

INDICE

1 IN	ITRODUZIONE	5
2 Fl	UNZIONAMENTO DEL DRIVE AxM	5
21	Modalità base	6
2.2	Modalità applicazione utente (PLC)	
3 M	IESSA IN SERVIZIO	7
3.1	Visualizzatore a led	7
3.2	Parametrizzazione dei drive	8
3.3	Il conliguratore Cockpit	
J. 2	22 Costiono doi parametri	
3.	3.2 Dennello di controllo	
34	Verifica delle connessioni	
3.5	Monitoraggio del funzionamento	13
3.6	Aggiornamento Firmware di sistema	
3.7	Utilizzo della targhetta elettronica	
3.	.7.1 Plug & play	
3.	.7.2 Opzioni	15
3.8	Utilizzo delle test routine	
3.	.8.1 Fasatura dell'Encoder	
3.	.8.2 Taratura anello di corrente	
4 P/	ARAMETRI DI SISTEMA	17
11	Motore	17
4.1	Fincoders	
2	2.1 Encoders & Indice	
4	22 Encoders & Imp Avanzate	19
4.	2.3 Encoders & Monitor & Principale	
4.	2.4 Encoders & Monitor & Secondario	
4.3	Anello corrente	
4.	.3.1 Anello di corrente 🖏 Imp. Avanzate	
4.	3.2 Anello di corrente 🖏 Monitor	
4.4	Anello velocità spazio	
4.	.4.1 Anello di velocità spazio 🖔 Profilo velocità	
4.	.4.2 Anello di velocità spazio 🖏 Imp. Avanzate	
4.	.4.3 Anello di velocità spazio 🏷 Monitor	
4.5	Configurazione I/O	
4.	.5.1 Configurazione I/O & Monitor	
4.6	CANopen	
4.	.6.1 CANopen & Impostazione DS301	
4.	6.2 CANopen & Impostazione DS301 & Sync	
4.	6.3 CANopen & Impostazione DS301 & RX PDO 1	
4.	.0.4 CAINOPER & IMPOSTAZIONE DS301 & KX PD0 2	
4.	$CO = CANOPER \Rightarrow IIIPOStazione DS301 \Rightarrow KX FDU 3, 4, 5, 0 \dots$	
4. 1	6.7 CANopen & Impostazione DS201 & TX PDO 2	
4. 1	6.8 CANopen \bigotimes Monitor	
4. 1	$6.0 \qquad CANopen & Device profile DSP402 & Device Control$	
4.		

AxM	
Configurable Motion Control Platform	

	4.6.10) CANopen & Device profile DSP402 & Position Control	. 39
	4.6.1	CANopen & Device profile DSP402 & Option Codes	. 39
	4.7	CANLink	40
	4.7.1	CANLink & Master	. 41
	4.7.2	CANLink 🖔 Slave 1, 2, 3, 4, 5, 6	. 41
	4.8	Sistema	42
	4.8.1	Sistema 🖏 Unità frenatura	. 42
	4.8.2	Sistema & Seriale	. 43
	4.8.3	Sistema & Imp. Avanzate	. 44
	4.8.4	Sistema & Monitor	. 45
	4.8.5	Sistema & Monitor & Aliarmi	45
	4.9	Test th Foodure Freeder	40
	4.9.1	Test & Taratura anello corrente	. 40 . 16
	4.3.2		40
Б	STAN		17
J	JIAN		.47
	5.1	Object Dictionary	48
	5.1.1	Oggetti della comunicazione	48
	5.2	SDO and PDO	49
	5.3	SYNC	50
	5.4		50
	5.5	NMT	51
	5.5.1	Servizi di controllo dei modulo	51
	0.0.2		52
4	CT A M		E 2
0	STAN	DARD D3P 402	.05
	6.1	Architettura del drive	53
	6.2	Device Control	53
	6.2.1	Oggetti DSP 402	. 55
	6.3	Profile Velocity Mode	57
	6.3.1	Uggetti dei Proilie Velocity mode	57
	6.4	Piolite Position Mode	59
	65	Torque Mode	60
	0.5		00
7			61
'	AFFL		.01
	7.1	SpeedV	61
	7.2	Positioner	62
	7.3	Basic	. 64
	7.4	Caricare ed eseguire un'applicazione base	64
0			44
0	APPL		.00
	8.1	L'ambiente di sviluppo GPLC	66
	8.2	Creare o modificare un'applicazione	67
	8.3	Componenti dell'applicazione	67
	8.3.1	Moauli sorgente	67
	8.3.2	FIIC IIVIG	68
	0.3.3 0 0 4	rapelle parametri	00
	0.3.4	i dok util applicazione con il firmwara	09
	0.4 Q / 1	Deremetri enplicativi	70
	0.4.1	r arameur applicauvi	70
	812	Variabili di sistema	72
	844	Immagini di processo	. 72
	8.5	Esecuzione dell'applicazione	.72

AX Config	gurable Motion Control Platform	
8.5.1 8.5.2 8.5.3	Compilazione Connessione ed invio del codice al drive Diagnostica dell'applicazione	72 73 74
9 DIAG	SNOSTICA	75
9.1 9.2 9.3 9.4 9.5	Descrizione generale Fase selezione diagnostica Fase esecuzione diagnostica Esempio di esecuzione diagnostica Tipi di diagnostiche	
10 OS	SCILLOSCOPIO	83
10.1 10.2 10.3	Descrizione generale Impostazione dell'acquisizione Acquisizione dati	
11 AP	PENDICI	85
11.1 11.2 11.3 11.4 11.5 11.6	Appendice 1 - Lista degli allarmi dell'azionamento AxM Appendice 2 - Mappatura variabili di sistema Appendice 3 - Iterazione firmware - applicazione Appendice 4 - Schema generale firmware di regolazione e controllo Appendice 5 - Allarmi CANopen Appendice 6 – Tabella indirizzi variabili DSP	
-		

1 INTRODUZIONE

Il presente manuale illustra l'installazione, la messa in servizio e la configurazione dell'azionamento programmabile AxM per controllo di servomotori brushless; vengono inoltre presentati i tools di sviluppo software per le impostazioni dei parametri e la programmazione del drive.

Leggere attentamente tutti i capitoli prima della messa in funzione dell'azionamento.

2 FUNZIONAMENTO DEL DRIVE AxM

L'AxM è una piattaforma programmabile AxM per il controllo di servomotori brushless. Le funzioni di regolazione e controllo vengono gestite da un firmware integrato a bordo dell'azionamento. Diversi algoritmi permettono di controllare in velocità o in corrente il motore e realizzare funzioni di posizionatore con profilo trapezoidale o a gradino, alberi elettrici, simulatori di motore passo-passo. Vengono inoltre gestite le interfacce con periferiche quali: ingressi encoder, ingressi e uscite analogico-digitali, ingressi e uscite per bus di campo. AxM è previsto di pulsanti di comando per accedere ad alcune funzioni di monitoraggio e di un visualizzatore a led per segnalazione dello stato e degli allarmi.

Sull'azionamento è disponibile un'interfaccia seriale RS 232 attraverso la quale parametrizzare e monitorare lo stato di funzionamento mediante ambienti software dedicati (vedere paragrafo <u>3.3</u>): l'utilizzo dell'interfaccia parametrica rende semplice e versatile la configurazione dell'azionamento.

Oltre al firwmare integrato, nell'azionamento AxM è previsto un modulo software per l'esecuzione di applicazioni dedicate, sviluppate in linguaggio PLC, conforme allo standard internazionale IEC 1131-3. L'attivazione di applicazioni dedicate garantisce una elevata libertà nell'utilizzo degli ingressi ed uscite analogico-digitali e rende possibile l'implementazione di prestazioni addizionali non previste nel funzionamento base dell'azionamento. Sviluppo, compilazione e caricamento nel drive delle applicazioni utente vengono gestite tramite ambiente software dedicato Phase (vedere paragrafo <u>8.1</u>).

2.1 Modalità base

La modalità base, o "default" consente di utilizzare l'azionamento senza la necessità di caricare un'applicazione (PLC) dedicata ed in assenza di controllo remoto sulla linea Can. Phase Motion Control fornisce l'azionamento AxM predisposto per il funzionamento in modalità "default".

In questa modalità è possibile controllare il motore in corrente o velocità.

I comandi e i controlli vengono impartiti mediante l'attivazione degli appropriati segnali agli ingressi digitali, mentre i riferimenti di corrente o velocità mediante gli ingressi analogici.

La seguente tabella (Tabella 2.1) riassume la configurazione degli ingressi:

Ingresso	Sigla	Funzione	Descrizione	
Digitale 0	DI0	Abilitazione drive	Il drive viene abilitato sul fronte di salita dell'ingresso.	
Digitale 1	DI1	Zero riferimenti	Se l'ingresso è alto, i riferimenti vengono azzerati.	
Digitale 2	DI2	Inversione direzione	Se l'ingresso è alto, vengono invertiti i riferimenti impostati.	
Digitale 6	DI6	Selettore controllo	Se l'ingresso è alto, viene selezionato il controllo in velocità del motore, altrimenti il controllo è in corrente (coppia)	
Analogico 0	Alo Riferimento di velocità Agendo sulla tensione all'ingres dell'azionamento viene variato il rif di velocità quando l'azionament controllo di velocità.		Agendo sulla tensione all'ingresso Al0 dell'azionamento viene variato il riferimento di velocità quando l'azionamento è in controllo di velocità.	
Analogico 1	Al1	Riferimento di corrente	Agendo sulla tensione all'ingresso Al1 dell'azionamento viene variato il riferimento di corrente quando l'azionamento è in controllo di corrente.	

Tabella 2.1: Ingressi utilizzati dalla modalità base

Il drive attiva le seguenti uscite digitali in relazione al suo stato di funzionamento.

Uscita	Sigla	Funzione	Descrizione
Digitale 0	DO0	Drive Ok	L'uscita è attiva quando il drive è abilitato e non sono presenti allarmi.
Digitale 1	DO1	Run	L'uscità è attiva quando il drive attua i riferimenti impostati.

Tabella 2.2: Uscite gestite dall modalità base

Mediante l'interfaccia di configurazione Cockpit è possibile attivare in qualsiasi momento la modalità "default", il parametro di sistema IPA 18051, SYS_SEL_MODE (vedi par. <u>4.8</u>) definisce infatti da che sorgente il sistema operativo deve prendere i riferimenti. Qualsiasi applicazione caricata nel drive viene disattivata fino al momento in cui tale parametro non venga reimpostato su "Plc". Sono in oltre disponibili le modalità "Remote" nel caso di gestione del drive come nodo CANopen e "Test" per eseguire la messa in fase encoder.

Allo stesso modo, è possibile impostare i parametri fondamentali dell'azionamento, quali quelli relativi al motore, al tipo e caratteristiche dell'encoder, alla configurazione degli ingressi uscite, ai limiti di velocità ed accelerazioni.

Per una dettagliata descrizione dei parametri di sistema dell'azionamento si rimanda al Capitolo 4.

2.2 Modalità applicazione utente (PLC)

Oltre alle funzionalità base dell'azionamento, può rendersi necessario lo sviluppo di prestazioni addizionali. A riguado Phase Motion Control fornisce alcune applicazioni che soddisfano di norma le più comuni esigenze di controllo. L'attivazione di queste applicazioni dedicate presuppone il loro caricamento nell'azionamento e l'impostazione a "Plc" del parametro di sistema SYS_SEL_MODE. Una descrizione dettagliata delle applicazioni fornite è sviluppata al capitolo <u>7</u>.

Inoltre per esigenze di controllo particolari, l'utente ha la possibilità di sviluppare ed eseguire applicazioni proprie. Si può così sfruttare la versatilità dell'azionamento AxM nel soddisfare un'ampia gamma di condizioni di controllo/regolazione e nell'adattarsi alle specifiche configurazioni delle interfacce ingresso/uscita e di comunicazione esterna.

Per lo sviluppo, compilazione ed esecuzione di applicazioni dedicate si rimanda al capitolo 8.

Come per le applicazioni sviluppate da Phase Motion Control, l'attivazione presuppone l'impostazione a "Plc" del parametro di sistema SYS_SEL_MODE.

3 MESSA IN SERVIZIO

Riportiamo di seguito le operazioni da eseguire per la prima messa in servizio dell'azionamento AxM.

- Collegare il motore all'azionamento attenendosi agli schemi riportati nel manuale utente "AxM User Manual".
- Collegare tramite cavo seriale null modem femmina-femmina, un'uscita COM del PC alla porta seriale RS 232 (S1) dell'azionamento.
- Collegare l'azionamento all'alimentazione ausiliaria 24V.
- Attivare il tools di configurazione Cockpit per configurare i parametri fondamentali.

Per quanto riguarda i primi tre punti si rimanda ai relativi schemi di collegamento nel manuale utente. Riportiamo invece in questo manuale le procedure di parametrizzazione e configurazione del drive.

3.1 Visualizzatore a led

All'accensione, il drive accende per un istante tutti i led, quindi in successione il led 0 per un secondo circa ed il led 7 con lampeggio a frequenza 1Hz indicante lo stato di corretto funzionamento del drive.

Durante il normale funzionamento dell'azionamento, vengono monitorate sul visualizzatore a led le seguenti condizioni operative (le segnalazioni possono coesistere contemporaneamente).

Stati Operativi

Stato drive	Led	Modalità accensione	Descrizione
	7	Lampeggio a 1Hz	Il drive è disabilitato senza allarmi attivi.
Direcok	'	Acceso fisso	Il drive è abilitato senza allarmi.
Comunicazione SERIALE	6	Lampeggio a frequenza variabile	Il drive sta comunicando con un PC remoto sulla linea seriale.

Configurable Motion Control Platform

Stato intefaccia	6	Acceso fisso	Drive in stato OPERATIVO
CAN SYS_CANOPEN_		Lampeggiante	Drive in stato PRE-OPERATIVO
ENABLED = ON		Spento fisso	Drive in ERRORE Hardware – Bus Off
Limite di corrente	5	Lampeggio Variabile	Il drive stà erogando una corrente pari al valore limite impostato.

Tabella 3.1: Significato led di stato

Quando il drive è in allarme viene annullata qualsiasi segnalazione legata allo stato di funzionamento ed i led da 0 a 4 visualizzano il codice di allarme. Una descrizione dettagliata di tutti i possibili allarmi attivi sull'azionamento AxM è riportata in nel capitolo <u>11.1</u> Appendice 1.

Stati di allarme

Stato drive	Led accesi	Modalità accensione	Descrizione
Allarme	0,1,2,3,4	Lampeggio a 1Hz	Drive in allarme: viene visualizzata la codifica binaria del codice d'allarme attivo. Riferirsi a § <u>11.1</u> Appendice 1 per le singole codifiche e descrizioni.
Fault sistema	0,1,2,3,4,5,6,7	Lampeggio a 1Hz	Fault di sistema dovuto ad un errore nel firmware di controllo e regolazione. Contattare l'assistenza Phase Motion Control.
Errore boot	6	Fisso	All'avvio del sistema, si è verificato un errore di inizializzazione del firmware di controllo e regolazione. Contattare l'assistenza Phase Motion Control.

Tabella 3.2: Significato led di allarme

Durante la procedura di download del frmware si accendono in sequenza i seguenti led:

- Il led 6 acceso fisso segnala l'avvenuta sincronizzazione del drive.
- Ancora il led 6 risulta lampeggiante durante il download del codice da PC a drive.
- Il led 3 acceso fisso per pochi secondi segnala il caricamento del codice DSP.
- Finito il download segue un ciclo di reset del drive con tutti i accesi e quindi il ritorno alle condizioni di segnalazione standard.

Riferirsi al paragrafo <u>3.6</u> per la procedura completa.

3.2 Parametrizzazione del drive

I parametri fondamentali dell'azionamento vengono impostati in fabbrica per una particolare configurazione di motore ed encoder, possono quindi non essere adatti al sistema che l'utente vuole controllare.

E' necessario, perciò, eseguire una configurazione preliminare dell'azionamento, impostando quantomeno parametri riguardanti tipo e caratteristiche di motore ed encoder.

Per una descrizione dettagliata di tutti i parametri di sistema dell'azionamento (tra cui i valori impostati in fabbrica) si rimanda al capitolo <u>4</u>.

Di seguito verranno descritte le procedure per la configurazione del drive, introducendo l'utente all'utilizzo del tool software "Cockpit": per una sua dettagliata descrizione si rimanda al relativo manuale d'uso.

Il configuratore Cockpit 3.3

AxM

COCKPIT è un programma che gira sotto Windows 95/NT e che permette di configurare gli azionamenti digitali AxM / AxV / TW tramite interfaccia seriale RS232 o CANopen. Le sue principali caratteristiche sono:

- Comunicazione seriale RS232 (protocollo MODBUS), o CANopen tramite interfaccia CANpc (vedi . manuale d'istruzione, documento nº SP02002)
- Identificazione e controllo dell'azionamento.
- Gestione pagine grafiche in formato HTML. •
- Lettura e scrittura dei parametri dell'azionamento; copia, trasferimento e salvataggio su file dei • parametri dell'azionamento.
- Salvataggio dei parametri nella memoria flash dell'azionamento. •
- Controllo e monitoraggio dell'azionamento.
- Aggiornamento del firmware dell'azionamento.
- Inizializzazione e controllo remoto attraverso l'utilità Pannello di Controllo. •

Appena lanciato Cockpit si avvia in modalità "Application Manager". La schermata di introduzione è quella mostrata nella seguente figura.

Figura 3.1: Schermata principale

Dopo aver selezionato il tipo di target "AxM", si aprirà una nuova finestra contenente le indicazioni di firmware e applicazione correntemente caricate sul drive. Per attivare la comunicazione con l'azionamento premere sulla barra degli strumenti l'apposito tasto 📳 (Connect), o selezionare da menu "Target" la voce "Connect".

Nella barra di stato in basso a destra viene visualizzato lo stato della connessione: in caso di problemi nello stabilire la connessione con l'azionamento è necessario impostare i parametri di comunicazione (vedi <u>3.3.1</u>) Quando la comunicazione è attiva, la barra di stato in basso indicherà lo stato della connessione e la presenza di eventuali condizioni di allarme sul drive.

O No alarms	3 CONNECTED

Figura 3.3: Connessione attiva

3.3.1 Parametri di comunicazione

La comunicazione con l'azionamento avviene per mezzo del protocollo multi-drop Modbus, su di una linea seriale RS 232.

Per comunicare con l'azionamento si richiede quindi una porta RS 232 sul PC connessa con cavo seriale, femmina-femmina, null modem, alla porta RS 232 dell'azionamento (S1), secondo le specifiche del manuale utente capitolo 8.5.

La comunicazione si avvia automaticamente quando l'utente seleziona e apre un nuovo file di parametri. L'utente ha la possibilità di disconnettersi e riconnettersi tramite l'apposito comando di menu.

Quando la connessione è attiva, la relativa voce di menu è selezionata (segno di spunta) e il tasto della barra degli strumenti risulta premuto.

Una finestra di dialogo apposita permette di selezionare o modificare i parametri di comunicazione.

Device Link Manager config Image: Config Current selected protocol : Modbus Protocols Active CanOpen Active Codous Active	Per accedervi selezionare da menu " <i>Target</i> " la voce <i>"Communication settings</i> ". Selezionare il protocollo Modbus	Modbus config Communication Port CDM1 Baudrate 38400
Slink Install Uninstall Properties Activate Description Protocollo Modbus/Jbus OK Cancel	I parametri di default sono: COM1, 38400 baud, no parity, 8 data bits, 1 stop bit. Le impostazioni di default del protocollo sono: Address 0, Timeout 1000.	Frame settings N.8,1 Protocol Address 0 Timeout 1000

Figura 3.4: Impostazione parametri di comunicazione

NOTE: Per comunicare correttamente con l'azionamento, il valore del campo Address deve essere uguale all'indirizzo assegnato all'azionamento.

L'indirizzo dell'azionamento può essere verificato e/o modificato per mezzo della finestra di dialogo "Target information":

Name AXM	Code	4094
Materia and an a		
Major version	Release	1
Minor version 0	Build	1
pplication firmware	Date	170403
Name MPLC	Serial number	3104
Major version 1	Drive time	
Minor version 2	Drive time (s)	150136
ser version		
Name	- Commnunication -	
Major version 0	Slink3 address	0 Set

Una volta modificato l'indirizzo, il parametro deve essere salvato nella memoria flash (tasto Set).

ΟK

Cancel

Figura 3.5: Finestra di informazione sul sistema

10

3.3.2 Gestione dei parametri

Le piattaforme digitali AxM sono completamente programmabili, e tutti i set di parametri per la configurazione e le funzionalità dell'azionamento sono residenti in memoria.

Alla prima messa in servizio, il drive viene avviato in modalità "default" con una tabella di parametri di default che permette di azionare, con prestazioni limitate, una categoria di motori brushless standard Phase Motion Control.

I parametri di configurazione di default sono registrati nella memoria flash dell'azionamento al momento della fabbricazione; una copia della tabella di default viene inserita dal Setup nella directory di lavoro di Cockpit, in modo che sia possibile in ogni momento e per qualsiasi evenienza tornare alla configurazione iniziale.

All'avvio, il configuratore Cockpit richiede di caricare la tabella dei parametri di sistema (file sysAxM_04.par) dalla directory di lavoro con il comando "*Open*" del menu "*File*".

I parametri sono organizzati in diversi menu "logici", permettendo così la visualizzazione della serie intera di parametri oppure di un solo sottoinsieme.

Alcuni parametri fondamentali sono accessibili anche sotto forma di pagine grafiche HTML.

Ogni parametro viene definito dai seguenti campi:

IPA	è l'indice del parametro, come specificato dal protocollo MODBUS;
NAME	è un nome mnemonico utile ad identificare il parametro;
TYPE	indica il tipo di dati del parametro (int, word, long, dword, float, bool);
VALUE	contiene il valore attuale letto da Cockpit;
UNIT	riferimento all'unità di misura del parametro;
DESCRIPTION	contiene una descrizione esplicita del parametro;
NOTE	(nella barra di stato) visualizza informazioni opzionali relative al parametro selezionato.

L'utente può modificare solamente il campo del valore di ogni parametro.

A questo punto è possibile stabilire la connessione con l'azionamento: è consigliabile, alla prima installazione, eseguire una lettura completa di tutti i parametri dall'azionamento per verificare la coerenza con la tabella in uso con il comando "*Read all*" dal menu "*Parameters*" (oppure con tasto **Read all** enella barra degli strumenti).

Il singolo parametro selezionato può essere letto usando il comando "*Read parameter*" dal menu "*Parameters*" (tasto **Read** R nella barra degli strumenti).

I parametri dell'azionamento possono ora essere modificati secondo le proprie esigenze. Quando un valore viene modificato, viene visualizzato in rosso per indicare che non è stato ancora scritto nell'azionamento. Dopo ogni modifica di un parametro, è necessario confermare con Invio ed eseguire l'operazione di scrittura nell'azionamento con il comando "*Write parameter*" dal menu "*Parameters*" (oppure con tasto **Write w** nella barra degli strumenti).

E' possibile scrivere tutti i parametri del menu selezionato usando il comando *Write all*' dal menu "*Parameters*"(oppure con tasto **Write all** enlla barra degli strumenti).

Per velocizzare le operazioni di scritture e lettura è attivabile la modalità On-line, tramite l'apposito comando "On line mode" dal menu "*Parameters*" (oppure con tasto **On line** nella barra degli strumenti), il Cockpit aggiorna istantaneamente il valore dei parametri ogni volta che vengono selezionati. Allo stesso modo, scrive istantaneamente nell'azionamento il valore dei parametri che vengono modificati dall'utente.

Quando i parametri sono stati ottimizzati per il funzionamento desiderato, la tabella in uso può essere salvata in un file per essere copiata o usata successivamente (comando "*Save as*" dal menù "*File*").

I dati che vengono modificati sono scritti direttamente nella memoria del programma ma essendo tale memoria non è permanente: le modifiche devono essere salvate per evitare che vengano perse al reset del sistema. Il comando "*Save parameters*" nel menu "*Parameters*" (oppure con tasto **Save** III nella barra degli strumenti), avvia il salvataggio dei parametri nella memoria flash dell'azionamento. Il drive passerà in uno stato di allarme di Lock drive, visualizzato nella parte sinistra della barra di stato.

😣 Lock Drive 👘	
----------------	--

Figura 3.6: Stato di allarme dopo il salvataggio parametri

11

Eseguito il reset dell'azionamento, i parametri di sistema modificati sono ora attivi: è possibile testare o avviare velocemente il drive lanciando il Pannello di Controllo ed abilitando gli ingressi del pannello, secondo le combinazioni previste degli ingressi digitali e analogici per la modalità di funzionamento "default" (vedi *Tabella* <u>2.1</u>).

3.3.3 Pannello di controllo

Il Pannello di Controllo permette di monitorare e controllare l'interfaccia I/O dell'azionamento attraverso la linea di comunicazione seriale. Può essere attivato dall'interno del configuratore premendo il tasto corrispondente nella barra degli strumenti in o da comando "*Control Panel*" nel menu "*Target*". Quando viene attivato per la prima volta, l'opzione "Panel Inputs Enable" è disabilitata e il Pannello di Controllo funziona come un monitor dello stato corrente degli I/O fisici.

Se l'utente seleziona l'opzione "Panel inputs enable", gli ingressi fisici analogici e digitali dell'azionamento vengono virtualmente disconnessi e la gestione degli ingressi passa completamente alla finestra del Pannello di Controllo.

L'opzione "Drive outputs enable" è attivata di default; se viene disabilitata, gli output fisici dell'azionamento vengono disconnessi.

Figura 3.7: Pannello di controllo

3.4 Verifica delle connessioni

20

Al fine di verificare la correttezza delle connessioni eseguite e dei valori impostati si può utilizzare la pagina di "monitor":

Tramite questa pagina infatti si può verificare il valore di tensione a valle del ponte raddrizzatore e la temperatura del dissipatore, ma soprattutto si può verificare la correttezza delle connessioni encoder. La colonna "*Encoder Principale*" riporta infatti la lettura encoder, in gradi. Internamente il drive considera 1 giro meccanico di albero motore corrispondente a 65535 impulsi virtuali.

In particolare ruotando a mano (con drive disabilitato) l'albero motore in senso orario si deve leggere un incremento del valore di posizione virtuale. Facendo eseguire un giro completo all'albero motore si deve quindi tornare a leggere lo stesso numero di partenza mentre sarà incrementato di 1 il numero di giri.

Sono inoltre disponibili le letture dei valori di riferimento e limite di corrente e velocità.

MOTION	AxM MONIT			R PAGE		
		POW	ER STAGE			
DC-Link Voltage	304	V	Heat	Sink Temperature	26	°C
		ENCOD	DER SECTION	l		
	Ma	ain Encode	r	Auxiliary Enco	oder	
Virtual Position		298.38		0		Gradi
Turn Number		45		0		N
Index Position	0			0		Gradi
	CURRENT LOOP Arms					Arms
Current Limit		3 Current Reference				
SPEED LOOP rad / s					rad / s	
Clockwise Limit	1	99.9	CounterClockwise Limit			199.9
Speed Reference		17.2	Actual Speed			16.1

Figura 3.8: Pagina di Monitor

3.5 Monitoraggio del funzionamento

Durante il funzionamento del drive risulta utile accertarsi che l'azionamento non sia in allarme e che le variabili interne siano coerenti con il controllo del sistema in oggetto.

L'operazione più semplice ed intuitiva è sicuramente quella di monitorare lo stato dell'azionamento guardando il visualizzatore a led e riferirsi alle tabelle 3.1 e 3.2 al paragrafo <u>3.1</u>, per il significato delle segnalazioni.

Se si rende necessario un monitoraggio puntale ed approfondito è utile connettere l'azionamento con il configuratore Cockpit.

Aprire dal configuratore il file parametri (file estensione .par) attualmente caricato nel drive (se è una prima messa in servizio il file sys_AxM_04.par). La connessione viene automaticamente attivata e lo stato dell'azionamento visualizzato nella parte sinistra della barra di stato.

	8	External fault	
--	---	----------------	--

Figura 3.9: Stato della comunicazione

Tutti gli allarmi attivi possono essere visualizzati tramite una finestra dedicata, aperta con il comando "Active Alarms" nel menu "Target" o mediante tasto \Lambda nella barra degli strumenti.

Active drive alarms						
<u>H</u> istor	y					
Code	Description					
7	Motor Overtemperature or PTC disconnected	_				
30	Rele Off	- 1				
		- 1				
		- 1				
		- 1				
		_				

Figura 3.10: Finestra allarmi attivi

Tramite il tasto *History* si accede alla finestra dello "storico allarmi" dove sono visualizzati gli ultimi 25 allarmi avvenuti insieme con il valore di alcune variabili significative al momento dell'intervento dell'allarme. L'allarme più recente è mostrato nella posizione (Idx) 25. È possibile stampare o salvare su file il contenuto dell'intera finestra.

Alam	n history													×
	Print Save to file													
Idx	Active alarm	Power-o	Active alarm bits	lu	lv	Max ave, Current	Last IQ	Last VD	Tj max	Heat sink temp	Last Braki	DC bus	Last speed	
9	Heat Sink Ov	524	00000008	0.0	0.0	0.0	0.0	0.0	0	0	0	2	0	
10	Heat Sink Ov	526	00000008	0.0	0.0	0.0	0.0	0.0	0	0	0	2	0	
11	Brake Overpo	369167	00001000	-1.3	-0.3	0.9	1.1	542.0	37	37	1250	576	30976	
12	Overcurrent	370320	00000002	12.2	11.2	0.1	-9.6	8464.0	44	44	0	332	157	
13	Overcurrent	372181	00000002	-12.3	-11.3	8.8	-10.3	6052.0	46	43	0	340	4294967269	
14	Overcurrent	372723	00000002	-4.2	-20.0	4.2	-1.6	-1069	47	44	0	285	249360	
15	Overcurrent	372795	00000002	-3.7	-20.4	3.3	-0.1	-9361.0	47	43	0	279	246960	
16	Overcurrent	372990	00000002	1.7	21.2	3.4	-1.2	-1041	53	45	0	283	247904	
17	16 KHz Interr	414306	00000200	0.0	0.0	0.0	0.0	0.0	25	25	0	319	4294965248	
18	16 KHz Interr	414322	00000200	0.0	0.0	0.0	0.0	0.0	25	25	0	317	4294965248	
19	16 KHz Interr	414330	00000200	0.0	0.0	0.0	0.0	0.0	26	26	0	318	768	
20	16 KHz Interr	414499	00000200	0.0	0.0	0.0	0.0	0.0	27	27	0	2206	4294965248	
21	DSP Program	444505	00000100	-0.0	0.0	0.0	-0.0	0.0	39	39	0	324	4294965760	
22	DSP Program	444641	00000100	1.3	-0.9	1.3	-0.6	0.0	39	39	0	320	4294964224	
23	DSP Program	444666	00000100	0.0	0.1	0.0	0.0	0.0	39	39	0	2205	4294964736	
24	Overcurrent	446941	0000002	-6.2	-18.9	0.1	-7.0	-8128.0	20	20	0	310	4294967040	•

Figura 3.11: Storico allarmi

Oltre allo stato di allarme il file parametri di sistema rende disponibile un menu "*Monitor*" in cui è possibile controllare alcune variabili interne dell'azionamento, quali ad esempio: quote encoder, velocità, corrente, richiesta, corrente erogata ecc. Le variabili sono raggruppate in sottomenù logici. Per una loro descrizione dettagliata fare riferimento al Capitolo <u>4</u>.

3.6 Aggiornamento Firmware di sistema

Periodicamente sono disponibili sul sito <u>www.phase.it</u> aggiornamenti del firmware di gestione dell'azionamento con novità funzionali o semplicemente nuovi sviluppi. E' quindi possibile upgradare anche un drive già utilizzato con una più recente versione di firmware.

Selezionando "*Load firmware*" dal menù "*Service*" di una tabella di sistema si accede ad una finestra nella quale è possibile scegliere il file SRE (Ex. "*MPIc4_0.sre*") che si vuole caricare;

Scelto il file desiderato (bottone di ricerca rapida "**Browse**")si deve sincronizzare il drive premendo in sequenza i bottoni di "**Syncro**" e "**Reset**" (lo stato della sincronizzazione è segnalato nello spazio in basso, a fianco della scritta "operation"), e quindi tramite il tasto di "**Load**" si fa partire il download.

Load firmware	
File to load C:\Programmi\Phase Motion Control\syst	Browse
Module ID Firmware	Drive Syncro
Operation Syncronization executed	Reset
Parameters Preserve drive values C Load tabl	e values
Load Verify	ОК

Figura 3.12: Finestra di Load Firmware

Alla fine della procedura ul drive viene resettato automaticamente e torna in condizione di funzionamento normale.

NOTA:

Qualunque problema subentri durante questa operazione (Ex. Mancanza alimentazione, perdita della connessione con il PC, ...) può rendere il drive inutilizzabile a meno di ripetere nuovamente l'aggiornamento del firmware.

Nel caso non sia possibile ristabilire la comunicazione occorre rieseguire la sincronizzazione, premendo il bottone di "*Syncro*", quindi togliendo e ridando la 24V ausilaria.

3.7 Utilizzo della targhetta elettronica

I nuovi encoder seriali della serie **Endat** consentono la memorizzazione, in maniera non volatile, di alcuni dati al proprio interno.

E' perciò possibile memorizzare le caratteristiche del motore su cui è montato l'encoder al fine di eseguire una taratura di massima del drive in base al tipo di motore ad esso collegato.

3.7.1 Plug & play

La procedura di autotaratura viene eseguita dai drive AxM automaticamente quando: collegato un encoder Endat, i parametri caratteristici del motore memorizzati sul drive sono diversi da quelli memorizzati a bordo dell'encoder. In questo caso oltre ad aggiornare i propri parametri encoder il drive esegue anche un aggiornamento delle tarature degli anelli di corrente e di velocità, per adeguarli alle caratteristiche del motore.

14

In particolare vengono modificati i seguenti parametri:

Parametro drive	Parametro caratteristico del motore Menù: Encoders/Monitor/Principale/Endat
SYS_MOT_N_POLES	SYS_MOT_POLES
SYS_MOT_IDM	SYS_MOT_I_NOM_ASSE_BLOC x 2
SYS_MOT_IN	SYS_MOT_I_NOM_SPD
SYS_ENC1_TYPE	Endat
SVS IC D EAK	SYS_MOT_INDUTT x 450 (Ultract)
STS_IC_F_FAR	2000 (UI T)
SYS IC I FAK	SYS_MOT_INDUTT x 225 (Ultract)
313_IC_I_FAR	4000 (UI T)
SYS IC D EAK	0 (Ultract)
STS_IC_D_FAR	400 (UI T)
SYS_PHASE_OFFSET	SYS_ENDAT_FASE
SYS_SPL_SPD_FAK	SYS_MOT_M_INERZ/SYS_MOT_KT x 250
SYS_SPL_POS_FAK	SYS_MOT_M_INERZ/SYS_MOT_KT x 125
SYS_RG_POS_SPILM =	SYS MOT NOM SPD
SYS_RG_NEG_SPILM	
SYS_RG_CW_ACC / DEC = SYS_RG_CCW_ACC / DEC	SYS_MOT_KT x SYS_MOT_IDM / (SYS_MOT_M_INERZ x 0.1)
SYS_SPL_FILT	0.5

Tabella 3.3: parametri modificati dall'autotaratura Endat

3.7.2 Opzioni

Il parametro SYS_PLUG_ENDAT_EN (menù: Encoders/Imp. Avanzate; paragrafo <u>4.2.2</u>) consente di lanciare la procedura di autotaratura indipendentemente dai parametri motore.

Per far questo è sufficiente impostare il parametro ad ON salvare e resettare. Il firmware leggerà nuovamente le caratteristiche del motore dall'encoder e ricalcolerà di conseguenza i parametri di tabella 3.8, lasciando SYS_PLUG_ENDAT_EN = OFF.

Il parametro SYS_PLUG_ENDAT_DIS consente invece di disabilitare completamente l'autotaratura, anche nel caso venga collegato un nuovo motore.

Nel caso venga collegato un motore con Endat non programmato e quindi con parametri tutti a 0, la routine di Plug & Play aggiornerà a 0 tutti i parametri Endat (Menù: Encoders/Monitor/Principale/Endat) ma non eseguirà nessuna modifica dei parametri di sistema correnti. In questo caso il drive non segnala nessun errore.

Ad una successiva richiesta di autoconfigurazione tramite parametro "SYS_PLUG_ENDAT_EN" il drive continuerà a non eseguire nessuna modifica dei parametri di sistema ma segnalerà allarme "Parametri di sistema non validi" (mettendo SYS_PLUG_ENDAT_EN = OFF, in modo che al successivo reset l'allarme sparisce).

3.8 Utilizzo delle test routine

Impostando SYS_SEL_MODE = Test (Menù "Sistema", paragrafo <u>4.8</u>) si entra nelle Test Routine, quindi utilizzando i parametri del menù "Test" è possibile eseguire la messa in fase dell'encoder (sui firmware a partire dal 2.0 in avanti e **solo per encoder SINCOS**) oppure la taratura dell'anello di corrente del drive.

Il parametro SYS_SEL_TEST consente di scegliere il tipo di test desiderato:

Fasatura Encoder \rightarrow se si desidera verificare o eseguire la messa in fase dell'encoder Taratura Current Loop \rightarrow per eseguire la taratura dell'anello di corrente

3.8.1 Fasatura dell'Encoder

In questa modalità l'unico parametro che può richiedere una modifica rispetto alla configurazione di default è il parametro FAS_CURR (menù: "Test/Fasatura Encoder", paragrafo <u>4.9.1</u>) che definisce il valore di corrente con la quale verra eseguito il test. Tale valore deve essere regolato in relazione al tipo di motore collegato, scegliendo correnti inferiori o corrispondenti alla nominale.

NOTA: Per eseguire questa procedura l'albero motore deve essere libero di muoversi.

Abilitando il drive (DI0) il firmware erogherà la corrente impostata facendo ruotare l'albero motore, in anello aperto, alla ricerca del segnale di indice dall'encoder. Trovato l'indice l'albero si ferma e il parametro PH_ERR segnala l'angolo di sfasamento, in gradi.

A questo punto è possibile regolare la posizione dell'encoder, rilasciando leggermente le viti fissaggio, in modo da portare il valore letto, il più prossimo possibile allo 0; valori di +/- 2gradi sono comunque accettabili. Fissare l'encoder, spostare l'albero dalla posizione raggiunta ed eseguire nuovamente la procedura per assicurarsi di aver fatto una buona calibrazione.

3.8.2 Taratura anello di corrente

Per eseguire la taratura dell'anello di corrente il firmware genera una richiesta di corrente a gradino con livelli e periodo impostabili. Questi parametri sono nel menù "Test/Taratura anello corrente" (vedi paragrafo <u>4.9.2</u>), di default la richiesta di corrente è commuta da 0,5Arms e 1,5Arms con periodo di 100ms.

Oscilloscope properties
Signal Trigger
Signals
EncPos EncSpd Lin0ut Du2 Postin Postk Softwa
Samples number 500 Available 4096
Samples time (ms)
0.25 Effective: 0.25 ms Min time: 0.25 ms
Tot time: 125.00 ms
OK Annulla

Impostando l'oscilloscopio come segue possibile verificare è quindi direttamente la corrente erogata e quindi la risposta dell'anello di Infatti il parametro regolazione. "sysCurrReq" corrisponde alla richiesta di corrente, mentre il parametro SYS SEL DSP DATO1 (impostabile nel menù: Sistema / Imp. Avanzate, paragrafo 4.9.13) corrisponde alla corrente erogata. Impostando il trigger sulla richiesta di corrente come qui mostarto si può lanciare l'acquisizione in corrispondenza di dell'evento di trigger.

Oscilloscope properties
Signal Trigger
Signals
EinoSpi LinoDut Du2 Postifi Posthet Ramndritue
Settings Level 120 Slope Pos 💌
Delay time (ms)
10.00 Effective: 10.00 ms
OK Annulla

Figura 3.13: Impostazioni segnali oscilloscopio

Figura 3.14: Impostazioni trigger oscilloscopio

A questo punto è sufficiente abilitare per pochi secondi il drive (DI0) per eseguire il test.

Figure 3.15:Oscilloscope aquisition with request current and real current

L'ottimizzazione dell'anello è così possibile modificando adeguatamente i guadagni corrispondenti (menù: Anello corrente). Fare riferimento al paragrafo <u>4.3</u> anche per una taratura di massima dell'anello.

16

4 PARAMETRI DI SISTEMA

I parametri di sistema sono parametri predefiniti nel drive, quindi presenti in ogni applicazione. Sono accessibili da Cockpit nel file "sys_AxM_04.par". Sono organizzati in menù gerarchici e dipendono tutti dal menù "**AX_M drive**". Distinguiamo tra parametri di lettura e scrittura (IPA compreso tra 18000 e 20999) e parametri di sola lettura (IPA da 21000).

NOTA: E' possibile modificare i parametri di lettura/scrittura mediante salvataggio parametri. In generale, salvo indicazione, le modifiche ai parametri di sistema risulteranno attive al successivo reset del drive (vedere paragrafo <u>3.3.2</u>).

In generale i parametri sono strutturati in sottogruppi gerarchici che raccolgono tutti i parametri relativi ai vari servizi gestiti dal firmware.

I vari sottogruppi sono a loro volta suddivisi in blocchi logici. In generale ci saranno delle sezioni principali che raccolgono i parametri di utilizzo più comune. Inoltre per alcuni servizi si troverà una sezione denominata "**Impostazioni Avanzate**". I valori di default impostati in fabbrica per questi parametri sono adeguati nella maggior parte dei casi. Solo per applicazioni particolari, può essere necessario modificare i parametri di questa sezione per ottimizzare le prestazioni dell'azionamento. Si avvisa l'utente che le modifiche apportate presuppongono un'approfondita conoscenza di aspetti legati al firmware dell'azionamento e dell'implementazione dei blocchi funzionali di controllo.

Infine in molte sezioni si trova un sottogruppo "**Monitor**" che comprende tutti i parametri di diagnostica che consentono di monitorare lo stato del drive AxM.

Di seguito riportiamo la lista e la descrizione di tutti i parametri di sistema raggruppati secondo i vari servizi.

IDA	Nomo	Tino		Unità		
	Nome	про	Default	Min	Max	misura
18240	SYS_MOT_N_POLES	Word	8	0	100	N°
18241	SYS_MOT_IDM	Float	3.00	0.00	100.00	Arms
18242	SYS_MOT_IN	Float	1.00	0.00	100.00	Arms

4.1 Motore

SYS_MOT_N_POLE:	Impostazione del numero di poli del motore.
SYS_MOT_IDM:	Impostazione della corrente limite del motore.
SYS_MOT_N_POLES:	Impostazione della corrente nominale del motore

4.2 Encoders

IDA	Nomo	Tipo	Valore			Unità
IFA	Nome	про	Default	Min	Max	misura
18230	SYS_ENC1_TYPE	Enum 0 Assente 1 Digitale 2 Resolver 3 Sincos 4 Hall 16 Endat	1 (SinCos)	0 (Assente)	16 (Endat)	
18231	SYS_ENC1_CY_REV	Word	2048	1	8192	Imp.Enc
18232	SYS_ENC2_TYPE	Enum 0 Assente 1 Digitale 6 Freq	0 (Assente)	0 (Assente)	6 (Freq)	
18233	SYS_ENC2_CY_REV	Word	1024	1	8192	Imp.Enc
18235	SYS_SE_ENABLE	Bool	Off			

SYS_ENC1_TYPE: Impostazione del tipo di encoder principale utilizzato per la retroazione dell'anello velocità/spazio.

SYS_ENC1_CY_REV: Impostazione del numero di impulsi al giro per l'encoder principale. Nel caso di *Resolver, Hall o Endat* impostare il valore 1024.

SYS_ENC2_TYPE: Impostazione del tipo di encoder secondario.

SYS_ENC2_CY_REV Impostazione del numero di impulsi al giro per l'encoder secondario / Numero di implusi ripetuti dall'uscita ripetizione, nel caso sia abilitata l'emulazione encoder.

NOTA: Nella release 4.0 del firmware AxM la ripetizione encoder è impostabile solo su numeri potenza di 2.

SYS_SE_ENABLE Abilitazione della ripetizione encoder sulla porta (C1)

4.2.1 Encoders ♦ Indice

Nel sottomenu "*Encoders - Indice*" vengono impostati i parametri relativi alla gestione e controllo dell'indice per encoder SinCos o Digitale.

IDA	Nome Ti	Tino	Valore			Unità
IFA		про	Default	Min	Max	misura
18050	SYS_ENC1_INDEX_ALARM	Bool	Off			
18060	SYS_ENC2_INDEX_ALARM	Bool	Off			
18170	SYS_ENC1_INDEX_TOL	Word	2	0	512	CntVi
18171	SYS_ENC2_INDEX_TOL	Word	2	0	512	CntVi

SYS_ENC1_INDEX_ALARM: Abilita l'allarme "Errore conteggio encoder". Se abiltato, l'allarme viene generato se la lettura della posizione dell'indice differisce di ±

AXIVI Configurable Motion Control Platform

SYS_ENC1_INDEX_TOL dalla posizione memorizzata al primo passaggio sull'indice. La modifica al parametro risulta attiva senza dover resettare l'azionamento.

- SYS_ENC1_INDEX_TOL: Tolleranza sulla lettura del conteggio indice oltre la quale mandare l'azionamento in allarme (se abilitato con SYS_ENC1_INDEX_ALARM). Espresso in conteggi virtuali. La modifica al parametro risulta attiva senza dover resettare l'azionamento.
- SYS_ENC2_INDEX_ALARM: Abilita l'allarme "Errore conteggio encoder ausiliario". Se abiltato, l'allarme viene generato se la lettura della posizione dell'indice differisce di ± SYS_ENC2_INDEX_TOL dalla posizione memorizzata al primo passaggio sull'indice. La modifica al parametro risulta attiva senza dover resettare l'azionamento.
- SYS_ENC2_INDEX_TOL: Tolleranza sulla lettura del conteggio indice dell'encoder ausiliario oltre la quale mandare l'azionamento in allarme (se abilitato con SYS_ENC2_INDEX_ALARM). Espresso in conteggi virtuali. La modifica al parametro risulta attiva senza dover resettare l'azionamento.

IDA	Nomo	Tino	Valore			Unità
	Nome	про	Default	Min	Max	misura
18055	SYS_PLUG_ENDAT_EN	Bool	Off			
18061	SYS_PLUG_ENDAT_DIS	Bool	Off			
18163	SYS_PHASE_OFFSET	Word	0	0	65535	CntVi
18200	SYS_RES_ECC_ADJ	Int	35	-30	150	N°
18221	SYS_RIP_MAX_FREQ	Float	100	2	1000	kHz
18234	SYS_AD_RIPPLE_LIM	Word	100	0	128	N°
18238	SYS_ENC1_INDEX_DISABLE	Bool	Off			

4.2.2 Encoders 🔄 Imp. Avanzate

SYS_PLUG_ENDAT_EN: Abilitazione dell'autoconfigurazione drive sulla base dei parametri motore messi a disposizione dall'encoder Endat. Impostando a ON questo parametro, salvando e resettando, si ottiene l'autoconfigurazione dei parametri fondamentali del drive. A configurazione eseguita SYS_PLUG_ENDAT_EN viene riportato automaticamente a OFF dal sistema operativo.

SYS_PLUG_ENDAT_DIS: Disabilitazione della funzione Plug & Play di autoconfigurazione drive. Se SYS_PLUG_ENDAT_DIS = OFF la procedura di configurazione automatica verra eseguita ogni volta che la combinazione dei parametri SYS_MOT_MODEL + SYS_MOT_TYPE (Menù: *Encoders/Moniror/Principale/Endat*) risulta diversa dalla corrispondente combinazione conservata dall'encoder. Se SYS_PLUG_ENDAT_DIS = ON la procedura di configurazione automatica non verra eseguita in nessun caso.

SYS_PHASE_OFFSET: Impostazione correzione angolo di campo; nel caso si intenda impostare una fasatura non standard.

19

Configurable Motion Control Platform

SYS_RES_ECC_ADJ: Impostazione dell'offset di campionamento dell'eccitazione resolver. Attraverso questo parametro è possibile variare l'istante in cui vengono campionati i canali Seno e Coseno del resolver. La correzione del tempo di campionamento (in us) è ricavabile dalla seguente formula:

T_{offset} = SYS_RES_ECC_ADJ * 0.32us

L'impostazione di fabbrica tende ad ottimizzare il campionamento in modo da avere un rapporto segnale/rumore (S/N) massimo.

Tuttavia vari fattori esterni possono rendere necessaria una regolazione fine dell'istante di campionamento al fine di aumentare l'ampiezza del segnale campionato sui due canali resolver. Verificare che l'ampiezza dei segnali resolver (utilizzare la funzione oscilloscopio; variabili "sysResAdc0 / 1") raggiunga più uniformemente possibile i limiti massimo (1023) e minimo (0) senza risultare tagliata o distorta.

La modifica al parametro risulta attiva senza dover resettare l'azionamento.

SYS_RIP_MAX_FREQ: Valore limite della frequenza di ripetizione encoder.

SYS_AD_RIPPLE_LIM: Valore limite tollerato per il ripple sui canali analogici dell'encoder. Espresso in conteggi per il convertitore analogico-digitale. I valori impostabili sono compresi tra 0 e 128. Se il ripple misurato dovesse eccedere tale parametro, viene attivato il relativo allarme.

NOTA: Impostando 128 l'allarme "Livelli encoder non corretti" viene disattivato!

SYS_ENC1_INDEX_DISABLE : Disabili

Disabilita la lettura dell'indice per encoder Digitale o Sincos.

IPA	Nome	Тіро	Unità Misura
21070*	SYS_ENC1_VI_PO	Word	CntVi
21072*	SYS_ENC1_I_VI_PO_MEMO	Word	CntVi
21073*	SYS_ENC1_VI_TU	Long	N°
21078*	SYS_ENC1_I_VI_TU	Long	N°
21110*	SYS_ENC1_I_VI_PO	Word	CntVi
24681*	SYS_ENC1_PE_SP	Long	(CntVi/250us)*2 ¹⁶

4.2.3 Encoders ♦ Monitor ♦ Principale

SYS_ENC1_VI_PO:	Posizione del motore sul giro letta dall'encoder principale. Espresso in conteggi virtuali (CntVi) indipendentemente dal tipo di encod		
	1 giro encoder = 65536 cnt virtuali $\theta[CntVi] = 65536 \cdot \frac{1}{2\pi} \theta[rad]$		
SYS_ENC1_VI_TU:	Numero di giri encoder del motore letti dall'encoder principale.		
SYS_ENC1_I_VI_PO_MEMO:	Posizione sul giro del primo indice dell'encoder principale. Espresso in conteggi virtuali (CntVi). Solo per encoder Sincos e Digitale.		
SYS_ENC1_I_VI_PO:	Posizione sul giro dell'indice dell'encoder principale. Espresso in conteggi virtuali (CntVi). Solo per encoder Sincos e Digitale.		

SYS_ENC1_I_VI_TU: Posizione in giri del primo indice dell'encoder principale. Solo per encoder Sincos e Digitale.

SYS_ENC1_PE_SP: Velocità di rotazione del motore letta dall'encoder principale. La velocità è calcolata come differenza di posizioni (SYS_ENC1_VI_PO) in 250us ed estesa a 32 bit. L'unità di misura è (CntVi/250us)*2exp16.

$$\omega \left[\frac{CntVi}{250\,\mu s} \cdot 2^{16} \right] \rightarrow \frac{1}{2^{16}} \cdot \frac{2\pi \left[rad \right] \cdot \left[\frac{1}{250 \cdot 10^{-6} \left[s \right]} \right]}{65536 \left[CntVi \right]} = \omega \left[\frac{rad}{s} \right] \rightarrow \frac{60[s]}{2\pi \left[rad \right]} = \omega \left[rpm \right]$$

4.2.3.1 Encoders & Monitor & Principale & Resolver

In questa sezione è possibile monitorare i parametri specifici del resolver.

IPA	Nome	Тіро	Unità misura
21060*	SYS_RES_ADC_COSE	Word	N°
21061*	SYS_RES_ADC_SINE	Word	N°
21062*	SYS_RES_ABS_COSE	Word	N°
21063*	SYS_RES_ABS_SINE	Word	N°
21064*	SYS_RES_CH_OFF_1	Word	N°
21065*	SYS_RES_CH_OFF_2	Word	N°
21120*	SYS_AD_RIPPLE	Int	N°

SYS_RES_ADC_COSE: Livello analogico del canale coseno. Espresso in conteggi del convertitore analogico digitale.

SYS_RES_ADC_SINE: Livello analogico del canale seno. Espresso in conteggi del convertitore analogico digitale.

SYS_RES_ABS_COSE: Valore del coseno calcolato.

SYS_RES_ABS_SINE: Valore del seno calcolato.

SYS_AD_RIPPLE: Valore del ripple sui canali analogici del resolver. Espresso in conteggi per del convertitore analogico-digitale.

SYS_RES_CH_OFF_1: Offset dei canale adc resolver. Espresso in conteggi del convertitore analogico digitale.

SYS_RES_CH_OFF_2: Offset dei canale adc resolver. Espresso in conteggi del convertitore analogico digitale.

4.2.3.2 Encoders ♦ Monitor ♦ Principale ♦ Endat

In questa sezione è possibile monitorare i parametri letti dall'endat tra cui i dati relativi alla targhetta elettronica per l'autotaratura del drive.

IPA	Nome	Тіро	Unità misura
18401*	SYS_MOT_SERIAL	Dword	N°
18402*	SYS_MOT_DATE	Dword	N°
18403*	SYS_MOT_MODEL	Enum	
18404*	SYS_MOT_INDUCT	Float	mH
18405*	SYS_MOT_RESIST	Float	ohm
18406*	SYS_MOT_KT	Float	Nm / Arms
18407*	SYS_MOT_I_ZERO_SPD	Float	Arms
18408*	SYS_MOT_I_NOM_SPD	Float	Arms
18409*	SYS_MOT_I_PEAK	Float	Arms
18410*	SYS_MOT_K_TERM	Word	S
18411*	SYS_MOT_INERTIA	Float	mKgm^2
18412*	SYS_ENDAT_PHASE	Word	CntVi
18413*	SYS_MOT_POLES	Word	N°
18414*	SYS_MOT_NOM_SPD	Float	rad / s
18415*	SYS_MOT_TYPE	Dword	
18430*	SYS_ENDAT_TYPE	Enum	
18431*	SYS_ENDAT_FORM_DATA	Word	N°
18432*	SYS_ENDAT_TURN_NR	Word	N°
18433*	SYS_ENDAT_TURN_CNT	Word	N°

SYS_MOT_SERIAL_NR

SYS_MOT_DATA_PROD

Numero di serie del motore.

Data di produzione. Espressa nel seguente formato: Es: 20021218 = 18 Dic. 2002

SYS_MOT_MODEL

Modello motore.

Codice	Modello
UL 2	Ultract II
UL 3	Ultract III
UL T	Ultract T

SYS_MOT_INDUTT Valore di induttanza fase-fase del motore (Lw). Espresso in mH.

SYS_MOT_RESIST Valore di resistenza fese-fase del motore (Rw). Espresso in ohm.

Costante di coppia del motore (Kt). Espressa in Nm / Arms. SYS_MOT_KT

AXM Configurable Motion Control Platform

SYS_MOT_I_NOM_ASSE_BLC	Corrente nominale ad asse bloccato (In0). Espressa in Arms.		
SYS_MOT_I_NOM_SPD	Corrente nominale a velocità nominale (In). Espressa in Arms.		
SYS_MOT_I_PICCO	Corrente di picco (Ipk). Espressa in Arms.		
SYS_MOT_K_TERM	Costante di tempo termica del motore (ta). Espressa in secondi.		
SYS_MOT_M_INERZ	Momento di inerzia (Jm). Espresso in mKgm^2.		
SYS_ENDAT_FASE	Angolo di sfasamento endat. Espresso CntVi.		
SYS_MOT_POLES	Numero poli del motore.		
SYS_MOT_NOM_SPD	Velocità nominale del motore (wn). Espresso in rad/s.		
SYS_MOT_TYPE	Codice motore come standard Phase. Esempi:		

Codice Standard Phase	Codice Parametro
UI22.50.5	22505
UI405.30.3	405303
T503.40.3	503403
UI708.15.3	708153

SYS_ENDAT_TYPE	Tipo di encoder endat. M→assoluto monogiro (17bit)	N→assoluto multigiro (29bit)	
SYS_ENDAT_FORM_DATA	Numero di bit di posizione asso	oluta.	
SYS_ENDAT_NR_GIRI	Numero giri assoluti. Solo per endat multigiro.		
SYS_ENDAT_CNT_GIRO	Numero conteggi per giro.		

4.2.4 Encoders & Monitor & Secondario

IPA	Nome	Тіро	Unità Misura
21074*	SYS_ENC2_VI_PO	Word	CntVi
21075*	SYS_ENC2_PE_SP	Long	(CntVi/250us)*2 ¹⁶
21076*	SYS_ENC2_I_VI_PO_MEMO	Word	CntVi
21077*	SYS_ENC2_VI_TU	Long	N°
21079*	SYS_ENC2_I_VI_TU	Long	N°
21111*	SYS_ENC2_I_VI_PO	Word	CntVi

SYS_ENC2_VI_PO:Posizione del motore sul giro letta dall'encoder secondario. Espresso in
conteggi virtuali (CntVi).
1 giro encoder = 65536 cnt virtuali. Come per encoder principale.

SYS_ENC2_VI_TU:

Numero di giri encoder del motore letti dall'encoder secondario.

Configurable Motion Control Platform

SYS_ENC2_PE_SP:	Velocità di rotazione del motore letta dall'encoder secondario. La velocità è calcolata come differenza di posizioni (SYS_ENC2_VI_PO) in 250us ed estesa a 32 bit. L'unità di misura è (CntVi/250us)*2exp16.
SYS_ENC2_I_VI_PO_MEMO:	Posizione sul giro del primo indice dell'encoder secondario. Espresso in conteggi virtuali (CntVi).
SYS_ENC2_I_VI_PO:	Posizione sul giro dell'indice dell'encoder secondario. Espresso in conteggi virtuali (CntVi).
SYS_ENC2_I_VI_TU:	Posizione in giri del primo indice dell'encoder secondario.

4.3 Anello corrente

La configurazione di default consente una taratura dell'anello di corrente generalmente adeguata al maggior numero di motori Phase; per ottenere una migliore taratura utilizzare le formule riportate nelle colonne relativamente ai motori Ultract e UI T.

			Valore					
IPA	Nome	Тіро	Default	Valore Ideale <i>Ultract 2 / 3</i>	Valore Ideale <i>Ultract T</i>	Min	Max	Unità misura
18100	SYS_IC_P_FAK	Word	3000	Lw * 450	2000	0	65535	N°
18101	SYS_IC_I_FAK	Word	1500	Lw * 225	4000	0	65535	N°
18102	SYS_IC_D_FAK	Word	0	0	400	0	65535	N°

SYS_IC_P_FAK: Impostazione del guadagno proporzionale dell'anello di corrente.

SYS_IC_I_FAK: Impostazione del guadagno integrale dell'anello di corrente.

SYS_IC_D_FAK: Impostazione del guadagno differenziale dell'anello di corrente.

Le modifiche a questi parametri vengono attuate ad azionamento disabilitato.

4.3.1 Anello di corrente 😓 Monitor

IPA	Nome	Тіро	Unità misura
21000*	SYS_DSP_CURR_QUAD	Int	Cnt
21001*	SYS_DSP_CURR_DIR	Int	Cnt
21002*	SYS_DSP_RHO	Word	CntVi
21003*	SYS_DSP_CONTROL	Word	N°
21004*	SYS_DSP_DATO1	Int	N°
21005*	SYS_DSP_DATO2	Int	N°
21006*	SYS_DSP_DATO3	Word	N°
21007*	SYS_DSP_STATUS	Word	N°

AXM Configurable Motion Control Platform

21100*	SYS_DSP_IU_ANA	Int	Cnt
21101*	SYS_DSP_IV_ANA	Int	Cnt

I parametri con IPA compreso tra 21000 e 21007 sono stati definiti e dedicati ad uso interno. In particolare solo i seguenti parametri con assumono significato per l'utente **Solo a drive abilitato.**

SYS_DSP_CURR_QUAD:	Richiesta corrente di quadratura. Espresso in conteggi. Il fattore di conversione per ottenere la corrente espressa in Arms è 0.01 Arms/cnts. Applicare quindi: Iq = SYS_DSP_CURR_QUAD * 0.01 In anello di velocità/spazio tale valore coincide il parametro SYS_SPL_W_OUT nel sottomenu " <i>Monitor - Anello velocità spazio</i> ".
SYS_DSP_CURR_DIR:	Richiesta corrente diretta. Espresso in conteggi. Il fattore di conversione per ottenere la corrente espressa in Arms è 0.01 Arms/cnts. Applicare quindi: Id = SYS_DSP_CURR_DIR * 0.01 Rappresenta il contributo della corrente diretta che in particorlari applicazioni è richiesto nel calcolo delle correnti di fase del motore.
SYS_DSP_RHO:	Angolo di campo. Espresso in conteggi virtuali (1 giro meccanico = 65536 conteggi virtuali). Rappresenta la posizione sul giro elettrico, ovvero: $P_{el} = P_{mecc} * N^{\circ}_{cp}$ dove: $P_{el} = posizione elettrica$ $P_{mecc} = posizione sul giro meccanico (SYS_SPL_VI_PO)$ $N^{\circ}_{cp} = numero di coppie polari del motore.$
SYS_DSP_IU_ANA:	Corrente fase U del motore. Espresso in conteggi. Il fattore di conversione per ottenere la corrente espressa in Arms è 0.00503 Arms/cnts. Applicare quindi: Iu = SYS_DSP_IU_ANA * 0.00503
SYS_DSP_IV_ANA:	Corrente fase V del motore. Espresso in conteggi. Il fattore di conversione per ottenere la corrente espressa in Arms è 0.00503 Arms/cnts. Applicare quindi: Iu = SYS_DSP_IV_ANA * 0.00503

4.4 Anello velocità spazio

IDA	Nomo	Тіро		Unità		
IFA	Nome		Default	Min	Max	misura
18052	SYS_SPL_ERR_MAX_ENABLE	Bool	On			
18150	SYS_SPL_POS_FAK	Word	20	0	32767	N°
18151	SYS_SPL_I_FAK	Word	0	0	32767	N°
18152	SYS_SPL_SPD_FAK	Word	40	0	32767	N°
18154	SYS_SPL_ACC_FAK	Word	0	0	32767	N°
18164	SYS_SPL_POS_ERR_MAX	Word	20000	0	32767	CntVi

SYS_SPL_ERR_MAX_ENABLE:

Abilitazione limite sull'errore di posizione. Impostando a On tale parametro, l'errore di posizione calcolato nell'anello velocità/spazio sarà limitato a SYS_SPL_POS_ERR_MAX.

AXM Configurable Motion Control Platform

SYS_SPL_POS_FAK:	Impostazione del guadagno di posizione: rappresenta il fattore moltiplicativo dell'errore di posizione nell'anello di velocità/spazio. La modifica al parametro risulta attiva senza dover resettare l'azionamento.
SYS_SPL_I_FAK:	Impostazione del guadagno integrale: rappresenta il fattore moltiplicativo di tutti i contributi dell'anello di velocità/spazio. La modifica al parametro risulta attiva senza dover resettare l'azionamento.
SYS_SPL_SPD_FAK:	Impostazione del guadagno di velocità: rappresenta il fattore moltiplicativo dell'errore di velocità nell'anello di velocità/spazio. La modifica al parametro risulta attiva senza dover resettare l'azionamento.
SYS_SPL_ACC_FAK:	Guadagno differenziale di velocità. Non ancora implementato.
SYS_SPL_POS_ERR_MAX:	Impostazione dell'errore di posizione limite: tale parametro risulta attivo solo se è abilitato il limite sull'errore di posizione mediante il parametro SYS_SPL_ERR_MAX_ENABLE. E' espresso in conteggi virtuali (1 giro meccanico = 65535 cnt virtuali).

Questo parametro ha anche una funzione di limitazione della corrente erogata ad asse bloccato, secondo la seguente formula:

$$I[Arms] = \frac{SYS_SPL_POS_ERR_MAX}{50000} \cdot SYS_SPL_POS_FAK$$

NOTA: Per una visione complessiva dei parametri si rimanda allo schema a blocchi dell'anello di velocità/spazio in Capitolo<u>11.4</u> Appendice 4.

IDA	Nome	Tipo		Unità		
IFA		про	Default	Min	Max	Misura
18054	SYS_RAMP_EN	Bool	On			
18157	SYS_RG_POS_SPLIM	Float	314.000	0	25000	rad/sec
18158	SYS_RG_NEG_SPLIM	Float	314.000	0	25000	rad/sec
18159	SYS_RG_CW_ACC	Float	1000.0			rad/sec^2
18160	SYS_RG_CW_DEC	Float	1000.0			rad/sec^2
18161	SYS_RG_CCW_ACC	Float	1000.0			rad/sec^2
18162	SYS_RG_CCW_DEC	Float	1000.0			rad/sec^2

4.4.1 Anello di velocità spazio 🖏 Profilo velocità

SYS_RAMP_EN:	Abilitazione generatore di profilo velocità. Impostando a Off tale parametro vengono eseguiti gradini di velocità.
SYS_RG_POS_SPLIM:	Impostazione della velocità massima, per il senso di rotazione orario del motore. Espresso in rad/sec.
SYS_RG_POS_SPLIM:	Impostazione della velocità massima, per il senso di rotazione antiorario del motore. Espresso in rad/sec.
SYS_RG_CW_ACC:	Impostazione della accelerazione, per il senso di rotazione orario del motore. Espresso in rad/(sec*sec).

 AXIVI Configurable Motion Control Platform

 SYS_RG_CW_DEC:
 Impostazione della decelerazione, per il senso di rotazione orario del motore. Espresso in rad/(sec*sec).

 SYS_RG_CCW_ACC:
 Impostazione della accelerazione, per il senso di rotazione antiorario del motore. Espresso in rad/(sec*sec).

 SYS_RG_CCW_DEC:
 Impostazione della decelerazione, per il senso di rotazione antiorario del motore. Espresso in rad/(sec*sec).

 SYS_RG_CCW_DEC:
 Impostazione della decelerazione, per il senso di rotazione antiorario del motore. Espresso in rad/(sec*sec).

4.4.2 Anello di velocità spazio 🕏 Imp. Avanzate

IDA Nome		Tine	Valore			Unità	
IPA	Nome	про	Default	Min	Max	misura	
18053	SYS_SPL_REF_EN	Bool	On				
18057	SYS_SPL_POS_GEN	Bool	Off				
18156	SYS_SPL_FILT	Float	0.300	0.001	1.000	N°	
18245	SYS_SPL_SP_IST	Int	2	0	1000	CntVi/250us	

- SYS_SPL_REF_EN: Impostazione flag per abilitare i riferimenti in ingresso al blocco anello velocità/spazio. Ponendo a Off tale parametro è possibile impostare i riferimenti di velocità, posizione e giri in ingresso all'anello velocità/spazio. Di norma questo parametro deve essere impostato a On (Fare riferimento a Capitolo <u>11.4</u> Appendice 4).
- SYS_SPL_POS_GEN: Abilitando questa funzione viene inserito un filtro sul riferimento di velocità all'ingresso dell'anello di velocità/spazio. In questo modo si ottengono migliori performances nelle applicazioni di posizionemento soprattutto dove è necessario un overshoot molto limitato.
- SYS_SPL_FILT:Impostazione dell'azione filtrante a valle dell'anello di velocità/spazio.
Rappresenta la costante di tempo del filtro digitale implementato in uscita
all'anello di velocità/spazio. L'azione filtrante varia in modo inverso al
parametro (1.000 = filtro escluso, 0.001 massima azione filtrante).
L'impostazione di fabbrica prevede un leggero filtraggio, per evitare
oscillazioni ad elevata frequenza. Diminuire il valore impostato se si
rende necessario un filtraggio delle alte frequenze dell'anello di
velocità/spazio (soprattutto in presenza di rumore elevato con resolver).
- SYS_SPL_SP_IST: Impostazione della finestra di isteresi della velocità. Tramite questo parametro è possibile escludere nell'anello velocità/spazio i contributi delle variazioni di velocità interne alla finestra di isteresi. Di default l'isteresi viene disattivata. Attivare il parametro in caso di situazioni con letture di posizioni e velocità particolarmente soggette a rumore (i.e.: resolver).

4.4.3 Anello di velocità spazio 🖔 Monitor

IPA	Nome	Тіро	Unità misura
19018*	SYS_SPL_POS_ERR	Long	CntVi
21040*	SYS_SPL_W_OUT	Int	N°

21041*	SYS_SPL_VI_PO	Word	CntVi
21042*	SYS_SPL_POS_REF	DWord	CntVi*2 ¹⁶
21044*	SYS_SPL_PE_SP	Int	CntVi/250us
21045*	SYS_SPL_PE_SP_REF	Long	(CntVi/250us)*2 ¹⁶
21046*	SYS_SPL_VI_TU	Long	N°
21047*	SYS_SPL_TUR_REF	Long	N°
21049*	SYS_RG_RAMP_IN_CORSO	Bool	
21052*	SYS_SPL_POS_TUR	Long	CntVi
24683*	SYS_RG_LIN_OUT	Long	(CntVi/250us)*2 ¹⁶

SYS_SPL_POS_ERR: Errore di posizione: rappresenta la differenza tra la posizione teorica e reale. Espresso in conteggi virtuali (CntVi).

- SYS_SPL_W_OUT: Uscita dell'anello di velocità/spazio. Rappresenta la richiesta di corrente in uscita dall'anello velocità spazio. Espressa in centesimi di Arms.
- SYS_SPL_VI_PO: Posizione sul giro meccanico. Rappresenta la posizione attuale in ingresso all'anello di velocità/spazio. Espresso in conteggi virtuali (CntVi). Il valore di tale parametro coincide con SYS_ENC1_VI_PO.
- SYS_SPL_POS_REF: Posizione di riferimento sul giro meccanico. Rappresenta la posizione teorica in ingresso all'anello di velocità/spazio calcolata dal generatore di riferimenti. Espresso in conteggi virtuali normalizzati a 32 bit (CntVi*2¹⁶).
- SYS_SPL_PE_SP: Velocità in ingresso all'anello velocità/spazio. Rappresenta la differenza in 250us tra la posizione teorica e reale. Espresso in conteggi virtuali ogni 250us (CntVi/250). Tale parametro coincide con la word più significativa del parametro SYS_ENC1_PE_SP nel sottomenu "*Monitor Encoders*".
- SYS_SPL_PE_SP_REF: Riferimento di velocità: Rappresenta la velocità teorica in ingresso all'anello di velocità/spazio. Se il generatore di riferimenti è disabilitato coincide con il valore del parametro SYS_RG_LIN_OUT del sottomenu "*Monitor Profilo velocità*". Espresso in conteggi virtuali normalizzati a 32bit (CntVi/250*2¹⁶).
- SYS_SPL_VI_TU: Numero di giri meccanici in ingresso all'anello di velocità/spazio. Tale parametro coincide con SYS_ENC1_VI_TU.
- SYS_SPL_TUR_REF: Numero di giri meccanici di riferimento in ingresso all'anello di velocità/spazio calcolato dal generatore di riferimenti.
- SYS_RG_RAMP_IN_CORSO: Flag indicante se il motore è in moto con velocità costante (Off) o variabile (On).
- SYS_SPL_POS_TUR: Posizione attuale espressa in conteggi virtuali (giri+posizione sul giro): n°giri * 2¹⁶ + posizione (CntVi).
- SYS_RG_LIN_OUT: Riferimento di velocità calcolato dal generatore di riferimenti. Espresso in (CntVi/250us)*2¹⁶.

Per una visione complessiva dei parametri si rimanda allo schema a blocchi del Generatore di rampe e dell'anello di velocità/spazio in Capitolo <u>11.4</u> Appendice 4.

4.5 Configurazione I/O

IDA	Nome	Тіро		Unità		
IFA			Default	Min	Max	Misura
18244	SYS_REF_IN0	Int	0			mV
18247	SYS_REF_IN1	Int	0			mV

SYS_REF_IN0:	Impostazione dell'offset di tensione da applicare al valore letto all'ingresso analogico 0. Espresso in mV.
SYS_REF_IN1:	Impostazione dell'offset di tensione da applicare al valore letto all'ingresso analogico 1. Espresso in mV.

4.5.1 Configurazione I/O ♦ Monitor

IPA	Nome	Nome Tipo	
21030*	SYS_ADC_ANA_IN0	Float	V
21031*	SYS_ADC_ANA_IN1	Float	V
21250*	SYS_SP_REF_FAK	Float	(rad/sec) / V
21251*	SYS_I_REF_FAK	Float	Arms / V

SYS_ADC_ANA_IN0: Livello ingresso analogico 0. Il valore è espresso volt.

SYS_ADC_ANA_IN1: Livello ingresso analogico 1. Il valore è espresso volt.

SYS_SP_REF_FAK: Scala del riferimento analogico dell'ingresso 0. Espresso in (rad/sec) / V calcolato come rapporto tra i limiti di velocità e l'ampiezza dell'ingresso analogico, secondo la formula:

SYS_SP_REF_FAK = MAX (SYS_RG_POS_SPLIM, SYS_RG_NEG_SPLIM) / 10V

Il calcolo viene eseguito ogni 8ms.

SYS_I_REF_FAK: Scala del riferimento analogico dell'ingresso 1. Espresso in (Arms) / V calcolato come rapporto tra il limite di corrente e l'ampiezza dell'ingresso analogico, secondo la formula:

SYS_I_REF_FAK = (SYS_MOT_IDM) / 10V

Il calcolo viene eseguito ogni 8ms.

4.6 CANopen

Gli azionamenti AxM usano un sottoinsieme del protocollo CANopen standard che rende accessibili l'intero set di parametri del drive. Sono supportate diverse funzionalità standard CANopen così come definito dal CiA DS301.

IDA	Nomo	Tino		Unità		
IF A	Nome	про	Default	Min	Max	misura
18056	SYS_CAN_EN	Bool	Off			
18300	SYS_CANOPEN_ENABLED	Bool	Off			
18316	SYS_CAN_BAUD_RATE	Enum 50 125 250 500	125	50	500	Kbit / s
18317	SYS_NODE	Word	1	1	127	N°

SYS_CAN_EN:	Attivazione dell'intefaccia hardware CAN.				
SYS_CANOPEN_ENABLED:	Attivazione protocollo CANopen.				
SYS_BAUD_RATE:	Impostazione della velocità (baudrate) di comunicazione della linea CANopen.				
SYS_NODE:	Impostazione dell'indirizzo del nodo sulla linea CANopen. Il massimo numero di nodi per linea è 127.				

NOTA: L'indirizzo di nodo deve essere assegnato in modo univoco a tutti gli slaves sulla linea CANopen.

4.6.1 CANopen ♦ Impostazione DS301

IDA	Nome	Tipo		Valore			
IFA	Nome	про	Default	Min	Max	misura	
18375	SYS_GUARD_TIME	Dword	0	0	*	ms	
18376	SYS_LIFETIME_FACTOR	Dword	0	0	*	N°	

SYS_GUARD_TIME:oggetto 100Ch - "Guard time".Periodo di Guard time. Impostare a 0 se non utilizzato.

SYS_LIFETIME_FACTOR:oggetto 100Dh - "Life time factor".II Life time factor moltiplicato per il Guard time fornisce il life time per la
procedura di node guarding. Impostare a 0 se non utilizzato.

* NOTA: (SYS_GUARD_TIME * SYS_LIFETIME_FACTOR) <= 2^16.

4.6.2 CANopen ♦ Impostazione DS301 ♦ Sync

IDA	Nome	Тіро		Unità		
IFA			Default	Min	Max	misura
18301	SYS_SYNC_EN_ALR	Bool	Off			
18374	SYS_SYNC_ADJ	Word	2	0	8	N°
18377	SYS_SYNC_PERIOD	Dword	0			us
18019*	SYS_SYNC_LOCK	Bool	Off			

SYS_SYNC_EN_ALR: Abilita l'allarme relativo alla perdita di sincronizzazione con il messaggio di sync proveniente dal master.

SYS_SYNC_ADJ: Parametro di correzione periodo di esecuzione tasks di sistema per sincronizzazione con messaggio di SYNC proveniente da master. Ogni unità corrisponde ad un aggiustamento del periodo di task pari a 320ns.

- SYS_SYNC_PERIODoggetto 1006h "Communication cycle period".
Questo oggetto definisce l'intervallo di occorrenza del messaggio di Sync quindi
il periodo della comunicazione in μs. Impostare a 0 se non utilizzato.
- SYS_SYNC_LOCKSegnalazione di aggancio al messaggio di Sync evvenuta.
Questa variabile risulta ON quando il drive è sincronizzato con il messaggio di
Sync del master, mentre sarà OFF nel caso si perda la sincronizzazione.

4.6.3 CANopen & Impostazione DS301 & Rx PDO 1

IDA	Nomo	Nome Tipo Valore			Unità		
IFA	Nome	про	Default Min Max		Default Min		misura
18302	SYS_RXPDO1_TYPE	Enum sync 1 rtr 253 async 254	async				
18308	SYS_RXPDO1_COBID	Word	000	181h	57Fh		
18318	SYS_RXPDO1_OBJ1_IDX	Word	24640				
18319	SYS_RXPDO1_OBJ2_IDX	Word	0				
18320	SYS_RXPDO1_OBJ3_IDX	Word	0				
18321	SYS_RXPDO1_OBJ4_IDX	Word	0				
18326	SYS_RXPDO1_OBJ5_IDX	Word	0				
18327	SYS_RXPDO1_OBJ6_IDX	Word	0				
18328	SYS_RXPDO1_OBJ7_IDX	Word	0				
18329	SYS_RXPDO1_OBJ8_IDX	Word	0				
18350	SYS_RXPDO1_OBJ1_SUB	Word	0				

Configurable Motion Control Platform

	0	Word	SYS_RXPDO1_OBJ2_SUB	18351
	0	Word	SYS_RXPDO1_OBJ3_SUB	18352
	0	Word	SYS_RXPDO1_OBJ4_SUB	18353
	0	Word	SYS_RXPDO1_OBJ5_SUB	18358
	0	Word	SYS_RXPDO1_OBJ6_SUB	18359
	0	Word	SYS_RXPDO1_OBJ7_SUB	18360
	0	Word	SYS_RXPDO1_OBJ8_SUB	18361

SYS_RXPDO1_TYPE:

oggetto 1400.2h - "*PDO 1 transmission type*". Definisce il tipo trasmissione/ricezione del PDO. I tipi supportati sono:

Transmission type	cyclic	acyclic	synchronous	asynchronous	RTR only
1	х		x		
253				Х	х
254				X	

 SYS_RXPD01_COBID:
 oggetto 1400.1h - "PDO 1 COB-ID". Definisce l'identificatore del PDO numero 1. Di default è impostato = 000 che corrisponde alla configurazione di standard CANopen:

 200h + node ID (SYS_NODE)

 SYS_RXPD01_OBJx_IDX:
 oggetto 1600.1/8h - "Parameter index mapped at object x of PDO 1".

Impostazione dell'indice della variabile mappata dal PDO 1 nell'oggetto x.

SYS_RXPDO1_OBJx_SUB: Impostazione del sottoindice della variabile mappata dal PDO1 nell'oggetto x.

Nota: l'indice 'x' è associato all'oggetto mappato dal PDO1.

4.6.4 CANopen & Impostazione DS301 & Rx PDO 2

IDA	Nomo	Tipo	Valore			Unità
IFA	Nome	Default Min Max		Max	misura	
18303	SYS_RXPDO2_TYPE	Enum sync 1 rtr 253 async 254	async			
18309	SYS_RXPDO2_COBID	Word	000	181h	57Fh	
18322	SYS_RXPDO2_OBJ1_IDX	Word	24640			
18323	SYS_RXPDO2_OBJ2_IDX	Word	24672			
18324	SYS_RXPDO2_OBJ3_IDX	Word	0			
18325	SYS_RXPDO2_OBJ4_IDX	Word	0			
18330	SYS_RXPDO2_OBJ5_IDX	Word	0			
18331	SYS_RXPDO2_OBJ6_IDX	Word	0			

Configurable Motion Control Platform

18332	SYS_RXPDO2_OBJ7_IDX	Word	0		
18333	SYS_RXPDO2_OBJ8_IDX	Word	0		
18354	SYS_RXPDO2_OBJ1_SUB	Word	0		
18355	SYS_RXPDO2_OBJ2_SUB	Word	0		
18356	SYS_RXPDO2_OBJ3_SUB	Word	0		
18357	SYS_RXPDO2_OBJ4_SUB	Word	0		
18362	SYS_RXPDO2_OBJ5_SUB	Word	0		
18363	SYS_RXPDO2_OBJ6_SUB	Word	0		
18364	SYS_RXPDO2_OBJ7_SUB	Word	0		
18365	SYS_RXPDO2_OBJ8_SUB	Word	0		

SYS_RXPDO2_TYPE:

oggetto 1401.2h - "*PDO 2 transmission type*". Definisce il tipo trasmissione/ricezione del PDO. I tipi supportati sono:

Transmission type	cyclic	acyclic	synchronous	asynchronous	RTR only
1	х		x		
253				Х	х
254				х	

 SYS_RXPDO2_COBID:
 oggetto 1401.1h - "PDO 2 COB-ID ".

 Definisce l'identificatore del PDO numero 1.
 Di default è impostato = 000 che corrisponde alla configurazione di standard CANopen:

 300h + node ID (SYS_NODE)

SYS_RXPDO2_OBJx_IDX:oggetto 1601.1/8h - "Parameter index mapped at object x of PDO 2".Impostazione dell'indice della variabile mappata dal PDO 2 nell'oggetto x.

SYS_RXPDO2_OBJx_SUB: Impostazione del sottoindice della variabile mappata dal PDO2 nell'oggetto x.

Nota: l'indice 'x' è associato all'oggetto mappato dal PDO2.

4.6.5 CANopen & Impostazione DS301 & Rx PDO 3, 4, 5, 6

I menù per la configurazione dei parametri per i PDO in ricezione numero 3, 4, 5, 6 prevedono gli stessi parametri quindì riportiamo di seguito un solo schema per tutti.

Gli oggetti 140(2,3,4,5).2h "PDO trasmission type" reletivamente ai PDO 3,4,5,6 non sono riportati poiché possono essere solo ASINCRONI.

IDA	Nomo	Indice	Tipo	Val	Unità		
IFA	Nome	PDO	npo	Default	Min	Max	misura
18386	SYS_RXPDO3_COBID	3	Word	000	181h	57Fh	
18387	SYS_RXPDO4_COBID	4	Word	000	181h	57Fh	

Configurable Motion Contro	ol Platform
----------------------------	-------------

18388	SYS_RXPDO5_COBID	5	Word	000	181h	57Fh	
18389	SYS_RXPDO6_COBID	6	Word	000	181h	57Fh	

SYS_RXPDO3_COBID: SYS_RXPDO4_COBID SYS_RXPDO5_COBID SYS_RXPDO6_COBID oggetti 140(2,3,4,5).1h - "*PDO COB-ID*". Definiscono gli identificatori dei PDO numero 3,4,5,6. Di default è impostato = 000 che corrisponde alla configurazione di standard CANopen:

(400h / 500h / 600h / 700h)+ node ID (SYS_NODE)

	IF	PA		Nome	Tipo
PDO 3	PDO 4	PDO 5	PDO 6	Nome	про
18680	18688	18696	18704	SYS_RXPDO (3,4,5,6) _OBJ1_IDX	Word
18681	18689	18697	18705	SYS_RXPDO (3,4,5,6) _OBJ2_IDX	Word
18682	18690	18698	18706	SYS_RXPDO (3,4,5,6) _OBJ3_IDX	Word
18683	18691	18699	18707	SYS_RXPDO (3,4,5,6) _OBJ4_IDX	Word
18684	18692	18700	18708	SYS_RXPDO (3,4,5,6) _OBJ5_IDX	Word
18685	18693	18701	18709	SYS_RXPDO (3,4,5,6) _OBJ6_IDX	Word
18686	18694	18702	18710	SYS_RXPDO (3,4,5,6) _OBJ7_IDX	Word
18687	18695	18703	18711	SYS_RXPDO (3,4,5,6) _OBJ8_IDX	Word
18712	18720	18728	18736	SYS_RXPDO (3,4,5,6) _OBJ1_SUB	Word
18713	18721	18729	18737	SYS_RXPDO (3,4,5,6) _OBJ2_SUB	Word
18714	18722	18730	18738	SYS_RXPDO (3,4,5,6) _OBJ3_SUB	Word
18715	18723	18731	18739	SYS_RXPDO (3,4,5,6) _OBJ4_SUB	Word
18716	18724	18732	18740	SYS_RXPDO (3,4,5,6) _OBJ5_SUB	Word
18717	18725	18733	18741	SYS_RXPDO (3,4,5,6) _OBJ6_SUB	Word
18718	18726	18734	18742	SYS_RXPDO (3,4,5,6) _OBJ7_SUB	Word
18719	18727	18735	18743	SYS_RXPDO (3,4,5,6) _OBJ8_SUB	Word

SYS_RXPDO (3,4,5,6) _OBJx_IDX:

oggetto 160(2,3,4,5).1 / 8h - "Parameter index mapped at object x of PDO". Impostazione dell'indice della variabile mappata dal PDO 3,4,5,6 nell'oggetto x.

SYS_RXPDO (3,4,5,6) _OBJx_SUB:

Impostazione del sottoindice della variabile mappata dal PDO nell'oggetto x.

Nota: l'indice 'x' è associato all'oggetto mappato dal PDO.

Configurable Motion Control Platform

4.6.6 CANopen ♦ Impostazione DS301 ♦ Tx PDO 1

IDA	Nomo	Tino		Unità		
IFA	Nome	про	Default	Min	Max	misura
18304	SYS_TXPDO1_TYPE	Enum sync 1 rtr 253 async 254	async			
18306	SYS_TXPDO1_INHTIME	Word	0			ms
18310	SYS_TXPDO1_COBID	Word	000	181h	57Fh	
18334	SYS_TXPDO1_OBJ1_IDX	Word	24641			
18335	SYS_TXPDO1_OBJ2_IDX	Word	0			
18336	SYS_TXPDO1_OBJ3_IDX	Word	0			
18337	SYS_TXPDO1_OBJ4_IDX	Word	0			
18342	SYS_TXPDO1_OBJ5_IDX	Word	0			
18343	SYS_TXPDO1_OBJ6_IDX	Word	0			
18344	SYS_TXPDO1_OBJ7_IDX	Word	0			
18345	SYS_TXPDO1_OBJ8_IDX	Word	0			
18366	SYS_TXPDO1_OBJ1_SUB	Word	0			
18367	SYS_TXPDO1_OBJ2_SUB	Word	0			
18368	SYS_TXPDO1_OBJ3_SUB	Word	0			
18369	SYS_TXPDO1_OBJ4_SUB	Word	0			
18378	SYS_TXPDO1_OBJ5_SUB	Word	0			
18379	SYS_TXPDO1_OBJ6_SUB	Word	0			
18380	SYS_TXPDO1_OBJ7_SUB	Word	0			
18381	SYS_TXPDO1_OBJ8_SUB	Word	0			

SYS_TXPDO1_TYPE:

oggetto 1800.2h - "*PDO 1 transmission type*". Definisce il tipo trasmissione/ricezione del PDO. I tipi supportati sono:

Transmission type	cyclic	acyclic	synchronous	asynchronous	RTR only
1	х		x		
253				Х	х
254				Х	

SYS_TXPDO1_INHTIME:oggetto 1800.3h - "PDO 1 Inhibit time".
Tempo di inhibit per la trasmissione del PDO1 asyncrono. Definisce il timpo
minimo tra due trasmissioni consecutive di questo oggetto. Espresso in ms.SYS_RXPDO1_COBID:oggetto 1800.1h - "PDO 1 COB-ID".
Definisce l'identificatore del PDO numero 1.
Di default è impostato = 000 che corrisponde alla configurazione di standard
CANopen:
180h + node ID (SYS_NODE)SYS_RXPDO1_OBJx_IDX:oggetto 1A00.1/8h - "Parameter index mapped at object x of PDO 1".

35

Impostazione dell'indice della variabile mappata dal PDO 1 nell'oggetto x.

AXM Configurable Motion Control Platform

SYS_RXPDO1_OBJx_SUB: Impostazione del sottoindice della variabile mappata dal PDO1 nell'oggetto x.

Nota: l'indice 'x' è associato all'oggetto mappato dal PDO1.

4.6.7 CANopen & Impostazione DS301 & Tx PDO 2

IPA	Nome	Тіро		Valore	Unità	
		-	Default	Min	Max	misura
18305	SYS_TXPDO2_TYPE	Enum sync 1 rtr 253 async 254	async			
18307	SYS_TXPDO2_INHTIME	Word	0			ms
18311	SYS_TXPDO2_COBID	Word	000	181h	57Fh	
18338	SYS_TXPDO2_OBJ1_IDX	Word	24641			
18339	SYS_TXPDO2_OBJ2_IDX	Word	24673			
18340	SYS_TXPDO2_OBJ3_IDX	Word	0			
18341	SYS_TXPDO2_OBJ4_IDX	Word	0			
18346	SYS_TXPDO2_OBJ5_IDX	Word	0			
18347	SYS_TXPDO2_OBJ6_IDX	Word	0			
18348	SYS_TXPDO2_OBJ7_IDX	Word	0			
18349	SYS_TXPDO2_OBJ8_IDX	Word	0			
18370	SYS_TXPDO2_OBJ1_SUB	Word	0			
18371	SYS_TXPDO2_OBJ2_SUB	Word	0			
18372	SYS_TXPDO2_OBJ3_SUB	Word	0			
18373	SYS_TXPDO2_OBJ4_SUB	Word	0			
18382	SYS_TXPDO2_OBJ5_SUB	Word	0			
18383	SYS_TXPDO2_OBJ6_SUB	Word	0			
18384	SYS_TXPDO2_OBJ7_SUB	Word	0			
18385	SYS_TXPDO2_OBJ8_SUB	Word	0			

SYS_TXPDO2_TYPE:

oggetto 1801.2h - "*PDO 2 transmission type*". Definisce il tipo trasmissione/ricezione del PDO. I tipi supportati sono:

Transmission type	cyclic	acyclic	synchronous	asynchronous	RTR only
1	х		x		
253				Х	х
254				Х	

SYS_TXPDO2_INHTIME:

oggetto 1801.3h - "*PDO 2 Inhibit time*". Tempo di inhibit per la trasmissione del PDO1 asyncrono. Definisce il timpo minimo tra due trasmissioni consecutive di questo oggetto. Espresso in ms.

SYS_RXPDO2_COBID:

oggetto 1801.1h - "*PDO 1 COB-ID*". Definisce l'identificatore del PDO numero 2.
Configurable Motion Control Platform

Di default è impostato = 000 che corrisponde alla configurazione di standard CANopen: 280h + node ID (SYS_NODE)

SYS_RXPDO2_OBJx_IDX:oggetto 1A01.1/8h - "Parameter index mapped at object x of PDO 2".
Impostazione dell'indice della variabile mappata dal PDO 2 nell'oggetto x.SYS_RXPDO2_OBJx_SUB:Impostazione del sottoindice della variabile mappata dal PDO2 nell'oggetto x.Nota: l'indice 'x' è associato all'oggetto mappato dal PDO2.

4.6.8 CANopen & Monitor

IPA	Nome	Тіро	Unità misura
21200*	SYS_NODE_STATE	Enum 1 Pre operativo 2 Operativo 3 Stop	
21201*	SYS_FAIL	Word	Hex
21202*	SYS_TXPDO1_LEN	Word	N°
21203*	SYS_TXPDO2_LEN	Word	N°
21204*	SYS_RXPDO1_LEN	Word	N°
21205*	SYS_RXPDO2_LEN	Word	N°
21206*	SYS_RXPDO3_LEN	Word	N°
21207*	SYS_RXPDO4_LEN	Word	N°
21208*	SYS_RXPDO5_LEN	Word	N°
21209*	SYS_RXPDO6_LEN	Word	N°
21220*	SYS_RXPDO1_ACTUAL_COBID	Dword	Hex
21221*	SYS_RXPDO2_ACTUAL_COBID	Dword	Hex
21222*	SYS_RXPDO3_ACTUAL_COBID	Dword	Hex
21223*	SYS_RXPDO4_ACTUAL_COBID	Dword	Hex
21224*	SYS_RXPDO5_ACTUAL_COBID	Dword	Hex
21225*	SYS_RXPDO6_ACTUAL_COBID	Dword	Hex
21226*	SYS_TXPDO1_ACTUAL_COBID	Dword	Hex
21227*	SYS_TXPDO2_ACTUAL_COBID	Dword	Hex

SYS_NODE_STATE:Monitorizza lo stato del nodo nella rete CANopen.
Vedi paragrafo 5.5.1SYS_FAIL:Visualizza gli allarmi attivi codificati in formato esedecimale. In
assenza di allarmi sarà visualizzato 0000. Riferirsi al capitolo 11.5
Appendice 5 per la descrizione di tutti gli allarmi CANopen.SYS_RXPDO(1,2,3,4,5,6)_LEN:Visualizza il numero di byte scambiati in ricezione sui PDO.SYS_TXPDO(1,2)_LEN:Visualizza il numero di byte scambiati in trasmissione sui PDO.

SYS_RXPDO(1,2,3,4,5,6)_ACTUAL_COBID: COB_ID attualmente attivo per i PDO in ricezione. SYS_TXPDO(1,2)_ACTUAL_COBID:

COB_ID attualmente attivo per i PDO in trasmissione.

4.6.9 CANopen & Device profile DSP402 & Device Control

IDA	Nomo	Tine		Unità		
IFA	Nome	про	Default	Min	Max	misura
6040h	CONTROLWORD	Word	0000			Hex
6060h	MODE_OF_OPERATION	Enum	Profile Velocity			
603Fh*	EMCY_CODE	Word				Hex
6041h*	STATUSWORD	Word				Hex
6061h*	MODE_OF_OPERATION_DISPL	Enum				

CONTROLWORD:

La controlword contiene i bit per controllare la macchina a stati e per controllare la specifica modalità operativa selezionata.

MODE OF OPERATION:

Questo parametro imposta la modalità operativa. I valori possibili sono:

Valore	Descrizione	
1	Profilo di posizione	
3	Profilo di velocità	
128	Modalità coppia	

La lettura di questo parametro restituisce solo il valore del parametro. La modalità operativa attualmente in funzione può essere letta nell'oggetto "Modalità operativa attuale" (oggetto 6061h.0h).

EMCY_CODE: Questo oggetto racchiude il registro errore dell'azionamento e il registro errori specifico del costruttore (manufacturer error register).

STATUSWORD: La statusword indica lo stato attuale dell'azionamento e lo stato attuale della specifica modalità operativa selezionata.

MODE OF OPERATION DISPL: Questo parametro mostra la modalità operativa attualmente in funzione. Il significato del valore letto è lo stesso dei valori della "Modalità operativa" (oggetto 6060h.0h).

Tutti questi oggetti sono descritti più dettagliatamente al pargrafo 6.2.1.

4.6.10 CANopen & Device profile DSP402 & Position Control

IDA	Nomo	Tine		Unità		
IFA	IFA Nome		Default	Min	Max	misura
24679	SYS_POS_ERR_WIN	DWord	0			CntVi
24680	SYS_POS_ERR_TIME	Word	0			ms

SYS_POS_ERR_WIN: Corrisponde all'oggetto "Position window" (6067h.0h) e definisce una finestra simmetrica di posizioni valide intorno alla "target position". Se il valore di posizione encoder è all'interno della "Position window" la "target_position" si ritiene raggiunta. Impostare (2^32) – 1 per disabilitare questo controllo.
SYS_POS_ERR_TIME: Corrisponde all'oggetto "Position window time" (6068h.0h). Quando la posizione attuale stà all'interno della "Position window" per un tempo corrispondente a quanto impostato in "Position window time", il bit 10 della "statusword" viene settato a 1. Espresso in ms.

Vedere paragrafo 6.4.1 per informazioni più dettagliate.

4.6.11 CANopen ♦ Device profile DSP402 ♦ Option Codes

IDA			Valore			Unità	
IFA	Nome	про	Default	Min	Max	misura	
24679	QUICK_STOP_OPT	DWord	Disable drive				

QUICK_STOP_OPT:

Questo parametro determina quale azione deve essere iniziata quando viene eseguito il comando **Quick stop**. L'azione può essere una delle seguenti:

Codice	Descrizione			
0	Disabilitazione dell'azionamento			
5	Fermata con rampa di decelerazione normale			
6	Fermata con rampa di decelerazione quick stop			

Vedere paragrafo <u>6.2.1</u> per informazioni più dettagliate.

4.7 CANLink

Al fine di rendere possibile la connessione di più AxM è stata implementata una modalità di comunicazione seriale basata sull hardware dell'interfaccia CAN.

Vengono per questo riutilizzati alcuni oggetti messi a disposizione dal protocollo CANopen, come il parametro SYS_SYNC_PERIOD (IPA 18377) e tutti i menù di configurazione dei PDO.

La connessione funziona in modo sincrono, con periodo definito dal parametro SYS_SINC_PERIOD, scambiando i dati mappati nei PDO (menù Rx / Tx PDO, paragrafi dal <u>4.6.3</u> in poi). Il minimo valore consentito è 2000us cioè 2ms.

Sul drive master si devono abilitare i parametri SYS_CANLINK_EN e SYS_CAN_EN (<u>4.6.3</u>) per attivare la funzionalità in oltre si possono configurare tutti i PDO disponibili; quindi un massimo 2 in Tx e fino a 6 in Rx. Sugli slaves si devono abilitare i parametri SYS_CAN_EN e SYS_CANOPEN_ENABLED e si deve configurare un Rx PDO con stesso ID del Tx PDO del master. Si possono quindi utilizzare un numero di Tx PDO dipendente dal numero di slaves collegati; se sono collegati fino a 3 slaves si possono configurare 2 Tx PDO su ognuno, al contrario se sono collegati 6 slaves si potrà configurare solo un Tx PDO su ognuno.

Per ogni PDO è necessario configurare l'ID, in maniera completamente libera e non collegata alla specifica CANopen, e gli oggetti che devono essere letti o scritti. Lasciando impostato l'ID = 0 il PDO non sarà utilizzato. Perdono, in questo caso, significato gli altri parametri CANopen (tipo e inhibit time). Oltre a questi si devono configurare o verificare i seguenti altri parametri:

IDA	Nomo	Tipo		Valore		Unità
IFA	Nome	про	Default	Min	Max	misura
18058	SYS_CANLINK_EN	Bool	Off			
18059	SYS_CANLINK_ALARM_EN	Bool	Off			
21240*	CL_STATE	Enum 0 Non attivo 1 Sincronizzazione slaves 2 Run 3 Error				
21241*	CL_ERROR	Word				
21242*	CL_N_SLAVE	Word				N°

SYS_CANLINK_EN: Abilitazione dell'intefaccia CANLink sul deive master.

SYS_CANLINK_ALARM_EN: Abilita la gestione degli allarmi sulla comunicazione seriale.

- CL_STATE: stato del drive CANLink.
- CL_ERROR:

codice dell'allarme attivo sul driver CANLink.

Codice	Nome	Descrizione
0x0000	CL_E_OK	Drive Ok
0x0001	CL_E_SYSTEM	Errore grave di sistema
0x0002	CL_E_PERIOD	Errore di configurazione tempo di ciclo
0x0004	CL_E_BUSOFF	Bus off di linea
0x0008	CL_E_LINE_WRONG	Problemi hardware sulla linea
0x0010	CL_E_SLAVE_LOST	Persa comunicazione con uno slave
0x0100	CL_E_CFG_MASTER	Errore di configurazione master
0x0200	CL_E_CFG_SLAVE	Errore di configurazione slave

CL_N_SLAVE:

numero di slave attivi, derivanti dalla configurazione.

Δ **Configurable Motion Control Platform**

4.7.1 CANLink ♦ Master

IDA	Nomo	Tipo		Valore		Unità
IFA	Nome	про	Default	Min	Max	misura
8200*	CLM_WORD1	Word	0			
8201*	CLM_WORD2	Word	0			
8202*	CLM_WORD3	Word	0			
8203*	CLM_WORD4	Word	0			
8204*	CLM_WORD5	Word	0			
8205*	CLM_WORD6	Word	0			
8206*	CLM_WORD7	Word	0			
8207*	CLM_WORD8	Word	0			

CLM_WORD(1,2,3,4,5,6,7,8): immagine dei pacchetti dati del master.

4.7.2 CANLink & Slave 1, 2, 3, 4, 5, 6

IPA				Nome	Тіро	Unità		
21244*	21245*	21246*	21247*	21248*	21249*	CLS(1,2,3,4,5,6)_STATE	Enum 0 Disconnect 1 Connect	
8216*	8220*	8224*	8228*	8232*	8236*	CLS(1,2,3,4,5,6)_WORD1	Word	
8217*	8221*	8225*	8229*	8233*	8237*	CLS(1,2,3,4,5,6)_WORD2	Word	
8218*	8222*	8226*	8230*	8234*	8238*	CLS(1,2,3,4,5,6)_WORD3	Word	
8219*	8223*	8227*	8231*	8235*	8239*	CLS(1,2,3,4,5,6)_WORD4	Word	

CLS(1,2,3,4,5,6)_STATE: stato degli slaves: Disconnesso \rightarrow 0, Connesso \rightarrow 1; immagine dei pacchetti dati degli slaves. CLS(1,2,3,4,5,6)_WORD1:

4.8 Sistema

IPA	Nome	Тіро	Default	Unità misura
18051	SYS_SEL_MODE	Enum 0 Default 1 Remote 2 Plc 3 Test	Default	

SYS_SEL_MODE: Impostazione della modalità di funzionamento:

Default	→ funzionamento in modalità di default (vedere paragrafo 2.1).
---------	--	------------------------

- *Remote* → funzionamento in modalità di remota; è così possibile eseguire un controllo remoto dell'azionamento mediante interfaccia CANopen (vedere capatolo <u>6</u>).
- Plc \rightarrow funzionamento in modalità PLC; viene attivata l'applicazione
dedicata caricata nell'azionamento AxM (vedere paragrafi 2.2 e il
capitolo 8).
- *Test* → funzionamento in modalità test; in questo caso è possibile eseguire la taratura dell'anello di corrente o la messa in fase dell'encoder (vedere paragrafo <u>3.8</u>).

4.8.1 Sistema 🖏 Unità frenatura

	Tipo		Unità				
IFA	Nome	про	Taglia	Default	Min	Max	misura
			04 09 4	70	60	80	
18106	SYS_R_BRAKE	Word	06 14 4	42	38	50	ohm
			09 20 4	30	26	34	
18107	SYS_P_BRAKE_MAX	Word		10			W
18108	SYS_OV_CLM_LIM	Word		800			V

SYS_R_BRAKE: Valore resistenza di frenatura, utilizzato per il calcolo della potenza dissipata. Il valore di default corrisponde alla resistenza interna all'azionamento; modificare, rispettando i limiti indicati nel caso di utilizzo di un resistore esterno.

SYS_P_BRAKE_MAX: Potenza massima dissipabile dalla resistenza di frenatura. Definisce il limite di intervento dell'allarme "Brake overpower". Non impostare più di 10W nel caso sia collegata la resistenza interna.

42

SYS_OV_CLM_LIM: Tensione di intervento del circuito di frenatura.

Configurable Motion Control Platform

4.8.2 Sistema & Seriale

IDA	Nomo	Tipo		Valore		Unità
IFA	Nome	про	Default	Min	Max	misura
18140	SYS_BAUD_RATE	Enum 0 1200 1 2400 2 4800 3 9600 4 14400 5 19200 6 38400	6 (38400)	0 (1200)	6 (38400)	bps
18141	SYS_SER_MODE	Enum 0 8,N,1 1 8,O,1 2 8,E,1 3 8,N,2 4 8,O,2 5 8,E,2	0 (8,N,1)	0 (8,N,1)	5 (8,E,2)	
18142	SYS_SER_DELAY_TIME	Word	0	0	800	msec
18143	SYS_MOD_ADDR	Word	0	0	0	N°

Impostazione della velocità (baudrate) di comunicazione della seriale del SYS_BAUD_RATE: drive. Il valore predefinito è 38400.

SYS_SER_MODE: Impostazione della configurazione della porta seriale. I valori selezionabili sono i seguenti: 8,N,1 (no parity, 8 data bit, 1 bit di stop) 8,O,1 (odd parity, 8 data bit, 1 bit di stop) 8,E,1 (even parity, 8 data bit, 1 bit di stop) 8,N,2 (no parity, 8 data bit, 2 bit di stop) 8,0,2 (odd parity, 8 data bit, 2 bit di stop) 8.E.2 (even parity, 8 data bit, 2 bit di stop) Il valore di fabbrica è 8,N,1.

SYS_MOD_ADDR: Impostazione dell'indirizzo Modbus.

Se uno dei precedenti parametri viene modificato è necessario allineare l'impostazione della seriale PC del configuratore Cockpit (menu "Target - Communication settings") e dell'ambiente di sviluppo GPLC (menu: "Communication - settings") in modo da evitare problemi di comunicazione con il drive. Rimandiamo al paragrafo 3.3.1 per maggiori dettagli.

SYS_SER_DELAY_TIME: Impostazione del ritardo minimo tra la ricezione da parte del drive dell'ultimo byte e l'inizio della sua risposta. Tale ritardo evita conflitti sulla linea seriale quando l'interfaccia RS232 utilizzata non è predisposta per una commutazione automatica TX/RX. La modifica al parametro risulta attiva senza dover resettare l'azionamento.

AxM

Configurable Motion Control Platform

4.8.3 Sistema 🌣 Imp. Avanzate

IDA	Nomo	Tipo		Valore		Unità
IFA	Nome	про	Default	Min	Max	misura
18109	SYS_OV_K_FILT	Word	1000	0	100000	N°
18110	SYS_OV_K_FRHO	Word	128	0	256	N°
18114	SYS_SPEED_DEF	Word	200			N°
18115	SYS_ANGLE_DEF	Word	5			N°
18220	SYS_RIP_CORR_FATT	Word	2	1	100	N°
18103	SYS_SEL_DSP_1	Enum 10 lu_Ana 11 lv_Ana 20 VdcBus 50 Heat_T emp 59 Ct_Isd 60 Ct_Isq 62 Ct_Vsu 63 Ct_Vsv				
18104	SYS_SEL_DSP_2	Word				Hex

SYS_OV_K_FILT: Valore filtro di feed-forward.

Costante di tempo del filtro utilizzato nel calcolo del contributo di feedforward dell'angolo di campo.

- SYS_OV_K_FRHO: Valore d'anticipo utilizzato per il calcolo dell'angolo di feed-forward. Valore d'angolo utilizzato nel calcolo del contributo di feed-forward di campo eseguito dal Dsp.
- SYS_SPEED_DEF: Velocità di intervento deflussaggio. (non ancora implementato)
- SYS_ANGLE_DEF: Valore angolo di incremento deflussaggio. (non ancora implementato)
- SYS_RIP_CORR_FATT: Impostazione del fattore correttivo di ripetizione encoder. Il parametro permette di modificare il peso del contributo feedfoward a basse velocità. Aumentandone il valore, l'azionamento risponde in modo meno impulsivo nel correggere l'errore di posizione a basse velocità. Il valore fornito dalla fabbrica permette in genere di avere ripetizioni corrette a tutte le velocità. Per ripetizioni con velocità estremamente ridotte, può rendersi necessario incrementare il valore del parametro.
- SYS_SEL_DSP_DATO1: Parametro di Selezione per la prima variabile Dsp da visualizzarsi sull'oscilloscopio: a scelta tra la lista di variabili proposte.

SYS_SEL_DSP_DATO2: Parametro di Selezione per la seconda variabile Dsp da visualizzarsi sull'oscilloscopio: selezione tramite indirizzo di memoria.

Variabile	Indirizzo	Variabile	Indirizzo
lu_Ana	241	Ct_lsd	250
lv_Ana	242	Ct_lsq	251
VdcBus	26E	Ct_Vsu	267
Heat_Temp	320	Ct_Vsv	268

4.8.4 Sistema ♦ Monitor

IPA	Nome	Тіро	Unità misura
21102	SYS_DSP_VDC_BUS	Volt	N°
21103	SYS_SPL_MOD_TEMP	°C	N°
21210	SYS_PTC_TEMP	Word	N°

SYS_DSP_VDC_BUS:	Valore della tensione di alimentazione a valle del ponte raddrizzatore. Espresso in volt.
SYS_SPL_MOD_TEMP:	Temperatura dissipatore. Espresso in °C.
SYS_PTC_TEMP:	Temperatura motore letta dalla PTC. Espressa in conteggi del convertitore analogico-digitale.

4.8.5 Sistema 🏷 Allarmi

Nel sottomenu "Allarmi" vengono riportate le informazioni relative allo stato di allarme dell'azionamento.

IPA	Nome	Тіро	Unità misura
18030	SYS_ALARM_MASK	DWord	Hex
19028	SYS_EMERGENCY_CODE	Word	Hex

SYS_ALARM_MASK:Maschera degli allarmi attivi del drive. Riferirsi a §11.1 Appendice 1
per una descrizione completa degli allarmi.

SYS_EMERGENCY_CODE: Codice dell'allarme attivo più proiritario secondo la specifica DSP-402. Riferirsi all'Appendice 1 per una descrizione completa degli allarmi.

4.9 Test

IPA	Nome	Тіро	Unità misura
24000	SYS_SEL_TEST	Enum 0 Taratura Current Loop 1 Fasatura Encoder	

SYS_SEL_TEST: Selezione della modalità di test da eseguire.

4.9.1 Test 🖏 Fasatura Encoder

IPA	Nome	Тіро	Default	Unità misura
24010	FAS_CURR	Float	1	Arms
24011*	PH_ERR	Float		°mec
24012*	SPL_RHO_SIM	Word		CntVi
24013*	TEST_ERR	Enum 0 Ok 1 Motore bloccato 2 Direzione errata 3 Numero poli errarto 4 Run 5 Disabilitato		

FAS_CURR: Valore di corrente usato per la procedura di fasatura.

PH_ERR: Angolo di sfasamento tra posizione corretta e posizione attuale dell'encoder.

SPL_RHO_SIM: Valore dell'angolo di campo, generato dal firmware.

TEST_ERR: Stato del test in esecuzione.

4.9.2 Test 🖏 Taratura anello corrente

IPA	Nome	Тіро	Default	Unità misura
24001	TG_CYC	Word	50	2 ms
24002	TG_I_HIGH	Float	1.5	Arms
24003	TG_I_LOW	Float	0.5	Arms

TG_CYC: Periodo dell'onda quadra di riferimento. Ogni unità corrisponde a 2ms.

TG_I_HIGH: Livello alto della richiesta di corrente. Espresso in Arms.

TG_I_LOW: Livello basso della richiesta di corrente. Espresso in Arms.

5 STANDARD DS 301

Il protocollo CANopen è uno dei più comuni protocolli CAN. Dal 1995 la specifica CANopen è gestita dal gruppo internazionale di utenti e costruttori CAN in Automation (CiA). Le autorità normative europee hanno accettato la Specifica CANopen Device versione 4.01 come EN 50325-4. Il concetto di base di CANopen è l'uso di un object dictionary (sostanzialmente un database di variabili, parametri, ecc. del dispositivo). Questo database raccoglie i dati relativi alla comunicazione e all'applicazione. Per accedere a questi parametri vengono usati due metodi: SDO e PDO.

SDO significa Service Data Object ed è un protocollo con transazione confermata per scambiare i dati dell'object dictionary fra il master e lo slave. Solitamente un dispositivo slave è un server SDO e ciò significa che esso può rispondere ad una richiesta originata da un SDO client, tipicamente il dispositivo master della rete. Di solito questo protocollo è usato per configurare i parametri interni del dispositivo; nel Motore Tw è usato anche per aggiornare il firmware qualora fosse necessario. La natura confermata di questo protocollo genera una grande quantità di traffico sul bus CAN e ciò lo rende inadatto per le comunicazioni in tempo reale ad alta velocità.

Il PDO (Process Data Object) è un protocollo a transazione non confermata ed estremamente configurabile per lo scambio di dati in tempo reale e ad alta velocità che massimizza i vantaggi dell'architettura CAN. Il trasferimento dei PDO è effettuato senza ulteriori sovraccarichi. I PDO corrispondono ad elementi dell'object dictionary del dispositivo e forniscono l'interfaccia per i parametri dell'applicazione. Il tipo di dati e la mappatura dei parametri dell'applicazione all'interno di un PDO sono determinati dalla corrispondente struttura della mappatura PDO all'interno dell'object dictionary del dispositivo. Fondamentalmente un PDO può essere asincrono (significa che la trasmissione è provocata da un evento specifico o da una richiesta remota) o sincrono (significa che la trasmissione è sincronizzata con l'oggetto di Sincronizzazione).

Il generatore SYNC, tipicamente il master, invia periodicamente l'oggetto di Sincronizzazione. Questo SYNC fornisce la temporizzazione di base della rete. Vi può essere una incertezza temporale in trasmissione da parte del generatore SYNC, che corrisponde approssimativamente alla latenza dovuta a qualche altro COB trasmesso appena prima del SYNC. Allo scopo di garantire un accesso all'istante giusto sul CAN bus, al SYNC viene attribuito un identificatore di priorità molto alta.

Gli oggetti di emergenza (EMCY) vengono emessi qualora si verifica una situazione di errore interno del dispositivo e sono trasmessi da un generatore di emergenze (tipicamente lo slave) nel dispositivo. Gli EMCY sono adatti per segnalare allarmi o errori occasionali.

Il Network Management (NMT) segue una struttura master-slave. I parametri NMT sono usati per eseguire servizi NMT. Per mezzo dei servizi NMT i nodi vengono inizializzati, avviati, monitorati, resettati o fermati. Tutti i nodi sono considerati come NMT slaves. Un NMT slave è univocamente identificato in rete dal suo node-ID, un valore nel range di [1..127]. L'NMT richiede che un dispositivo in rete svolga la funzione di NMT Master.

NMT	Slave
Server SDO	1
Tx PDO	2 (completamente programmabili)
Rx PDO	2 (completamente programmabili) + 4 (solo asincroni)
PDO Mapping	programmabile da utente (solo in stato "pre-operational")
PDO Modes	Solo tipi 1, 253 e 254
Emergency object	Si
Sync object	Si
Time object	No
Error control protocols	Node Guarding

Le funzionalità standard implementate dal drive AxM sono:

Tabella 5.1: funzionalità AxM

5.1 Object Dictionary

La parte più importante di un profilo di dispositivo è la descrizione dell'Object dictionary. L'Object dictionary è essenzialmente un raggruppamento di oggetti accessibili in rete in un modo ordinato e predefinito. Di seguito è riportato lo schema generale del Object dictionary standard:

Index	Object
0000h-0FFFh	riservato
1000h-1FFFh	communication profile area (DS301)
2000h-5FFFh	Manufacturer specific area (AxM drive specific)
6000h-9FFFh	standardized device profile area (DSP402)
A000h-FFFFh	altri profili / riservato

Tabella 5.2: Schema del Object dictionary

Riferirsi al manuale software del motore TW per maggiori informazioni a riguardo.

5.1.1 Oggetti della comunicazione

Questi sono tutti gli oggetti implementati che appartengono al profilo di comunicazione e applicazione definito dal CiA DS301 V4.02.

1000h.0h: Tipo di dispositivo

Descrive il tipo di dispositivo e le sue funzionalità. E' composto da un campo di 16 bit (LSB), che descrive il profilo del dispositivo, e da un campo di 16 bit (MSB), che dà informazioni su funzionalità opzionali del dispositivo.

1001h.0h: Registro errore

Questo oggetto è il registro errore dell'azionamento. È parte dell'oggetto EMCY (paragrafo 5.4).

1018h: Identità

Questo array contiene informazioni generali che identificano il dispositivo. Subindex 0h: Numero di sub-index supportati Subindex 1h: ID del produttore Questo è un valore univoco assegnato ad ogni costruttore dalla CiA, per Phase Motion Control è 0000 00D9h. Subindex 2h: Codice prodotto Subindex 3h: Firmware release Subindex 4h: Numero di serie

100Ch.0h: Guard Time

Gli oggetti 100Ch e 100Dh specificano il guard time in millisecondi e il life time factor. Il life time del nodo relativo al Node Guarding Protocol (par 5.5.2) è dato dal guard time moltiplicato per il life time factor. Se 0 il protocollo è disabilitato.

100Dh.0h: Life Time Factor

Il life time del nodo relativo al Node Guarding Protocol (par <u>5.5.2</u>) è dato dal guard time moltiplicato per il life time factor. Se 0 il protocollo è disabilitato.

1010h: Salva parametri

Questo oggetto permette il salvataggio dei parametri nella memoria non-volatile. In lettura l'oggetto fornisce informazioni sul tipo di salvataggio possibile.

48

Subindex 0h: Numero di sub-index supportati

Subindex 1h: Memorizza tutto

Questo comando consente all'azionamento di memorizzare tutti gli oggetti che hanno l'attributo Memoria NV. Per evitare di eseguire innavertitamente il comando, la memorizzazione viene eseguita solo quando una specifica chiave viene scritta nell'oggetto. Questa chiave è la stringa **save** (o il numero a 32 bit 6576 6173h). In lettura l'azionamento fornisce informazioni sulle sue possibilità di memorizzazione. Non è supportato il salvataggio automatico.

5.2 SDO and PDO

Tramite SDO si può accede a tutto il contenuto dell'Object Dictionary. Siccome ogni oggetto può essere di lunghezza e tipo arbitrari, l'SDO può essere usato per trasferire dati anche in formato multiplo. Se per qualsiasi ragione il trasferimento fallisce, sia il master sia lo slave possono inviare un messaggio di **abort transfer** (può essere inviato in qualunque momento durante un trasferimento):

Abort transfer (Master \rightarrow Slave or Slave \rightarrow Master)

COB-ID	B0	B1	B2	B3	B4	B5	B6	B7
600h+node-ID or 580h+node-ID	80h	index		subidx	abort cod	e		

gli abort code corrispondenti sono i seguenti:

Abort code	Description
0503 0000h	Bit di toggle nell' SDO non variato dalla trasmissione precedente
0504 0000h	Timed out del protocollo SDO (800ms)
0504 0001h	Comando client/server SDO non valido o sconosciuto
0601 0000h	Accesso ad oggetto non valido
0601 0001h	Tentativo di lettura di un parametro in sola scrittura
0601 0002h	Tentativo di scrivere un parametro in sola lettura
0602 0000h	Oggetto non esistente nell' "object dictionary"
0604 0041h	Oggetot non mappabile nel PDO
0604 0042h	Il numero e la lunghezza degli oggetti mappati eccedono la lunghezza del PDO
0606 0000h	Accesso fallito a causa di un errore hardware
0607 0010h	Lunghezza dato non corrispondente
0607 0012h	Lunghezza dato troppo alta
0607 0013h	Lunghezza dato troppo bassa
0609 0011h	Sub-index non esistente
0609 0030h	Valore non valido (solo in caso di scrittura)
0609 0031h	Valore del parametro superiore al massimo consentito
0609 0032h	Valore del parametro inferiore al minimo consentito
0800 0000h	Errore generico
0800 0020h	Il dato non può essere trasferito o salvato nell'applicazione; signature non valida
0800 0021h	Il dato non può essere trasferito o salvato nell'applicazione poiché non è stato superato
0000 002 111	un controllo interno
0800 0022h	I dati non possono essere trasferiti o salvati nell'applicazione nello stato attuale del drive

Tabella 5.3: Codici di trasferimento fallito (Abort code)

I PDO (Process Data Object) sono usati per trasmettere gli oggetti necessari per il controllo di processo real time. I PDO vengono trasmessi in broadcast e quindi senza alcun meccanismo di controllo di transazione. Ci sono due tipi di PDO: il primo è per la trasmissione di dati, Transmit-PDO (**TPDO**, da slave a master) e il secondo per la ricezione, Receive-PDO (**RPDO**, da master a slave).

I PDO **sincroni** sono trasmessi in concomitanza degli eventi SYNC e possono essere ciclici (significa che la trasmissione avviene ogni n SYNC con n compreso fra 1 e 240), aciclici (significa che la trasmissione è causata da un evento e quindi sincronizzata con l'evento SYNC) o RTR-Only (solo per i TPDO, significa che master richiede la trasmissione inviando un RTR COB con lo stesso COB-ID del TPDO specifico). Gli RPDO non vengono elaborati immediatamente dopo la ricezione dell'RPDO stesso, essi vengono elaborati internamente in concomitanza con l'evento SYNC, ovvero gli oggetti vengono scritti nello stesso istante in cui è stato ricevuto il SYNC. I dati contenuti nei TPDO vengono campionati sull'evento SYNC, non al momento della trasmissione, ovvero gli oggetti vengono letti nello stesso istante in cui è stato ricevuto il SYNC. I TPDO sono inviati immediatamente dopo l'evento SYNC, mentre gli RPDO normalmente sono inviati dal master dopo tutti i TPDO e appena prima del successivo evento SYNC.

La trasmissione dei TPDO **asincroni** può essere causata da eventi (ovvero quando il valore degli oggetti mappati cambia) o dalla ricezione di un RTR COB da parte del master (RTR-Only). Non è garantito che l'istante in cui gli oggetti cambiano e quello in cui i TPDO sono trasmessi sia lo stesso, come non è garantito che i dati ricevuti negli RPDO asincroni sono scritti internamente nello stesso istante.

I TPDO possono anche aver abilitato l'attributo RTR allowed, questo significa che, trascurando il tipo di trasmissione, il master ha la possibilità di forzare la trasmissione mediante RTR COB.

Esempi:

RPDO #1 con controlword (16 bit) and target position (32 bit):

COB-ID	B0	B1	B2	B3	B4	B5
200h+node-ID	6040h.0h		607Ah.0h			

TPDO #2 con statusword (16 bit) and mode of operation display (8 bit):

COB-ID	B0	B1	B2
280h+node-ID	6041h.0h		6061h.0h

Nei drive AxM è possibile cambiare il COB-ID (indipendentemente dal node-ID), la mappatura dei dati (per tutti i PDO) e specificare un **inhibit time** (valido solo per TPDO asincroni), che definisce il tempo minimo che deve passare fra due trasmissioni consecutive del TPDO asincrono.

Per la configurazione dei PDO ci sono degli oggetti specifici nel Object dictionary: 1400h e 1600h per gli RPDO, 1800h e 1A00h per i TPDO.

5.3 SYNC

Il messaggio di SYNC non porta alcun dato ed non richiede alcuna conferma.

Sync COB (broadcast):

COB-ID	
080h	

Questo oggetto triggera il valore dei parametri mappati in tutti i PDO (Rx e Tx) di tipo sincrono. AxM usa il SYNC anche per sincronizzare i task interni con il ciclo definito dal master di rete (solo se il periodo di SYNC è multiplo di 250µs, vedi paragrafo <u>4.6.2</u>.

5.4 EMCY

AxM supporta l'Emergency object e questo viene trasmesso solo una volta per errore.

Emergency COB (broadcast):

	COB-ID	B0	B1	B2	B3	B4	B5	B6	B7
	080h+node-ID	Codice	di errore	Registro d'errore		Registro e	errori AxM		riservato
C	odice d'errore:	0000l codic	h – drive ok e d'errore s	; 1000h – a tandard Ci <i>i</i>	Illarme gene A (oggetto 6	erico 603Fh.0h)			
re	egistro errore:	0h – o regist	drive ok; 1h ro degli err	1h – allarme generico rrori standard CiA (oggetto 1001h.0h)					
registro errori AxM: mascl (ogge		hera allarm atto 1002h.c	ni attivi sysD oh)	sysData_EmergencyCode, mappato negli errori specifici				specifici AxN	

AxM gestisce nel campo "error code" tutti i codici relativi ai possibili allarmi presenti sul drive (vedi anche oggetto 603Fh.oh, par. <u>6.2.1</u>) mentre nel campo "error register" il solo allarme generico; inoltre nel campo "AxM error register" viene riportata la maschera degli allarmi attivi *sysData_EmergencyCode.*

50

Bit registro d'errore		
Bit	Significato	
xxx0h	Drive ok	
xxx1h	errore generico	

Codici d'errore				
Error code (hex)	Significato			
0000	Drive ok			
1000	Errore generico			
2000	Allarme corrente			
3000	Allarme tensione			
4000	Allarme temperatura			
5000	Allarme hardware			
6000	Allarme software			
7000	Allarme moduli addizionali			

Tabelle 1.4: Registro errore e Codici di errore

Per l'elenco completo dei codici di errore vedere Capitolo <u>11.1</u> Appendice 1.

5.5 NMT

Gli oggetti NMT sono divisi in due categorie.

5.5.1 Servizi di controllo del modulo

Mediante questo servizio, il master NMT può controllare lo stato degli slave NMT. L'attributo di stato può assumere uno dei valori {STOPPED, PRE-OPERATIONAL, OPERATIONAL, INIZIALIZZAZIONE}. Il servizio può essere eseguito su un determinato nodo o su tutti i nodi simultaneamente (broadcast).

NMT COB			CS:	01h: start	nodo				
COB-ID	B0	B1	80h:	enter pre-ope	erational nod	0			
000h	CS	node-ID		81h: reset	t nodo t communica:	tion node	0		
			Node-ID:	indirizzo	(Node-ID)	nodo	0	00h	per

trasmissione broadcast a tutti i nodi.

Figura 5.1: Diagramma di stato del drive

Immediatamente dopo l'accensione il nodo entra in stato PRE-OPERATIONAL; in questo stato il master può eseguire le seguenti operazioni prima di abilitare il passaggio allo stato OPERATIONAL:

- configurazione dei parametri (tramite SDO)
- inizio della trasmissione del SYNC e attesa della sincronizzazione dei dispositivi
- inizio gestione Node Guarding

NOTA: tutte queste operazioni sono opzionali poiché tutti i parametri sono salvati in maniera non volatile dal drive e la gestione di SYNC e Node Guarding dipende dal master della rete.

Ogni cambiamento di stato è originato dalla ricezione di un messaggio NMT o da un "reset" hardware.

1	All'accensione il nodo entra autonomamente nello stato di inizializzazione
2	Inizializzazione terminata – entra autonomamente nello stato Pre-operational
3,6	Avvia il nodo remoto (Start)
4,7	Entra nello stato Pre-operational
5,8	Entra nello stato di Stopped
9,10,11	Reset del nodo remoto / Reset communication del nodo remoto

Tabella 5.5: transizioni di stato NMT

	INITIALISING	PRE-OPERATIONAL	OPERATIONAL	STOPPED
PDO			Х	
SDO		Х	Х	
SYNC		Х	Х	
EMCY		Х	Х	
Network Management		x	x	x
Objects				

Table 5.6: stati NMT e communication objects definiti

5.5.2 Protocolli controllo errore

Attraverso il servizio di Error Control vengono rilevati i fault della rete. Fondamentalmente ci sono due possibilità di applicazione di utilizzo, Guarding e Heartbeat, ma il solo Node Guarding è gestito dall'AxM. Tale controllo viene eseguito dal master tramite una richiesta periodica (Node Guarding protocol) di informazioni agli slaves. Se uno slave non risponde o se non riceve richiesta di guarding per il tempo definito dal protocollo una segnalazione d'allarme viene attivata. (vedi paragrafo <u>4.6.1</u> per i parametri correlati).

Protocollo Node Guarding: Il Master NMT interroga (con un RTR COB con lo stesso COB-ID dell'Error control COB) ogni slave NMT a intervalli di tempo regolari. Questo intervallo di tempo è chiamato guard time e può essere diverso per ciascuno slave NMT. La risposta dello slave NMT contiene lo stato NMT. Il life time del nodo è dato dal guard time (oggetto 100Ch.0h) moltiplicato per il life time factor (oggetto 100Dh.0h). Il life time del nodo può essere diverso per ogni slave NMT. Se lo slave NMT non è stato interrogato durante il suo life time, viene emesso un EMCY con codice di errore 8130h e quindi viene attivata la reazione indicata nell'Abort Connection (oggetto 6007h.0h). L'errore viene cancellato sia riavviando l'interrogazione sia con un comando reset node / reset communication.

Error Control COB

COB-ID	B0
700h+node-ID	7 60 r s

t:

S:

usato solo nel caso di l	Node Guarding Protocol, commuta tra 0 e	
1 ogni volta che il messaggio viene spedito (0 alla prima		
trasmissione dopo l'accensione dopo o il reset);		
altrimenti rimane a 0		
00h: Bootup	04h: Stopped	
05h: Operational	7Fh: Pre-Operational	

6 STANDARD DSP 402

La piattaforma configurabile AxM aderisce allo standard DSP-402 per quanto riguarda la comunicazione CANopen. Lo scopo di questo profilo è quello di fornire agli azionamenti un'interfaccia unica e comune sul CAN bus. I vantaggi di aderire ad uno standard di comunicazione si evidenziano nel campo dell'integrazione di sistema e nella standardizzazione del comportamento dell'azionamento.

Un profilo definisce un dispositivo 'standard'. Questo dispositivo standard rappresenta solamente delle funzionalità di base, che ogni dispositivo appartenente a questa classe di apparati deve accettare. Queste funzionalità obbligatorie sono necessarie per assicurare che almeno il funzionamento semplice, non specifico del costruttore, sia possibile.

Vengono di seguito presentati gli oggetti del profilo DSP-402 implementati nell'azionamento AxM. Per i codici di Emergency riferirsi al capitolo <u>11.1</u> Appendice1.

6.1 Architettura del drive

L'archittettura di base è composta di due moduli:

- ▶ **Device Control** \rightarrow la macchina a stati esegue lo start/stop del drive e alcuni altri comandi speciali.
- > Mode of Operation→ definisce il comportamento del drive. Sono disponibili i seguenti modi:
 - 1. **Profile position mode** funzionamento in modalità posizionatore; è possibile impostare e limitare posizione, velocità ed accelerazioni.
 - 2. *Profile velocity mode* funzionamento in controllo di velocità.
 - 3. *Interpolated position mode* funzionamento come interpolatore singolo asse.
 - 4. *Torque mode* funzionamento in controllo di corrente / coppia; non corrisponde esattamente con la modalità *Profile torque mode*.

AxM supporta il passaggio tra diverse funzionalità solo durante il passaggio dallo stato di "switched on".

6.2 Device Control

La macchina di stato controlla tutte le funzioni del drive; il cambiamento di stato può essere controllato tramite la "controlword" (oggetto 6040h.0h), viene influenzato da segnali interni quali gli allarmi ed è mostrato dalla "statusword" (oggetto 6041h.0h).

Stato	Statusword	Descrizione
Not Ready to Switch On	xxxx xxxx x0xx 0000	Il drive stà eseguendo l'inizializzazione, non accetta comandi e non eroga potenza.
Switch On Disabled	xxxx xxxx x1xx 0000	Inizializzazione completata; vengono accettati i comandi ma la potenza è ancora disabilitata.
Ready To Switch On	xxxx xxxx x01x 0001	Il drive è pronto per erogare potenza.
Switched On	xxxx xxxx x01x 0011	La potenza è disponibile in uscita al drive ma non c'è coppia sull'albero motore.
Operation Enable	xxxx xxxx x01x 0111	Tutte le funzionalità sono abilitate; la modalità di funzionamento selezionata viene eseguita e la potenza può essere applicata all'albero.
Quick Stop Active	xxxx xxxx x00x 0111	Funzionalità e potenza abilitate; viene eseguita la procedura selezionata per "quick stop" e il motore viene fermato; il comportamento dipende dall'oggetto 605Ah.0h
Fault Reaction Active	xxxx xxxx x0xx 1111	Funzionalità e potenza disabilitate; una volta che il drive è in allarme e' necessario eseguire un reset per tornare nella condizione di piena funzionalità
Fault	xxxx xxxx x0xx 1000	Un allarme è attivo sul drive la potenza viene quindi disabilitata.

Tabella6.1: Possibili stati del drive

AXM Configurable Motion Control Platform

Figura 6.1: Macchina a stati del Device Control

Transizione	Evento	Azione
0	Reset	Inizializzazione drive
1	Fine dell'inizializzazione	Attivazione della comunicazione
2	Shutdown	
3	Switch On	Abilitazione stadio di potenza
4	Enable Operation	Abilitazione funzionamento e disponibilità all'erogazione di coppia
5	Disable Operation	Funzionamento disabilitato; il drive esegue una frenata con i valori di rampa correntemente impostati
6	Shutdown	Potenza in uscita disabilitata
7	Quick Stop o Disable Voltage	
8	Shutdown	Funzionalità e potenza disabilitate; albero motore libero
9	Disable Voltage	Funzionalità e potenza disabilitate; albero motore libero
10	Disable Voltage or Quick Stop	Funzionalità e potenza disabilitate; albero motore libero
11	Quick Stop	Viene eseguita la funzione di "quick stop" (oggetto 605A.0h)
12	Quick Stop eseguito o Disable Voltage	Funzionalità e potenza disabilitate; albero motore libero
13	Drive <i>Fault</i>	Funzionalità e potenza disabilitate; albero motore libero
14	Reazione al <i>fault</i> completata	Funzionalità e potenza disabilitate; albero motore libero.

AXIV Configurable Motion Control Platform

15	Fault Reset	Reset della condizione di allarme. <i>E' necessario eseguire il reset del drive per tornare allo stato di "Switch On Disabled"</i> , inoltre il bit di Fault Reset nella command word deve essere cancellato dal master di rete
16	Enable Operation	Funzionalità drive abilitate; l'oggetto 605Ah.0h definisce se questa transizione è possibile

Tabella 6.2: Transizioni di stato

Il tipo di funzionamento del drive dipende dal "mode of operation" selezionato (oggetto 6060h.0h) e può essere verificato leggendo il "mode of operation display" (oggetto 6061h.0h). Questa selezione modifica anche il significato di alcuni bit all'interno di "Controlword" e "Statusword". La funzionalità scelta viene eseguita solo quando il drive si trova nello stato di "**Operation enabled**".

6.2.1 Oggetti DSP 402

	Oggetto	Тіро	Attributi
6040h.0h	→ Controlword	Unsigned16	RW
6041h.0h	→ Statusword	Unsigned16	RO
605Ah.0h	\rightarrow Quick stop option code	Integer16	RW
6060h.0h	\rightarrow Mode of operation	Integer8	WO
6061h.0h	→ Mode of operation display	Integer8	RO
6085h.0h	\rightarrow Quick stop deceleration	Unsigned32	RW
603Fh.0h	→ Error code	Unsigned16	RO

Tabella 6.3: Elenco oggetti relativi al Device Control

6040h.0h: controlword

E' la parola di comando i cui bit assumono il seguente significato:

15	11	10	9	8	7	6	5	4	3	2	1	0
Manufactur specific	er	Rese	erved	Halt	Fault reset	Oj mod	peration le spe	on ecific	Enable operation	Quick stop	Enable voltage	Switch on
0		C)	0	М		0		М	М	М	М

Tabella 6.4: Struttura della controlword

 $O \rightarrow Opzionale$

 $M \rightarrow Obbligatorio (Mandatory)$

NOTA: il bit 7 "Fault reset" esegue in realtà un reset hardware del drive.

Comando	Controlword	Transizioni eseguite
Shutdown	xxxx xxxx xxxx x110	2,6,8
Switch On	xxxx xxxx xxxx x111	3
Disable Voltage	xxxx xxxx xxxx xx0x	7,9,10,12
Quick Stop	xxxx xxxx xxxx x01x	7,10,11
Disable Operation	xxxx xxxx xxxx 0111	5
Enable Operation	xxxx xxxx xxxx 1111	4,16
Fault Reset	xxxx xxxx 1xxx xxxx	15

Tabella 6.5: Possibili comandi per la controlword

I bits dal 4 al 6 assumono diverso significato in dipendenza del profilo selezionato.

Modalità	6	5	4
Profile position mode	abs / rel		New set-point
Profile velocity mode	Riservato	Riservato	Riservato
Torque mode	Riservato	Riservato	Riservato

Tabella 6.6: Significato bits in relazione al profilo

I bit riservati sono dedicati a sviluppi futuri; possibilmente meglio mantenerli a 0.

6041h.0h: statusword

E' la parola di stato dell'azionamento i cui bit assumono il seguente significato:

Bit	Descrizione	Тіро
0	Ready to switch on	М
1	Switced on	М
2	Operation enabled	М
3	Fault	М
4	Voltage enabled	М
5	Quick stop	М
6	Switc on disabled	М
7	Warning	0
8	Manufacturer specific	0
9 Remote		М
10 Targhet reached		М
11	Internal limit active	М
12-13	12-13 Operation mode specific	
14-15	Manufacturer specific	0

Tabella 6.7: Struttura della statusword

I bit 12 e 13 specifici della modalità operativa selezionata non sono gestiti.

6060h.0h: mode_of_operation

Questo parametro imposta la modalità operativa. I valori possibili sono:

Valore	Descrizione
1	Profile position mode
3	Profile velocity mode
128	Torque mode

Tabella 6.8: Modalità operative possibili

La lettura di questo parametro restituisce solo il valore del parametro. La modalità operativa attualmente in funzione può essere letta nell'oggetto **Modalità operativa attuale** (oggetto 6061h.0h).

6061h.0h: mode_of_operation_displayed

Visualizza il modo operativo corrente; Il significato del valore letto è lo stesso dei valori della "Modalità operativa" (oggetto 6060h.0h).

605Ah.0h: quick_stop_option_code

Determina la modalità di arresto in caso di comando di Quick Stop. Sono disponibili le seguenti modalità:

Option code	Description				
0	Disabilita drive				
5	Arresto con decelerazione correntemente impostata (variabili sysRg250_CwDec e sysRg250_CcwDec vedi Capitolo 11.2 appendice 2, sezione "Generatore rampe").				
6	Arresto con decelerazione impostata nell'oggetto "quick_stop_deceleration" 6085h.0h.				

Tabella 6.9: Modalità di arresto

Nei casi 5 e 6 l'azionamento rimarra in stato di "stop" finchè rimane alto il bit 2 della controlword. Il valore impostato di default è 5.

6085h.0h: Quick stop deceleration

Rappresenta la decelerazione di arresto in caso di comando di "Quick Stop" e **quick_stop_option_code** impostato a 6.

603Fh.0h: error code

Visualizza l'ultimo allarme rilevato dal drive, secondo la specifica del "codice d'errore" definita per l'oggetto EMCY. Riferirsi al Capitolo <u>11.1</u> Appendice 1 per i codici di allarme e loro descrizione.

6.3 **Profile Velocity Mode**

La "target velocity" (oggetto 60FFh.0h) viene posta in ingresso al generatore di profili; la risultante "velocity demand" (oggetto 606Bh.0h) viene utilizzata come riferimento per l'anello di velocità interno.

Il generatore di profili supporta solo rampe lineari (profili trapezoidali) con valori separati di accelerazione (oggetto 6083h.0h) e decelerazione (oggetto 6084h.0h).

Il bit di "Target Reached" nella statusword assume un particolare singnificato in questo modalità:

State	Statusword	Description
Target Reached	xxxx x1xx xxxx xxxx	La "target velocity" è stata raggiunta o, nel caso di "halt" attivo, la velocità del motore è zero

Tabella 6.10: Bit di "operation mode specific" gestiti nella statusword

Il bit di "Halt" nella controlword non è gestito dall'AxM.

6.3.1 Oggetti del Profile Velocity mode

Indice	Nome	Тіро	Attr
6069h	velocity_sensor_actual_value	Integer32	RO
606Ah	sensor_selection_code	Integer16	RW

606Bh	velocity_demand_value	Integer32	RO
606Ch	velocity_actual_value	Integer32	RO
60FFh	target velocity	Integer32	RW
	oggetti comuni anche a	alla modalità Profile Position n	node
6064h	position_actual_value	Integer32	RO
607Fh	max_profile_velocity	Unsigned32	RW
6083h	profile_acceleration	Unsigned32	RW
6084h	profile_deceleration	Unsigned32	RW
6086h	motion_profile_type	Integer16	RW

Tabella 6.11: Oggetti del Profile Velocity oggetti condivisi tra P. Velocity e P. Position

6069h.0h: velocity_sensor_actual_value

Rappresenta la velocità attuale di rotazione del motore letta dall'encoder principale. (variabile Encoders SYS_ENC1_VI_PO, menù Encoders & Monitor & Principale <u>4.2.3</u>).

606Ah.0h: sensor_selection_code

Seleziona la sorgente della velocità reale. Attualmente sugli azionamenti AxM l'unica selezione disponibile è 0 in quanto è gestita unicamente la velocità proveniente dall'encoder di posizione.

606Bh.0h: velocity_demand_value

Rappresenta la velocità in uscita dal blocco "Generatore rampe" (variabile sysRg250_LinOut, vedere Capitolo <u>11.2</u> Appendice2 nella sezione "Generatore rampe").

606Ch.0h: velocity_actual_value

La variabile assume lo stesso significato dell'oggetto 6069h.

60FFh.0h: target velocity

Rappresenta il riferimento di velocità in ingresso al blocco "Generatore rampe" (variabile *sysRg250_SpdRef* Capitolo <u>11.2</u> Appendice2, sezione "Generatore rampe").

6064h.0h: position_actual_value

Rappresenta la posizione attuale dell'encoder (variabile *sysSpl250_PosGiri* Capitolo <u>11.2</u> Appendice2 sezione "Anello velocità/spazio").

607Fh: max_profile_velocity

Rappresenta i limiti di velocità (variabili *sysRg250_PosspLim* e *sysRg250_NegspLim* Capitolo <u>11.2</u> Appendice2, sezione "Generatore rampe"). Impostare il sub-indice 0 per accedere al limite di velocità orario, al sub–indice 1 per il limite antiorario.

6083h.0h: profile_acceleration

Rappresenta i valori di accelerazione (variabili *sysRg250_CwAcc* e *sysRg250_CcwAcc* Capitolo <u>11.2</u> Appendice2, sezione "Generatore rampe"). Impostare il sub-indice 0 per accedere al valore di accelerazione oraria, al sub–indice 1 per quello di accelerazione antioraria.

6084h.0h: profile_deceleration

Rappresenta i valori di decelerazione (variabili *sysRg250_CwDec* e *sysRg250_CcwDec* Capitolo <u>11.2</u>, sezione "Generatore rampe"). Impostare il sub-indice 0 per accedere al valore di decelerazione oraria, al sub-indice 1 per quello di decelerazione antioraria.

6086h.0h: motion_profile_type

Seleziona il profile con cui viene eseguito il movimento. L'azionamento AxM può eseguire solo profili a rampe lineari (profilo trapezoidale). Il valore della variabile è imposato di default a 0.

6.4 **Profile Position Mode**

La "target position" (oggetto 607Ah.0h) è applicata al generatore di profili e da qui all'anello di posizione.

Il generatore di profili supporta solo rampe lineari (profili trapezoidali) con valori separati di accelerazione (oggetto 6083h.0h) e decelerazione (oggetto 6084h.0h) e velocità (oggetto 6081h.0h).

Alcuni bit nella controlword e nella statusword assumono particolare singnificato in questo modalità:

Command	Controlword	Description
New Set Point	xxxx xxxx xxx1 xxxx	Assume la nuova "target position"
Abs / rel	xxxx xxxx x1xx xxxx	0 per posizione assoluta, 1 per posizione incrementale
Halt	xxxx xxx1 xxxx xxxx	Esegue una fermata dell'asse con valore di decelerazione corrente

Tabella 6.12: Bit di "operation mode specific" gestiti nella controlword

State	Statusword	Description	
Target		La "target position" è stata raggiunta (vedi oggetti 6067h.0h e	
Reached	XXXX X I XX XXXX XXXX	6068h.0h); non gestito nel caso di "halt" attivo.	
Set point	<u>xxx1 xxxx xxxx xxxx</u>	Il concretere di prefili ha escunte lel puevo "tercet position"	
acknowledge	****	il generatore di promi na assunto lai nuova "target position	
Following Error	xx1x xxxx xxxx xxxx	Errore di inseguimento	

Tabella 6.13: Bit di "operation mode specific" gestiti nella statusword

6.4.1 Oggetti del Profile Position mode

Indice	Nome	Тіро	Attr
6065h	Following error window	Unsigned32	RW
6067h	Position window	Unsigned32	RW
6068h	Position window time	Unsigned16	RW
607Ah	target_position	Integer32	RW
6081h	profile_velocity	Unsigned32	RW

Tabella 6.14: Oggetti del Profile Position

Per gli oggetti comuni anche alla modalità Profile Velocity Mode riferirsi alla seconda sezione della tabella 6.11 al paragrafo <u>6.3.1</u>.

6065h.0h: Following error window

La finestra di errore di inseguimento definisce la tolleranza massima sull'errore di inseguimento; se il modulo del valore attuale è più grande di questo parametro viene segnalato il following error. Impostare 2^{32} –1 per disabilitare questo controllo.

6067h.0h: Position window

Definisce una finestra simmetrica di posizioni valide intorno alla "target position". Se il valore di posizione encoder è all'interno della "Position window" la "target_position" si ritiene raggiunta.

(target position – position window; target position + position window)

65536 counts corrispondono a 360 gradi meccanici. Impostare 2^{32} –1 per disabilitare questo controllo.

6068h.0h: Position window time

Quando la posizione attuale stà all'interno della "Position window" per un tempo corrispondente a quanto impostato in "Position window time", il bit 10 della "statusword" viene settato a 1. Espresso in ms.

607Ah.0h: target_position

Rappresenta la quota da raggiungere durante il posizionamento (variabile *sysPg_QTarget* Capitolo <u>11.2</u> Appendice 2 nella sezione "Generatore profili").

6081h.0h: profile_velocity

Rappresenta la velocità da raggiungere durante un posizionamento. Tale oggetto è rimappato su "max_profile_velocity" (oggetto 607Fh.0h) al sub-indice 0.

6.5 Torque Mode

Il profilo di coppia supportato non è il profilo standard ma un profilo proprietario (modalità 128) nel quale la "target torque" (oggetto 6071h.0h) viene applicata in ingresso all'anello di corrente e genera immediatamente la coppia desiderata sull'albero motore.

Nessun ulteriore bit di controlword o statusword è gestito in questa modalità.

Indice	Nome	Тіро	Attr
6071h	target_torque	Integer16	RW
6073h	max_current	Unsigned16	RW

6071h.0h: target_torque

E' il riferimento di corrente richiesto al motore. (variabile sysSpl250_CiclsqRef Capitolo <u>11.2</u> Appendice 2 nella sezione "Anello velocità/spazio").

Viene tradotto nella coppia erogata sull'albero motore tramite la "costante di coppia" (Kt) del motore:

Coppia = Currente x Kt

6073h.0h: max_current

E' il limite massimo del riferimento di corrente (variabile sysSpl250_IMax Capitolo <u>11.2</u> Appendice 2 nella sezione "Anello velocità/spazio").

7 APPLICAZIONI STANDARD PHASE

Le applicazioni fornite da Phase Motion Control per la piattaforma configurabile AxM per il controllo del movimento di motori brushless sono progettate per applicazioni di azionamento classico. Tali software trasformano l'AxM in un versatile azionamento digitale, funzionante in anello di corrente, velocita' o posizione e garantiscono una elevata libertà nell'utilizzo degli ingressi ed uscite analogico-digitali, renderndo possibile l'implementazione di prestazioni addizionali non previste nel funzionamento "default" dell'azionamento. Le applicazioni attualmente disponibili sono descritte brevemente di seguito.

7.1 SpeedV

SPEED-V è un'applicazione base il cui compito principale è quello di controllare in velocità o in corrente il motore.

Controllare in velocità significa che la velocità del motore deve seguire il più fedelmente possibile un valore richiesto, comunemente noto come riferimento: l'inseguimento del riferimento deve essere realizzato non solo in condizioni statiche, ma anche in condizioni dinamiche, durante i repentini cambiamenti del riferimento stesso.

Controllare in corrente significa imporre un valore prefissato di corrente negli avvolgimenti del motore in modo che la stessa si trasformi in coppia che consenta al motore di accelerare o decelerare.

Le principali caratteristiche di Speed-V sono:

- Controllo interamente digitale di corrente diretta e in quadratura aggiornato con una frequenza di 4 kHz.
- Supporto encoder digitali e analogici.
- Parametrizzazione multipla: è possibile memorizzare nell'azionamento 8 parametrizzazioni differenti (task) per lo stesso sistema. Le diverse parametrizzazioni possono essere richiamate tramite l'impostazione dei tre ingressi digitali tramite input digitali anche durante il funzionamento.
 I parametri di task permettono di configurare:
 - o Selezione della modalita' di funzionamento Corrente/Velocità.
 - o Selezione del riferimento: da parametro o da ingresso analogico.
 - o Limite di corrente.
 - o Rampe lineari con velocità, accelerazioni e decelerazioni impostate o gradini di velocità.
 - o Guadagni dell'anello di velocità.
 - Scala del riferimento su interfaccia standard analogica differenziale +/- 10V.
- Simulazione encoder: questa funzione permette di emulare il funzionamento di un motore passopasso con risoluzione dell'encoder simulato programmabile da applicazione.
- Asse elettrico: questa una funzione di inseguimento consiste nel richiedere al drive di impostare il proprio riferimento di velocita' in funzione della velocita' di un asse master il cui encoder sia collegato alla porta "encoder secondario" e permette di eliminare i comuni accoppiamenti meccanici ad ingranaggi. Il rapporto di velocita' tra asse master ed asse slave è configurabile.

Ingresso	Sigla	Funzione	Descrizione
Digitale 0	DI0	Abilitazione drive	Il drive viene abilitato sul fronte di salita dell'ingresso.
Digitale 1	DI1	Zero riferimenti	Se l'ingresso è alto, i riferimenti vengono azzerati.
Digitale 2	DI2	Inversione direzione	Se l'ingresso è alto, vengono invertiti i riferimenti impostati.
Digitale 3	DI3	Fine corsa direzione oraria	Se attivato azzera ogni riferimento di velocità maggiore di 0
Digitale 4	DI4	Fine corsa direzione antioraria	Se attivato azzera ogni riferimento di velocità minore di 0

La seguente tabella riassume la configurazione degli ingressi:

Digitale 5	DI5	Selettore task, bit 0	Tramite la combinazione binaria di questi tre ingressi si seleziona il task desiderato: DI5.DI6.DI7 → task
Digitale 6	DI6	Selettore task, bit 1	$\begin{array}{cccc} 000 & \rightarrow & 0\\ 001 & \rightarrow & 1\\ 010 & \rightarrow & 2\\ 011 & \rightarrow & 3 \end{array}$
Digitale 7	DI7	Selettore task, bit 2	$100 \rightarrow 4$ $101 \rightarrow 5$ $110 \rightarrow 6$ $111 \rightarrow 7$
Analogico 0	AI0	Riferimento di velocità	Agendo sulla tensione all'ingresso AI0 dell'azionamento viene variato il riferimento di velocità quando l'azionamento è in controllo di velocità (selezionabile da parametro Tx_SP_LOOP).
Analogico 1	AI1	Riferimento di corrente / Limite di corrente (*)	Agendo sulla tensione all'ingresso Al1 dell'azionamento viene variato il riferimento di corrente quando l'azionamento è in controllo di corrente (selezionabile da parametro Tx_SP_LOOP).

Tabella 7.1: Utilizzo degli ingressi digitali a analogici nell'applicazione speedV

(*) In anello di velocità, attivando il parametro di task Tx_AN_CURLIM, l'ingresso analogico Al1 controlla dinamicamente il limite di corrente (10V \rightarrow fondo scala di corrente min(Tx_I_LIM / SYS_MOT_IDM)).

Ш	drive	attiva	le sequenti	uscite di	aitali in	relazione	al suo	stato	di funziona	mento.
	anvo	attiva	io ooguona	abonto ai	gitui iii	1010210110	u 040	olulo		anonto.

Uscita	Sigla	Funzione	Descrizione
Digitale 0	DO0	Abilitato	L'uscita è attiva quando il drive è abilitato e non sono presenti allarmi
Digitale 1	DO1	Velocità Ok	Il drive ha raggiunto la velocità impostata
Digitale 2	DO2	Velocità zero	Asse fermo
Digitale 3	DO3	Drive Ok	L'uscita è attiva quando sul drive non sono presenti allarmi
Digitale 4	D04	Limite di corrente	Il drive stà erogando la corrente limite
Digitale 5	D05	Finecorsa	Un finecorsa è attivo
Digitale 6	D06	In rampa	Il drive stà eseguendo una rampa di accelerazione o decelerazione
Digitale 7	D07	Indice	L'uscità è attivata per 8ms ad ogni passaggio dell'indice

Tabella 7.2: Uscite digitali usate dall'applicazione speedV

NOTA: Le uscite 4, 5, 6, 7 non esistono fisicamente ma sono esclusivamente simulate su interfaccia PC tramite Control Panel.

7.2 Positioner

POSITIONER è un'applicazione che permette di utilizzare il drive AxM come posizionatore programmabile multi-posizione. Le principali caratteristiche di Positioner sono:

62

- Possibilità di utilizzo di 32 posizioni selezionabili mediante ingressi digitali. Per ciascuna posizione è possibile configurare: Posizione espressa nell'unità scelta dall'utente.
- Selezione tra spostamento assoluto o incrementale.
- Velocità, accelerazione e decelerazione da utilizzare durante il movimento.

- Definizione delle unità di spazio e tempo secondo necessità dell'utente.
- Ciclo di zero effettuabile mediante sensore di zero e impulso encoder per la massima precisione e ripetibilità del ciclo medesimo.
- Comandi di Jog.
- Ingressi di fine corsa.
- Ingresso analogico con funzione di feed-rate.
- Uscite analogiche e variabili di monitor per velocità reale, errore di posizione, corrente assorbita ecc.

La seguente tabella riassume la configurazione degli ingressi:

Ingresso	Sigla	Funzione	Descrizione
Digitale 0	DIO	Abilitazione drive	Il drive viene abilitato sul fronte di salita dell'ingresso.
Digitale 1	DI1	Start	Abilita la ricerca zero e (una volta trovato lo zero) lancia il nuovo posizionamento.
Digitale 2	DI2	Sensore di zero	Collegare qui il sensore per la ricerca zero.
Digitale 3	DI3	Jog - / Fine corsa antiorario / Bit di posizione n°3	Il parametro <i>SEL_DI_3_4</i> (IPA 15000) nel menù "configurazione I/O" seleziona il funzionamento di guosti ingrospi:
Digitale 4	DI4	Jog + / Fine corsa orario / Bit di posizione n°4	Quote / Jog / Hw_limits
Digitale 5	DI5	Bit di posizione n°0	Definiscono, eventualmente con anche DI3 e DI4, la quota da raggiungere: DI3,DI4 DI5,DI6,DI7 → Quota selezionata
Digitale 6	DI6	Bit di posizione n°1	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
Digitale 7	DI7	Bit di posizione n°2	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
Analogico 0	AI0	FEEDRATE	Se parametro E <i>NFEEDRATE</i> (IPA 15006) = Analog input il valore di tensione applicato regola in percentuale i valori di velocità e accelerazione dei posizionamenti

Tabella 7.3: Utilizzo degli ingressi digitali a analogici nell'applicazione positioneer

Il drive attiva le seguenti uscite digitali in relazione al suo stato di funzionamento.

Uscita	Sigla	Funzione	Descrizione
Digitale 0	DO0	Abilitato	L'uscita è attiva quando il drive è abilitato e non sono presenti allarmi.
Digitale 1	DO1	Zero Ok	L'uscità è attiva quando il drive ha eseguito correttamente il ciclo di zero
Digitale 2	DO2	Pos Ok	Posizione raggiunta
Digitale 3	DO3	Pos error	Errore nel posizionamento

Tabella 7.4: Uscite digitali usate dall'applicazione positioneer

7.3 Basic

Basic è un'applicazione estremamente semplice per introdurre l'utente allo sviluppo di applicazioni dedicate. Le principali caratteristiche di Basic sono:

- Supporto encoder digitali e analogici.
- Abilitazione drive e selezione controllo mediante ingressi digitali.
- Riferimenti su interfaccia standard analogica differenziale +/- 10V.
- Parametrizzazione anche durante il funzionamento.
- Rampe lineari separate per le accelerazioni e decelerazioni, CW e CCW.
- Guadagni dell'anello di velocità digitale con reale velocità zero, PII2D controller.

La seguente tabella riassume la configurazione degli ingressi:

Ingresso	Sigla	Funzione	Descrizione
Digitale 0	DI0	Abilitazione drive	Il drive viene abilitato sul fronte di salita dell'ingresso.
Digitale 6	DI6	Selettore controllo	Se l'ingresso è alto, viene selezionato il controllo in velocità del motore, altrimenti il controllo è in corrente (coppia)
Analogico 0	AIO	Riferimento di velocità	Agendo sulla tensione all'ingresso Al0 dell'azionamento viene variato il riferimento di velocità quando l'azionamento è in controllo di velocità.
Analogico 1	Al1	Riferimento di corrente	Agendo sulla tensione all'ingresso Al1 dell'azionamento viene variato il riferimento di corrente quando l'azionamento è in controllo di corrente.

Tabella 7.5: Utilizzo degli ingressi digitali a analogici nell'applicazione basic

In questa applicazione non viene gestita alcuna uscita digitale.

7.4 Caricare ed eseguire un'applicazione base

Il setup di installazione del configuratore installa sul PC il set di applicazioni standard. E' possibile in modo molto semplice caricare nell'azionamento una specifica applicazione.

Per fare ciò, tornare alla pagina di apertura con il comando "Application Manager" dal menu "File" (oppure con il tasto 🔯 della barra degli strumenti). Fare doppio click sull'applicazione che si vuole caricare. Il configuratore creerà una copia dell'applicazione nel direttorio e con il nome specificati dall'utente. Questa operazione permette di lavorare sulla copia locale, preservando l'integrità dell'applicazione originale installata dal setup. Infatti la nuova applicazione creata contiene tutto il codice sorgente in linguaggio PLC ed eventualmente può essere modificata e personalizzata dall'utente mediante lil compilatote GPLC (vedere capitolo 8).

Tale directory conterrà:

HTML:directory contenente le pagine html di configurazione della applicazioneSOURCE:directory contenente il codice sorgente della applicazione (se necessario il codice
può essere modificato tramite il programma GPLC.
tabella Cockpit per la configurazione della applicazione.

La compilazione e il caricamento dell'applicazione nell'azionamento avvengono in modo automatico al momento della creazione della sua copia nel direttorio utente. Al termine del caricamento verrà aperta automaticamente la tabella relativa di configurazione dei parametri. Assegnare i valori desiderati ai parametri, scriverli nel drive (Write all) e salvarli in flash (Save). Salvare su disco la tabella con i valori impostati (Menu "*File*", comando "*Save*") (fare riferimento al paragrafo <u>3.3.2</u>).

In seguito quando si vorrà accedere ai parametri della applicazione, sarà sufficiente aprire la tabella corrispondente.

NOTA: Non è necessario creare ogni volta una nuova applicazione.

Per attivare qualsiasi applicazione accertarsi che il parametro di sistema SYS_SEL_MODE sia impostato a "Plc", caricando la tabella dei parametri di sistema (file sys_AxM_04.par) dalla directory di lavoro con il comando "*Open*" del menu "*File*" ed eventualmente modificando e salvando SYS_SEL_MODE.

Per caricare la stessa applicazione su un'altro drive o comunque per caricare una nuova applicazione è sufficiente aprire la rispettiva tabella parametri e selezionare "Rebuild application" dal manù "Application". Se la cartella Source, contente il progetto PLC dell'applicazione, si trova correttamante allo stesso percorso della tabella, Cockpit compilerà e caricherà automaticamente l'applicazione.

8 APPLICAZIONI UTENTE

Il presente capitolo introduce l'utente all'utilizzo dell'ambiente di sviluppo software GPLC per la creazione di applicazioni dedicate da eseguire sui drive della famiglia AxM.

8.1 L'ambiente di sviluppo GPLC

Di seguito verranno descritte le caratteristiche ed il funzionamento del compilatore GPLC mirate alla realizzazione di nuove applicazioni. Si rimanda al relativo manuale per una descrizione dettagliata ed esauriente.

GPLC è un programma applicativo destinato a personal computer dotati di sistemi operativi Microsoft Windows 95/98 o NT.

Gli elementi principali del programma sono:

- Editor di testo integrato per permettere l'editing di programmi in linguaggio PLC.
- Editor tabellare per la definizione della tabella dei parametri.
- Compilatore dei moduli sorgente in linguaggio PLC.
- Interfaccia di comunicazione per effettuare il download del codice PLC prodotto nel drive AxM.
- Finestra di monitor per la visualizzazione delle variabili utilizzate nel programma PLC.

Figura 8.1: Elementi principali del compilatore GPLC

La creazione di una nuova applicazione per la piattaforma AxM si attiva mediante l'opzione "*File – New Project*". MDPIc richiede il nome del nuovo progetto e la directory dove porre tutti i file del progetto stesso.

×	New project
	Project name NewPri
2	Project directory C:\WINNT\Profiles\Uesr\Desktop\Prj
	Cancel OK
	Cancel

Figura 8.2: Finestra per l'impostazione del nome e del percorso dell'applicazione

In seguito GPLC presenta la dialog-box "*Project settings*" per permettere all'operatore di impostare gli elementi necessari alla configurazione del progetto (vedere il par.successivo). La dialog-box può essere richiamata successivamente per effettuare la modifica di alcuni elementi del progetto o per aggiungere o eliminare i moduli sorgente dal progetto.

E possibile eventualmente aprire un progetto esistente per modificarlo secondo nuove esigenze, selezionando l'opzione "*File – Open project*". Questa opzione invoca la finestra standard di ricerca dei file.

I file progetto GPLC hanno il nome del progetto richiesto e l'estensione ".PPJ". Non editare o modificare con altri programmi i file ".PPJ".

In alternativa è possibile selezionare il progetto tra la lista degli ultimi file utilizzati presentati dal menu "File".

8.3 Componenti dell'applicazione

Un progetto GPLC contiene al suo interno tutti gli elementi (moduli sorgente, mappe di memoria e definizione di task) necessari alla generazione di un file di codice macchina (file .COD) che possa essere poi inviato ed eseguito dal drive AxM.

I componenti di un'applicazione sviluppata con GPLC sono i seguenti:

- uno o più moduli sorgente PLC IEC1131-3;
- un file con estensione .IMG contenente la mappa di memoria del drive al quale dovrà essere inviato il codice generato;
- le tabelle di definizione dei parametri utilizzati dall'applicazione;
- l'associazione tra i programmi codificati nei moduli sorgente ed i task esecutivi del drive AxM.

Tutte le informazioni necessarie all'elaborazione di un progetto GPLC vengono memorizzate in file con estensione .PPJ.

L'insieme di tutti gli elementi citati viene gestito a livello di progetto mediante l'apposita dialog-box invocata con l'opzione menu *"Project – Settings"*: tale dialog-box può essere richiamata in qualsiasi momento per effettuare la modifica di alcuni elementi del progetto.

8.3.1 Moduli sorgente

I moduli sorgente sono costituiti da file ASCII standard con estensione (non obbligatoria) .PLC.

Per redigere il testo dei moduli sorgente non è necessario utilizzare l'editor integrato di GPLC, qualsiasi editor ASCII può essere utilizzato allo scopo.

L'elenco dei moduli sorgente si imposta mediante l'opportuna dialog-box *"Project – Settings"*. Un progetto GPLC può essere composto da un numero qualsiasi di moduli sorgente.

Source files Image file Parameters Task slow plc init.plc fast.plc globals.plc help.bt microrvar.plc std_lib.plc	Add Remove
OK	Cancel

Figura 8.3: Moduli sorgente del progetto

L'editor integrato permette di modificare i moduli sorgente aperti con il comando *"File – Open"*, ed è dotato delle funzionalità più comuni degli editor in ambiente Windows, in particolare:

- Selezione testo.
- Operazioni di cut, copy e paste.
- Ricerca e sostituzione.
- Drag-drop di selezioni di testo.
- Trascinamento di selezioni di testo.

Tutte le opzioni citate sono disponibili nel sottomenu *"Edit"* che si attiva quando viene aperto almeno un file di testo. L'editor dispone inoltre delle seguenti funzionalità:

- Visualizzazione del numero di linea e colonna nella barra di stato.
- Posizionamento automatico in corrispondenza di errori di compilazione.

Il posizionamento sul blocco di testo contenente gli errori di compilazione, viene effettuato mediante un doppio click del pulsante sinistro del mouse sulla linea di errore visualizzata nella *"output window"* (vedere figura 8.1).

8.3.2 File IMG

I file IMG contengono la descrizione ed i valori della mappa della memoria del drive al quale è destinato il codice macchina generato dal compilatore. Un file IMG è associato in modo biunivoco ad una versione di firmware del drive. In tal senso, per ogni versione firmware esiste uno ed un solo file IMG e viceversa. La corrispondenza un file IMG ed una versione firmware è determinata da un codice a 32 bit presente in entrambi.

Il contenuto del file IMG è in formato ASCII ma il suo contenuto non deve essere assolutamente modificato con editor o simili.

Normalmente, nella directory dei progetti PLC sono già presenti i vari file IMG associate alle versioni esistenti di firmware del drive AxM.

Qualora non si disponesse di un file IMG, esso è comunque ottenibile mediante l'operazione di upload dal drive AXM (menu *"Communication - Upload IMG file"*).

Il codice macchina generato dal compilatore PLC contiene anche il codice identificativo del file IMG utilizzato per la compilazione. In questo modo la scheda target può determinare se il codice ricevuto è compatibile con il proprio firmware, in caso contrario non abilita l'esecuzione del PLC.

Ogni tentativo di inviare del codice ad un drive con una diversa immagine di memoria viene abortito dal compilatore. In tal caso è necessario eseguire l'upload del file IMG e ricompilare il progetto.

Il file IMG utilizzato nel progetto deve essere indicato nell'opportuna dialog-box "Project - Settings".

Project Setti	ngs	×
Source files	Image file Parameters Task	
Imaga filo	avmimo	
image nie	owning	
	Burning	
	BIOWSE	
	OK Comme	-

Figura 8.4: Impostazione IMG file

8.3.3 Tabelle parametri

I parametri sono a tutti gli effetti delle variabili utilizzate all'interno del programma PLC. A differenza delle variabili convenzionali, i parametri possono essere modificati e/o letti mediante il configuratore Cockpit. La funzione dei parametri è quella di permettere la configurazione e la supervisione dell'applicazione attraverso l'interfaccia di comunicazione con il drive AxM.

Nell'impostazione degli elementi del progetto, è necessario indicare il nome del file parametri (utilizzabile successivamente con il configuratore Cockpit) che GPLC deve generare durante la compilazione del progetto stesso e il file con le variabili associate a ciascun parametro.

Project Settings		×
Source files Image file	Parameters Task	
Parametero filo		
		Browse
Plc file		
micronpar.plc		Browse
	0	K Cancel

Figura 8.5: Impostazione parametri

8.3.4 Task dell'applicazione

Il firmware di sistema del drive AxM è composto da tasks che vengono eseguiti in modo ciclico con periodo prefissato. Anche le applicazioni utente sono strutturate in questo modo: è quindi necessario definire dei task esecutivi che verranno eseguiti in modo sincrono ai rispettivi task firmware. I task dell'applicazione hanno le seguenti caratteristiche:

Nome	Periodo
Init	8 ms
Bgnd	
Slow	8 ms
Medium	2 ms
Fast	250 μs

Figura 8.6: Temporizzazioni dei task del PLC

Come indicato nella tabella, ciascun task ha un periodo di esecuzione prefissato. Questo significa che, ad esempio, il task Slow inizia il suo ciclo ogni 8 millisecondi.

Ogni task deve portare a termine la propria esecuzione prima del termine del proprio tempo di ciclo. Qualora un task duri un tempo maggiore del periodo assegnatogli, il sistema disabilita automaticamente il funzionamento dei task esecutivi ed entra in stato di allarme.

Il task Init è attivato ad ogni partenza del sistema (all'accensione o dopo un reset) e viene eseguito fino a quando il programma non attiva uno od entrambi i task Slow e Fast (vedere manuale GPLC).

Se il task Init dell'applicazione non viene definito, i task Slow e Fast vengono attivati automaticamente dopo il reset del drive.

GPLC prevede la definizione dei task esecutivi dell'applicazione mediante la dialog-box "Project - Settings". Non è necessario che un'applicazione preveda tutti i task: è possibile realizzare progetti operanti con un solo task tra quelli disponibili.

Project Settings	×
Source files Image file Parameters Task	
Fast (per. 250 us) Fast	
Medium (per. 2ms)	
Slow (per. 8 ms) Slow	
Init Init	
Background	
OK Annulla ?	

Figura 8.7: Impostazione task dell'applicazione

Nell'esempio di figura 8.7 verranno creati tre moduli sorgente con nomi Fast.plc, Slow.plc, Init.plc il cui codice sarà eseguito con periodo definito dalla tabella precedente.

I task Background e Medium devono essere definiti anche se non sono utilizzati dall'applicazione; in questo caso si devono fare due files vuoti.

8.4 Interazione con il firmware

Un progetto GPLC contiene al suo interno tutti gli elementi (moduli sorgente, mappe di memoria e definizione di task) necessari alla generazione di un file di codice macchina (file .COD) che possa essere poi inviato ed eseguito dal drive AxM. Tuttavia l'applicazione deve poter interagire con il sistema firmware a bordo dell'azionamento in modo da poter leggere e/o impostare variabili non proprie dell'applicazione ma definite "di sistema" che modificano regolazione, controllo e stato del drive.

Nel presente paragrafo verranno descritte le tipologie delle variabili a disposizione dell'utente che permettono di interfacciare l'applicazione dedicata al sistema AxM.

8.4.1 Parametri applicativi

I parametri applicazione sono parametri definibili dall'utente, che possono essere trasferiti e modificati durante l'esecuzione dell'applicazione dedicata attraverso l'interfaccia di comunicazione del drive AxM (Cockpit).

Il firmware dell'azionamento AxM mette a disposizione 8 zone di memoria (data block) per la dichiarazione dei parametri applicativi che differiscono per tipo (16bit, 32bit, float, bit), e/o proprietà di scrittura/lettura (R/W). Ogni qualvolta l'utente definisce un nuovo parametro, implicitamente alloca una variabile nel firmware dell'azionamento (variabile associata) nella zona di memoria dedicata al tipo di parametro dichiarato. La tabella seguente riassume i data block dei parametri applicativi.

Data block	Tipo di parametro	Numero di parametri	IPA	Proprietà
10	16-bit parameters	512	15000 – 15511	R/W
11	32-bit parameters	512	17000 – 17511	R/W
12	bit parameters	128	17800 – 17927	R/W
13	float parameters	512	16000 – 16511	R/W
20	16-bit parameters	512	9000 - 9511	R
21	32-bit parameters	512	13000 – 13511	R
22	bit parameters	128	17600 – 17727	R
23	float parameters	512	11000 – 11511	R

Figura 8.8: Blocchi di suddivisione dei parametri applicativi

Ogni parametro è in realtà composto da più campi il cui valore è modificabile mediante l'editor delle tabelle parametri. I campi sono di seguito descritti brevemente:

Ipa:

È' l'indice del parametro, ovvero il numero utilizzato per identificare in modo univoco il parametro durante la comunicazione con il drive. Gli indici dei parametri sono automaticamente generati dall'editor delle tabelle parametri ogni volta che si effettua l'inserimento di un nuovo parametro, in relazione al tipo di dato assegnato al parametro. Gli intervalli validi per gli indici parametro sono riportati nella tabella precedente.

Menu:

Indica il gruppo "logico" al quale appartiene il parametro in oggetto. Tipicamente i parametri vengono suddivisi in insiemi funzionalmente omogenei. Il menù di appartenenza di ciascun parametro può essere selezionato tra i menu correntemente definiti nell'apposita tabella.

La suddivisione in menù è utilizzata per la presentazione dei parametri nel configuratore Cockpit.

70

Name:

Costituisce il nome simbolico ed univoco con il quale si identifica il parametro. Come detto precedentemente, per ciascun parametro GPLC genera automaticamente una variabile firmware associata a cui si può accedere nell'applicazione anteponendo la lettera 'p' al nome del parametro in scritture e lettura o 'v' per parametro in solo lettuta (es.: al parametro CURR corrisponde la variabile associata pCURR).

TypePar:

Indica il tipo di dato (intero, floating point, boolean ecc.) del parametro scambiato mediante l'interfaccia di comunicazione.

TypeTarg:

E' il tipo di dato della variabile associata al parametro. Il parametro e la variabile associata possono avere sia il tipo di dato che il valore diversi tra di loro.

La conversione del parametro nella variabile associata e viceversa viene effettuata dal database dei parametri.

Questa caratteristica permette di gestire i parametri con tipi di dato e unità di misura convenienti (unità ingegneristiche) ed avere in corrispondenza variabili associate opportunamente convertite in unità interne.

Value:

Indica il valore di default assegnato al parametro e trasferito nel file parametri utilizzato dal configuratore Cockpit.

Min e Max:

Definiscono, quando specificati, i limiti minimo e massimo che possono essere assegnati ad un parametro Per disabilitare il controllo di uno di questi limiti, assegnare il valore convenzionale ^{(*'} nel campo corrispondente.

Scale e Offs:

Definiscono, opzionalmente, i fattori moltiplicativo ed additivo che sono utilizzati per convertire numericamente il parametro nella variabile associata.

Unit:

E' la stringa descrittiva dell'unità di misura.

Description:

Contiene una descrizione sommaria del parametro.

Note:

Riporta le annotazioni e le descrizioni più estese associate al parametro.

Format:

Definisce il formato di visualizzazione del parametro. Devono essere utilizzate le regole di rappresentazione del formato definite nello standard ANSI C per la funzione *printf()*.

Tutti i parametri applicativi sono raggruppati in un database, diviso in due sezioni (*Parameters* per parametri applicativi di scrittura e lettura e *Variables* per quelli di sola lettura) e accessibili mediante la *"Project window"*. L'editor delle tabelle parametri permette di inserire o gestire i diversi tipi di record.

Per effettuare l'inserimento di un nuovo parametro applicativo aprire la corrispondente tabella parametri (*Parameters* o *Variables*) dalla *"Project window"* e utilizzare l'opzione del menù *"Parameters – Insert"* oppure il corrispondente bottone della toolbar *****: comparirà la dialog-box *"Parameters types"* di richiesta del tipo di parametro da inserire.

Figura 8.9: Selezione del tipo di parametro

71

Questa dialog-box ha lo scopo di generare automaticamente l'indice di parametro corretto in funzione del tipo prescelto.

Per effettuare la rimozione di un record dalle tabelle parametro, utilizzare l'opzione del menù *"Parameters – Delete"* oppure il corrispondente bottone della toolbar 🔀.

La modifica dei singoli campi della tabella si effettua mediante posizionamento e click del mouse sulla cella desiderata. In funzione del campo selezionato, la modifica del valore può avvenire per modifica diretta del testo o mediante selezione tra un insieme di valori predefiniti.

8.4.2 Variabili interne

Sono le variabili dichiarate all'interno dell'applicazione: non sono propriamente in relazione con il sistema firmware a bordo dell'azionamento, ma consentono di eseguire operazioni, calcoli, controlli all'interno dei moduli sorgente. Possono essere locali al singolo modulo o globali all'intera applicazione.

8.4.3 Variabili di sistema

Le variabili di sistema sono le variabili che il firmware del drive AxM utilizza per la regolazione ed il controllo. Il compilatore GPLC viene fornito da Phase Motion Control completo di file che contengono la dichiarazione di tutte le variabili di sistema del drive AxM a cui l'utente può accedere nella sua applicazione dedicata. Questi file hanno un nome del tipo **AxmVarsX.plc** dove *X* indica il numero di versione firmware drive corrispondente.

I file **AxmVarsX.plc** devono essere inclusi in ciascun progetto e devono essere prelevati dalla directory di libreria di GPLC installata nel PC. Qualora si utilizzi la funzione di creazione di nuovi progetti (vedere paragrafo <u>8.2</u>), questi file sono copiati automaticamente da GPLC nella directory selezionata per la nuova applicazione utente. I file con le variabili di sistema non devono essere in alcun modo modificati dall'utilizzatore, al fine di evitare malfunzionamenti del programma applicativo generato.

8.4.4 Immagini di processo

E' importante osservare che per la maggior parte delle variabili di sistema, il compilatore genera un'immagine di processo delle variabili medesime. Questo vuol dire che il task applicativo che utilizza la variabile di sistema con immagine, non opera direttamente sulla locazione di memoria firmware, ma su una copia. Solo al termine della sua esecuzione, la copia viene automaticamente trasferita nella variabile di sistema.

Nel file **AxmVarsX.plc** vengono anche fornite variabili di sistema prive di immagine: tali variabili sono indicate con la dicitura '250' postposta all'indicazione del blocco funzionale a cui appartengono (es. *sysRg250_SpdRef* è il riferimento di velocità privo di immagine appartenente al blocco di sistema "Generatore rampe"). L'utente operando su tale variabile dovrà tenere conto che la sua modifica sia "temporalmente coerente" con il task firmware in cui è implementato il Generatore di rampe.

In Capitolo <u>11.2</u> Appendice 2 è riportata una descrizione dettagliata delle variabili di sistema disponibili a livello di applicazione con indicazione sul loro utilizzo.

8.5 Esecuzione dell'applicazione

Nei seguenti paragrafi verranno esposte le operazioni per creare il codice macchina dell'applicazione ed eseguirlo sul drive AxM.

8.5.1 Compilazione

- La compilazione si attiva mediante l'opzione "*Project Compile project*" oppure mediante l'apposito bottone della toolbar . Durante il processo di compilazione, vengono visualizzate nella "*Output window*" le singole fasi dell'elaborazione unitamente all'elenco degli errori e warning emessi dal compilatore durante l'esecuzione.
- Se la compilazione non ha prodotto errori, il compilatore genera un file .COD contenente il codice macchina per il drive AxM.
- La "Output window" riporta quindi i dati relativi alle dimensioni del codice e dei dati del programma PLC e la dimensione del database parametri.
- Al termine della compilazione, il compilatore genera inoltre un file listato (.LST) dove vengono riportate tutte le informazioni relative al codice generato (istruzioni assembler, allocazione variabili, mappa memoria ecc.). Quest'ultimo file è generato a scopi diagnostici.
- Se vi sono errori di compilazione, la "*Output window*" ne riporta l'elenco specificando per ciascun errore la locazione, il codice ed una descrizione sommaria.
- Effettuando un doppio click con il mouse sulle righe della "*Output window*" che riportano gli errori, GPLC porta automaticamente il cursore sul blocco di testo che ha generato l'errore.
- In presenza di errori di compilazione, non viene generato alcun codice eseguibile e non è possibile effettuare un successivo download.
- Durante la compilazione, GPLC può produrre anche dei messaggi di warning. I messaggi di warning indicano la presenza di operazioni che possono potenzialmente generare problemi durante l'esecuzione del programma .I messaggi di warning non pregiudicano la generazione del codice eseguibile.

8.5.2 Connessione ed invio del codice al drive

Una volta terminata la fase di compilazione, è possibile inviare il codice generato al drive.

Attivare la connessione con il drive si effettua mediante l'opzione "Communication – Connect" o il corrispondente bottone della toolbar

La comunicazione con il drive viene effettuata mediante linea seriale RS232 multi-drop. Il protocollo standard è Modbus.

Assicurarsi di aver propriamente impostato il parametri dell'interfaccia di comunicazione.Per configurare correttamente la comunicazione, utilizzare l'opzione "*Communication – Settings*". Per effettuare una corretta comunicazione è necessario far sì che le impostazioni della relativa dialog-box siano corrispondenti a quelle del drive con il quale si intende comunicare (vedere paragrafo <u>3.3.1</u>).

Device Link Manage <mark>r</mark>	config 🗙	Modbus config	X
Current selected protocol : Modbus	:	Communication	
Protocols Activ		Port	COM1 💌
🕉 CanOpen		Baudrate	38400 💌
Modbus Active	•	Frame settings	N,8,1 💌
		- Protocol	
		Address	0
		Timeout	1000
Install Uninstall Prope	rties Activate	Enable modem of	connection
Description		Dial number	
Protocollo Modbus/Jbus			
		Enable remote c	ommunication
		Server name	
OK	Cancel		OK Cancel

Figura 8.10: Impostazione parametri di comunicazione

Lo stato di connessione attiva viene riportato nella barra di stato. Inoltre la voce del menu "*Communication - Connect*" ed il corrispondente bottone della toolbar risultano attivati.

Utilizzare "Communication - Download code" per effettuare il download del codice.

Lo stato di esecuzione del download viene riportato nella "Output window".

Il download del codice produce un errore se la versione firmware della scheda target non è compatibile con il file IMG del progetto.

In questo caso è necessario ettuare l'upload del file IMG dal drive mediante l'opzione "*Communication – Upload IMG file*". Questa operazione scrive i dati della mappa di memoria nel file IMG correntemente selezionato.

Eseguito lo scaricamento del codice, il drive viene automaticamente resettato e la nuova applicazione può essere eseguita.

8.5.3 Diagnostica dell'applicazione

E' possibile eseguire il debug dell'applicazione utente mediante la finestra "*Watch window*" nella quale possono essere elencati i nomi di una o più variabili usate nel programma al fine di verificarne i valori durante l'esecuzione del programma.

Quando la connessione è attiva, il valore corrente delle variabili elencate viene visualizzato e costantemente aggiornato mediante l'interfaccia di comunicazione.

Per effettuare il monitor dei dati effettuare le seguenti operazioni:

- Compilare il progetto corrente.
- Se non già connesso, utilizzare l'opzione "Communication Connect" del menu di GPLC per attivare l'interfaccia di comunicazione.
- Effettuare il download del codice.
- Spostarsi con il mouse sulla prima posizione libera nella colonna "Symbol" della "Watch window", eseguire un click con il pulsante sinistro del mouse per attivare la modalità di edit della casella di testo ed inserire il nome della variabile desiderata oppure selezionare il nome di una variabile dall'editor e trascinarlo usando il mouse sulla "Watch window".
- Qualora esistano più variabili con lo stesso nome, comparirà una dialog-box per poter scegliere la variabile desiderata.
- I nomi riportati nella "Watch window" non corrispondenti a variabili utilizzate, riportano nel corrispondente campo "Value" la stringa "object not found".
- I nomi di variabili utilizzate nel progetto riportano, nel campo "*Location*", il contesto nel quale sono utilizzate e, nel campo "*Value*", il valore assunto dalla variabile in quel momento.
- Qualora la comunicazione presenti errori, il campo "Value" riporta la stringa "..." indicando un valore non definito.

Va notato che le variabili valide per il progetto sono quelle dichiarate ed utilizzate dai programmi. Le variabili solamente dichiarate e non utilizzate non vengono generate dal compilatore e quindi non hanno un corrispondente valore.

9 DIAGNOSTICA

9.1 Descrizione generale

La modalità di funzionamento "diagnostica" permette di eseguire una serie di test di controllo e di impostare i parametri fondamentali dell'azionamento senza utilizzare interfacce software.

La gestione della diagnostica viene effettuata mediante i pulsanti di comando "più" e "meno" presenti sull'azionamento. Si accede alla diagnostica premendo il tasto "più" per almeno 2s. Attivata tale modalità, distinguiamo due fasi operative:

<u>Fase di selezione</u> : permette di selezionare il test diagnostico desiderato. Premere il tasto "più" per scorrere la lista delle diagnostiche disponibili in modo crescente, il tasto "meno" in modo decrescente. Tenendo premuto il tasto "meno" per almeno 2s si esce dalla diagnostica.

<u>Fase di esecuzione</u> : manda in esecuzione il test diagnostico selezionato nella fase precedente. Dalla fase di selezione tenere premuto il tasto "più" per almeno 2s. Viene eseguita la diagnostica selezionata. Per uscire e tornare alla selezione, tenere premuto il tasto "meno" per almeno 2s.

E' possibile uscire direttamente dalla diagnostica premendo contemporaneamente i due tasti di comando.

Figura 9.1: procedura di selezione diagnostica

9.2 Fase selezione diagnostica

Si accede alla diagnostica tenedo premuto per 2 sec il tasto "più" (20). Si accende il led 7 per segnalare l'attivazione della fase di selezione. Mediante i pulsanti "più" e "meno" è possibile impostare la diagnostica da eseguire la cui codifica binaria è rappresentata dai led 6÷0.

Ad esempio, la selezione della diagnostica Nr 2 (Diagnostica ingressi digitali) sarà così rappresentata:

Attualmente sono disponibili 11 diagnostiche.

Nr Tipo

- 1 Diagnostica encoder
- 2 Diagnostica ingressi digitali
- 3 Diagnostica uscite digitali
- 4 Diagnostica baud rate seriale RS-232
- 5 Diagnostica baud rate Can
- 6 Diagnostica uscita analogica 0
- 7 Diagnostica uscita analogica 1
- 8 Diagnostica ingresso analogico 0
- 9 Diagnostica ingresso analogico 1
- 10 Diagnostica tensione dc-bus
- 11 Diagnostica temperatura modulo potenza

E' possibile uscire dalla diagnostica tenendo premuto il tasto "meno" per 2 sec: vengono attivate le eventuali modifiche ai parametri, mediante salvataggio e reset dell'azionamento.

9.3 Fase esecuzione diagnostica

Dalla fase di selezione premere per 2 sec il tasto "più". La visualizzazione mediante led dipende dal tipo di diagnostica in esecuzione.

Per ritornare alla fase di selezione tenere premuto il tasto "meno" per 2 sec. La visualizzazione è quella descritta nel paragrafo precedente.

E' possibile uscire dalla diagnostica premendo contemporaneamente i due tast di comando. La visualizzazione ritornerà quella di normale funzionamento dell'azionamento. In questo caso **non verranno** salvati eventuali modifiche ai parametri.

9.4 Esempio di esecuzione diagnostica

Di seguito vengono illustrate le operazioni necessarie per eseguire il test diagnostico Nr 3 (Diagnostica uscite digitali).

Azione	Stato Led	Significato
Tasto "più" per 2 s		Entrata in diagnostica nella fase di selezione
Tasto "più" 3 volte	0 1 2 3 4 5 6	Selezione diagnostica Nr 3
Tasto "più" per 2 s	0 1 2 3 4 5 6	Esecuzione test uscite digitali. Uscite digitali 2 e 3 attive.
Tasto "meno" per 2 s	0 1 2 3 4 5 6	Termine esecuzione diagnostica uscite digitali" ed entrata nella fase di selezione.

Tasto "meno" per 2 sec Uscita dalla modalità di funzionamento "diagnostica".

9.5 Tipi di diagnostiche

Nr 1) Diagnostica encoder: Visualizza la posizione encoder sul giro meccanico.

In fase di selezione è rappresentata nel seguente modo:

In fase di esecuzione viene visualizzata la posizione encoder sul giro meccanico. Ogni led visualizza un intervallo di 8192 conteggi virtuali (1 giro = 65535 conteggi virtuali).

- Led0 Acceso per posizioni comprese tra 0 e 8191 cnt virtuali
 Led1 Acceso per posizioni comprese tra 8192 e 16383 cnt virtuali
 Led2 Acceso per posizioni comprese tra 16384 e 24575 cnt virtuali
 Led3 Acceso per posizioni comprese tra 24576 e 32766 cnt virtuali
 Led4 Acceso per posizioni comprese tra 32767 e 40959 cnt virtuali
 Led5 Acceso per posizioni comprese tra 40960 e 49151 cnt virtuali
 Led6 Acceso per posizioni comprese tra 49152 e 57343 cnt virtuali
- Led7 Acceso per posizioni comprese tra 57344 e 65535 cnt virtuali

Ad esempio per encoder in posizione 50126 avremo la seguente visualizzazione:

Nr 2) Diagnostica ingressi digitali: Visualizza lo stato degli 8 ingressi digitali dell'azionamento.

In fase di selezione è rappresentata nel seguente modo:

In fase di esecuzione ogni led visualizza lo stato alto (led acceso) o basso (led spento) del relativo ingresso digitale, secondo la seguente corrispondenza:

Led0	Ingresso digitale 0
Led1	Ingresso digitale 1
Led2	Ingresso digitale 2
Led3	Ingresso digitale 3
Led4	Ingresso digitale 4
Led5	Ingresso digitale 5
Led6	Ingresso digitale 6
Led7	Ingresso digitale 7

Ad esempio per ingressi digitali 2 e 5 attivi la visualizzazione sarà la seguente:

<u>Nr 3) Diagnostica uscite digitali</u>: Visualizza lo stato delle 4 uscite digitali dell'azionamento; permette di configurare le uscite digitali.

E' possibile accedere all'impostazione delle uscite digitali solo nel caso di funzionamento in modalità "default" (vedere paragrafo <u>2.1</u>).

In fase di selezione è rappresentata nel seguente modo:

In fase di esecuzione i led 0÷3 visualizzano lo stato alto (led acceso) o basso (led spento) della relativa uscita digitale, secondo la seguente corrispondenza:

Led0 Uscita digitale 0 Led1 Uscita digitale 1 Led2 Uscita digitale 2 Led3 Uscita digitale 3

E' possibile modificare lo stato delle uscite digitali, agendo con i tasti " più" e "meno" e selezionando una combinazione binaria delle uscite attive.

La modifica è interdetta se le uscite digitali sono simulate da Cockpit.

I led 4÷7 rimangono sempre spenti. Ad esempio per uscite digitali 2 e 3 attive la visualizzazione sarà la seguente:

Nr 4) Diagnostica baud rate seriale RS-232: Visualizza il baudrate impostato per la seriale Rs232: permette di reimpostare un nuovo valore.

In fase di selezione è rappresentata nel seguente modo:

In fase di esecuzione viene visualizzato il baudrate della seriale Rs232 mediante accensione del led corrispondente, secondo la seguente relazione:

Led0 > = 1200 Baud Led1 > = 2400 Baud Led2 > = 4800 Baud Led3 > = 9600 Baud Led4 > = 14400 Baud Led5 > = 19200 Baud Led6 > = 38400 Baud

Il led7 rimane sempre spento.

E' possibile modificare il baudrate, agendo con i tasti " più" e "meno" e selezionando uno dei precedenti valori possibili per la seriale Rs232. La nuova impostazione risulterà attiva dopo essere usciti dalla diagnostica ed aver eseguito un reset dell'azionamento.

Ad esempio, per un baudrate pari a 14400 Baud, la visualizzazione sarà la seguente:

<u>Nr 5) Diagnostica baud rate Can</u>: Visualizza il baudrate impostato per la comunicazione Can: permette di reimpostare un nuovo valore.

In fase di selezione è rappresentata nel seguente modo:

In fase di esecuzione viene visualizzato il baudrate della comunicazione Can mediante accensione del led corrispondente, secondo la seguente relazione:

Led0 > = 50 Baud Led1 > = 125 Baud Led2 > = 250 Baud Led3 > = 500 Baud Led4 > = 1000 Baud

I led 5÷7 rimangono sempre spenti.

E' possibile modificare il baudrate, agendo con i tasti " più" e "meno" e selezionando uno dei precedenti valori possibili per la comunicazione Can. La nuova impostazione risulterà attiva dopo essere usciti dalla diagnostica ed aver eseguito un reset dell'azionamento.

Ad esempio, per un baudrate pari a 1000 Baud, la visualizzazione sarà la seguente:

<u>Nr 6) Diagnostica uscita analogica 0</u>: Visualizza il livello di tensione dell'uscita analogica 0: permette di reimpostare un nuovo valore di uscita.

E' possibile accedere all'impostazione dell'uscita analogica 0 solo nel caso di funzionamento in modalità "default" (vedere paragrafo 2.1).

In fase di selezione è rappresentata nel seguente modo:

In fase di esecuzione i led visualizzano il livello di tensione dell'uscita analogica 0 (0÷10V), secondo la seguente corrispondenza:

Led0	acceso se tensione uscita analogica 0 >=	1,25V
Led1	acceso se tensione uscita analogica 0 >=	2,50V
Led2	acceso se tensione uscita analogica 0 >=	3,75V
Led3	acceso se tensione uscita analogica 0 >=	5,00V
Led4	acceso se tensione uscita analogica 0 >=	6,25V
Led5	acceso se tensione uscita analogica 0 >=	7,50V
Led6	acceso se tensione uscita analogica 0 >=	8,75V
Led7	acceso se tensione uscita analogica 0 =	10V

E' possibile modificare il livello di tensione dell'uscita analogica 0, agendo con i tasti " più" e "meno", in incrementi di 1,25V, impostando uno dei precedenti valori possibili. Gli incrementi e decrementi mediante i tasti sono "circolari" nel senso l'uscita passerà da 10V a 0V per un incremento e da 0V a 10V per un decremento.

La modifica è interdetta se le uscite analogiche sono simulate da Cockpit.

Ad esempio, per una tensione di uscita pari a 8,00V, la visualizzazione sarà la seguente:

<u>Nr 7) Diagnostica uscita analogica 1</u>: Visualizza il livello di tensione dell'uscita analogica 1: permette di reimpostare un nuovo valore di uscita.

E' possibile accedere all'impostazione dell'uscita analogica 1 solo nel caso di funzionamento in modalità "default" (vedere paragrafo <u>2.1</u>).

In fase di selezione è rappresentata nel seguente modo:

In fase di esecuzione i led visualizzano il livello di tensione dell'uscita analogica 1 (0÷10V), secondo la seguente corrispondenza:

Led0	acceso se tensione uscita analogica 1 >=	1,25V
Led1	acceso se tensione uscita analogica 1 >=	2,50V
Led2	acceso se tensione uscita analogica 1 >=	3,75V
Led3	acceso se tensione uscita analogica 1 >=	5,00V
Led4	acceso se tensione uscita analogica 1 >=	6,25V
Led5	acceso se tensione uscita analogica 1 >=	7,50V
Led6	acceso se tensione uscita analogica 1 >=	8,75V
Led7	acceso se tensione uscita analogica 1 =	10V

E' possibile modificare il livello di tensione dell'uscita analogica 1, agendo con i tasti " più" e "meno", in incrementi di 1,25V, impostando uno dei precedenti valori possibili. Gli incrementi e decrementi mediante i tasti sono "circolari" nel senso l'uscita passerà da 10V a 0V per un incremento e da 0V a 10V per un decremento.

La modifica è interdetta se le uscite analogiche sono simulate da Cockpit.

Nr 8) Diagnostica ingresso analogico 0: Visualizza il livello di tensione dell'ingresso analogico 0.

In fase di selezione è rappresentata nel seguente modo:

In fase di esecuzione i led visualizzano il livello di tensione dell'ingresso analogica 0 (-10V÷10V), secondo la seguente corrispondenza:

Led6 acceso se tensione ingresso analogico $0 \ge 2,30$ Led6 acceso se tensione ingresso analogico $0 \ge 5,00$ Led7 acceso se tensione ingresso analogico $0 \ge 7,50$	Led5 acceso se tensione ingresso analogico 0	Ledd Ledd Ledd Ledd Ledd Ledd Ledd Ledd	acceso se tensione ingresso analogico 0 >= acceso se tensione ingresso analogico 0 >=	-7,5V -5,0V -2,5V 0V 2,5V 5,0V
---	--	--	--	---

Ad esempio, per una tensione di uscita pari a 1,00V, la visualizzazione sarà la seguente:

<u>Nr 9) Diagnostica ingresso analogico 1</u>: Visualizza il livello di tensione dell'ingresso analogico 1.

In fase di selezione è rappresentata nel seguente modo:

In fase di esecuzione i led visualizzano il livello di tensione dell'ingresso analogica 1 (-10V÷10V), secondo la seguente corrispondenza:

Led0	acceso se tensione ingresso analogico 1 <	-7,5V
Led1	acceso se tensione ingresso analogico 1 >=	-7,5V
Led2	acceso se tensione ingresso analogico 1 >=	-5,0V
Led3	acceso se tensione ingresso analogico 1 >=	-2,5V
Led4	acceso se tensione ingresso analogico 1 >=	0V
Led5	acceso se tensione ingresso analogico 1 >=	2,5V
Led6	acceso se tensione ingresso analogico 1 >=	5,0V
Led7	acceso se tensione ingresso analogico 1 >=	7,5V

Nr 10) Diagnostica tensione DC bus: Visualizza il livello di tensione del DCbus dell'azionamento.

In fase di selezione è rappresentata nel seguente modo:

In fase di esecuzione i led visualizzano il livello di tensione del DCbus dell'azionamento, secondo la corrispondenza di seguito riportata. Il range di tensioni visualizzato è limitato tra 0V e 900V (OVER_VOLTAGE_LIMIT).

81

Led0	acceso se tensione DCbus >	91.8V
Led1	acceso se tensione DCbus >	183.6V
Led2	acceso se tensione DCbus >	275.4V
Led3	acceso se tensione DCbus >	367.2V
Led4	acceso se tensione DCbus >	459.0V
Led5	acceso se tensione DCbus >	550.8V
Led6	acceso se tensione DCbus >	642.6V
Led7	acceso se tensione DCbus >	734.4V

Ad esempio, per una tensione DCbus pari a 300V, la visualizzazione sarà la seguente:

Nr 11) Diagnostica temperatura modulo: Visualizza la temperatura del modulo di potenza.

In fase di selezione è rappresentata nel seguente modo:

In fase di esecuzione i led visualizzano la temperatura del modulo di potenza, secondo la corrispondenza di seguito riportata. Il range visualizzato è tra 0 e 90gradi (allarme di OVER TEMPERATURE).

- acceso se temperatura > 10,5 gradi Led0 Led1 acceso se temperatura > 21,0 gradi Led2 acceso se temperatura > 32,0 gradi Led3 acceso se temperatura > 42,5 gradi Led4 acceso se temperatura > 53,0 gradi 64,0 gradi
- Led5 acceso se temperatura >
- Led6 acceso se temperatura > 74,5 gradi
- Led7 acceso se temperatura > 85,0 gradi

Ad esempio, per una temperatura pari a 45 gradi, la visualizzazione sarà la seguente:

10 OSCILLOSCOPIO

10.1 Descrizione generale

Il firmware di regolazione e controllo a bordo dell'azionamento AxM posside un modulo integrato dedicato all'acquisizione dati, che simula le caratteristiche di un vero e proprio oscilloscopio.

Le caratteristiche del modulo sono le seguenti:

- Selezione fino a 4 canali di acquisizione.
- Frequenza di campionamento programmabile.
- Numero di campioni per acquisizione configurabile.
- Trigger su canale separato completamente configurabile (livello, fronte, pre-trigger).
- Acquisizione manuale o su evento di trigger.

Il tempo totale di un'acquisizione dipende dalla frequenza di campinamento, configurabile da relativo parametro e dal numero di campioni per canale. Il numero massimo di campioni per canale dipende dal numero di canali selezionati: da un massimo di 8192 campioni per un canale attivo, a 2048 per 4 canali selezionati.

A livello di configuratore Cockpit è disponibile un'interfaccia grafica per la visualizzazione delle acquisizioni e le impostazioni dei parametri dell'oscilloscopio.

L'interfaccia si attiva premento il tasto 🛄 nella barra degli strumenti.

10.2 Impostazione dell'acquisizione

Prima di iniziare un'acquisizione è indispensabile impostare i canali attivi e le relative variabili che saranno campionate. Premendo il tasto a sulla barra degli strumenti dell'oscilloscopio verrà aperta una dialog box che permette di impostare i canali di acquisizione e le caratteristiche dell'evento di trigger.

oscinoscope propercies	-
Signal Trigger	
Signals EncSpd LinOut RipErr SpDut User 1 User 2 User 3 Here 4	
Samples number 4096 Available 8192	
Samples time (ms)	
2.00 Effective: 2.00 ms Min time: 0.25 ms Tot time: 8192.00 ms	
OK Cancel	

vonto al triggot.	
Oscilloscope properties	×
Signal Trigger	
Signals EncPos EncSpd RipErr SpiDut User trg	
Settings	
Delay time (ms) 4000.00 Effective: 4000.00 ms	
OK Cancel	

Segnali: sono disponibili alcuni segnali predefiniti (see Chap. 10.6 appendix 6), oltre a 4 segnali "User" a cui l'utente può associare variabili di sistema nelle applicazioni dedicate: questo aumenta notevolmente la gamma di variabili campionabili.

Figura 10.2 Dialog box per impostazione segnali e trigger

Per impostare un canale, selezionare il segnale desiderato e premere il pulsante superiore per trasferirlo nel riquadro a destra. Per eliminare un segnale eseguire la stessa procedura da destra verso sinistra con il pulsante inferiore. E' possibile effettuare 4 selezioni.

Nel riquadro centrale viene impostato il numero di campioni che si vogliono acquisire per traccia. A fianco è riportato il numero massimo di campioni in relazione al numero di segnali selezionati.

Nel controllo inferiore è possibile impostare il tempo di campionamento espresso in millisecondi. A fianco è riprtato il tempo effettivo di campionamento, la minima risoluzione consentita e il tempo totale di acquisizione per canale selezionato.

Trigger: la selezione del trigger avviene con la stessa modalità con cui sono stati impostati i segnali.

Impostare inoltre il livello, il fronte di attivazione dell'evento di trigger e la posizione, espressa in millisecondi, all'interno della finestra di acquisizione. Tale valore è automaticamente limitato al tempo di acquisizione per canale se si dovesse impostare un valore superiore. A fianco è indicato il valore effettico in relazione alla minima risoluzione consentita.

10.3 Acquisizione dati

L'oscilloscopio è predisposto per eseguire un'acquisizione dati manuale o al verificarsi di un evento di trigger.

L'acquisizione manuale si attiva mediante il tasto ¹²⁸ nella barra degli strumenti dell'oscilloscopio: il comando è disabilitato se non è impostato alcun canale di acquisizione.

L'acquisizione con trigger si attiva permendo il tasto ¹ che "arma" l'oscilloscopio, ovvero lo predispone a testare l'evento di trigger per far partire l'acquisizione. Il comando è disabilitato se non è impostato alcun canale di acquisizione o trigger.

Lo stato dell'oscilloscopio viene visalizzato sulla barra degli strumenti.

Successivamente all'acquisizione, segue una fase di trasferimento dei dati acquisiti dall'azionamento al configuratore mediante protocollo Modbus. Terminato il trasferimento, i dati vengono visualizzati nella finestra dell'oscilloscopio, mentre nella finestra di watch vengono visualizzati i dati relativi ai singoli canali.

Mediante i pulsanti 🔍 🔍 è possibile eseguire uno zoom dei dati mentre con la barra di scorrimento spostarsi all'interno della finestra. Con il tasto 🖼 si ritorna alla finestra di acquisizione.

Con i tasti 🖾 🛱 🖾 è possibile eseguire lo split verticale di più tracce, attivare i cursori verticali e orizzontale e visualizzare i punti di acquisizione.

Da ultimo l'utente può lanciare la stampa della finestra di visualizzazione e stampare i dati acquisiti in un file di testo con i comandi 😂 🖬 🕘 o ricaricare un file di dati precedentemente salvato.

11 APPENDICI

11.1 Appendice 1 - Lista degli allarmi dell'azionamento AxM

L'importanza dell'allarme decresce con il crescere del suo codice.

Se più allarmi sono attivi contemporaneamente, il drive visualizza mediante led solo l'allarme più importante (es se sono attivi l'allarme Nr 9 "**Ventola bloccata**" e Nr 22 "**Endat in allarme**" viene visualizzato solo l'allarme di "**Ventola bloccata**". Per avere una lista completa degli allarmi attivi utilizzare la funzione di monitor del configuratore Cockpit (vedere paragrafo <u>3.5</u>).

Nella seconda colonna della tabella viene riportato il codice di errore mappato all'oggetto 603Fh (Paragrafo <u>6.2.1</u> Oggetti Device Control) secondo la specifica DSP-402.

Codice	Emergency Code (DSP-402)	Tipo di allarme	Descrizione	Rimedio
1	0x6188	Errore comunicazione DSP	Si è verificato un errore interno nel firmware di regolazione e controllo.	Contattare l'assistenza Phase Motion Control.
2	0x2110	Cortocircuito	Si è verificato un corto circuito negli avvolgimenti del motore o all'interno del modulo di potenza dell'azionamento.	Verificare le connessioni motore ed eventuali cortocircuiti tra fase-fase e fase-terra del motore.
3	0x2280	Sovracorrente	La corrente ha raggiunto un valore istantaneo superiore la massimo gestito dall'azionamento.	Verificare la taratura dei guadagni d'anello,eventuali impedimenti meccanici e la corretta taglia del motore per l'uso in atto.
4	0x3200	Sovratensione DC-BUS	E' stato rilevato un livello di tensione troppo elevato sul DC Link.	Verificare la presenza e la connessione della resistenza di frenatura.
5	0x4200	Sovratemperatura modulo IGBT	Il modulo di potenza ha raggiunto una temperatura eccessiva.	Ciclo di lavorazione troppo pesante.
6	0x4300	Brake IGBT desaturazione	Guasto nel circuito di frenatura.	Resistenza di frenatura valore troppo basso o in corto oppure guasto nell'IGBT di frenatura.
7	0x7113	Errore sincronizzazione DSP	Si è verificato un errore interno nel firmware di regolazione e controllo.	Contattare l'assistenza Phase Motion Control.
8	0x6180	Sovratemperatura dissipatore	Il dissipatore ha raggiunto una temperatura eccessiva.	Ciclo di lavorazione troppo pesante.
9	0x4140	Ventola bloccata	Il drive segnala un cattivo funzionamento del sistema di raffreddamento.	Verificare eventuali impedimenti / restrizioni del flusso d'aria di raffreddamento e dalla ventola.

			1	
10	0x7110	Frenatura sempre attiva	Il circuito di frenatura risulta sempre attivo.	La tensione di alimentazione è troppo elevata o la tensione di intervento clamp è troppo bassa. Verificare il parametro <i>SYS_OV_CLM_LIM</i> IPA 18108
11	0x7112	Brake Overpower	La potenza dissipata nella resistenza di frenatura è superiore al massimo consentito.	Collegare una resistenza esterna di potenza superiore.
12	0x7111	Errore Resistenza di Frenatura	Allarme temporaneo che precede la segnalazione di "Brake Overpower". Si tenta comunque di arrestare il motore prima di disabilitare il drive.	Vedi "Brake Overpower".
13	0x6181	Fast task overtime	Il tempo di esecuzione del Fast task è maggiore del suo periodo di attivazione (250us).	Se è attiva una applicazione utente, ottimizzare il tempo di esecuzione del Fast.
14	0x6320	Parametri di sistema non validi	Non sono stati salvati correttamente i parametri dell'azionamento durante un salvataggio utente o durate uno spegnimento del drive.	Provare a ripetere il salvataggio ed eseguire un reset dell'azionamento. Se il problema si ripresenta contattare l'assistenza Phase Motion Control.
15	0x5520	Errore dispositivo Flash	Il settore della flash dove vengono salvati i parametri risulta danneggiato.	Se il problema si ripresenta contattare l'assistenza Phase Motion Control.
16	0x6128	Errore programmazione Fpga	Si è verificato un errore durante la programmazione dell'fpga a bordo dell'azionamento.	Se il problema si ripresenta contattare l'assistenza Phase Motion Control.
17	0x6183	Errore programmazione Dsp	Si è verificato un errore durante lo scaricamento del codice firmware del modulo di potenza dell'azionamento.	Se il problema si ripresenta contattare l'assistenza Phase Motion Control.
18	0x7600	Lock Drive	Il drive è bloccato dopo un salvataggio parametri.	Eseguire un comando di reset dal configuratore o tramite il bottone di "reset drive".
19	0x8500	Errore conteggio encoder	Il drive ha rilevato una posizione indice non corretta.	Controllare il cablaggio encoder (porta E1) e la connessione degli schemi. Verificare inoltre i parametri di cofigurazione encoder.
20	0x6200	Applicazione non caricata	Il drive è stato avviato in modalità applicazione senza aver caricato alcuna applicazione.	Impostare SYS_SEL_MODE = default oppure caricare una applicazione e impostare SYS_SEL_MODE = PLC. SYS_SEL_MODE: IPA 18051
21	0x4310	Sovratemperatura motore o PTC disconnesso	Il sensore PTC ha rilevato una temperatura troppo elevata del motore.	Verificare la connessione della PTC motore ai relativi morsetti del drive (E1) e la reale temperatura de motore.
22	0x6186	Endat in allarme	Errore nella comunicazione endat o dispositivo in stato di allarme.	Controllare le connessioni tra l'endat e il drive AxM.

23	0x6189	Errore livelli analogici encoder	Il ripple dei canali analogici encoder è risultato superiore al limite massimo impostato dal parametro (IPA 18234) SYS_AD_RIPPLE_LIM.	Verificare la corretta connessione dell'encoder alla porta encoder dell'azionamento (E1).
24	0x8500	Errore Conteggio encoder ausiliario	Il drive ha rilevato una posizione indice non corretta dell'encoder ausiliario.	Controllare la configurazione del parametro SYS_ENC2_CY_REV; verificare il cablaggio encoder (porta C1) e la connessione degli schemi.
25	0x1000	Riservato		
26	0x1000	Riservato		
27	0x6184	Medium task overtime	Il tempo di esecuzione del task è maggiore del suo periodo di attivazione (2ms).	Se è attiva una applicazione utente, ottimizzare il tempo di esecuzione del task.
28	0x6185	Slow task overtime	Il tempo di esecuzione dello Slow task è maggiore del suo periodo di attivazione (8ms).	Se è attiva una applicazione utente, ottimizzare il tempo di esecuzione dello Slow task. Altrimenti contattare l'assistenza Phase Motion Control.
29	0x8600	Errore posizione asse elettrico	La differenza tra la posizione letta dal drive e la posizione dell'asse master ha superato il valore massimo ammesso.	Verificare la configurazione dell'encoder ausiliario e che l'asse controllato dal drive AxM sia libero di seguire il master.
30	0x8100	Allarme su dispositivi fieldbus	Errata configurazione della rete CANopen o errore di protocollo.	Riferirirsi al codice specifico dell'allarme (Cap. <u>11.5</u> Appendice 5). Controllare i parametri di configurazione.
31	0x6187	Errore inizializzazione endat	Errore durante la fase iniziale di configurazione dell'endat.	Controllare le connessioni tra l'endat e il drive AxM.

11.2 Appendice 2 - Mappatura variabili di sistema

Viene di seguito riportata una tabella descrittiva delle variabili di sistema nel file AxMVars2.plc.

Ingressi digitali:

Nome	Тіро	Immagine	Descrizione
sys250Dl0 – sys250Dl7	BOOL	No	Ingressi digitali azionamento. Il firmware di regolazione e controllo legge ciclicamente gli ingressi con periodo 250us.
sysDl0 - sysDl7	BOOL	Si	Ingressi digitali : sono le variabili corrispondenti a <i>sys250DI0 – sys250DI7</i> con immagine. Utilizzare tali variabili se si intende leggere gli ingressi con periodo diverso da 250us.

Uscite digitali:

Nome	Тіро	Immagine	Descrizione
sys250DO0 – sys250DO7	BOOL	No	Uscite digitali : <i>sys250D00 – sys250D03</i> sono uscite fisiche dell'azionamento, le rimanenti uscite digitali simulate da Pannello di Controllo. Il firmware di regolazione e controllo attiva ciclicamente le uscite con periodo 250us.
sysDO0 - sysDO7	BOOL	Si	Uscite digitali : sono le variabili corrispondenti a <i>sys250D00 – sys250D07</i> con immagine. Utilizzare tali variabili se si intende attivare le uscite con periodo diverso da 250us.

Ingressi analogici:

Nome	Тіро	Immagine	Descrizione
sys250Al0 – sys250Al2	INT	No	Ingressi analogici: sys250AI0 e sys250AI1 sono ingressi fisici dell'azionamento, sys250AI2 è un ingresso analogico simulato da Pannello di Controllo. I valori degli ingressi sono compresi tra 0 (ingresso analogico a -10V) e 1023 (ingresso analogico a 10V). Il firmware di regolazione e controllo legge ciclicamente gli ingressi con periodo 250us.
sysAl0 – sysAl2	INT	Si	Ingressi analogici : sono le variabili corrispondenti a <i>sys250AI0 – sys250AI2</i> con immagine. Utilizzare tali variabili se si intende leggere gli ingressi con periodo diverso da 250us.

Uscite analogiche:

Nome	Тіро	Immagine	Descrizione
sys250AO0 – sys250AO3	INT	No	Uscite analogiche dell'azionamento. Impostare valori compresi tra 0 (uscita analogica a 0V) e 1023 (uscita analogica a 10V). <i>sys250AO0 e sys250AO1</i> sono le uscite fisiche dell'azionamento, le rimanenti sono uscite simulate da Pannello di controllo. Il firmware di regolazione e controllo attiva ciclicamente le uscite con periodo 250us.
sysAO0 – sysAO3	INT	Si	Uscite analogiche : sono le variabili corrispondenti a <i>sys250AO0 – sys250AO3</i> con immagine. Utilizzare tali variabili se si intende attivare le uscite con periodo diverso da 250us.

Blocco "Modulo potenza":

Nome	Тіро	Immagine	Descrizione
sysDsp_Iq	INT	No	Richiesta di corrente di quadratura : espressa in unità interne (ui): 100ui = 1Arms. La corrente di quadratura coincide con l'uscita dell'anello di velocià/spazio (<i>sysSpl250_Out</i>) in controllo di velocità e con il riferimento di corrente (<i>sysSpl250_CiclsqRef</i>) in controllo di corrente. (vedi Appendice 4) La variabile viene aggiornata dal firmware di regolazione e controllo con periodo pari a 250us. <i>Non modificare da applicazione il valore calcolato dal firmware</i> .
sysDsp_Id	INT	No	Richiesta di corrente diretta: espressa in unità interne (ui): 100ui = 1Arms. Di norma a zero. La variabile viene aggiornata dal firmware di regolazione e controllo con periodo pari a 250us. Non modificare da applicazione il valore calcolato dal firmware.
sysDsp_Rho	UINT	No	Angolo di campo: espresso in conteggi virtuali (1 giro = 65536 conteggi virtuali). Rappresenta la posizione sul giro elettrico, ovvero: $P_{el} = P_{mecc} * N^{\circ}_{cp}$ dove, P_{el} = pos elettrica P_{mecc} = pos giro meccanico (<i>sysSpl250_ViPo</i>) N°_{cp} = numero di coppie polari del motore. La variabile viene aggiornata dal firmware di regolazione e controllo con periodo pari a 250us. <i>Non modificare da applicazione il valore</i> <i>calcolato dal firmware</i> .

sysDsp_lu	INT	No	Corrente motore fase U: espressa in unità interne (ui): 100ui = 1Arms. La variabile viene letta dal firmware di regolazione e controllo dal moulo di potenza dell'azionamento con periodo pari a 250us. Quando il drive è disabilitato la variabile non esprime la corrente ma valori di uso interno al firmware (Vedi Appendice 4). Non modificare da applicazione il valore letto dal firmware.
sysDsp_Iv	INT	No	Corrente motore fase V: espressa in unità interne (ui): 100ui = 1Arms. La variabile viene letta dal firmware di regolazione e controllo dal moulo di potenza dell'azionamento con periodo pari a 250us. Quando il drive è disabilitato la variabile non esprime la corrente ma valori di uso interno al firmware. Non modificare da applicazione il valore letto dal firmware.
sysDsp_Iw	INT	No	Corrente motore fase W : espressa in unità interne (ui): 100ui = 1Arms. La variabile viene letta dal firmware di regolazione e controllo dal moulo di potenza dell'azionamento con periodo pari a 250us. Quando il drive è disabilitato la variabile non esprime la corrente ma valori di uso interno al firmware. <i>Non modificare da applicazione il valore letto</i> <i>dal firmware</i> .
sysDsp_Ic_P_Fak	UINT	No	Guadagno proporzionale anello corrente : espresso in unità interne (ui). Le modifiche alla variabile vengono attuate solo a drive disabilitato.
sysDsp_Ic_I_Fak	UINT	No	Guadagno integrale anello corrente : espresso in unità interne (ui). Le modifiche alla variabile vengono attuate solo a drive disabilitato.
sysDsp_lc_D_Fak	UINT	No	Guadagno differenziale anello corrente : espresso in unità interne (ui). Le modifiche alla variabile vengono attuate solo a drive disabilitato.

Encoder principale:

Nome	Тіро	Immagine	Descrizione
sysEnc1_Type	UINT	No	Tipo dell'encoder principale : è la copia del parametro di sistema SYS_ENC1_TYPE (paragrafo <u>4.2</u>). Le modifiche a <i>sysEnc1_Type</i> vengono attivate solo dopo il reset dell'azionamento.

sysEnc1_Pulse	UINT	No	Impulsi/giro dell'encoder principale : espresso in impulsi encoder. E' la copia del parametro di sistema <i>SYS_ENC1_CY_REV</i> (paragrafo <u>4.2</u>). I valori ammessi sono compresi tra 1 e 8192: valori non compresi nell'intervallo determinano l'impostazione al valore di default 1024. Le modifiche a <i>sysEnc1_Pulse</i> vengono attivate solo dopo il reset dell'azionamento.
sysEnc1_I_ViPo	UINT	No	Posizione sul giro indice encoder principale: espresso in conteggi virtuali. Il firmware aggiorna la variabile al primo passaggio dell'indice. Non modificare da applicazione il valore letto dal firmware.
sysEnc1_I_ViTu	UINT	No	Posizione in giri indice encoder principale: il firmware aggiorna la variabile al primo passaggio dell'indice. Non modificare da applicazione il valore letto dal firmware.

Encoder secondario:

Nome	Тіро	Immagine	Descrizione
sysEnc2_Type	UINT	No	Tipo dell'encoder secondario :è la copia del parametro di sistema SYS_ENC2_TYPE (paragrafo <u>4.2</u>). Le modifiche a <i>sysEnc2_Type</i> vengono attivate solo dopo il reset dell'azionamento.
sysEnc2_Pulse	UINT	No	Impulsi/giro dell'encoder secondario : espresso in impulsi encoder. E' la copia del parametro di sistema <i>SYS_ENC2_CY_REV</i> (paragrafo <u>4.2</u>). I valori ammessi sono compresi tra 1 e 8192: valori non compresi nell'intervallo determinano l'impostazione al valore di default 1024. Le modifiche a <i>sysEnc2_Pulse</i> vengono attivate solo dopo il reset dell'azionamento.
sysEnc2_ViSpd	DINT	Si	Velocità encoder secondario: espresso in conteggi virtuali normalizzati a 32 bit (CntVi*2exp16)/250us. Il firmware aggiorna la variabile con periodo di 2ms. Non modificare da applicazione il valore letto dal firmware.

Motore:

Nome	Тіро	Immagine	Descrizione
sysMot_N_Poles	UINT	No	Numero di poli motore : E' la copia del parametro di sistema SYS_MOT_N_POLES. Riferirsi al paragrafo <u>4.1</u> per maggiori dettagli. Le modifiche a <i>sysMot_N_Poles</i> vengono attivate solo dopo il reset dell'azionamento.
sysMot_lo	UINT	No	Corrente nominale motore: espressa in unità interne (ui): 100ui = 1Arms. E' la copia del parametro di sistema SYS_MOT_IN. Riferirsi al paragrafo <u>4.1</u> per maggiori dettagli. Le modifiche a <i>sysMot_lo</i> vengono attivate solo dopo il reset dell'azionamento.
sysMot_Idm	DINT	Si	Corrente limite motore:espressa in unitàinterne (ui):100ui = 1Arms.E'la copia del parametro di sistemaSYS_MOT_IDM.Riferirsi al paragrafo 4.1 per maggiori dettagli.Le modifiche a sysMot_lo vengono attivate solodopo il reset dell'azionamento.

Simulazione encoder e asse elettrico:

Nome	Тіро	Immagine	Descrizione
sysRip_Pulse	UINT	No	Impulsi/giro ripetuti : espresso in impulsi encoder. I valori ammessi sono compresi tra 1 e 8192: per soli numeri potenza di 2 (2, 4512, 1024 8192); valori non compresi nell'intervallo determinano l'impostazione al valore di default 1024. Le modifiche <i>sysRip_Pulse</i> vengono attivate solo quando la simulazione encoder non è attiva.
sysRip_Enable	BOOL	No	Abilitazione simulazione encoder : attivare la simulazione dopo aver impostato <i>sysRip_Pulse</i> .
sysRip_AsseElSpdAbs	UINT	No	Velocità asse elettrico: espressa in (CntVi)/2ms. Rappresenta la velocità in valore assoluto dell'encoder secondario che il master deve seguire. Il firmware calcola la velocità con periodo di 2ms. Non modificare da applicazione il valore calcolato dal firmware.
sysRip_AsseElDir	INT	No	Direzione moto asse elettrico : rappresenta la direzione dell'encoder secondario cioè il segno della variabile sysRip_AsseElSpdAbs. Non modificare da applicazione il valore letto dal firmware.

sysRip_AsseElAlr BOOL	No	Attivazione allarme asse elettrico: se messo a TRUE attiva l'allarme Nr 29 "Errore posizione asse elettrico". Il firmware controlla il flag ogni 2ms per generare il relativo allarme.
-----------------------	----	--

Blocco "Generatore rampe":

Nome	Тіро	Immagine	Descrizione
sysRg250_LinOut	DINT	No	Uscita generatore rampe: espresso in conteggi virtuali normalizzati a 32 bit (CntVi*2exp16)/250us. Rappresenta il riferimento di velocità generato dal generatore rampe. Il firmware calcola <i>sysRg_LinOut</i> ogni 2ms e lo copia nell'ingresso del blocco "Anello velocità/spazio". (vedi Appendice 4) <i>Non modificare da applicazione il valore calcolato dal firmware.</i>
sysRg_LinOut	DINT	No	Uscita generatore rampe : è la variabile corrispondente <i>sysRg250_LinOut</i> con immagine. Utilizzare tale variabile se si intende operare sul riferimento con periodo di aggiornamento diverso da 250us (vedi Appendice 4). <i>Non modificare da applicazione il valore calcolato dal firmware.</i>
sysRg250_SpdRef	DINT	No	Riferimento di velocità: espresso in conteggivirtuali normalizzati a 32 bit(CntVi*2exp16)/250us.E' il riferimento di velocità in ingresso al blocco"Generatore rampe".A rampe disabilitate, il firmware copiasysRg250_SpdRef direttamente nell'ingresso delblocco "Anello velocità/spazio" con periodo250us.
sysRg_SpdRef	DINT	Si	Riferimento di velocità: espresso in conteggi virtuali normalizzati a 32 bit (CntVi*2exp16)/250us.E' il riferimento di velocità in ingresso al blocco "Generatore rampe".A rampe abilitate, il firmware aggiorna l'ingresso con periodo 2ms.
sysRg250_PosspLim	UDINT	No	Limite orario di velocità: espresso in conteggi virtuali normalizzati a 32 bit (CntVi*2exp16)/250us.
sysRg_PosspLim	UDINT	Si	Limite orario di velocità: è la variabile corrispondente sysRg250_PosspLim con immagine. Utilizzare tale variabile se si intende operare sul limite di velocità con periodo di aggiornamento diverso da 250us.

sysRg250_NegspLim	UDINT	No	Limite antiorario di velocità: espresso in conteggi virtuali normalizzati a 32 bit (CntVi*2exp16)/250us. Il firmware aggiorna ogni 8ms il blocco
sysRg_NegspLim	UDINT	Si	Limite antiorario di velocità: è la variabile corrispondente sysRg250_NegspLim con immagine. Utilizzare tale variabile se si intende operare sul limite di velocità con periodo di aggiornamento diverso da 250us.
sysRg250_CwAcc	UDINT	No	Accelerazione oraria: espresso in conteggi virtuali normalizzati a 32 bit (CntVi*2exp16)/(250us*250us).
sysRg_CwAcc	UDINT	Si	Accelerazione oraria: è la variabile corrispondente <i>sysRg250_CwAcc</i> con immagine. Utilizzare tale variabile se si intende operare sull'accelerazione con periodo di aggiornamento diverso da 250us.
sysRg250_CcwAcc	UDINT	No	Accelerazione antioraria: espresso in conteggi virtuali normalizzati a 32 bit (CntVi*2exp16)/(250us*250us).
sysRg_CcwAcc	UDINT	Si	Accelerazione antioraria: è la variabile corrispondente <i>sysRg250_CcwAcc</i> con immagine. Utilizzare tale variabile se si intende operare sull'accelerazione con periodo di aggiornamento diverso da 250us.
sysRg250_CwDec	UDINT	No	Decelerazione oraria: espresso in conteggi virtuali normalizzati a 32 bit (CntVi*2exp16)/(250us*250us).
sysRg_CwDec	UDINT	Si	Decelerazione oraria: è la variabile corrispondente <i>sysRg250_CwDec</i> con immagine. Utilizzare tale variabile se si intende operare sulla decelerazione con periodo di aggiornamento diverso da 250us.
sysRg250_CcwDec	UDINT	No	Decelerazione antioraria: espresso in conteggi virtuali normalizzati a 32 bit (CntVi*2exp16)/(250us*250us).
sysRg_CcwDec	UDINT	Si	Decelerazione antioraria: è la variabile corrispondente <i>sysRg250_CcwDec</i> con immagine. Utilizzare tale variabile se si intende operare sulla decelerazione con periodo di aggiornamento diverso da 250us.
sysRg250_RampOff	BOOL	No	Disabilitazione generatore rampe : se messo a FALSE attiva la rampa di velocità, se a TRUE il gradino di velocità.

sysRg_RampOff	BOOL	Si	Disabilitazione generatore rampe : è la variabile corrispondente sysRg250_RampOff con immagine. Utilizzare tale variabile se si intende operare sul flag con periodo di aggiornamento diverso da 250us.
sysRg_RampInCorso	BOOL	Si	Rampa in corso : viene messo a TRUE dal firmware quando il generatore rampe è abilitato (<i>sysRg250_RampOff</i> = FALSE) e l'uscita del generatore è diversa da riferimento di velocità (<i>sysRg_LinOut</i> != <i>sysRg_SpdRef</i>). Il flag è aggiornato ogni 8ms. (Vedi Appendice 4). <i>Non modificare da applicazione il valore</i> <i>calcolato dal firmware.</i>

Blocco "Generatore profili":

Nome	Тіро	Immagine	Descrizione
sysPg_QTarget	DINT	Si	Quota da raggiungere : esprime la quota da raggiungere durante un posizionamento. La parte alta della variabile esprime il numero di giri (da – 32768 a 32767), la parte bassa la posizione sul giro in conteggi virtuali (da 0 a 65535) Il firmware legge la quota ogni 8ms.
sysPg_PosOk	BOOL	Si	Quota raggiunta: indica che la quota attuale (giri+posizione) coincide con la quota impostata con sysPg_QTGiri e sysPg_QTPos. Il firmware aggiorna il flag ogni 8ms. Non modificare da applicazione il valore impostato dal firmware (vedere Appendice 4).
sysPg_PosizEn	BOOL	Si	Abilitazione generatore profili: impostando il flag a TRUE viene attivato il blocco "Generatore profili". Il firmware legge il flag ogni 8ms.

Blocco "Anello velocità / spazio":

Nome	Тіро	Immagine	Descrizione
sysSpl250_PosRef	UDINT	No	Riferimento di posizione : espresso in conteggi virtuali normalizzati a 32 bit (CntVi*2exp16). Rappresenta il riferimento di posizione in ingresso al blocco "Anello velocità /spazio". Il firmware calcola <i>sysSpl250_PosRef</i> ogni 250us. <i>Non modificare da applicazione il valore</i> <i>calcolato dal firmware</i> .

sysSpl_PosRef	UDINT	Si	Riferimento di posizione: è la variabile corrispondente a <i>sysSpl250_PosRef</i> con immagine. Utilizzare tale variabile se si intende operare sul riferimento con periodo di aggiornamento diverso da 250us. <i>Non modificare da applicazione il valore</i> <i>calcolato dal firmware.</i>
sysSpl250_TurRef	DINT	No	Riferimento in giri : espresso in numero di giri encoder. Rappresenta il riferimento in giri in ingresso al blocco "Anello velocità /spazio". Il firmware calcola <i>SysSpl250_TurRef</i> ogni 250us. <i>Non modificare da applicazione il valore calcolato dal firmware</i> .
sysSpl_TurRef	DINT	Si	Riferimento in giri : è la variabile con immagine corrispondente a <i>SysSpl250_TurRef</i> . Utilizzare tale variabile se si intende operare con i riferimenti in giri con periodo diverso da 250us. <i>Non modificare da applicazione il valore</i> <i>calcolato dal firmware</i> .
sysSpl250_PosGiriRef	DINT	No	Riferimento di quota : esprime la quota di riferimento in n° di giri e posizione sul giro. La parte alta della variabile esprime il numero di giri (da –32768 a 32767), la parte bassa la posizione sul giro in conteggi virtuali (da 0 a 65535). Utilizzare questa variabile se si intende impostare dei riferimenti in ingresso al blocco "Anello Velocità/Spazio" quando i riferimenti calcolati dal firmware sono disabilitati mediante il relativo parametro di sistema SYS_SPL_REF_EN (vedi paragrafo <u>4.4.2</u>).
sysSpl_PosGiriRef	DINT	Si	Riferimento di quota : è la variabile con immagine corrispondente a sysSpl250_PosGiriRef. Utilizzare questa variabile se si intende impostare dei riferimenti in ingresso al blocco "Anello Velocità/Spazio" quando i riferimenti calcolati dal firmware sono disabilitati mediante il relativo parametro di sistema SYS_SPL_REF_EN (vedi paragrafo <u>4.4.2</u>).
sysSpl250_SpdRef	INT	No	Velocità di riferimento: espresso in conteggi virtuali ogni 250us (CntVi)/(250us)*2exp16. Rappresenta il riferimento di velocità in ingresso al blocco "Velocità/spazio". Se il parametro di sistema SYS_SPL_REF_EN è TRUE il valore coincide con sysRg_LinOut (Appendice 4). Non modificare da applicazione il valore calcolato dal firmware quando sono abilitati i riferimenti mediante il relativo parametro di sistema SYS_SPL_REF_EN (vedi paragrafo 4.4.2).

sysSpl_SpdRef	INT	Si	Velocità di riferimento: è la variabile con immagine di sysSpl250_SpdRef. Utilizzare tale variabile se si intende leggere il riferimento con periodo di aggiornamento diverso da 250us. Non modificare da applicazione il valore calcolato dal firmware quando sono abilitati i riferimenti mediante il relativo parametro di sistema SYS_SPL_REF_EN (vedi paragrafo 4.4.2).
sysSpl250_ViPo	UINT	No	Posizione attuale: espressa in conteggi virtuali. E' la posizione sul giro dell'encoder principale. Il firmware aggiorna sysSpl250_ViPo ogni 250us. Non modificare da applicazione il valore calcolato dal firmware (vedere Appendice 4).
sysSpl_ViPo	UINT	Si	Posizione attuale : è la variabile con immagine corrispondente a <i>sysSpl250_ViPo</i> . Utilizzare tale variabile se si intende operare con la posizione encoder con periodo di aggiornamento diverso da 250us. <i>Non modificare da applicazione il valore</i> <i>calcolato dal firmware</i> (vedere Appendice 4).
sysSpl250_ViTu	DINT	No	Giri attuali : espresso in numero di giri encoder. Rappresenta la posizione attuale in giri. Il firmware calcola <i>SysSpl250_ViTu</i> ogni 250us. <i>Non modificare da applicazione il valore</i> <i>calcolato dal firmware</i> (vedere Appendice 4).
sysSpl_ViTu	DINT	Si	Giri attuali : è la variabile con immagine corrispondente a <i>SysSpl250_ViTu</i> . Utilizzare tale variabile se si intende operare con la posizione attuale in giri con periodo diverso da 250us (vedere Appendice 4). <i>Non modificare da applicazione il valore calcolato dal firmware</i> .
sysSpl250_PosGiri	DINT	No	Quota attuale : esprime la quota encoder in n° di giri e posizione sul giro. La parte alta della variabile esprime il numero di giri (da –32768 a 32767), la parte bassa la posizione sul giro in conteggi virtuali (da 0 a 65535). <i>Non modificare da applicazione il valore calcolato dal firmware</i> (vedere Appendice 4).
sysSpl_PosGiri	DINT	Si	Quota attuale: è la variabile con immagine corrispondente a sysSpl250_PosGiri. Non modificare da applicazione il valore calcolato dal firmware (vedere Appendice 4).
sysSpl250_Spd	INT	No	Velocità attuale: espresso in conteggi virtuali ogni 250us (CntVi)/(250us). Il firmware calcola la velocità attuale dell'encoder come differenza di posizioni ogni 250us. Non modificare da applicazione il valore calcolato dal firmware (vedere Appendice 4).

sysSpl_Spd	INT	Si	Velocità attuale: è la variabile con immagine corrispondente a <i>sysSpl250_Spd</i> . Utilizzare tale variabile se si intende operare sulla velocità attuale con periodo di aggiornamento diverso da 250us (vedere Appendice 4). Non modificare da applicazione il valore calcolato dal firmware.
sysSpl250_ErrRef	DINT	No	Errore di posizione : espresso in conteggi virtuali. Rappresenta l'errore di posizione (giri + posizione) tra i riferimenti e la posizione attuale. Il firmware calcola l'errore ogni 250us. <i>Non modificare da applicazione il valore calcolato dal firmware</i> (vedere Appendice 4).
sysSpl_ErrRef	DINT	Si	Errore di posizione : è la variabile con immagine corrispondente a <i>SysSpl250_ErrRef.</i> Utilizzare tale variabile se si intende operare con l'errore di posizione con periodo diverso da 250us (vedere Appendice 4). <i>Non modificare da applicazione il valore calcolato dal firmware.</i>
sysSpl250_PosErrMax	UINT	No	Errore massimo di posizione : espresso in conteggi virtuali. Rappresenta la limitazione ad un giro del valore espresso da <i>SysSpl250_ErrRet</i> se il relatvo flag <i>sysSpl250_PosErrEn</i> . è posto a TRUE. Il controllo viene effettuato ogni 250us.
sysSpl_PosErrMax	UINT	Si	Errore massimo di posizione : è la variabile con immagine corrispondente a <i>sysSpl250_PosErrMax.</i> Utilizzare tale variabile se si intende impostare il limite di errore con periodo diverso da 250us.
sysSpl250_Out	INT	No	Uscita anello velocità spazio: espressa in unità interne (ui): 100ui = 1Arms. L'uscita dell'anello di velocià/spazio in controllo di velocità rappresenta la richiesta di corrente di quadratura (<i>sysDsp_lq</i>). La variabile viene aggiornata dal firmware di regolazione e controllo con periodo pari a 250us. <i>Non modificare da applicazione il valore</i> <i>calcolato dal firmware</i> (vedere Appendice 4).
sysSpl_Out	INT	SI	Uscita anello velocità spazio: è la variabile con immagine corrispondente a <i>sysSpl250_Out</i> . Utilizzare tale variabile se si intende leggere l'uscita dell'anello con periodo diverso da 250us. <i>Non modificare da applicazione il valore</i> <i>calcolato dal firmware</i> (vedere Appendice 4).
sysSpl250_CiclsqRef	INT	No	Riferimento corrente : espresso in unità interne (ui): 100ui = 1Arms. Rappresenta la richiesta di corrente di quadratura in controllo di corrente (<i>sysDsp_Iq</i>). La variabile viene letta dal firmware di regolazione e controllo con periodo pari a 250us.

sysSpl_CiclsqRef	INT	Si	Richiesta corrente : è la variabile con immagine corrispondente a <i>sysSpl250_CiclsqRef</i> . Utilizzare tale variabile se si intende impostare un riferimento in controllo di corrente con periodo diverso da 250us.
sysSpl250_Spl	BOOL	No	Attivazione anello velocità/spazio: impostando il flag a TRUE viene selezionato il controllo in velocità/spazio, impostando FALSE il controllo in corrente. Il firmware seleziona il tipo di controllo ogni 250us.
sysSpl_Spl	BOOL	Si	Attivazione anello velocità/spazio: è il flag con immagine corrispondente a <i>sysSpl250_Spl.</i> Utilizzare tale flag se si intende operare sulla selezione del controllo con periodo diverso da 250us.
sysSpl_PosFak	UINT	Si	Guadagno di posizione : è la copia del parametro di sistema SYS_SPL_POS_FAK (paragrafo <u>4.4</u>). Impostare valori compresi tra 0 e 32767. Nell'anello di velocità/spazio, il firmware opera con il guadagno di posizione ogni 250us mentre la lettura della variabile avviene ogni 8ms.
sysSpl_IFak	UINT	Si	Guadagno intergrale di posizione : è la copia del parametro di sistema SYS_SPL_I_FAK (paragrafo <u>4.4</u>). Impostare valori compresi tra 0 e 32767. Nell'anello di velocità/spazio, il firmware opera con il guadagno integrale ogni 250us mentre la lettura della variabile avviene ogni 8ms.
sysSpl_VelFak	UINT	Si	Guadagno di velocità : è la copia del parametro di sistema SYS_SPL_SPD_FAK (paragrafo <u>4.4</u>). Impostare valori compresi tra 0 e 32767. Nell'anello di velocità/spazio, il firmware opera con il guadagno di velocità ogni 250us mentre la lettura della variabile avviene ogni 8ms
sysSpl_AccFak	UINT	Si	Guadagno di accelerazione : è la copia del parametro di sistema SYS_SPL_ACC_FAK (paragrafo <u>4.4</u>). Impostare valori compresi tra 0 e 32767. Nell'anello di velocità/spazio, il firmware opera con il guadagno di accelerazione ogni 250us mentre la lettura della variabile avviene ogni 8ms.
sysSpl250_PosErr	INT	No	Errore di posizione sul giro : espressa in conteggi virtuali. Rappresenta l'errore tra il riferimento di posizione sul giro e la posizione attuale sul giro (vedere Appendice 4). <i>Non modificare da applicazione il valore calcolato dal firmware</i> .
sysSpl250_PosErrEn	BOOL	No	Abilitazione errore di posizione: flag per attivare la limitazione dell'errore di posizione.

sysSpl250_IMax	UINT	Si	Corrente massima richiesta : espressa in unità interne (ui): 100ui = 1Arms. Rappresenta il limite massimo della richiesta di corrente (<i>sysDsp_lq</i>). La limitazione viene attuata dal firmware ogni 250us.
sysSpl250_RhoSim	UINT	No	$\begin{array}{llllllllllllllllllllllllllllllllllll$
sysSpl250_SimPLC	BOOL	No	Abilitazione test PLC : flag per abilitazione test PLC.

Allarmi:

Nome	Тіро	Immagine	Descrizione
sysData_Alr	UDINT	No	Allarmi attivi: rappresenta la maschera binaria degli allarmi attivi del sistema: ogni bit dei 32 bit disponibili rappresenta un allarme (secondo la numerazione in Appendice 1).
sysData_EmergencyCode	UINT	No	Codice di emergency : è il codice dell'allarme più prioritario attualmente attivo nell'azionamento, secondo la specifica DSP-402. <i>Non modificare</i> <i>da applicazione il valore impostato dal</i> <i>firmware.</i>

Oscilloscopio:

Nome	Тіро	Immagine	Descrizione	
sysOsc_UserS1-S4	DINT	No	Sorgente per oscilloscopio : utilizzando queste variabili è possibile selezionare una determinata sorgente da poter essere campionata con l'oscilloscopio integrato nel firmware dell'azionamento.	
sysOsc_UserTrg	DINT	No	Trigger per oscilloscopio : utilizzando quest variabili è possibile selezionare una determinat sorgente per l'evento di trigger.	
sysOsc_TrgSlope	UINT	No	Fronte del trigger : impostare ad 1 se si vuole l'evento di trigger sul fronte di salita di <i>sysOsc_UserTrg</i> , a 0 sul fronte di discesa.	

sysOsc_TrgLevel	DINT	No	Livello del trigger : impostare il valore di sysOsc_UserTrg al quale viene generato l'evento di trigger.
sysOsc_TrgOffset	INT	No	Offset trigger : rappresenta il ritardo del trigger rispetto al primo campione dell'acqusizione. E' espresso in numero di campioni.
sysOsc_ArmScope	BOOL	No	Armatura oscilloscopio: il flag arma l'oscilloscopio per iniziare un'acquisizione in corrispondenza dell'evento di trigger impostato.
sysOsc_TrgFScope	BOOL	No	Force acquisizione : alzare il flag a TRUE per far partire l'acquisizione "manuale", cioè non in corrispondenza di un evento di trigger.

Flag di sistema:

Nome	Тіро	Immagine	Descrizione
sysDriveEnable	BOOL	No	Abilitazione drive: flag per abilitare il drive.
sysSlowTsk	BOOL	No	Abilitazione Slow Task : alzare il flag a TRUE nel task di Init dell'applicazione utente per attivare il rispettivo slow task.
sysFastTsk	BOOL	No	Abilitazione Fast Task : alzare il flag a TRUE nel task di Init dell'applicazione utente per attivare il rispettivo Fast task.
sysIndexOk	BOOL	No	Passaggio su indice encoder : Il flag viene alzato a TRUE dal firmware per 8ms ogni passaggio sull'indice dell'encoder.
sysInpPanel	BOOL	No	Attivazione ingressi simulati: alzando il flag a TRUE vengono attivati gli ingressi del Pannello di controllo e disattivati gli ingressi fisici dell'azionamento.
sysOutPanel	BOOL	No	Attivazione uscite simulate: alzando il flag a TRUE vengono attivate le uscite del Pannello di controllo e disattivate le uscite fisiche dell'azionamento.

Flag di stato sistema: (specifica DS 402)

Nome	Тіро	Immagine	Descrizione
sysStatRdyToSwitchOn	BOOL	No	Ready to switch on: flag indicante la possibilità di applicare la tensione all'azionamento. Non modificare da applicazione il valore impostato dal firmware.
sysStatSwitchedOn	BOOL	No	Switched on: il flag indica che il drive è in normale funzionamento, ovvero può essere abilitato. Non modificare da applicazione il valore impostato dal firmware.

sysStatOpEnabled	BOOL	No	Operation enabled : indica che il drive è abilitato, la potenza è applicata al motore e non ci sono allarmi.	
sysStatFault	BOOL	No	Fault: indica che l'azionamento è disabilitato per un allarme in corso. Non modificare da applicazione il valore impostato dal firmware.	
sysStatVoltDisabled	BOOL	No	Flag di voltage disabled.	
sysStatQuickStop	BOOL	No	Quick stop: quando impostato a FALSE, ind che il drive ha seguito un commando di Qu Stop. Non modificare da applicazione il valo impostato dal firmware.	
sysStatSwitchOnDisabled	BOOL	No	Flag di switch on disabled.	
sysStatRemote	BOOL	No	Remote : indica che il drive è abilitato per ricevere ed eseguire comandi remoti (ad esempio sulla linea CAN). Se il flag è FALSE il drive non può eseguire comandi remoti, ma può tuttavia trasmettere messaggi (es: posizione, velocità attuale). Non modificare da applicazione il valore impostato dal firmware.	
sysStatTargetReached	BOOL	No	Target reached : indica che il drive ha raggiunto il setpoint impostato(velocità o posizione in relazione alla modalità di funzionamento). Una modifica dei valori determina il cambiamento di stato del flag. <i>Non modificare da applicazione</i> <i>il valore impostato dal firmware.</i>	
sysStatLimitActive	BOOL	No	Internal limit : indica che il drive ha raggiunto i limiti interni impostati (es: corrente). Non modificare da applicazione il valore impostato dal firmware.	

Flag di controllo sistema: (specifica DS 402)

Nome	Тіро	Immagine	Descrizione	
sysCtrlSwitchOn	BOOL	No	Flag di switch on	
sysCtrlVoltDiasble	BOOL	No	Flag di voltage disable	
sysCtrlQuickStop	BOOL	No	Quick stop : esegue uno stop del drive con modalità impostata in option_quick_stop. L'attivazione dello stop avviene impostando FALSE.	
sysCtrlOpEnable	BOOL	No	Operation enable : flag per abilitazione drive solo se non ci sono allarmi attivi. Ponendo a FALSE il flag, l'azionamento viene disabilitato.	
sysCtrlResetFault	BOOL	No	Reset fault : esegue un commando di reset del drive per uscire dallo stato di fault.	

Configurazione I/O:

Nome	Тіро	Immagine	Descrizione
sysRef250_Sp_Offset	INT	No	Offset ingresso riferimento velocità: è la copia del parametro di sistema SYS_SP_REF_OFFSET (paragrafo <u>4.5</u>). Imposta in mV l'offset relativo all'ingresso analogico ANAINO usato come riferimento di velocità. Espresso in unità interne (ui) dove: 1ui = 19,53 mV
sysRef_Sp_Offset	INT	Si	Offset ingresso riferimento velocità : è la variabile con immagine corrispondente a <i>sysRef250_Sp_Offset</i> . Utilizzare tale variabile se si intende impostare l'offset dell'ingresso con periodo diverso da 250us.
sysRef250_I_Offset	INT	No	Offset ingresso riferimento corrente: è la copia del parametro di sistema SYS_I_REF_OFFSET (paragrafo <u>4.5</u>). Imposta in mV l'offset relativo all'ingresso analogico ANAIN1 usato come riferimento di corrente. Espresso in unità interne (ui) dove: 1ui = 19,53 mV
sysRef_I_Offset	INT	Si	Offset ingresso riferimento corrente : è la variabile con immagine corrispondente a <i>sysRef250_I_Offset</i> . Utilizzare tale variabile se si intende impostare l'offset dell'ingresso con periodo diverso da 250us.
sysRef_Sp_Fak	UDINT	No	Scala riferimento velocità: è la copia del parametro di sistema SYS_SP_REF_FAK (paragrafo <u>4.5.1</u>). Espresso in [(CntVi)/(250us)*2exp16]/cnt adc II firmware calcola la scala in base ai limiti di velocità e alla risoluzione del convertitore analogico digitale che legge il valore di tensione dell'ingresso analogico, in base alla seguente formula: SYS_SP_REF_FAK = MAX (SYS_RG_POS_SPLIM, SYS_RG_NEG_SPLIM)/512 Il calcolo viene eseguito ogni 8ms. Non modificare da applicazione il valore calcolato dal firmware.
sysRef_I_Fak	UDINT	No	Scala riferimento corrente : è la copia del parametro di sistema <i>SYS_I_REF_FAK</i> (paragrafo <u>4.5.1</u>). Espresso in ui/ cnt adc Il firmware calcola la scala in base ai limiti di corrente e alla risoluzione del convertitore analogico digitale che legge il valore di tensione dell'ingresso analogico, in base alla seguente formula: <i>SYS_I_REF_FAK</i> = (<i>SYS_MOT_IDM</i>) / 512 Il calcolo viene eseguito ogni 8ms. <i>Non modificare da applicazione il valore</i> <i>calcolato dal firmware.</i>

11.3 Appendice 3 - Iterazione firmware - applicazione

Schema organizzazione logica firmware ed interazione applicativo

11.4 Appendice 4 - Schema generale firmware di regolazione e controllo

Le variabili rappresentati su sfondo grigio indicano che i rispettivi valori sono calcolati ed aggiornati dal firmware di regolazione e controllo e quindi non devono essere assolutamente modificati dall'applicazione utente. Le variabili in corsivo sono interne al firmware, non accessibili dall'utente.

Generatore profili:

Generatore rampe:

Blocco velocità/spazio:

11.5 Appendice 5 - Allarmi CANopen

Di seguito è riporata una tabella descrittiva con i codici di allarme CANopen (allarme di sistema nr 30 **Allarme su dispositivi fieldbus**). I codici sono visualizzati nella variabile di sistema SYS_FAIL IPA 21201 (Vedi paragrafo <u>4.6.8</u>).

Codice	Tipo di allarme	Descrizione	Rimedio
0x0000	Drive OK	Non ci sono errori rilevati dal drive sulla linea CANopen.	
0x0001	Errore Nodo Rete CANopen	E' stato impostato un numero di nodo non consentito.	Verificare le impostazioni nei parametri di sistema ($\S4.6$). Accertarsi che con linea CANopen abilitata il numero di nodo sia compreso tra 1 e 127.
0x0002	Errore lunghezza SDO	E' stato ricevuto un SDO di lunghezza non consentita.	Verificare che la lunghezza dei messaggi SDO spediti da master sia di 8 byte.
0x0004	Errore lunghezza NMT	E' stato ricevuto un messaggio NMT di lunghezza non consentita	Verificare che la lunghezza dei messaggi NMT spediti da master sia di 2 byte.
0x0008	Errore NMT non valido	E' stato ricevuto un messaggio NMT non valido.	Verificare che i messaggi NMT spediti da master abbiano uno dei seguenti codici: NMT_START (1) NMT_STOP (2) NMT_PRE (128) NMT_RESET (129) NMT_RES_COM (130)
0x0010	Errore di Bus Loss	Si è verificato un errore di timeout nel controllo di Node Guarding: non è arrivato un messaggio di NG o di SYNC all'interno del periodo impostato.	Per Node Guarding su segnale di sync: controllare l'impostazione del parametro di syncPeriod (1006h). Di default è impostato a 2ms Per controllo su messaggio di NG verificare il parametro di GuardTime (100Ch) e LifeTimeFactor (100Dh). Di default sono impostati rispettivamente a 20 e 3ms.
0x0020	Errore di Bus Off	Si è verificato un errore hardware sulla linea Can.	Controllare l'integrità delle connessioni della rete Can.
0x0040	Errore di stato operativo	E' stato abilitato il drive in stato di preoperativo.	Accertarsi che l'azionamento passi in stato di operativo prima di abilitalo.
0x0100	Errore lunghezza PDO1 in rx	Gli oggetti mappati sul PDO1 in ricezione eccedono la lunghezza di 8 byte.	Modificare la mappatura del PDO1 rx (paragrafo <u>4.6.3</u>).

0x0200	Errore lunghezza PDO2 in rx	Gli oggetti mappati sul PDO2 in ricezione eccedono la lunghezza di 8 byte.	Modificare la mappatura del PDO2 rx (paragrafo <u>4.6.4</u>).
0x0400	Errore di sincronizzazione	Si è verificato una perdita di sincronizzazione con il messaggio di sync proveniente dal master.	Verificare che il messaggio di sync del master abbia frequenza non variabile. Agire eventualmente sul parametro di correzione sincronizzazione (paragrafo <u>4.6.2</u>) o disabilitare l'allarme con il parametro SYS_SYNC_EN_ALARM 18301.
0x0800	Errore di mappatura PDO	I PDO non sono stati configurati correttamente.	Controllare che gli oggetti mappatti esistano e che siano mappati in modo consecutivo all'interno di un PDO. Se si è mappato dinamicamente i PDO, accertarsi che in risposta alla loro attivazione, il drive non abbia restituito un codice SDO di Abort.
0x1000	Errore lunghezza PDO1 in tx	Gli oggetti mappati sul PDO1 in trasmissione eccedono la lunghezza di 8 byte.	Modificare la mappatura del PDO1 tx (paragrafo <u>4.6.6</u>).
0x2000	Errore lunghezza PDO2 in tx	Gli oggetti mappati sul PDO2 in trasmissione eccedono la lunghezza di 8 byte.	Modificare la mappatura del PDO2 tx (paragrafo <u>4.6.7</u>).
0x4000	Errore linea occupata	Si è verificato un errore di timeout in trasmissione di messaggi SDO.	Verificare il carico della linea Can. Il timeout per la trasmissione di messaggi SDO è fissato di default a 200 ms.

11.6 Appendice 6 – Tabella indirizzi variabili DSP

Nome	indirizzo	Descrizione
lu_Ana	241	Corrente fase U
lv_Ana	242	Corrente fase V
lw_Ana	243	Corrente fase W
VdcBus	26d	Tensione DC-bus
Temp_mod	2e2	Temperatura modulo di potenza
Heat_Temp	2ed	Temperatura dissipatore
Ct_lsd	250	Componente diretta corrente erogata
Ct_lsq	251	Componente quadratura corrente erogata
Ct_Vsu	266	Richiesta di tensione fase U
Ct_Vsv	267	Richiesta di tensione fase V
HwlcMax	2c6	Limite di corrente Hardware
Loc_Imax	2ea	Limite di corrente in uscita al modello termico
PjTot	2d7	Potenza di junzione dissipata totale
LocTjMax	2e9	Massima temperatura di junzione