LEXIUM Comunicazione tramite Modbus Plus

ita Febbraio 2005

Struttura della documentazione

In breve

Documenti da consultare:

- Rete Modbus Plus:
 - Manuale Modicon d'installazione 890 USE 100 00 Manuale Modicon di riferimento del protocollo Modbus Plus PI-MBUS-300
- PLC Quantum:
 - Modicon Modsoft Programmer User Manual 890 USE 115 00 Modicon Ladder Logic Block Library User Guide - 840 USE 101 00
- PLC Premium:
- Funzioni specifiche di comunicazione PL7 Micro/Junior/Pro TLX DS COM PL7 43F
- Variatore Lexium:

Manuale utente Lexium

Manuale utente software Unilink

Elenco dei comandi ASCII

Questi documenti sono disponibili sul CD-ROM Lexium Motion Tools (riferimento AM0 CSW 001V350).

Indice

	Informazioni su	.7
Capitolo 1	L'offerta Modbus Plus su LEXIUM In breve Implementazione: Generalità Metodologia.	. 9 10
Capitolo 2	Messa in opera hardware. In breve Installazione: Generalità Precauzioni di montaggio Codice di riferimento degli accessori Modbus Plus Connessione al bus Modbus Plus Struttura della scatola di derivazione	13 14 16 17 18
Capitolo 3	Implementazione software. In breve . Parte software: generalità . Funzionamento del variatore sulla rete . Peer Cop: dati di comando Lexium a partire dal PLC . Dati globali inviati da Lexium . Messaggeria .	23 24 25 26 28
Capitolo 4	Stazione di comando Quantum In breve Stazione di comando Quantum: generalità Stazione di comando Quantum Blocco MSTR	33 34 35
Capitolo 5	Stazione di comando Premium In breve Stazione di comando Premium Utilizzo dei Dati globali Utilizzo della messaggeria. Esempio di programmazione 1 Esempio di programmazione 2	47 48 50 51 53

Capitolo 6	Configurazione di Lexium: parametri	
	In breveparametri di comunicazione	
	Configurazione dell'indirizzo del TimeOut tramite Unilink o terminale	
	Dati Peer Cop	65
	Configurazione dei dati globali tramite Unilink o terminale	67
Capitolo 7	Diagnostica: segnalazione	
	In breve	
	Diagnostica: i vari stati	
Capitolo 8	Modalità di funzionamento del variatore	
	In breve	
	Standard DRIVECOM	
	Grafico di stato/Comando strumenti con Lexium	
	Parola di comando DRIVECOM	
	Parola di stato DRIVECOM	
Capitolo 9	Prestazioni teoriche	89
Capitolo o	Prestazioni teoriche	
Capitolo 10	Elenco delle variabili di Lexium: Generalità	93
•	In breve	93
	Variabili generali di Lexium: generalità	
	Variabili logiche in lettura/scrittura	
	Elenco delle variabili logiche e dei registri di stato	
	Registri di stato in lettura/scrittura	
Glossario		.105
lm all c c		107
Indice analitico		. IU/

Informazioni su...

In breve

Scopo del documento

Questo documento presenta una descrizione non completa dell'ambiente Modbus Plus, delle principali stazioni di comando e del funzionamento del variatore Lexium.

Commenti utente

Inviare eventuali commenti all'indirzzo e-mail techpub@schneider-electric.com.

L'offerta Modbus Plus su LEXIUM

1

In breve

Argomento di questo capitolo

Questo capitolo descrive l'implementazione di Modbus Plus su LEXIUM

Contenuto di questo capitolo

Questo capitolo contiene le seguenti sottosezioni:

Argomento	Pagina
Implementazione: Generalità	10
Metodologia	12

Implementazione: Generalità

In breve

La scheda opzionale di comunicazione Modbus Plus consente di collegare un variatore Lexium su una rete Modbus Plus.

La confezione della scheda opzionale Modbus Plus comprende:

- Una scheda opzionale con il codice di riferimento AM0 MBP 001 V000.
- Un CdRom contenente questa quida.

I cavi e gli accessori Modbus Plus non sono inclusi. I riferimenti degli elementi necessari sono riportati in modo dettagliato al capitolo Implementazione hardware.

Compatibilità

È possibile utilizzare questa scheda sui variatori digitali Lexium MHDA con setpoint analogico:

Codice di rif.	Corrente di uscita permanente
MHDA 1004.00	1.5 A eff
MHDA 1008.00	3 A eff
MHDA 1017.00	6 A eff
MHDA 1028.00	10 A eff
MHDA1056.00	20 A eff
MHDA 1112.00	40 A eff
MHDA 1198.00	70 A eff

Nota: Regole di compatibilità:

- Il numero di serie del variatore deve essere superiore o uguale a 0770 220.200
 - (*) o RL (Livello di revisione) ≥8.
- La versione software implementata nel variatore deve essere uguale o superiore alla V4.20.
- La versione PL7 deve essere successiva o uguale alla V3.0.
- La versione Unilink deve essere successiva o uguale alla V2.0

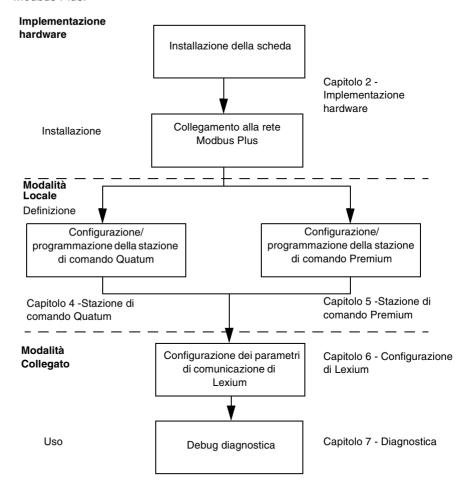
(*) Per un numero di serie inferiore a 770 220 000 la connessione Modbus Plus è impossibile.

Per un numero di serie compreso tra 770 220 000 e 770 220 200 prendere contatto con il supporto tecnico Schneider.

Compatibilità alle norme della Scheda Opzionale

- EN61131-2
- IEC 1000-4-2
- IEC 1000-4-3
- IEC 1000-4-5
- IEC 1000-4-6
- EN55022/55011
- UL508
- CSA 22-2

Temperatura di funzionamento


• In funzione: da 0 a 60°C

• Immagazzinamento: da -25°C a +70°C

Metodologia

Organigramma della presentazione

Il seguente organigramma riassume le varie fasi di messa in opera di un variatore Lexium dotato di una scheda opzionale Modbus Plus in un'architettura di rete Modbus Plus.

Messa in opera hardware

2

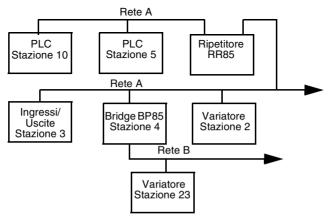
In breve

Argomento di questo capitolo

Questo capitolo descrive l'implementazione hardware di Modbus Plus su LEXIUM.

Contenuto di questo capitolo

Questo capitolo contiene le seguenti sottosezioni:

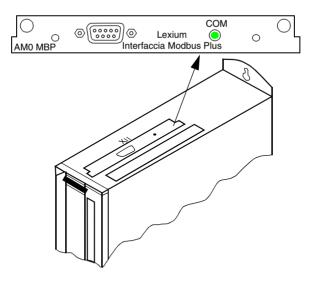

Argomento	Pagina
Installazione: Generalità	14
Precauzioni di montaggio	16
Codice di riferimento degli accessori Modbus Plus	
Connessione al bus Modbus Plus	18
Struttura della scatola di derivazione	

Installazione: Generalità

In breve

Modbus Plus è una rete locale creata per le applicazioni di controllo industriale. È possibile collegare fino a 32 stazioni su un cavo di rete lungo al massimo 450 m. Tramite l'uso di ripetitori, è possibile aumentare la lunghezza del cavo fino a 1800 m e il numero delle stazioni fino a 64. Utilizzando dei bridge e multiplexer a bridge è possibile collegare più reti Modbus Plus.

Esempio di architettura Modbus Plus



Le reti A e B sono collegate tramite un "Bridge Plus 85". Per ulteriori informazioni sui vari elementi, consultare la quida di installazione della rete Modbus Plus Modicon.

Le stazioni della rete sono identificate tramite un indirizzo configurato dall'utente. Ognuno di tali indirizzi è indipendente dall'alloggiamento fisico sul sito. È possibile utilizzare indirizzi compresi tra 1 e 64, non necessariamente consecutivi. Non è possibile duplicare gli indirizzi. In caso di duplicazione di indirizzo, non è possibile collegare la relativa apparecchiatura e il LED di diagnostica indicherà un errore. Vedere *Diagnostica: segnalazione, p. 69*

Installazione

La scheda opzionale Modbus Plus viene consegnata non montata sul variatore. La posizione destinata a questa scheda (codice di rif. X11 sul variatore) è protetta da una mascherina a vite.

La scheda opzionale Modbus Plus dispone di un connettore femmina Sub-D 9 e di un LED verde di diagnostica.

La scheda riceve l'alimentazione dal Lexium.

Precauzioni di montaggio

Procedura

Attenzione: Prima di qualsiasi intervento, verificare che il variatore sia fuori tensione.

Fase	Azione
1	Staccare la mascherina di copertura della porta destinata alle schede opzionali.
2	Prestare attenzione a non fare cadere elementi, ad esempio le viti, nell'alloggiamento aperto.
3	Posizionare con cautela la scheda nell'alloggiamento seguendo i binari guida.
4	Spingere decisamente sulla scheda fino a quando l'innesto giunga a contatto con il bordo del variatore. In tal modo, la scheda è collegata correttamente al variatore.
5	Fissare la scheda con le apposite due viti.

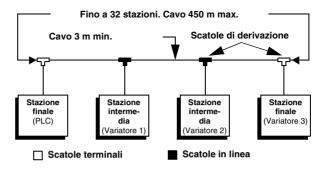
Codice di riferimento degli accessori Modbus Plus

Tabella dei codici di riferimento

Tabella dei codici Codici di riferimento dei vari accessori

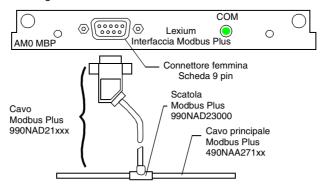
Accessorio	Codice di rif.
Multiplexer a bridge	BM85
Bridge BP85	NWBP 85 002
Ripetitore RR85	NWRR 85 001
Cavo di derivazione 2,4 m	990 NAD 219 10
Cavo di derivazione 6 m	990 NAD 219 30
Cavo principale di rete 30,5 m	490 NAA 271 01
Cavo principale di rete 152,5 m	490 NAA 271 02
Cavo principale di rete 305 m	490 NAA 271 03
Cavo principale di rete 457 m	490 NAA 271 04
Cavo principale di rete 1525 m	490 NAA 271 05
Scatola di derivazione IP 20	990 NAD 230 00
Scatola di derivazione IP 65	990 NAD 230 10
Terminazione di linea per scatola di derivazione IP20	AS MBKT 185
Terminazione di linea per scatola di derivazione IP65	990 NAD 230 11
Scheda PCMCIA Modbus Plus per Premium	TSX MBP 100
Cours manufa and a DOMOLA MADD. Ore	TSX MBP CE 030
- Cavo per la scheda PCMCIA MBP_3m	TSX MBP CE 060
- Cavo per la scheda PCMCIA MBP_6m	

Nota: Per maggiori informazioni, fare riferimento ai cataloghi Schneider.

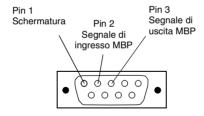

Connessione at bus Modbus Plus

Introduzione

Il bus è costituito da un doppino schermato che segue su un percorso diretto tra una stazione e la successiva. Le due linee di dati all'interno del cavo non dipendono dalla polarità.

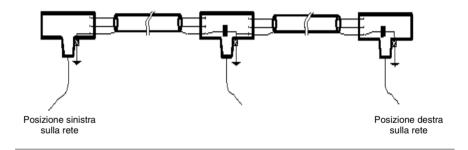

Schema di collegamento delle stazioni

Il collegamento delle stazioni sul cavo di rete avviene tramite una scatola di derivazione. Fanno parte della configurazione delle "traversate" per il cavo principale e una "scatola di derivazione" per il cavo che giunge alla stazione.



Collegamento della scheda opzionale al cavo principale

A ogni punto intermedio tra la scatola e la stazione corrispondente è utilizzato un cavo principale. Il cavo è già dotato a un'estremità di un connettore Sub-D a 9 pin per il collegamento con la stazione.

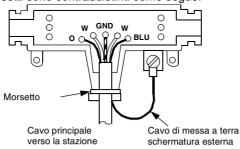


La scheda opzionale si connette al cavo principale di rete tramite il connettore Sub-D9, il cui collegamento è indicato di seguito.

Connessione del bus principale

L'ingresso sinistro della scatola di derivazione è differente da quello del lato destro: la messa a terra del cavo principale non è simmetrica. È necessario mantenere lo stesso orientamento delle scatole di derivazione su tutta la rete.

Struttura della scatola di derivazione

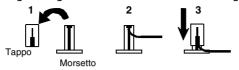

Principi e schemi

Un'estremità del cavo principale è libera, in modo che possa essere collegata alla scatola di derivazione.

Collegamento alla scatola:

- Inserire il cavo nella scatola di derivazione e fissarlo in posizione con il morsetto
- Collegare i fili seguendo le indicazioni della figura seguente.

I morsetti sono contraddistinti come segue:



Colore dei vari morsetti

Morsetto	Colore del filo
0	Arancione
W	Bianco
GND	Schermatura
W	Bianco
BLU	Blu

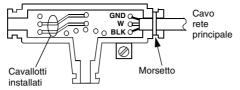
Principi di collegamento

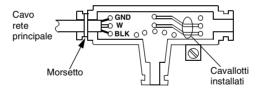
Le figure seguenti descrivono l'ordine di collegamento.

Procedura Passaggi

Fase	Azione	
1	Per collegare ogni filo, togliere il tappo in plastica del morsetto.	
2	Inserire il filo nell'alloggiamento del morsetto.	
3	Con un cacciavite, applicare nuovamente il tappo e spingere per inserire il filo nell'alloggiamento. È disponibile uno strumento apposito per questa operazione. (Riferimento AMP 552714-3).	

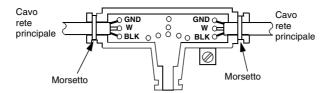
Collegamento del filo di schermatura esterna:


Collegare un capocorda aperto sul cavo di schermatura esterna, tramite saldatura o tramite crimpatura, e collegarlo alla vite di messa a terra della scatola come indicato nella figura seguente.


Cablaggio della rete:

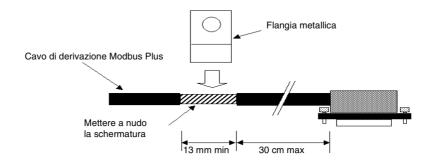
A seconda della posizione sulla rete, è possibile cablare la scatola di derivazione in due modi diversi

Scatole di terminazione Modbus Plus:


La scatola di derivazione include un terminale di linea resistivo collegato con due cavallotti interni. Per evitare riflessioni del segnale, a ogni estremità di un cavo di rete è necessario collegare i due cavallotti che si trovano all'interno della scatola.

Scatole in raccordo di linea Modbus Plus:

Nel caso delle scatole in raccordo di linea, i due cavallotti non sono collegati.



Messa a terra dei cavi di derivazione

Il cavo Modbus Plus di derivazione deve essere collegato a terra tramite la base oppure un punto equivalente della rete.

Il collegamento a terra della base viene realizzato con l'ausilio di una flangia metallica che collega la schermatura del cavo alla base.

La flangia è fornita con la scatola di derivazione.

Implementazione software

3

In breve

Argomento di questo capitolo

Questo capitolo descrive il funzionamento generale della comunicazione di Modbus Plus.

Contenuto di questo capitolo

Questo capitolo contiene le seguenti sottosezioni:

Argomento	Pagina
Parte software: generalità	
Funzionamento del variatore sulla rete	
Peer Cop: dati di comando Lexium a partire dal PLC	
Dati globali inviati da Lexium	
Messaggeria	

23

Parte software: generalità

Generalità

La comunicazione tramite Modbus Plus consente lo scambio di dati tra tutte le stazioni collegate sul bus.

Il protocollo Modbus Plus è basato sul principio di bus a token logico (Logic token passing). Il token è una base di dati circolante tra le stazioni. Quando è in possesso del token, una stazione ha la possibilità di leggere i dati emessi dalle altre stazioni o di scrivere altri dati destinati ad esse

Sono disponibili tre funzioni di comunicazione:

Messaggeria

Metodo di comunicazione punto-punto tra le apparecchiature della rete. Il trasmettitore del messaggio invia una richiesta alla stazione destinataria. La stazione interpellata deve emettere una conferma di ricezione del messaggio e trasmettere la risposta al passaggio successivo del token. Il messaggio può contenere fino a 100 registri in formato 16 bit. La portata della messaggeria non è limitata al segmento di rete, ma può attraversare i router.

Peer Cop

Il metodo Peer cop (noto anche con il nome di uscita specifico) è un metodo che permette di assegnare un blocco del registro di un nodo specifico ai registri di comando e di regolazione del variatore. Il nodo d'invio invia i dati Peer Cop una volta per ogni passaggio del token. Ogni nodo di comando può inviare fino a 32 parole di dati Peer Cop ai nodi specifici della rete fino a un massimo totale di 500 parole. Peer Cop è un metodo rapido ed efficace per l'invio dei dati del nodo di comando al variatore. Non richiede la scrittura del programma in linguaggio Ladder.

Nota: i dati Peer Cop non possono attraversare i ponti. Allo stesso modo, il variatore può ricevere i dati Peer Cop, ma non può emetterne.

Dati globali

Quando un nodo di rete è in possesso di un token, può comunicare con altri nodi del collegamento ed acquisire dati per statistiche di rete. Quando un nodo rilascia un token, aggiunge fino a 32 parole di dati globali a 16 bit al pacchetto dati del token. Tutti i nodi presenti nella rete rilevano questo pacchetto di dati e tutti i nodi correttamente programmati possono estrarre i dati e salvarli nella propria base di dati globale. Per una rete Modbus Plus con un massimo di 64 nodi, la base di dati globale può contenere fino a 2048 parole a 16 bit (32 parole per nodo). Più reti non possono condividere i dati globali, poiché il token non può attraversare un ponte.

Funzionamento del variatore sulla rete

Introduzione

Il variatore Lexium è presente sulla rete Modbus Plus come stazione "slave". Il variatore

- riceve dei dati Peer Cop (max. 9 parole) ;
- emette dei dati globali (max. 18 parole) ;
- risponde alle richieste della messaggeria (Lettura/Scrittura).

I capitoli che seguono descrivono brevemente i parametri di Lexium accessibili tramite Modbus Plus. Per ulteriori informazioni su questi parametri, consultare l'elenco dei comandi ASCII disponibile sul CD-ROM Lexium Motion Tools (riferimento AM0 CSW 001V350).

Peer Cop: dati di comando Lexium a partire dal PLC

In breve

La struttura dei dati Peer Cop ricevuti dal variatore è predefinita. L'utente può specificare il numero di registri da trasmettere. Questo numero è configurato tramite Unilink con il parametro Peer Cop ASCII. L'impostazione di questo parametro a 0 disattiva le transazioni Peer Cop.

La tabella che segue indica i registri di comando trasmessi dal PLC al Lexium come dati Peer Cop, nonché l'ordine di invio dei registri. Ad esempio, se si configura il registro 4x 40400 come registro sorgente di uscita specifica, l'oggetto OPMODE dovrà trovarsi nel registro 40405.

Ordine dei dati Peer Cop	Oggetto	Descrizione	
1	STW	Parola di comando DRIVECOM Descrizione: (Vedi <i>Modalità di funzionamento del variatore, p. 73</i>)	
2	VCMD	Setpoint di velocità. Unicamente in modalità 0 (OPMODE=0, comandato con il bit 6 di STW) Unità in (3000*rpm)/10000	
3	ICMD	Setpoint di corrente (OPMODE=2, comandato con il bit 6 di STW) Unità = (2 x corrente nominale del variatore in Ampère) / 10 [unità in mA]	
4	S_SETH (meno significativo)	Setpoint di posizione assoluta per incremento. (OPMODE=5, comandato con il bit 6 di STW) (*)	
5	S_SETH (più significativo)		
6	OPMODE	Funzione di base del variatore: 0 : setpoint di velocità 1 : setpoint di velocità analogica 2 : setpoint di coppia numerica 3 : setpoint di coppia analogica 4 : posizionamento tramite encoder esterno 5 : posizionamento tramite rete esterna Modbus Plus) 8 : ordine di posizionamento	
7	MOVE	Avvio del task di posizionamento parametrato (0–255). Questi dati sono validi solo in modalità 8 (OPMODE=8, comandato con il bit 6 di STW)	
8	VJOG (meno significativo)	La modalità JOG è un task di movimento infinito. Questo valore definisce la velocità di trasferimento in incrementi ed è valido solo in modalità 8 (comandato con il bit 8 di STW).	
9	VJOG (più significativo)		

(*) Questa modalità "traiettoria" prevede due parametri:

- PTBASE (indirizzo: 213) : base di tempo espressa in N*250 μs Esempio: N=4 implica un tempo di interpolazione di 1ms
- PRBASE (indirizzo: 209): definisce il numero di incrementi per giro Esempio: N=20 ossia 2²⁰=1048576 incrementi/giro

Dati globali inviati da Lexium

Lista delle variabili trasmesse

Anche la lista delle variabili trasmesse nei dati globali è predefinita. L'utente può specificare il numero di registri da trasmettere.

Se per il variatore Lexium viene attivato l'invio dei dati globali, è possibile diffondere sulla rete fino a 18 registri di visualizzazione del variatore come dati globali per ogni rotazione del token. Per attivare l'invio dei dati globali, inserire il numero dei registri di visualizzazione da trasmettere nel parametro GDTX tramite Unilink (Vedi Configurazione di Lexium: parametri, p. 59). L'impostazione a "0" di questo parametro disattiva l'invio dei dati globali.

La seguente tabella indica i registri di visualizzazione trasmessi come dati globali a partire dal Lexium, nonché l'ordine di invio dei registri durante il trasferimento dei dati globali. Ad esempio, se si configura il registro 4x 40500 come registro di destinazione di ingresso globale, l'oggetto ERRCODE (più significativo) dovrà trovarsi nel registro 40504.

Ordine dei dati globali	Designazione	Descrizione
1	zsw	Parola di stato DriveCom Modalità di funzionamento del variatore, p. 73
2	STATCODE (meno significativo)	Allarme in corso
3	STATCODE (più significativo)	N° bit 0 : superata soglia IT 1 : raggiunta potenza stabilizzatrice 2 : superato l'intervallo dell'errore di inseguimento 3 : protezione del nodo attiva 4 : fase di rete mancante 5 : superato il limite software 1 6 : superato il limite software 2 7 : comando di avvio errato 8 : punto di origine mancante 9 : utilizzato il limite PSTOP 10 : utilizzato il limite NSTOP 11 : dati impliciti HIPERFACE 12 : malfunzionamento della scheda di estensione 13 : modalità di riferimento HIPERFACE reinizializzata a 0 14 : errore tabella velocità/corrente 15-30 : riservato 31 : versione software Beta non autorizzata

Ordine dei dati globali	Designazione	Descrizione
4	ERRCODE (meno significativo)	Errore in corso:
5	ERRCODE (più significativo)	N° bit 0: temperatura del dissipatore di calore troppo elevata 1: sovratensione 2: errore d'inseguimento 3: errore di feedback 4: sotto tensione 5: temperatura motore troppo elevata 6: guasto alla tensione ausiliaria 7: superamento velocità max. 8: errore EEPROM 9: errore Flash EPROM 10: freno guasto 11: errore fase motore 12: temperatura interna troppo elevata 13: errore stato di potenza finale 14: superato valore massimo IT 15: 2 o 3 fasi mancanti 16: errore di conversione analogico/digitale 17: errore di stabilizzazione 18: errore fase di rete 19: guasto hardware della scheda di estensione 20: guasto software della scheda di estensione 21: corto circuito di terra 22: errore per CAN Bus disattivato 23: allarme definito in errore da WMASK 24: errore di commutazione (superamento velocità max.) 25: errore di limite hardware 26: riservato 27: riservato 28: errore Sercos 29: ritardo Sercos 30: riservato 31: errore di sistema

Ordine dei dati globali	Designazione	Descrizione	
6	TJRSTAT (meno significativo)	Stato interno: N° bit	
7	TJRSTAT (più significativo)	0 : aggiornamento dell'uscita INPOS2 1 : fine del task di movimento corrente 2 : terminato task di movimento 3-15 : riservato 16 : task di movimento attivo 17 : raggiunto punto di origine 18 : posizione = sorgente 19 : in posizione 20 : rilevamento del fronte di salita sulla memorizzazione dell'uscita 2 21 : punto di origine attivo 22 : spostamento JOG attivo 23 : rilevamento del fronte di discesa sulla memorizzazione dell'uscita 2 24 : arresto di emergenza attivo 25-31 : riservato	
8	PFB (meno significativo)	Posizione corrente in incrementi.	
9	PFB (più significativo)		
10	V	Velocità corrente. Unità in (3000 x rpm)/10000 [*unità in rpm]	
11	I	Valore effettivo della corrente Unità* = (DICONT** x 2) / 10 [*unità in mA] [**DICONT in A]	
12	MONITOR 1	Valore uscita analogica monitor 1 in mV	
13	MONITOR 2	Valore uscita analogica monitor 2 in mV	
14	ANIN 1	Valore ingresso analogico SW1 in mV	
15	ANIN 2	Valore ingresso analogico SW2 in mV	
16	STAT IO	Stato ingressi/uscite logici del variatore in base alla seguente sequenza: N° bit 0 : OUT 2 1 : OUT 1 2 : ENABLE 3 : IN4 4 : IN3 5 : IN2 6 : IN1	
17	PE (meno significativo)	Errore di inseguimento corrente in incrementi.	
18	PE (più significativo)		

Messaggeria

Tipi di variabile

La messaggeria consente alla stazione di comando l'accesso in lettura o in scrittura ai dati interni del variatore.

Tali dati sono:

- variabili di comando:
- variabili di monitoraggio:
- variabili di configurazione e di regolazione.

Nota: Elenco delle variabili disponibili (Vedi *Elenco delle variabili di Lexium: Generalità, p. 93*). Le variabili contenute nei 9 registri di comando Peer Cop non possono essere sovrascritte tramite la messaggeria quando Peer Cop è attivato. L'accesso in scrittura a questi registri è autorizzato quando Peer Cop è disattivato.

In questo modo, il variatore può essere comandato da un'altra stazione nel caso sia inattivo Peer Cop.

Stazione di comando Quantum

4

In breve

Argomento di questo capitolo

Questo capitolo descrive l'uso delle varie modalità di comunicazione che permettono l'accesso al variatore.

Contenuto di questo capitolo

Questo capitolo contiene le seguenti sottosezioni:

Argomento	Pagina
Stazione di comando Quantum: generalità	34
Stazione di comando Quantum	35
Blocco MSTR	37

Stazione di comando Quantum: generalità

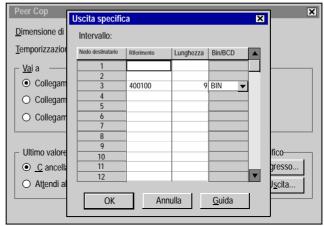
Generalità

È possibile installare un'applicazione su un PLC Quantum in modi diversi, tramite Modsoft, Concept o ProWORX. Questo capitolo illustra la configurazione degli scambi Modbus Plus tramite Modsoft e Concept. Verranno inoltre forniti gli esempi di programmazione di lettura, scrittura e controllo del variatore Lexium.

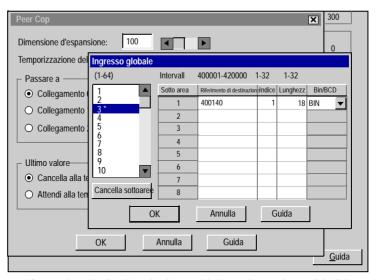
Stazione di comando Quantum

Configurazione Peer Cop e dati globali via Modsoft

La schermata Peer Cop di Modsoft permette di configurare i registri Quantum scambiati tra Peer Cop e Dati globali con le altre stazioni della rete.


Esempio di configurazione

```
MODSOFT
                                                                   _ | ×
Abbonato Trova successivo
 Ritardo
                          N. porte: 1
                                            Porta n.:1 - Porta M+
                            Parole utilizzate23 di 1024 all'abbonato: 5
 Se Err.
                   MODE
                              ADRESSE
           RICEVIMENTO DATI
           EMISSIONE DATI
                              40200 - 40208 9
                                                BIN
           RICEV. BD GLOBALE 41100 - 41117 18 BIN 1
                  BD GLOBALE
                  BD GLOBALE
                  BD GLOBALE
                  BD GLOBALE
                   VERSO TUTTI GLI ABBONATI DI RETE
        EMISSIONE BD GLOBAL
```


Questa configurazione indica i registri scambiati con la stazione di indirizzo 5.

- 9 registri a 16 bit (registri Modsoft da 40200 a 40208) sono trasmessi in Peer Cop verso la stazione 5.
- 18 registri a 16 bit (registri Modsoft da 41100 a 41117) ricevono i dati globali emessi dalla stazione 5.

Configurazione Peer Cop e dati globali via Concept Configurazione dei dati PeerCop e globali tramite Concept:

Questa configurazione indica i registri scambiati con la stazione di indirizzo 3. 9 registri (registri del PLC da 40100 a 40108) vengono trasmessi in PeerCop alla stazione 3.

Questa configurazione indica i registri scambiati con la stazione di indirizzo 3. 18 registri (registri del PLC da 40140 a 40157) vengono trasmessi tramite i dati globali alla stazione 3.

Blocco MSTR

Vista d'insieme

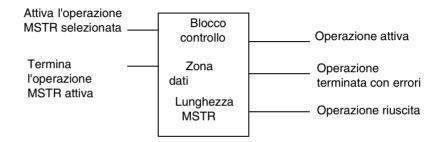
I PLC che gestiscono le comunicazioni MODBUS PLUS dispongono di un'istruzione (master) MSTR speciale, grazie alla quale i nodi della rete possono avviare delle transazioni di messaggio. La funzione MSTR permette di iniziare una delle nove operazioni di comunicazione possibili della rete. Ogni operazione è indicata con un codice (vedere la tabella che segue):

Operazione MSTR	Codice operazione
Scrittura dei dati	1
Lettura dei dati	2
Statistiche locali	3
Scrittura nella base dati globali	5
Lettura della base dati globali	6
Statistiche remote	7
Cancellazione statistiche remote	8
Stato Peer Cop	9

Questa sezione tratta dei blocchi di istruzione MSTR di lettura e di scrittura. Per istruzioni più dettagliate sul Modbus, consultare la guida Ladder Logic Block Library User Guide, 840 USE 10 100.

Struttura del

Ingressi:


MSTR dispone di due punti di controllo (vedere la figura sotto):

- ingresso alto, che attiva l'istruzione all'attivazione dell'ingresso alto;
- ingresso centrale, che termina l'operazione attiva all'attivazione dell'ingresso centrale.

Uscite:

MSTR può avere tre uscite (vedere la figura sotto):

- uscita alta, che restituisce lo stato dell'ingresso alto (si attiva quando l'istruzione è attiva):
- uscita centrale, che restituisce lo stato dell'ingresso centrale e si attiva se l'operazione MSTR è terminata prima della fine:
- uscita bassa, che si attiva quando l'operazione MSTR è portata a termine con successo.

Contenuto parte alta

Il registro 4x inserito nella parte alta è il primo di nove registri di mantenimento contigui che integrano il blocco di controllo (vedere la tabella 11).

Nota: Prima di programmare un'istruzione MSTR occorre conoscere le procedure di instradamento MODBUS PLUS. Per una panoramica completa, consultare la quida MODBUS PLUS Network Planning and Installation Guide, 890 USE 100 00.

Tabella dei registri di mantenimento del blocco di controllo

Registro	Contenuto
1	Codice operazione MSTR
2	Errore in corso per MSTR
3	Scrittura : numero di variabili da inviare Lettura : numero di variabili da leggere
4	La lettura e la scrittura si riferiscono all'indirizzo della variabile di base. Avvertenza : questo registro presenta uno scorrimento di 1. Per accedere, ad esempio, all'indirizzo 180, è necessario immettere 181.
5	Indirizzo stazione di destinazione
6	Indirizzo stazione di destinazione instradamento 2
7	Indirizzo stazione di destinazione instradamento 3
8	Indirizzo stazione di destinazione instradamento 4
9	Indirizzo stazione di destinazione instradamento 5

Contenuto della parte centrale

Il registro inserito nella parte centrale è il primo di un gruppo di registri di mantenimento contigui che integrano la zona dati. Per le operazioni che forniscono al processore di comunicazione dei dati come un'operazione di scrittura, l'area dati è la sorgente dei dati. Per le operazioni che acquisiscono dei dati dal processore di comunicazione dei dati come un'operazione di lettura, l'area dati è la destinazione dei dati.

Contenuto della parte bassa

Il valore intero inserito nella parte bassa specifica la lunghezza del numero massimo di registri nell'area dati. Sebbene la lunghezza del tipo MODBUS PLUS sia compresa tra 1 e 100 registri, il variatore Lexium comprende da 1 a 60 registri.

Operazioni MSTR di lettura e scrittura

Un'operazione di scrittura MSTR trasferisce dati da un dispositivo di comando a un variatore. Un'operazione di lettura MSTR trasferisce dati da un variatore a un dispositivo di comando sulla rete.

Blocco di controllo

La tabella che segue riporta le informazioni contenute nella parte alta del blocco di controllo MSTR in un'operazione di lettura o di scrittura.

Registro del blocco di controllo - Operazioni di lettura e di scrittura

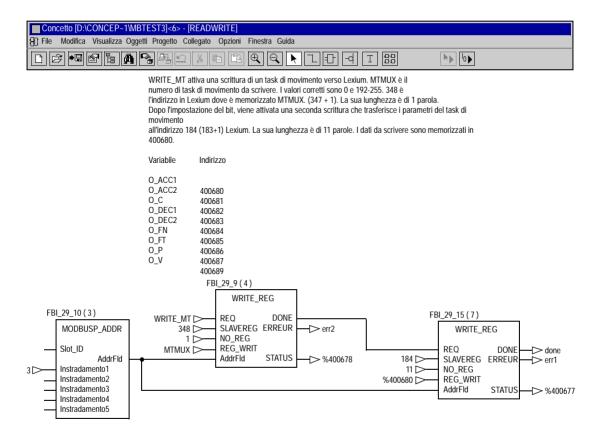
Registro	Funzione	Contenuto
Visualizzato	Tipo di operazione	1 = scrittura; 2 = lettura
1°	Stato dell'errore	Visualizza un valore esadecimale indicante, all'occorrenza, un errore MSTR.
2°	Lunghezza	Scrittura = numero di registri da inviare al variatore. Lettura = numero di registri da leggere sul variatore.
3°	Area dati del variatore	Specifica il registro di partenza del variatore da leggere o scrivere.
4° - 8°	Instradamento da 1 a 5	Indica gli indirizzi di instradamento da 1 a 5, rispettivamente; l'ultimo byte non nullo nell'itinerario di instradamento è destinato all'apparecchiatura di transazione.

Esempio 1 Esempio

L'esempio precedente mostra l'uso di un blocco MSTR per la lettura di un registro che inizia all'indirizzo 180 (OPMODE) sulla stazione con indirizzo 5.

La configurazione dei registri da 40001 a 40009 sono assegnati alla configurazione del blocco MSTR.

- 40001 : Operazione di lettura dei dati
- 40002 : Errore in corso (0 nessun errore)
- 40003 : Numero dei registri in lettura
- 40004 : Indirizzo di base per la lettura 180 (181-1)
- 40005 40009 : Indirizzo della stazione destinataria del messaggio (5). Nessun instradamento definito. La stazione 10 si trova sulla stessa rete del PLC.


Esempio di programmazione

Obiettivo

Per mettere il variatore sotto tensione, inizializzarlo e attivarlo. Caricare un task di movimento tramite la messaggeria. Avviare un task di movimento nel PLC tramite Peer Cop con l'ausilio del software di programmazione Concept.

- Configurare gli scambi dati Peer Cop/globali nel PLC come illustrato nella sezione Stazione di comando Quantum

 — Configurazione dei dati PeerCop e globali tramite Concept.
- 2. Configurare Lexium come descritto nel capitolo 6, Configurazione di Lexium.
- 3. Definire i parametri del task di movimento n°192 scrivendo a partire dal PLC. Oltre al blocco MSTR precedentemente descritto, questo esempio utilizza un altro metodo di scrittura su Lexium, il blocco WRITE_REG da utilizzare in Concept. L'esempio che segue utilizza due configurazioni di blocchi WRITE_REG per la scrittura nell'indirizzo 3 Modbus plus, in questo caso il variatore Lexium. Il primo blocco è attivato dalla variabile booleana WRITE_MT, che invierà il valore memorizzato nella variabile MTMUX del PLC, 192 in questo esempio, all'indirizzo 348 (347 + 1) del variatore Lexium. Si tratta dell'indirizzo del variatore nel quale è registrato il task di movimento che si desidera scrivere. Fare riferimento al comando ASCII MTMUX del capitolo 10. La sua lunghezza è 1 parola. Quando il bit eseguito è stato definito nel primo blocco, attiva il secondo blocco WRITE_REG, che trasferisce i parametri del task di movimento registrati nell'avvio del PLC all'indirizzo 400680 verso l'indirizzo 184 (183 + 1) Lexium. La lunghezza dei parametri è di 11 parole.

4. Per attivare il variatore in modo che sposti il motore, la macchina di stato deve essere programmata conformemente alla normativa DRIVECOM applicabile al variatore Lexium. Per maggiori informazioni sulla normativa DRIVECOM fare riferimento al capitolo 8. La figura che segue illustra una sezione del testo strutturato Concept, che consente di vedere lo stato di Lexium. Per poter avviare un task di movimento, Lexium deve trovarsi nello stato "Lexium in funzione". Ciò equivale a un valore 16#27 nella variabile STATUS. Notare che STATUS equivale al valore booleano AND di ZSW e 16#006F. ZSW corrisponde allo stato del variatore inviato al 1° registro della transazione dei dati globali.

```
www.www. trictired Text Start www.www.
STATUS := AND WORD (IN1 := ZSW. IN2 := 16#886F):
FaultMask := AND BYTE (IN1 := STATUS L, IN2 := 16#0F);
(*State Tests*)
(*Faultu Lexium*)
StateMalfunction Case1 := EQ BYTE (IN1 := FaultMask, IN2 := 16#08);
StateMalfunction_Case2 := EQ_BYTE (IN1 := FaultMask, IN2 := 16#0F);
StateMalfunction := OR BOOL (IN1 := StateMalfunction Case1, IN2 := StateMalfunction Case2);
(*Inoperative Lexium*)
StateMotReadyToSwitchOn_Case1 := EQ_BYTE (IN1 := STATUS_L, IN2 := 16#00);
StateNotReadyToSwitchOn_Case2 := EQ_BYTE (IN1 := STATUS_L, IN2 := 16#20);
StateNotReadyToSwitchOn := OR BOOL (IN1 := StateNotReadyToSwitchOn Case1, IN2 := StateNotReadyToSwitchOn Case2);
(*Lexium Powered and Locked*)
StateSwitchOnDisabled_Case1 := EQ_BYTE (IN1 := STATUS_L, IN2 := 16#40);
StateSwitchOnDisabled Case2 := EO BYTE (IN1 := STATUS L. IN2 := 16#60):
StateSwitchOnDisabled := OR BOOL (IN1 :=StateSwitchOnDisabled Case1, IN2 := StateSwitchOnDisabled Case2);
(*Waiting State*)
StateReadyToSwitchOn Case1 := EQ BYTE (IN1 := STATUS L, IN2 := 16#21);
StateReadyToSwitchOn_Case2 := EQ_BYTE (IN1 := STATUS_L, IN2 := 16#01);
StateReaduToSwitchOn := OR BOOL (IN1 := StateReaduToSwitchOn Case1. IN2 := StateReaduToSwitchOn Case2):
StateSwitchedOn := EQ BYTE (IN1 := STATUS_L, IN2 := 16#23);
(*Lexium Runnina*)
StateOperationEnabled := EQ BYTE (IN1 := STATUS L, IN2 := 16#27);
(*Lexium in fast stop*)
StateQuickStopActive_Case1 := EQ_BYTE (IN1 := STATUS_L, IN2 := 16#07);
StateQuickStopActive Case2 := EQ BYTE (IN1 := STATUS L, IN2 := 16#03);
StateQuickStopActive := OR BOOL (IN1 := StateQuickStopActive Case1, IN2 := StateQuickStopActive Case2);
```

5. La programmazione seguente del testo strutturato è stata messa in opera per impostare il variatore nello stato "Lexium in funzione". Ciò implica 3 transizioni del variatore, 2, 3 e 4 come descritto nello schema di stato del capitolo 8. La transizione 2 effettua un test per poter definire il variatore nello stato "Lexium sotto tensione e bloccato" (StateSwitchOnDisabled) e affinché la convalida delle variabili booleane del PLC sia alta ed ESTOP basso. Dopo aver soddisfatto queste condizioni, il PLC invia il valore 16#0006 nella parola di comando STW. STW è la prima parola nello scambio di dati Peer Cop. Dopo questo comando, il variatore passa allo stato di attesa. La transizione 3 effettua un test per verificarne l'esecuzione. (StateReadyToSwitchOn). In caso affermativo, il PLC invia il valore 16#0007 nella parola di comando STW. Dopo guesto comando, il variatore deve passare allo stato "Lexium pronto". In questo stato, il variatore viene attivato con una coppia, ma non è pronto ad accettare i comandi di movimento. La transizione 4 effettua un test dello stato "Lexium pronto" (StateSwitchedOn) e della variabile booleana del PLC. Run Mode, da definire. Se queste condizioni vengono soddisfatte, il PLC invia il comandi 16#001F nella parola di comando STW. Dopo l'accettazione del comando, il variatore passa allo stato "Lexium in funzione". Il variatore può quindi eseguire i comandi di movimento.

```
(* Disable -> Ready Transition - 2*)
IF Enable AND NOT(ESTOP) AND StateSwitchOnDisabled THEN STW_Word := 16#0006;
END_IF;

(* Ready -> Switched On Transition - 3*)
IF Enable AND NOT(ESTOP) AND StateReadyToSwitchOn THEN STW_Word := 16#0007;
END_IF;

(* Ready Drive for Motion - Transition 4*)
IF Run_Mode AND (StateSwitchedOn) THEN STW_Word := 16#001F;
END_IF;
```

6. Per avviare un task di movimento, il variatore deve essere definito su Opmode 8 e ne deve essere definito il punto di origine. Lo spostamento del bit 6 della parola di comando STW avvia il task di movimento. La programmazione seguente del testo strutturato è stata utilizzata per avviare il task di movimento. Il codice verifica che il variatore venga definito allo stato "Lexium in funzione" (StateOperationEnabled) e che sia in Opmode 8. Se le condizioni sono vere, il codice verifica il segnale di partenza, la variabile booleana del PLC, Start_Out, da definire. Dopo essere stato definito, il bit 6 della parola di comando STW si commuta, provocando l'esecuzione del numero di task registrato nell'oggetto MOVE (7° registro nello scambio dei dati Peer Cop) nel variatore.

```
IF StateOperationEnabled THEN
    IF (Opmode = 8) THEN
        (* Movimento Joa *
        Il movimento Jog viene eseguito commutanto il bit 8 della parola di comando STW: da 0 a *
        1 si avvia il Jog. da 1 a 0 si arresta il iog*)
        IF Jog AND NOT (Home) AND NOT (startMotionTask) THEN
        STW Word := OR WORD (IN1 :=STW Word, IN2 := 16#0120):
        JogFlag :=1:
        END IF:
        IF NOT (Jog) AND JogFlag = 1 THEN
        STW Word := XOR WORD (IN1 := STW Word, IN2 := 16#0120):
        JogFlag :=0:
        END IF:
        (* Movimento Home *
        Il movimento Home viene eseguito commutando il bit 11 della parola STW da 0 a 1*)
        IF Home AND NOT (Jog) AND NOT (startMotionTask) THEN
        STW Word := XOR WORD (IN1 := STW Word, IN2 := 16#0800):
        END IF:
        (* Avvio del task di movimento *
        Un task di movimento è avviato con OGNI transizione del bit 6 nella parola STW, che è un *
        bit di tipo a commutazione *)
        IF (startMotionTask OR executeNewSpeed OR executeNewPosition) AND NOT (Home)
        AND NOT (Jog) THEN
        STW_Word := XOR_WORD (IN1 := STW_Word, IN2 := 16#0040);
        END IF:
    END IF:
END IF:
```

Stazione di comando Premium

5

In breve

Argomento di questo capitolo

Questo capitolo descrive l'uso delle varie modalità di comunicazione che permettono l'accesso al variatore.

Contenuto di questo capitolo

Questo capitolo contiene le seguenti sottosezioni:

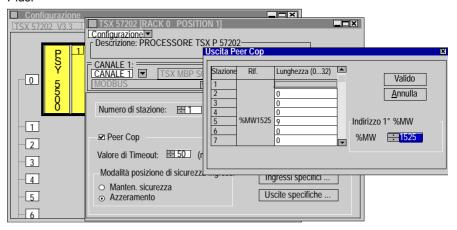
Argomento	Pagina
Stazione di comando Premium	48
Utilizzo dei Dati globali	50
Utilizzo della messaggeria	51
Esempio di programmazione 1	53
Esempio di programmazione 2	55

47

Stazione di comando Premium

Generalità

Per implementare un'applicazione su un PLC Premium, utilizzare l'atelier software PL7, che include una schermata specifica per la configurazione degli scambi Modbus Plus. Questo capitolo descrive l'uso delle varie modalità di comunicazione che permettono l'accesso al variatore.


L'implementazione si divide in due parti:

- Configurazione della stazione : indirizzo stazione, Peer Cop.
- Scritture dei task PLC. Uso della messaggeria e dei dati globali.

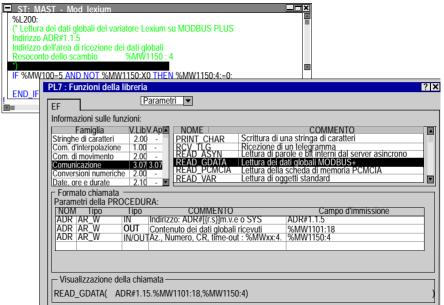
Configurazione dei Peer Cop

La configurazione dei Peer Cop viene effettuata appena è stata configurata la stazione Premium. Una volta definiti i Peer Cop, la stazione Premium ne gestisce l'aggiornamento in modo trasparente per l'utente. Non è necessario eseguire alcuna funzione.

L'esempio che segue mostra la configurazione dei Peer Cop. Una zona del registro Premium funge da buffer di memorizzazione tra l'applicazione e la rete Modbus Plus

L'indirizzo della stazione Premium è 1. La stazione deve ricevere 9 parole (word) di dati Peer Cop provenienti dalla stazione con indirizzo 5.

I dati in Peer Cop saranno emessi dai registri a 16 bit da %MW1525 a %MW1533. Tali registri sono aggiornati dall'applicazione definita dall'utente. Premium trasferisce automaticamente e periodicamente questi registri sulla rete Modbus Plus.


Nota: per maggiori informazioni, fare riferimento al manuale TLX DS COM PL7.

Utilizzo dei Dati globali

La funzione "READ GDATA"

A differenza di quanto avviene con una stazione Quantum, i dati globali non sono gestiti direttamente dal PLC. Per tenere conto di questi valori, è necessario utilizzare la funzione "READ GDATA".

L'esempio seguente mostra l'uso della funzione READ_GDATA in ambiente Premium. La schermata superiore rappresenta un task definito in linguaggio ST (linguaggio letterale strutturato) che viene eseguito a ogni ciclo del PLC. La schermata inferiore contiene una guida in linea che agevola l'implementazione della funzione.

Nell'esempio precedente, una volta verificatasi la condizione (%MW1150:X0=0), l'applicazione esegue una lettura di 18 dati globali prodotti dalla stazione con indirizzo 5 (1.15).

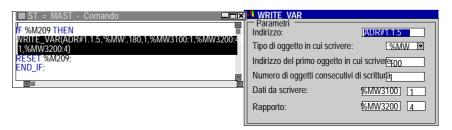

I dati letti saranno memorizzati nei registri Premium da %MW1101 a %MW1118. Il resoconto sullo scambio sarà memorizzato nei registri Premium da %MW1150 a %MW1153.

Utilizzo della messaggeria

Comando di lettura

La funzione "READ_VAR" permette di eseguire una richiesta di lettura in messaggeria su Modbus Plus.

L'esempio seguente mostra l'uso della funzione READ_VAR in ambiente Premium. La schermata sinistra rappresenta un task definito in linguaggio ST (linguaggio letterale strutturato) che viene eseguito a ogni ciclo del PLC. La schermata di destra contiene una guida in linea che agevola l'implementazione della funzione.


Nell'esempio, l'applicazione esegue una lettura di 5 registri a 16 bit (%MW) che iniziano all'indirizzo 180 sulla stazione di indirizzo 5 (1.1.5) quando si verifica la condizione %M206. (tiene conto di %MW2500:X0 = 0)

I dati letti saranno memorizzati nei registri Premium da %MW2000 a %MW2004. Il resoconto sullo scambio sarà memorizzato nei registri Premium da %MW2500 a %MW2503.

Comando in

La funzione "WRITE_VAR" permette di eseguire una richiesta di scrittura in messaggeria su Modbus Plus.

L'esempio seguente mostra l'uso della funzione WRITE_VAR in ambiente Premium. La schermata sinistra rappresenta un task definito in linguaggio ST (linguaggio letterale strutturato) che viene eseguito a ogni ciclo del PLC. La schermata di destra contiene una guida in linea che agevola l'implementazione della funzione.

Nell'esempio, l'applicazione esegue una scrittura di un registro a 16 bit (%MW) che inizia all'indirizzo 180 sulla stazione di indirizzo 5 (1.1.5) quando si verifica la condizione %M209. (tiene conto di %MW3200:X0 = 0)

Il dato da scrivere è memorizzato nel registro Premium %MW3100.

Il resoconto sullo scambio sarà memorizzato nei registri Premium da %MW3200 à %MW3203.

Esempio di programmazione 1

Objettivo

Controllare il programma "task di movimento" tramite Peer_cop e Global Data.

Configurazione di Premium/Lexium:

- Lato PLC, configurazione possibile con il programma PL7:
 - definire l'indirizzo del PLC master: 1
 - attivare Peer cop e specificare le uscite:

Indirizzo della 1^{er} parola della tabella Peer_cop: %MW1525

Per ogni slave della rete, attribuire un numero di parole in base alle esigenze attuali o future.

Nella schermata PL7 di configurazione Peer cop:

Stazione	Rif.	Lung. (da 0 a 32)
1		
2	%MW1525	32
3	%MW1557	9
4		0
5	%MW1566	9
6		0

In questo esempio abbiamo 3 slave agli indirizzi 2, 3, 5. La stazione è dichiarata in previsione di un prodotto che accetti 32 parole Peer_cop. Si noti la continuità della tabella delle parole nonostante l'assenza della stazione 4.

- All'indirizzo 3 Lexium, configurazione possibile con il software Unilink:
 - definire l'indirizzo: 3
 - definire Peer cop
 - · definire i dati globali.

Programmazione letterale:

I parametri del task di movimento vengono caricati tramite lo strumento Unilink.

• Scrittura dell'applicazione in linguaggio letterale per leggere i dati globali:

```
(* indirizzo del variatore *)
! %MW10:6 := ADR#0.1.3;
(* %MW10:6 => facoltativo, definizione di un indirizzo indiretto *)
(* ADR#0.1.3 => Lexium a 3 *)
```

Lettura dei dati globali:

Nota:

Ipotesi: DriveCom deve essere nello stato "Lexium in funzione (Vedi Schema di stato della normativa DriveCom, p. 74)"

```
! %L200:
(*lettura di dati globali del variatore Lexium @3 su Modbus
Plus *)
(* indirizzo dell'area di ricevimento dei dati globali:
%MW1101:18 *)
(* indirizzo ADR#0.1.3 = %MW10:6 *)
(* %M24 = comando di lettura*)
(* resoconto dello scambio: %MW1150:4 *)
(* Zsw:18 stato, prima parola della tabella Zsw=%MW1101 *)

IF %M24 AND NOT %MW1150:X0 THEN RESET %M24;
%MW1150:4 = 0;
READ_GDATA (%MW10:6 , Zsw:18 , %MW1150:4);
END IF:
```

Uso:

Avviare e convalidare il variatore tramite lo schema Drivecom:

- PLC in funzione
- Convalida della lettura Global data %MW24:= 1
- Regolare la parola di comando STW a 0 per portare il Lexium nello stato "sotto tensione e bloccato": %MW1557 := 0
- Per portare il Lexium allo stato "in funzione" di Drivecom, specificare gli elementi sequenti in questo ordine:

```
%MW1557 := 6
%MW1557 := 7
%MW1557 := 16#001F
```

Lo stato evolve a ogni comando secondo lo schema descritto nel capitolo Drivecom. (Vedi *Schema di stato della normativa DriveCom. p. 74*)

Quando lo stato è uguale a 16#0027, il variatore è pronto a ricevere il comando di avvio di un movimento tramite una schermata d'uso dedicata o una tabella di animazione

La seguenza è la seguente:

- test dell'asse che ha raggiunto il punto di riferimento leggendo il bit 1 di %MW1107.
- test dei dati globali, bit 9 della parola %MW1102 (assenza di punto di origine).
- selezione Opmode 8 (%MW1562 = 8),
- se l'asse non ha raggiunto il punto di riferimento, attivare il bit 11 della parola di comando STW (%MW1557),
- selezionare il passo corrispondente al task di movimento (n° task da avviare MW1563 = 3)
- avviare il movimento tramite il bit 6 della parola di comando STW.

Esempio di programmazione 2

In breve

Esempio di programmazione PL7:

esempio in modalità messaggio, per leggere e modificare i parametri dei passi da 0 e 192 a 255 del task di movimento.

I 9 parametri modificati simultaneamente sono:

- O ACC1
- O ACC2
- O C
- O DEC1
- O DEC2
- O_FN
- O_FT
- O_P
- O V

La rete è costituita da un PLC master e da un Lexium slave:

- indirizzo della stazione PLC master: 1
- indirizzo della stazione Lexium slave: 3.

Configurare il Premium / il Lexium:

- lato PLC, con il software PL7;
 - definizione dell'indirizzo del PLC master: 1
 - attivare i Peer_cop e specificare le uscite:

Indirizzo della 1^{er} parola della tabella dei Peer cop: %MW1525.

Per ogni slave della rete, attribuire un numero di parole a seconda delle esigenze attuali o future.

Nella schermata PL7 di configurazione dei Peer cop:

Stazione	Rif.	Lunghezza (032)
1		
2	%MW1525	32
3	%MW1557	9
4		0
5	%MW1566	9
6		0

In questo esempio abbiamo 3 slave agli indirizzi 2, 3, 5. La stazione è dichiarata in previsione di un prodotto che accetti 32 parole Peer_cop. Si noti la continuità della tabella delle parole nonostante l'assenza della stazione 4.

- lato Lexium indirizzo 3, con il software Unilink :
 - definizione dell'indirizzo: 3
 - definizione dei Peer cop
 - definizione dei dati globali.

Scrittura dell'applicazione in linguaggio letterale, azionamento Lexium slave @3:

```
(* indirizzo dell'azionamento *)
! %MW10:6 := ADR#0.1.3:
( * %MW10:6 => facoltativo, definizione di un indirizzo indiretto *)
( * ADR#0.1.3 => Lexium @3 *)
! %L200 :
(*lettura di dati globali del variatore Lexium @3 su Modbus
(* indirizzo dell'area di ricezione dei dati globali
%MW1101:18 *)
(* indirizzo ADR#0.1.3 = %MW10:6 *)
(* %M24 = ordine di lettura*)
(* resoconto dello scambio %MW1150:4 *)
(* Zsw:18 stato, prima parola della tabella Zsw=%MW1101 *)
IF %M24 AND NOT %MW1150:X0 THEN RESET %M24;
%MW1150:4 = 0:
READ GDATA (%MW10:6 , Zsw:18 , %MW1150:4);
END IF;
! (* filtraggio parola stato *)
%MW750:=%MW1101 AND 16#006F;
%L300:
(* WRITE Lg1 MTMUX Lexium @3 su Modbus Plus *)
(* indirizzo: %MW10:6 *)
(* tipo di variabile: %MW *)
(* registro MTMUX: 347 *)
(* lunghezza registro MTMUX: 1 *)
(* registro numero di passi di MTASK: %MW60:1 *)
(* resoconto dello scambio: %MW80:4 *)
IF %M50 AND NOT %MW80:X0
THEN RESET %M50; %MW80:4:=0;
WRITE VAR(%MW10:6,'%MW',347,1,%MW60:1,%MW80:4);
END IF;
```

```
%T.320.
(* WRITE Lg11 tabella MTMAX Lexium @3 su Modbus Plus *)
(* indirizzo: %MW10:6 *)
(* tipo di variabile: %MW *)
(* primo registro MTMAX da scrivere: 183 *)
(* numero di registri da scrivere: 11 *)
(* valore da emettere: %MW61:11 *)
(* resoconto dello scambio: %MW84:4 *)
IF %M51 AND NOT %MW84:X0
THEN RESET %M51; %MW84:4:=0;
WRITE VAR(%MW10:6,'%MW',183,11,%MW61:11,%MW84:4);
END IF;
%T.340.
(* lettura di MTMUX Lexium @3 su Modbus Plus *)
(* indirizzo: %MW10:6 *)
(* tipo di variabile: %MW *)
(* registro MTMUX: 347 *)
(* lunghezza registro MTMUX: 1 *)
(* registro numero di passi di MTASK: %MW60:1 *)
(* resoconto dello scambio: %MW80:4 *)
TF %M52 AND NOT %MW80.X0
THEN RESET %M52; %MW80:4:=0, %MW60:=0;
READ VAR(%MW10:6,'%MW',347,1,%MW60:1,%MW80:4);
END IF;
%T.360.
(* lettura di MTMUX Lexium @3 su Modbus Plus *)
(* indirizzo: %MW10:6 *)
(* tipo di variabile: %MW *)
(* primo registro MTMAX da leggere: 183 *)
(* numero di registri da leggere: 11 *)
(* registro di ricezione: %MW61:11 *)
(* resoconto dello scambio: %MW80:4 *)
IF %M53 AND NOT %MW80:X0
THEN RESET %M53; %MW80:4:=0, %MW61:=0;
READ VAR(%MW10:6,'%MW',183,11,%MW61:11,%MW80:4);
END IF;
```

Uso del programma

avvio, validazione del variatore tramite il grafico Drivecom:

- PLC in funzione
- validazione lettura dati globali: %MW24 := 1
- parola di comando STW a 0 per mettere il Lexium nello stato "sotto tensione e bloccato": %MW1557 := 0
- per far passare il Lexium allo stato "in funzione" di Drivecom, scrivere di seguito: %MW1557 := 6

%MW1557 := 0 %MW1557 := 7

%MW1557 := 16#001F

Lo stato (si ricordi che: STATUS = ZSW AND 16#006F) evolve a ogni comando secondo il grafico descritto al capitolo Drivecom. (Vedi *Modalità di funzionamento del variatore. p. 73*)

Quando lo stato è uguale a 16#0027, il variatore è pronto a ricevere il comando di avvio di un movimento

 selezione del passo del task di movimento da leggere o modificare: scrivere il numero del passo da leggere o modificare nel registro %MW60.
 Questo registro verrà caricato nel registro MTMUX all'attivazione del bit %M50.
 La lettura del registro MTMUX è possibile caricandone il valore nel registro %MW60.

Attivare il bit %M52 per effettuare questo caricamento.

 lettura dei parametri del passo del task di movimento selezionato: attivare il bit %M53

I parametri da 183 a 191 (O_ACC1O_V (Vedi *Tabella generale delle variabili generali in lettura/scrittura, p. 94*)) del variatore Lexium vengono allora caricati nei registri da %MW61 a %MW71.

Caso particolare: i parametri 190 e 191 utilizzano 2 parole ciascuno. Si avrà dunque %MD68 per il registro 190 e %MD70 per il registro 191.

 scrittura dei parametri del passo del task di movimento selezionato: attivare il bit %M51 dopo aver modificato uno o più parametri dei registri da %M61 a %M71.

I parametri di tutte le parole interne da %MW61 a %MW71 vengono allora caricati nei registri da 183 a 191 del variatore Lexium.

Attenzione al caso particolare dei parametri doppi 190 (O_P) e 191(O_V). I nuovi parametri verranno accettati solo all'avvio del passo (specificato nei parametri MOVE) tramite il comando bit 6 del STW.

• significato dei bit per il task di movimento:

bit %M50 = validazione scrittura del registro MTMUX

bit %M51 = validazione scrittura dei parametri del task di movimento

bit %M52 = validazione lettura del registro MTMUX

bit %M53 = validazione lettura dei parametri del task di movimento

Configurazione di Lexium: parametri

6

In breve

Argomento di questo capitolo

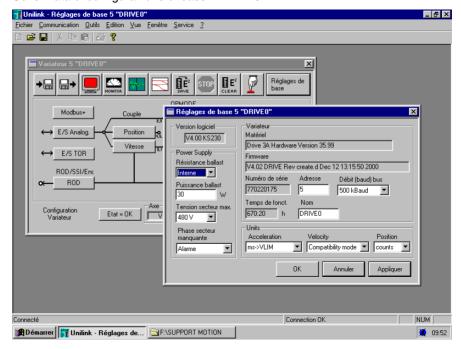
Questo capitolo descrive la configurazione dei diversi parametri di comunicazione.

Contenuto di questo capitolo

Questo capitolo contiene le seguenti sottosezioni:

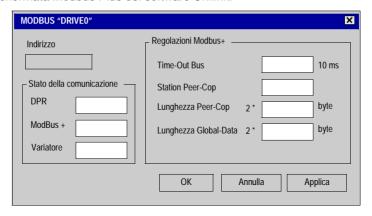
Argomento	Pagina
parametri di comunicazione	60
Configurazione dell'indirizzo del TimeOut tramite Unilink o terminale	64
Dati Peer Cop	65
Configurazione dei dati globali tramite Unilink o terminale	67

parametri di comunicazione


In breve

È possibile configurare i parametri di comunicazione in due modi:

- tramite la modalità terminale del software Unilink oppure una modalità hyperterminal in Windows.
 - Alcuni comandi ASCII sono stati definiti al fine di leggere o modificare tali parametri.
- Tramite la schermata Modbus Plus del software Unilink.


Indirizzamento

Schermata di configurazione di base "DRIVE 0":

Parametri

Schermata Modbus Plus del software Unilink:

La tabella che segue descrive i vari parametri dell'area "Regolazioni Modbus Plus":

Parametro	Comando ASCII	Intervallo	Valore di default	Osservazione
Indirizzo (*)	ADDR	1-63	1	Indirizzo del nodo ModBus+ (solo in lettura)
Bus TimeOut (**)	TIMEMBP	0.01-60	1	In secondi. Incrementi di 10 ms.
Command station Peer-Cop Station indirizzo del master	PEERCOPS	1-64	1	Deve essere diverso dall'indirizzo del variatore. 0 = nessuna ricezione dei registri PeerCop
PEERCOP register Peer-Cop lengh	PEERCOP	0-9	0	Numero di registri PeerCop ricevuti. 0 = ricezione registri PeerCop
Dati globali Tx	GDTX	0-18	0	Numero di registri di dati globali emessi. 0: nessuna trasmissione di dati globali.

- (*) L'indirizzo della stazione viene immesso nella schermata di regolazione di base di Unilink.
- (**) La temporizzazione rappresenta:
- la durata massima durante la quale non viene ricevuto alcun token;
- la durata massima tra la ricezione di due trasmissioni PeerCop.

La tabella che segue descrive i vari parametri dell'area di stato della comunicazione:

Parametro	Comando ASCII	Intervallo	Valore di default	Osservazione
DPR	DPRSTATE (stato in fase di inizializzazione) DPRSTATE = 80: messaggio pronto.			Lunghezza 16 bit
ModBus +	MBPSTATE (stato letto da Unilink) Aggiornato dalla scheda MBP, permette al variatore di conoscere lo stato della scheda MBP.		0	Lunghezza 16 bit
Variatore	MBPDRVSTAT (stato letto da Unilink) Aggiornato dal variatore, permette alla scheda MBP di conoscere lo stato del variatore.	1-100	0	Lunghezza 16 bit

Descrizione degli stati di MBPSTATE:

Valore di MBPSTATE	Descrizione
0	Scheda non configurata
1	Scheda in funzione
2	Scheda non comunicante
3	Errore di comunicazione con la rete
4	Errore di comunicazione con DPRAM

Descrizione degli stati di MBPDRVSTAT:

Valore di MBPDRVSTAT	Descrizione
1	Variatore pronto
2	Errore di comunicazione con la rete
4	Errore di comunicazione DPRAM
8	Errore di comunicazione: rete ignorata (bit MBTNTO*)

(*) MBPNTO = 0 errore di comunicazione segnalato al variatore. MBPNTO = 1 errore di comunicazione ignorato dal variatore, è accessibile in scrittura tramite il comando ASCII MBPDRVSTAT. Quindi, se MBPDRVSTAT = 8h per MBPNTO = 1, allora il valore letto è 9 Se MBPDRVSTAT = 0h per MBPNTO = 0, allora il valore letto è 1

Procedura

Per configurare la comunicazione Lexium Modbus Plus, procedere come segue:

Fase	Azione
1	Applicare tensione al variatore. Non è necessario che il cavo di rete sia collegato.
2	Verificare il corretto funzionamento della scheda opzionale Modbus Plus: Il LED verde di diagnostica deve lampeggiare regolarmente (6 lampeggi per secondo).
3	Avviare il software Unilink o un terminale.

Configurazione dell'indirizzo del TimeOut tramite Unilink o terminale

Configurazione dell'indirizzo

Nota: L'indirizzo deve essere univoco sulla rete e compreso tra 1 e 63.

Configurazione tramite Unilink

 Configurare il campo dell'indirizzo immettendo l'indirizzo della stazione nella schermata di base di Unilink

Configurazione tramite terminale

- Accedere alla schermata del terminale.
- immettere il comando ADDR <Indirizzo.> Ad esempio, per impostare l'indirizzo del variatore a 3. specificare ADDR 3:
- immettere il comando ADDR senza parametri per verificare che la configurazione sia stata accettata correttamente.

Osservazioni:l'indirizzo è memorizzato nel variatore. La sostituzione della scheda Modbus Plus non influisce sull'indirizzo del variatore. Il suo indirizzo corrisponde all'indirizzo configurato in precedenza.

Configurazione del TimeOut

Configurazione tramite Unilink

• Configurare il campo "Bus Time-Out" con il valore desiderato.

Configurazione tramite terminale

- Accedere alla schermata del terminale,
- immettere il comando TIMEMBP <Valore in 0,01 s.>, inserire, ad esempio, TIMEMBP 200, per definire un valore di temporizzazione pari a 2 secondi.
- Immettere il comando TIMEMBP senza parametri per verificare che la configurazione sia stata accettata correttamente.

La temporizzazione rappresenta:

- la durata massima durante la guale non viene ricevuto alcun token.
- la durata massima tra due ricevimenti di trasmissioni Peer Cop.

Quando viene rilevata una temporizzazione, il variatore entra in errore.

Dati Peer Cop

Configurazione Peer Cop

I dati Peer Cop sono costituiti da registri emessi dalla stazione di comando. Il numero di registri ricevuti dal variatore è configurabile dall'utente.

Il numero di registri Peer Cop trasferiti può essere configurato in due modi diversi:

Configurazione tramite Unilink

- Configurare il campo "Peer-Cop Station" con l'indirizzo della stazione di comando
- Configurare il campo "Peer-Cop Length" con il numero di registri Peer Cop ricevuti.

Configurazione tramite terminale

Selezione del numero di registri Peer Cop

- Accedere alla schermata del terminale.
- immettere il comando Peer Cop <Numero di registri Peer Cop>. Ad esempio, immettere Peer Cop 9 per configurare il ricevimento di 9 registri da parte di I exium
- Immettere il comando Peer Cop senza parametri per verificare che la configurazione sia stata accettata correttamente.

Configurazione della stazione di comando

 Immettere il comando Peer Cop <Indirizzo della stazione di comando>. Ad esempio, immettere Peer Cop 6 per configurare il PLC nel comando il cui indirizzo del nodo è 6.

Immettere il comando Peer Cop senza parametri per verificare che la configurazione sia stata accettata correttamente.

Esempio:

- immettendo il numero 2 nel parametro "Numero di registri Peer Cop" del variatore e del PLC, il variatore prenderà in considerazione solo i due primi registri di dati Peer Cop, ossia le variabili STW e VCMD.
- Il numero dei registri Peer Cop configurato deve essere adeguato alle caratteristiche dell'applicazione. È consigliabile utilizzare il numero minore possibile di Peer Cop, al fine di ottimizzare la larghezza di banda della rete e il tempo di risposta della scheda Modbus Plus. Si consiglia, tuttavia, di utilizzare sempre la parola di comando STW.

Se entro il termine del tempo di attesa specificato non riceve alcun dato Peer Cop dalla stazione di comando, il variatore passa in condizione d'errore. È comunque ancora possibile accedervi tramite messaggeria.

Gestione dei parametri comuni con la messaggeria Le variabili configurate nei registri di comando Peer Cop 9 non possono essere sovrascritte tramite la messaggeria quando sono attivati gli scambi Peer Cop. L'accesso in scrittura a tali registri è autorizzato finché non vengono configurati nello scambio Peer Cop.

Configurazione dei dati globali tramite Unilink o terminale

Configurazione dei dati globali

L'aggiornamento dei dati globali avviene selezionando un numero di registri dati globali superiore a 0.

Configurazione tramite Unilink:

• configurare il campo "Global-Data length" con il numero di registri.

Configurazione tramite terminale:

Selezione del numero di registri Dati globali

- Accedere alla schermata del terminale.
- immettere il comando GDTX <Numero di registri dati globali>, inserire, ad esempio, GDTX 18 per configurare l'invio di 18 registri da parte di Lexium.
- Immettere il comando GDTX senza parametri per verificare che la configurazione sia stata accettata correttamente.

Esempio:

- Immettendo il numero 2 nel parametro "Numero di registri dati globali" del variatore e del PLC, il variatore aggiornerà solo i due primi registri dati globali, ossia le variabili ZSW e STATCODE.
- Il numero dei registri dati globali configurato deve essere adeguato alle caratteristiche dell'applicazione. È consigliabile utilizzare il numero minore possibile di dati globali, al fine di ottimizzare la larghezza di banda della rete e il tempo di risposta della scheda Modbus Plus.

Diagnostica: segnalazione

7

In breve

Argomento di questo capitolo

Questo capitolo illustra il significato dei vari stati della spia verde che si trova sulla scheda Modbus Plus.

Contenuto di questo capitolo

Questo capitolo contiene le seguenti sottosezioni:

Argomento	Pagina
Diagnostica: i vari stati	70
Parametri del variatore Lexium	71

Diagnostica: i vari stati

Diagnostica

La scheda Modbus+ è dotata di una spia verde di segnalazione che indica lo stato della comunicazione. La tabella seguente descrive il significato dei vari stati.

Stato della spia	Significato
Spento	La scheda opzionale è in errore. L'indirizzo Modbus Plus non è configurato. L'errore può essere provocato: da un errore di comunicazione con il variatore, da un guasto hardware della scheda opzionale.
1 lampeggiamento al secondo	MONITOR LINK. A partire da quando si applica la tensione oppure in seguito a uno stato DUPLICATE STATION, la scheda sorveglia la rete e crea una tabella dei nodi attivi. Dopo 5 secondi, la scheda tenta di passare allo stato di funzionamento normale (TOKEN OK).
6 lampeggiamenti al secondo	TOKEN OK. Il token circola normalmente e la scheda lo riceve una volta per rotazione.
2 lampeggiamenti al secondo seguiti da una pausa di 2 secondi	NEVER GETTING TOKEN. II token circola sulla rete ma la scheda non lo riceve mai.
3 lampeggiamenti al secondo seguiti da una pausa di 1,7 secondi	SOLE STATION. La rete include una sola stazione oppure il collegamento è caduto.
4 lampeggiamenti al secondo seguiti da una pausa di 1,4 secondi	DUPLICATE STATION. Un altro nodo della rete utilizza l'indirizzo della scheda opzionale. La scheda attende una riconfigurazione oppure la disconnessione dell'altro nodo dalla rete.

Parametri del variatore Lexium

Stato del variatore

Il variatore Lexium dispone di tre parametri (Vedi *Parametri Modbus Plus:, p. 61*) che consentono di visualizzare lo stato del variatore stesso e della scheda opzionale Modbus Plus.

- (DPR. ASCII equivalente a DPRSTATE)
- (Modbus Plus, ASCII equivalente a MBPSTATE)
- (Drive, ASCII equivalente a MBPDPRVSTATE)

Tali parametri sono accessibili:

- Tramite il terminale del software Unilink o tramite un qualsiasi altro terminale. Per poter leggere questi parametri sono stati definiti alcuni comandi ASCII.
- Tramite la schermata Modbus Plus del software Unilink.

Modalità di funzionamento del variatore

8

In breve

Argomento di questo capitolo

Questo capitolo mostra il grafico dello stato standard DRIVECOM nonché la modalità locale forzata via Unilink.

Contenuto di questo capitolo

Questo capitolo contiene le seguenti sottosezioni:

Argomento	Pagina
Schema di stato della normativa DRIVECOM	74
Standard DRIVECOM	75
Grafico di stato/Comando strumenti con Lexium	77
Parola di comando DRIVECOM	82
Parola di stato DRIVECOM	85
Modalità locale forzata Unilink	87

Schema di stato della normativa DRIVECOM

Schema di stato della normativa DriveCom

È possibile comandare il variatore Lexium tramite Modbus Plus secondo lo schema di stato della normativa DRIVECOM:

Schema: Stadio di uscita Guasto 13 disattivato Apparizion In funzione e quasti 14 Non pronto per l'applicazione Guasto della tensione 1 15 Fuori tensione 2 **A** 7 12 10 Pronto per l'applicazione della tensione **A** 6 Potenza attivata 9 8 Applicazione della tensione 5 11 Esecuzione Arresto rapido Attivata attivato

questa normativa comprende tutte le funzioni essenziali dei variatori di diversi produttori.

Ogni stato corrisponde a un comportamento interno del variatore. Lo stato del variatore è accessibile tramite la sua parola di stato. Il cambiamento di stato viene effettuato con la parola di comando.

Il valore dei bit contrassegnati da una X non è pertinente.

Standard DRIVECOM

Standard DRIVECOM

Il processo di comando di Lexium è conforme al grafico di stato dello standard DRIVECOM. Ogni stato rappresenta un aspetto del comportamento interno del variatore. Lo stato del variatore cambia quando:

- la parola di comando, STW (parola Peercop 1), invia un comando.
- si produce un evento diverso da un comando, ad esempio un guasto esterno. Lo stato del variatore è indicato dalla parola di stato ZSW (parola Global Data 1). Gli stati del variatore sono descritti di seguito.

Not Ready to Switch On (inizializzazione delle comunicazioni)

La scheda di comunicazione è in corso di inizializzazione, ma il variatore non è ancora alimentato o deve essere messo sotto tensione. La funzione di avanzamento/movimento è disabilitata

Switch On Disabled (configurazione del variatore)

Il variatore viene messo in funzione e ha terminato il sottoprogramma di inizializzazione. A questo punto, è possibile modificare i parametri di configurazione e regolazione. Durante questo periodo, non è consentito l'impiego dei circuiti di tensione di uscita.

Ready to Switch On e Switched On (inizializzazione e configurazione del variatore terminate)

Il variatore non fornisce più tensione all'uscita ma è pronto e in attesa. Commutazione attivata.

Operation Enabled (capacità di trasmettere una tensione ai morsetti del motore) I circuiti di tensione di uscita del variatore sono in funzione. Tutte le funzioni di avvio, arresto e autoregolazione vengono riconosciute. I parametri di regolazione possono essere modificati in qualunque momento. I parametri di regolazione possono essere modificati solo quando il motore è fermo. Inoltre, se si modifica un parametro di configurazione, il variatore torna allo stato Switch On Disabled.

Quick Stop Active (arresto elettronico/decelerazione rapida)

L'attivazione di questa modalità di arresto provoca la decelerazione del motore tramite il variatore con il tempo minimo della rampa di decelerazione. Per riavviare l'uscita del variatore, il PLC deve tornare allo stato Switch On Disabled. A partire da questo punto, i comandi di transizione sequenziale possono riportare il PLC allo stato Operation Enabled.

Malfunction Reaction Active (capacità di determinare le azioni da intraprendere in caso di quasto)

Il variatore rileva un errore e reagisce prendendo l'azione appropriata (programmabile in alcuni casi) al tipo di guasto. Durante questo periodo, altre funzioni del variatore sono disattivate

Malfunction (guasto variatore)

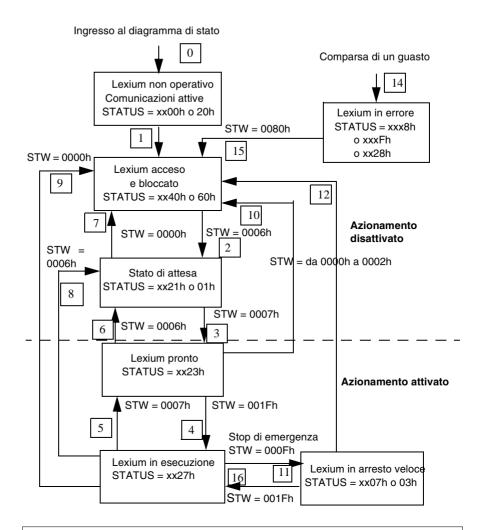

Il variatore ha rilevato la presenza di un guasto che richiede la disattivazione delle proprie funzioni. È richiesto un comando di reinizializzazione dei guasti o della regolazione dell'alimentazione principale per riportare il PLC allo stato Switch On Disabled. A partire da questo punto, i comandi di transizione sequenziale possono riportare il PLC allo stato Operation Enabled. Per ulteriori informazioni, consultare il paragrafo "Switch On Disabled (configurazione del variatore)".

Grafico di stato/Comando strumenti con Lexium

Comando strumenti

Il comando degli strumenti è descritto con una macchina di stato. La macchina di stato viene definita nel profilo del variatore tramite uno schema funzionale per tutti i modi di impiego. Lo schema funzionale che segue mostra gli stati degli strumenti per il Variatore Lexium (Vedi *Schema di stato della normativa DRIVECOM, p. 74*).

Nota: STATUS è la variabile booleana logica AND di ZSW (parola Global Data 1) e 6F (hex). Tutti i valori di STATUS e STW (parola di comando 1 dei dati Peercop) sono esadecimali.

Nota: STATUS = ZSW AND 16#006Fh

Stati strumenti

Le tabella che segue descrive gli stati degli strumenti e le transizioni :

Not ready for switch-on "Lexium fuori tensione"	Il variatore Lexium non è pronto per il funzionamento. Non è segnalato alcuno stato di disponibilità (default RA/RB) dal software dell'amplificatore.
Switch-on inhibited "Lexium sotto tensione e bloccato"	II VARIATORE LEXIUM è pronto per il funzionamento. I parametri possono essere trasferiti, il collegamento in corrente continua (bus CC) può essere attivato, le funzioni di movimento non possono, per il momento, essere eseguite.
Ready for switch-on"Stato d'attesa"	Deve essere applicata la tensione del collegamento CC. I parametri possono essere trasferiti, le funzioni di movimento non possono, per il momento, essere eseguite.
Ready for operation "Lexium pronto"	Deve essere attivata la tensione del collegamento CC. I parametri possono essere trasferiti, le funzioni di movimento non possono, per il momento, essere eseguite. Lo stadio di uscita viene messo in funzione (attivato).
Operation enabled "Lexium in funzione"	Assenza di errore. Lo stadio d'uscita viene messo in funzione, le funzioni di movimento attivate.
Fast stop activated "Lexium in arresto veloce"	Il variatore è stato arrestato con la rampa di arresto d'urgenza. Lo stadio d'uscita viene messo in funzione (attivato), le funzioni di movimento sono attivate.
Error response active/error "Lexium in errore"	In caso di errore di uno strumento, il VARIATORE LEXIUM passa allo stato "Error response active". In questo caso, lo stadio di potenza viene messo immediatamente fuori tensione. Dopo l'apparizione di questa risposta d'errore, passa allo stato "Error". Questo stato termina solo tramite il comando di bit "Error-reset". Per questo scopo, occorre eliminare la causa dell'errore (vedere comando ASCII ERRORCODE).

Transizioni della macchina di stato

Questa tabella indica la modifica dei bit equivalente ai valori esadecimali indicati nello schema funzionale di stato precedente.

Transizione 0	Evento	Reinizializzazione / alimentazione 24 V attivata.
	Azione	Avvio dell'inizializzazione
Transizione 1	Evento	Inizializzazione terminata correttamente, messa in funzione inibita del VARIATORE LEXIUM.
	Azione	Nessuna
Transizione 2	Evento	Il bit 1 (inhibit voltage) e bit 2 (fast stop) vengono definiti nella parola di controllo (comando : shutdown). La tensione del collegamento CC è presente.
	Azione	Nessuna
Transizione 3	Evento	Anche il bit 0 (switch-on) viene definito (comando: switch-on)
	Azione	Lo stadio di uscita viene messo in funzione (attivato). Il variatore produce una coppia.
Transizione 4	Evento	Anche il bit 3 (operation enabled) viene definito (comando : operation enable)
	Azione	Le funzioni di movimento sono attivate, in base alla modalità di impiego definita.
Transizione 5	Evento	Il bit 3 viene annullato (comando : inhibit)
	Azione	Le funzioni di movimento sono disattivate: Il variatore viene frenato, tramite la rampa corrispondente (in base alla modalità di impiego).
Transizione 6	Evento	Il bit 0 è annullato (ready for switch-on).
	Azione	Lo stadio di uscita viene messo fuori tensione (disattivato). Il variatore non produce alcuna coppia.
Transizione 7	Evento	Il bit 1 o il bit 2 è annullato.
	Azione	(Comando: "Fast stop" o "Inhibit voltage")
Transizione 8	Evento	Il bit 0 è annullato (operation enabled -> ready for switch-on).
	Azione	Lo stadio di uscita viene messo fuori tensione (disattivato) - perdita di coppia del motore.
Transizione 9	Evento	Il bit 1 è annullato (funzionamento attivato -> messa in servizio inibita).
	Azione	Lo stadio di uscita viene messo fuori tensione (disattivato) - perdita di coppia del motore.
Transizione 10	Evento	Il bit 1 o il bit 2 è annullato (ready for operation -> switch-on inhibited).
	Azione	Lo stadio di uscita viene messo fuori tensione (disattivato) - perdita di coppia del motore.
Transizione 11	Evento	Il bit 2 è annullato (operation enabled -> fast stop).
	Azione	Il variatore è stato arrestato con la rampa di arresto d'urgenza. Lo stadio d'uscita rimane attivo. I setpoint sono annullati (ad esempio, numero di blocco movimento, setpoint digitale).
Transizione 12	Evento	Il bit 1 è annullato (fast stop -> switch-on inhibited).
	Azione	Lo stadio di uscita viene messo fuori tensione (disattivato) - perdita di coppia del motore.
Transizione 13	Evento	Risposta di errore attiva.
	Azione	Lo stadio di uscita viene messo fuori tensione (disattivato) - perdita di coppia del motore.

Transizione 14	Evento	Errore
	Azione	Nessuna
Transizione 15	Evento	II bit 7 è definito (errore -> switch-on inhibited).
	Azione	Errore riconosciuto (in base all'errore - con/senza reinizializzazione).
Transizione 16	Evento	Il bit 2 è definito (fast stop -> operation enabled).
	Azione	La funzione di movimento è di nuovo attiva.

Le transizioni di stato sono influenzate da eventi interni (ad esempio, messa fuori tensione del collegamento CC) e da flag nelle parole di controllo (bit 0, 1, 2, 3, 7).

Parola di comando DRIVECOM

Parola di controllo (STW)

Con la parola di controllo, è possibile passare da uno stato di strumento a un altro. Il grafico della macchina di stato mostra gli stati di strumento che possono essere ottenuti e tramite quali transizioni. Lo stato di strumento temporaneo può essere ottenuto con la parola STATUS.

In un ciclo telegramma possono esistere più stati (ad esempio, Ready for switch on -> Ready for operation -> Operation enabled). I bit della parola di controllo possono dipendere dalla modalità di impiego oppure no.

La tabella seguente fornisce le definizioni dei bit della parola di controllo (STW).

Bit	Nome dello standard	Applicazione Lexium allo standard DRIVECOM
	DRIVECOM	
0	Switch on	Stato di disponibilità 0= non pronto, 1 = pronto
1	Inhibit voltage	-
2	Fast stop, switch-on inhibited	1 -> 0 il variatore frena tramite la rampa d'urgenza (parametro ASCII DECSTOP), asse disattivato.
3	Operation enabled	Il variatore può emettere i comandi di movimento.
4	Fast stop	1 -> 0 il variatore frena tramite la rampa d'urgenza (parametro ASCII DECSTOP), l'asse resta attivato.
5	Depends on operating mode	Dipendente dalla modalità
6	Depends on operating mode	Dipendente dalla modalità
7	Reset Fault	Errore comando di reinizializzazione
8	Start Jogging	Dipendente dalla modalità
9	Reserved	-
10	Reserved	-
11	Start homing (edge)	Dipendente dalla modalità
12	Manufacturer-specific	Reinizializzazione della posizione
13	Alarm acknowledgment Manufacturer-specific	Riconoscimento degli avvisi, il parametro ASCII CLRWARN = 1 deve essere definito per attivare questa caratteristica
14	Manufacturer-specific	riservato
15	Manufacturer-specific	riservato

In base alla combinazione di bit nella parola di controllo, viene definito un comando di controllo corrispondente.

La tabella di seguito indica le combinazioni di bit e determina inoltre le priorità dei bit singoli se più bit vengono modificati in un ciclo telegramma.

Stato dopo l'indicazione del comando e valore esadecimale tipo per la parola di stato	Comando in DRIVECOM	Bit 13	Bit 7	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Transizione (vedere grafico di stato)	Valori tipo della parola di comando
Stato d'attesa STATUS = xx21 o xx01	Shutdown	Х	Х	Х	Х	1	1	0	2,6,8	16#0006
Lexium pronto STATUS = xx23	Switch on	Х	Х	Х	Х	1	1	1	3	16#0007
Lexium sotto tensione e bloccato STATUS = xx40 o xx60	Inhibit voltage	x	Х	Х	Х	Х	0	Х	7,9,10,12	16#0000
Lexium sotto tensione e bloccato STATUS = xx40 o xx60	Fast stop (disable)ES TOP	Х	Х	Х	х	0	1	X	7,10,11, >12	16#0000
Lexium in arresto veloce STATUS = xx07 o xx03	Fast stop (enable)QUI CK STOP	Х	Х	0	1	1	1	1	11	16#000F
Lexium pronto STATUS = xx23	Inhibit operation	Х	Х	Х	0	1	1	1	5	16#0007
Lexium in funzione STATUS = xx27	Enable operation	Х	Х	1	1	1	1	1	4,16	16#001F
Lexium sotto tensione e bloccato STATUS = xx40 o xx60	Reset Fault	X	1	Х	Х	Х	Х	Х	15	16#0080

I bit contrassegnati da una X non sono utilizzati.

Bit dipendenti dalla modalità nella parola di controllo:

Modalità	Bit 5	Bit 6	Bit 8	Bit 11
8: Posizione	1 > 0 - interrompe il movimento 0 > 1 - riprende il movimento Per un task movimento : le rampe di accelerazione e decelerazione sono definite dai parametri ASCII O_ACC1 e O_DEC1. Per il punto d'origine/Jogging : le rampe di accelerazione e decelerazione sono definite dai parametri ASCII ACCR e DECR.	Avviare un task movimento con ciascun fronte di transizione (bit di commutazione).	Avvio/arresto movimento Jog	Avvio movimento home
0: Velocità digitale	1 > 0 - arresta il movimento. Il variatore frena tramite le rampe di velocità di preselezione. Parametri ASCII ACC e DEC.	Impostato a 1 - Autorizza il movimento in base alla velocità preselezionata in VCMD	riservato	riservato
2: Corrente digitale	riservato	Impostato a 1 - Autorizza il movimento in base alla corrente preselezionata in VCMD	riservato	riservato
1: Velocità analogica	riservato	riservato	riservato	riservato
3: Corrente analogica	riservato	riservato	riservato	riservato
5: Posizionament o tramite rete esterna	riservato	Avviare S_SETH	riservato	riservato

Priorità dei bit 6, 8, 11 in modalità di posizionamento: 6 (alto), 11, 8 (basso).

Parola di stato DRIVECOM

Parola di stato (ZSW)

Con la parola di stato, è possibile rappresentare lo stato di strumento e verificare la parola di comando emessa. In caso di condizione imprevista, ad esempio il risultato di una parola di controllo emessa, è necessario chiarire la prima di tutte le condizioni limite per lo stato di strumento atteso (ad esempio, attivazione dello stadio d'uscita - hardware + software, applicazione della tensione di collegamento in corrente continua). I bit della parola di stato possono **dipendere dalla modalità** di impiego oppure **no**.

La tabella seguente fornisce le definizioni dei bit della parola di stato (ZSW).

Bit	Nome dello standard DRIVECOM	Applicazione Lexium allo standard DRIVECOM
0	Ready to Switch on	Stato di attesa
1	Switched-on	Lexium pronto
2	Operation enabled	Lexium in funzione
3	Fault present	Lexium in errore, vedere il comando ASCII ERRCODE
4	Voltage inhibited	-
5	Fast stop	-
6	Switch-on inhibit	-
7	Warning active	Vedere il comando ASCII STATCODE
8	Following error	In modalità di posizionamento solo Opmode 5
9	Remote/Local	Non considerato, impostato a 1
10	Setpoint reached	In modalità di posizionamento, solo 4 e 5
11	Threshold reached	Attualmente non considerato
12	Reserved	riservato
13	Mode-dependent	riservato
14	Manufacturer-specific	riservato
15	Manufacturer-specific	riservato

Stati della parola di stato (ZSW):

Stato	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Not ready for switch-on "Lexium fuori tensione"	0	Х	Х	0	0	0	0
Switch-on inhibit "Lexium sotto tensione e bloccato"	1	Х	Х	0	0	0	0
Ready for switch-on "Stato di attesa"	0	1	Х	0	0	0	1
Ready for operation "Lexium pronto"	0	1	Х	0	1	1	1
Operation enabled "Lexium in funzione"	0	1	Х	0	1	1	1
Errore "Lexium in errore"	0	Х	Х	1	0	0	0
Fast stop active "Lexium in arresto veloce"	0	0	Х	0	1	1	1

Esempio della sequenza dei comandi di transizione da recuperare da una condizione di errore

Se si verifica un errore, la parola di stato viene impostata a xxx8h o xxxFh. L'errore deve essere eliminato regolando la parola di comando a un valore di 0080h (bit di commutazione di 7 0>1). Lexium risponde eliminando l'errore (se possibile) e regolando lo stato su "Lexium sotto tensione e bloccato" con un valore della parola di stato di xx40h o xx60h. Per passare allo "Stato d'attesa", digitare 0006h nella parola di comando. Il valore della parola di stato è xx21h o xx01h. Per passare allo stato "Lexium pronto", digitare 0007h nella parola di comando. Il valore della parola di stato è xx23h. Lo stadio d'uscita è attivo. Quindi, per comandare il movimento, digitare 001FH nella parola di comando. Il variatore passa allo stato "Lexium in funzione" con il valore della parola di stato di xx27h. Le funzioni di movimento sono attivate e, in base alla modalità di impiego definita, è possibile comandare il movimento del motore.

Modalità locale forzata Unilink

Modalità locale forzata Unilink

Durante il debug dell'asse, è possibile passare in modalità locale forzata su Unilink. Il passaggio in modalità Locale è ottenuto con il comando "Convalida" di Unilink. In questo caso gli scambi di dati Peer-Cop vengono interrotti e l'insieme dei comandi in Unilink sono accessibili nello stesso modo che in funzionamento indipendente. Gli scambi Peer Cop vengono ristabiliti tramite il comando "Invalidation" in Unilink.

Prestazioni teoriche

Prestazioni teoriche

Tempo medio tra due aggiornamenti dati con una stazione di rete (Token Rotation Time) Documento di riferimento: Manuale Modicon d'installazione 890 USE 100 00

Token Rotation Time

TRT (in ms) = (2.08+0.016 * DMW) * DMP+(0.19+0.016 * GDW) * GDN+0.53 * N

N = Numero della stazione di rete

DMP = Numero del master che utilizza MSTR DMW = Numero medio del registro parola MSTR

GDN = Numero della stazione trasmittente dei Global Data (e Peer Cop)
DMW = Numero medio del registro parola trasmesso in Global Data

Esempio in una configurazione in cui si implementano una stazione Premium, una stazione Quantum e un variatore Lexium:

Premium (9 Peer Cop) + Quantum (9 Peer Cop + MSTR (Get Network statistic)) + Lexium (18 Global Data)

TRT = (2.08 + trascurabile) * 1 + (0.19 + 0.016 * 18) * 3 + 0.53 * 3 = 5 ms circa. II che corrisponde al valore letto con la richiesta MSTR 7 sul Quantum.

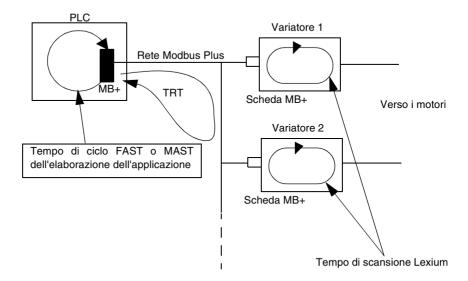
Tempo di scansione

Tempo di scansione Lexium per Peer Cop e Global Data = 10 ms tipicamente

Il tempo di risposta del Lexium per gli accessi alla messaggeria, dei parametri di comando del variatore è variabile, ossia da qualche ms a 500 ms. In effetti, esso dipende dai tipi di parametri (regolazione dei loop, configurazione, task di movimento....) e dallo stato del variatore (attivo o bloccato).

Esempi:

- Variatore bloccato
 Lettura del guadagno proporzionale del loop di posizione (GP) t = 4ms
 Scrittura del guadagno proporzionale del loop di posizione (GP) t = 326ms
- Variatore attivo
 Scrittura del guadagno proporzionale del loop di posizione (GP) t = 392ms
 Accelerazione (ACC) in lettura t = 4ms
 Accelerazione (ACC) in lettura t = 6ms
- Comando di convalida del variatore t=2ms.


Tempo di risposta medio

TR medio per Global Data e Peer Cop = 1 * TRT + 1/2 tempo di scansione dispositivo ricevente

TR medio per la Messaggeria = 1 * TRT + 1 tempo di scansione dispositivo richiedente + 1/2 tempo di scansione dispositivo target

Tempo di risposta Applicazione

Schema generale

Tempo di risposta medio dell'applicazione:

 $TR_{Appmedio} = 1,5T_{cicloPLC} + TRmedio$

Elenco delle variabili di Lexium: Generalità

10

In breve

Argomento di questo capitolo

Questo capitolo contiene le tabelle delle variabili accessibili dall'utente tramite messaggeria.

Questo elenco non è completo (vedere ASCII Command sul CD-ROM Lexium Motion Tools).

Contenuto di questo capitolo

Questo capitolo contiene le seguenti sottosezioni:

Argomento	Pagina
Variabili generali di Lexium: generalità	94
Variabili logiche in lettura/scrittura	99
Elenco delle variabili generali del Lexium	100
Elenco delle variabili logiche e dei registri di stato	102
Registri di stato in lettura/scrittura	103

Variabili generali di Lexium: generalità

Generalità

Le tabelle seguenti indicano le variabili accessibili dall'utente tramite messaggeria. L'elenco non è completo. Per un elenco completo, consultare l'elenco dei comandi ASCII disponibile sul CD-ROM Lexium Motion Tools (codice di riferimento AMO CSW 001V350).

Formati:

- W: Word (parola da 16 bit)
- DW: Double Word (parola doppia, parole da 32 bit, prima la meno significativa)
- F: Float (32 bit con valore * 1000)
 Esempio: ASCII GP=0.15. la lettura del valore restituito sarà 150.

Tabella generale delle variabili generali in lettura/scrittura

Variabili accessibili dall'utente

Indirizzo di memoria del variatore*	Comando ASCII	Descrizione	Intervallo	Valore predefinito	Formato
001	ACC	Grado d'accelerazione	da 1 a 32767.	10	DW
002	ACCR	Rampa di accelerazione (punto di origine, Jog)	da 1 a 32767.	10	DW
800	ANDB	Banda morta del segnale di ingresso analogico	da 0 a 10000.	0	DW (F)
017	AVZ1	Costante di tempo del filtro dell'ingresso 1	da 0,2 a 100.	1	DW (F)
034	DEC	Grado di decelerazione	da 1 a 32767.	10	DW
035	DECDIS	Decelerazione in caso di perdita di potenza	da 1 a 32767.	10	DW
036	DECR	Rampa di decelerazione (punto di origine, Jog)	da 1 a 32767.	10	DW
037	DECSTOP	Rampa di arresto rapido	da 1 a 32767.	10	DW
050	ENCIN	Risoluzione dell'ingresso encoder	256, 512, 1024, 2048, 65536	4096	DW
055	ENCZERO	Offset zero alto	da 0 a 1023.	0	W
056	EXTMUL	Fattore di scala ritorno incrementale esterno	da 0 a 32767.	256	W

Indirizzo di memoria del variatore*		Descrizione	Intervallo	Valore predefinito	Formato
062	GEARI	Numero di denti sull'ingresso Trasmissione	da 1 a 32767.	8192	W
064	GEARO	Numero di denti sull'uscita Trasmissione	da -32768 a 32767.	8192	W
066	GP	Loop di posizione: Guadagno proporzionale	da 0,01 a 25.	0.15	DW (F)
067	GPFBT	Loop di posizione: corrente di controllo dell'anticipo velocità	da 0 a 2,0.	1	DW (F)
068	GPFFT	Loop di posizione: corrente d'anticipo velocità	da 0 a 2,0.	1	DW (F)
069	GPFFV	Loop di posizione: Velocità d'anticipo	da 0 a 2,0.	1	DW (F)
070	GPTN	Loop di posizione: tempo di azione dell'integrazione	da 1 a 200,0.	50	DW (F)
071	GPV	Loop di posizione: velocità di controllo dell'anticipo	da 0,1 a 60.	3	DW (F)
072	GV	Loop di velocità: Guadagno proporzionale	da 0 a 200,0.	1	DW (F)
073	GVFBT	Loop di velocità: costante di tempo della prima integrazione del filtro di ritorno	da 0 a 100.	0.4	DW (F)
074	GVFILT	Loop di velocità: proporzione di filtraggio in [%] per GVT2	da 0 a 100.	85	W
075	GVFR	Loop di velocità: termine PI-Plus	Da 0 a 1	1	DW (F)
076	GVT2	Loop di velocità: seconda costante di tempo	da 0 a 1000	1	DW (F)
077	GVTN	Loop di velocità: Tempo d'integrazione I	da 0,2 a 1000	10	DW (F)
090	I2TLIM	Messaggio I2T	da 0 a 100	80	W
092	ICONT	Corrente nominale	10% di DICONT al max (DICONT, IPEAK)	Min di DICONT e MICONT	DW (F)
099	IN1TRIG	Variabile di attivazione ausiliaria per IN1MODE	Intero lungo	0	DW
102	IN2TRIG	Variabile di attivazione ausiliaria per IN2MODE	Intero lungo	0	DW

Indirizzo di memoria del variatore*	Comando ASCII	Descrizione	Intervallo	Valore predefinito	Formato
105	IN3TRIG	Variabile di attivazione ausiliaria per IN3MODE	Intero lungo	0	DW
108	IN4TRIG	Variabile di attivazione ausiliaria per IN4MODE	Intero lungo	0	DW
110	IPEAK	Corrente max applicazione	20% di DICONT a 2*DICONT	IMAX	DW (F)
111	IPEAKN	Corrente massima applicazione senso negativo	20% di DICONT a 2*DICONT	IMAX	DW (F)
113	ISCALE1	Fattore di scala per il comando analogico 1 di corrente	da 0 a 100	DIPEAK	DW (F)
114	ISCALE2	Fattore di scala per il comando analogico 2 di corrente	da 0 a 100	DIPEAK	DW (F)
303	KTN	Tempo di azione integrale del regolatore di corrente	da 0,2 a 10	0.6	DW (F)
132	MAXTEMPE	Temperatura max. interna variatore	da 10 a 80	70	W
133	MAXTEMPH	Valore di interruzione della temperatura del radiatore	da 20 a 85	80	W
134	MAXTEMPM	Temperatura max. motore	da 0 a 6000	1000	DW (F)
142	MICONT	Corrente continua nominale	10% di DICONT,	DICONT	DW (F)
143	MIPEAK	Corrente di picco limitata motore	20% di DICONT,	DIPEAK	DW (F)
149	MLGC	Guadagno adattativo del regolatore di corrente (corrente continua)	da 0,2 a 1	0.7	DW (F)
150	MLGD	Guadagno del regolatore di corrente asse D della corrente motore	da 0,1 a 1	0.3	DW (F)
151	MLGP	Guadagno adattativo della corrente di picco motore	da 0,1 a 1	0.4	DW (F)
152	MLGQ	Guadagno del regolatore di corrente asse Q della corrente motore	da 0,01 a 30	1	DW (F)
156	MPHASE	Fase motore, offset elettrico (regolazione del resolver)	da 0 a 360	0	W
160	MRESBW	Larghezza di banda del resolver	da 200 a 800	600	W
163	MSPEED	Velocità massima limitata motore	da 0 a 12000	3000	DW (F)

Indirizzo di memoria del variatore*	Comando ASCII	Descrizione	Intervallo	Valore predefinito	Formato
165	MTANGLP	Corrente residua	da 0 a 45	0	W
347	MTMUX	Caricamento task movimento	0,1922 55	0	W
167	MVANGLB	Avanzamento dipendente dalla velocità di rotazione (Phi iniziale)	da 0 a 15000	2400	DW
168	MVANGLF	Avanzamento dipendente dalla velocità di rotazione (Phi finale)	da 0 a 45	20	W
146	MVANGLP	Angolo di commutazione legato alla velocità	da 0 a 45	0	W
183	O_ACC1	Tempo di accelerazione 1 per MT 0	da 1 a 32000	0	W
184	O_ACC2	Tempo di accelerazione 2 per MT 0	da 1 a 32000	0	W
185	O_C	Variabile di comando per MT 0	int (=parola)	-	W
186	O_DEC1	Tempo di decelerazione 1 per MT 0	da 1 a 32000	0	W
187	O_DEC2	Tempo di decelerazione 2 per MT 0	da 1 a 32000	0	W
188	O_FN	Numero dell'ordine successivo per MT 0	0,1180,192. 255	0	W
189	O_FT	Ritardo dell'ordine successivo per MT 0	da 1 a 32767	0	W
190	O_P	Posizione mirata per MT 0	Intero lungo	0	DW
191	O_V	Velocità mirata per MT 0	Intero lungo	0	DW
176	O1TRIG	Variabile ausiliaria di attivazione O1MODE	Intero lungo	0	DW
179	O2TRIG	Variabile ausiliaria di attivazione O2MODE	Intero lungo	0	DW
193	PBALMAX	Potenza stabilizzatrice massima	0-80 (3A) ; 0- 200 (>3A) ; 1500 esterna	80/200	DW
198	PEINPOS	Soglia errore di posizione per il controllo di posizione in ingresso (INPOS)	Intero lungo	4000	DW
199	PEMAX	Errore d'inseguimento max	Intero lungo	262144	DW
202	PGEARI	Numeratore del fattore di risoluzione per il task di movimento	Intero lungo	1	DW
203	PGEARO	Denominatore del fattore di risoluzione per il task di movimento	Intero lungo	1	DW
213	PTBASE	Base di tempo della traiettoria esterna	da 1 a 100	4	W
214	PTMIN	Tempo minimo di accelerazione per MT	da 1 a 32767	1	DW

Indirizzo di memoria del variatore*	Comando ASCII	Descrizione	Intervallo	Valore predefinito	Formato
216	PVMAX	Velocità max. per MT	da 0 a intero lungo	100	DW
217	PVMAX	Velocità max. per MT (senso negativo)	da 0 a intero lungo	100	DW
226	REFIP	Corrente applicazione al punto d'origine su finecorsa meccanico	da 0 a IPEAK	IPEAK	DW (F)
231	ROFFS	Offset di origine	Intero lungo	0	DW
260	SWE1	Valore di posizione per Pos.Reg.1	Intero lungo	0	DW
262	SWE2	Valore di posizione per Pos.Reg.2	Intero lungo	0	DW
264	SWE3	Valore di posizione per Pos.Reg.3	Intero lungo	0	DW
266	SWE4	Valore di posizione per Pos.Reg.4	Intero lungo	0	DW
278	UID	ID utente	da -32768 a 32767	0	W
305	UCOMP	Compensazione senza ritorno	da -231 a 231	0	DW
284	VBUSMAX	Tensione bus max.	da 30 a 950	900	DW
285	VBUSMIN	Tensione bus min.	da 30 a 800	100	W
289	VJOG	Velocità in Jog	da 0 a intero lungo	0	DW
290	VLIM	Velocità limite sistema	da 0 a MSPEED	3000	DW (F)
291	VLIMN	Velocità limite sistema (senso negativo)	da 0 a MSPEED	3000	DW (F)
295	VOSPD	Supero velocità	da 0 a 1,2*MSPEED	3600	DW (F)
296	VREF	Velocità di ritorno all'origine	da 0 a intero lungo	0	DW
297	VSCALE1	Fattore di scala sull'ingresso di velocità 1	da 0 a 12000	3000	W
298	VSCALE 2	Fattore di scala sull'ingresso di velocità 2	da 0 a 12000	3000	W

^{*} Per un elenco completo, consultare il manuale dei comandi ASCII. L'indirizzo di memoria del variatore è indicato nella tabella in "numero oggetto" per il comando ASCII specifico. Non dimenticare di aggiungere 1 a questo indirizzo logico quando si utilizzano i PLC Modicon.

Variabili logiche in lettura/scrittura

Tabella delle variabili logiche in lettura/ scrittura

Tabella delle variabili

Indirizzo	Comando ASCII	Descrizione	Intervallo	Valore di default	Format o
003	ACTFAULT	Modalità default attiva	0 = interruzione var. 1 = decelerazione	0	W
162	MSG	Accettazione/rifiuto dei messaggi	0 = rifiuto 1 = accettazione dei soli messaggi d'errore 2 = accettazione di tutti i messaggi	0	W
180	OPMODE	Modalità di funzionamento	0-5, 8	1	W
209	PRBASE	Bit per giro	16,20	20	W
211	PROMPT	Preselezione del protocollo RS232	0=nessun messaggio di attesa 1=messaggio di attesa attivato 2=car. echo e messaggio di attesa attivati 3=messaggio di attesa e checksum attivati	1	-
245	SPSET	Autorizzazione di rampe in seno	0 = non autorizzate 1 = autorizzate	0	W
255	STOPMODE	Modalità di gestione del freno dinamico	0 = nessuna frenatura 1 = frenatura in caso di errore e/o interruzione var.	0	W

Elenco delle variabili generali del Lexium

Tabella delle variabili generali in sola lettura

Indirizzo	Comando ASCII	Descrizione	Intervallo	Valore predefinito	Formato
009	ANIN1	Ingresso analogico 1	-20000 a 20000	-	DW
010	ANIN2	Ingresso analogico 2	-20000 a 20000	-	DW
039	DICONT	Corrente nominale del variatore	da 1.5 a 20	Definito in base all'hardware	DW (F)
041	DIPEAK	Corrente di picco variatore	da 3.0 a 40	Definito in base all'hardware	DW (F)
088	I	Valore reale della corrente	-	-	DW (F)
089	I2T	Corrente media RMS	da 0 a 100	-	DW
093	ID	Componente D del valore reale di corrente	-	-	DW (F)
091	ICMD	Valore del setpoint di corrente	da - 2*DICONT a 2*DICONT	-	DW (F)
095	IMAX	Limite di corrente per la combinazione variatore/motore	da 0.3 a 40	Min di DIPEAK e MIPEAK	DW (F)
112	IQ	Componente Q del valore reale di corrente	-	-	DW (F)
136	MDBCNT	Numero di serie di dati del motore	da 1 a 127	-	W
154	MONITOR 1	Tensione d'uscita analogica 1	da -10000 a 10000	-	W
155	MONITOR 2	Tensione d'uscita analogica 2	da -10000 a 10000	-	W
192	PBAL	Valore reale della potenza stabilizzatrice	da 0 a 1500	-	DW

Indirizzo	Comando ASCII	Descrizione	Intervallo	Valore predefinito	Formato
197	PE	Errore di posizione sullo slave	Long int	-	DW
200	PFB	Controllo posizione attuale	Long int	-	DW
210	PRD	Contatore hardware della posizione misurata	da 0 a 1048575	-	DW
215	PV	Velocità istantanea del regolatore di posizione	Long int	-	DW
272	TEMPE	Temperatura interna	da -20 a 90	=	DW
273	TEMPH	Valore reale della temperatura del radiatore	da -20 a 90	-	DW
274	TEMPM	Temperatura motore	da 0 a 10000	-	DW
280	V	Velocità misurata (rpm)	da -15000 a 15000	-	DW
282	VBUS	Tensione bus	da 0 a 900	-	DW
286	VCMD	Setpoint di velocità	-	-	DW (F)
292	VMAX	Regime sistema massimo	da 0 a 12000	-	DW (F)

Elenco delle variabili logiche e dei registri di stato

Tabella delle variabili logiche in sola lettura

Tabella delle variabili

Indirizzo	Comando ASCII	Descrizione	Intervallo	Valore predefinito	Formato
004	ACTIVE	Stato di potenza attivato/disattivato	0 = disattivato 1 = attivato	-	W
006	AENA	Stato di inizializzazione della validazione del software	0 = inattivo 1 = attivo	1	W
221	READY	Stato di validazione del software	0,1	-	W

Tabella dei registri di stato in sola lettura

Tabella dei registri

Indirizzo	Comando ASCII	Descrizione	Intervallo	Valore predefinito	Formato
097	IN1	Stato dell'ingresso logico hardware 1	0 (basso), 1 (alto)	-	W
100	IN2	Stato dell'ingresso logico hardware 2	0 (basso), 1 (alto)	-	W
103	IN3	Stato dell'ingresso logico hardware 3	0 (basso), 1 (alto)	-	W
106	IN4	Stato dell'ingresso logico hardware 4	0 (basso), 1 (alto)	-	W
109	INPOS	Task di movimento terminato nella finestra configurata da PEINPOS	0 = non in pos 1 = in pos	-	W
174	O1	Stato dell'uscita logica hardware 1	0 (basso), 1 (alto)	-	W
177	O2	Stato dell'uscita logica hardware 2	0 (basso), 1 (alto)	-	W
181	OPTION	ID scheda opzionale	Int (=word)	-	W
251	STAT	Parola di stato variatore	Int (=word)	-	W

Registri di stato in lettura/scrittura

Tabella dei registri di stato in lettura/scrittura

Tabella dei registri

Indirizzo	Comando ASCII	Descrizione	Intervallo	Valore di default	Formato
015	ANZERO1	Zero ingresso analogico 1 (ANOFF1)	-	-	W
016	ANZERO2	Zero ingresso analogico 2 (ANOFF2)	-	-	W
024	CLRFAULT	Cancellazione/ riconoscimento errore del variatore	-	-	W
306	COLDSTART	Reinizializzazione variatore	-	-	W
029	CONTINUE	Continuare l'ordine di posizionamento precedente	-	-	W
043	DIS	Disattivazione del software	-	-	W
048	EN	Attivazione del software	-	-	W
115	К	Arresto (= Disattivare)	-	-	W
131	LOAD	Caricamento dei dati dalla EProm verso la RAM	-	-	W
141	МН	Avviare il punto di origine	-	-	W
145	MJOG	Avviare il Jog	-	-	W
233	RSTVAR	Regolazione di fabbrica delle variabili	-	-	W
234	S	Arresto del movimento e disattivazione del variatore	-	-	W
235	SAVE	Registrazione delle variabili nella EPROM a partire dalla RAM	-	-	W
240	SETREF	Configurare un punto di riferimento	-	-	W

Indirizzo	Comando ASCII	Descrizione	Intervallo	Valore di default	Formato
241	SETROFFS	Configurazione automatica ROFFS	-	-	W
254	STOP	Arrestare il task di movimento	-	-	W
322	MOVE	Avviare il task di movimento indicato Avviare bit di comando movimento nella parola DRIVECOM in PeerCop	0,1 180,192255	-	W

Come ottenere l'ID del prodotto

Indirizzo ModBus Plus = 10000

Struttura del registro di ritrasmissione dei dati:

- Lunghezza nome costruttore (14h)
- Produttore
- Lunghezza nome del modello (0Ah)
- Nome del modello
- Nome del riferimento:
- Versione software
- Prodotto
- Indice software

La lunghezza della risposta è di 46 byte.

La lettura su una stazione Premium dovrà essere eseguita di preferenza in accesso % MBxx con xx = 2^* l'indirizzo del buffer di ricezione %MWyy.

Esempio: buffer = %MW1150 o %MB2300

Con una stazione Quantum che utilizza Concept, creare un blocco READ_REG con un valore di 10001 sul pin SLAVEREG, 23 (parole) sul piedino NO_REG e un registro 4x a scelta sul pin REG_READ per registrare i dati reinviati.

Glossario

D

Dati globali (Global Data) Base dati aggiornata da ognuna delle stazioni della rete.

L

Lexium Famiglia di variatori Schneider Automation.

M

Modbus Plus Protocollo di comunicazione basato sul principio di un bus a token logico.

Modsoft Software associato ai PLC Quantum.

Peer Cop Mezzo rapido ed efficace per inviare i dati di comando verso una stazione "slave".

Premium Famiglia di PLC programmabili Schneider Automation.

Q

Quantum Famiglia di PLC programmabili Schneider Automation.

Indice analitico

C

Codice di riferimento degli accessori Modbus Plus, 17 Compatibilità, 10 Compatibilità alle norme della Scheda Opzionale, 11 Configurazione dati globali, 67 indirizzo, 64 Peer Cop, 65 TimeOut, 64 Configurazione dei parametri di Lexium, 60

D

Dati globali, 24

F

Funzione "READ_GDATA", 50

G

Gestione dei parametri comuni con la messaggeria, 66

M

Messaggeria, 24 tipi di variabile, 31

0

Organigramma della presentazione, 12

P

Peer Cop, 24
Dati di comando Lexium a partire dal PLC, 26
lista delle variabili trasmesse, 28
Precauzioni di montaggio, 16
Presentazione della scheda opzionale, 10

S

Schema di stato, 74
Stato della spia di comunicazione, 70
Stazione di comando Premium, 48
configurazione dei Peer Cop, 49
Stazione di comando Quantum, 35
blocco MSTR, 37
configurazione di Peer Cop e dei dati
globali, 35

T

Tempo di risposta applicazione, 91 Tempo di risposta medio, 90 Tempo di scansione Lexium, 90 Token Rotation Time, 89

Utilizzo dei Dati globali, 50 Utilizzo della messaggeria, 51 funzione "READ_VAR", 51 funzione "WRITE_VAR", 52