
uponor

SOLUCIONES UPONOR PARA
INSTALACIONES DE FONTANERÍA Y
CALEFACCIÓN POR RADIADORES

MANUAL TÉCNICO SOLUCIÓN UPONOR PEX PARA FONTANERÍA

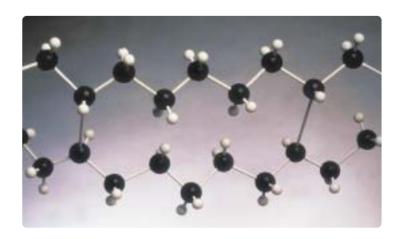
Índice

1.1. UPONOR PEX 1.1.1. Propiedades de la tubería Uponor PEX 1.1.2. Designación y grado de reticulación 1.1.3. Normativa 1.1.4. Gama tubería Uponor PEX 1.1.5. Ventajas de las tubería Uponor PEX 1.1.6. Ventajas de los accesorios Uponor Q&E Plásticos 1.2.1. Ventajas de los accesorios Uponor Q&E Plásticos 1.3. Sistema de unión Uponor Q&E 1.3.1. Instrucciones de montaje del sistema Uponor Q&E 1.3.2. Instrucciones de instalación Uponor Q&E accesorios plásticos re 1.3.3. Herramientas del sistema Uponor Q&E 1.3.4. Nuevo adaptador giratorio para herramientas del sistema Uponor Q&E usando e giratorio Uponor Q&E 1.3.4.1. Instrucciones de montaje del sistema Uponor Q&E usando e giratorio Uponor Q&E 1.3.4.2. Compatibilidad del Uponor Q&E adaptador giratorio 1.5. Accesorios Uponor Grandes dimensiones bronce 2. Principios de diseño 2.1. Configuración de la instalación 2.2. Caudal instantáneo mínimo 2.3. Presión máxima y mínima 2.4. Diámetro nominal mínimo de la derivación a los aparatos 2.4.2. Diámetro nominal mínimo de la derivación a los aparatos 2.4.2. Diámetro nominal mínimo de alimentación 2.5. Caudal de simultaneidad 2.5.1. Cálculo del caudal de simultaneidad 2.6. Velocidad del agua 2.7. Agua caliente Sanitaria 2.7.1. Contribución solar mínima 2.7.2. Demanda de agua caliente sanitaria 2.7.3. Demanda de agua caliente sanitaria 2.7.4. Tipos de Instalaciones de placas Solares en edificios	oscados (PPSU) or Q&E el nuevo adaptador	
1.1.1. Propiedades de la tubería Uponor PEX 1.1.2. Designación y grado de reticulación 1.1.3. Normativa 1.1.4. Gama tubería Uponor PEX 1.1.5. Ventajas de las tubería Uponor PEX 1.2. Accesorios 1.2.1. Ventajas de los accesorios Uponor Q&E Plásticos 1.3. Sistema de unión Uponor Q&E 1.3.1. Instrucciones de montaje del sistema Uponor Q&E 1.3.2. Instrucciones de instalación Uponor Q&E accesorios plásticos ro 1.3.3. Herramientas del sistema Uponor Q&E 1.3.4. Nuevo adaptador giratorio para herramientas del sistema Uponor 1.3.4.1. Instrucciones de montaje del sistema Uponor Q&E usando e giratorio Uponor Q&E 1.3.4.2. Compatibilidad del Uponor Q&E adaptador giratorio 1.5. Accesorios Uponor Grandes dimensiones bronce 2. Princípios de diseño 2.1. Configuración de la instalación 2.2. Caudal instantáneo mínimo 2.3. Presión máxima y mínima 2.4. Diámetros mínimos 2.4.1. Diámetro nominal mínimo de la derivación a los aparatos 2.4.2. Diámetro nominal mínimo de alimentación 2.5. Caudal de simultaneidad 2.5.1. Cálculo del caudal de simultaneidad 2.6. Velocidad del agua 2.7. Agua caliente Sanitaria 2.7.1. Contribución solar mínima 2.7.2. Demanda de agua caliente sanitaria 2.7.3. Demanda de agua caliente sanitaria	oscados (PPSU) or Q&E el nuevo adaptador	
1.1.2. Designación y grado de reticulación 1.1.3. Normativa 1.1.4. Gama tubería Uponor PEX 1.1.5. Ventajas de las tubería Uponor PEX 1.2.1. Ventajas de los accesorios Uponor Q&E Plásticos 1.2.1. Ventajas de los accesorios Uponor Q&E Plásticos 1.3. Sistema de unión Uponor Q&E 1.3.1. Instrucciones de montaje del sistema Uponor Q&E 1.3.2. Instrucciones de instalación Uponor Q&E accesorios plásticos ru 1.3.3. Herramientas del sistema Uponor Q&E 1.3.4. Nuevo adaptador giratorio para herramientas del sistema Uponor 1.3.4.1. Instrucciones de montaje del sistema Uponor Q&E usando e giratorio Uponor Q&E 1.3.4.2. Compatibilidad del Uponor Q&E adaptador giratorio 1.5. Accesorios Uponor Grandes dimensiones bronce 2. Principios de diseño 2.1. Configuración de la instalación 2.2. Caudal instantáneo mínimo 2.3. Presión máxima y mínima 2.4. Diámetros mínimos 2.4.1. Diámetro nominal mínimo de la derivación a los aparatos 2.4.2. Diámetro nominal mínimo de alimentación 2.5. Caudal de simultaneidad 2.5.1. Cálculo del caudal de simultaneidad 2.6. Velocidad del agua 2.7. Agua caliente Sanitaria 2.7.1. Contribución solar mínima 2.7.2. Demanda de agua caliente sanitaria 2.7.3. Demanda de agua caliente sanitaria	oscados (PPSU) or Q&E el nuevo adaptador	.5. .6. .7. .8. .8. .1. .1. .1. .1. .1. .1. .1. .1
1.1.3. Normativa 1.1.4. Gama tubería Uponor PEX 1.1.5. Ventajas de las tubería Uponor PEX 1.2. Accesorios 1.2.1. Ventajas de los accesorios Uponor Q&E Plásticos 1.3. Sistema de unión Uponor Q&E 1.3.1. Instrucciones de montaje del sistema Uponor Q&E 1.3.2. Instrucciones de instalación Uponor Q&E accesorios plásticos re 1.3.3. Herramientas del sistema Uponor Q&E 1.3.4. Nuevo adaptador giratorio para herramientas del sistema Upon 1.3.4.1. Instrucciones de montaje del sistema Uponor Q&E usando e giratorio Uponor Q&E 1.3.4.2. Compatibilidad del Uponor Q&E adaptador giratorio 1.5. Accesorios Uponor Grandes dimensiones bronce 2. Principios de diseño 2.1. Configuración de la instalación 2.2. Caudal instantáneo mínimo 2.3. Presión máxima y mínima 2.4. Diámetro nominal mínimo de la derivación a los aparatos 2.4.1. Diámetro nominal mínimo de alimentación 2.5. Caudal de simultaneidad 2.5.1. Cálculo del caudal de simultaneidad 2.5.1. Cálculo del caudal de simultaneidad 2.7. Agua caliente Sanitaria 2.7.1. Contribución solar mínima 2.7.2. Demanda de agua caliente sanitaria 2.7.3. Demanda de agua caliente sanitaria	oscados (PPSU) or Q&E el nuevo adaptador	.6 .6 .8 .8 .9 .11 12 12 13 14 15 16 16 16 17 18 18 18 18 18 18 18 18 18 18 18 18 18
1.1.4. Gama tubería Uponor PEX 1.1.5. Ventajas de las tubería Uponor PEX 1.2. Accesorios 1.2.1. Ventajas de los accesorios Uponor Q&E Plásticos 1.3. Sistema de unión Uponor Q&E 1.3.1. Instrucciones de montaje del sistema Uponor Q&E 1.3.2. Instrucciones de instalación Uponor Q&E accesorios plásticos re 1.3.3. Herramientas del sistema Uponor Q&E 1.3.4. Nuevo adaptador giratorio para herramientas del sistema Uponor 1.3.4.1. Instrucciones de montaje del sistema Uponor Q&E usando e giratorio Uponor Q&E 1.3.4.2. Compatibilidad del Uponor Q&E adaptador giratorio 1.5. Accesorios Uponor Grandes dimensiones bronce 2. Principios de diseño 2.1. Configuración de la instalación 2.2. Caudal instantáneo mínimo 2.3. Presión máxima y mínima 2.4. Diámetros mínimos 2.4.1. Diámetro nominal mínimo de la derivación a los aparatos 2.4.2. Diámetro nominal mínimo de alimentación 2.5. Caudal de simultaneidad 2.5.1. Cálculo del caudal de simultaneidad 2.6. Velocidad del agua 2.7. Agua caliente Sanitaria 2.7.1. Contribución solar mínima 2.7.2. Demanda de agua caliente sanitaria 2.7.3. Demanda de agua caliente sanitaria	oscados (PPSU) or Q&E el nuevo adaptador	.6 .8 .8 .8 .11 12 13 14 15 16 18 18 19 19 20 20 20
1.1.5. Ventajas de las tubería Uponor PEX 1.2. Accesorios 1.2.1. Ventajas de los accesorios Uponor Q&E Plásticos 1.3. Sistema de unión Uponor Q&E 1.3.1. Instrucciones de montaje del sistema Uponor Q&E 1.3.2. Instrucciones de instalación Uponor Q&E accesorios plásticos re 1.3.3. Herramientas del sistema Uponor Q&E 1.3.4. Nuevo adaptador giratorio para herramientas del sistema Uponor 1.3.4.1. Instrucciones de montaje del sistema Uponor Q&E usando e giratorio Uponor Q&E 1.3.4.2. Compatibilidad del Uponor Q&E adaptador giratorio 1.5. Accesorios Uponor Grandes dimensiones bronce 2. Principios de diseño 2.1. Configuración de la instalación 2.2. Caudal instantáneo mínimo 2.3. Presión máxima y mínima 2.4. Diámetros mínimos 2.4.1. Diámetro nominal mínimo de la derivación a los aparatos 2.4.2. Diámetro nominal mínimo de alimentación 2.5. Caudal de simultaneidad 2.5.1. Cálculo del caudal de simultaneidad 2.6. Velocidad del agua 2.7. Agua caliente Sanitaria 2.7.1. Contribución solar mínima 2.7.2. Demanda de agua caliente sanitaria 2.7.3. Demanda de agua caliente sanitaria	oscados (PPSU) or Q&E el nuevo adaptador	
1.2.1. Ventajas de los accesorios Uponor Q&E Plásticos 1.3. Sistema de unión Uponor Q&E 1.3.1. Instrucciones de montaje del sistema Uponor Q&E 1.3.2. Instrucciones de instalación Uponor Q&E accesorios plásticos re 1.3.3. Herramientas del sistema Uponor Q&E 1.3.4. Nuevo adaptador giratorio para herramientas del sistema Uponor 1.3.4.1. Instrucciones de montaje del sistema Uponor Q&E usando e giratorio Uponor Q&E 1.3.4.2. Compatibilidad del Uponor Q&E adaptador giratorio 1.5. Accesorios Uponor Grandes dimensiones bronce 2. Principios de diseño 2.1. Configuración de la instalación 2.2. Caudal instantáneo mínimo 2.3. Presión máxima y mínima 2.4. Diámetros mínimos 2.4.1. Diámetro nominal mínimo de la derivación a los aparatos 2.4.2. Diámetro nominal mínimo de alimentación 2.5. Caudal de simultaneidad 2.5.1. Cálculo del caudal de simultaneidad 2.6. Velocidad del agua 2.7. Agua caliente Sanitaria 2.7.1. Contribución solar mínima 2.7.2. Demanda de agua caliente sanitaria 2.7.3. Demanda de agua caliente sanitaria	oscados (PPSU) or Q&E el nuevo adaptador	.6 .9 .9 .11 12 12 13 14 18 18 18 19 19 20 20 20 20
1.3. Sistema de unión Uponor Q&E 1.3.1. Instrucciones de montaje del sistema Uponor Q&E 1.3.2. Instrucciones de instalación Uponor Q&E accesorios plásticos re 1.3.3. Herramientas del sistema Uponor Q&E 1.3.4. Nuevo adaptador giratorio para herramientas del sistema Upono 1.3.4.1. Instrucciones de montaje del sistema Uponor Q&E usando e giratorio Uponor Q&E 1.3.4.2. Compatibilidad del Uponor Q&E adaptador giratorio 1.5. Accesorios Uponor Grandes dimensiones bronce 2. Principios de diseño 2.1. Configuración de la instalación 2.2. Caudal instantáneo mínimo 2.3. Presión máxima y mínima 2.4. Diámetros mínimos 2.4.1. Diámetro nominal mínimo de la derivación a los aparatos 2.4.2. Diámetro nominal mínimo de alimentación 2.5. Caudal de simultaneidad 2.5.1. Cálculo del caudal de simultaneidad 2.6. Velocidad del agua 2.7. Agua caliente Sanitaria 2.7.1. Contribución solar mínima 2.7.2. Demanda de agua caliente sanitaria 2.7.3. Demanda de agua caliente sanitaria	oscados (PPSU) or Q&E el nuevo adaptador	11 12 12 13 14 15 16 18 18 19 19 19 20 20 20
1.3.1. Instrucciones de montaje del sistema Uponor Q&E 1.3.2. Instrucciones de instalación Uponor Q&E accesorios plásticos re 1.3.3. Herramientas del sistema Uponor Q&E 1.3.4. Nuevo adaptador giratorio para herramientas del sistema Upono 1.3.4.1. Instrucciones de montaje del sistema Uponor Q&E usando e giratorio Uponor Q&E 1.3.4.2. Compatibilidad del Uponor Q&E adaptador giratorio 1.5. Accesorios Uponor Grandes dimensiones bronce 2. Principios de diseño 2.1. Configuración de la instalación 2.2. Caudal instantáneo mínimo 2.3. Presión máxima y mínima 2.4. Diámetros mínimos 2.4.1. Diámetro nominal mínimo de la derivación a los aparatos 2.4.2. Diámetro nominal mínimo de alimentación 2.5. Caudal de simultaneidad 2.5.1. Cálculo del caudal de simultaneidad 2.6. Velocidad del agua 2.7. Agua caliente Sanitaria 2.7.1. Contribución solar mínima 2.7.2. Demanda de agua caliente sanitaria 2.7.3. Demanda de agua caliente sanitaria	oscados (PPSU) or Q&E el nuevo adaptador	.9 11 12 12 13 14 18 18 18 19 19 20 20 20
1.3.2. Instrucciones de instalación Uponor Q&E accesorios plásticos no 1.3.3. Herramientas del sistema Uponor Q&E	oscados (PPSU) or Q&E el nuevo adaptador	11 12 13 14 15 16 16 16 16 16 16 16 16 16 16 16 16 16
1.3.4. Nuevo adaptador giratorio para herramientas del sistema Upon 1.3.4.1. Instrucciones de montaje del sistema Uponor Q&E usando e giratorio Uponor Q&E 1.3.4.2. Compatibilidad del Uponor Q&E adaptador giratorio 1.5. Accesorios Uponor Grandes dimensiones bronce 2. Principios de diseño 2.1. Configuración de la instalación 2.2. Caudal instantáneo mínimo 2.3. Presión máxima y mínima 2.4. Diámetros mínimos 2.4.1. Diámetro nominal mínimo de la derivación a los aparatos 2.4.2. Diámetro nominal mínimo de alimentación 2.5. Caudal de simultaneidad 2.5.1. Cálculo del caudal de simultaneidad 2.6. Velocidad del agua 2.7. Agua caliente Sanitaria 2.7.1. Contribución solar mínima 2.7.2. Demanda de agua caliente sanitaria 2.7.3. Demanda de agua caliente sanitaria	or Q&E el nuevo adaptador	13 14 15 16 16 16 16 16 16 16 16 16 16 16 16 16
1.3.4.1. Instrucciones de montaje del sistema Uponor Q&E usando e giratorio Uponor Q&E 1.3.4.2. Compatibilidad del Uponor Q&E adaptador giratorio 1.5. Accesorios Uponor Grandes dimensiones bronce 2. Principios de diseño 2.1. Configuración de la instalación 2.2. Caudal instantáneo mínimo 2.3. Presión máxima y mínima 2.4. Diámetros mínimos 2.4.1. Diámetro nominal mínimo de la derivación a los aparatos 2.4.2. Diámetro nominal mínimo de alimentación 2.5. Caudal de simultaneidad 2.5.1. Cálculo del caudal de simultaneidad 2.6. Velocidad del agua 2.7. Agua caliente Sanitaria 2.7.1. Contribución solar mínima 2.7.2. Demanda de agua caliente sanitaria 2.7.3. Demanda de agua caliente sanitaria	el nuevo adaptador	14 16 18 18 19 19 20 20
giratorio Uponor Q&E 1.3.4.2. Compatibilidad del Uponor Q&E adaptador giratorio 1.5. Accesorios Uponor Grandes dimensiones bronce 2. Principios de diseño 2.1. Configuración de la instalación 2.2. Caudal instantáneo mínimo 2.3. Presión máxima y mínima 2.4. Diámetros mínimos 2.4.1. Diámetro nominal mínimo de la derivación a los aparatos 2.4.2. Diámetro nominal mínimo de alimentación 2.5. Caudal de simultaneidad 2.5.1. Cálculo del caudal de simultaneidad 2.6. Velocidad del agua 2.7. Agua caliente Sanitaria 2.7.1. Contribución solar mínima 2.7.2. Demanda de agua caliente sanitaria 2.7.3. Demanda de agua caliente sanitaria		15 16 18 19 19 19 20 20
1.3.4.2. Compatibilidad del Uponor Q&E adaptador giratorio 1.5. Accesorios Uponor Grandes dimensiones bronce 2. Principios de diseño 2.1. Configuración de la instalación 2.2. Caudal instantáneo mínimo 2.3. Presión máxima y mínima 2.4. Diámetros mínimos 2.4.1. Diámetro nominal mínimo de la derivación a los aparatos 2.4.2. Diámetro nominal mínimo de alimentación 2.5. Caudal de simultaneidad 2.5.1. Cálculo del caudal de simultaneidad 2.6. Velocidad del agua 2.7. Agua caliente Sanitaria 2.7.1. Contribución solar mínima 2.7.2. Demanda de agua caliente sanitaria 2.7.3. Demanda de agua caliente sanitaria		15 16 18 19 19 19 20 20
1.5. Accesorios Uponor Grandes dimensiones bronce 2. Principios de diseño 2.1. Configuración de la instalación 2.2. Caudal instantáneo mínimo 2.3. Presión máxima y mínima 2.4. Diámetros mínimos 2.4.1. Diámetro nominal mínimo de la derivación a los aparatos 2.4.2. Diámetro nominal mínimo de alimentación 2.5. Caudal de simultaneidad 2.5.1. Cálculo del caudal de simultaneidad 2.6. Velocidad del agua 2.7. Agua caliente Sanitaria 2.7.1. Contribución solar mínima 2.7.2. Demanda de agua caliente sanitaria 2.7.3. Demanda de agua caliente sanitaria		16 18 18 19 19 19 20 20
2. Principios de diseño 2.1. Configuración de la instalación 2.2. Caudal instantáneo mínimo 2.3. Presión máxima y mínima 2.4. Diámetros mínimos 2.4.1. Diámetro nominal mínimo de la derivación a los aparatos 2.4.2. Diámetro nominal mínimo de alimentación 2.5. Caudal de simultaneidad 2.5.1. Cálculo del caudal de simultaneidad 2.6. Velocidad del agua 2.7. Agua caliente Sanitaria 2.7.1. Contribución solar mínima 2.7.2. Demanda de agua caliente sanitaria 2.7.3. Demanda de agua caliente sanitaria		18 18 19 19 19 20 20 20
2.2. Caudal instantáneo mínimo 2.3. Presión máxima y mínima 2.4. Diámetros mínimos 2.4.1. Diámetro nominal mínimo de la derivación a los aparatos 2.4.2. Diámetro nominal mínimo de alimentación 2.5. Caudal de simultaneidad 2.5.1. Cálculo del caudal de simultaneidad 2.6. Velocidad del agua 2.7. Agua caliente Sanitaria 2.7.1. Contribución solar mínima 2.7.2. Demanda de agua caliente sanitaria 2.7.3. Demanda de agua caliente sanitaria		19 19 19 20 20
2.3. Presión máxima y mínima 2.4. Diámetros mínimos 2.4.1. Diámetro nominal mínimo de la derivación a los aparatos 2.4.2. Diámetro nominal mínimo de alimentación 2.5. Caudal de simultaneidad 2.5.1. Cálculo del caudal de simultaneidad 2.6. Velocidad del agua 2.7. Agua caliente Sanitaria 2.7.1. Contribución solar mínima 2.7.2. Demanda de agua caliente sanitaria 2.7.3. Demanda de agua caliente sanitaria		19 19 20 20
2.4. Diámetros mínimos 2.4.1. Diámetro nominal mínimo de la derivación a los aparatos 2.4.2. Diámetro nominal mínimo de alimentación 2.5. Caudal de simultaneidad 2.5.1. Cálculo del caudal de simultaneidad 2.6. Velocidad del agua 2.7. Agua caliente Sanitaria 2.7.1. Contribución solar mínima 2.7.2. Demanda de agua caliente sanitaria 2.7.3. Demanda de agua caliente sanitaria		19 20 20 20
2.4.1. Diámetro nominal mínimo de la derivación a los aparatos		19 20 20 20
2.4.2. Diámetro nominal mínimo de alimentación 2.5. Caudal de simultaneidad 2.5.1. Cálculo del caudal de simultaneidad 2.6. Velocidad del agua 2.7. Agua caliente Sanitaria 2.7.1. Contribución solar mínima 2.7.2. Demanda de agua caliente sanitaria 2.7.3. Demanda de agua caliente sanitaria		20 20 20
2.5.1. Cálculo del caudal de simultaneidad 2.6. Velocidad del agua 2.7. Agua caliente Sanitaria 2.7.1. Contribución solar mínima 2.7.2. Demanda de agua caliente sanitaria 2.7.3. Demanda de agua caliente sanitaria		20
2.6. Velocidad del agua 2.7. Agua caliente Sanitaria 2.7.1. Contribución solar mínima 2.7.2. Demanda de agua caliente sanitaria 2.7.3. Demanda de agua caliente sanitaria		2(
2.7.Agua caliente Sanitaria 2.7.1. Contribución solar mínima 2.7.2. Demanda de agua caliente sanitaria 2.7.3. Demanda de agua caliente sanitaria		71
2.7.1. Contribución solar mínima		21
2.7.2. Demanda de agua caliente sanitaria		
2.7.3. Demanda de agua caliente sanitaria		22
7.7.1 Tipos do Instalacionos do placas Solaros on odificios		23
2.7.4. Tipos de instalaciones de piacas solales en edificios		2:
2.7.4.1. Instalación solar con todo centralizado		
2.7.4.3. Instalación solar con acumulador y apoyo descentralizado		
2.7.4.4. Ventajas y desventajas		25
2.7.5. Retorno de agua caliente sanitaria		
2.7.5.1. Dimensionado de la red de retorno de agua caliente sanitaria		
 Requisitos generales de calidad para los materiales empleados en a Prueba de estanqueidad según Código Técnico de Edificación, DB HS 	sgua canente sanitaria 5-4 suministro de agua	20 26
5. Diseño del sistema		27
5.1. Determinación de los diámetros de una instalación mediante colectore	es, teniendo en cuenta	
las pérdidas de carga admisibles y caudales de simultaneidad		27
5.2. Despiece de la instalación interior de fontanería		34 27
6.1. Almacenamiento		
6.2. Desbobinado de la tubería		
6.3. Corte de la tubería		37
6.4. Curvado de tuberías		37 37
6.4.Curvado de tuberías		37 37 38
6.4.Curvado de tuberías 6.5.Contracción de longitud 6.6.Localización de los colectores		37 37 38 38
6.4.Curvado de tuberías 6.5.Contracción de longitud 6.6.Localización de los colectores 6.7.Tendido y soportación de tuberías 6.8.Memoria Térmica		37 37 38 38 38
6.4. Curvado de tuberías 6.5. Contracción de longitud 6.6. Localización de los colectores 6.7. Tendido y soportación de tuberías 6.8. Memoria Térmica 6.9. Llenado y comprobación del sistema		37 37 38 38 38 38
6.4. Curvado de tuberías 6.5. Contracción de longitud 6.6. Localización de los colectores 6.7. Tendido y soportación de tuberías 6.8. Memoria Térmica 6.9. Llenado y comprobación del sistema 7. Instalación, detalles de los soportes		37 37 38 38 38 38 38
6.4. Curvado de tuberías 6.5. Contracción de longitud 6.6. Localización de los colectores 6.7. Tendido y soportación de tuberías 6.8. Memoria Térmica 6.9. Llenado y comprobación del sistema 7. Instalación, detalles de los soportes 7.1. Instalaciones permitiendo expansión		37 37 38 38 38 38 38 38
6.4. Curvado de tuberías 6.5. Contracción de longitud 6.6. Localización de los colectores 6.7. Tendido y soportación de tuberías 6.8. Memoria Térmica 6.9. Llenado y comprobación del sistema 7. Instalación, detalles de los soportes 7.1. Instalaciones permitiendo expansión 7.1.1. Generalidades		37 37 38 38 38 38 38 38 38 38 38
6.4. Curvado de tuberías 6.5. Contracción de longitud 6.6. Localización de los colectores 6.7. Tendido y soportación de tuberías 6.8. Memoria Térmica 6.9. Llenado y comprobación del sistema 7. Instalación, detalles de los soportes 7.1. Instalaciones permitiendo expansión 7.1.1. Generalidades 7.1.2. Posicionamiento de puntos fijos		37 37 38 38 38 38 38 38 38 38 38 38 38 38 38
6.4. Curvado de tuberías 6.5. Contracción de longitud 6.6. Localización de los colectores 6.7. Tendido y soportación de tuberías 6.8. Memoria Térmica 6.9. Llenado y comprobación del sistema 7. Instalación, detalles de los soportes 7.1. Instalaciones permitiendo expansión 7.1.1. Generalidades 7.1.2. Posicionamiento de puntos fijos 7.1.3. Instalación de tuberías permitiendo la expansión por medio de 7.1.4. Instalación de tuberías permitiendo la expansión por medio de	un brazo flexible	37 37 38 38 38 38 38 38 38 38 40 41 41 42
6.4. Curvado de tuberías 6.5. Contracción de longitud 6.6. Localización de los colectores 6.7. Tendido y soportación de tuberías 6.8. Memoria Térmica 6.9. Llenado y comprobación del sistema 7. Instalación, detalles de los soportes 7.1. Instalaciones permitiendo expansión 7.1.1. Generalidades 7.1.2. Posicionamiento de puntos fijos 7.1.3. Instalación de tuberías permitiendo la expansión por medio de 7.1.4. Instalación de tuberías permitiendo la expansión por medio de 7.1.5. Instalación de tuberías permitiendo la expansión con medias cañas y	un brazo flexible	37 37 38 38 38 38 38 39 40 41 42 42
6.4. Curvado de tuberías 6.5. Contracción de longitud 6.6. Localización de los colectores 6.7. Tendido y soportación de tuberías 6.8. Memoria Térmica 6.9. Llenado y comprobación del sistema 7. Instalación, detalles de los soportes 7.1. Instalaciones permitiendo expansión 7.1.1. Generalidades 7.1.2. Posicionamiento de puntos fijos 7.1.3. Instalación de tuberías permitiendo la expansión por medio de 7.1.4. Instalación de tuberías permitiendo la expansión con medias cañas y 7.1.6. Instalación de tuberías permitiendo la expansión por medio de	un brazo flexible	37 37 38 38 38 38 38 39 40 41 42 42 42
6.4. Curvado de tuberías 6.5. Contracción de longitud 6.6. Localización de los colectores 6.7. Tendido y soportación de tuberías 6.8. Memoria Térmica 6.9. Llenado y comprobación del sistema 7. Instalación, detalles de los soportes 7.1. Instalaciones permitiendo expansión 7.1.1. Generalidades 7.1.2. Posicionamiento de puntos fijos 7.1.3. Instalación de tuberías permitiendo la expansión por medio de 7.1.4. Instalación de tuberías permitiendo la expansión por medio de 7.1.5. Instalación de tuberías permitiendo la expansión con medias cañas y 7.1.6. Instalación de tuberías permitiendo la expansión por medio de 7.2. Instalación de tuberías permitiendo la expansión por medio de	un brazo flexible	37 38 38 38 38 38 38 38 40 41 42 42 42 42
6.4. Curvado de tuberías 6.5. Contracción de longitud 6.6. Localización de los colectores 6.7. Tendido y soportación de tuberías 6.8. Memoria Térmica 6.9. Llenado y comprobación del sistema 7. Instalación, detalles de los soportes 7.1. Instalaciones permitiendo expansión 7.1.1. Generalidades 7.1.2. Posicionamiento de puntos fijos 7.1.3. Instalación de tuberías permitiendo la expansión por medio de 7.1.4. Instalación de tuberías permitiendo la expansión por medio de 7.1.5. Instalación de tuberías permitiendo la expansión por medio de 7.1.6. Instalación de tuberías permitiendo la expansión por medio de 7.2. Instalación de tuberías permitiendo la expansión por medio de 7.2. Instalación de tuberías permitiendo expansión 7.2.1. Posicionando los puntos fijos	un brazo flexible	37 38 38 38 38 38 38 38 40 41 42 42 42 42
6.4. Curvado de tuberías 6.5. Contracción de longitud 6.6. Localización de los colectores 6.7. Tendido y soportación de tuberías 6.8. Memoria Térmica 6.9. Llenado y comprobación del sistema 7. Instalación, detalles de los soportes 7.1. Instalaciones permitiendo expansión 7.1.1. Generalidades 7.1.2. Posicionamiento de puntos fijos 7.1.3. Instalación de tuberías permitiendo la expansión por medio de 7.1.4. Instalación de tuberías permitiendo la expansión por medio de 7.1.5. Instalación de tuberías permitiendo la expansión con medias cañas y 7.1.6. Instalación de tuberías permitiendo la expansión por medio de 7.2. Instalación de tuberías permitiendo la expansión por medio de 7.2. Instalación de tuberías permitiendo la expansión por medio de 7.2. Instalación de tuberías no permitiendo expansión 7.2.1. Posicionando los puntos fijos 7.2.2. Instalación entre puntos fijos con medias cañas 7.2.3. Instalación entre puntos fijos con abrazaderas	un brazo flexible	37 37 38 38 38 38 38 38 38 38 38 47 47 47 47 47 47 47 47
6.4. Curvado de tuberías 6.5. Contracción de longitud 6.6. Localización de los colectores 6.7. Tendido y soportación de tuberías 6.8. Memoria Térmica 6.9. Llenado y comprobación del sistema 7. Instalación, detalles de los soportes 7.1. Instalaciones permitiendo expansión 7.1.1. Generalidades 7.1.2. Posicionamiento de puntos fijos 7.1.3. Instalación de tuberías permitiendo la expansión por medio de 7.1.4. Instalación de tuberías permitiendo la expansión por medio de 7.1.5. Instalación de tuberías permitiendo la expansión con medias cañas y 7.1.6. Instalación de tuberías permitiendo la expansión por medio de 7.2. Instalación de tuberías permitiendo la expansión por medio de 7.2.1. Posicionando los puntos fijos 7.2.2. Instalación entre puntos fijos con medias cañas	un brazo flexible	37333333333333333333333333333333333333

1. Descripción del sistema

1.1. UPONOR PEX

UPONOR ofrece un sistema completo para instalaciones de agua fría y caliente sanitaria. Este sistema consiste en un completo abanico de tuberías y accesorios. Es limpio, flexible y fácil de instalar.



1.1.1. Propiedades de la tubería UPONOR PEX

Las tuberías UPONOR PEX están fabricadas con polietileno de alta densidad conforme al proceso Engel. El reticulado se define como un proceso que cambia la estructura química de tal manera que las cadenas de polímeros se conectan unas con otras alcanzando una red tridimensional mediante enlaces químicos.

Esta nueva estructura hace que sea imposible fundir o disolver el polímero a no ser que se destruya primero su estructura. Es posible evaluar el nivel alcanzado de enlace transversal midiendo el grado de gelificación.

Las tuberías UPONOR PEX no se ven afectadas por los aditivos derivados del hormigón y absorben la expansión térmica evitando así la formación de grietas en las tuberías o en el hormigón.

Las propiedades más importantes de las tuberías UPONOR PEX se reflejan en las tablas que figuran a continuación:

	Propiedad	es mecánicas	s Valor	Unidad	Standard
Densidad			938	Kg/m³	
Tensión de estrangulamiento	(20°C)		20-26	N/mm²	DIN 53455
		(100°C)	9-13	N/mm^2	
Módulo de elastIcidad	(20°C)		1180	N/mm ²	DIN 53457
		(80°C)	560	N/mm²	
Elongación de fractura	(20°C)		300-450	%	DIN 53455
		(100°C)	500-700	%	
Rotura por impacto	(20°C)		No fractura	Kj/m²	DIN 53453
		(-140°C)	No fractura	Kj/m²	
Absorción de agua	(22°C)		0,01	mg/4d	DIN 53472
Coeficiente de ficción			0,08-0,1	-	
Tensión superficial			34.10-3	N/m	

Propiedades térmicas	Valor	Unidad	
Conductividad térmica	0,35	W/mºC	
Coeficiente lineal	1,4.10-4	m/mºC	
de expansión (20°C/100°C)	2,05.10-4	m/mºC	
Temperatura de reblandecimiento	+133	°C	
Rango temperatura ambiente trabajo	-100 a +110	°C	
Calor específico	2,3	KJ/Kg°C	

Presión de reventamiento a +20°C	
Diámetro tubo	Aprox. Presión
15 x 2,5	92,8 Kg/cm²
16 x 1,8	50,7 Kg/cm²
18 x 2,5	64,8 Kg/cm²
20 x 1,9	42 Kg/cm²
22 x 3	68,2 Kg/cm²
25 x 2,3	35 Kg/cm ²
32 x 2,9	40 Kg/cm²

Propiedades eléctricas	Valor	Unidad
Resistencia específica interna (2K0°C)	1015	
Constante dieléctrica (20°C)	2,3	
Factor de pérdidas dieléctricas (20°C/5oHz)	1.10³	
Ruptura del Dieléctrico (20°C)	60-90	Kv/mm

Radios de curvatura recomendadas en mm.				
DN	Curva en Caliente	Curva en Frío		
10	20	25		
12	25	25		
15	35	35		
16	35	35		
18	40	65		
20	45	90		
22	50	110		
25	55	125		
28	65	140		

Para los tubos UPONOR wirsbo-PEX de diámetros mayores, los radios mínimos de curvatura en frío son, indicativamente:

DN 32-40: 8 veces el diámetro externo DN 50-63: 10 veces el diámetro externo DN 75-90-110: 15 veces el diámetro externo

1.1.2. Designación y grado de reticulación

La norma UNE-EN ISO 15875 especifica la designación de las tuberías de polietileno reticulado (PEX)

según su proceso de fabricación, cada proceso da a las tuberías un grado de reticulación mínimo:

TIPO DE POLIETILENO RETICULADO	DESIGNACIÓN	GRADO DE RETICULACIÓN MÍNIMO UNE-EN ISO 15875
PERÓXIDO (Uponor PEX)	PEX-a	70%
SILANO	PEX-b	65%
RADIACIÓN DE ELECTRONES	PEX-c	60%

Tipo de Polietileno Reticulado:

La serie a la que pertenece una tubería se define a partir de la fórmula:

S = dn-en/2en

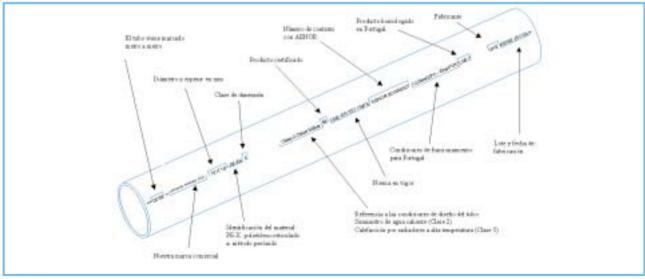
Siendo: dn= diámetro nominal en= espesor nominal

1.1.3. Normativa

El sistema Uponor Quick & Easy cuenta con los siguientes certificados conforme a la Norma UNE-EN ISO 15875-2 para tubos de polietileno reticulado (PEX); UNE-EN ISO 15875-3 para accesorios; UNE-EN ISO 15875-5 para el sistema

En el segundo semestre de 2004, se adopta con rango de norma nacional, la norma europea **EN ISO 15875**. En España esta norma se llamará **UNE-EN ISO 15875** y sustituirá a la norma experimental **UNE 53381 EX**. Esta nueva norma posibilita una mayor difusión de los requisitos y métodos de ensayo de los sistemas de canalización de polietileno reticulado para instalaciones de agua fría y caliente que son aplicados en Europa. De esta norma podemos destacar las siguientes características:

- La filosofía de la norma cambia radicalmente, haciendo referencia no sólo al tubo como la norma antigua, sino al conjunto del sistema.
- Debido a la confianza y la fiabilidad que han demostrado los tubos de polietilieno reticulado en nues tras instalaciones de Fontanería y Calefacción


durante más de 30 años, en esta norma se disminuyen los coeficientes de seguridad de diseño, resultando **unas presiones máximas de servicio mayores** que las utilizadas en la anterior norma.

- Aumenta el rango de diámetros incluidos en la norma, por lo que estarán certificado tubos con medidas especiales que hasta ahora no lo estaban.
- Supone una modernización de los ensayos y parámetros de control de calidad que realizamos en fábrica que tendrá su efecto inmediato en la calidad de nuestros productos.
- Incluye el concepto de CLASE DE APLICACIÓN que va a afectar a todas las normas futuras de sistemas tanto plásticos como metálicos y que determina el uso final del tubo según la siguiente tabla:

CLASE 1 CLASE 2 CLASE 4 CLASE 5

Suministro de agua caliente (60°C) Suministro de agua caliente (70°C) Calefacción por suelo radiante y radiadores a baja temperatura. Radiadores a alta temperatura.

Marcaje en los tubos UPONOR PEX / UPONOR evalPEX según UNE-EN ISO 15875

^{*} Sistema certificado con marca N de AENOR: nº 001/004081 (serie 5); 001/004082 (serie 3.2); 001/004079 (plástico); 001/004080 (bronce)

1.1.4. Gama tubería UPONOR PEX

La gama de tubería Uponor PEX disponible para instalaciones empotradas de fontanería está compuesta por:

- Tubería Uponor PEX serie 5 en rollo desde dimensión 16 a 110 mm.
- Tubería Uponor Pex serie 3.2 en rollo desde dimensión 16 a 63 mm.

La longitud de los rollos varía en función de la dimensión de la tubería.

- Tubería Uponor PEX serie 5 en barra desde dimensión 16 a 110 mm.
- Tubería Uponor Pex serie 3.2 en barra desde dimensión 16 a 63 mm.

Cada barra tiene una longitud de 5 metros.

Tubo en tubo Uponor PEX. Tubería de Uponor PEX dentro de manga corrugada. Desde diámetro 16 hasta 25 y en dos colores de corrugado (azul y rojo).

Tubería Uponor PEX preaislada en rollo desde dimensión 16 hasta 25 mm.

Los espesores de aislamiento son de 6 mm. para tuberías de 16 y 20 mm. y de 9 mm. para tuberías de 25 mm.

El coeficiente de conductividad del aislante es de 0,039 $\text{W/m}^{\circ}\text{C}$ a 40 $^{\circ}\text{C}$.

1.1.5. Ventajas de las tuberías UPONOR PEX

Las tuberías UPONOR PEX ofrecen las siguientes ventajas:

- · No son afectadas por la corrosión ni erosión.
- · No son afectadas por aguas con bajo PH (aguas ácidas)
- Es un sistema silencioso libre de ruidos de agua.
- · Están preparadas para soportar altas temperaturas y presiones.
- · La tubería no se reblandece a altas temperaturas de ambiente. El punto de reblandecimiento es de 133 °C.
- · Resistencia a fisuras, hasta el 20 % del espesor de la pared sin fallo del sistema.
- · Los golpes de ariete son reducidos en una tercera parte con respecto a las instalaciones con tuberías metálicas.
- · Sólo son necesarias unas sencillas y simples herramientas para su instalación.
- · Marcado de toda la información necesaria sobre la tubería a intervalos de 1 m:
- · Resistencia frente al fuego clase B2.

- ·Aprobaciones y certificaciones con respecto a normas sobre:
 - -Propiedades del material
 - -Instalación
 - -Uso en sistemas de agua potable
- · No se ve afectada por altas velocidades del agua.
- ·El diámetro interior no se reduce debido a los efectos de la corrosión.
- ·No contiene ningún compuesto clorado.
- · Larga duración
- · Resistencia al desgaste.
- ·Baja rugosidad, lo que lleva consigo bajo coeficiente de fricción muy pequeñas pérdidas de carga.
- •Poco peso. 100 m de tubería de 16 x 2.2 mm pesan 10 kg.
- Flexibilidad.
- •Suministro en rollos, lo que permite facilitar el transporte, el almacenaje y la instalación.
- · Memoria térmica.
- ·Una instalación con UPONOR PEX y provista de funda coarrugada ofrece las siguientes ventajas:
- ·Tuberías reemplazables.
- ·Indicación de la fuga. Si por ejemplo un taladro perfora la tubería la fuga alcanzará gracias a la funda el colector y se identificará la
- · Reducción del riesgo de daños causados por el agua.

1.2. Accesorios

Los accesorios del sistema Uponor Q&E tienen los siguientes diámetros de aplicación:

ACCESORIOS	DIMENSIÓN
Accesorios UPONOR Quick & Easy Plásticos	16 - 63 mm
Accesorios UPONOR Quick & Easy Metálicos	16 - 63 mm
AccesoriosUPONOR Grandes dimensiones bronce	25 - 110 mm

1.2.1. Ventajas de los Accesorios UPONOR Quick & Easy Plásticos

MUY BAJA RUGOSIDAD INTERNA

- Alta resistencia a la calcificación
- · Menores pérdidas de carga que las piezas metálicas

RESISTENCIA QUÍMICA

- · Inalterable al cloro del agua (NSF, FDA, WRC)
- · Apto para usos industriales
- · Sin problemas de corrosión galvánica y oxidación
- Inalterable a los materiales de construcción utilizados para empotrar los accesorios, tales como el yeso y el cemento

PESO

- · Son 7 veces más ligeros que los accesorios de latón y de cobre
 - PPSU = $1.240 \text{ Kg} / \text{m}^3$
 - Latón = $8.840 \text{ Kg} / \text{m}^3$
 - Cobre = 8.900 Kg/ m^3

AISLANTE TÉRMICO

- Son 442 veces mejores aislantes térmicos que los accesorios de latón y 1.447 veces mejores que los de cobre
 - PPSU = 0,26 W / m °C
 - Latón = 115 W / m $^{\circ}$ C
 - Cobre = 384 W / m °C

INOCUIDAD

· Nulo aporte de óxidos metálicos al agua

RESISTENCIA AL IMPACTO

 Alta resistencia para absorber grandes golpes sin fracturarse Ensayo de impacto Izod a 22°C: Nuestros accesorios plásticos son capaces de absorber choques inelásticos y puntuales de hasta 64 N.

ALARGAMIENTO A LA ROTURA

 Incremento de longitud entre un 50% y un 100% antes de fracturarse. Ensayo: ISO 527

RESISTENCIA A LA PRESIÓN

· Altas presiones de reventamiento

	70 °C	95 °C	110 °C
10 Horas	340 atm	240 atm	200 atm
100.000 Horas	60 atm	40 atm	32 atm

^{*} Ensayo ISO 9080

RESISTENCIA TÉRMICA

- Rango de temperatura:
 -100°C y 149°C
- **AISLAMIENTO ACÚSTICO**

· Instalaciones silenciosas

AMPLIA GAMA

 Más de 80 referencias desde diámetro 16 a 63 mm., tanto piezas sin rosca como con rosca macho o hembra.


1.3. Sistema de Unión UPONOR Quick & Easy

El sistema UPONOR Quick & Easy se basa en la capacidad de las tuberías UPONOR PEX de recuperar su forma original después de ser sometidas a una expansión. Es un técnica patentada por UPONOR y diseñada exclusivamente para las tuberías UPONOR PEX.

Elementos del sistema:

Los componentes del sistema están diseñados muy escrupulosamente para proporcionar unas uniones seguras. Cualquier cambio en las dimensiones y características de estos elementos puede alterar completamente el resultado de los acoplamientos. Por ello es necesario emplear sólo herramientas originales.

- Tubería UPONOR PEX.
- Expandidor.
- ·Cabezal.
- · Anillos Quick & Easy.
- ·Accesorios UPONOR Quick & Easy.

1.3.1. Instrucciones de montaje del sistema UPONOR Quick & Easy.

Para que el sistema UPONOR Quick & Easy funcione perfectamente hay que asegurarse de cumplir las siguientes instrucciones de montaje:

Paso 1

Cortar el tubo en ángulo recto con un cortatubos para plástico.

El extremo del tubo debe estar limpio y libre de grasa, para que no resbale el anillo por el tubo al efectuarse la expansión.

Paso 2

Montar el anillo en el tubo de forma que sobresalga ligeramente (máximo 1mm) del extremo del tubo.

Elegir el accesorio, anillo y cabezal correctos para las dimensiones del tubo. La tabla indica el marcaje correcto de los componentes.

En el caso de que el anillo cuente con tope y angulo de entrada, estas dos propiedades facilitarán tanto el uso como el montaje del mismo.

Paso 3

Comenzar la unión

Abrir totalmente los brazos del expandidor, colocar el cabezal dentro del tubo y juntar poco a poco los brazos del expandidor hasta el final.

Girar el expandidor (Máximo 1/8 de vuelta).

Entre expansiones, girar de forma que el cabezal se desplace libremente sin tocar las paredes del tubo.

Última expansión

Cuando el tubo toque el tope del cabezal, habrá que realizar la última expansión. Si el montaje se realiza en un lugar de difícil acceso, habrá que aguantar un máximo de 3 segundos después de la última expansión antes de abrir los brazos del expandidor y retirarlo.

Retirar el expandidor.

Efectuar la unión.

Mantener el tubo en su sitio (contra el tope del accesorio) durante 3 segundos. Al cabo de ese tiempo la tubería ha contraído sobre el accesorio, y se puede iniciar otra unión.

El montaje puede hacerse hasta una temperatura ambiente mínima de -15°C.

DIMENSIÓN	NÚMERO EXPANSIONES	MARCADO DEL CABEZAL	TIPO DE EXPANDIDOR
16 x 1,8	4	16 Q&E	Manual/Batería
16 x 1,8	4	16 Q&E	Hidráulica P40QC
20 x 1,9	5	20 Q&E	Manual/Batería
20 x 1,9	3	H 20 Q&E	Hidráulica P40QC
20 x 1,9	4	H 20 Q&E	Batería
25 x 2,3	7	25 Q&E	Manual/Batería
25 x 2,3	4	H 25 Q&E	Hidráulica P40QC
25 x 2,3	4	H 25 Q&E	Batería
32 x 2,9	5	H 32 x 2,9 Q&E	Hidráulica P40QC
32 x 2,9	13 - 15	32 x 2,9 Q&E	Manual/Batería
32 x 2,9	4	H 32 x 2,9 Q&E	Batería
40 x 3,7	5	H 40 x 3,7 Q&E	Hidráulica P40QC
40 x 3,7	7	H 40 x 3,7 Q&E	Batería
50 x 4,6	3	H 50 x 4,6 Q&E	Hidráulica P63QC
63 x 5,8	5	H 63 x 5,8 Q&E	Hidráulica P63QC

No se debe de exceder el número de expansiones indicado en la tabla.

1.3.2. Instrucciones de instalación UPONOR Q&E accesorios plásticos roscados (PPSU)

UPONOR Quick & Easy accesorios plásticos roscados PPSU. Instrucciones de Instalación

Los accesorios plásticos roscados UPONOR Quick & Easy se presentan exactamente igual que los accesorios metálicos UPONOR Quick & Easy, en bolsas dentro de cajas.

Para unir estos accesorios con otra pieza roscada, solamente deberá de aplicarse cinta de PTFE en la rosca plástica.

Para facilitar la unión se recomienda dejar libre de PTFE la primera rosca del accesorio.

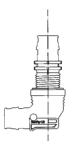


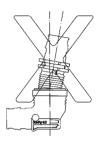
Los espesores de cinta de PTFE que se recomiendan son:

- 0,076 mm-0,1 mm para roscas de 1/2"
- 0,1 mm-0,2 mm para roscas de 3/4" y 1"

Si se desenrosca el accesorio es necesario volver a colocar la cinta de PTFE. La cinta de PTFE que se debe usar es 100% cinta de PTFE de acuerdo con la norma EN 751 - 3 FRp.

Los accesorios poseen un especial diseño de forma que tienen unas hendiduras para facilitar la utilización de herramientas.




El esfuerzo máximo de torsión para 1/2", 3/4" y 1" es de 15 Nm.

Uponor recomienda el uso de tapones machos plásticos a la hora de hacer la prueba de presión.

Uponor recomienda para evitar daños que toda rosca macho que se vaya a enroscar en las roscas hembras plásticas sea enroscada de forma recta.

Además de cinta de PTFE, recomendamos la utilización de otra serie de productos como: Loctite 5061 - Loctite 5331 - Loctite 516

Los siguientes productos no son recomendados:

- Ever Seal Thread 483 Loctite 518,542 •
- Pegamento de caucho 1300,2141,847 Rector Seal
- 5 · Rite-Lock · Selet Unyte · Loctite 55 · Pegamento.

Accesorios con tuerca móvil

- · Asegurarse que la junta esté en posición
- · No usar ningún elemento sellante en la rosca macho

· Apretar con la mano y...

 \dots terminar de apretar con la llave aplicando un giro máximo de $90^{\rm o}$

1.3.3. Herramientas del sistema UPONOR Quick & Easy

Uponor Expandidor Manual

Válido para uniones de hasta 32 mm. Los cabezales vienen marcados: 16, 20, 25 y 32. -La herramienta incluye:

- Herramienta UPONOR Quick & Easy manual3 Cabezales (16, 20 y 25)
- · Instrucciones de montaje y mantenimiento
- Garantía
- · Grasa de grafito para mantenimiento de la herramienta
- · Maletín plástico porta herramienta

Uponor Q&E Expandidor ligero de Batería

- Diseñada para realizar uniones Q&E de diámetro 16, 20, 25 y 32 mm.
- Válida para los cabezales de la herramienta manual.
- La herramienta incluye:
 Uponor Q&E expandidor ligero de batería.
 - 1 Batería
 - · 1 Cargador de batería
 - · Instrucciones.
 - · Grasa.
 - · Maletín plástico porta herramienta
- Características:
 - · Peso: 1,9 kgs con batería incluida
 - · Baterías de Li Ion: más duraderas, sin efecto memoria, muy baja tasa de auto descarga.
 - Tiempo de carga: Menos de 60 minutos.
 - · Autonomía: 100 uniones de 25 mm.

Uponor Expandidor de Batería

- Diseñada para uniones de hasta 40 mm. Válida para cabezales tanto manuales como hidráulicos.
- La herramienta incluye:
 - · Herramienta Q&É de batería
 - · 2 Baterías
 - · 1 Cargador de batería
 - · Instrucciones de montaje y mantenimiento.

 - · Grasa de grafito para mantenimiento de la herramienta.
 - · Maletín plástico porta herramienta
- Características:
 - · Tiempo de carga: 1 hora aprox.
 - · Autonomía: 44 uniones de 40x13,7 aprox.
 - · Peso: 4 kgs con batería

Uponor Expandidor Hidráulico

Válida para hacer uniones en diámetros 16, 20, 25, 32 y 40 usando la pistola P40QC y en diámetros 50, 63 usando la pistola P63QC. Las pistolas se pueden intercambiar a través de la conexión Quick Conection.

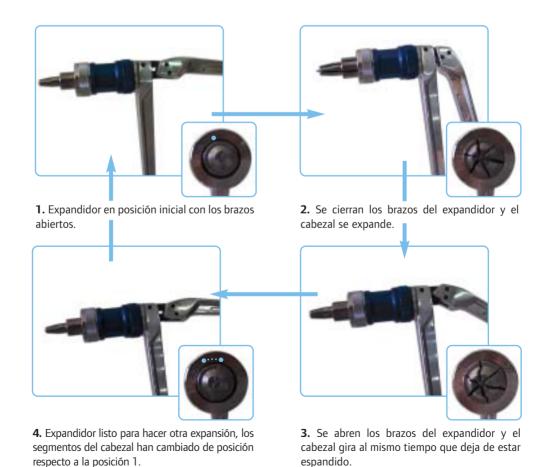
Los cabezales vienen marcados: 16, H20, H25, H32, H40, H50, H63. - La herramienta incluye:

- - Central hidráulicá
 - Pistola P40QC alimentada por Central Hidráulica
 Manguera hidráulica de 3 m.

 - Motor eléctrico
 - •5 Cabezales (16, H20, H25, H32 y H40)
 - · Instrucciones de montaje y mantenimiento.
 - · Garantía.
 - · Grasa de grafito para mantenimiento de la herramienta.
 - · Caja plástica porta herramienta.
- Características:
 - · Motor asincronizado de una fase de 230V-50 Hz.
 - Potencia de motor 375 W.
 - · Peso del set completo: 20kgs.
 - · Largo x Ancho x Espesor: 620x310x260 mm

Almacenamiento y mantenimiento de las herramientas.

- Maneje el expandidor, el cono y los cabezales con precaución.
- El cono de la cabeza deberá mantenerse siempre limpio y, antes de usarlo, aplicarle presiones. De lo contrario aumentará la fuerza de expansión y reducirá la vida de servicio. La herramienta se entrega sin capa de grasa, completamente limpia.
- ·Mantener las piezas limpias y libres de grasa, exceptuando el cono.
- ·Montar la cabeza manualmente hasta el tope (con los brazos de la tenaza en la posición totalmente abierta).
- ·Los segmentos de la cabeza deberán estar totalmente limpios y secos para usarlos.
- Para el almacenamiento, el cono de la herramienta deberá estar siempre protegido, por ejemplo


manteniendo una cabeza montada. Habrá que aflojar la cabeza unas vueltas de forma que se puedan cerrar los brazos del expandidor a la hora de quardarlo en su caja.

- · Control de funcionamiento.
 - Medir el diámetro de la parte plana de los segmentos en la posición abierta (con los brazos de la tenaza cerrados). El diámetro mínimo ha de ser el indicado en la tabla.
 - Cuando no se alcance el diámetro mínimo o cuando la herramienta, por alguna razón, no funciona correctamente, hay que cambiar la tenaza y/o la cabeza.
 - Cuando los segmentos al abrir no lo hagan de forma simétrica, deben repararse o cambiarse.

1.3.4. Nuevo adaptador giratorio para herramientas del sistema Uponor Q&E.

El nuevo Uponor Q&E Adaptador giratorio, permite hacer las expansiones necesarias para realizar una unión Q&E sin tener que girar la herramienta

entre expansiones, ya que el adaptador gira el cabezal automáticamente:

1.3.4.1. Instrucciones de montaje del sistema UPONOR Q&E usando el Nuevo Adaptador giratorio Uponor Q&E.

Para hacer una unión Q&E de forma correcta usando el nuevo Uponor Q&E Adaptador giratorio se debe seguir el siguiente proceso:

Paso 0

Preparación de la herramienta.

Enroscar el adaptador sobre la rosca de la herramienta Q&E de la misma forma que se enrosca los cabezales expandidores.

A continuación atornillar el cabezal correcto para las dimensiones del tubo a expandir sobre el adaptador.

La herramienta expandidora ya está lista para hacer las expansiones.

Paso 1

Cortar el tubo en ángulo recto con un cortatubos para plástico.

El extremo del tubo debe estar limpio y libre de grasa, para que no resbale el anillo por el tubo al efectuarse la expansión.

Paso 2

Montar el anillo en el tubo de forma que sobresalga ligeramente (máximo 1mm) del extremo del tubo.

Elegir el accesorio, anillo y cabezal correctos para las dimensiones del tubo. La tabla indica el marcaje correcto de los componentes.

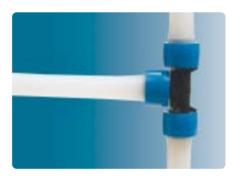
En el caso de que el anillo cuente con tope y ángulo de entrada, estas dos propiedades facilitarán tanto el uso como el montaje del mismo.

Paso 3

Comenzar la unión

Abrir totalmente los brazos del expandidor, colocar el cabezal dentro del tubo y juntar poco a poco los brazos del expandidor hasta el final.

Abrir los brazos, sacar la herramienta, durante este proceso el cabezal girará solo, con lo que no es necesario girar la herramienta.



Última expansión

Cuando el tubo toque el tope del cabezal, habrá que realizar la última expansión. Si el montaje se realiza en un lugar de difícil acceso, habrá que aguantar un máximo de 3 segundos después de la última expansión antes de abrir los brazos del expandidor y retirarlo.

Efectuar la unión

Mantener el tubo en su sitio (contra el tope del accesorio) durante 3 segundos. Al cabo de ese tiempo la tubería ha contraido sobre el accesorio, y se puede iniciar otra unión.

El número de expansiones necesarias para hacer una unión con el adaptador Uponor Q&E es el mismo que sin adaptador. (Tabla página 17)

1.3.4.2. Compatibilidad del Uponor Q&E adaptador giratorio.

Con este adaptador se pueden hacer uniones desde diametro 16 a 32 mm. Utilizando las herramientas del sistema Uponor Q&E:

- · Uponor Q&E expandidor manual (16 a 32 mm).
- Uponor Q&E expandidor de batería (16 a 25 mm).

1.5. Accesorios UPONOR grandes dimensiones bronce

Rango de aplicación

Con el nombre de Uponor grandes dimensiones bronce se define una completa gama de accesorios y acoplamientos UPONOR PEX para fontanería, calefacción e instalaciones industriales.

Los accesorios de UPONOR Grandes dimensiones bronce están disponibles para la serie 3.2 desde 32 a 63 mm de diámetro exterior de tubería y para la serie 5 desde 32 a 110 mm de diámetro exterior de tubería.

Componentes

Los acoplamientos incluyen un casquillo interior integrado con una junta tórica, una abrazadera exterior que se fija al cuerpo del acoplamiento, una base octogonal y un extremo roscado macho para la conexión con los accesorios UPONOR Grandes dimensiones bronce u otro tipo de acoplamientos. El casquillo interior en acoplamientos de diámetros 32 a 63 mm y en ambas series está hecho con DZR (Latón resistente a la descinficación). La abrazadera tiene una partición diagonal y una sujeción exterior con tornillo.

Los acoplamientos de 75 a 110 mm están hechos enteramente de bronce, mientras que el tornillo y la tuerca están fabricados en acero inoxidable. Los accesorios UPONOR Grandes dimensiones bronce están realizados en bronce o acero inoxidable. Se unen mediante rosca. La unión puede sellarse con junta tórica de EPDM u otro tipo de agente de estanqueidad.

Montaje

1.- Corte la tubería perpendicularmente a su eje. Use un cortatubos adecuado para PEX.

2.- Achaflane el borde interior del extremo cortado con un cuchillo o navaja. Elimine también cualquier irregularidad exterior.

3.- Libere el tornillo de la abrazadera. Para facilitar el ensamblaje de la tubería se puede extraer la abrazadera y situarla suelta sobre la tubería antes de ensamblarla. Compruebe posteriormente que la abrazadera está bien encajada en el acoplamiento.

4.- Introduzca el casquillo interior del acoplamiento en la tubería.

5.- Compruebe a través de la abertura de la abrazadera que la junta tórica no se ha movido de su sitio y que la tubería está llevada hasta el tope.

6.- Antes de apretar es muy importante lubricar la rosca del tornillo con grasa de baja fricción adecuada: MoS2 o similar.

Para realizar el apriete se sujeta el tornillo y se aprieta la tuerca muy lentamente con una llave inglesa o fija (no llave ajustable). Se debe apretar hasta que los extremos del collar de apriete se toquen.

Si los extremos no se tocan, esperar 30 minutos como mínimo y seguidamente apretar hasta unir los extremos.

Por último, el accesorio UPONOR Grandes dimensiones bronce en todas sus medidas (de 32 a 110) debe reapretarse al cabo de 20 minutos, a las 24 h. y a las 48 h.

Accesorios de UPONOR Grandes dimensiones bronce roscados

Asegúrese de que la junta tórica, si utiliza este método de estanqueidad, está limpia. Asegúrese de que la junta es del tamaño correcto. Debe estar en contacto con la zona de asiento y su sección debe de ser mayor que la profundidad del asiento.

Sitúe la junta tórica con cuidado de no dañarla. Rosque primero a mano y luego con herramientas adecuadas acoplamiento y accesorio UPONOR Grandes dimensiones bronce. Selle las uniones roscadas con aceite de linaza.

DIÁMETRO	Llave	Tornillo	Momento de apriete (Nm)
32	5	M8	9,3
40	6	M8	22
50	6	M10	22
63	8	M10	44
75	19	M12	76
90	24	M16	187
110	24	M16	187

2. Principios de diseño

2.1. Configuración de la instalación

Las instalaciones de fontanería pueden realizarse siguiendo la configuración tradicional (mediante Tés) o siguiendo la configuración mediante colectores.

El sistema Uponor Q&E puede ser utilizado en los dos tipos de instalación.

Una instalación con Uponor empotrados mediante colectores ofrece las siguientes ventajas:

- Menores puntos de conexión (uno en el colector y otro en el punto de consumo). Reducción de las probabilidades de fuga.
- Puntos de conexión accesibles (en el colector y en el grifo). Ningún punto de conexión escondido.
- Reducción de las descompensaciones de la presión y la temperatura cuando más de un grifo está en servicio.
- · Rápida instalación.

2.2. Caudal instantáneo mínimo

Se define caudal instantáneo, como el caudal que debe suministrarse a cada uno de los aparatos sanitarios con independencia del estado de funcionamiento. Según el punto 2.1.3. del Documento Básico de Salubridad sección HS-4, Suministro de Agua, el caudal instantáneo mínimo para cada tipo de aparato será:

Tipo de Aparato	Caudal instantaneo mínimno de agua fría [dm³/s]	Caudal instantaneo mínimno de ACS [dm³/s]
Lavamanos	0,05	0,03
Lavabo	0,10	0,065
Ducha	0,20	0,10
Bañera ≥ 1,40 m	0,30	0,20
Bañera < 1,40 m	0,20	0,15
Bidé	0,10	0,065
Inodoro con cisterna	0,10	
Inodoro con fluxor	1,25	
Urinarios con grifo temporizado	0,15	-
Urinarios con cisterna (c/u)	0,04	-
Fregadero doméstico	0,20	0,10
Fregadero no doméstico	0,30	0,20
Lavavajillas doméstico	0,15	0,10
Lavavajillas industrial (20 servicios)	0,25	0,20
Lavadero	0,20	0,10
Lavadora doméstica	0,20	0,15
Lavadora industrial (8 kg)	0,60	0,40
Grifo aislado	0,15	0,10
Grifo garaje	0,20	
Vertedero	0,20	-

NOTA.- Para aparatos de consumo no incluidos en esta tabla (hidromasajes, etc.) el fabricante debe facilitar el caudal mínimo instantáneo, y en su caso, la presión mínima para su correcto funcionamiento.

2.3. Presión máxima y mínima

Según el punto 2.1.3. del Documento Básico de Salubridad, sección HS-4, Suministro de Agua, en todos los puntos de consumo, la presión mínima dinámica para el caudal de cálculo o caudal simultáneo debe ser:

- a) 100 kPa para grifos comunes;
- b) 150 kPa para fluxores, calentadores y calderas. La presión en cualquier punto de consumo no debe superar los 500 kPa.

2.4. Diámetros mínimos

Se define diámetro mínimo, como el mínimo diámetro que se ha de utilizar en cada caso.

2.4.1. Diámetro nominal mínimo de la derivación a los aparatos

Según la norma de producto UNE-EN ISO 15875, se define diámetro nominal como relativo al diámetro exterior. Según el punto 4.3. del Documento Básico de Salubridad , sección HS-4, Suministro de Agua, los diámetros nominales mínimos de derivación a los aparatos son:

Aparato o punto de consumo	Diámetro (mm)
Lavamanos	12
Lavabo, bidé	12
Ducha	12
Bañera ≥ 1,40 m	20
Bañera < 1,40 m	20
Inodoro con cisterna	12
Inodoro con fluxor	25-40
Urinario con grifo temporizado	12
Urinario con cisterna	12
Fregadero doméstico	12
Fregadero industrial	20
Lavavajillas doméstico	12
Lavavajillas industrial	20
Lavadora doméstica	20
Lavadora industrial	25
Vertedero	20

2.4.2. Diámetro nominal mínimo de alimentación

Según el punto 4.3. del Documento Básico de Salubridad , sección HS-4, Suministro de Agua, los diámetros nominales mínimos de alimentación son:

Tramo considerado	Diámetro (mm)
Alimentación a cuarto húmedo privado: baño, aseo, cocina	20
Alimentación a derivación particular: vivienda, apartamento, local comercial	20
Columna (montante o descendente)	20
Distribuidor principal	25
<50 kW	12
50 - 250 kW	20
Alimentación equipos de climatización	
250 - 500 kW	25
>500kW	32

2.5. Caudal de simultaneidad

En la práctica, el funcionamiento de los grifos en las instalaciones de agua caliente sanitaria es breve (menos de 15 minutos, por lo general). Todos los grifos

no suelen estar abiertos al mismo tiempo, por lo tanto el caudal instalado se reduce a un caudal de simultaneidad a través de un coeficiente de simultaneidad.

2.5.1. Cálculo del caudal de simultaneidad

El caudal de cálculo o caudal simultáneo, Qc es el caudal utilizado para el dimensionado de los distintos tramos de la instalación. Se establece a partir de la suma de los caudales instantáneos mínimos, calculados según las fórmulas siguientes dependiendo del tipo de edificación. Según el Documento de Salubridad, sección HS-4,

Suministro de Agua, se ha de elegir el coeficiente de simultaneidad de acuerdo con un criterio adecuado. Uponor se basa en este punto en la norma DIN 1988, debido a que esta norma cuenta con una amplia gama de coeficientes de simultaneidad en función de la vivienda y del caudal con el que estemos trabajando.

EDIFICIOS DE VIVIENDAS:

EDIFICIOS DE OFICINAS, ESTACIONES, AEROPUERTOS, ETC.:

EDIFICIOS DE HOTELES, DISCOTECAS, MUSEOS:

EDIFICIOS DE CENTROS COMERCIALES:

EDIFICIOS DE HOSPITALES:

EDIFICIOS DE ESCUELAS, POLIDEPORTIVOS:

Para otras construcciones especiales (cuarteles, cárceles, seminarios, industrias) hay que establecer consideraciones especiales sobre la simultaneidad. Esto se debe justificarse en el proyecto específico.

Siendo:

Caudal instantáneo mínimo Q_{mín} (l/s; l/min; m³/h):
 Caudal instantáneo que se debe suministrar a cada uno de los aparatos sanitarios con independencia del estado de funcionamiento.

- Caudal simultáneo o caudal de cálculo Q_c (I/s; I/min; m^3 /h):

Caudal que se produce por el funcionamiento lógico simultáneo de aparatos de consumo o unidades de suministro.

Caudal total instalado, Q_t (l/s; l/min; m³/h):
 Es la suma de los caudales instantáneos mínimos de todos los aparatos instalados

2.6. Velocidad del agua

Según el punto 4.2.1 del Documento Básico de Salubridad, sección HS-4, suministro de agua, se proponen diferentes velocidades de cálculo en función del tipo de material que estemos utilizando en el sistema de distribución:

 i) Para tuberías metálicas: velocidades comprendidas entre 0,50 y 2,00 m/s
 ii) Para tuberías termoplásticas y multicapas: velocidades comprendidas entre 0,50 y 3,50 m/s.

La velocidad del agua en los sistemas de distribución de agua tiene influencia directa en:

- Nivel de erosión
- Nivel de ruido
- Golpes de ariete
- Caída de presión

Para tuberías de cobre se recomienda un límite máximo de velocidad de 2 m/s. Las tuberías Uponor PEX no están sujetas a este problema, con lo que pueden aplicarse altas velocidades sin tener problemas de ruidos o de erosión.

Los ensayos han mostrado que los golpes de ariete con tuberías Uponor PEX son tres veces menores que con tuberías metálicas.

No obstante según el punto 5.1.1.3.5 del Documento Básico de Salubridad, sección HS-4, suministro de agua se establece que cuando utilicemos tubería metálica, los soportes, anclajes y guías deberán de ser antivibratorios siempre que se transporte agua a velocidades comprendidas entre 1,5-2 m/s, ya que se pueden originar ruidos.

2.7. Agua Caliente Sanitaria

Según el punto 2.1. del Documento Básico de Ahorro Energético, sección HE-4, la contribución solar mínima de agua caliente sanitaria, se define como la fracción entre los valores anuales de la energía solar aportada exigida y la demanda energética anual, obtenidos a partir de los valores mensuales.

2.7.1. Contribución Solar Mínima

En las siguientes tablas se indican, para cada zona climática y diferentes niveles de demanda, a una

temperatura de referencia de 60 °C, la contribución solar mínima anual:

En función del tipo de fuente de energía de apoyo utilizada

a) General: suponiendo que la fuente energética de apoyo sea gasóleo, propano, gas natural u otras

Demanda total de ACS del edificio (I/d)		Z	ona Climática		
	I	II	III	IV	V
50 - 5.000	30	30	50	60	70
5.000 - 6.000	30	30	55	65	70
6.000 - 7.000	30	35	61	70	70
7.000 - 8.000	30	45	63	70	70
8.000 - 9.000	30	52	65	70	70
9.000 - 10.000	30	55	70	70	70
10.000 - 12.500	30	65	70	70	70
12.500 - 15.000	30	70	70	70	70
15.000 - 17.500	35	70	70	70	70
17.500 - 20.000	45	70	70	70	70
>2000	52	70	70	70	70

b) Efecto Joule: suponiendo que la fuente energética de apoyo sea electricidad mediante efecto Joule

Demanda total de ACS del edificio (I/d)		z	ona Climática		
	I	II	III	IV	V
50 - 1.000	50	60	70	70	70
1.000 - 2.000	50	63	70	70	70
2.000 - 3.000	50	66	70	70	70
3.000 - 4.000	51	69	70	70	70
4.000 - 5.000	58	70	70	70	70
5.000 - 6.000	62	70	70	70	70
>6000	70	70	70	70	70

2.7.2. Demanda de Agua caliente sanitaria

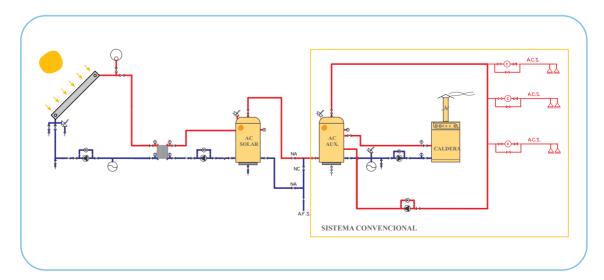
Según el punto 3.1.1. del Documento Básico de Ahorro Energético, sección HE-4, para valorar la demanda se tomarán los valores unitarios que aparecen en la siguiente tabla:

Criterio de demanda	Litros de ACS/día	a 60° C
Viviendas unifamiliares	30	por persona
Viviendas multifamiliares	22	por persona
Hospitales y clínicas	55	por cama
Hotel ****	70	por cama
Hotel ***	55	por cama
Hotel / Hostal **	40	por cama
Camping	40	por emplazamiento
Hostal / Pensión *	35	por cama
Residencia (ancianos, estudiantes, etc)	55	por cama
Vestuarios / Duchas colectivas	15	por servicio
Escuelas	3	por alumno
Cuarteles	20	por persona
Fábricas y talleres	15	por persona
Administrativos	3	por persona
Gimnasios	20 a 25	por usuario
Lavanderías	3 a 5	por kilo de ropa
Restaurantes	5 a 10	por comida
Cafeterías	1	por almuerzo

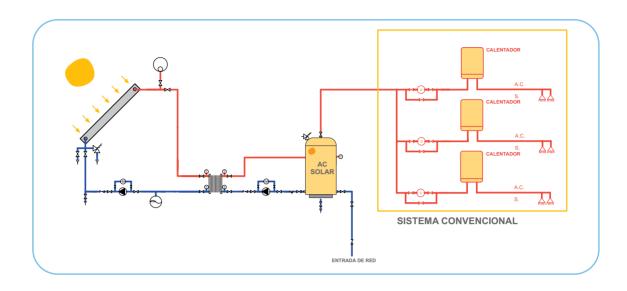
2.7.3. Demanda de Agua caliente sanitaria

Según el punto 3.1.2. del Documento Básico de Ahorro Energético, sección HE-4, se marcarán los límites de zonas homogéneas a efectos de las exigencias. Las zonas se han definido teniendo en cuenta la radiación solar global media diaria anual.

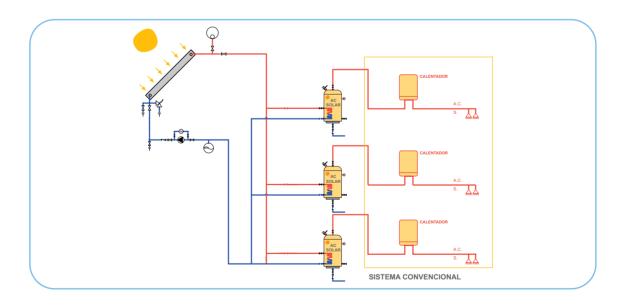
EJEMPLO:


Necesitamos saber el porcentaje de Agua Caliente Sanitaria que debe ser producida por aporte solar teniendo en cuenta que:

- Es un Hotel de 3 estrellas con 100 camas.
- Esta en el Pirineo Navarro.
- · La fuente energética de apoyo es gasóleo.
- La demanda de A.C.S. al día en I/60 °C es de 5.500 l.
- · La zona climática es la zona I.


La contribución solar mínima será del 30%.

2.7.4. Tipos de Instalaciones de Placas Solares en edificios


2.7.4.1. Instalación Solar con todo centralizado

2.7.4.2. Instalación Solar con apoyo descentralizado

2.7.4.3. Instalación Solar con acumulador y apoyo descentralizado

2.7.4.4. Ventajas y Desventajas

OPCIÓN	VENTAJAS USUARIOS	INCONVENIENTES
1 Todo Centralizado	Instalación compacta y única. Superficie de captación mínima. Más espacio útil en viviendas.	Nuevo servicio común. Necesidad de repartir gastos (agua, energía apoyo). Necesidad de realizar distribución.
2 Apoyo Descentralizado	Superficie de captación mínima.	Nuevo servicio común. Necesidad de repartir gastos (sólo agua). Menor espacio útil.
3 Apoyo y acumulación Descentralizado	Mayor superficie de captación. Elimina servicio común (energía de apoyo)	Pérdidas elevadas en circuitos. Menor espacio útil en las viviendas.

2.7.5. Retorno de Agua Caliente Sanitaria

Según el punto 2.3. del Documento Básico de Salubridad, sección HS-4, suministro de agua, se debe de disponer en las redes del A.C.S. de una red

de retorno cuando la longitud de la tubería de ida al punto de consumo más alejado sea igual o mayor que 15m.

2.7.5.1. Dimensionado de la red de Retorno de Agua Caliente Sanitaria

Según el punto 4.4.2. del Documento Básico de Salubridad, sección HS-4, suministro de agua, a la

hora de dimensionar las redes de retorno habrá que tener en cuenta lo siguiente:

- Para determinar el caudal que circulará por el circuito de retorno, se estimará que en el grifo más alejado, la pérdida de temperatura sea como máximo de 3 °C desde la salida del acumulador o inter-cambiador en su caso.
- 2) En cualquier caso no se recircularán menos de 250 l/h en cada columna, si la instalación responde a este esquema, para poder efectuar un adecuado equilibrado hidráulico.
- 3) El caudal de retorno se podrá estimar según reglas empíricas de la siguiente forma:
 - a) considerar que se recircula el 10% del agua de alimentación, como mínimo. De cualquier forma se considera que el diámetro interior mínimo de la tubería de retorno es de 16 mm.
 - b) los diámetros en función del caudal recirculado se indican en la tabla

Diámetro exterior de la tubería (mm)	Caudal recirculado (l/h)
20	140
25	300
32	600
40	1.100
50	1.800
63	3.300

3. Requisitos generales de calidad para los materiales empleados en Agua Caliente Sanitaria

Según el Documento Básico de Salubridad sección HS-4, los materiales que se vayan a utilizar en la instalación, en relación con su afectación al agua que suministren, deben ajustarse a los siguientes requisitos:

- a) para las tuberías y accesorios deben emplearse materiales que no produzcan concentraciones de sustancias nocivas que excedan los valores permitidos por el Real Decreto 140/2003, de 7de febrero;
- b) no deben modificar las características organolépticas ni la salubridad del agua suministrada;
 - c) deben ser resistentes a la corrosión interior;
- d) deben ser capaces de funcionar eficazmente en las condiciones de servicio previstas;
- e) no deben presentar incompatibilidad electroquímica entre sí.
- f) deben ser resistentes a temperaturas de hasta 40°C, y a las temperaturas exteriores de su entorno inmediato;

- g) deben ser compatibles con el agua suministrada y no deben favorecer la migración de sustancias de los materiales en cantidades que sean un riesgo para la salubridad y limpieza del aqua de consumo humano;
- h) su envejecimiento, fatiga, durabilidad y la restantes características mecánicas, físicas o químicas, no deben disminuir la vida útil prevista de la instalación.
 - q) resistencia a la corrosión exterior:
- Las tuberías metálicas se protegerán contra la agresión de todo tipo de morteros, del contacto con el agua en su superficie exterior y de la agresión del terreno mediante la interposición de un elemento separador de material adecuado en toda su longitud e instalándolo igualmente en todas las piezas especiales de la red, tales como codos, curvas, en el caso de tubos de cobre el elemento separador deberá de ser plástico.

4. Prueba de estanqueidad según Código Técnico de Edificación, DB HS-4, Suministro de agua

En el punto 5.2.1.1 del documento aparecen detallados los pasos que se han de seguir para realizar la prueba de estanqueidad:

- 1. La empresa instaladora estará obligada a efectuar una prueba de resistencia mecánica y estanqueidad de todas las tuberías, elementos y accesorios que integran la instalación, estando todos sus componentes vistos y accesibles para su control.
- 2. Para iniciar la prueba se llenará de agua toda la instalación, manteniendo abiertos los grifos terminales hasta que se tenga la seguridad de que la purga ha sido completa y no queda nada de aire. Entonces se cerrarán los grifos que han servido de purga y el de la fuente de alimentación. A continuación se empleará la bomba, que ya estará conectada y se mantendrá su funcionamiento hasta alcanzar la presión de prueba. Una vez acondicionada, se procederá en función del tipo del material como sique:

para las tuberías metálicas se considerarán válidas las pruebas realizadas según se describe en la norma UNE 100-151:88 ;

- b) para las tuberías termoplásticas y multicapas se considerarán válidas las pruebas realizadas conforme al Método A de la Norma UNE ENV 12108-02.
- 3. Una vez realizada la prueba anterior, a la instalación se le conectarán la grifería y los aparatos de consumo, sometiéndose nuevamente a la prueba anterior.
- 4. El manómetro que se utilice en esta prueba debe apreciar como mínimo intervalos de presión de 0,1 bar.
- 5. Las presiones aludidas anteriormente se refieren a nivel de la calzada.

Método A de la Norma UNE ENV 12108-02

Consta de los siguientes pasos:

- **a-.** apertura del sistema de purga;
- **b-.** purga del sistema con agua para expulsar todo el aire que pueda evacuarse por este medio. Parada del caudal y cierre del sistema de purga;
- **c-.** aplicación de la presión hidrostática de ensayo seleccionada, igual a 1,5 veces la presión de diseño, por bombeo de acuerdo con la figura 1, durante los primeros 30 min, durante este tiempo debería realizarse la inspección para detectar cualquier fuga sobre el sistema a ensayar considerado;
- **d-.** en caso de fuga de agua importante, reducción de la presión a 0,5 veces la presión de diseño de acuerdo con la figura 1;
- **e-.** cierre del grifo de purga. Si se estabiliza a una presión constante, superior a 0,5 veces la presión de diseño, es indicativo de que el sistema de canalización es bueno. Supervisión de la evolución durante 90 min. Realización de un control visual para localizar las posibles fugas. Si durante este periodo la presión tiene una tendencia a bajar, esto en indicativo de que existe una fuga en el sistema; el resultado del ensayo debería registrarse.

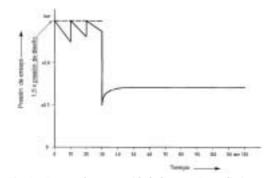


Fig. 1 - Ensayo de estanquidad al agua. Procedimiento de ensayo A

5. Diseño del sistema

5.1. Determinación de los diámetros de una instalación mediante colectores, teniendo en cuenta las pérdidas de carga admisibles y caudales de simultaneidad

Supongamos una instalación en un bloque de 5 plantas con 12 viviendas en total. En la primera planta habrá unas oficinas. Las 12 viviendas se distribuirán en las 4 plantas restantes (3 viviendas por planta).

· Cada vivienda consta de:

2	Вa	m	os

Inodoro con cisterna	0.1 l/s
Lavabo	0.1 l/s
Bidé	0.1 l/s
Bañera de más de 1,4 m	0.3 l/s
El consumo total de cada baño es	de 0.6 l/a

Cocina

Fregadero doméstico	0.2 l/s
Lavadora doméstica	0.2 l/s
Lavavajillas doméstico	0.15 l/s
onsumo total, de cada cocina es	de 0 55 1/s

Por lo tanto cada vivienda tiene un caudal instalado total de 1,75 l/s.

· Las oficinas constan de:

2 Baños de caballeros

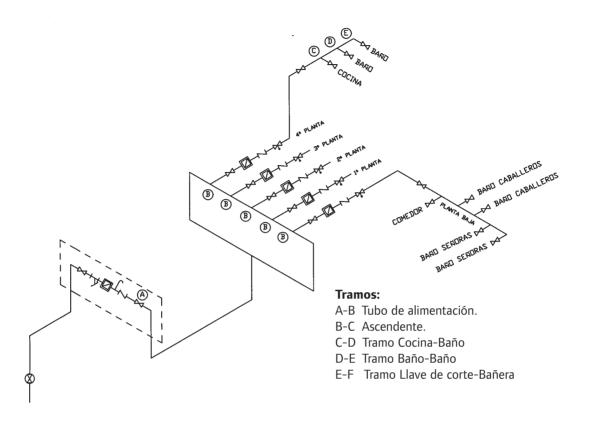
Inodoros con cisterna	0.1 l/s
2 Urinarios con cisterna	0.04 l/s
Lavabo	0.1 l/s

El consumo total de cada baño de caballeros es de 0.28 l/s

2 Baños de señoras

2 Inodoros con cisterna	0.1 l/s
Lavabo	0.1 l/s

El consumo total de cada baño de señoras es de 0.3 l/s


Comedor

Fregadero doméstico 0.2 l/s Lavavajillas doméstico 0.15 l/s Grifo aislado 0.15 l/s

Por lo tanto las oficinas tienen un caudal instalado total de 1,66 l/s.

EJEMPLO Nº1: Batería de contadores

Tramo	Qt (l/s)	Qc (l/s)	De (mm)	Velocidad (m/s)	Pérdida de carga (Pa/m)	Longitud (m)	Pérdida de carga (Pa)
A - B	22,66	2,58	40	3,11	2.135	16	34.160
B - C	1,75	0,74	25	2,3	2.389	15,5	37.030
C - D	1,2	0,6	20	2,91	5.428	2,5	13.570
D - E	0,6	0,4	20	1,94	2.525	5	12.625
E - F	0,3	0,3	20	1,45	1.502	5	7.510

NOTA: Siempre se deberá respetar la tabla 4.2 "Diámetros mínimos de derivaciones a los aparatos", del DB-HS4 del CTE, dependiendo del tipo de material.

104.895

Siendo

- \cdot Caudal Total Instalado, $\mathbf{Q_{t}}$ (l/s) suma de los caudales instantáneos mínimos de todos los aparatos instalados.
- \cdot Caudal de cálculo o Simultáneo, Q_c (l/s) caudal que se produce por el funcionamiento lógico de aparatos de consumo o unidades de suministro.
- El Diámetro Exterior (mm), la velocidad (m/s) y la pérdida de carga (Pa/m) se obtienen en el punto 1 de los anexos.

La presión que comunica la empresa suministradora al final de la acometida es de:

$$P_{aco} = 500.000 \text{ Pa} = 0.5 \text{ Mpa}.$$

Para obtener la pérdida de carga total realizaremos los siguientes cálculos:

- 1) Pérdida de carga debida a la tubería es de 104.895 Pa.
- 2) Las pérdidas de carga localizadas de los accesorios se pueden estimar en un 30 % de las pérdidas de carga cada tramo. Por lo tanto, 30 % de 105.855 Pa son 31.456 Pa
- 3) La pérdida de presión debida a la existencia de un filtro (200 mbar) y un contador (300 mbar) Total 500 mbar = 50.000 Pa aprox.

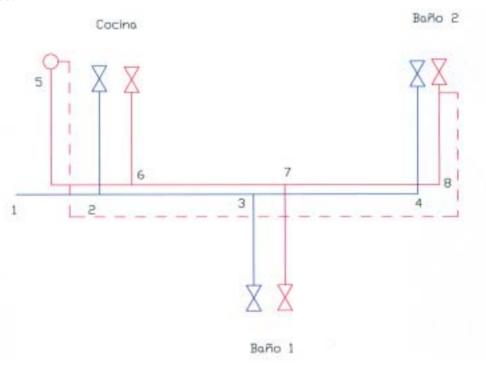
Pérd. de carga total =104.895 + 31.456 + 50.000 = 1876.351 Pa

La presión necesaria para un suministro adecuado será como mínimo la suma de las pérdidas de carga más la correspondiente para vencer la altura del edificio y añadirle la presión mínima dinámica del aparato en situación más desfavorable.

La pérdida de presión debido a la altura del edificio 17 m =1700 mbar = 170.000 Pa

Presión mínima dinámica del aparato (suponiendo que sólo tenemos grifos será) 100 kPa = 100.000 Pa

Presión de suministro necesaria = $1876.351+170.000+100.000 = P_s = 456.351 Pa$


No habrá que instalar grupo de presión ya que superamos la presión disponible en la acometida que era de $P_{aco} = 500.000 \, Pa$

De acuerdo con el cálculo anterior y respetando siempre la tabla 4.2. "Diámetros Mínimos de Derivación a los aparatos del DB HS-4", los diámetros para el agua fría de la vivienda quedarían de la siguiente forma:

- Entrada a vivienda 25x2,3 mm.
- Entrada a cocina 20x1,9 mm.
- Entrada a cuarto de Baño 20x1,9 mm.
- Fregadero Doméstico 16x1,8 mm.
- Lavadora Doméstica 20x1,9 mm.
- Lavavajillas Doméstico 16x1,8 mm.
- Inodoro con Cisterna 16x1,8 mm.
- Lavabo 16x1,8 mm.
- Bidé 16x1,8 mm.
- Bañera de más de 1,4m. 20x1,9 mm.

Para el dimensionado de la red de agua caliente se supone un sistema todo centralizado con generación de A.C.S. a traves de paneles solares y apoyo de caldera.

Tramos:

Donde cada tramo y diámetro se corresponden con la siguiente tabla:

	Tramo	Qt (l/s)	Qc (l/s)	De (mm)	Velocidad (m/s)	Pérdida de carga (Pa/m)	Longitud (m)	Pérdida de carga (Pa)
Agua Fría	1 - 2 Entrada a Vivienda-Cocina	1,75	0,74	25	2,3	2.389	3	7.167
	2 - 3 Cocina Baño 1	1,2	0,6	20	2,91	5.428	2,5	13.570
	3 - 4 Baño 1 - Baño 2	0,6	0,4	20	1,94	2.525	5	12.625
nte	4 - 5 Entrada a Vivienda-Cocina	0,76	0,48	25	1,53	1.162	3	3.486
alie.	5 - 6 Cocina Baño 1	0,66	0,44	20	2,18	3.123	3	9.369
Ą.	6 - 7 Baño 1 - Baño 2	0,33	0,29	20	1,46	1.502	3	4.506

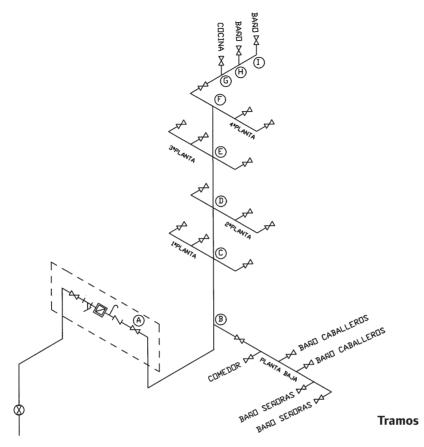
NOTA: Siempre se deberá respetar la tabla 4.2 "Diámetros mínimos de derivaciones a los aparatos", del DB-HS4 del CTE, dependiendo del tipo de material.

De acuerdo con el ejemplo anterior y respetando siempre la tabla 4.2 "Diámetro mínimo de derivación a los aparátos del DB-HS4 del CTE", los

diámetros para el agua caliente de la vivienda quedarían de la siguiente forma:

- Entrada a vivienda 25x2,3 mm
- Entrada a cocina 20x1,9 mm
- Entrada a cuarto de Baño 20x1,9 mm
- Fregadero Doméstico 16x1,8 mm
- Lavabo 16x1,8 mm
- Bidé 16x1,8 mm
- Bañera 20x1,9 mm

Dimensionado de la red de recirculación:


Para efectuar el dimensionado se ha de considerar un 10% del agua de la vivienda.

Diámetro exterior de la tubería (mm)	Caudal recirculado (l/h)	
20	140	
25	300	
32	600	
40	1.100	
50	1.800	
63	3 300	

El 10% del Caudal de Simulteneidad de la vivienda es 0,048 l/s ó 172,8 l/h; luego el diámetro de la tubería de recirculación será 25x2,3 mm

$$\frac{1}{s} \times \frac{60 \text{ s}}{1 \text{ min}} \times \frac{60 \text{ min}}{1 \text{ hora}}$$

EJEMPLO Nº2: Una sola montante para toda la vivienda

A-B Ascendente-Oficina

B-C Oficina-2 Planta.

C-D 2 Planta- 3 Planta

D-E 3 Planta- 4 Planta

E-F 4 Planta- 5 Planta

F-G Ascendente- Cocina

G-H Cocina- Baño 1

H-I Baño 1- Baño 2

I-J Baño 2- Bañera

Tramo	Qt (l/s)	Qc (l/s)	De (mm)	Velocidad (m/s)	Pérdida de carga (Pa/m)	Longitud (m)	Pérdida de carga (Pa)
A - B	22,66	2,58	40	3,11	2.135	16	34.160
B - C	21	2,54	40	3,11	2.135	3	6.405
C - D	15,75	2,22	40	2,75	1.713	3	5.139
D - E	10,5	1,82	32	3,5	3.645	3	10.935
E - F	5,25	1,3	32	2,41	1.843	3	5.529
F - G	1,75	0,74	25	2,3	2.389	5	11.945
G - H	1,2	0,6	20	2,91	5.428	5	27.140
H - I	0,6	0,4	20	1,94	2.525	5	12.625
- J	0,3	0,3	20	1,45	1.502	5	7.510

NOTA: Siempre se deberá respetar la tabla 4.2 "Diámetros mínimos de derivaciones a los aparatos", del DB-HS4 del CTE, dependiendo del tipo de material.

121.388

La presión que comunica la empresa suministradora al final de la acometida es de:

$$P_{aco} = 500.000 Pa = 0.5 Mpa.$$

Para obtener la pérdida de carga total realizaremos los siguientes cálculos:

Pérdida de carga debida a la tubería es de 121.388 Pa.

Las pérdidas de carga localizadas de los accesorios se pueden estimar en un 30 % de las pérdidas de carga cada tramo. Por lo tanto, 30 % de 121.388 Pa son 36.416 Pa

La pérdida de presión debida a la existencia de un filtro (200 mbar) y un contador (300 mbar) Total 500 mbar = 50.000 Pa aprox.

Pérdida de carga total = 121.388+36.416+50.000= 207.804 Pa

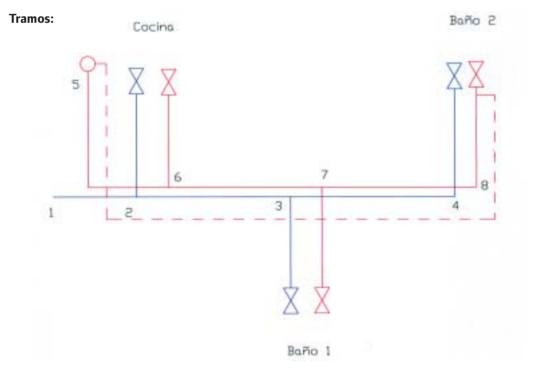
La presión necesaria para un suministro adecuado será como mínimo la suma de las pérdidas de carga más la correspondiente para vencer la altura del edificio y añadirle la presión mínima dinámica del aparato en situación más desfavorable.

La pérdida de presión debido a la altura del edificio 17 m =1700 mbar = 170.000 Pa

Presión mínima dinámica del aparato (suponiendo que sólo tenemos grifos será)

100 kPa = 100.000 Pa

Presión de suministro necesaria = 207.804+170.000+100.000 = P_s = 477.804 Pa


No habrá que instalar grupo de presión ya que superamos la presión disponible en la acometida que era de $P_{\text{aco}} = 500.000 \, \text{Pa}$

De acuerdo con el cálculo anterior y respetando siempre la tabla 4.2. "Diámetros Mínimos de Derivación a los aparatos del DB HS-4", los diámetros para el agua fría de la vivienda quedarían de la siguiente forma:

- Entrada a vivienda 25x2,3 mm
- Entrada a cocina 20x1,9 mm
- Entrada a cuarto de Baño 20x1,9 mm
- Fregadero Doméstico 16x1,8 mm
- Lavadora Doméstica 20x1,9 mm
- Lavavajillas Doméstico 16x1,8 mm
- Inodoro con Cisterna 16x1,8 mm
- Lavabo 16x1,8 mm
- Bidé 16x1,8 mm
- Bañera de más de 1,4m 20x1,9 mm

Para el dimensionado de Agua Caliente se tiene en cuenta el siguiente esquema de instalación:

Para el dimensionado de la red de agua caliente se supone un sistema todo centralizado con generación de A.C.S. a traves de paneles solares y apoyo de caldera.

Donde cada tramo y diámetro se corresponden con la siguiente tabla:

Donde cada tramo y diámetro se corresponden con la siguiente tabla:

	Tramo	Qt (l/s)	Qc (l/s)	De (mm)	Velocidad (m/s)	Pérdida de carga (Pa/m)	Longitud (m)	Pérdida de carga (Pa)
ría	1 - 2 Entrada a Vivienda-Cocina	1,75	0,74	25	2,3	2.389	3	7.167
Agua F	2 - 3 Cocina Baño 1	1,2	0,6	20	2,91	5.428	2,5	13.570
	3 - 4 Baño 1 - Baño 2	0,6	0,4	20	1,94	2.525	5	12.625
ıte	4 - 5 Entrada a Vivienda-Cocina	0,76	0,48	25	1,53	1.162	3	3.486
alier	5 - 6 Cocina Baño 1	0,66	0,44	20	2,18	3.123	3	9.369
Α.	6 - 7 Baño 1 - Baño 2	0,33	0,29	20	1,46	1.502	3	4.506

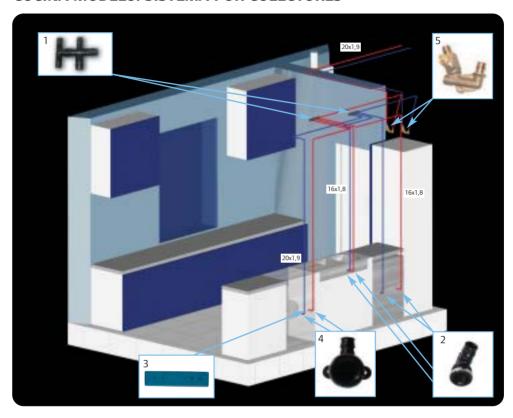
NOTA: Siempre se deberá respetar la tabla 4.2 "Diámetros mínimos de derivaciones a los aparatos", del DB-HS4 del CTE, dependiendo del tipo de material.

De acuerdo con el ejemplo anterior y respetando diámetros para el aqua caliente de la vivienda quesiempre la tabla 4.2 "Diámetro mínimo de derivación a los aparátos del DB-HS4 del CTE", los

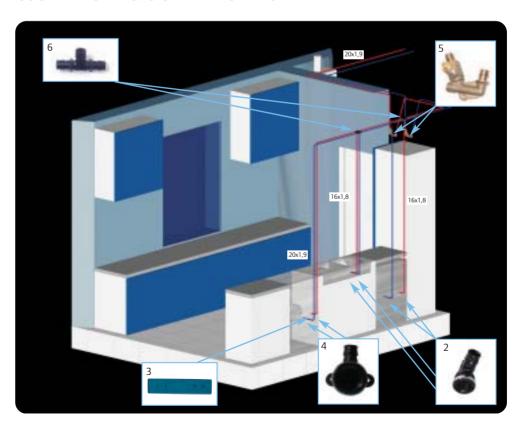
darían de la siguiente forma:

- Entrada a vivienda 25x2,3 mm
- Entrada a cocina 20x1,9 mm
- Entrada a cuarto de Baño 20x1,9 mm
- Fregadero Doméstico 16x1,8 mm
- Lavabo 16x1,8 mm
- Bidé 16x1,8 mm
- Bañera 20x1,9 mm

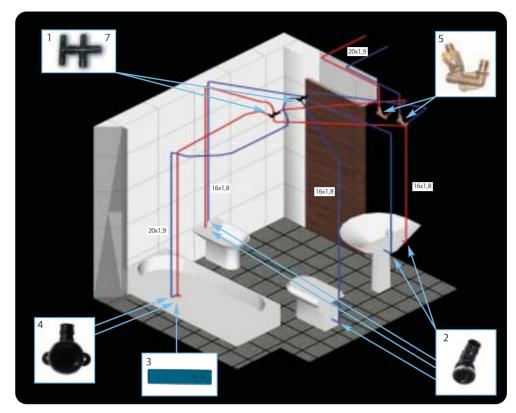
Dimensionado de la red de recirculación:

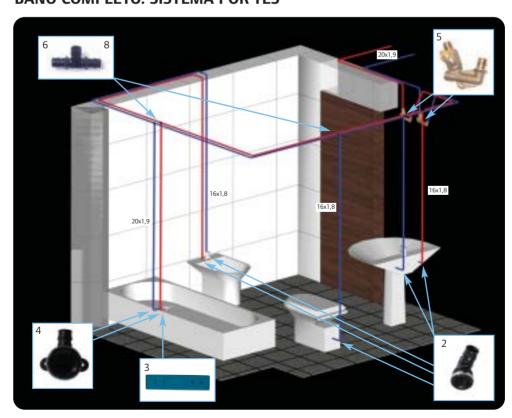

Para efectuar el dimensionado se ha de considerar un 10% del agua del último baño.

Diámetro exterior de la tubería (mm)	Caudal recirculado (l/h)	
20	140	
25	300	
32	600	
40	1.100	
50	1.800	
63	3.300	


El 10% del Caudal de Simulteneidad al último baño es 0,048 l/s ó 172,8 l/h; luego el diámetro de la tubería de recirculación será 25x43 mm

5.2. Despiece de la Instalación Interior de fontanería


COCINA MODELO. SISTEMA POR COLECTORES


COCINA MODELO. SISTEMA POR TES

BAÑO COMPLETO. SISTEMA POR COLECTORES

BAÑO COMPLETO. SISTEMA POR TES

DESPIECE DE MATERIAL

- 1 UPONOR Q&E COLECTOR DE TECHO PLÁSTICO (PPSU) 20x20x16x16
- 2 UPONOR Q&E CODO TERMINAL PLÁSTICO (PPSU) 16x1/2"
- 3 UPONOR Q&E PLACA DE FIJACIÓN PLÁSTICA
- 4 UPONOR Q&E CODO BASE FIJACIÓN CORTO (PPSU) 20x1/2"
- 5 UPONOR Q&E LLAVE DE CORTE PARA EMPOTRAR EN V 20x20
- 6 UPONOR Q&E TE REDUCIDA PLÁSTICA (PPSU) 20x16x20
- 7 UPONOR Q&E COLECTOR DE TECHO PLÁSTICO (PPSU) 20x20x16x16x16
- 8 UPONOR Q&E TE REDUCIDA PLÁSTICA (PPSU) 20x20x16
 TUBERÍA UPONOR PEX 16x1,8
 TUBERÍA UPONOR PEX 20x1,9

6. Almacenamiento e instalación

6.1. Almacenamiento

Las tuberías UPONOR PEX vienen suministradas de fábrica en rollos o barras. Estas tuberías son empaquetadas en cajas de cartón o envueltas en láminas de plástico negro. Junto con las tuberías se facilitan las instrucciones de instalación.

Evite que la radiación ultravioleta (luz solar)

afecte a las tuberías durante su almacenamiento e instalación. Almacene la tubería en su embalaje original. Evite que los productos basados en el aceite, los disolventes, pinturas y cinta entren en contacto con la tubería ya que la composición de estos productos puede ser perjudicial para las tuberías.

6.2. Desbobinado de la tubería

Durante la instalación de la tubería, mantenga las tapas antipolvo encima del extremo de la tubería, de manera que la suciedad no pueda introducirse en el sistema. Los desbobinadores, como el de la figura, pueden hacer más sencillo el desenrollado de los tubos .

Cortatubos Uponor

6.3. Corte de la tubería

Las tuberías UPONOR PEX de dimensiones menores se pueden cortar con un cortador de tuberías de plástico como el suministrado por Uponor. Haga el corte siempre perpendicularmente a la dirección longitudinal de la tubería. No debería sobrar ningún exceso de material ni protuberancias que puedan afectar a la conexión.

6.4. Curvado de tuberías

Las tuberías UPONOR PEX se curvan normalmente sin necesidad de herramientas especiales. Cuando se doblan con un radio pequeño y en frío puede ser necesario un curvatubos.

Las tuberías UPONOR PEX se pueden doblar en caliente. Para realizarlo utilice una pistola de aire caliente (decapador), a ser posible con difusor (máx. 180°C). No utilice llama. La tubería podría verse dañada ya que no habría control de la temperatura aplicada. La tubería debe ser calentada hasta que el material de donde va a ser curvada se ponga casi translúcido (máx. 140°C). Doble la

tubería de una sola vez hasta alcanzar la posición requerida. Enfríe la tubería en agua o déjela enfriarse al aire.

Nota: Un calentamiento excesivo de la tubería, provoca que se pierdan las dimensiones calibradas en fábrica. Esta sección no debería ser utilizada como punto de unión.

6.5. Contracción de longitud

Cuando las tuberías han estado en servicio y la temperatura y la presión descienden, se produce un proceso de contracción (máx. 1 ,5% de la lon-qitud).

Teniendo una distancia entre sujeciones adecuada,

la sujeción entre la tubería y el accesorio será mayor que la fuerza de contracción y no producirá ningún problema siempre que la instalación de accesorios sea efectuada conforme a las instrucciones del fabricante.

6.6. Localización de los colectores

La localización de los colectores debe ser elegida procurando que:

- Sean accesibles para un futuro mantenimiento.
- Tengan fácil acceso a los puntos de consumo.

- Permita una fácil conexión a las tuberías de alimentación.

A veces es conveniente situar más de un colector.

6.7. Tendido y soportación de tuberías

Las tuberías deben situarse de forma que las posibilidades de perforación por un accidente estén minimizadas. En instalaciones con funda coarrugada una menor cantidad de curvas en el trazado facilita el reemplazamiento en caso de avería. Las tuberías pueden ser instaladas directamente sobre en el material de construcción.

Las tuberías vistas deben llevar medias cañas y abrazaderas que mantengan la forma de la tubería.

6.8. Memoria Térmica

En el caso de un estrangulamiento accidental de la tubería durante la instalación se recomienda que la tubería sea calentada suavemente con mucho cuidado. La memoria térmica será activada y la

tubería será estirada. Nunca utilice llama. La tubería se podría ver dañada ya que no habría control de la temperatura aplicada. Enfríe la tubería con un trapo mojado.

6.9. Llenado y comprobación del sistema

El llenado de la instalación debe hacerse de manera lenta para que no se formen bolsas de aire en el sistema. Asegúrese de que no existen fugas. Para cerciorarnos de que esto no se produce debemos realizar la prueba de presión.

7. Instalación, detalles de los soportes

7.1. Instalaciones permitiendo expansión

7.1.1. Generalidades

UPONOR PEX, como todos los materiales, está sujeto a la expansión térmica. Para evitar problemas posteriores, debemos tener en cuenta este fenómeno al diseñar una instalación.

La expansión y contracción de la tubería de UPONOR PEX puede calcularse con la siguiente expresión:

$$\Delta L = \Delta T \cdot L \cdot \alpha$$

 ΔL es la variación de la longitud, en milímetros.

 ΔT es la variación de la temperatura.

L es la longitud de la tubería, en metros.

 α es el coeficiente de expansión térmica del PEX (0.18 en milímetros por metro y grado centígrado).

Como podemos observar, la dilatación en el polietileno reticulado es mayor que la de los metales. Sin embargo las fuerzas de expansión térmica son despreciables. Con el UPONOR

PEX no tendremos el problema de una soldadura que salta por efecto de las fuerzas de dilatación o de grietas en el hormigón si se trata de tubos empotrados.

Dimensión mm	Máx. Fuerza de Expansión (N)	Máx. Fuerza de Contracción (N)	Fuerza de Contracción
25 x 2,3	350	550	200
32 x 2,9	600	1000	400
40 x 3,7	900	1500	600
50 x 4,6	1400	2300	900
63 x 5,8	2300	3800	1500
75 x 6,8	3200	5300	2100
90 x 8,2	4600	7500	2900
110 x 10	6900	11300	4400

Fuerza máxima de expansión

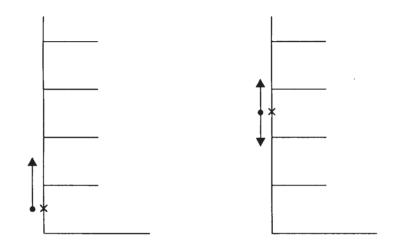
Es la fuerza que surge cuando se calienta una tubería fija hasta alcanzar la máxima temperatura operativa, 95°C.

Fuerza máxima de contracción

Es la fuerza debida a la contracción térmica, cuando la tubería ha sido instalada en una posición fija ala temperatura operativa máxima.

Fuerza de contracción

Es la fuerza restante en la tubería a la temperatura de instalación debida al acortamiento longitudinal cuando la tubería fija ha estado a presión operativa máxima ya temperatura máxima durante cierto tiempo.


7.1.2. Posicionamiento de puntos fijos

Tenemos un punto fijo cuando la instalación queda fijada en ese punto sin posibilidad de movimiento, normalmente esto ocurre en la sujección de un accesorio o un colector. Las abrazaderas que soportan el tubo no se consideran puntos fijos, ya que permiten movimientos longitudinales, solamente cuando éstas estén en un cambio de dirección sí se considerarán como tales ya que se

opondrán al movimiento de expansión o contracción del brazo contrario.

Los puntos fijos se determinan de manera que limitemos la expansión o la permitamos en la dirección que no nos causa problemas.

La figura siguiente nos aclarará este punto.

Posicionamiento de puntos fijos, instalación con ramales.

7.1.3. Instalación de tuberías permitiendo la expansión por medio de un brazo flexible

El brazo flexible debe ser lo suficientemente largo como para prevenir cualquier daño.

Las abrazaderas deben dejar espacio suficiente para que el codo no entre en contacto con la pared después de la expansión. Una instalación típica se muestra en las figuras 2 y 3.

Como podemos ver la abrazadera que está en el cambio de dirección es un punto fijo si consideramos la dilatación del brazo contrario.

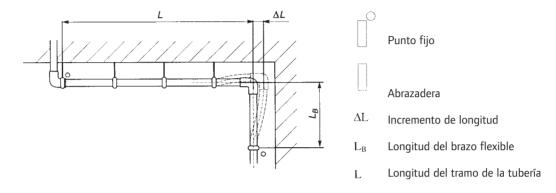
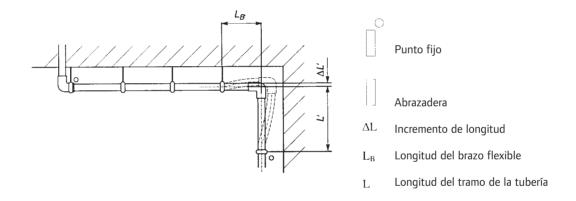



Figura 2: La expansión se compensa con un brazo flexible

Figura 3: Compensación de la expansión $\Delta L'$ con brazo flexible.

La longitud del brazo flexible, LB puede calcularse con la siguiente ecuación:

$$L_B = c \cdot \sqrt{(d_e \cdot \Delta L)}$$

Donde

 ΔL es el incremento de la longitud en milímetros

L_B es el brazo flexible en milímetros.

c es una constante que para el PEX vale 12.

d_e es el diámetro exterior en milímetros.

7.1.4. Instalación de tuberías permitiendo la expansión por medio de una lira

Mostramos la instalación típica en la figura 4.

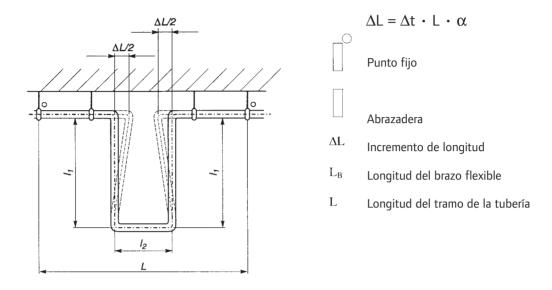


Figura 4: Compensación de la expansión mediante el uso de liras

Es preferible que la lira sea tal que $l_2 = 0.5 \cdot l_1$ La longitud del brazo flexible $L_B = l_1 + l_1 + l_2$

7.1.5. Instalación de tuberías permitiendo la expansión con medias cañas y soportadas por abrazaderas

Las distancias máximas entre las abrazaderas y las fijaciones de las medias cañas se obtienen en las tablas siguientes.

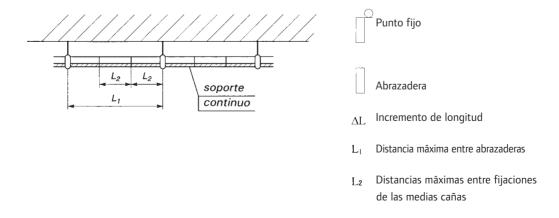


Figura 5: medias cañas y abrazaderas

Distancia L₁

Diámetro exterior de	L ₁ , agua fría	L ₁ , agua caliente
la tubería mm		
d _e ≤ 20	1500	1000
$20 < d_e \le 40$	1500	1200
$40 < d_e \le 75$	1500	1500
75 < d _e ≤ 110	2000	2000

Distancia L₂

Diámetro exterior de	L ₂ , agua fría	L ₂ , agua caliente
la tubería mm		
$d_e \le 20$	500	200
20 < d _e ≤ 25	500	300
25 < d _e ≤ 32	750	400
32 < d _e ≤ 40	750	600
40 < d _e ≤ 75	750	750
$75 < d_e \le 110$	1000	1000

7.1.6. Instalación de tuberías permitiendo la expansión por medio de abrazaderas

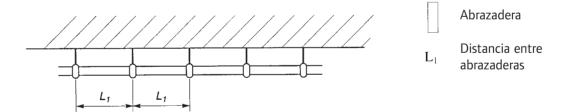


Figura 6: instalación con abrazaderas

Distancia L₁

Diámetro exterior de	L ₁ , agua fría	L ₁ , agua caliente
la tubería mm		
d _e ≤ 16	750	400
16 < d _e ≤ 20	800	500
20 < d _e ≤ 25	850	600
25 < d _e ≤ 32	1000	650
$32 < d_e \le 40$	1100	800
40 < d _e ≤ 50	1250	1000
50 < d _e ≤ 63	1400	1200
63 < d _e ≤ 75	1500	1300
75 < d _e ≤ 90	1650	1450
90 < d _e ≤ 110	1900	1600

Para tubos verticales L₁ debe multiplicarse por 1.3

7.2. Instalación de tuberías no permitiendo expansión

En muchas situaciones es necesario instalar el tubo entre dos puntos fijos. En este caso las fuerzas debidas a la expansión o la contracción térmica se transmiten a la estructura del edificio a través de los soportes. De nuevo insistiremos en que el

hecho de soportar el tubo en puntos fijos no presenta ningún problema debido a las despreciables fuerzas de dilatación y contracción. Mostramos algunos ejemplos en las figuras 7, 8, 9 y 10.

7.2.1. Posicionando los puntos fijos

Los puntos fijos se posicionan de tal manera que no tengamos dilataciones ni contracciones.

<u>La distancia máxima entre puntos fijos no será superior a 6 m.</u>

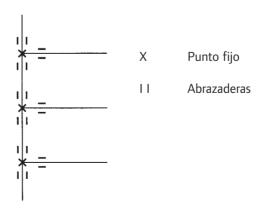


Figura 7: Posición de los puntos fijos en instalación con ramales

7.2.2. Instalación entre puntos fijos con medias cañas

Distancias máximas entre puntos fijos, abrazaderas y fijaciones a las medias cañas como se muestra en

la figura 8 deben estar de acuerdo con las tablas anteriores.

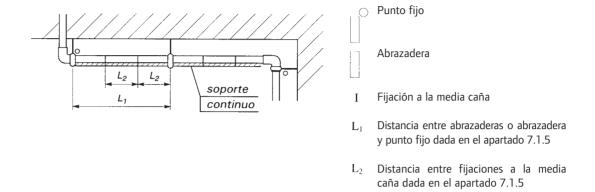


Figura 8: Medias cañas y abrazaderas no permitiendo expansión

7.2.3. Instalación entre puntos fijos con abrazaderas

La máxima distancia entre puntos fijos y abrazaderas tal como muestra la figura 9 debe estar de acuerdo con la tabla de distancia L₁.

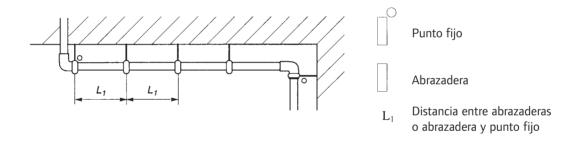


Figura 9: Instalación entre puntos fijos con abrazaderas

Distancia L₁

Diámetro exterior de la tubería mm	L ₁ , agua fría	L ₁ , agua caliente
d _e ≤ 16	600	250
16 < d _e ≤ 20	700	300
20 < d _e ≤ 25	800	350
25 < d _e ≤ 32	900	400
$32 < d_e \le 40$	1100	500
$40 < d_e \le 50$	1250	600
50 < d _e ≤ 63	1400	750
63 < d _e ≤ 75	1500	900
75 < d _e ≤ 90	1650	1100
90 < d _e ≤ 110	1850	1300

Para tubos verticales L₁ debe multiplicarse por 1.3

Manual Técnico Uponor

7.2.4. Instalación de tuberías sujetas sólo en los puntos fijos

En este caso las fuerzas debidas a la expansión y contracción térmica sólo se transmiten parcialmente a través de los puntos fijos hasta la estructura del edificio.

Este tipo de instalación puede hacerse cuando la dilatación por el aumento de temperatura no supone un problema o es aceptable visualmente.

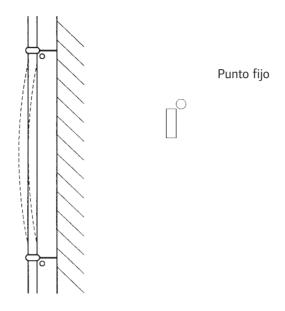


Figura 10: Tuberías sujetas sólo por los puntos fijos

7.3. Tuberías protegidas con coarrugado

Normalmente el coarrugado se usa con tuberías empotradas de diámetro menor o igual a 25 cuando utilizamos colectores en la instalación. Este montaje nos permitiría un cambio de la tubería sin tener que levantar la pared. Basta con soltar el tubo del colector por un extremo, de la salida al aparato por el otro extremo y tirar del tubo que saldrá sin ninguna dificultad y quedando todo listo para introducir la tubería nueva.

Para facilitar la labor tanto de sacar como de meter la tubería en un coarrugado encastrado en la pared, recomendamos que las curvas del trazado de la instalación tengan como mínimo un radio igual a ocho veces el diámetro de la tubería de UPONOR PEX que contiene el coarrugado. También debemos evitar que se introduzca cemento entre el tubo y la manga protectora.

En estos casos no hay que considerar la expansión térmica, basta con fijar el tubo por las partes que emerge de la pared o del suelo por ejemplo con un colector por un extremo y con un codo base fijación por el otro.

7.4. Tuberías desnudas empotradas en cemento

No hay ningún problema en empotrar tuberías, las fuerzas de dilatación o contracción son muy pequeñas en comparación con las tuberías metálicas y no se produce ningún tipo de grieta debido a las dilataciones.

El radio de curvatura mínimo que aconsejamos es el siquiente.

DN	Curva en caliente	Curva en frío
16	20	25
12	25	25
15	35	35
16	35	35
18	40	65
20	45	90
22	50	110
25	55	125
28	65	140

Los radios de curvatura mínimos en frío son: DN 32-40: 8 veces el diámetro exterior DN 50-63: 10 veces el diámetro externo DN 75-90-110: 15 veces el diámetro externo. Es recomendable fijar la tubería en la posición deseada antes de empotrar sobre todo en los puntos de salida de ésta de la pared o del suelo.

Manual Técnico Uponor

Uponor Hispania, S.A.U.

Oficinas centrales y Delegación Centro Edificio Alcor Plaza

Avda. de Europa, 2 Planta 4 28922 Alcorcón (Madrid) Tel.: +34 91 685 36 00 Fax: +34 91 647 32 45

e-mail: atencion.cliente@uponor.com

Fábrica Uponor Polígono Industrial Nº1 - Calle C, 24 28938 Mostoles (Madrid) Tel.: +34 91 685 36 00 Fax: +34 91 647 32 45

Centro Logístico CLA - Centro Logístico de Abastecimientos Calle Río Zujar, s/n 28906 Getafe (Madrid) Tel.: +34 91 685 36 00 Fax: +34 91 647 32 45

Uponor Portugal, Lda.

Oficinas centrales

Rua Central do Olival, 1100 Hua Central do Olival, 1100 4415-726 Olival, 1100 Tel.: +351 227 860 200 Fax: +351 227 829 644 e-mail: atençao.cliente@uponor.com

