Dispositivos de adquisición de datos multifunción USB serie U2300A de Keysight

Guía del usuario

NOTICE: This document contains references to Agilent Technologies. Agilent's former Test and Measurement business has become Keysight Technologies. For more information, go to **www.keysight.com.**

Notificaciones

© Keysight Technologies 2006 - 2014

Queda prohibida la reproducción total o parcial de este manual por cualquier medio (incluyendo almacenamiento electrónico o traducción a un idioma extranjero) sin previo consentimiento por escrito de Keysight Technologies de acuerdo con las leyes de copyright estadounidenses e internacionales.

Número de parte del manual

U2351-90006

Edición

Edición 9, Diciembre 2014

Impreso en Malasia

Keysight Technologies Zona franca industrial Bayan Lepas, 11900 Penang, Malasia

Reconocimiento de Marcas

Pentium es una marca comercial registrada en los Estados Unidos por Intel Corporation.

Microsoft, Visual Studio, Windows y MS Windows son marcas comerciales de Microsoft Corporation en los Estados Unidos y en otros países.

Garantía

El material incluido en este documento se proporciona en el estado actual y puede modificarse, sin previo aviso, en futuras ediciones. Keysight renuncia, tanto como permitan las leyes aplicables, a todas las garantías, expresas o implícitas, relativas a este manual y la información aquí presentada, incluyendo pero sin limitarse a las garantías implícitas de calidad e idoneidad para un fin concreto. Keysight no será responsable de errores ni daños accidentales o derivados relativos al suministro, uso o funcionamiento de este documento o la información aquí incluida. Si Keysight y el usuario tuvieran un acuerdo aparte por escrito con condiciones de garantía que cubran el material de este documento y contradigan estas condiciones, tendrán prioridad las condiciones de garantía del otro acuerdo.

Licencias tecnológicas

El hardware y el software descritos en este documento se suministran con una licencia y sólo pueden utilizarse y copiarse de acuerdo con las condiciones de dicha licencia.

Levenda de derechos limitados

Derechos limitados del gobierno de los Estados Unidos. Los derechos de software y datos técnicos otorgados al gobierno federal incluyen sólo aquellos otorgados habitualmente a los usuarios finales. Keysight otorga esta licencia comercial habitual de software y datos técnicos de acuerdo con FAR 12.211 (datos técnicos) y 12.212 (software de computación) y, para el Departamento de Defensa, con DFARS 252.227-7015 (datos técnicos - elementos comerciales) y DFARS 227.7202-3 (derechos de software comercial de computación o documentación de software de computación).

Notificaciones relativas a la seguridad

PRECAUCIÓN

Un aviso de **PRECAUCIÓN** indica peligro. Informa sobre un procedimiento o práctica operativa que, si no se realiza o se cumple en forma correcta, puede resultar en daños al producto o pérdida de información importante. En caso de encontrar un aviso de **PRECAUCIÓN**, no prosiga hasta que hayan comprendido y cumplido totalmente las condiciones indicadas.

ADVERTENCIA

Un aviso de ADVERTENCIA indica peligro. Informa sobre un procedimiento o práctica operativa que, si no se realiza o cumple en forma correcta, podría causar lesiones o muerte. En caso de encontrar un aviso de ADVERTENCIA, interrumpa el procedimiento hasta que se hayan comprendido y cumplido las condiciones indicadas.

Información de seguridad

Las siguientes precauciones generales de seguridad deben respetarse en todas las fases de operación de este instrumento. Si no se respetan estas precauciones o las advertencias específicas mencionadas en este manual, se violan las normas de seguridad de diseño, fabricación y uso intencional del instrumento. Keysight Technologies no asumirá ninguna responsabilidad si el cliente no cumple con estos requisitos.

Símbolos de seguridad

Los siguientes símbolos indican precauciones que deben tomarse para utilizar el instrumento en forma segura.

Corriente continua

Advertencia

Marcas regulatorias

La marca CE indica que el producto cumple con todas las Directivas legales Europeas relevantes (si se incluye un año, éste indica la fecha en que el diseño fue probado).

La marca CSA es una marca registrada de la Asociación Canadiense de Estándares. El logotipo CSA con los indicadores "C" y "US" muestran que el producto está certificado para comercializarse en los mercados de Estados Unidos y Canadá, según los estándares americanos y canadienses correspondientes.

La marca de verificación C es una marca registrada de la Agencia de administración del espectro de Australia. Representa cumplimiento de las regulaciones de EMC de Australia de acuerdo con las condiciones de la Ley de radiocomunicaciones de 1992.

Información de seguridad general

ADVERTENCIA

- No utilice el dispositivo si está dañado. Antes de utilizar el dispositivo, inspeccione el gabinete. Busque rajaduras o plástico faltante. No opere el dispositivo cerca de gas explosivo, vapor o polvo.
- No aplique más voltaje del indicado (como puede verse impreso en el dispositivo) entre las terminales o entre una terminal y tierra.
- Siempre utilice el dispositivo con los cables suministrados.
- Observe todas las leyendas en el dispositivo antes de realizar conexiones.
- Apague el dispositivo y cierre la aplicación antes de conectar los terminales de Entrada/Salida.
- Para las reparaciones del dispositivo, utilice únicamente los repuestos especificados.
- No opere el dispositivo sin la cubierta o si la misma está floja.
- No conecte ningún cable y bloques terminales antes de efectuar el proceso de autodiagnóstico.
- Utilice sólo el adaptador de alimentación suministrado por el fabricante para evitar peligros inesperados.

PRECAUCIÓN

- No sobrecargue las terminales de salida por encima de los límites de corriente especificados. La aplicación de voltaje excesivo o la sobrecarga del dispositivo pueden causar daños irreversibles en los circuitos.
- Si el voltaje es excesivo o se sobrecarga la terminal de entrada puede dañar el dispositivo en forma permanente.
- Si el dispositivo se utiliza de una forma no especificada por el fabricante, la protección que proporciona puede dañarse.
- Para limpiar el dispositivo use siempre un paño seco. No emplee alcohol etílico ni otro líquido volátil para limpiar el dispositivo.
- No bloquee los orificios de ventilación del dispositivo.

Directiva 2002/96/EC de equipos electrónicos y eléctricos en los desperdicios (WEEE)

Este instrumento cumple con el requisito de rotulado de la Directiva WEEE (2002/96/EC). Esta etiqueta adosada al producto indica que no se debe desechar este producto eléctrico/electrónico con los desperdicios del hogar.

Categoría del producto:

En cuanto a los tipos de equipos del Anexo 1 de la directiva WEEE, este instrumento se clasifica como "Instrumento de control y supervisión".

A continuación se presenta la etiqueta adosada al producto:

No desechar con desperdicios del hogar

Para devolver este instrumento si no lo desea, comuníquese con la oficina de Keysight más cercana, o visite:

http://www.keysight.com/environment/product

para recibir más información.

En esta guía...

- 1 Introducción brinda una descripción general del producto serie U2300A, sus dimensiones y su diseño. También se ofrecen instrucciones para comenzar a usar el dispositivo serie U2300A, desde el control de los requisitos del sistema, la instalación de hardware y software hasta cómo ejecutar la aplicación de software Keysight Measurement Manager.
- Configuración de las clavijas del conector describe la configuración de las clavijas del conector del DAQ USB serie U2300A y la conexión de señales con los dispositivos externos.
- 3 Funciones y operaciones se incluye información para comprender mejor las funciones y operaciones del DAQ USB serie U2300A. Esto incluye las operaciones de los subsistemas de las entradas y salidas analógicas y digitales, y del contador digital.
- 4 Características y especificaciones especifica las características, las condiciones ambientales, y las especificaciones de los dispositivos DAQ U2300A.
- Calibración presenta los procedimientos para el proceso de calibración de los dispositivos DAQ serie U2300A a fin de reducir al mínimo los errores de medición A/D y los errores de salida D/A.

DECLARATION OF CONFORMITY

According to ISO/IEC Guide 22 and CEN/CENELEC EN 45014

Manufacturer's Name: Agilent Technologies Microwave Products (M) Sdn. Bhd

Manufacturer's Address: Bayan Lepas Free Industrial Zone,

11900, Bayan Lepas, Penang, Malaysia

Declares under sole responsibility that the product as originally delivered

Product Name: Agilent U2300A Series Multifunction USB Data

Acquisition(DAQ) device

Models Number: U2331A, U2351A, U2352A, U2353A, U2354A, U2355A,

U2356A

Product Options: This declaration covers all options of the above product(s)

complies with the essential requirements of the following applicable European Directives, and carries the CE marking accordingly:

Low Voltage Directive (73/23/EEC, amended by 93/68/EEC) EMC Directive (89/336/EEC, amended by 93/68/EEC)

and conforms with the following product standards:

EMC Standard

IEC 61326-1:1997+A1:1998 / EN 61326-1:1997+A1:1998

CISPR 11:1990 / EN55011:1991

IEC 61000-4-2:1995+A1:1998 / EN 61000-4-2:1995

IEC 61000-4-3:1995 / EN 61000-4-3:1995 IEC 61000-4-4:1995 / EN 61000-4-4:1995

IEC 61000-4-4:1995 / EN 61000-4-4:1995 IEC 61000-4-5:1995 / EN 61000-4-5:1995

IEC 61000-4-6:1996 / EN 61000-4-6:1996 IEC 61000-4-11:1994 / EN 61000-4-11:1994

Canada: ICES-001:1998

Australia/New Zealand: AS/NZS 2064.1

The product was tested in a typical configuration with Agilent Technologies test systems.

Safety

IEC 61010-1:2001 / EN 61010-1:2001 Canada: CSA C22.2 No. 61010-1:2004

USA: UL 61010-1: 2004

This DoC applies to above-listed products placed on the EU market after:

20-October-2006

Date

Mack Soh

Limit

Class A Group 1 4 kV CD, 8 kV AD

3 V/m, 80-1000 MHz

3 V, 0.15-80 MHz

1 cycle / 100%

0.5 kV signal lines, 1 kV power lines

0.5 kV line-line, 1 kV line-ground

Quality Manager

For further information, please contact your local Agilent Technologies sales office, agent or distributor, or Agilent Technologies Deutschland GmbH, Herrenberger Straße 130, D 71034 Böblingen, Germany.

Template: A5971-5302-2, Rev. B.01

U2300 series

Rev 1.0

Product Regulations

EMC	IEC 61326-1:1997+A1:1998 / EN 61326-1:1997+A1:1998	Performance Criteria U2331A, U2351A, U2352A U2353A, U2354A, U2355A, U2356A
	CISPR 11:1990 / EN 55011:1991 – Group 1 Class A IEC 61000-4-2:1995+A1:1998 / EN 61000-4-2:1995 (ESD 4kV CD, 8kV AD) IEC 61000-4-3:1995 / EN 61000-4-3:1995 (3V/m, 80% AM)	B A
	IEC 61000-4-4:1995 / EN 61000-4-4:1995 (EFT 0.5kV line-line, 1kV line-earth)	В
	IEC 61000-4-5:1995 / EN 61000-4-5:1995 (Surge 0.5kV line-line, 1kV line-earth)	В
	IEC 61000-4-6:1996 / EN 61000-4-6:1996 (3V, 0.15~80 MHz, 80% AM, power line)	A
	IEC 61000-4-11:1994 / EN 61000-4-11:1994 (Dips 1 cycle, 100%)	С
	Canada: ICES-001:1998 Australia/New Zealand: AS/NZS 2064.1	
Safety	IEC 61010-1:2001 / EN 61010-1:2001 Canada: CSA C22.2 No. 61010-1:2004 USA: UL 61010-1: 2004	

Additional Information:

The product herewith complies with the essential requirements of the Low Voltage Directive 73/23/EEC and the EMC Directive 89/336/EEC (including 93/68/EEC) and carries the CE Marking accordingly (European Union).

¹Performance Criteria:

A Pass - Normal operation, no effect.

B Pass - Temporary degradation, self recoverable.

C Pass - Temporary degradation, operator intervention required.

D Fail - Not recoverable, component damage.

N/A - Not applicable

Models Description:

U2331A – USB 64SE/32DI, 12bits, 3MSa/s Multifunction USB DAQ U2351A – USB 16SE/8DI, 16bits, 250kSa/s Multifunction USB DAQ

U2352A - USB 16SE/8DI, 16bits, 250kSa/s Multifunction USB DAQ (without Analog output)

U2353A – USB 16SE/8DI, 16bits, 500kSa/s Multifunction USB DAQ

U2354A - USB 16SE/8DI, 16bits, 500kSa/s Multifunction USB DAQ (without Analog output)

U2355A - USB 64SE/32DI, 16bits, 250kSa/s Multifunction USB DAQ

U2356A – USB 64SE/32DI, 16bits, 500kSa/s Multifunction USB DAQ

Notes:

Regulatory Information for Canada

ICES/NMB-001:1998

This ISM device complies with Canadian ICES-001.

Cet appareil ISM est confomre à la norme NMB-001 du Canada.

Regulatory Information for Australia/New Zealand

This ISM device complies with Australian/New Zealand AS/NZS 2064.1

N10149

Contenido

1 Introducción

Introducción 2

Descripción general del producto 3

Descripción general del diseño del producto 3

Dimensiones del producto 4

Control de los elementos incluidos en la compra estándar 6

Instalación del software 7

Instalación del kit L-Mount 8

Mantenimiento general 10

2 Configuración de las clavijas del conector

Configuración de las clavijas del conector 12

Conexión de señales de entrada analógica 19

Tipos de fuentes de señal 19

Configuraciones de entrada 20

3 Funciones y operaciones

Descripción general de las funciones 26

Modo de operación de entrada analógica 27

Lista de exploración (sólo para el modo continuo) 31

Modo Burst (ráfaga) 32

Conversión de datos A/D 33

Formato de datos de Al 35

Modo de operación de salida analógica 37

Voltaje de referencia D/A 41

Formato de datos de AO (salida analógica) 41

Entrada/Salida digital 44

Contador digital de propósito general (GPC) 47

Fuentes del disparo 53

Tipos de disparo 54

Disparo digital 57

Disparo analógico 58

Ejemplos de programación SCPI 61

Entrada analógica 61

Salida analógica 63

4 Características y especificaciones

Características del producto 66

Especificaciones del producto 68

Especificaciones de los dispositivos DAQ multifunción básicos 68

Especificaciones de los dispositivos DAQ multifunción de alta densidad 72

Especificaciones de mediciones eléctricas 75

Dispositivo DAQ USB Multifunción Básico 75

Dispositivo DAQ USB multifunción de alta densidad 77

5 Calibración

Calibración automática 80

Lista de figuras

igura 2-1	Conexiones de entradas RSE y fuente flotante 20
igura 2-2	Conexiones de entrada NRSE y fuentes con referencia
	a tierra 21
Figura 2-3	Modo de entrada diferencial y fuente con refe-
	rencia a tierra 22
igura 2-4	Fuente flotante y entrada diferencial 23
igura 3-1	Diagrama del bloque funcional del dispositivo
	DAQ serie U2300A 28
igura 3-2	Modo Burst activado y desactivado durante la
	adquisición de datos 32
igura 3-3	Modo de operación de salida analógica 37
igura 3-4	E/S digitales generales del DAQ serie U2300A de
	Keysight 44
igura 3-5	Contador digital de propósito general 48
igura 3-6	Modo Totalizer 49
igura 3-7	Pre-trigger 54
igura 3-8	Middle-trigger 55
igura 3-9	Post-trigger 56
igura 3-10	Delay-trigger 57
igura 3-11	Bordes positivo y negativo del disparo digital. 57
igura 3-12	Condición above high del disparo 58
igura 3-13	Condición below low del disparo 59
Figura 3-14	Condición window del disparo 60

Lista de tablas

Tabla 2-1	Descripción de las 68 clavijas del conector VHDCI 16
Tabla 2-2	Descripción de las clavijas del conector SSI 18
Tabla 3-1	Descripción general de la operación de entrada
	analógica 28
Tabla 3-2	Estructura de una lista de exploración con cuatro entradas 31
Tabla 3-3	Rango de entrada analógica y salida de código digital para bipolar 35
Tabla 3-4	Rango de entrada analógica y salida de código digital para unipolar 35
Tabla 3-5	Rango de entrada analógica y salida de código digital para bipolar 36
Tabla 3-6	Rango de entrada analógica y salida de código digital para unipolar 36
Tabla 3-7	Descripción general de la operación de salida analógica 38
Tabla 3-8	Tabla de código digital y salida de voltaje para configuración bipolar (U2331A, U2355A y U2356A) 42
Tabla 3-9	Tabla de código digital y salida de voltaje para configuración unipolar (U2331A, U2355A y U2356A) 43
Tabla 3-10	Tabla de código digital y salida de voltaje para configuración bipolar (U2351A y U2353A) 43
Tabla 3-11	Tabla de código digital y salida de voltaje para configuración unipolar (U2351A y U2353A) 43
Tabla 3-12	Tipo de disparo para adquisición única de modo continuo 53
Tabla 3-13	Tipo de disparo para adquisición continua de modo continuo 53
Tabla 4-1	Especificaciones de la entrada analógica para el dispositivo DAQ multifunción básico 68
Tabla 4-2	Especificaciones de la salida analógica para el dispositivo DAQ multifunción básico 69
Tabla 4-3	Especificaciones de la E/S digital para el dispositivo DAQ multifunción básico 69
Tabla 4-4	Especificaciones del Contador digital de propósito

	general para el dispositivo DAQ multifunción básico 70
Tabla 4-5	Especificaciones del disparador analógico para el dispositivo DAQ multifunción básico 70
Tabla 4-6	Especificaciones del disparador digital para el
	dispositivo DAQ multifunción básico 70
Tabla 4-7	Especificaciones del producto de calibración para el
	dispositivo DAQ multifunción básico 70
Tabla 4-8	Especificaciones generales del producto para el
	dispositivo DAQ multifunción básico 71
Tabla 4-9	Especificaciones de la entrada analógica para
	dispositivo DAQ multifunción de alta densidad 72
Tabla 4-10	Especificaciones de la salida analógica para
	dispositivo DAQ multifunción de alta densidad 72
Tabla 4-11	Especificaciones de la E/S digital para el dispositivo
	DAQ multifunción de alta densidad 73
Tabla 4-12	Especificaciones del Contador digital de propósito
	general para el dispositivo DAQ multifunción de alta
	densidad 73
Tabla 4-13	Especificaciones del disparador analógico para
	dispositivo DAQ multifunción de alta densidad 73
Tabla 4-14	Especificaciones de disparador digital para dispositivo
	DAQ multifunción de alta densidad 74
Tabla 4-15	Especificaciones de calibración para el dispositivo
	DAQ multifunción de alta densidad 74
Tabla 4-16	Especificaciones generales del producto para el
	dispositivo DAQ multifunción de alta densidad 74
Tabla 4-17	Especificaciones de la medición eléctrica de entrada
	analógica para el dispositivo DAQ multifunción básico
	75
Tabla 4-18	Especificaciones de la medición eléctrica de salida
	analógica para el dispositivo DAQ multifunción básico
	75
Tabla 4-19	Especificaciones de la medición eléctrica de entrada
	analógica para el dispositivo DAQ multifunción de alta
	densidad 77
Tabla 4-20	Especificaciones de la medición eléctrica de salida
	analógica para el dispositivo DAQ multifunción de alta
	densidad 77

1 Introducción

Introducción 2

Descripción general del producto 3

Descripción general del diseño del producto 3

Dimensiones del producto 4

Descripción del bloque terminal 5

Control de los elementos incluidos en la compra estándar 6

Instalación del software 7

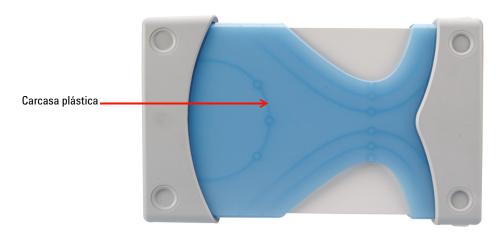
Instalación del kit L-Mount 8

Mantenimiento general 10

En este capítulo se brinda una descripción general del producto serie U2300A, sus dimensiones y su diseño. También se ofrecen instrucciones para comenzar a usar el dispositivo serie U2300A, desde el control de los requisitos del sistema, la instalación de hardware y software hasta cómo ejecutar la aplicación de software Keysight Measurement Manager.

Introducción

Los dispositivos de adquisición de datos (DAQ) multifunción USB serie U2300A de Keysight pueden operarse como unidades independientes modulares (al usarse en un chasis). La serie U2300A consta de modelos multifunción básicos (U2351A, U2352A, U2353A y U2354A) y de alta densidad (U2355A, U2356A y U2331A). El DAQ multifunción básico posee un muestreo de hasta 500 kSa/s con una resolución de 16 bits. Mientras que los de alta densidad logran muestreos de hasta 3 MSa/s por canal y 1 MSa/s para canales múltiples. Esto es ideal para cuando se trabaja con señales de entrada/salida analógica de alta densidad y diferentes rangos de entrada.


Los dispositivos DAQ serie U2300A también cuentan con E/S digital programable de 24 bits y dos contadores digitales generales independientes de 31 bits. Además, la serie U2300A también puede llevar a cabo funciones analógicas y digitales a gran velocidad. Posee un rango de resolución de entre 12 y 16 bits, sin pérdida de código. Tiene una función de calibración automática. Esto permite que el dispositivo ajuste la compensación dentro de las precisiones y los rangos especificados.

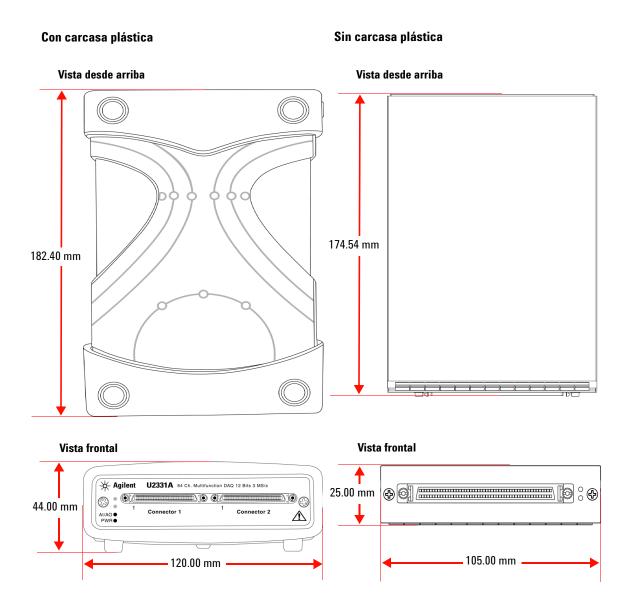
Los dispositivos DAQ serie U2300A son compatibles con una amplia gama de entornos de desarrollo de aplicaciones (ADE), como Keysight VEE, LabVIEW y Microsoft Visual Studio. Con la compra de cada dispositivo se incluye un software de registro de datos fácil de usar, Keysight Measurement Manager.

Descripción general del producto

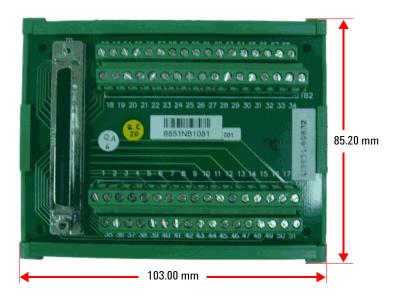
Descripción general del diseño del producto

Vista desde arriba

Vista frontal



Vista posterior


1 Introducción

Dimensiones del producto

Descripción del bloque terminal

Vista frontal

Vista lateral

Control de los elementos incluidos en la compra estándar

Revise y verifique los siguientes elementos si realizó una compra estándar de la serie U2300A. Si falta algún accesorio, comuníquese con la oficina de ventas de Keysight más cercana.

- ✔ Adaptador de alimentación de CA/CC
- ✔ Cable de alimentación
- ✔ Cable de extensión USB
- ✓ Kit L-Mount (usado con chasis de instrumentos modulares)
- ✓ Guía de inicio rápido de los sistemas y productos modulares USB de Keysight
- m
 u DVD-ROM de referencia de los sistemas y productos modulares USB de Keysight
- ✓ Keysight Automation-Ready CD-ROM (contiene Keysight IO Libraries Suite)
- ✔ Certificado de calibración

Instalación del software

Si desea utilizar los dispositivos DAQ USB serie U2300A con el software Keysight Measurement Manager, siga las instrucciones paso a paso como se muestran en la *Guía de inicio rápido de los sistemas y productos modulares USB de Keysight*.

NOTA

Es posible que deba instalar el controlador IVI-COM antes de utilizar el producto serie U2300A con otros ADE.

Instalación del kit L-Mount

El kit L-Mount debe utilizarse con el chasis de instrumentos modulares USB Keysight U2781A. A continuación se describen procedimientos sencillos para instalar el kit L-Mount en un dispositivo DAQ U2300A.

1 Abra el paquete del kit L-Mount.

2 Tire de la protección (extremo frontal de la carcasa) hacia afuera para retirar el dispositivo DAQ de la carcasa plástica. Luego levante el cuerpo de la carcasa plástica y retírela del dispositivo DAQ.

3 Use un destornillador *Philips* para atornillar el kit L-Mount al dispositivo DAQ.

- 4 Para colocar el dispositivo en el chasis, coloque el módulo DAQ de manera perpendicular y asegúrese de que el conector plano de 55 clavijas quede en la parte inferior.
- **5** Ya está listo para conectar el dispositivo DAQ en un chasis de instrumentos.

1

Mantenimiento general

NOTA

Las reparaciones no mencionadas en este manual sólo debe realizarlas personal calificado.

Para quitar polvo o humedad del dispositivo DAQ, siga estas instrucciones.

- 1 Apague el dispositivo DAQ y retire el cable del adaptador de CA/CC y el cable de E/S.
- 2 Tire de la protección (extremo frontal de la carcasa) hacia afuera para retirar el dispositivo DAQ de la carcasa plástica. Luego levante el cuerpo de la carcasa plástica y retírela del dispositivo DAQ.
- 3 Mientras sostiene el dispositivo DAQ, sacúdalo para quitar el polvo que se le haya acumulado en el panel.
- 4 Limpie el dispositivo DAQ con un paño seco.

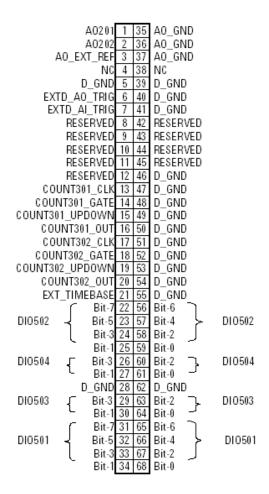
2 Configuración de las clavijas del conector

Configuración de las clavijas del conector 12
Conexión de señales de entrada analógica 19
Tipos de fuentes de señal 19
Configuraciones de entrada 20

En este capítulo se describe la configuración de las clavijas del conector del DAQ USB serie U2300A y la conexión de señales con los dispositivos externos.

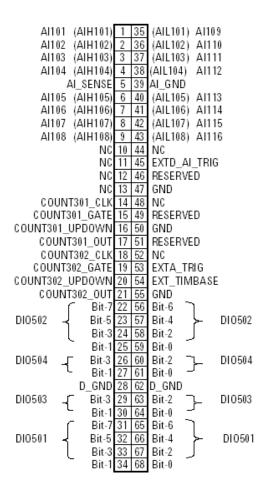
Configuración de las clavijas del conector

El DAQ serie U2300A está equipado con conectores tipo VHDCI (Interconexión de cables de muy alta densidad) de 68 clavijas. Estas clavijas se utilizan para entrada/salida digital o analógica, contadores y otras señales de disparador/referencia externa.


Configuración de las clavijas del conector 1 para U2331A, U2355A, U2356A

AI101	(AIH 101)		35	(AIL101)	AI 133
AI 102	(AIH 102)		36	(AIL102)	AI 134
AI 103	(AIH 103)		37	(AIL103)	AI 135
AI104	(AIH 104)	4	38	(AIL104)	AI 136
AI 105	(AIH 105)		39	(AIL105)	AI 137
AI 106	(AIH 106)		40	(AIL106)	AI 138
AI 107	(AIH 107)		41	(AIL107)	AI 139
AI 108	(AIH 108)	8	42	(AIL108)	AI140
AI 109	(AIH 109)	9	43	(AIL109)	AI 141
AI110	(AIH 110)		44	(AIL110)	AI 142
AI 111	(AIH111)		45	(AIL111)	AI143
AI 112	(AIH 112)	12	46	(AIL112)	AI144
AI 113	(AIH 113)		47	(AIL113)	AI145
AI114	(AIH 114)		48	(AIL114)	AI146
AI 115	(AIH 115)		49	(AIL115)	AI 147
AI116	(AIH 116)		50	(AIL116)	AI148
Δ	AI_SENSE		51	AI_GND	
AI 117	(AIH 117)		52	(AIL117)	
AI 118	(AIH 118)		53	· ·	
AI 119	(AIH 119)		54	(AIL119)	
AI 120	(AIH 120)		55		
Al 121	(AIH 121)		56	1 /	AI 153
AI 122	(AIH 122)		57	4	AI 154
AI 123	(AIH 123)		58	1. /	AI 155
AI 124	(AIH 124)		59		AI156
AI 125	(AIH 125)		60		AI 157
AI 126	(AIH 126)		61		AI 158
AI 127	(AIH 127)		62		AI159
AI 128	(AIH 128)		63		AI160
Al 129	(AIH 129)		64		AI161
AI 130	(AIH 130)		65	1 /	AI162
AI 131	(AIH 131)		66	(AIL131)	
AI 132	(AIH 132)		67	(AIL132)	AI164
EX	TA_TRIG	34	68	AI_GND	

NOTA


(AIH101..132) y (AIL101..132) son para el par de conexión de modo diferencial.

Configuración de las clavijas del conector 2 para U2355A, U2356A, U2331A

2 Configuración de las clavijas del conector


Configuración de las clavijas para U2352A, U2354A

NOTA

(AIH101..108) y (AIL101..108) son para el par de conexión de modo diferencial.

Configuración de las clavijas para U2351A, U2353A

NOTA

(AIH101..108) y (AIL101..108) son para el par de conexión de modo diferencial.

2 Configuración de las clavijas del conector

Tabla 2-1 Descripción de las 68 clavijas del conector VHDCI

Nombre de la señal	Dirección	Tierra de	Descripción
AL CND	N1 12 21 1	referencia	T' (
AI_GND	No disponible	No disponible	Tierra de entrada analógica (AI). Las tres referencias de
			tierra (Al_GND, AO_GND y D_GND) están conectadas de
Para 16 canales:	Entrada	AI GND	manera integrada. U2351A/U2352A/U2353A/U2354A
AI<101116>	EIILIaua	AI_UIVD	
AI<101110>			Canales de entrada analógica 101~116. Cada par de canales, Al <i, i+8="">(i = 101108), puede configurarse como dos entradas de terminación única o como una entrada diferencial (marcada como AIH<101108> y AIL<101108>).</i,>
Para 64 canales:			U2331A/U2356A/U2355A
AI<101164>			Canales de entrada analógica 101~164). Cada par de
			canales, Al <i, i+32=""> (i = 101132), se configura como</i,>
			dos entradas de terminación única o como una entrada
			diferencial (marcada como AIH<101132> y
			AIL<101132>)
AI_SENSE	Entrada	AI_GND	Detección de entrada analógica. La clavija de referencia para todos los canales Al<101116> o Al<101164> de
EVTA TRIC	F., 4., - J.	AL CND	la configuración de entrada NRSE.
EXTA_TRIG	Entrada	AI_GND AO GND	Disparador analógico Al (entrada analógica) externo
A0201 A0202	Output		Canal 1 de salida analógica
	Output Entrada	AO_GND	Canal 2 de salida analógica
AO_EXT_REF		AO_GND	Referencia externa para canales de AO (salida analógica)
AO_GND		No disponible	Tierra analógica para AO (salida analógica)
EXTD_AO_TRIG	Entrada	D_GND	Disparador de formas de onda de AO (salida analógica) externo
EXTD_AI_TRIG	Entrada	D_GND	Disparador digital AI (entrada analógica) externo
RESERVADO	Output	No disponible	Clavijas reservadas. No las conecte a ninguna señal.
COUNT<301,302>_CLK	Entrada	D_GND	Fuente del contador <301,302>
COUNT<301,302>_ GATE	Entrada	D_GND	Gate of counter <301,302>
COUNT<301,302>_OUT	Entrada	D_GND	Salida del contador <301,302>
COUNT<301,302>_	Entrada	D_GND	Control (+/-) del contador <301,302>
UPDOWN		_	
EXT_TIMEBASE	Entrada	D_GND	Base de tiempo externa

Tabla 2-1 Descripción de las 68 clavijas del conector VHDCI

Nombre de la señal (continuación)	Dirección	Tierra de referencia	Descripción
D_GND	No disponible	No disponible	Tierra digital
DI0501<7,0>	PI0	D_GND	DIO programable del canal 501
DI0502<7,0>	PI0	D_GND	DIO programable del canal 502
DI0503<4,0>	PI0	D_GND	DIO programable del canal 503
DI0504<4,0>	PI0	D_GND	DIO programable del canal 504

Configuración de las 55 clavijas del conector plano

11	GND	+12 V	+12 V	GND	USB_D+	USB_D-	GND
10	GND	+12 V	+12 V	+12 V	GND	GND	GND
9	GND	+12 V	+12 V	+12 V	GND	USB_VBUS	GND
8	GND	LBL0	BRSV	GND	TRIG0	LBR0	GND
7	GND	LBL1	GA0	TRIG7	GND	LBR1	GND
6	GND	LBL2	GA1	GND	TRIG1	LBR2	GND
5	GND	LBL3	GA2	TRIG6	GND	LBR3	GND
4	GND	LBL4	STAR_TRIG	GND	TRIG2	LBR4	GND
3	GND	LBL5	GND	TRIG5	GND	LBR5	GND
2	GND	LBL6	CLK10M	GND	TRIG3	LBR6	GND
1	GND	LBL7	GND	TRIG4	GND	LBR7	GND
	Z	А	В	С	D	E	F

NOTA

El conector plano de 55 clavijas se utiliza cuando los dispositivos DAQ se emplean como módulos con el chasis de instrumentos modulares. Para obtener más detalles, consulte la *Guía del usuario del chasis de instrumentos modulares USB Keysight U2781A*.

2 Configuración de las clavijas del conector

Tabla 2-2 Descripción de las clavijas del conector SSI

Señal de temporización SSI	Función
+12 V	alimentación de +12 V desde el plano
GND	Tierra
BRSV	Clavija reservada
TRIG0~TRIG7	Bus de disparador 0 ~ 7
STAR_TRIG	Disparador estrella
CLK10M	Reloj de referencia de 10 MHz
USB_VBUS	Alimentación de bus USB, +5 V
USB_D+, USB_D-	Par diferencial de USB
LBL <07> y LBR <07>	Clavija reservada
GA0, GA1, GA2	Clavija de dirección geográfica

Conexión de señales de entrada analógica

El DAQ serie U2300A de Keysight cuenta con 64 canales de terminación única (SE) o 32 canales de entrada analógica diferencial (DI). El conversor A/D transforma la señal analógica en un valor digital representado. Para obtener una medición más precisa en la conversión A/D, es importante comprender el tipo de fuente de señal de los modos de entrada analógica RSE, NRSE y DIFF.

Tipos de fuentes de señal

Fuentes de señal con referencia a tierra

Una fuente de señal con referencia a tierra es una fuente conectada de alguna forma al sistema de puesta a tierra de la construcción. Esto significa que la fuente está conectada a un punto de conexión a tierra común con respecto al DAQ serie U2300A (suponiendo que el PC host conectado al DAQ está en la misma conexión a tierra).

Fuentes de señal flotante

Una fuente de señal flotante es una señal no conectada al sistema de puesta a tierra de la construcción. También es un dispositivo con una salida aislada. Algunos ejemplos son las salidas de aisladores ópticos, las salidas de transformadores y los termopares.

Configuraciones de entrada

Conexiones de terminación única

Este tipo de conexiones se utiliza cuando la señal de entrada analógica tiene referencia a tierra y puede compartirse con otras señales de entrada analógica. Hay dos tipos diferentes de conexiones de terminación única, las de configuración RSE y las de configuración NRSE.

 Modo RSE (terminación única con referencia a tierra)
 En este modo, todas las señales de entrada se conectan a la referencia de tierra proporcionada por el DAQ serie U2300A y se pueden conectar con fuentes de señal flotante. En la siguiente figura se presenta el modo RSE.

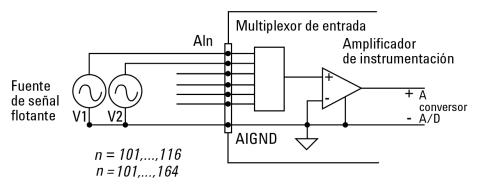


Figura 2-1 Conexiones de entradas RSE y fuente flotante

NOTA

Cuando más de dos fuentes flotantes se conectan, pueden compartir la misma referencia a tierra.

Modo NRSE (terminación única sin referencia a tierra)

En este modo, el dispositivo DAQ no brinda el punto de referencia a tierra. El punto lo aporta la señal de entrada analógica externa. Se pueden conectar las señales en este modo para medir las fuentes de señal con referencia a tierra, las cuales están conectadas al mismo punto. En la siguiente figura se presenta la conexión. La referencia a tierra local de la señal está conectada a la entrada negativa del amplificador de instrumentación (clavija AI_SENSE del conector 1). Por ende, el amplificador rechazará todas las potenciales diferencias en la conexión a tierra de modo común entre la conexión a tierra de la señal y la de la placa del DAQ.

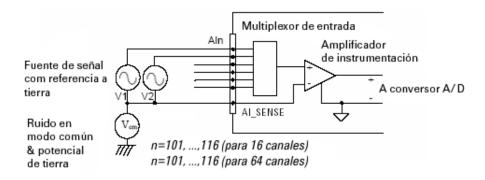


Figura 2-2 Conexiones de entrada NRSE y fuentes con referencia a tierra

2 Configuración de las clavijas del conector

Modo de entrada diferencial

Este modo ofrece dos entradas que responden a la diferencia en el voltaje de la señal. La entrada analógica del DAQ serie U2300A posee su propia referencia a tierra o ruta de regreso de la señal. El modo diferencial puede utilizarse para el rechazo de ruido de modo común si la fuente de señal posee referencia a tierra. En la siguiente figura se ilustra la conexión de fuentes de señal con referencia a tierra en el modo de entrada diferencial.

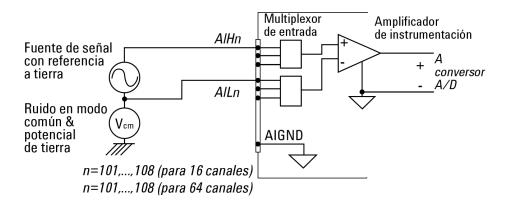


Figura 2-3 Modo de entrada diferencial y fuente con referencia a tierra

En la siguiente figura se ilustra la conexión de una fuente de señal flotante al DAQ serie U2300A en el modo de entrada diferencial. En las fuentes de señal flotante, hace falta un resistor adicional en cada canal para generar una ruta de retorno de polarización. El valor del resistor equivale a alrededor de 100 veces la impedancia de la fuente. Si la impedancia de la fuente es inferior a 100 Ω , puede conectar la polaridad negativa de la señal directamente a AI_GND, además de la entrada negativa del amplificador de instrumentación. En el modo de entrada diferencial hay menos acoplamientos de ruido que en el modo de terminación simple.

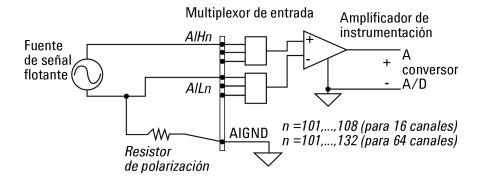


Figura 2-4 Fuente flotante y entrada diferencial

NOTA

- El DAO serie U2300A de Keysight está diseñado con alta impedancia de entrada. Asegúrese de haber conectado todo correctamente antes de adquirir datos. De lo contrario, puede causar fluctuación de datos o lecturas erróneas.
- Las clavijas no utilizadas de las entradas de DAQ multiplexadas pueden utilizarse como fuentes flotantes con impedancia de entrada infinita.
 Por lo tanto, hace falta un sistema de referencia a tierra en el sistema de la aplicación del usuario.

2 Configuración de las clavijas del conector

Descripción general de las funciones 26 Modo de operación de entrada analógica 27 Lista de exploración (sólo para el modo continuo) 31 Modo Burst (ráfaga) 32 Conversión de datos A/D 33 Formato de datos de Al 35 Modo de operación de salida analógica 37 Voltaje de referencia D/A 41 Formato de datos de AO (salida analógica) 41 Entrada/Salida digital 44 Contador digital de propósito general (GPC) 47 Fuentes del disparo 53 Tipos de disparo 54 Disparo digital 57 Disparo analógico 58 Ejemplos de programación SCPI 61 Entrada analógica 61 Salida analógica 63

En este capítulo se describen las funciones y operaciones del DAQ USB Multifunción serie U2300A de Keysight. Esto incluye la operación de los modos de entrada y salida analógica, la entrada y salida digital, y el contador digital general. También se explican las fuentes de disparo.

Descripción general de las funciones

U2351A/U2352A/U2355A Resolución de entrada analógica de

16 bits con frecuencia de muestreo

de 250 kSa/s

U2353A/U2354A/U2356A Resolución de entrada analógica de

16 bits con frecuencia de muestreo

 $de\ 500\ kSa/s$

U2331A Resolución de entrada analógica de

12 bits con frecuencia de muestreo de hasta 3 MSa/s por canal simple

- Resolución de 12 bits y 16 bits sin pérdida de código
- Hasta 64 entradas de terminación únicas (SE) o 32 entradas diferenciales (DI)
- Hasta 100 canales de entrada analógica seleccionables para exploración secuencial.
- Entrada analógica unipolar y bipolar programable
- · Admite calibración automática
- Cumple con USBTMC 488.2
- Interfaz USB 2.0 de alta velocidad
- Fuentes de disparadores múltiples ninguno (disparador intermedio), disparador digital/analógico externo y disparador SSI/star (utilizados con chasis modular)

Modo de operación de entrada analógica

La conversión de analógico a digital (A/D) convierte el voltaje analógico en información digital para que el equipo pueda procesar o almacenar las señales. Antes de utilizar un conversor A/D, debe definir las propiedades de las señales medidas, es decir, el rango, la polaridad (unipolar o bipolar) y el tipo de señal. También puede establecer los canales que desee.

Para la adquisición de A/D hace falta una fuente de disparo. La adquisición de datos comienza sólo si coincide la condición del disparo. La señal medida se almacena en un FIFO (Primero en entrar, primero en salir) de datos. Las entradas analógicas son capaces de generar voltajes de entrada de entre ±1.25 V y ±10 V (ADC de 16 bits), excepto el modelo U2331A, que genera entre ±0.05 V y ±10 V (ADC de 12 bits). En el siguiente diagrama se ilustra el bloque funcional del dispositivo DAQ serie U2300A.

Según el diagrama, cuando se enciende el DAQ serie U2300A, se cargan las constantes de calibración desde la memoria EEPROM incorporada para garantizar que tanto los DACs de calibración como el circuito PGA funcionen bien. Los usuarios deben definir la configuración de entrada en la Scan List (lista de exploración), la fuente y el modo de disparo, mediante los comandos SCPI. El DAQ comenzará con una temporización de adquisición de datos de exploración diferente cuando la condición del disparo coincida y se llevará a cabo el evento del disparo. Los datos se transferirán a la memoria del sistema mediante el modo de transferencia de datos que corresponda. Los tipos de señal de entrada son: de terminación única y diferencial.

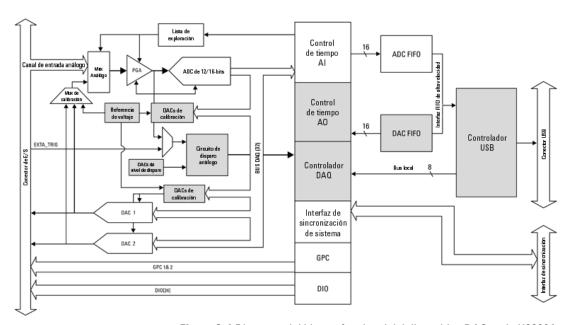


Figura 3-1 Diagrama del bloque funcional del dispositivo DAQ serie U2300A

Existen dos modos de operación de entrada analógica: de sondeo y continuo.

Tabla 3-1 Descripción general de la operación de entrada analógica

Operación	Modos	Tipos de adquisición
	Modo de sondeo	Adquisición única de datos A/D
Entrada analógica	Modo continuo	Adquisición de disparo único
anaiogica		Adquisición continua

Modo de sondeo

Éste es el método más sencillo para adquirir un dato A/D. El conversor A/D comienza a convertir una lectura cada vez que se ejecuta el comando SCPI. Este modo es ideal para las aplicaciones que necesitan procesar datos A/D en tiempo real. En este modo, el software controla por completo la temporización de la conversión A/D. No obstante, la velocidad de conversión A/D es difícil de controlar.

En el modo de sondeo, deben definirse las propiedades de la señal medida. Las propiedades son el rango, la polaridad (unipolar o bipolar) y el tipo de señal. El tipo de señal es RSE, NRSE y DIFF.

La polaridad predeterminada es bipolar. El comando SCPI para medir en el modo de sondeo se encuentra en el subsistema MEASure.

NOTA

Para obtener más información sobre el subsistema MEASure, consulte la Guía de programación de adquisición de datos de USB multifunción de la serie U2300A de Keysight.

Modo continuo

Este modo se divide en dos tipos: adquisición de disparo único y adquisición continua. En la primera, los datos se adquieren en un punto de muestreo específico y se procesan una vez. En cambio, la adquisición continua permite adquirir datos de manera continua hasta que se envíe un comando STOP. Los siguientes son los comandos SCPI utilizados para iniciar el proceso de adquisición:

• Adquisición de disparo único:

DIGitize

• Adquisición continua:

RUN

En el modo continuo, deben especificarse dos parámetros:

Frecuencia de muestreo

Especifique la frecuencia de muestreo de cada canal de AI (entrada analógica). Dado que los DAQ serie U2300A poseen entrada analógica multiplexada, la frecuencia máxima de muestreo depende de la frecuencia de muestreo del ADC y el número de entrada de la lista de exploración.

Por ejemplo, si en la lista de exploración de U2356A se especifican cuatro canales, la frecuencia máxima de muestreo es 500 kSa/s dividido por 4, es decir, 125 kSa/s por canal. Mientras que en U2331A, la frecuencia máxima sólo llega a 1MSa/s cuando se activa el cambio de canales.

Puntos de muestreo

Especifique la cantidad de puntos de adquisición del canal. Por ejemplo, si en la lista de exploración se especifican 800 puntos de muestreo y cuatro canales, se adquirirán 3200 muestras en total.

NOTA

Los puntos máximos de muestreo para la adquisición de disparo único son 8 MSa y para la adquisición continua son 4 MSa, ambos tipos en modo de entrada continua.

Lista de exploración (sólo para el modo continuo)

Debe configurar la lista para que incluya todos los canales de entrada analógica que desee. De acuerdo con la configuración predeterminada, la serie U2300A sólo explora CH 101 con las siguientes especificaciones:

Rango: ±10 V

Tipo de señal de entrada: terminación única

Polaridad: bipolar

Las opciones de la entrada de configuración del canal no se modifican durante el muestreo de datos. No hace falta que vuelva a configurarlas si desea obtener muestras de nuevos datos con el mismo orden y la misma configuración. El límite máximo de entradas es 100. En la siguiente tabla se muestra la estructura de una lista de exploración.

 Tabla 3-2
 Estructura de una lista de exploración con cuatro entradas

CANAL	RANGO	POLARIDAD	TIPO DE SEÑAL
108	10	UNIP	ÚNICO
101	±5	BIP	NRS
103	±10	BIP	NRS
102	±2.5	BIP	DIF

Para crear una lista de exploración

Para crear una lista de exploración, siga estos pasos:

- Utilice el comando ROUTe: SCAN para definir los canales de la lista. Para ver qué canales ya se encuentran en la lista, utilice el comando de consulta ROUTe: SCAN?.
- Utilice el comando ROUTe: SCAN si desea sobrescribir la configuración inicial de la lista.
- Para iniciar una secuencia de exploración, utilice el comando DIGitize o RUN.

Para detener una exploración iniciada con el comando RUN, utilice el comando STOP.

Modo Burst (ráfaga)

El dispositivo DAQ cuenta con un modo BURST. Este modo permite simular en modo simultáneo. Mide las muestras a la máxima velocidad permitida por el producto. En la siguiente figura se ilustra un ejemplo de este modo.

Ejemplo:

Frecuencia de muestreo: 1 kSa/s Número de canales de muestra: tres Secuencia de la lista de exploración: 101, 102, 103

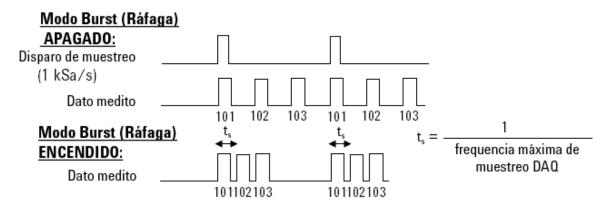


Figura 3-2 Modo Burst activado y desactivado durante la adquisición de datos

Conversión de datos A/D

La conversión de datos A/D convierte el voltaje analógico en información digital. En la siguiente sección se ilustra el formato de datos en crudo adquiridos para la conversión A/D.

A continuación se presenta un ejemplo de una lista de exploración de datos en crudo adquiridos de CH 101, CH 102 y CH 103.

#800000200	 byte>	 byte>	 byte>	<byte></byte>	<byte></byte>	<byte></byte>	<byte></byte>	 byte>	
Indicador de longitud de datos. Los siguientes 8 bytes (0000 0200) sólo especifican la longitud de	Primer MSB LSB (byte menos significativo)	Primer MSB de datos	Primer LSB de datos	Primer MSB de datos	Primer LSB de datos	Primer MSB de datos	Segundo LSB de datos	Segundo MSB de datos	
los datos reales, no los datos en sí. Longitud de datos (200 bytes)	CH 10)1	СН	102	СН	103	СН	101	

Formato de datos de 16 bits

LSB (byte menos significativo)	MSB (byte más significativo)
DDDD DDDD	DDDD DDDD

Formato de datos de 12 bits

LSB (byte menos significativo)	MSB (byte más significativo)
DDDD XXXX	DDDD DDDD

D - bits de datos

X - bits no utilizados

Conversión de datos en crudo

Para convertir los datos en un número flotante real, se precisa la información de la polaridad y el rango de voltaje. A continuación se presentan los cálculos de la conversión de datos en crudo para bipolar y unipolar.

Para realizar un cálculo de muestra de la conversión, tome U2356A como ejemplo. La resolución de U2356A es de 16 bits y toma el rango 10V. El valor Intl16b calculado mediante el algoritmo de conversión es 12768.

Por ende, el cálculo de los 16 bits binarios leídos será el siguiente.

NOTA

Los datos en crudo proporcionados por dispositivos DAQ serie U2300A están en el orden de bytes de LSB primero.

Bipolar:

Valor convertido =
$$\left(\frac{2 \times valor Int16}{2^{resolución}}\right) \times Rango$$

Ejemplo de valor convertido =
$$\left(\frac{2 \times 12768}{2^{16}}\right) \times 10$$

= 3.896 V

Unipolar:

Valor convertido =
$$\left(\frac{\text{Valor Int16}}{2^{\text{resolución}}} + 0.5\right) \times \text{Rango}$$

Ejemplo de valor convertido =
$$\left(\frac{12768}{2^{16}} + 0.5\right) \times 10$$

= 6.948 V

NOTA

- El valor convertido es de tipo flotante. Por lo tanto, es posible que deba indicar en el entorno de programación que el valor Int16 se haga flotante.
- En U2331A, hace falta llevar a cabo una operación de desplazamiento de 4 bits a la derecha. Esto se debe a que cuenta con ADC de 12 bits y los últimos 4 no aparecen.

Formato de datos de Al

Rango de Al de 12 bits

En las siguientes tablas 3-3 y 3-4 se describen las características ideales de transferencia de los rangos de entrada analógica bipolar y unipolar en U2331A.

NOTA

U2331A posee una resolución de AI de 12 bits. Los últimos cuatro bits no aparecen. En las tablas siguientes, los 4 bits no utilizados se representan con X.

Tabla 3-3 Rango de entrada analógica y salida de código digital para bipolar

Descripción	Rango d	Salida de código digital			
Rango a escala completa (FSR)	±10 V	±5 V	±2.5 V	±1.25 V	
Bit menos significativo (LSB)	4.88 mV	2.44 mV	1.22 mV	0.61 mV	
FSR-1LSB	9.9951 V	4.9976 V	2.4988 V	1.2494 V	X7FF
Escala media +1LSB	4.88 mV	2.44 mV	1.22 mV	0.61 mV	X001
Escala media	0 V	0 V	0 V	0 V	X000
Escala media–1LSB	-4.88 mV	-2.44 mV	-1.22 mV	-0.61 mV	XFFF
_FSR	-10 V	–5 V	–2.5 V	–1.25 V	X800

Tabla 3-4 Rango de entrada analógica y salida de código digital para unipolar

Descripción	Rango	Salida de código digital		
Rango a escala completa (FSR)	0 V a 10 V	0 V a +5 V	0 V a +2.5 V	
Bit menos significativo (LSB)	2.44 mV	1.22 mV	0.61 mV	
FSR-1LSB	9.9976 V	4.9988 V	2.9994 V	X7FF
Escala media +1LSB	5.00244 V	2.50122 V	1.25061 V	X001
Escala media	5 V	2.5 V	1.25 V	X000
Escala media–1LSB	4.9976 V	2.4988 V	1.2494 V	XFFF
–FSR	0 V	0 V	0 V	X800

Rango de Al de 16 bits

En las siguientes tablas 3-5 y 3-6 se describen las características ideales de transferencia de los rangos de entrada bipolar y unipolar de los modelos U2351A, U2352A, U2353A, U2354A, U2355A y U2356A.

Tabla 3-5 Rango de entrada analógica y salida de código digital para bipolar

Descripción	Rango	Salida de código digital			
Rango a escala completa (FSR)	±10 V	±5 V	±2.5 V	±1.25 V	
Bit menos significativo (LSB)	305.2 μV	152.6 μV	76.3 μV	38.15 μV	
FSR-1LSB	9.999695 V	4.999847 V	2.499924 V	1.249962 V	7FFF
Escala media+1LSB	305.2 μV	152.6 μV	76.3 μV	38.15 μV	0001
Escala media	0 V	0 V	0 V	0 V	0000
Escala media–1LSB	–305.2 μV	–152.6 μV	–76.3 μV	–38.15 μV	FFFF
_FSR	–10 V	–5 V	–2.5 V	–1.25 V	8000

 Tabla 3-6
 Rango de entrada analógica y salida de código digital para unipolar

Descripción	Rang	Salida de código digital			
Rango a escala completa (FSR)	0 V a 10 V	0 V a +5 V	0 V a +2.5 V	0 V a +1.25 V	
Bit menos significativo (LSB)	152.6 μV	76.3 μV	38.15 μV	19.07 μV	
FSR-1LSB	9.999847 V	4.999924 V	2.499962 V	1.249981 V	7FFF
Escala media +1LSB	5.000153 V	2.500076 V	1.250038 V	0.625019 V	0001
Escala media	5 V	2.5 V	1.25 V	0.625 V	0000
Escala media–1LSB	4.999847 V	2.499924 V	1.249962 V	0.624981 V	FFFF
–FSR	0 V	0 V	0 V	0 V	8000

Modo de operación de salida analógica

Los dispositivos DAQ serie U2300A poseen dos canales D/A. Las dos salidas analógicas son capaces de generar voltajes de salida en un rango que va de entre 0 y 10 V a ±10 V (12 bits para U2355A, U2356A, U2331A y 16 bits para U2351A, U2353A). Cada canal del DAC transmite una corriente máxima de 5mA. Las dos salidas analógicas pueden utilizarse como fuentes de voltaje para sus DUT (dispositivos a prueba). Además, también se utilizan como salida de generadores de funciones predefinidas o cualquier forma de onda arbitraria.

El modo de operación de salida analógica consta de salida de voltaje y salida continua. El modo de salida continua se divide en generador de funciones y arbitrario.

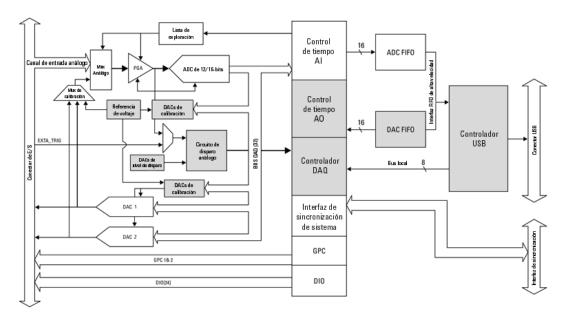


Figura 3-3 Modo de operación de salida analógica

Tabla 3-7 Descripción general de la operación de salida analógica

Operación	Modos	Tipos de salida
Salida analógica	Salida de voltaje único	Salida de voltaje CC
	Salida continua	 Forma de onda predefinida Onda sinusoidal Onda cuadrada Onda triangular Onda con diente de sierra Onda de ruido
		Onda arbitraria

Modo de salida de voltaje único

Los siguientes comandos SCPI son muestras de salida de un nivel de voltaje de CC para los canales DA especificados.

Ejemplo 1, Salida de un voltaje de CC por CH 201

```
-> *RST; *CLS //Para restablecer el estado de encendido predeterminado del DAQ, este comando se puede ignorar si esta operación no es necesaria

-> SOUR: VOLT 2.5, (@201) //La referencia es AO_GND
-> SOUR: VOLT 3.2, (@201) //Cambia la salida de 2.5 VCC a 3.2 VCC
-> SOUR: VOLT -3.2, (@201) //Cambia la salida de 3.2 VCC a -3.2 VCC
-> SOUR: VOLT? (@202) //Para averiguar el estado de CH 202
<- 0 //La configuración predeterminada de CH 202 es 0 VCC
```

Ejemplo 2, Salida de dos voltajes de CC por CH 201 y CH 202

```
-> *RST; *CLS //Para restablecer el estado de encendido predeterminado del DAQ, este comando se puede ignorar si esta operación no es necesaria

-> SOUR: VOLT 3.5, (@201) //Configura la salida de 3.5 VCC para CH 201

-> SOUR: VOLT 8.1, (@202) //Configura la salida de 8.1 VCC para CH 202
```

Modo de salida continua

Este modo se divide en generador de funciones y arbitrario. En el modo arbitrario se pueden utilizar los siguientes comandos SCPI:

```
DATA[:USER]
APPLy:USER
```

NOTA

Para obtener más información, consulte la *Guía de programación de adquisición de datos de USB multifunción de la serie U2300A de Keysight*.

Ejemplo 3, Salida de una onda sinusoidal por CH 201

```
-> *RST; *CLS
                                    //Para restablecer el estado de
                                       encendido predeterminado del DAQ,
                                       este comando se puede ignorar si
                                       esta operación no es necesaria
-> ROUT: ENAB ON, (@201)
                                    //Habilitar CH 201
-> APPL:SIN 5, 0, (@201)
                                    //Onda sinusoidal con 5 Vp (10 Vpp) y
                                       0 VCC de compensación
-> SYST: ERR?
                                     //Para controlar que no haya errores,
                                       este comando se puede ignorar si
                                       esta operación no es necesaria
<- +0, "No Error"
-> OUTP ON
                                     //Activar la salida
-> OUTP: WAV: FREQ? (@201)
                                     //La forma de onda de salida
<- 4000
                                       predeterminada es de 4 kHz
```

```
-> OUTP OFF

//Desactivar la salida (tanto CH 201 como CH 202 a 0 VCC)

-> OUTP: WAV: FREQ 5000

//Cambiar la frecuencia de salida
a 5 kHz

-> OUTP ON

//Activar la salida
```

Ejemplo 4, Salida de una onda sinusoidal y una onda cuadrada por CH 201 y CH 202 respectivamente

```
-> *RST; *CLS
                                    //Para restablecer el estado de
                                      encendido predeterminado del DAQ,
                                      este comando se puede ignorar si
                                      esta operación no es necesaria
-> ROUT: ENAB ON, (@201,202)//Habilitar CH 201 y CH 202
-> APPL:SIN 5, 0, (@201) //Onda sinusoidal con 5 Vp (10 Vpp) y
                                      0 VCC de compensación
-> ROUT: SQU 3, -1, (@202) //Onda cuadrada con 3 Vp (6 Vpp) y
                                      -1 VCC de compensación
-> OUTP:WAV:FREO 3500
                                    //Configurar la salida de ambos
                                      canales en 3.5 kHz
-> SYST: ERR?
<- +0, "No Error"
                                    //Para controlar que no haya errores,
                                      este comando se puede ignorar si
                                      esta operación no es necesaria
-> OUTP ON
                                    //Activar la salida
```

Voltaje de referencia D/A

El voltaje de referencia interna predeterminado es de 10 V. Sin embargo, la referencia externa puede suministrarse mediante la clavija de entrada de referencia externa (AO_EXT_REF). El rango de la salida del DAC se relaciona directamente con la referencia. El voltaje de salida analógica se puede generar multiplicando los códigos digitales actualizados por los 10 V de referencia interna. Entonces, cuando se toman los 10 V de referencia interna, el rango completo sería de -10 V a +9.9951 V en modo de salida bipolar, y de 0 V a 9.9976 V en modo de salida unipolar.

Al utilizar una referencia externa, los diferentes rangos de voltaje de salida se pueden obtener conectando voltaje de referencia diferente. Por ejemplo, si se conecta 5 VCC con la referencia externa (AO_EXT_REF), se puede lograr el rango de -4.9976 V a +5 V en la salida bipolar. En las siguientes tablas se ilustran las relaciones entre el código digital y los voltajes de salida.

Formato de datos de AO (salida analógica)

Formato de datos para AO arbitraria de canales individuales (cuando algún canal está activado y en el modo USER)

#800000200	 byte>	 byte>	 byte>	 byte>	 byte>	 byte>	 byte>	 byte>	
Indicador de longitud de datos. Los siguientes 8 bytes (0000 0200) sólo especifican la longitud de los datos reales, no los datos en sí.	Primer LSB de datos	Primer MSB MSB (byte más significativo)	Segundo LSB de datos	Segundo MSB de datos	Tercer LSB de datos	Tercer MSB de datos	Cuarto LSB de datos	Cuarto MSB de datos	
Longitud de datos (200 bytes)	СН	201/202	CH 20	01/202	CH 20	1/202	CH 20	1/202	

Formato de datos para AO arbitraria de dos canales (cuando dos canales están activados y en el modo USER)

#800000200	 byte>	 byte>	 byte>	 byte>	 byte>	 byte>	 byte>	 byte>	
Indicador de longitud de datos. Los siguientes 8 bytes (0000 0200) sólo especifican la longitud de los datos	Primer LSB de datos	Primer MSB de datos	Primer LSB de datos	Primer MSB de datos	Segundo LSB de datos	Segundo MSB de datos	Segundo LSB de datos	Segundo MSB de datos	
reales, no los datos en sí. Longitud de datos (200 bytes)	СН	201	СН	202	СН	201	СН	202	:

Formato de datos de 16 bits

LSB (byte menos significativo)	MSB (byte más significativo)	
DDDD DDDD	DDDD DDDD	

Formato de datos de 12 bits

LSB (byte menos significativo)	MSB (byte más significativo)	
DDDD DDDD	XXXX DDDD	

D - bits de datos

X - bits no utilizados

Tabla 3-8 Tabla de código digital y salida de voltaje para configuración bipolar (U2331A, U2355A y U2356A)

Código digital (Hex)	Salida analógica	Salida de voltaje (con referencia interna de +10 V)
0x0FFF	Vref * (2047/2048)	9.9951 V
0x0801	Vref * (1/2048)	0.0048 V
0x0800	0 V	0.0000 V
0x07FF	-Vref * (1/2048)	-0.0048 V
0x0000	-Vref	-10.000 V

Tabla 3-9 Tabla de código digital y salida de voltaje para configuración unipolar (U2331A, U2355A y U2356A)

Código digital (Hex)	Salida analógica	Salida de voltaje (con referencia interna de +10 V)
0x0FFF	Vref * (4095/4096)	9.9975 V
0x0800	Vref * (2048/4096)	5.000 V
0x0001	Vref * (1/4096)	0.0024 V
0×0000	Vref * (0/4096)	0.000 V

Tabla 3-10 Tabla de código digital y salida de voltaje para configuración bipolar (U2351A y U2353A)

Código digital Salida analógica (Hex)		Salida de voltaje (con referencia interna de +10 V)	
0xFFFF	Vref * (32767/32768)	9.999694 V	
0x8001	Vref * (1/32768)	0.000305 V	
0x8000	0 V	0 V	
0x7FFF	-Vref * (1/32768)	-0.000305 V	
0x0000	-Vref	-10.000 V	

Tabla 3-11 Tabla de código digital y salida de voltaje para configuración unipolar (U2351A y U2353A)

		Salida de voltaje (con referencia interna de +10 V)
0xFFFF	Vref * (65535/65536)	9.999847 V
0x8000	Vref * (32768/65536)	5.00000 V
0x0001	Vref * (1/65536)	0.000152 V
0x0000	Vref * (0/65536)	0 V

Entrada/Salida digital

El DAQ serie U2300A ofrece 24 bits de entrada y salida digital general (GPIO) compatibles con TTL.

Las GPIO de 24 bits se dividen en cuatro canales (CH 501 a 504). Los canales 501 y 502 poseen ocho bits de datos, mientras que los canales 503 y 504 poseen cuatro. Los cuatros canales se pueden programar como entrada y salida. Al iniciar y restablecer el sistema, todas las clavijas de E/S regresan a la configuración original de entrada y de alta impedancia.

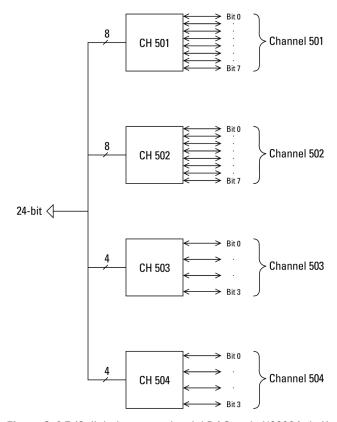


Figura 3-4 E/S digitales generales del DAQ serie U2300A de Keysight

Los siguientes ejemplos de programación SCPI lo ayudarán a configurar el DIO y leer un canal digital.

Configure el canal digital como SALIDA y observe los datos digitales

Ejemplo 1:

```
-> CONF:DIG:DIR OUTP, (@501)
-> SOUR:DIG:DATA 123, (@501)
-> SOUR:DIG:DATA? (@501)
<- 123
```

Ejemplo 2:

```
-> CONF:DIG:DIR OUTP, (@502) //Configurar CH 502 con estado de salida digital
-> SOUR:DIG:DATA:BIT 1,4, (@502) //Para configurar de inmediato la línea de salida digital del bit de datos 4 del canal 502 como 1
-> SOUR:DIG:DATA:BIT? 4, (@502) //Averiguar el estado del bit 4 de CH 502
<- 1
```

Configure el canal digital como ENTRADA y vuelva a leer el valor

Ejemplo 1:

```
-> CONF:DIG:DIR INP, (@501) //Configurar CH 501 con estado de salida digital
-> MEAS:DIG? (@501) //Para volver a leer el valor digital del canal 501
<- 23
```

Ejemplo 2:

```
-> CONF:DIG:DIR INP, (@501)
-> MEAS:DIG:BIT? 3, (@501)
<- 0
```

NOTA

Cuando el canal está en modo Salida no se permiten comandos de entrada, y cuando está en modo Entrada no se permiten comandos de salida.

Ejemplo 3:

```
-> CONF:DIG:DIR OUTP, (@501,503)
-> CONF:DIG:DIR INP, (@502,504)
-> CONF:DIG:DIR? (@501:504)
-> OUTP, INP, OUTP, INP
-> MEAS:DIG? (@501) //CH501 se ha configurado con estado de salida, por ende, no puede realizar actividades de entrada
--! VI_ERROR_TMO: A timeout occurred
-> SOUR:DIG:DATA? (@502) //CH502 se ha configurado con estado de entrada, por ende, no puede realizar actividades de salida
--! VI_ERROR_TMO: A timeout occurred
```

Contador digital de propósito general (GPC)

El dispositivo DAQ serie U2300A posee dos contadores ascendentes/descendentes independientes de 31 bits para medir los canales de entrada y que son compatibles con TTL. Cuenta con un reloj contador programable de hasta 12 MHz o generación de reloj. Remítase a la siguiente Figure 3-5 para obtener más información.

El contador se diseñó con las siguientes características:

- Función de conteo ascendente o descendente
- Fuente de reloj contador programable interna/externa de hasta 12 MHz
- Selección de puerta programable que puede generarse de manera interna o externa
- Conteo inicial de software precargado para Totalizer (totalizador)
- Función de lectura del conteo actual, sin afectar el proceso de conteo

Este contador digital opera en dos modos: totalizador y medición. Ya sea en el modo de medición o el modo totalizar la señal de origen debe estar conectada a la clavija COUNT_GATE. En el modo de medición, la señal que pasa a través del COUNT_GATE es la señal que el usuario desea medir. En el modo totalizar, la señal que pasa a través del COUNT_GATE es la señal que le permite al contador hacer que el reloj comience a trabajar.

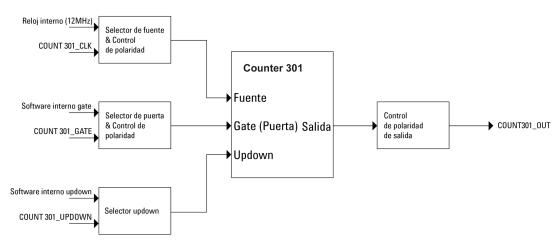


Figura 3-5 Contador digital de propósito general

Modo Totalizer

En este modo, el contador comenzará a contar el número de pulsos generado en COUNT_CLK. Esto se lleva a cabo tras activar GATE (puerta del control). Este conteo total se mide con el siguiente comando:

```
MEASure: COUNter: TOTalize? (@301)
```

El siguiente ejemplo ilustra el modo de conteo ascendente cuando el contador está configurado en Totalize empezando de 0.

COUNT_GATE activará el conteo una vez activada la función Totalize y la clavija COUNT_OUT será la salida de una serie de pulsos, tal como se muestra a continuación.

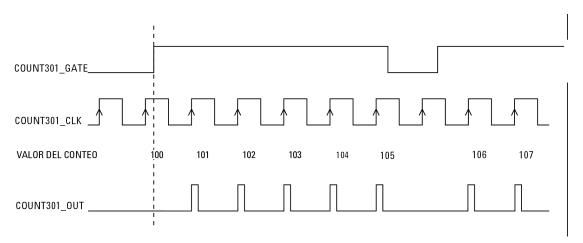


Figura 3-6 Modo Totalizer

NOTA

La amplitud de pulso de la salida es de 20.8 ns

El siguiente ejemplo de programación SCPI indica cómo configurar el modo del contador:

```
//Enviar la señal a COUNT301 CLK
//Configuración del modo del contador
-> COUN: FUNC TOT, (@301)
                                              //Configurar como
                                                función Totalize
-> COUN:GATE:SOUR INT, (@301)
                                              //Configurar la fuente
                                                GATE como interna
                                              //Configurar la polaridad
-> COUN: CLK: POL AHI, (@301)
                                                del reloj como alta y
                                                activa
-> COUN:CLK:SOUR EXT, (@301)
                                              //Configurar la fuente del
                                                reloj como externa
-> COUN:TOT:IVAL 100, (@301)
                                              //Valor del inicio de
                                                conteo
-> COUN:TOT:UDOW:DIR UP, (@301)
                                              //Configurar como modo
                                                de conteo ascendente
-> COUN: TOT: UDOW: SOUR INT, (@301)
                                              //Configurar la fuente
                                                ascendente/descendente
                                                como interna
-> SOUR: COUN: OUTP: POL AHI, (@301)
```

```
-> COUN:TOT:INIT (@301)
                                           //Iniciar Totalize
                                           //Valor inicial = 100
-> MEAS: COUN: TOT? (@301)
<- 100
-> MEAS: COUN: DATA? (@301)
                                           //Regresar al valor
                                             Totalize
<- 100
-> COUN:GATE:CONT ENAB, (@301)
                                           //Iniciar conteo (sólo para
                                             la puerta INT)
                                           //Detener conteo (sólo
-> COUN:GATE:CONT DIS, (@301)
                                             para la puerta INT)
-> MEAS:COUN:TOT? (@301)
<- 105
-> MEAS: COUN: DATA? (@301)
<- 105
                                           //Cancelar todas las
-> COUN: ABOR (@301)
                                             operaciones del
                                             contador
                                           //Borrar Valor de conteo
-> COUN:TOT:CLE (@301)
-> MEAS: COUN: TOT? (@301)
<- 0
-> MEAS: COUN: DATA? (@301)
<- 0
```

Modo de medición

En este modo se mide la frecuencia, el período y la amplitud de pulso. La medición la transmite una fuente de puerta interna o externa.

La fuente se configura mediante el siguiente comando:

```
[SENSe:] COUNter:GATE:SOURce
```

Dado que las tres mediciones derivan de la misma medición básica, con los siguientes comandos se puede obtener la medición de frecuencia, período y amplitud de pulso.

```
MEASure:COUNter:FREQuency? (@<ch_list>)
MEASure:COUNter:PERiod? (@<ch_list>)
MEASure:COUNter:PWIDth? (@<ch_list>)
```

El valor de estas mediciones es un valor flotante.

NOTA

- El rango mensurable de frecuencia de entrada va de 0.1 Hz a 6 MHz.
- La medición de la amplitud de pulso está en el rango de 0.167 s a 178.956 s.

Los siguientes ejemplos de programación SCPI son para las mediciones de frecuencia, período y amplitud de pulso.

Ejemplo 1:

```
//Enviar la señal a COUNT301 GATE
//Configuración del modo del contador
//Tomar como medición una onda cuadrada de 5.5 kHz con 70% de ciclo de trabajo
-> COUN:GATE:SOUR EXT, (@301)
-> COUN:GATE:POL AHI, (@301)
-> COUN: CLK: POL AHI, (@301)
-> COUN:CLK:SOUR INT, (@301)
-> COUN: CLK: INT?
<- 12000 KHz
-> SOUR: COUN: OUTP: POL AHI, (@301)
-> COUN: FUNC FREQ, (@301)
                                  //El valor depende de la función
-> MEAS: COUN: DATA? (@301)
                                    configurada
<- 5.499542
                                  //Frecuencia en kHz
-> COUN: FUNC PER, (@301)
-> MEAS: COUN: DATA? (@301)
<- 0.1818333
                                  //Período en ms
-> COUN: FUNC PWID, (@301)
-> MEAS: COUN: DATA? (@301)
<- 0.12725
                                  //Amplitud de pulso en ms
-> MEAS: COUN: FREQ? (@301)
<- 5.499542
-> COUN: FUNC? (@301)
                                  //Función automática configurada
                                    como FREQ
<- FREO
-> MEAS: COUN: PER? (@301)
<- 0.1818333
```

```
-> COUN: FUNC? (@301) //Función automática configurada como PER
<- PER
-> MEAS: COUN: PWID? (@301)
<- 0.12725
-> COUN: FUNC? (@301) //Función automática configurada como PWID
<- PWID
```

Ejemplo 2:

```
//Imagine un reloj externo de 10 MHz para medir FREQ,PER,PWID
-> COUN:CLK:SOUR EXT, (@301)
-> COUN:CLK:EXT 10000, (@301) //Hay que configurar el valor del reloj externo (KHz)
-> COUN:CLK:EXT? (@301)
<- 10000
```

NOTA

La dirección del contador y su valor inicial no son importantes en este modo.

Fuentes del disparo

Los dispositivos DAQ USB serie U2300A de Keysight brindan muchas opciones de disparo para diferentes aplicaciones. Existen cuatro tipos de fuente:

- ninguna (disparo inmediato)
- disparo digital
- · disparo analógico
- · disparo estrella

Los usuarios pueden configurar la fuente para operaciones de A/D y D/A de manera remota.

NOTA

- Las conversiones D/A y A/D utilizan el mismo disparo analógico.
- El disparo estrella se utiliza cuando el DAQ está conectado en el chasis de instrumentos modular.

En las siguientes tablas se resumen los cuatro tipos de fuentes del disparo.

Tabla 3-12 Tipo de disparo para adquisición única de modo continuo

Fuente del disparo	Tipo	Condición	Selección de clavijas
Ninguna (disparo inmediato)	PostDelay	No disponible	No disponible
Disparo digital	• Middle	Positivo/Negativo	EXTD_AI_TRIG, EXTD_AO_TRIG
Disparador analógico		Above High/Below Low/Window	EXTA_TRIG, SONE

Tabla 3-13 Tipo de disparo para adquisición continua de modo continuo

Fuente del disparo	Tipo	Condición	Selección de clavijas
Ninguna (disparo inmediato)	• Post • Delay	No disponible	No disponible
Disparo digital		Positivo/Negativo	EXTD_AI_TRIG, EXTD_AO_TRIG
Disparador analógico		Above High/Below Low/Window	EXTA_TRIG, SONE

Tipos de disparo

Existen cuatro tipos de disparo: pre-trigger, post-trigger, middle-trigger y delay-trigger.

Pre-trigger

Se utiliza cuando se desea recopilar datos antes de un evento disparador. La conversión A/D se inicia al ejecutar las llamadas e interrupciones de la función especificada ante el disparo. Por ejemplo, si se especifican cuatro puntos de muestreo, el disparo analógico se activa una vez que se convirtieron los cuatro puntos. Remítase a la siguiente figura para obtener más información.

NOTA

Debido a las limitaciones de memoria del hardware, la cantidad máxima de puntos de muestreo es 8 MSa.

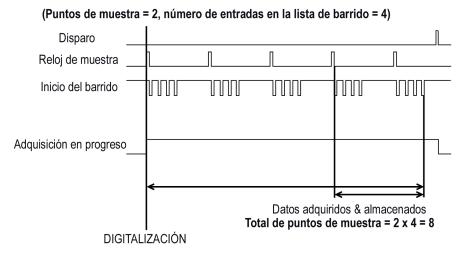


Figura 3-7 Pre-trigger

Middle-trigger

Se utiliza cuando se desea recopilar datos antes y después de un disparo. Los datos del muestreo son los mismos antes y después del disparo. Por ejemplo, si el usuario especifica cuatro puntos de muestreo, la conversión sólo se inicia tras el disparo. Se toman dos puntos de muestreo antes y después del disparo. Remítase a la siguiente figura para obtener más información.

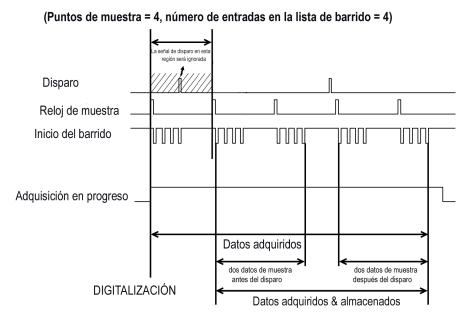


Figura 3-8 Middle-trigger

Post-trigger

Esta es la opción predeterminada y se utiliza cuando se desea recopilar datos tras un disparo. Como se señala en la siguiente figura, se establecen dos puntos de muestreo. Tras iniciar el disparo, se toman dos puntos de muestreo en total.

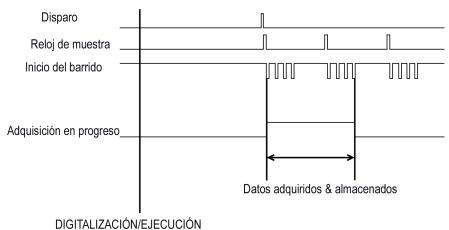


Figura 3-9 Post-trigger

Delay-trigger

Esta adquisición se utiliza cuando se desea retrasar el proceso de recopilación de datos tras un disparo específico. El tiempo de retardo se controla con el valor precargado en Delay_counter (32 bits). La fuente del reloj es el reloj Base de tiempo. Cuando se llega a 0, el contador se detiene y la placa comienza a adquirir datos. Cuando los 48 MHz internos se configuran como reloj Base de tiempo, el tiempo de retraso está en el rango de 20.8 ns a 89.47 s. Si el reloj Base de tiempo es del reloj externo (48 MHz a 1 MHz), el tiempo de retardo variará según la configuración del usuario.

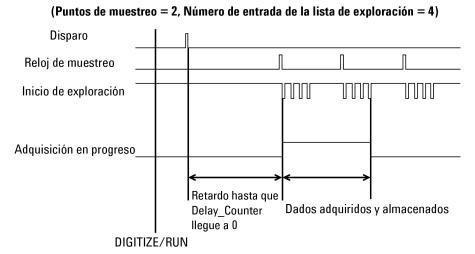


Figura 3-10 Delay-trigger

Disparo digital

El disparo digital posee condición positiva y negativa. Se utiliza al detectar un borde ascendente o descendente en la señal digital. La condición positiva se utiliza cuando se dispara de abajo hacia arriba, mientras que cuando sucede lo contrario se utiliza la negativa.

Figura 3-11 Bordes positivo y negativo del disparo digital.

Disparo analógico

En el DAQ serie U2300A hay tres condiciones de disparo analógico, a saber:

- · Above high
- · Below low
- Window

Utiliza 2 voltajes de umbral: Low_Threshold y High_Threshold. Los usuarios pueden configurar con facilidad las condiciones del disparador analógico mediante el software Keysight Measurement Manager.

Above high

En la siguiente figura se ilustra la condición above high. La señal del disparo se genera cuando la señal de entrada analógica es superior al voltaje High_Threshold. En esta condición no se utiliza el voltaje Low_Threshold.

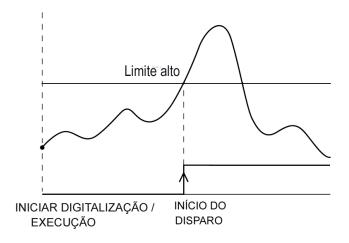


Figura 3-12 Condición above high del disparo

Below low

En esta condición, la señal del disparo se genera cuando la señal de entrada analógica es inferior al voltaje Low_Threshold. En esta condición no se utiliza el voltaje High_Threshold. En la siguiente figura se ilustra la condición above high.

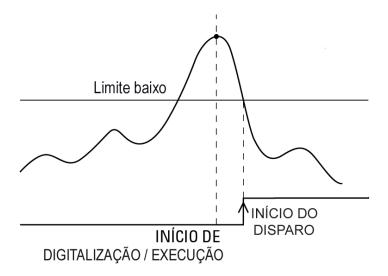


Figura 3-13 Condición below low del disparo

3 Funciones y operaciones

Window

La condición window se ilustra en el siguiente diagrama. La señal del disparo se genera cuando la señal analógica de entrada se encuentra dentro del rango de voltaje de High_Threshold y Low_Threshold.

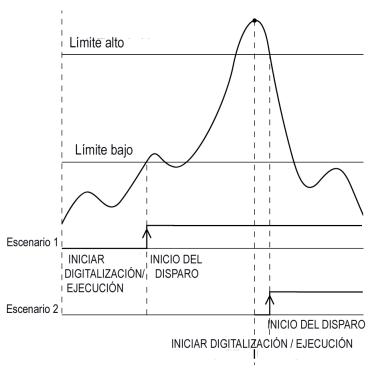


Figura 3-14 Condición window del disparo

Ejemplos de programación SCPI

Entrada analógica

Ejemplo 1:

```
//Disparo digital con tipo delay trigger
//Enviar señal de disparo digital a EXTD Al TRIG
-> ACQ: POIN 1000
                                  //Para modo "DIG"
-> ACO: SRAT 1000
                                  //Disparo digital
-> TRIG: SOUR EXTD
-> TRIG:DTRG:POL POS
-> TRIG: TYPE DEL
-> TRIG:DCNT 225000000
                                  //Valor de conteo ~= 5 s
-> WAV:STAT?
<- EMPT
-> WAV: COMP?
<- YES
                                  //Iniciar adquisición de disparo único
-> DIG
-> WAV:STAT?
<- FRAG
-> WAV: COMP?
                                //Para controlar si se completó la
                                  adquisición para DIG
<- NO
//Aguardar disparo
//Demora de cinco segundos tras el evento disparador
-> WAV:STAT?
<- DATA
-> WAV: COMP?
<- YES
<- WAV: DATA?
<- #800002000 <byte><byte>...//Datos en crudo devueltos por DAQ
Ejemplo 2:
//Disparo digital con tipo Middle trigger
-> WAV: POIN 1000
                                //Para modo "RUN"
-> ACQ: SRAT 1000
                                //Disparo digital
-> TRIG:SOUR EXTD
-> TRIG:DTRG:POL POS
-> TRIG: TYPE MID
-> RUN
```

Ejemplo 3:

```
//Disparo analógico con tipo Pre trigger
-> ACQ: POIN 1000
                                  //Para modo "DIG"
-> ACO: SRAT 1000
-> ROUT:SCAN (@101)
-> ROUT: CHAN: POL BIP, (@101)
-> TRIG:SOUR EXTA
                                  //Disparo analógico
-> TRIG: ATRG: COND AHIG
                                  //Condición de disparo above high
                                    threshold
-> TRIG:ATRG:HTHR 3
                                  //3 V high Threshold
                                  //-3 V low Threshold
-> TRIG:ATRG:LTHR -3
-> TRIG: TYPE PRE
                                  //Pre trigger
-> DIG
//Disparo cuando la señal supere los 3 V
```

Ejemplo 4:

```
//Disparo analógico con primer canal de exploración como canal disparador
                                    (modo SONE)
                                  //Para modo "DIG"
-> ACQ: POIN 1000
-> ACQ:SRAT 1000
-> ROUT:SCAN (@133,101)
                                  //Utilizar el canal 133 como canal
                                    disparador
-> ROUT: CHAN: POL UNIP, (@133,101)
-> TRIG: SOUR EXTA
-> TRIG:ATRG:SOUR SONE
-> TRIG: ATRG: COND BLOW
                                  //Condición del disparo Below Low
                                    Threshold
                                  //6 V High Threshold
-> TRIG:ATRG:HTHR 6
                                  //2 V Low Threshold
-> TRIG:ATRG:LTHR
-> TRIG: TYPE POST
                                  //Post Trigger
-> DIG
//Disparo cuando la señal caiga por debajo de 2 V en el canal 133
```

NOTA

Middle-trigger y pre-trigger no están permitidos en modo RUN, disparo NONE y SONE.

Salida analógica

Ejemplo 1:

```
//Disparo digital con tipo delay trigger
//Enviar señal de disparo digital a EXTD_AO_TRIG
-> OUTP:TRIG:SOUR EXTD
-> OUTP:TRIG:DTRG:POL NEG
-> OUTP:TRIG:TYPE DEL
-> OUTP:TRIG:DCNT 225000000 //Valor de conteo ~= 5 s
-> ROUT:ENAB ON, (@201)
-> OUTP ON
//Aguardar disparo
//Activación de salida tras retardo de 5 s (luego del disparo)
```

Ejemplo 2:

3 Funciones y operaciones

Ejemplo 3:

-> RUN -> OUTP ON

//Disparo analógico con primer canal de exploración como canal disparador

NOTA

En el modo SONE, ejecute el comando RUN/DIG antes de activar la salida. El canal 133 sólo responderá a la señal del disparador durante la adquisición.

//¡Importante!

Características del producto 66 Especificaciones del producto 68

> Especificaciones de los dispositivos DAQ multifunción básicos 68 Especificaciones de los dispositivos DAQ multifunción de alta densidad 72

Especificaciones de mediciones eléctricas 75

Dispositivo DAQ USB Multifunción Básico 75

Dispositivo DAQ USB multifunción de alta densidad 77

En este capítulo se especifican las características, las condiciones ambientales, y las especificaciones de los dispositivos DAQ U2300A.

Características del producto

INTERFAZ REMOTA	• USB 2.0 de alta velocidad
	Dispositivo Clase USBTMC ^{[1][2]}
REQUISITOS DE ALIMENTACIÓN	• +12 VCC (TÍPICO)
	 2 A (MÁX.) de corriente nominal de entrada
	Categoría de instalación II
CONSUMO DE ENERGÍA	+12 VCC, 550 mA máximo
ENTORNO OPERATIVO	• Temperatura operativa desde 0 °C hasta +55 °C
	 Humedad relativa del 15% al 85% HR (no condensada)
	Altitud de hasta 2000 metros
	Grado de contaminación 2
	Sólo para uso en interiores
CONDICIONES DE ALMACENAMIENTO	-20 °C hasta 70 °C
CUMPLIMIENTO DE SEGURIDAD	Certificado por:
	 IEC 61010-1:2001 / EN 61010-1:2001 (segunda edición)
	 Estados Unidos: UL61010-1: 2004
	 Canadá: CSA C22.2 No.61010-1:2004
CUMPLIMIENTO DE COMPATIBILIDAD	• IEC/EN 61326-1 1998
ELECTROMAGNÉTICA	 CISPR 11: 1990/EN55011:1991, Clase A, Grupo 1
	 CANADÁ: ICES-001: 1998
	 Australia/Nueva Zelanda: AS/NZS 2064.1
GOLPES Y VIBRACIÓN	Probado con IEC/EN 60068-2
CONECTOR ENTRADA/SALIDA	Tipo VHDCI hembra de 68 pines
DIMENSIÓN (Ancho x Profundidad x Altura)	Dimensión del módulo:
,	 120.00 mm x 182.40 mm x 44.00 mm (con carcasa plástica)
	 105.00 mm x 174.54 mm x 25.00 mm (sin carcasa plástica)
	Dimensiones del bloque terminal:
	• 103.00 mm x 85.20 mm x 42.96 mm
PESO PESO	565 gr (con carcasa plástica)
	400 gr (sin carcasa plástica)

GARANTÍA

- Por favor, consulte http://www.keysight.com/go/warranty_terms
 - · Tres años para el producto
 - Tres meses para los accesorios estándar del producto, a menos que se especifique lo contrario
- Por favor, tenga en cuenta que para el producto, la garantía no cubre:
 - · Los daños causados por la contaminación
 - · El desgaste normal de los componentes mecánicos
 - Manuales
- [1] Compatible solo con sistemas operativos Microsoft Windows..
- [2] Requiere una conexión directa USB a la PC para poder instalar el controlador apropiado en el instrumento modular USB o módulo DAQ USB.

Especificaciones del producto

Especificaciones de los dispositivos DAQ multifunción básicos

Tabla 4-1 Especificaciones de la entrada analógica para el dispositivo DAQ multifunción básico

Entrada analógica				
Número de modelo	U2351A	U2352A	U2353A	U2354A
Resolución	16 bits, sin códigos faltantes			
Número de canales		16 SE/8 DI (según s	oftware/canal)	
Frecuencia de muestreo máxima	250 kSa/s 500 kSa/s			a/s
Memoria de exploración	Hast	a 100 entradas para c	anales seleccionable	S
Rango de entrada bipolar programable	±10 V, ±5 V, ±2.5 V, ±1.25 V			
Rango de entrada unipolar programable	0 a 10 V, 0 a 5 V, 0 a 2.5 V, 0 a 1.25 V			
Acoplamiento de entrada	CC			
Impedancia de entrada	1 GΩ / 100 pF			
Rango de voltaje en modo de operación normal	±7.5 V máximo			
Protección de sobrevoltaje	Encendido: Continuo: ±30 V, Apagado: Continuo ±15 V			
Fuentes de disparador	Disparador analógico/digital externo, disparador SSI/star ^[1]			
Modos de disparos	Pre- trigger, delay-trigger, post-trigger y middle-trigger			
Tamaño de memoria búfer Primero en Entrar Primero en Salir	Hasta 8 MSa			

 Tabla 4-2
 Especificaciones de la salida analógica para el dispositivo DAQ multifunción básico

Salida analógica				
Número de modelo	U2351A	U2352A	U2353A	U2354A
Resolución	16 bits	No disponible	16 bits	No disponible
Número de canales	2	No disponible	2	No disponible
Frecuencia máxima de actualización	1 MSa/s	No disponible	1 MSa/s	No disponible
Rangos de salida	0 a 10 V, ±10 V, 0 a AO_EXT_REF, ±AO_EXT_REF ^[2]	No disponible	0 a 10 V, ±10 V, 0 a AO_EXT_REF, ±AO_EXT_REF ^[2]	No disponible
Acoplamiento de salida	CC	No disponible	CC	No disponible
Impedancia de salida	0.1 Ω Típico	No disponible	0.1 Ω Típico	No disponible
Estabilidad	Cualquier carga pasiva hasta 1500 pF	No disponible	Cualquier carga pasiva hasta 1500 pF	No disponible
Estado de encendido	0 V estado estable	No disponible	0 V estado estable	No disponible
Fuentes de disparador	Disparador analógico/digital externo, disparador SSI/star ^[1]	No disponible	Disparador analógico/digital externo, disparador SSI/star ^[1]	No disponible
Modos de disparos	Post-trigger y delay-trigger	No disponible	Post-trigger y delay-trigger	No disponible
Tamaño de memoria búfer Primero en Entrar Primero en Salir	1 canal: Máximo 8 MSa 2 canales: Máximo 4MSa/ch	No disponible	1 canal: Máximo 8 MSa 2 canales: Máximo 4 MSa/ch	No disponible
Modo de generación de función	Forma de onda sinusoidal, cuadrada, triangular, con diente de sierra y de ruido	No disponible	Forma de onda sinusoidal, cuadrada, triangular, con diente de sierra y de ruido	No disponible

 Tabla 4-3
 Especificaciones de la E/S digital para el dispositivo DAQ multifunción básico

Entrada/Salida Digital	
Número de modelo	U2351A U2352A U2353A U2354A
Número de bits	Entrada/Salida programable de 24-bits
Compatibilidad	TTL
Voltaje de entrada	V _{IL} = 0.7 V máximo, I _{IL} = 10 μA máximo V _{IH} = 2.0 V mínimo, I _{IH} = 10 μA máximo
Rango de voltaje de salida	-0.5 V a +5.5 V
Voltaje de salida	V _{OL} = 0.45 V máximo, I _{OL} = 8 mA máximo V _{OH} = 2.4 V mínimo, I _{OH} = 400 μA máximo

Tabla 4-4 Especificaciones del Contador digital de propósito general para el dispositivo DAQ multifunción básico

Contador digital de propósito general		
Número de modelo	U2351A U2352A U2353A U2354A	
Conteo máximo	(2 ³¹ -1) bits	
Número de canales	Dos contadores independientes ascendente/descendente	
Compatibilidad	TTL	
Fuente de reloj	Interna o externa	
Base de reloj disponible	48 MHz	
Frecuencia de fuente de reloj máxima	12 MHz	
Rango de frecuencia de entrada	0.1 Hz a 6 MHz a 50% del ciclo de trabajo	
Rango de medición de ancho de pulso	0.167 µs hasta 178.956 s	

Tabla 4-5 Especificaciones del disparador analógico para el dispositivo DAQ multifunción básico

Disparo analógico			
Número de modelo	U2351A U2352A U2353A U2354A		
Fuente de disparador	Todos los canales analógicos de entrada, disparador externo analógico (EXTA_TRIG)		
Nivel del disparador	±Escala completa para interno; ±10 V para externa		
Condiciones del disparador	Above high, below low y window (según el software)		
Resolución del nivel de disparador	8 bits		
Ancho de Banda	400 kHz		
Impedancia de entrada para EXTA_TRIG	20 kΩ		
Acoplamiento	CC		
Protección de sobrevoltaje	Continuo para ± 35 Vmáximo		

Tabla 4-6 Especificaciones del disparador digital para el dispositivo DAQ multifunción básico

Disparo digital	
Número de modelo	U2351A U2352A U2353A U2354A
Compatibilidad	TTL/CMOS
Respuesta	Borde ascendente o descendente
Amplitud de pulso	20 ns mínimo

Tabla 4-7 Especificaciones del producto de calibración para el dispositivo DAQ multifunción básico

Calibración ^[3]	
Número de modelo	U2351A U2352A U2353A U2354A
Voltaje de referencia incorporado	5 V
Flujo de temperatura	±2 ppm/°C
Estabilidad	±6 ppm/1000 horas

Tabla 4-8 Especificaciones generales del producto para el dispositivo DAQ multifunción básico

General		
Número de modelo	U2351A U2352A U2353A U2354A	
Interfaz remota	USB 2.0 de alta velocidad	
Clase de dispositivo	Dispositivo Clase USBTMC	
Interfaz programable	Comandos estándar para instrumentos programables (SCPI) e IVI-COM	

- [1] Los comandos de disparo Interfaz de Sistema Sincrónico (SSI) y Star se utilizan cuando los dispositivos operan como módulos en el chasis del instrumento.
- [2] El voltaje de referencia externo máximo para salidas analógicas (A0_EXT_REF) es ± 10 V.
- [3] Se recomienda un período de calentamiento de 20 minutos.

Especificaciones de los dispositivos DAQ multifunción de alta densidad

Tabla 4-9 Especificaciones de la entrada analógica para dispositivo DAQ multifunción de alta densidad

Entrada analógica			
Número de modelo	U2355A	U2356A	U2331A
Resolución	16 bits, sin códi	•	12 bits, sin códigos faltantes
Número de canales	6	4 SE/32 DI (segúr	n software/canal)
Frecuencia de muestreo máxima	250 kSa/s	500 kSa/s	3 MSa/s (canal único)
			1 MSa/s (multi-canal)
Memoria de exploración	Hasta 1	00 entradas para	canales seleccionables
Rango de entrada bipolar programable	±10 V, ±5 V, ±2	2.5 V, ±1.25 V	±10 V, ±5 V, ±2.5 V,
			±1.25 V, ±1 V, ±0.5 V,
			±0.25 V, ±0.2 V, ±0.05 V
Rango de entrada unipolar programable	0 a 10 V, 0-5 V, 0-2.5 V, 0-1.25 V 0-10 V, 0-5 V, 0-4 V, 0-2.5 V, 0-		0-10 V, 0-5 V, 0-4 V, 0-2.5 V, 0-2 V,
			0-1 V, 0-0.5 V, 0-0.4 V, 0-0.1V
Acoplamiento de entrada	CC		
Impedancia de entrada	1 GΩ / 100 pF		
Rango de voltaje en modo de operación normal	±7.5 V máximo		
Protección de sobrevoltaje	Encendido: Continuo: ±30 V, Apagado: Continuo ±15 V		
Fuentes de disparador	Disparador analógico/digital externo, disparador SSI/star ^[1]		
Modos de disparos	Pre- trigger, delay-trigger, post-trigger y middle-trigger		
Tamaño de memoria búfer Primero en Entrar	Hasta 8 MSa		
Primero en Salir			

Tabla 4-10 Especificaciones de la salida analógica para dispositivo DAQ multifunción de alta densidad

Salida analógica			
Número de modelo	U2355A	U2356A	U2331A
Resolución		12 bits	
Número de canales		2	
Frecuencia máxima de actualización		1 MSa/s	
Rangos de salida	0 a 10 V, ±10	V, 0 a AO_EXT_RE	F, ±A0_EXT_REF ^[2]
Acoplamiento de salida	CC		
Impedancia de salida	0.1 Ω Típico		
Estabilidad	Cualquier carga pasiva hasta 1500 pF		
Estado de encendido	0 V estado estable		
Fuentes de disparador	Disparador analógico/digital externo, disparador SSI/star ^[1]		
Modos de disparos	Post-trigger y delay-trigger		
Tamaño de memoria búfer Primero en Entrar Primero en Salir	1 canal: Máximo 8 MSa, 2 canales: Máximo 4MSa/ch		
Modo de generación de función	Forma de onda sini	ısoidal, cuadrada, t	riangular, con diente de
		sierra y de ruid	0

Tabla 4-11 Especificaciones de la E/S digital para el dispositivo DAQ multifunción de alta densidad

Entrada/Salida Digital			
Número de modelo	U2355A U2356A U2331A		
Número de bits	Entrada/Salida programable de 24-bits		
Compatibilidad	TTL		
Voltaje de entrada	$V_{ L} = 0.7 \text{ V max}, I_{ L} = 10 \mu\text{A max}$		
	$V_{IH} = 2.0 \text{ V min}$, $I_{IH} = 10 \mu\text{A max}$		
Rango de voltaje de salida	-0.5 V a +5.5 V		
Voltaje de salida	$V_{OL} = 0.45 \text{ V max}$, $I_{OL} = 8 \text{ mA max}$		
	$V_{OH} = 2.4 \text{ V min, } I_{OH} = 400 \mu\text{A max}$		

Tabla 4-12 Especificaciones del Contador digital de propósito general para el dispositivo DAQ multifunción de alta densidad

Contador digital de propósito general				
Número de modelo	U2355A U2356A U2331A			
Conteo máximo	(2 ³¹ -1) bits			
Número de canales	Dos contadores independientes ascendente/descendente			
Compatibilidad	TTL			
Fuente de reloj	Interna o externa			
Base de reloj disponible	48 MHz			
Frecuencia de fuente de reloj máxima	12 MHz			
Rango de frecuencia de entrada	0.1 Hz a 6 MHz a 50% del ciclo de trabajo			
Rango de medición de ancho de pulso	0.167 µs hasta 178.956 s			

Tabla 4-13 Especificaciones del disparador analógico para dispositivo DAQ multifunción de alta densidad

Disparador analógico				
Número de modelo	U2355A U2356A U2331A			
Fuente de disparador	Todos los canales analógicos de entrada, disparador externo analógico (EXTA_TRIG)			
Nivel del disparador	±Escala completa para interno; ±10 V para externa			
Condiciones del disparador	Above high, below low y window (según el software)			
Resolución del nivel de disparador	8 Bits			
Ancho de Banda	400 kHz			
Impedancia de entrada para EXTA_TRIG	20 kΩ			
Acoplamiento	CC			
Protección de sobrevoltaje	Continuo para ± 35 V máximo			

Tabla 4-14 Especificaciones de disparador digital para dispositivo DAQ multifunción de alta densidad

Disparo digital	
Número de modelo	U2355A U2356A U2331A
Compatibilidad	TTL/CMOS
Respuesta	Borde ascendente o descendente
Amplitud de pulso	20 ns mínimo

Tabla 4-15 Especificaciones de calibración para el dispositivo DAQ multifunción de alta densidad

Calibración ^[3]			
Número de modelo	U2355A U2356A U2331A		
Referencia integrada	5 V		
Flujo de temperatura	±2 ppm/°C		
Estabilidad	±6 ppm/1000 horas		

Tabla 4-16 Especificaciones generales del producto para el dispositivo DAQ multifunción de alta densidad

General				
Número de modelo	U2355A U2356A U2331A			
Interfaz remota	USB 2.0 de alta velocidad			
Clase de dispositivo	Dispositivo Clase USBTMC			
Interfaz programable	Comandos estándar para instrumentos programables (SCPI) e IVI-COM			

^[1] Los comandos de disparo Interfaz de Sistema Sincrónico (SSI) y Star se utilizan cuando los dispositivos modulares se usan en el chasis del instrumento.

^[2] El voltaje de referencia externo máximo para salidas analógicas (A0_EXT_REF) es ± 10 V.

^[3] Se recomienda un período de calentamiento de 20 minutos.

Especificaciones de mediciones eléctricas

Dispositivo DAQ USB Multifunción Básico

Tabla 4-17 Especificaciones de la medición eléctrica de entrada analógica para el dispositivo DAQ multifunción básico

Medición de entrada analógica ^[1]					
Número de modelo	U2351A	U2352A	U2353A	U2354A	
		0 °C a 18 °C		0°C a 18 °C	
Función	23 °C ± 5 °C	28 °C a 45 °C	23°C ± 5 °C	28°C a 45 °C	
Error de compensación	±1 mV	±5 mV	±1 mV	±5 mV	
Error de ganancia	±2 mV	±5 mV	±2 mV	±5 mV	
Ancho de banda de señal pequeña de -3 dB ^[2]	760	kHz	1.5 M	1.5 MHz	
Ancho de banda de señal grande de THD de 1% ^[2]	300	l kHz	300 k	Hz	
Ruido del sistema	1 mVrms	2 mVrms	1 mVrms	2.5 mVrms	
CMRR	62	dB	62 c	İB	
Rango dinámico libre de espurios (SFDR) ^[3]	88	dB	82 c	IB	
Relación señal-ruido y distorsión (SINAD) ^[3]	80	dB	78 c	IB	
Distorsión armónica total (THD) ^[3]	-9	0 dB	-82	dB	
Relación señal-ruido (SNR) ^[3]	80	dB	78 c	IB	
Número efectivo de bits (ENOB) ^[3]		13	12.	6	

Tabla 4-18 Especificaciones de la medición eléctrica de salida analógica para el dispositivo DAQ multifunción básico

Medición de salida analógica ^[1]					
Número de modelo	U2351A	U2353A			
		0 °C a 18 °C			
Función	23 °C ± 5 °C	28 °C a 45 °C			
Error de compensación	±1 mV	±4 mV			
Error de ganancia	±4 mV	±5 mV			
Velocidad de salto	19 \	//µs			
Tiempo de ascenso	0.9	μs			
Tiempo de descenso	0.9	μs			
Tiempo de asentamiento para error de	4	μѕ			
salida de 1%					
Capacidad de impulso	5 r	mA			
Energía de impulso transitorio	5 ns-V (Típica), 8	30 ns-V (Máxima)			

- [1] Las especificaciones son para 20 minutos de calentamiento, temperatura de calibración de 23 °C y rango de entrada de ± 10 V.
- [2] Las especificaciones se basan en las siguientes condiciones de prueba.

	ueba de rango námico	Número de modelo	Condiciones de prueba (Configuración de DUT en ±10 V bipolar)	
•	Ancho de banda de señal pequeña	U2351A U2352A	Frecuencia de muestreo: Voltaje de entrada:	250 kSa/s
	de -3 dB Ancho de banda		 Ancho de banda de señal pequeña de -3 dB 	10% FSR
	de señal grande de THD de 1%		 Ancho de banda de señal grande de THD de 1% 	FSR –1 dB FS
		U2353A U2354A	Frecuencia de muestreo: Voltaje de entrada:	500 kSa/s
			 Ancho de banda de señal pequeña de -3 dB 	10% FSR
			 Ancho de banda de señal grande de THD de 1% 	FSR –1 dB FS

[3] Las especificaciones se basan en las siguientes condiciones de prueba.

Prueba de rango dinámico	Número de modelo	Condiciones de prueba (Configuración de DUT en ±10 V bipolar)		
SFDR, THD, SINAD,	U2351A	Frecuencia de muestreo:	250 kSa/s	
SNR, ENOB	U2352A	Frecuencia fundamental:	2.4109 kHz	
		Número de puntos: 8192		
		Voltaje de entrada fundamental: FSR –1 dB FS		
	U2353A	Frecuencia de muestreo: 500 kSa/s		
	U2354A	Frecuencia fundamental:	4.974 kHz	
		Número de puntos:	16384	
		Voltaje de entrada fundamental:	FSR –1 dB FS	

Dispositivo DAQ USB multifunción de alta densidad

Tabla 4-19 Especificaciones de la medición eléctrica de entrada analógica para el dispositivo DAQ multifunción de alta densidad

Medición de entrada analógica ^[1]						
Número de modelo	U23	355A	U2356A		U2331A	
		0 °C - 18 °C		0 °C a 18 °C		0 °C a 18 °C
Función	23 °C ± 5 °C	28 °C - 45 °C	23 °C ± 5 °C	28 °C a 45 °C	23 °C ± 5 °C	28 °C a 45 °C
Error de compensación	±1 mV	±2 mV	±1 mV	±2 mV	±2 mV	±3 mV
Error de ganancia	±2 mV	±3 mV	±2 mV	±6 mV	±6 mV	±7.5 mV
Ancho de banda de señal pequeña	760	kHz	1.3	MHz	1.2	MHz
de -3 dB ^[2]						
Ancho de banda de señal grande	400 kHz		400 kHz		No disponible	
de THD de 1% ^[2]						
Ruido del sistema	1 mVrms	2 mVrms	1 mVrms	4 mVrms	3 mVrms	5 mVrms
CMRR	64	dB	61 dB		62	dB
Rango dinámico libre de espurios	88 dB		86 dB		71 dB	
(SFDR) ^[3]						
Relación señal-ruido y distorsión	80	dB	78 dB		72 dB	
(SINAD) ^[3]						
Distorsión armónica total (THD) ^[3]	−90 dB		−84 dB		-76 dB	
Relación señal-ruido (SNR) ^[3]	80 dB		78 dB		72 dB	
Número efectivo de bits (ENOB) ^[3]	1	13	12.6		11.6	

Tabla 4-20 Especificaciones de la medición eléctrica de salida analógica para el dispositivo DAQ multifunción de alta densidad

Medición de salida analógica ^[1]						
Número de modelo	U2355A	U2356A	U2331A			
Función	23 °C ± 5 °C	0 °C a 18 °C 28 °C a 45 °C	23 °C ± 5 °C	0 °C a 18 °C 28 °C a 45 °C		
Error de compensación	±1 mV	±4 mV	±1.5 mV	±3 mV		
Error de ganancia	±4 mV	±5 mV	±4 mV	±5 mV		
Velocidad de salto	19 V/μs		19 V/μs			
Tiempo de ascenso	0.9 µs		0.9 μs			
Tiempo de descenso	0.9 µs		0.9 μs			
Tiempo de asentamiento para error de salida de 1%	4 μs		4 μs			
Capacidad de impulso	5 mA 5 mA		nA			
Energía de impulso transitorio	5 ns-V (Típica), 80 ns-V (Máxima)		5 ns-V (Típica), 80 ns-V (Máxima)			

- [1] Las especificaciones son para 20 minutos de calentamiento, temperatura de calibración de 23 °C y rango de entrada de ± 10 V.
- [2] Las especificaciones se basan en las siguientes condiciones de prueba.

Pr	ueba de rango	Número de	Condiciones de prueba	
diı	námico	modelo	(Configuración de DUT en ±10 V bipolar)	
•	Ancho de banda de señal pequeña	U2355A	Frecuencia de muestreo: Voltaje de entrada:	250 kSa/s
	de -3 dB Ancho de banda		 Ancho de banda de señal pequeña de -3 dB 	10% FSR
	de señal grande de THD de 1%		 Ancho de banda de señal grande de THD de 1% 	FSR –1 dB FS
		U2356A	Frecuencia de muestreo: Voltaje de entrada:	500 kSa/s
			 Ancho de banda de señal pequeña de -3 dB 	10% FSR
			 Ancho de banda de señal grande de THD de 1% 	FSR –1 dB FS
		U2331A	Frecuencia de muestreo: Voltaje de entrada:	3 MSa/s
			 Ancho de banda de señal pequeña de -3 dB 	10% FSR
			 Ancho de banda de señal grande de THD de 1% 	FSR –1 dB FS

[3] Las especificaciones se basan en las siguientes condiciones de prueba.

Prueba de rango dinámico	Número de modelo	Condiciones de prueba (Configuración de DUT en ±10 V bipolar)	
SFDR, THD, SINAD, SNR, ENOB	U2355A	Frecuencia de muestreo: Frecuencia fundamental: Número de puntos:	250 kSa/s 2.4109 kHz 8192
		Voltaje de entrada fundamental:	
	U2356A	Frecuencia de muestreo: Frecuencia fundamental: Número de puntos: Voltaje de entrada fundamental:	500 kSa/s 4.974 kHz 16384 FSR -1 dB FS
	U2331A	Frecuencia de muestreo: Frecuencia fundamental: Número de puntos: Voltaje de entrada fundamental:	3 MSa/s 29.892 kHz 65536 FSR –1 dB FS

DAO multifunción USB serie U2300A de Keysight Guía del usuario

5 Calibración

Calibración automática 80

En este capítulo se presenta los procedimientos para el proceso de calibración de los dispositivos DAQ serie U2300A a fin de reducir al mínimo los errores de medición A/D y los errores de salida D/A.

Calibración automática

Los dispositivos de adquisición de datos USB serie U2300A de Keysight se calibran en la fábrica antes de distribuirse. Se calibra y se mide la tensión de referencia incorporada para garantizar precisión en las mediciones. Esto ofrece la flexibilidad de la calibración automática para garantizar la precisión de las mediciones en diferentes entornos.

En el modo de calibración automática, el comando de calibración iniciará un ajuste de voltaje en secuencia para el canal del DAC especificado. Esta secuencia configura una constante de ajuste de ganancia y cero para cada salida del DAC.

La calibración automática se puede utilizar mediante el siguiente comando SCPI:

CALibration: BEGin

La función del DAQ no continuará hasta que se complete la calibración automática. Se puede averiguar el estado de la calibración mediante el siguiente comando SCPI:

*OPC?

ADVERTENCIA

- Desconecte todos los cables del dispositivo DAQ antes de realizar la calibración automática.
- Si se dejan cables conectados, surgirán errores en el proceso de calibración automática.

NOTA

Se recomienda encender el dispositivo DAQ al menos 20 minutos antes de la calibración automática.

www.keysight.com

Contacto

Para obtener asistencia de servicios, garantía o soporte técnico, llámenos a los siguientes números telefónicos:

Estados Unidos:

(tel) 800 829 4444 (fax) 800 829 4433

Canadá:

(tel) 877 894 4414 (fax) 800 746 4866

China:

(tel) 800 810 0189 (fax) 800 820 2816

Europa:

(tel) 31 20 547 2111

Japón:

(tel) (81) 426 56 7832 (fax) (81) 426 56 7840

Corea:

(tel) (080) 769 0800 (fax) (080) 769 0900

América Latina: (tel) (305) 269 7500

Taiwán:

(tel) 0800 047 866 (fax) 0800 286 331

Otros países de Asia Pacífico:

(tel) (65) 6375 8100 (fax) (65) 6755 0042

O visite el sitio web mundial de Keysight en: www.keysight.com/find/assist

Las especificaciones y descripciones de los productos de este documento están sujetas a modificaciones sin previo aviso.

Esta información está sujeta a cambios sin previo aviso. © Keysight Technologies 2006 - 2014 Edición 9, Diciembre 2014

U2351-90006 www.keysight.com

