura del Refrigerante del Motor (Señal Alta) P0118 Circuito de Flujo de Aire (Masa o Volumen) (Señal Baja) P0102 P0103 Circuito de Flujo de Aire (Masa o Volumen) (Señal Alta) Circuito del Sensor/Interruptor de Posición del Estrangulador "A"/Pedal "A" P0122 (Señal Baja)

Circuito del Sensor/Interruptor de Posición del Estrangulador "A"/Pedal "A"

32

P0123

(Señal Alta)

SCANATOR D1 MOTOR

El sistema más básico de Scanator PC

con grandes funcionalidades:

- Lectura y borrado de códigos de fallas, línea de datos graficas,tablero virtual, monitoreo de voltaje, generación de reportes.
- Cobertura para todas las marcas de manera genérica y diagnósticos específicos en motor para las marcas:

PEUGEOT, RENAULT, FORD. MERCEDES Y OPEL

y la oportunidad de crecer a Scanator Premium

+ Gastos de envio

\$ 226 USD

Válido 20 de Mayo

INTERFASE SCANATOR SX

CARACTERÍSTICAS

SCANATOR D1 MOTOR

Funciones OBDII y MUCHO más

- Cobertura extendida en motor
- Fácil de usar
- Instalación sencilla y rápida
- NO requiere licencia
- Precio accesible
- Posibilidad de crecimiento a

Scanator D1 ó PREMIUM

- 1 año de garantía

COBERTURA SCANATOR D1 MOTOR

OBDII (EOBD, CAN BUS)

Línea de datos

Códigos de falla genéricos

Códigos de falla específicos

Borrado de códigos de falla

Gráficas

Tablero virtual

Prueba de desempeño

Lista de acrónimos

Prueba de sensores de oxígeno

Monitores continuos y no contiinuos

Monitoreo voltaje de batería

Cuadro congelado

Generación de reporte

Modo 06

PEUGEOT ESPECÍFICO

Línea de datos

Gráficas de datos

Códigos de falla

Tablero virtual

Actuadores*

Borrado de autoadaptativos*

Funciones especiales*

206,207,306,307,406,407

RENAULT ESPECÍFICO

Línea de datos

Gráficas de datos

Códigos de falla

Tablero virtual

Actuadores*

Borrado de autoadaptativos*

Funciones especiales*

Reset de computadora*

Funciones especiales

Clío, Platina, Kangoo, Scenic,

Megane, Trafic

FORD ESPECÍFICO

Línea de datos

Gráficas de datos

Códigos de falla

Tablero virtual

Pruebas KOEO y KOER

Protocolo J1850 PWM (1996-2006)

NUEVO Autos CAN-BUS (2006 en adelante)

NUEVO GENERAL MOTORS

-Lectura de codigos de falla (PROTOCOLO J1850 VPW Y CAN-BUS)

-Codigos actuales e historicos

-Linea de datos

-Graficas

-Tableros virtuales

OPEL ESPECÍFICO

Línea de datos

Gráficas de datos

Códigos de falla

Tablero virtual

Corsa, Astra, Zafira y Meriva

H-100 DIESEL

Línea de datos

Gráficas de datos

Códigos de falla

MERCEDES ESPECÍFICO

Línea de datos

Tablero virtual

Códigos de falla Gráficas

Reset de TCM

Sprinter y A160

NUEVO FIAT ESPECÍFICO

Línea de datos extendida

Graficas

Tablero virtual

Códigos de falla

Borrado de códigos de falla

Tel. y Fax: (0155) 59-34-98-51 01 800 837 58 23

ventas@tutallermecanico.com.mx www.tutallermecanico.com.mx

SEMINARIO de Actualización

Seminarios virtuales

Mayo

Horario: 19:00 a las 21:30 hrs

(zona horaria de la ciudad de México) Verifique la zona que le corresponda a su ciudad.

15 y 16

Cuerpos de aceleración y pedales electrónicos

30 y 31

Localización de averías en el CAN-Bus

Informes: (0155) 59 34 98 51 o lada sin costo al 01 800 837 58 23 www.tutallermecanico.com.mx capacitacion@tutallermecanico.com.mx

Máximo 30 asistentes

Habrá asesoría personalizada (requiere micrófono y de preferencia, cámara)

Seminario presencial

Programación de llaves, inmovilizadores y controles remotos

Viernes Junio Sábado 2 2 12:00 - 20:00 hrs. 10:00 - 18:00 hrs.

(incluye prácticas y descansos)

Puebla, Puebla

CECATI 18

Calzada Ignacio Zaragoza S/N, esq. Francisco Sarabia Col. Adolfo Mateos (Frente a Plaza Loreto)

Hasta el 29 Mayo El día evento: \$3,200.00