

Detcon MicroSafe[™]

Sensor de Dióxido de Carbono IR-540 (%CO2)

Manual de Instalación y Operación Abril 6, 2005 • Documento #2379 • Versión 1.2-S

PRECAUCIÓN:

Lea este manual cuidadosamente antes de operar su sensor Modelo IR-540 y verifique que la configuración de fabrica sea apropiada y correcta para la aplicación a utilizar.

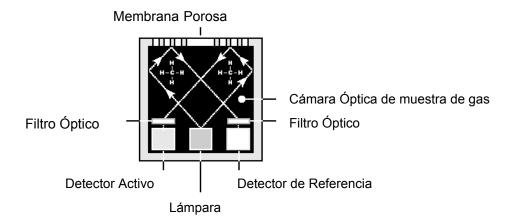
Teléfono 281-367-4100 • fax 281-292-2860 • www.detcon.com • sales@detcon.com

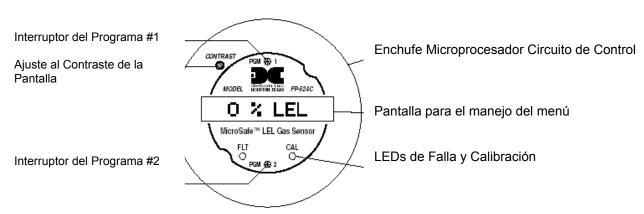
Índice

3.0	Descripción
3.1	Principio de Operación
3.2	Aplicación
3.3	Especificaciones
3.4	Sistema Operativo
3.5	Instalación
3.6	Inicio
3.7	Calibración
3.8	Estado de Programación, Nivel de Calibración, y Vida del Sensor
3.9	Ventajas del Programa
3.10	Ajustes del Contraste de la Pantalla
3.11	Procedimiento de Reemplazo del Sensor Óptico
3.12	Guía de Solución de Problemas
3.13	Lista de Partes
3.14	Garantía
3.15	Póliza de Servicio
3.16	Diagrama de Flujo del Programa

3.0 Descripción

El modelo IR-540 Detcon MicroSafeTM, sensor de gas dióxido de carbono son sensores "inteligentes" no intrusivos diseñados para detectar y monitorear gas CO2 en aire en el rango %. Una de las características del sensor es su método de calibración automática el cual guía al usuario en cada paso ya que las instrucciones se muestran en la pantalla. El sensor está equipado una salida estándar analógica de 4-20mA. El microprocesador está controlado electrónicamente y empaquetado a un modulo con enchufe que está junto al tablero conectador. Ambos tienen un condulet a prueba de explosión que incluye un lente de cristal. El indicador tiene 16 caracteres alfa numéricos y se usan en las lecturas en la pantalla del sensor así como las características del menú del sensor están conducidas por el programador magnético portátil.

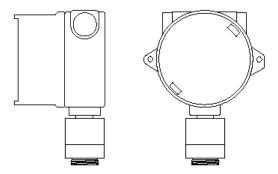

La tecnología del sensor probada en campo consiste de un "enchufe reemplazable" (NDIR) tipo óptico infrarrojo nodispersivo. El sensor óptico NDIR muestra una excelente respuesta al CO2. El sensor tipo NDIR es característicamente estable para span y cero, y es capaz de proveer un funcionamiento confiable con un requisito de mantenimiento bajo por periodos aproximados de 5 años en la mayoría de los ambientes industriales.


Los rangos típicamente de detección son 0-0.30%, 0-0.50%, 0-1.00%,0-2.00% y 0-3.00%. Otros rangos pueden ser adecuados y todos los rangos son cubiertos por éste manual. Para determinar el rango de detección, vea las instrucciones que se encuentran en la sección 3.8

3.0.1 Sensor óptico infrarrojo no-dispersivo

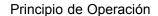
El sensor Detcon NDIR está diseñado como un componente único miniatura del tipo "enchufe reemplazable", el cual puede fácilmente cambiarse en campo. El sensor NDIR consiste en una fuente de lámpara infrarroja, dos detectores pyroelectrico, y una cavidad óptica de muestra del gas. La fuente de la lámpara produce una radiación infrarroja la cual interactúa con el CO2 mientras viaja a través de la cavidad óptica de muestra del gas. La radiación infrarroja entra en contacto con cada uno de los dos detectores pyroelectrico en la terminación de la trayectoria óptica. El detector pyroelectrico "activo" es cubierto por un filtro específico a la parte del espectro IR donde el CO2 absorbe la luz. El detector pyroelectrico "referencia" es cubierto por un filtro específico a la parte no-absorbida del espectro IR. Cuando el CO2 está presente, esté absorbe la radiación IR y la señal de salida desde el detector pyroelectrico "activo" disminuye respectivamente mientras la señal de salida del detector de "referencia" permanece sin cambios. La razón de la salida del detector "activo" y "referencia" se utilizan para obtener la concentración del CO2.

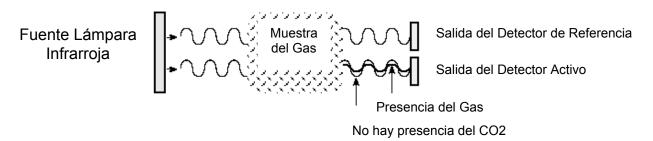
3.0.2 El circuito de control


El circuito de control está basado en un microprocesador y encapsulado en un modulo con enchufe reemplazable en campo, facilitando el reemplazo y minimiza el tiempo improductivo. La función del circuito incluye un preamplificador básico, control de temperaturas, una fuente de alimentación, un microprocesador, una pantalla alfa numérica, LEDS indicadores para el estado de falla y calibración, interruptores para el programador magnético, una salida línea de 4-20 mA CD.

3.0.3 La Base de conexión

La base de conexión está montada en un caja a prueba de explosión e incluye: el conectador de unión para el circuito de control, la entrada inversa, una supresión secundaria transitoria, un filtro de entrada, y una terminal sin conexión para cualquier cableado en campo.

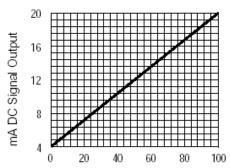

3.0.4 Encapsulado A Prueba De Explosión


El transmisor está envuelto en un encapsulado a prueba de explosión. El encapsulado está sujeto con una rosca y cuenta con un lente de vidrio. Los interruptores para el programador magnético se encuentran localizados detrás del modulo transmisor y se activan a través de la ventana de vidrio por medio del programador magnético; de ésta manera la operación del sensor es no intrusiva. La calibración se realiza sin remover la rosca o quitándole la clasificación al área. El área de clasificación eléctrica es: Clase 1, División 1, Grupos B, C, D (a prueba de explosión).

3.1 PRINCIPIO DE OPERACIÓN

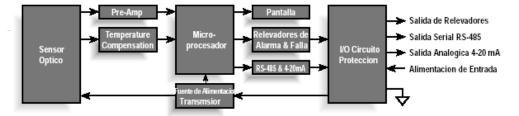
La difusión del CO2 pasa a través de un acumulador de flama poroso de acero inoxidable y por el volumen de la cavidad óptica del gas de muestra. La fuente de la lámpara provee una fuente de radiación IR cíclica la cual viaja a través de la cavidad óptica de muestra de gas y termina en dos detectores pyroelectrico. Cada uno de los detectores pyroelectricos "activo" y "referencia" cuentan con una salida la cual mide la intensidad de la radiación que entra en contacto con su superficie. El detector pyroelectrico "activo" es cubierto por un filtro específico a la parte del espectro IR donde el CO2 absorbe la luz. El detector pyroelectrico "referencia" es cubierto por un filtro específico a la parte no-absorbida del espectro IR. Cuando se presenta, el CO2 absorbe una fracción de la radiación IR y la salida de la señal del detector pyroelectrico "activo" disminuye proporcionalmente. La señal de salida del detector de "referencia" permanece sin cambios durante la presencia de CO2. La razón de la salida del detector "activo" y "referencia" se utilizan para capturar la concentración del CO2. Haciendo uso de la razón que se presenta entre la señal de salida del detector activo y referencia, la medición del desplazamiento ocasionado por cambios en la intensidad de la fuente de la lámpara y por trayectorias ópticas es invalida.

3.1.2 Características


El elemento del sensor óptico NDIR mantiene una gran sensibilidad a CO2, como se muestra en la figura de abajo. Al comparar a los sensores catalíticos, el sensor NDIR muestra una excelente estabilización a un plazo mayor en cero y span. Típicamente los intervalos de la calibración del cero deben ser mensuales o trimestrales y típicamente los intervalos de la calibración del span deben ser semi-anual o anual. Sin embargo, depende de las condiciones en campo para determinar los intervalos apropiados para la calibración.

El IR-540 MicroSafeTM se calibra en fabrica para un rango especifico de CO2 (vea la sección 3.8 para determinar el rango). El detector será calibrado en la fabrica para el rango especificado el día de la orden de compra. Si el rango del CO2 es otro al especificado en la orden de compra, contacte a Detcon para obtener las partes necesarias de electrónica y programación.

Las lecturas del sensor óptico NDIR pueden afectarse negativamente por el polvo, suciedad y acumulación de aceite así como corrosión severa. Estos residuos pueden reducir el reflejo óptico dentro del sensor, y aunque las lecturas actuales se mantienen continuamente, la pérdida excesiva en la señal lleva eventualmente a ruido y a lecturas inestables. El sensor óptico puede, en largos periodos de tiempo (3-7 años) perder su filamento de la fuente de la lámpara IR, y en éste caso se requería un reemplazo del sensor óptico. El IR-540 tiene una lista extensa de diagnósticos de falla y para problemas operacionales. Vea la sección 3.10.


Curva de la Respuesta de Salida

Salida de Señal mA CD

% del Rango de Detección

3.2 APLICACIÓN

El sensor modelo IR-540 MicroSafeTM está diseñado para detectar y monitorear gas CO2 en el aire. La mínima sensibilidad y la escala de resolución es 0.01%. La temperatura de operación está dentro del rango de –40 a 80°C (-40 a 175 °F). Debido a que el sensor es capaz de operar fuera de éstas temperaturas, las especificaciones del desempeño se deben verificar conforme al limite.

3.2.1 Colocación / Montaje Del Sensor

El personal de ingeniería y seguridad debe revisar la ubicación del detector.

3.3 ESPECIFICACIONES

Método de Detección

Óptico NDIR

Clasificación Eléctrica

Clase 1; Grupos B,C,D; División 1.

Tiempo de Respuesta

T50< 15 segundos; T90< 35 segundos

Tiempo para Restablecerse

90% < 30 segundos

Habilidad de Repetición

±3% FS

Rango

0-0.2 %/0.5/1/2/3% (vea la sección 3.8 para determinar el rango)

Temperatura de Operación

-40°C a +80°C (-40°F a +175°F)

Precisión

±3% FS

Garantía del sensor

5 años de garantía condicionada

Consumo de Potencia

<2.5 watts

Corrimiento del Cero <5 % por año

Salida

Lineal 4-20 mA

Voltaje de Entrada

11.5-28 VCD

3.4 SISTEMA OPERATIVO

El sistema operativo tiene un menú tipo listado con una interfase de dos interruptores magnéticos del programa localizados dentro de la cara del transmisor. Los dos interruptores son el PGM1 y el PGM2. La lista de menús consiste en tres elementos que incluye un sub-menú como se indica abajo. (Nota: vea la última página de éste manual para un diagrama mas completo del programa).

- 01. Operación normal
 - a) Estado Actual
- 0.2 Modo de Calibración
 - a) Zero
 - b) Span
- 0.3 Menú del Programa
- a) Estado del Programa (Program Status)
- b) Nivel de Calibración (CALIBRATION LEVEL)

3.4.1 Operación normal

En una operación normal, la pantalla muestra el estado actual del sensor y de la concentración del gas y aparece como "0.00 % CO2". La salida de corriente alterna mA corresponde al nivel de monitoreo y al rango de detección de 0-100% = 4-20mA.

3.4.2 Modo de calibración

El modo de calibración permite ajustes al cero y al span. "1-ZERO 2-SPAN"

3.4.2.1 Ajuste Cero

Cero es ajustado en un ambiente donde no exista gas combustible o aplicando gas de aire cero. "AUTO ZERO"

3.4.2.2 Ajuste al SPAN

Salvo otra especificación, el ajuste del span se realiza al 50% de la escala completa en aire. "AUTO SPAN"

3.4.3 Modo del programa

El modo del programa provee un menú de estado del programa. Éste menú permite los ajustes del nivel del gas de calibración.

3.4.3.1 Estado del Programa

El estado del programa muestra todos las opciones con las que cuenta el menú y aparecerán en la pantalla:

El tipo de gas, rango de detección y la versión del programa. En el menú aparecerá como: "CO2 0-100 V6.0"

El nivel de gas de calibración. En el menú aparecerá como: "CalLevel @ xx%"

La temperatura del sensor en °C aparecerá como: "TEMPERATURE xx °C"

La vida estimada del sensor. En el menú aparecerá como: "OPTICS AT 100%"

3.4.3.2 Ajuste del Nivel de Calibración

El nivel de calibración es ajustable desde 10% al 90% de la escala completa. %. En el menú aparecerá como: "CalLevel @ ##%"

3.5 Instalación

El desempeño óptimo del dispositivo sensor en el ambiente gas / aire es directamente proporcional a la correcta instalación en la aplicación.

3.5.1 Tabla De Cableado De Campo (salida 4-20mA)

El modelo IR-540 MicroSafeTM Detcon sensor de gas combustible requiere de 3 conductores entre la alimentación y el controlador central. El diseño es + (CD), - (CD) y **mA** (señal del sensor). La máxima resistencia entre el sensor y controlador es 10 ohms. El calibre máximo para las terminales de los cables es de un diámetro de 14.

<u>AWG</u>	<u>Metros</u>	<u>Pies</u>
20	240	800
18	360	1600
16	600	6000
14	900	3000

Nota 1: Esta tabla está basada en un alambre de cobre estañado trenzado y esta diseñada para servir de referencia.

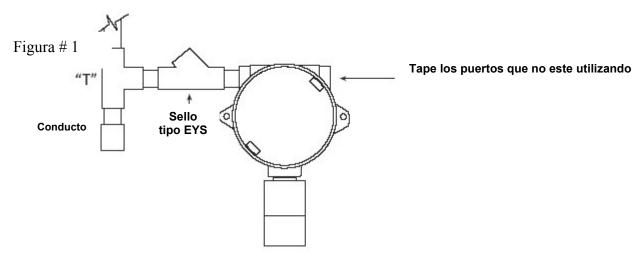
Nota 2: Este cable blindado puede requerirse donde el cableado puede tener interferencia con líneas de alto voltaje o cualquier otro tipo de interfase.

3.5.2 Ubicación del sensor

La ubicación del sensor es critica para el desempeño correcto del instrumento. Son 5 los factores que debe de considerar para la ubicación del sensor.

- (1) Densidad del gas a ser detectado
- (2) Las probables fugas de gas dentro del proceso industrial
- (3) Ventilación o condiciones predominantes del viento
- (4) Exposición del gas al personal.
- (5) Acceso para el mantenimiento del sensor

Densidad.- La colocación del sensor debe estar en función de la densidad del gas a medir de tal forma que la colocación de los detectores de gases más pesados que el aire debe estar entre 0.6 a 1.21 m (2-4 pies) del nivel de referencia ya que estos gases tienden a mantenerse en áreas bajas. Para gases más ligeros que el aire, la localización del sensor debe estar de 1.21m a 2.43m (4-8 pies) sobre el nivel de la referencia en áreas abiertas o áreas cerradas.


Fuga de gas.- Las más probables fugas dentro de un proceso industrial incluyen válvulas y conexiones en tubos sellados donde estos sello puede fallar o desgastarse. Otras fugas de gas son determinadas con facilidad por personal con experiencia en procesos similares.

Ventilación.- La ventilación normal o las condiciones predominantes del viento pueden indicar la localización eficiente del sensor de gas de una manera donde las nubes de gas sean censadas rápidamente.

Exposición de gas al personal.- El movimiento de las nubes del gas no se debe permitir en áreas concentradas de personal tal como cuartos de control, mantenimiento ni almacenes.

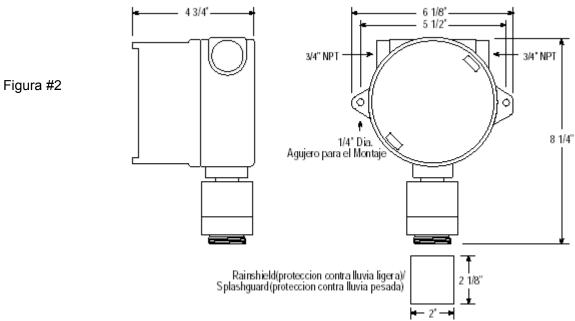
Acceso para el mantenimiento del sensor.- Hay que tomar en cuenta el fácil acceso del personal para el mantenimiento del sensor, así como las posibles consecuencias de fallas prematuras.

Nota: En todas las instalaciones, el elemento sensor en la cubierta de acero inoxidable se sitúa hacia abajo al nivel de referencia. (Figura 1). Una mala orientación del sensor resultará en una falsa lectura y un daño permanente al sensor.

3.5.3 Códigos Locales Eléctricos

El ensamblaje del sensor y transmisor debe ser instalados de acuerdo con todos los códigos locales eléctricos. Utilice sellos apropiados conduit. Se requieren válvulas de escape en la parte inferior de la tubería vertical. El ensamblaje del sensor esta diseñado para satisfacer los requisitos NEC y CSA para la Clase 1, División 1, Grupos B, C, D.

3.5.4 Acceso


Se debe considerar un acceso fácil al equipo por medio del personal de mantenimiento así como la aproximación a los contaminantes que pueden ensuciar el sensor prematuramente.

Nota: Un sello apropiado de la tubería se debe situar a 18 pulgadas del conjunto del sensor. Se recomendado para éste propósito "Crouse hinds" tipo EYS2 o EYD2 o equivalentes.

3.5.5 Procedimiento De Instalación

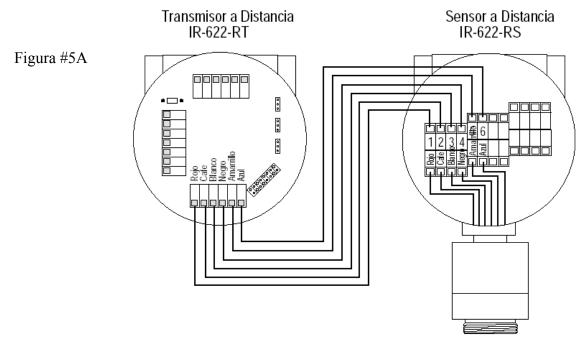
NOTA: Vea la sección 3.5.6 para mas información de una aplicación a distancia la cual el sensor (Modelo IR-540-RS) está instalado a distancia del transmisor (Modelo IR-540-RT).

- a) Remueva la tapa frontal del detector y desconecte la tarjeta transmisora jalando los tornillos.
- b) Asegure el montaje del sensor de acuerdo con la practica recomendada. Vea la figura dimensional (Figura 2).

c) Observe la polaridad correcta, finalice el cableado de los 3 cables conductores en campo de acuerdo con el detalle mostrado en la figura 3.

Nota: Para la aprobación U.L., estos relevadores solamente pueden usarse en conexiones a dispositivos que están alimentados con el **mismo** voltaje.

d) Coloque el circuito de control y vuelva a colocar la cubierta.

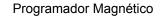

3.5.6 Aplicaciones En Instalaciones A Distancia

Algunas aplicaciones requieren que la cabeza del sensor de gas sea instalada lejos del transmisor. Esto se usa cuando la cabeza del sensor de gas tiene que estar instalado en lugares donde es difícil tener acceso. Como la localización del sensor será un problema para el mantenimiento y las calibraciones. Detcon cuenta con un sensor que tiene una configuración para instalaciones remotas, en la cual el sensor (Modelo IR-540-RS) y el transmisor (Modelo IR-540-RT) tienen su propio encapsulado condulet y estos están juntos por los seis cables conductores. Se requiere una cable blindado y tiene que ser instalado en su propio conduit (no se comparte) (vea el cable Alpha Wire Company #6342). Un máximo de 100 pies de separación es permitido Vea la figura 5A para un diagrama de cables.

3.5 INICIO

Ya completa toda la instalación y terminado el cableado en campo, aplique al sistema alimentación y observe las siguientes condiciones normales:

- a) El LED IR-540 está apagado (off).
- b) Una lectura de 0% CO2 debe indicar la conclusión de 12 segundos del ciclo "encendido".


Material Requerido

Multímetro Digital

Programador magnético Detcon MicroSafeTM NP 327-000000-000

3.6.1 Instrucciones De Operación Para El Programador Magnético

La operación de interfase de los productos de detección MicroSafeTM es por medio de interruptores magnéticos localizados detrás de cara del transmisor. **NO QUITE** la tapa del instrumento para calibrar o para cambiar los parámetros de programación. Las dos interruptores "PGM1" y "PGM2" permiten una calibración completa y un nivel de alarma programable sin remover la cubierta, de tal modo se elimina la necesidad de quitar la des-clasificación del área.

El programador magnético (ver la figura 6) se usa para operar los interruptores. Se define la acción de los interruptores como contacto momentáneo, sosteniéndolo 3 y 30 segundos. En el momento del contacto, se usa el programa oscilando sobre la posición del interruptor. Sosteniéndolo 3 segundos, el magneto programador es mantenido un lugar sobre la localización del interruptor por 3 o mas segundos. Sosteniéndolo 30 segundos, el magneto programador es mantenido en un lugar sobre la localización del interruptor por 30 o mas segundos. De tres a treinta segundos se debe sostener el magneto para entrar o salir del menú de calibración o del menú del programa mientras momentáneamente el contacto se usa para hacer ajustes. La ubicación de los puntos "PGM1" y "PGM2" se muestran en la figura 7.

Interruptor del Programa #1 Ajuste al Contraste de la Pantalla

Enchufe Microprocesador Circuito de Control

Pantalla para el manejo del menú

LEDs de Falla y Calibración Figura # 7

Interruptor del Programa #2

3.6.2 Prueba De Operación Inicial

Después de un periodo de inicio, se deberá revisarse para verificar su correcta sensibilidad al CO2.

Material Requerido

Adaptador para calibración Detcon NP 943-000006-132

Gas de 50% de la escala completa de CO2 en aire con una taza de flujo controlado de 500 y 1000 ml/min.

- a) Junte el adaptador para la calibración a la cubierta de roscada del sensor. Aplique el gas de prueba con una taza de flujo controlada de 500 a 1000 ml/m. Observe que la pantalla LCD aumenta a un nivel de 20% o mayor.
- b) Remueva el gas de calibración y observe que la pantalla LCD disminuye a "0.00 % CO2"
- c) Si las alarmas están activadas durante la prueba, y han sido programados para una operación de enclavamiento, reestablézcalas de acuerdo con las instrucciones en la sección 3.9.2.

La operación prueba está completa. Todos los detectores Detcon son pre-calibrado antes de ser enviado y, en la mayoría de los casos, no requieren ajustes significativos en el inicio. Sin embargo, Detcon recomienda una pprueba de calibración completa y los ajustes sean realizados dentro de 24 horas después de la instalación. Vea el punto calibración en las instrucciones.

3.7 CALIBRACIÓN

Material Requerido

Programador Magnético MicroSafe Detcon NP 327-000000-000

Adaptador para calibración Detcon NP 943-000006-038

Gas de contenga el gas aplicable para la calibración en aire. La concentración que se recomendad a 50% de la escala competa(el cual es predeterminado en la fabrica) con una taza de flujo controlado de 500 ml/min. Otras concentraciones pueden ser usadas mientras estén dentro del rango de 10% al 90%. Vea la sección 3.7.2 para mas detalles.

3.7.1 Procedimiento De Calibración – Zero

NOTA: Antes del funcionamiento de la calibración del cero, asegúrese que no esté presente ningún CO2.

- a) Entre al menú de calibración sosteniendo el programador magnético sobre el punto "PGM1" (vea la figura 6) por 3 segundos hasta que la pantalla muestre "1-ZERO 2-SPAN", después retire el programador magnético. Note que el LED "Cal" está encendido.
- b) Después, entre al menú del cero sosteniendo el programador magnético sobre el punto "PGM1" por 3 segundos hasta que la pantalla muestra "Zero 0%", después retire el programador magnético. El sensor ahora ha entrado al modo auto cero. Cuando esté completo la pantalla mostrará "ZERO COMPLETE" por 5 segundos y después regrese al menú de operación normal, "0.00% CO2"

NOTA 1: Si el circuito no puede ajustarse apropiadamente al ajuste del cero, el sensor entrará en el modo de calibración de falla el cual, causará que en la pantalla se intercalen entre el estado del sensor y la calibración de falla aparecerá como: "CAL FAULT" (vea sección 3.7.3).

NOTA 2: Cuando ocurra "CAL FAUTL", el microprocesador del sensor retendrá sus referencias anteriores de calibración pero la señal de 4-20 mA caerá a 0mA hasta que se corrija la falla.

3.7.2 Calibración del Span

PRECAUCIÓN: La revisión del nivel correcto de calibración y la concentración del gas de calibración es requerida antes de la calibración del span. Estos dos números deben ser iguales.

La calibración consiste en entrar en la función de calibración y seguir las instrucciones mostradas en la pantalla. La pantalla le pedirá la aplicación del gas de calibración a una concentración especifica. Esta concentración es igual al nivel de calibración del gas. El ajuste predeterminado en la fabrica para la concentración del gas de calibración es de 50%. En este caso, el gas de calibración contiene una concentración igual al 50% de la escala completa que es requerida. Si la concentración del gas de calibración de 50% del rango no está disponible, otra concentración puede usarse mientras este dentro del rango de 10% a 90%. Sin embargo, cualquier otra concentración de alternativa gas de calibración tiene que programarse por medio del nivel de calibración antes de proceder con la calibración del span. Siga las instrucciones de abajo para la calibración del span.

- a) a) Revise el estado del ajuste de nivel del gas de calibración como se indicó por medio del menú del estado del programa. Para hacer esto, siga las instrucciones en la sección 3.9 y vea el ajuste en el número 14. La instrucción aparece como: "Cal Level @ xx%".
- b) Si el ajuste del nivel de calibración es igual a su concentración del gas, pase al inciso "f". Si no, ajuste el nivel del gas de calibración para que este sea igual al suyo, como se dice en los incisos "c" a la "e".
- c) Entre al menú de programa, sostenga el programador magnético sobre el punto "PGM2" por 30 segundos hasta que en la pantalla aparezca "VIEW PROG STATUS", después retire el programador magnético. En este punto usted puede ver el menú del programa agitando el programador magnético sobre el punto "PGM1" o "PGM2". Las opciones del menu son: VIEW PROGRAM STATUS, y SET CAL LEVEL.
- d) Del menú de programación pase el nivel de calibración. El menú aparecerá como: "SET CAL LEVEL". Entre al menú sosteniendo el programador magnético sobre el punto "PGM1" por 3 segundos hasta que la pantalla lea "Cal Level @ ##%", después retire el programador magnético. Use el programador magnético para hacer los ajustes al "PGM1" para aumentar ó "PGM2" para disminuir la lectura de la pantalla hasta que la lectura sea igual a la concentración del gas patrón deseado. Guarde los cambio del valor sosteniendo programador magnético sobre el punto "PGM1" por 3 segundos.
- e) Regrese a la operación normal sosteniendo el programador magnético sobre "PGM2" por 3 segundos, o automáticamente regrese a una operación normal en 30 segundos.
- f) En el menú de calibración "1-ZERO 2-SPAN" (sección 3.8.1-a) proceda a los ajustes del span sosteniendo el programador magnético sobre el punto "PGM2" por 3 segundos hasta que la pantalla lea "APPLY xx%", después retire el programador magnético. Las "x" indicadas es la concentración del gas.

 Aplique el gas de calibración con una taza de flujo de 200 ml/min. Como la señal del sensor cambia, la pantalla cambiará a "SPAN XX%". Las XX es la lectura actual del gas la cual aumentará hasta que el sensor se estabilice. Cuando la señal del sensor sea estable y el auto span llegue a la concentración pedida, la pantalla cambiará a "SPAN COMPLETE" por dos segundos y después "REMOVE GAS". Remueva el gas. Cuando el nivel de la señal ha caído debajo del 10% de la escala completa, la pantalla volverá al menú de la operación normal, "0.00 % CO2".

NOTA 1: Si el circuito no es capaz de ajustarse apropiadamente al ajuste del span, el sensor entrará en el modo de calibración de falla el cual causara que en la pantalla se intercalen entre el estado del sensor y la calibración de falla aparecerá como: "CAL FAULT" (vea sección 3.7.3).

NOTA 2: Si después de entrar a la función del span, más de un minuto transcurre antes de que se le aplique el gas de calibración, el sensor entrará en un modo de calibración de falla el cual causará que en la pantalla se intercalen entre el estado del sensor y la calibración de falla aparecerá como: "CAL FAULT" (vea sección 3.7.3).

La calibración del span está completa.

3.7.3 Notas adicionales

- 1. Una vez entrando en el menú de calibración, la señal de 4-20mA caerá a 2mA y estará así hasta que regrese a la operación normal.
- 2. Si durante la calibración el circuito del sensor no es capaz de responder a un ajuste del span, el sensor entrará dentro del modo de calibración de falla el cual activará las funciones de las alarmas de falla (vea la sección 3.9) y causa que en la pantalla se intercalen entre el estado del sensor y la calibración de falla aparecerá como: "CAL FAULT". Si esto ocurre usted puede intentar re-calibrar entrando al menú de calibración como se dijo en la sección 3.8.1 inciso "a". Si el sensor vuelve a fallar, vea la sección de solución de problemas técnicos.

3.7.4 Frecuencia de calibración

En la mayoría de las aplicaciones, la calibración debe ser mensual a trimestral esto asegura un buen rendimiento del sensor. Sin embargo, los ambientes industriales difieren de lo anterior. Es recomendable hacer pruebas de calibración más frecuentes ya sea semanalmente o mensualmente. Los resultados de pruebas se deben registrar para determinar un intervalo conveniente de calibración.

3.8. Estado del programa, Nivel de Calibración, Temperatura y Vida del sensor

El menú del programa tiene un estado del programa que permite al operador ver el gas, el rango, y la versión del programa, así como los ajustes actuales de las alarmas, el ajuste del nivel de calibración, el número de identificación (ID) del RS-485, y la vida estimada del sensor. La función del menú del programa también permite el cambio del ajuste del nivel del gas de calibración (vea la sección 3.7.2), y el nivel del las alarmas (vea la sección 3.9).

El siguiente procedimiento es usado para ver el estado del programa del sensor:

- a) Primero, entre al menú del programa sosteniendo el programador magnético sobre el punto "PGM2" por 30 segundos hasta que la pantalla aparezca: "VIEW PROG STATUS", después retire el programador magnético. En éste punto usted puede ver el menú del programa pasando el programador magnético por los puntos "PGM1" ó "PGM2". Las opciones del menú son: "View Program Status, y Set Cal Level".
- b) Después, quédese en "VIEW PROG STATUS" y pase el programador magnético sobre el punto "PGM1" por 3 segundos. El menú automáticamente después de un intervalo de 5 segundos, regresará al menú "VIEW PROG STATUS" mencionado.
- 1 El tipo de gas, rango de detección y la versión del programa. En el menú aparecerá como: "CO2 0-100 V6.0"
- 2 -El nivel de gas de calibración. En el menú aparecerá como: "CalLevel @ xx%"
- 3 La temperatura del sensor en °C aparecerá como: "TEMPERATURE xx °C"
- 4 La vida estimada del sensor. En el menú aparecerá como: "OPTICS AT 100%"
 - c) Regrese a la operación normal, sosteniendo el programador magnético sobre el punto "PGM2" durante 3 segundos, ó automáticamente regresará a la operación normal en 30 segundos.

3.9 VENTAJAS DEL PROGRAMA

El sensor modelo IR-540 MicroSafeTM Detcon, se incorpora a un programa de fácil operación de interfase y una operación a prueba de falla. Las ventajas del programa están detalladas en esta sección. Cada sensor es probado, programado y calibrado en la fabrica antes de ser enviados.

Rango arriba del limite

Cuando un sensor detecta más gas del 100% de la escala completa, esto causará en la pantalla un flash "**OVER RANGE**" prendiendo y apagando.

Vida del Óptico

La ventaja de la vida del óptico se basa en una referencia en la señal de salida del sensor óptico. Cuando la vida de un sensor óptico es 25% o menor, debe remplazarse.

Falla en la Calibración

Si durante la calibración el circuito del sensor es incapaz de alcanzar un ajuste apropiado para el cero o el span, el sensor entrará dentro de un modo de calibración de falla y en la pantalla mostrará intercalando entre la lectura del estado actual del sensor y la pantalla de calibración: "CAL FAULT.2".

Las siguientes condiciones causarán una falla de calibración:

- 1- La calibración del cero no puede convergir.
- 2- El auto span no puede convergir. (demasiado ruido ó demasiada inestabilidad)
- 3- El gas no es aplicado después de 1 minuto transcurrido.

Falla de seguridad / Falla de Supervisión

El sensor MicroSafeTM modelo IR-540 está programado para una operación de falla de seguridad. Todas las condiciones de falla mencionadas abajo iluminarán el LED de falla, causando la salida mA un descenso a cero (0) mA, y causara la pantalla la lectura de las siguientes condiciones de falla.

Error en la Memoria

Si el procesador no puede guardar los valores en la memoria, la pantalla indicará: "MEMORY ERROR"

Falla en el Cero

Si el sensor tiende a bajar a –10%, la pantalla indicará: "ZERO FAULT"

Falla de la Lámpara

Si la señal de la lámpara está perdida, la pantalla indicará: "LAMP FAULT.2"

Falla por Pico Alto de referencia

Si la referencia de la señal de pico es muy alta (>3600), la pantalla indicará: "SIGNAL FAULT.31"

Falla por Pico Alto Activo

Si la señal del pico activo es muy alta (>3600), la pantalla indicará: "SIGNAL FAULT.32"

Falla por Pico bajo de referencia

Si la referencia de la señal de pico es muy baja (<500), la pantalla indicará: "SIGNAL FAULT.41"

Falla por Pico Alto Activo

Si la señal del pico activo es muy baja (<500), la pantalla indicará: "SIGNAL FAULT.42"

Falla por referencia de pico a pico bajo

Si la referencia de pico a señal de pico es muy baja (<200), la pantalla indicará: "SIGNAL FAULT.51"

Falla por pico activo a pico bajo

Si el pico activo a la señal de pico es muy bajo (<200), la pantalla indicará: "SIGNAL FAULT.52"

3.10Ajustes del Contraste de la Pantalla

Las características del sensor MicroSafeTM modelo FP-624C son de 16 caracteres en la pantalla de cristal líquido. Como la mayoría de los LCDs, los caracteres de contraste pueden ser afectados por un ángulo de visión y la temperatura. El circuito que compensa la temperatura esta incluido en el diseño MicroSafeTM que compensa estas características, sin embargo las temperaturas extremas podrían seguir causando un cambio dentro del contraste. El contraste en la pantalla puede ser ajustado por el usuario si es necesario. Sin embargo, cambiar el contraste requiere que la caja del sensor sea abierta, por lo tanto se requerirá la des-clasificación.

Para ajustar el contraste en la pantalla quite la cubierta del encapsulado y utiliza un desarmador tipo relojero para dar vuelta al contraste ajustando el tornillo situado debajo de la placa de la cara metálica. EL punto de ajuste está marcado en "CONTRAST". Vea la figura 7 para la localización del punto.

3.11 Procedimiento de reemplazo del sensor óptico

Si el elemento óptico del sensor (NP 370-365871-212) requiere el reemplazo, use el siguiente procedimiento:

- 1- (A) Si el sensor está instalado en un área clasificada, primero la alimentación del sistema del transmisor debe quitarse antes de empezar.
 - (B Si el área no tiene clasificación, quite la cubierta del encapsulado frontal y desconecte el modulo transmisor.
- 2- Quite la parte inferior de la cubierta del sensor usando una llave Allan (3 tornillos).
- 3- Quite el sensor óptico actual y substitúvalo por el sensor óptico nuevo (NP 370-365871-212).
- 4- Re-instale la parte inferior de la cubierta del sensor.
- 5- Restablezca la alimentación del sistema (si está clasificado) ó conecte el modulo transmisor y remplace la cubierta encapsulada (si no está clasificada)
- 6- Cuando la unidad reporte el mensaje "WARMING UP", use el programador magnético y agite a través del punto PGM1 ó PGM2. Esto hará que la unidad ponga en modo de ganancia unitaria la cual le toma 1 minuto en completarse.
- 7- Realice una nueva calibración cero seguida por una nueva calibración del span (vea la sección 3.7).

3.12 Guía de Solución de Problemas

Falla de Calibración (CalFault.2)

Falla de Calibración (Cero ó Span) puede despejarse por una exitosa repetición de calibración. Vea la apropiada sección en el Manual de Operación y siga el procedimiento.

Falla de Despeje (Memory Error, LampFault.2, y SignalFaults.XX)

Si una falla de diagnostico ocurre (Memory Error, LampFault.2, ó SignalFaults.XX) esto puede ser un problema permanente o temporal. Si es un problema temporal, esto puede despejarse usando lo siguientes pasos 1) y 2). Si esto no puede despejarse entonces es un problema permanente y se necesita localizar la falla.

- 1) Desconecte y conecte el transmisor a un ciclo de alimentación. Determine si la falla se ha despejado.
- 2) Re-inicialice la unidad desconectando y conectando el transmisor e inmediatamente después pase su programador magnético sobre le punto PGM1. La unidad entrará en un modo de iniciación reajuste los ajustes ópticos de la ganancia. Observe la unidad como los ajustes de la ganancia (GN) está contando hacia atrás e la o Ir se cuenta hasta 2700. Registre el valor determinado de la ganancia reportado al último mostrada como la o Ir alcanza 2700. Después registre el valor final de la e Ir el cual es mostrado a continuación. Finalmente registre la temperatura la cual es mostrada al final. Determine si la falla se ha despejado.

Lecturas normales son definidas abajo y deben ser registradas para discutirlas con el personal técnico del servicio de Detcon:

Aiuste de Ganancia: 55-130

Ir: 2000-2700 la: 1800-2700

Temp: 32C 40C (aproximadamente 10C mas alto que la temperatura ambiental)

3)Contacte a Detcon para un servicio y reparación si lo anterior no ha solucionado el problema.

Falla del Cero

La Falla del cero es una indicación que muestra que el nivel del cero tiende a un rango menor de 10%. La falla del cero puede despejarse por medio de una re-calibración del cero con gas cero.

No se puede leer la pantalla

- 1. Si el fondo es azul, instale una protección para reducir la temperatura.
- 2. Si es muy pobre el contraste, ajústalo con el potenciómetro del contraste.

No muestra nada la pantalla - El Transmisor no responde

- 1. Revise que el condulet no tenga acumulado agua o corrosión anormal.
- 2. Revise que la alimentación CD sea conectada correctamente a las terminales.
- 3. Intercambie la tarjeta del transmisor por una que esté en buen estado para determinar si la tarjeta está en falla.

Mala salida de 4-20 mA o RS-485

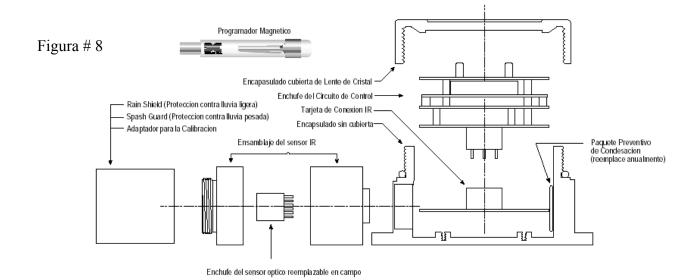
- 1. Revise los cables conectados a cada terminal de salida.
- 2. Intercambie la tarjeta del transmisor por una que esté en buen estado para determinar si la tarjeta está en falla.

Salida Inestable/ Rápida Caída/ Falsa Alarma

- 1. Compruebe el condulet por acumulación de agua.
- 2. Revise el transmisor y la terminal PCB para una corrosión anormal.
- 3. Determínese si el problema es correlativo a los ciclos de condenación.
- 4. Agregue / Cambie el paquete preventivo de condensación Detcon NP 960-202200-000 (remplace anualmente).
- 5. Revise la fuente de alimentación por inestabilidad.
- 6. Revise sí la tierra no esta inadecuada.
- 7. Si existe relación con comunicaciones por radio entonces use un filtro RFI Detcon.
- 8. Contacte a Detcon para asistencia en mejorar el blindado, tierra o protección RFI.

Flujo Excesivo del Span o Baja Respuesta

- 1. Revise la correcta taza de flujo del gas de calibración y use correctamente el adaptador del gas de calibración.
- 2. Compruebe la validez del gas de calibración por medio de la fecha de vencimiento.
- 3. Revise si existe alguna obstrucción a través del filtro de acero inoxidable (Incluyendo sí está mojado)
- 4. Reemplace el sensor si tiene una vida óptica menor al 25%

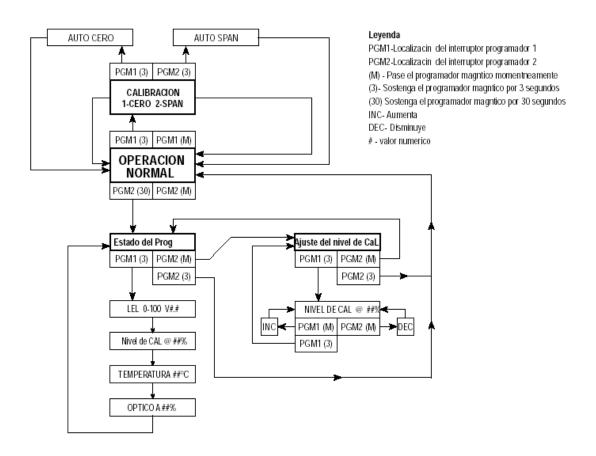

Corrimiento del Cero

Puede ser la lectura correcta si hay fugas de gas o el sensor fue calibrado cuando el gas actual estaba presente y se despejó posteriormente.

- 1. Re calibre a cero usando una muestra de gas cero.
- 2. Reemplace el sensor si tiene una vida óptica menor al 25%

3.13 LISTA DE PARTES

Número de Parte	Descripción
613-010000-000	Rain Shield
613-120000-000	Splash Guard
943-000006-132	Adaptador para la calibración
390-000088-000	Cubierta del sensor IR (no incluye el enchufe del detector NP 370-36587-212)
370-365878-111	Sensor óptico NDIR reemplazable en campo
926-405500-003	Tarjeta de Control
327-000000-000	Programador Magnético
897-850800-000	Encapsulado sin cubierta 3- puertos NEMA 7
897-850700-000	Cubierta del encapsulado con lente de cristal NEMA 7
960-202200-000	Paquete de Prevención de Condensación (reemplace anualmente)


3.14 GARANTÍA

Detcon Inc, como fabricante, garantiza cada elemento del sensor (número de parte 370-201600-000), por un periodo pro-rateado de cinco años bajo las siguientes condiciones. La garantía empieza el día en que se hizo el pedido y termina cinco años después. El elemento del sensor está garantizado contra defectos de material y mano de obra. Puede que algún sensor falle en el rendimiento dentro del periodo de garantía, favor de devolverlo a Detcon Inc., 3200 A-1, Research Forest Dr, The Woodlands, Texas 77381, para reparaciones necesarias o reemplazo.

3.15 PÓLIZA DE SERVICIO

Detcon Inc, como fabricante, garantiza que bajo uso norma cada enchufe de circuito de control MicroSafeTM y sus componentes contra defecto de mano de obra por un periodo de dos años desde la fecha de envío. Detcon Inc., provee cinco años de servicio gratuito con la póliza si algún transmisor tuviera que repararse, con un costo de USA\$ 65. La póliza de servicio realizará cualquier reparación de fabrica por el período de 2 años de garantía y terminara 5 años después de expedida ésta garantía. Todas las garantías y pólizas de servicio son en LAB en la empresa Detcon localizada en The Woodlands, Texas.

3.16 DIAGRAMA DE FLUJO DEL PROGRAMA

Shipping Address: 3600 A-1 Research Forest Dr., The Woodlands, Texas 7381
Mailing Address: P.O. Box 8067, The Woodlands, Texas 77387-8067
phone 888-367-4286, 281-367-4100 • fax 281-292-2860 • www.detcon.com • sales@detcon.com