

UNIVERSIDAD SIMON BOLIVAR

DIVISION	FISICA Y MATEMATICAS			
DEPARTAMENTO	MECANICA			
ASIGNATURA	MC 3411	INSTRUMENTACIÓN Y MEDICIÓN		
HORAS / SEMANA	T = 2	P = 0	L = 3	U = 3
VIGENCIA	ABRIL 1993		APROBACION:	

OBJETIVOS

Formar al estudiante en la estructuración de un sistema de medición, selección de los instrumentos, transductores a utilizar, y metodología de medición experimental en el laboratorio.

Al finalizar el curso, el estudiante deberá poder:

- Instalar un modelo o prototipo en el laboratorio.
- Instrumentar un modelo para medir variables de interés.
- Calibrar y ajustar los sensores e instrumentos de medición.
- Procesar los resultados experimentales obtenidos mediante procedimientos estadísticos, a fin de producir información de apovo a la toma de decisiones.

PROGRAMA

- Introducción a sistemas instrumentales de medición. Terminología. Análisis del proceso de medición. Conceptos estadísticos fundamentales. Procesamiento estadístico de data. Concepto de certidumbre (confiabilidad). Calibración estadística. Precisión y linealidad. Diagramas de bloque funcional. Función de transferencia operacional. Instrumentos de Orden Cero, de Retraso Puro, de Primer y Segundo Orden. Respuestas típicas a funciones escalón, impulso, y rampa. Respuesta de frecuencia. Espectros. Efecto de carga y acople de impedancias.
- Transductores. Sensores de desplazamientos y deformación. Patrones. Métodos de calibración. Diseño y aplicaciones. Sensores de velocidad y aceleración. Sensores sísmicos. Métodos de calibración. Sensores de fuerza. Celdas de carga. Sensores de presión. Micrófonos. Medición de caudal. Medición de temperatura. Mediciones misceláneas.

PRÁCTICAS DE LABORATORIO

El curso contempla la realización de seis practicas formales como mínimo, y un miniproyecto para cada grupo de prácticas que involucra la aplicación de los conocimientos y destrezas adquiridos durante las secciones de laboratorio.

Las sesiones de práctica a realizar se escogen entre los siguientes temas:

- Estudio y calibración de una termocupla.
- Estudio y calibración de una galga extensiométrica ("straingage").
- Estudio y calibración de un proximitor (detector de proximidad por corrientes de Eddy)
- Estudio calibración de un transformador diferencial lineal de voltaje (LVDT).
- Calibración dinámica de un acelerómetro.
- Análisis frecuencial de señales mediante el uso de un Analizador de Espectros de Tiempo Real.
- Análisis de las señales de vibración detectadas sobre máquinas en funcionamiento.
- Balanceo dinámico de un rotor flexible con dos planos de corrección.

También pueden incorporarse a los temas de práctica el estudio de sensores que se hallen disponibles en laboratorios de la Universidad distintos al de Dinámica de Máquinas.

El miniproyecto usualmente incluye el diseño y la construcción o modificación de algún equipo o accesorio, con las facilidades de la Sección de Dinámica.

BIBLIOGRAFIA

- [1] Doebelin, E. O. Measurement Systems, McGraw-Hill
- [2] Bruel & Kjar. *Mechanical Vibration and Shock Measurements*, Manual técnico publicado por B & K, 198°.