Astel ISC-01 & ISC-02

Guida per l'utente

ATTENZIONE! LE APPARECCHIATURE ELETTRICHE POSSONO COSTITUIRE CAUSA DI PERICOLO PER COSE E PERSONE

Questo manuale illustra le caratteristiche elettriche e di programmazione dei controllori della serie ISC.

Leggere attentamente prima di procedere nell'installazione.

È responsabilità dell'utilizzatore assicurarsi che l'installazione risponda alle normative di sicurezza previste dalla legge.

Per qualsiasi informazione non contenuta nel presente manuale rivolgersi a:

ASTEL

Electronics and industrial automation

Via Torino, 253 - 10015 lvrea Tel. 0125 - 23.01.05 / 23.90.72 Fax 0125 - 63.34.82

e-mail: techsup@astel.it web: http://www.astel.it

© 1995-2003 ASTEL Tutti i diritti riservati.

Nessuna parte del presente documento può essere copiata o riprodotta in nessuna forma o in qualsiasi modo senza il previo consenso scritto della ASTEL. La ASTEL non presta alcuna garanzia riguardo alla presente documentazione e non si assume alcuna implicita garanzia di commerciabilità o idoneità per un particolare scopo. Le informazioni contenute nel presente manuale sono soggette a modifiche senza preavviso. La Astel non si assume alcuna responsabilità per errori di qualsiasi genere che potessero essere contenuti nel presente documento.

SOMMARIO

INFORMAZIONI GENERALI	7
Introduzione e prestazioni	7
Altre caratteristiche	7
Interfaccia RS-232 per operazioni in singolo asse	8
Interfaccia RS-422 per controllo di assi multipli	8
Strumenti software	8
PROGRAMMAZIONE	10
Operazioni con condivisione della linea	10
Programmazione della velocità	10
Movimenti manuali	10
Punto di tappa ("trip point")	10
Rampe di accelerazione e decelerazione	11
Attributo di passo singolo	11
Memorizzazione dei programmi e dei parametri	11
Ingresso di GO	11
Programmazione delle correnti	12
COMUNICAZIONI	14
RS-422 (solo per il modello ISC-02)	14
Modulo di adattamento RS2DIFF	14
Descrizione dei segnali	15
Velocità di comunicazione	15
Note sulla comunicazione multi asse	16
Considerazioni sui collegamenti	
Segnale di movimento	
Protocollo di comunicazione	
Esempio di interconnessione RS-485	18
INTERCONNESSIONI	20
Connettore posteriore Morsettiera (mod. ISC-0x-D-32)	20
Descrizione dei segnali	
Note sui segnali	22
Connettore frontale	
Velocità di comunicazione	
Considerazioni software	27

PARAMETRI OPERATIVI	29
Inizializzazione	29
Operazioni di comunicazione	30
Inizializzazione del singolo asse	30
Inizializzazioni in asse multiplo	
Nomi raccomandati	31
Nomi non validi	31
INTRODUZIONE ALLA PROGRAMMAZIONE	33
Singolo asse	33
Esempio di comandi	33
Risultati	34
Comandi per multi asse	34
Esecuzione delle istruzioni	34
Comandi di interruzione	
Movimenti manuali e ricerca dello zero	37
Movimenti ad alta velocità	38
Punto di tappa e attesa dello stato delle porte	38
Memoria non volatile	38
Predisposizioni di fabbrica	39
COMANDI SOFTWARE	42
Introduzione	42
Modifica di un programma esistente	43
Passo singolo (Master/Slave)	43
Funzione Tappa	44
Interruzione	
Stop	47
Reset Software	
Lettura e scrittura porte	
Impostazione velocità manuali	
Caricamento e pulizia della memoria	
Impostazione risoluzione	
Controllo delle correnti	
Ricerca della posizione di zero	53
Risoluzione: passo intero/mezzo passo	
Velocità iniziale	
Jump	57
Pendenza delle rampe	58

Test delle porte	59
Movimento a velocità costante	
Imposta origine.	
Modalità programma	
Lista programma	
Movimento relativo all'origine	
Memorizzazione dei parametri	
Punto di tappa	
Velocità finale	67
Attesa	68
Esamina i parametri	69
Lettura posizione corrente	70
Lettura memoria	71
Lettura dei finecorsa	72
Movimento in direzione positiva	73
Movimento in direzione negativa	
Lettura stato del movimento.	
Scrittura in memoria.	76
Generazione profili	77
Riepilogo dei comandi	77
Riepilogo dei comandi	
INSTALLAZIONE	80
INSTALLAZIONE Velocità di comunicazione	80
Velocità di comunicazione. Polarità segnali in uscita.	80 81
Velocità di comunicazione	80 8181
Velocità di comunicazione	80 818181
Velocità di comunicazione	80 81818182
Velocità di comunicazione. Polarità segnali in uscita. RP1. RP2. RP11. RP8.	
Velocità di comunicazione. Polarità segnali in uscita. RP1. RP2. RP1. RP8. Indicazioni visive.	
Velocità di comunicazione. Polarità segnali in uscita. RP1. RP2. RP11. RP8.	
Velocità di comunicazione. Polarità segnali in uscita. RP1. RP2. RP1. RP8. Indicazioni visive. Note sui cablaggi.	
Velocità di comunicazione	
Velocità di comunicazione. Polarità segnali in uscita. RP1	
Velocità di comunicazione. Polarità segnali in uscita. RP1	
INSTALLAZIONE Velocità di comunicazione Polarità segnali in uscita RP1	
Velocità di comunicazione. Polarità segnali in uscita. RP1	

Regimi di funzionamento	87
Condizioni ambientali	
Dimensioni e peso	88
APPENDICI	90
Programma esempio	90
	90
MODELLI E CODICI	93

INFORMAZIONI GENERALI

Introduzione e prestazioni

La scheda ISC è un completo ed intelligente sistema di controllo per motori stepper. Può essere configurata per operare autonomamente od accoppiata ad un computer remoto, ad un terminale od a qualsiasi dispositivo dotato di una interfaccia seriale.

Le comunicazioni sono effettuate per mezzo di comandi mnemonici inviati tramite una linea RS-232 o RS-422/485; la velocità di trasmissione è selezionabile tra 300 e 38,400 bps.

Il controller ISC contiene una memoria non volatile di 2048 byte per la memorizzazione dei parametri operativi e dei i programmi utente. L'utilizzo di un completo isolamento ottico e la possibilità di effettuare le comunicazioni attraverso una interfaccia seriale differenziale, garantisce una alta affidabilità anche in ambienti industriali particolarmente "difficili".

Altre caratteristiche

Comunicazioni effettuate attraverso linea RS232

Possibilità di effettuare operazioni multi asse in RS-422/485 (modello ISC-02)

Possibilità di assegnare indirizzi diversi a diversi assi (modello ISC-02)

Velocità fino a 23,000 passi al secondo

Velocità modificabile durante il movimento con raccordo in rampa.

Funzionamento in passo intero, mezzo passo e quarto di passo.

Rampe di accelerazione e di decelerazione programmabili indipendentemente.

Rampe modificabili anche durante il movimento.

24 bit di risoluzione nel posizionamento (movimenti fino a 16 milioni di passi)

Comandi di posizionamento assoluto e relativo.

Possibilità delle lettura della posizione durante il movimento.

Possibilità di colloquio seriale durante il movimento.

5 porte di ingresso/uscita optoisolate per usi definiti dall' utente

Possibilità di esecuzione di diversi programmi secondo il valore presente sulle porte.

Punto di "tappa" programmabile con uscita opto-isolata

Comando di "stop dolce" e ingresso di STOP.

Uscita di "movimento in corso".

Ingressi di finecorsa e di zero opto-isolati.

Polarità dei finecorsa programmabile.

Tutte le uscite sono programmabili in polarità.

Tutte le uscite sono open-collector. con tensione massima di 30Vdc.

Seguenze di ricerca della posizione di zero.

Più di 30 comandi mnemonici.

Ingressi dedicati per joysticks

Possibilità di inizio ciclo alla ricezione di un segnale esterno.

Possibilità di eseguire le istruzioni in modo "sigle step".

2048 bytes di memoria non volatile.

Interfaccia RS-232 per operazioni in singolo asse

Il controller ISC è compatibile con lo standard RS232 per il controllo di un asse singolo e per il controllo in catena di assi multipli.

L'interfaccia seriale è disponibile sia sul pannello frontale, sia sul retro della scheda. Sul pannello frontale il connettore è compatibile con lo standard AT a 9 poli.

Interfaccia RS-422 per controllo di assi multipli

Il protocollo RS-422 è raccomandato per applicazioni di controllo di due o più assi. Il PC o il terminale che utilizza l'interfaccia RS232 può comunicare con il controller ISC utilizzando il modulo opzionale RS2DIFF o analogo convertitore.

Questo piccolo adattatore prevede una conversione trasparente tra l'interfaccia RS232 "single-ended" e quella RS422/485 di tipo differenziale.

Strumenti software

Per l'utilizzo del controller ISC sono disponibili file di esempio sia in BASIC che in linguaggio C.

In aggiunta è possibile ordinare il pacchetto software SMARTSTEP che consente il completo utilizzo delle funzioni del controller ISC.

PROGRAMMAZIONE

Astel - Italy ISC-01 / ISC-02 Programmazione

PROGRAMMAZIONE

Operazioni con condivisione della linea

Multiple unità ISC-02 possono essere controllate attraverso un'unica porta di comunicazione per mezzo della modalità "Party Line". Ogni scheda viene inizializzata assegnandole un proprio "nome" contraddistinto da un carattere alfanumerico prima di effettuare qualsiasi operazione. In questo modo possono essere connesse in parallelo fino a 32 schede, controllandole per mezzo di un unico computer remoto o di un terminale dotato di una porta di comunicazione RS422/485. Questa modalità permette di effettuare comunicazioni full duplex con tutti i controller posti in ricezione in attesa dei comandi.

NOTA: é consigliabile che tutte le schede configurate in multi asse vengano alimentate contemporaneamente.

Programmazione della velocità

Le velocità sono specificate in "passi al secondo". La velocità iniziale è un parametro indipendente da quella finale. I parametri relativi alle rampe sono calcolati internamente a partire dalle velocità impostate, dalle pendenze delle rampe e dalla risoluzione prescelta. I movimenti sono possibili fino a velocità di 23,000 passi al secondo.

Movimenti manuali

Gli ingressi per il joystick permettono di effettuare posizionamenti manuali. Durante il movimento, la posizione viene continuamente aggiornata semplificando le operazioni di *autoapprendimento* o di allineamento.

Punto di tappa ("trip point")

Il "punto di tappa" é una posizione programmabile che consente l'esecuzione di operazioni predefinite quando il motore si trova sul punto voluto. Una tipica

applicazione può essere quella di aprire o chiudere una valvola quando il motore supera una determinata posizione. Possono essere eseguite delle sequenze preprogrammate basate sul raggiungimento di una posizione. È inoltre possibile verificare il raggiungimento del punto di tappa attraverso specifici comandi software inviati dal terminale remoto.

Un segnale di uscita è disponibile per segnalare il superamento della posizione impostata.

Rampe di accelerazione e decelerazione

Il controller può effettuare raccordi in rampa sia in accelerazione sia in frenata per raggiungere le velocità impostate dall'utente. La pendenza della rampa è modificabile durante il movimento ed il punto di tappa può essere utilizzato per segnalare i cambiamenti di velocità.

Attributo di passo singolo

È possibile specificare i comandi con un attributo di "passo singolo" per agevolare le procedure di messa a punto di un sistema. In questo caso il controller sospenderà l'esecuzione dei comandi finché non avrà ricevuto un determinato impulso esterno consentendo così la sincronizzazione del movimento per mezzo di condizioni esterne.

Memorizzazione dei programmi e dei parametri

Il controller ISC possiede 2048 byte di memoria non volatile per la memorizzazione dei parametri operativi, delle velocità e dei programmi utente. Il terminale remoto può accedere direttamente a qualsiasi locazione di memoria per effettuare operazioni di lettura e scrittura.

Ingresso di GO

L'ingresso di GO permette l'esecuzione delle sequenze che l'utente ha inserito attraverso l'interfaccia seriale

Il comando di GO può essere inviato attraverso la porta seriale (definito come comando "G") o attraverso l'ingresso ausiliario di GO (foto isolato e attivo a livello basso 5/12/24Vcc) e darà immediatamente inizio alla sequenza.

Nel caso di utilizzo dell'ingresso ausiliario **non** è più necessario il collegamento con un computer remoto o con un terminale, consentendo la realizzazione di un sistema completo, di basso costo e completamente indipendente.

Programmazione delle correnti

Quando il controller ISC è collegato con una scheda di potenza Astel (p.e. STP170 o STP250) è possibile modificare le correnti di funzionamento durante l'esecuzione dei cicli macchina.

Queste operazioni sono rese possibili attraverso l'utilizzo dei segnali di output e dell'uscita di ENABLE.

È inoltre possibile programmare la funzione di auto spegnimento che consente di annullare la corrente di pilotaggio del motore permettendo una drastica riduzione dei consumi ed evitare il surriscaldamento delle schede di potenza.

COMUNICAZIONI

COMUNICAZIONI

RS-422 (solo per il modello ISC-02)

Tra le opzioni di comunicazione esiste la possibilità di utilizzare il protocollo RS-422/485 e di scegliere se operare in singolo o multiplo asse. La modalità singola è usata per assegnare un nome unico ad ogni singolo asse remoto. In modalità multipla, invece, ogni controller risponde al computer remoto quando riceve un identificativo che corrisponde a quello memorizzato come proprio nome.

La modalità singola consente un semplice utilizzo delle comunicazioni verso un asse per le operazioni di installazione e di debug. Le operazioni di setup normalmente coinvolgono la scelta dei parametri operativi, la scrittura e la lettura dei programmi utente e l' assegnazione del nome della scheda per le successive operazioni in multi asse.

Modulo di adattamento RS2DIFF

Una volta che le schede sono state configurate e il loro identificativo è stato memorizzato all' internodella memoria non volatile, possono essere collegate in parallelo per effettuare le operazioni in multi asse. Un interruttore posto sul modulo di interfaccia permette di selezionare il funzionamento singolo o multiplo.

Le comunicazioni in asse singolo permettono a terminali o computer di utilizzare la capacità delle schede ISC di interfacciamento diretto tramite un editor di linea. Il protocollo in multi asse necessita una corretta sequenza di caratteri in ingresso per indirizzare un asse. In questo caso si raccomanda l' utilizzodi un personal computer per semplificare le operazioni di programmazione.

Descrizione dei segnali

	INTERFACCIA SERIALE SUL CONNETTORE FRONTALE							
PIN N.	NOME SEGNALE	TIPO	NOTE					
1	PLINE	Input	Multi asse (ISC-02)					
2	RXD	Input	RS232-C					
3	TXD	Output	RS232-C					
4	DTR	Pull-up	12V pull-up attraverso 3300					
5	GND		Riferimento di massa					
6	VCC		+5Vdc 100mA massimi					
7	TXD (inv)	Output	solo per RS422 (ISC-02)					
8	RXD (inv)	Input	solo per RS422 (ISC-02)					
9	MOVING	Output	Indicatore di asse in movim.					

Velocità di comunicazione

Le velocità di comunicazione seriale sono selezionabili tra 300 e 19,200 bps. La predisposizione di fabbrica è di 9,600 bps.

La tabella seguente illustra le altre velocità selezionabili tramite dip-switch sulla scheda:

Baud rate	SW1-1	SW1-2	SW1-3
300	OFF	ON	ON
1200	OFF	OFF	ON
2400	OFF	ON	OFF
4800	ON	OFF	OFF
9600	OFF	OFF	OFF
19,200	ON	ON	OFF
38,400	ON	OFF	ON

(vedere l'appendice per individuare la posizione del dip-switch)

Note sulla comunicazione multi asse

I prodotti ISC sono disponibili con un' interfacciaRS-422/485 a 4 fili. I trasmettitori ed i ricevitori differenziali garantiscono un' elevataaffidabilità di comunicazione anche in presenza di disturbi. Il controller ISC consente che un singolo computer possa controllare fino a 32 assi remoti. Le schede ISC sono compatibili sia con le specifiche RS-422 che con quelle RS-485. In termini generali, l' implementazione hardware segue lo standard esteso RS-485 con capacità di interfacciamento più elevate.

Ogni unità contiene:

- 1. ricevitore RS-485: attivo al 100%
- 2. trasmettitore RS-485; si attiva alla ricezione del nome dell' asse

Il trasmettitore può essere attivato al 100% se viene utilizzata la modalità singolo asse.

Il computer remoto:

- 1. ricevitore RS-485; attivo al 100%
- 2. trasmettitore RS-485; attivo al 100%

Per il computer remoto, usando l'appositoconvertitore, è possibile selezionare la modalità asse singolo o asse multiplo.

Considerazioni sui collegamenti

L' interfacciaRS-422/485 è adatta per collegamenti fino ad una distanza di 1200 metri circa. Si raccomanda di usare un secondo terminatore (120 ohm) se la lunghezza del collegamento supera 6 metri o se si opera in un ambiente disturbato.

Evitare di raggruppare i cavi del motore con i cavi dei segnali. L' altæorrente e le frequenze generate dai dispositivi a commutazione si potrebbero accoppiare, anche se si usasse un cavo schermato (a meno di non impiegare una schermatura garantita al 100%). Evitare la vicinanza della scheda e dei cablaggi dei segnali con relè, motori ed altri dispositivi che emettano RF.

Il convertitore di interfaccia deriva la sua alimentazione da quella della scheda ISC.

Per evitare malfunzionamenti è conveniente che tutte le schede siano spente al medesimo momento o, preferibilmente, che l' alimentazioneal convertitore sia prelevata solo dal primo asse della catena.

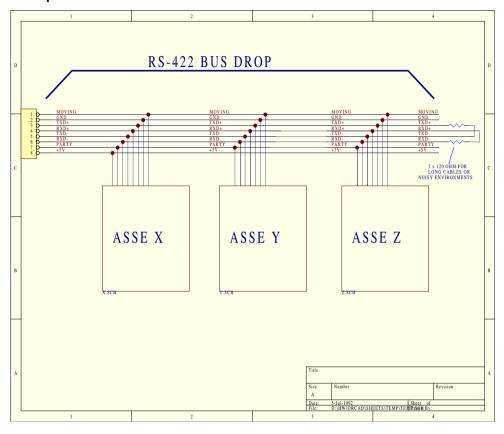
Segnale di movimento

Sia sul connettore frontale, sia su quello posteriore, è presente un altro segnale chiamato *moving* che segnala ad altri dispositivi che il corrispondente asse sta effettuando un movimento.

Protocollo di comunicazione

Ogni unità collegata sul bus seriale si pone in attesa di un carattere di start "globale" seguito da un indirizzo specifico per ogni scheda. Un volta che questa sequenza viene ricevuta, la scheda indirizzata abilita il proprio trasmettitore RS-485. La scheda attivata ritrasmette il carattere di start e riceve, ritrasmettendola, il rimanente della stringa fino al carattere di terminazione.

Il carattere di start e quello di terminazione sono identici ("line feed", 0x0d, 10d). Questa procedura consente le comunicazioni con le altre schede senza un software eccessivamente complicato.


ESEMPIO:

Si supponga di avere 2 assi che indirizzo "X" e "Y":

Computer remoto (MASTER): <LF>X+1000<LF>Y-500<LF>XZ<LF>
Prima scheda (SLAVE): X+1000<LF>Y-500<LF>XZ288<LF>

I caratteri ritrasmessi consentono un controllo e indicano la corretta ricezione dei dati dalla scheda "SLAVE", per esempio attraverso il comando "Z".

Esempio di interconnessione RS-485

INTERCONNESSIONI

Astel - Italy ISC-01 / ISC-02 Interconnessioni

INTERCONNESSIONI

Connettore posteriore Morsettiera (mod. ISC-0x-D-32)

I segnali del connettore posteriore sono nominati come segue (le posizioni si riferiscono al connettore visto da dietro):

A1		A2	А3	A4	A5	A6	A7	A8	AS	9 /	A10	A1	1 A1	2 A1	3 A1	4 A1	5 A1	6
	В	1	B2	ВЗ	B4	B5	В6	В7	B8	В9	. E	310	B11	B12	B13	B14	B15	B16

Descrizione dei segnali

PIN	NOME	NOTE
N.	SEGNALE	
A1	VCC_F	+5V dc ausiliario (max 100mA)
A2	XLIMA	Finecorsa A (foto isolato)
A3	XLIMB	Finecorsa B (foto isolato)
A4	XJO2	Ingresso JOG + (movim. manuali in direz. posit.)
A5	XJO1	Ingresso JOG - (movim. manuali in direz. negat.)
A6	XSTOP	Ingresso di stop per emergenza
A7	XGO	Ingresso di inizio ciclo
A8	XHOME	Ingresso di "posizione zero"
A9	V_OPT_I	Alimentazione per i fotoisolatori 1
A10	G_OPT_X	Riferimento di massa per i fotoisolatori ²
A11	XP5	Porta di ingresso/uscita generica (foto isolata)
A12	XP4	Porta di ingresso/uscita generica (foto isolata)
A13	XP3	Porta di ingresso/uscita generica (foto isolata)
A14	XP2	Porta di ingresso/uscita generica (foto isolata)
A15	XP1	Porta di ingresso/uscita generica (foto isolata)
A16	V_OPT_X	Alimentazione per i fotoisolatori ³
B1	POW_1	Ingresso di alimentazione
B2	POW_2	Ingresso di alimentazione
B3	XT-	Dati trasmessi dalla scheda ISC (solo ISC-02)
B4	XT+	Dati trasmessi dalla scheda ISC

¹ Alimentazione per i segnali: XLIMA, XLIMB, XJO1, XJO2, XSTOP, XGO, XHOME

Aumontazione per roognam. Ar 1, Ar 2, Ar 6, Ar 4,

² Riferimento per i segnali: XP1,XP2, XP3, XP4, XP5

³ Alimentazione per i segnali: XP1, XP2, XP3, XP4, XP5

B5	RX-	Dati ricevuti dalla scheda ISC (solo ISC-02)
B6	RX+	Dati ricevuti dalla scheda ISC
B7	GND_COMM	Riferimento di massa per la linea seriale
B8	G_OPT_O	Riferimento di massa per i fotoisolatori 1
B9	XTRIP	Uscita "punto di tappa"
B10	XQUAR	Uscita per porre il driver in modalità quarto di passo
B11	XMOV	Uscita di movimento
B12	XDIR	Uscita di direzione
B13	XSTEP	Uscita di passo (impulsi alla scheda driver)
B14	XENA	Abilitazione al driver di potenza
B15	XHALF	Selezione funzionamento passo intero-mezzo passo
B16	V_OPT_O	Alimentazione per i fotoisolatori ²

Connettore posteriore DIN 41612 (mod. ISC-0x-R-32)

Descrizione dei segnali

PIN	NOME	NOTE
N.	SEGNALE	
32C	VCC_F	+5V dc ausiliario (max 100mA)
30C	XLIMA	Finecorsa A (foto isolato)
28C	XLIMB	Finecorsa B (foto isolato)
26C	XJO2	Ingresso JOG + (movim. manuali in direz. posit.)
24C	XJO1	Ingresso JOG - (movim. manuali in direz. negat.)
22C	XSTOP	Ingresso di stop per emergenza
20C	XGO	Ingresso di inizio ciclo
18C	XHOME	Ingresso di "posizione zero"
16C	V_OPT_I	Alimentazione per i fotoisolatori 3
14C	G_OPT_X	Riferimento di massa per i fotoisolatori 4
12C	XP5	Porta di ingresso/uscita generica (foto isolata)
10C	XP4	Porta di ingresso/uscita generica (foto isolata)
8C	XP3	Porta di ingresso/uscita generica (foto isolata)
6C	XP2	Porta di ingresso/uscita generica (foto isolata)
4C	XP1	Porta di ingresso/uscita generica (foto isolata)
2C	V_OPT_X	Alimentazione per i fotoisolatori 5

¹ Riferimento per i segnali: XTRIP, XQUAR, XMOV, XDIR, XSTEP, XENA, XHALF

_

²Alimentazione per i segnali: XTRIP, XQUAR, XMOV, XDIR, XSTEP, XENA, XHALF

³ Alimentazione per i segnali: XLIMA, XLIMB, XJO1, XJO2, XSTOP, XGO, XHOME

⁴ Riferimento per i segnali: XP1,XP2, XP3, XP4, XP5

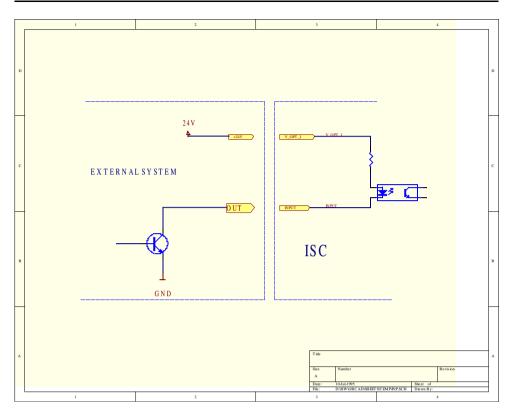
32A	POW 1	Ingresso di alimentazione
30A	POW_2	Ingresso di alimentazione
28A	XT-	Dati trasmessi dalla scheda ISC (solo ISC-02)
26A	XT+	Dati trasmessi dalla scheda ISC
24A	RX-	Dati ricevuti dalla scheda ISC (solo ISC-02)
22A	RX+	Dati ricevuti dalla scheda ISC
20A	GND_COMM	Riferimento di massa per la linea seriale
18A	G_OPT_O	Riferimento di massa per i fotoisolatori 3
16A	XTRIP	Uscita "punto di tappa"
14A	XQUAR	Uscita per porre il driver in modalità quarto di passo
12A	XMOV	Uscita di movimento
10A	XDIR	Uscita di direzione
8A	XSTEP	Uscita di passo (impulsi alla scheda driver)
6A	XENA	Abilitazione al driver di potenza
4A	XHALF	Selezione funzionamento passo intero-mezzo passo
2A	V_OPT_O	Alimentazione per i fotoisolatori ⁴

Note sui segnali

I segnali di input (XLIMA, XLIMB, XHOME, XJO1, XJO2, XGO, XSTOP) sono opto-isolati e collegabili ad uscite a collettore aperto senza necessità di provvedere a resistenze aggiuntive di pull-up.

Attraverso la sostituzione delle resistenze di personalizzazione (Vedi Personalizzazione) è possibile scegliere la tensione nominale di funzionamento (5V, 12V, 24V) per rendere agevole l'interfacciamento ai sistemi più diversi.

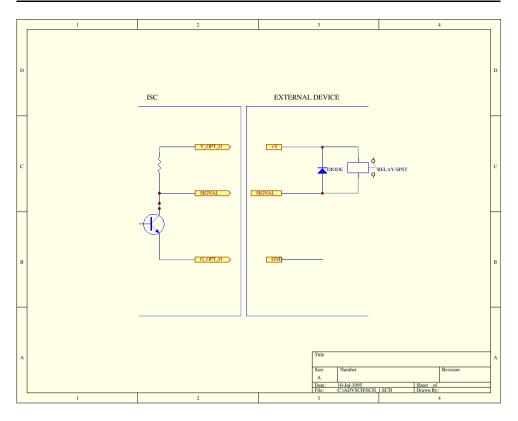
Il segnale al quale deve essere applicata la tensione di alimentazione dei LEDs è il pin V_OPT_I presente sul pin 18C (ISC-0x-R-x2) o sul pin A9 (ISC-0x-D-x2).


Schema di collegamento:

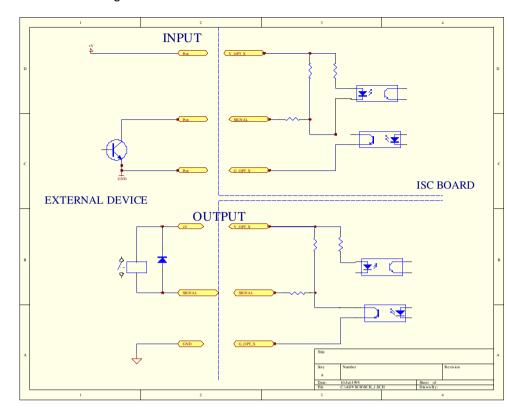
_

⁵³ Alimentazione per i segnali: XP1,XP2, XP3, XP4, XP5

³ Riferimento per i segnali: XTRIP, XQUAR, XMOV, XDIR, XSTEP, XENA, XHALF


⁴⁵ Alimentazione per i segnali: XTRIP, XQUAR, XMOV, XDIR, XSTEP, XENA, XHALF

I segnali di uscita XHALF, XENA, XSTEP, XDIR, XMOV, XQUAR, XTRIP sono opto-isolati e in configurazione open-collector. Attraverso il montaggio di adeguata resistenza di personalizzazione (Vedi) è possibile avere una resistenza interna di pull-up per il collegamento a schede di azionamento non dotate di isolamento galvanico. Il segnale di riferimento di massa è G_OPT_O presente sul pin 16A (ISC-0x-R-x2) o sul pin B8 (ISC-0x-D-x2) il segnale di alimentazione per le resistenze di pull-up è V_OPT_O presente sul pin 32A (ISC-0x-R-x2) o sul pin B16 (ISC-0x-D-x2).


Schema di collegamento:

Astel - Italy ISC-01 / ISC-02 Interconnessioni

I segnali di ingresso/uscita XP1, XP2, XP3, XP4, XP5 sono opto-isolati e, tramite i ponticelli di personalizzazione, sono utilizzabili come ingressi o come uscite. Il segnale di riferimento di massa è G_OPT_X presente sul pin 20C (ISC-0x-R-x2) o sul pin A10 (ISC-0x-D-x2) il segnale di alimentazione per le resistenze di pull-up è V_OPT_X presente sul pin 32C (ISC-0x-R-x2) o sul pin A16 (ISC-0x-D-x2).

Schema di collegamento:

Astel - Italy ISC-01 / ISC-02 Interconnessioni

Connettore frontale

INTERFACCIA SERIALE SUL CONNETTORE FRONTALE						
PIN N.	NOME	TIPO	NOTE			
	SEGNALE					
1	PARTY	Input	Operazioni in multi asse			
2	RXD	Input	RS232-C			
3	TXD	Output	RS232-C			
4	DTR	Pull-up	+12V pull-up attraverso 3300			
5	GND	Power	Riferimento di massa			
6	+5V dc	Power	+5V ausil. (max 100mA)			
7	TXD (inv)	Output	Solo per RS-422 (ISC-02)			
8	RXD (inv)	Input	Solo per RS-422 (ISC-02)			
9	MOVING	Output	Asse in movimento (O.C.)			

Velocità di comunicazione

Le velocità di comunicazione seriale sono selezionabili tra 300 e 19,200 bps. La predisposizione di fabbrica è di 9,600 bps.

La tabella seguente illustra le altre velocità selezionabili tramite dip-switch sulla scheda:

Baud rate	SW1-1	SW1-2	SW1-3
300	OFF	ON	ON
1200	OFF	OFF	ON
2400	OFF	ON	OFF
4800	ON	OFF	OFF
9600	OFF	OFF	OFF
19,200	ON	ON	OFF
38,400	ON	OFF	ON

Ogni unità utilizza un frame a 10 bit con 1 bit di start, 1 bit di stop e nessuna parità.

Considerazioni software

All' internodel software di gestione, il controllo del movimento ha la massima priorità pertanto i comandi ricevuti ed interpretati dalla scheda possono subire ritardo se sono stati inviati mentre il movimento si svolge a velocità particolarmente elevate. Questa condizione può accadere per velocità di movimento superiori a 10,000 passi al secondo. In applicazioni nelle quali i comandi sono inviati durante il movimento, l' utentedeve prestare attenzione ad attendere la ritrasmissione dei dati ricevuti per evitare errori di comunicazione. Un' altra tecnica è quella di inserire un piccolo ritardo tra i caratteri inviati.

PARAMETRI OPERATIVI

PARAMETRI OPERATIVI

Inizializzazione

La scheda di controllo ISC viene inizializzata ogniqualvolta viene alimentata o in caso di ricezione del carattere "^C" (Control C) attraverso l' interfacciæeriale, la scheda viene inizializzata. Dopo l' inizializzazione, tutti i parametri operativi vengono riportati ai valori stabiliti dal fabbricante. La velocità di comunicazione è impostata secondo la predisposizione dei dip-switch e, nel caso di scheda ISC-02, viene controllata la condizione di multi asse. Viene effettuato un accesso alla memoria non volatile e vengono caricati i parametri operativi più recentemente impostati tramite il comando "S" che vanno a rimpiazzare quelli situati nei registri di lavoro del controller. I parametri seguenti vengono memorizzati e richiamati in blocco:

PARAMETRO	VALORI STANDARD
Velocità iniziale (I)	400 passi al secondo
Velocità finale (V)	5016 passi al secondo
Fattore di divisione (D)	1
Pendenza delle rampe (K)	5/5
Punto di tappa (T)	disabilitato
Passo intero/ mezzo passo/ quarto di passo (H)	Passo intero
Autospegnimento (E)	abilitato
Polarità segnale di abilitazione (E)	alto
Polarità finecorsa (H)	basso
Lettura continua della posizione (Z)	disabilitata
Nome (dopo il reset)	non definito

NOTA: I comandi che modificano questi parametri utilizzano i registri interni al controller. La memorizzazione all' internodella memoria non volatile è effettuata dal comando "Save". Una volta che l'inizializzazione è terminata, l' ingressodi "GO" e di "JOG" diventano attivi per permettere ad un impulso presente su questi ingressi di eseguire posizionamenti manuali o un programma residente nella memoria utente. In questo caso non è necessario l' usodi un terminale o di un computer remoto per l' esecuzione di programmi memorizzati in precedenza.

Operazioni di comunicazione

I termini "terminale" e "computer remoto" sono usati indifferentemente e indicano qualsiasi dispositivo dotato di un' interfacciaRS-232 standard. Un carattere è una sequenza di 8 bit consecutivi (1 o 0). Ogni singolo carattere rappresenta un numero, una lettera, un segno di punteggiatura od un controllo come definito dallo standard internazionale ASCII.

La velocità con la quale i caratteri sono spedito o ricevuti è chiamata "Baud rate".

Inizializzazione del singolo asse

La scheda ISC controlla i caratteri in ingresso in attesa di una corretta sequenza di inizio. In modalità singolo asse il carattere di start è rappresentato da uno spazio

(" ", 0x20, 32dec). Se il controller è correttamente collegato, risponderà con un messaggio "Vx.xx" dove x.xx rappresenta la versione di firmware installato. Da questo momento l' utente può lavorare inviando comandi di movimento o programmi.

Inizializzazioni in asse multiplo

Le operazioni in asse multiplo richiedono che ad ogni controller sia assegnato un nome diverso dagli altri prima che qualsiasi comunicazione venga iniziata. Per assegnare un nome ad una scheda, è necessario, in modalità asse singolo, inviare il carattere che identificherà l' assein oggetto subito prima del carattere "spazio" e eseguire un comando "S" (Save) subito dopo.

Quando la scheda inizia le operazioni in asse multiplo, legge il suo nome all' internodella memoria non volatile, non effettua la procedura di invio della versione di firmware e si pone in condizione di attesa di ricevere il proprio nome.

Il nome deve essere inviato prima di un comando o di una sequenza di programmazione seguito da un LineFeed ("^J", "^Enter" o Hex 0A).

L' assegnazione del nome alla scheda rimane attivo fino alla prossima reinizializzazione hardware.

30

Nomi raccomandati

Gli assi possono essere chiamati con i seguenti nomi:

- Tutte le lettere maiuscole da "A" fino a "Z"
- Tutte le lettere minuscole da "a" fino a "z"
- · I seguenti caratteri speciali:

ASCII	HEX
[5B
\	5C
]	5D
^	5E
_	5F
'	60

Nomi non validi

I seguenti caratteri non possono essere utilizzati:

ASCII	HEX
^C	03
CR	0D
LF	0A
@	40

INTRODUZIONE ALLA PROGRAMMAZIONE

INTRODUZIONE ALLA PROGRAMMAZIONE

Singolo asse

Una linea di comando è formata da un carattere ASCII seguito da 0, 1 o 2 numeri a seconda del tipo di comando. L' utentepuò modificare la linea prima di inviarla utilizzando sia il tasto BACKSPACE sia il tasto DEL. La linea di comando può essere composta da 12 caratteri, inclusi gli spazi. Gli spazi tra il carattere di comando ed il primo numero dell' argomento sono opzionali. I comandi di movimento formati da due numeri richiedono almeno uno spazio tra gli argomenti. I comandi di movimento possono essere sia minuscoli sia maiuscoli.

In modalità "comandi", il comando viene eseguito non appena viene ricevuto un ritorno carrello (CR), in asse singolo o "^J"(LF) in asse multiplo. Il controller ISC risponderà con un CR e un LF a significare l' avvenuta accettazione del comando.

Esempio di comandi

	COMANDO	SIGNIFICATO
1	+ 1000 (CR)	Esegue 1000 passi in direzione positiva
2	+1000 (CR)	Come linea 2
3	E 0 (CR)	Disabilita la corrente nel motore
4	E0 (CR)	Come linea 3
5	E (CR)	Come linea 3 (0 è usato per standard)
6	R -1000 (CR)	Muovi alla posizione 1000

NOTA: Alcuni comandi, come Jump (salta) e Loop (cicla), sono validi solo se usati all' internodi programmi e non possono essere utilizzati in modalità diretta. Ad esempio i seguenti comandi possono essere inseriti solo in un programma e non hanno effetto se inviati da terminale:

J 0 5 (CR) Salta alla locazione 0, 6 volte (5+1).

J0 5(CR) Come sopra.

Risultati

Alcuni comandi prevedono dei risultati trasmessi dalla scheda verso il terminale in forma numerica. Questi consistono in numeri che possono essere preceduti da spazi e che sono seguiti dal carattere CR e da LF. I numeri negativi sono preceduti dal segno meno (-).

Comandi per multi asse

Durante le operazioni in modalità multi asse, i caratteri NON saranno ritrasmessi al terminale finché la scheda non riconoscerà il proprio nome preceduto da CR ("^J" o "^Enter").

Tutti gli assi presteranno attenzione alla linea TXD del terminale, una volta che il nome corretto sarà stato ricevuto, l' assedentificato inizierà a ritrasmettere i propri comandi come descritto prima.

Esecuzione delle istruzioni

Per ogni comando di movimento si distinguono quattro fasi:

- 1. Riconoscimento
- 2. Esecuzione
- 3. Trasmissione del risultato
- 4. Completamento del movimento

Tutti gli altri comandi hanno tre stati:

- 1. Riconoscimento
- 2. Esecuzione
- 3. Trasmissione del risultato

Durante lo stato di attesa, il controller controllerà continuamente lo stato dei segnali di Jog, di GO e la ricezione dei comandi.

Di seguito vi è una descrizione delle sequenze operative che vengono eseguite al ricevimento di un comando:

FASE1: Riconoscimento

ISC-01 / ISC 02

Il comando in ingresso viene prelevato tramite l' interfacciæeriale RS-232 o RS-422/485.

I comandi e le informazioni relative sono memorizzati in una zona tampone così come sono stati ricevuti. In modalità asse singolo è consentita la modifica da terminale. Il carattere di ESC (Escape) interrompe l' operazione e riporta il controller nello stato di attesa. Il carattere di CR (LF se in modalità multi asse) termina il ciclo di riconoscimento e inizia l'esecuzione.

FASE2: Esecuzione

Il comando viene eseguito. In caso di due comandi consecutivi che prevedono un' operazione con l' esterno, l' esecuzione del secondo viene ritardata fino al completamento del comando precedente.

FASE 3: Risultato

In questa fase viene posto in uscita sulla linea di comunicazione il risultato dell' operazione in corso (ad. esempio: la posizione).

Se il risultato è di tipo numerico esso sarà preceduto dall'eventuale segno negativo e/o da spazi e seguito da un CR e un LF. Se il risultato non è di tipo numerico la trasmissione del CR/LF indica l' avvenuta esecuzione del comando.

FASE 4: Completamento

La fase di completamento è necessaria per tutti i comandi di movimento e per quelli che prevedono lo svolgimento di un' azione.Questi comandi sono chiamati "Comandi azione" e sono elencati nella seguente tabella:

Comando Azione	Fase di completamento
GO	Fino al termine dell' ultima istruzione
Selezione passo intero/mezzo passo	Fino al termine della precedente azione
Attesa	Fino al termine della precedente azione
Velocità costante	Fino al termine della precedente rampa
Ricerca posizione di zero	Fino al raggiungimento dello zero
Movimento relativo	Fino al termine del movimento
Movimento indicizzato in direzione	Fino al termine del movimento
positiva	
Movimento indicizzato in direzione	Fino al termine del movimento
negativa	

Durante la fase di completamento (ad esclusione del comando di GO), qualsiasi comando non di Azione (come quello di lettura della posizione) viene immediatamente eseguito. La scheda ISC ha la possibilità di accettare un altro comando di azione durante il completamento di un precedente comando di azione. Le fasi di esecuzione e di risultato di un comando in attesa sono ritardate fino al termine del comando precedente. Durante questa fase di attesa, il controller accetta solamente il comando di interruzione (ESC), i limiti di finecorsa, l' ingresso di STOP ed il segnale di Zero(home).

Il carattere di CR indica il termine della fase di attesa. Il comando GO viene considerato come un comando che genera un periodo di attesa continuo.

Comandi di interruzione

I comandi di interruzione sono caratteri singoli che interrompono le operazioni in esecuzione.

Interruzione:

Ogni Comando Azione può essere interrotto usando il carattere di escape (ESC).

PROCESSO	RISULTATO
Introduzione della linea di	Cancellazione del comando inserito
comando	
Modalità programma	Uscita senza introduzione del segno FINE
Comando Azione	Interruzione del movimento
Esecuzione di programma	Interruzione dell'esecuzione

Il comando di "stop dolce" (@) può essere sia un comando (modalità immediata) sia un interruzione posta all' internodel programma. Lo "stop dolce" opera solo per interrompere un movimento.

Il processo termina dopo l'esecuzione di una rampa di decelerazione.

PROCESSO		RISULTATO
Periodo di attesa		Decelerazione e interruzione dei comandi in attesa
Esecuzione	del	Decelerazione e termine dell' esecuzione
programma		

Durante il periodo di attesa che è determinato dalla successione di multipli comandi a velocità costante (con raccordi in rampa tra velocità diverse), la decelerazione verrà ritardata fino al completamento del precedente raccordo in rampa.

Movimenti manuali e ricerca dello zero

I movimenti manuali e la ricerca della posizione sono considerati casi particolari di comandi di movimento a velocità costante. Il raccordo in rampa viene eseguito solo se le velocità manuali programmate sono superiori alla velocità iniziale impostata con il parametro "I". La ricerca della posizione di zero NON utilizza la rampa di decelerazione al raggiungimento del segnale di Home.

NOTA: Bisogna ricordare che le operazioni manuali (JOGGING) e la ricezione dei comandi si escludono a vicenda. Un comando non può essere caricato in memoria mentre viene seguita un' operazionedi jogging ed il movimento manuale non è possibile finché non viene completata l' esecuzione del l' ultimo comando.

37

Movimenti ad alta velocità

Il controller ISC è progettato per controllare movimenti con un alto grado di precisione. Come risultato, il controllo del movimento ha la più alta priorità su tutti gli altri processi. Ad alte velocità di lavoro questo comporta un aumento del tempo di attesa nell' elaborazionælei comandi. Normalmente, a velocità inferiori a 10,000 passi al secondo, l' aumento dell' attesa è quasi impercettibile, ma ad alte velocità è necessario tenere conto di questo comportamento nella scrittura del software.

Punto di tappa e attesa dello stato delle porte

L' uscita "Trip" (punto di tappa) viene attivata al raggiungimento dell' esatta posizione specificata. Quando un programma è in esecuzione, vengono effettuate numerose letture dalla memoria e ciò può comportare l' attivazione dell' uscitadi tappa solo dopo aver superato di alcuni passi la posizione voluta. Anche per il comando di attesa per uno stato presente su una porta, valgono le medesime considerazioni: all' aumentare della velocità di movimento è necessario che il segnale presente su di una porta permanga per un tempo più lungo. Un metodo più veloce è quello di controllare lo stato di una porta usando la procedura di "Gosub" (salta se la condizione è verificata).

Memoria non volatile

La scheda ISC ospita una memoria di 2048 byte. La memoria non volatile può essere utilizzata per contenere programmi utente che verranno eseguiti per mezzo del comando "Go". Il numero dei programmi utente che possono coesistere è limitato solo dallo spazio che essi occupano in memoria.

La seguente mappa di memoria serve solo per riferimento e non deve essere direttamente modificata dai programmi utente. E' necessario utilizzare i comandi appropriati per modificare i valori in essa contenuti.

INDIRIZZO	DESCRIZIONE
0-226	Programmi utente o dati
227	Byte di configurazione
228	Stato iniziale (NON modificare)
229	Fattore di divisione (D)
230, 231	Velocità iniziale (2 byte)
234, 235	Velocità finale (2 byte)
238	Velocità manuale
240	Pendenza delle rampe di accelerazione (K)
241	Pendenza delle rampe di decelerazione (K)
242, 243, 244	Punto di tappa (3 byte)
245, 246	Riservati (NON modificare)
247	Nome per operazioni multi asse
256-2048	Programmi utente o dati

Predisposizioni di fabbrica

PARAMETRO	VALORE PREIMPOSTATO DOPO LA CANCELLAZIONE DELLA MEMORIA NON VOLATILE (C1)
Velocità iniziale (I)	400 passi al secondo
Velocità finale (V)	5,016 passi al secondo
Fattore di divisione (D)	1
Pendenza delle rampe (K)	5
Velocità manuale (B)	70 passi al secondo
Punto di tappa (T)	disabilitato
Auto power down (E)	abilitato
Polarità ENABLE (E)	attivo alto
Polarità finecorsa (H)	attivo basso
Lettura posizione (Z)	disabilitato
Nome della scheda (dopo il reset)	non impostato
Programma utente	azzerato

La scheda ISC utilizza una memoria EEPROM per la memorizzazione dei programmi e dei parametri di funzionamento. Questi dispositivi sono garantiti per conservare i dati per 10 anni, in ogni caso, come tutte le EEPROM il numero di riprogrammazioni non è illimitato. La durata della EEPROM utilizzata è di circa 460,000 cicli di scrittura.

Per questi motivi bisogna prestare particolare attenzione per escludere eventuali inutili cicli di programmazione. Per esempio il comando Restore ("^C") ripristina i parametri dalla EEPROM senza compiere una scrittura. Se viene utilizzato il comando Inizialize ("C 1"), i primi 256 byte della memoria vengono riscritti.

Se fosse necessario eseguire diverse sequenze senza il controllo di un terminale remoto, sarebbe conveniente dividere i movimenti in gruppi più piccoli piuttosto che programmare ripetutamente la memoria. In questo caso si può utilizzare il comando "GO" specificando l'indirizzo della routine da eseguire.

Usare il comando "Save" con accortezza. La predisposizione dei parametri viene eseguita in modo veloce, è sufficiente perciò predisporre i parametri attraverso il terminale.

A DIFFERENZA DELLA SCRITTURA, LA LETTURA DELLA MEMORIA NON NE PREGIUDICA LA DURATA.

Astel - Italy ISC-01 / ISC-02 Comandi software

COMANDI SOFTWARE

Astel - Italy ISC-01 / ISC-02 Comandi software

Comandi software

Introduzione

In modalità comandi, le istruzioni vengono eseguite non appena ricevute. L'uso della memoria non volatile consente la memorizzazione di una lista di comandi. Questi programmi memorizzati possono essere lanciati all'accensione del controller consentendo l'esecuzione di operazioni automatiche o ripetitive attraverso l'invio di un comando o per mezzo dell'attivazione del segnale "GO" (ingresso A7 o 14C).

Quando il controller è posto in modalità programma, i comandi inviati (istruzioni) sono indirizzati nella memoria non volatile. Dopo avere terminato la modalità programma, le istruzioni memorizzate possono essere eseguite inviando un comando "G" (GO).

La procedura seguente suppone l'uso di una interfaccia standard RS232 con un terminale remoto:

Entrare in modalità programma inviando un "P aa" e ENTER. L'indirizzo di start "aa" è determinato dall'utilizzatore. Generalmente l'indirizzo 0 è una buona scelta per il programma principale poiché può essere eseguito con un semplice comando "G" o attivando il segnale "Go".

In modalità programma, sul terminale viene visualizzata la locazione di memoria corrente. Ogniqualvolta viene introdotta un'istruzione, viene visualizzata la successiva locazione libera. Le istruzioni hanno lo stesso formato di quelle introdotte in modalità comandi.

Per terminare l'introduzione del programma bisogna digitare il comando "P". Questo inserirà un segno di fine programma al termine delle istruzioni ed il terminale visualizzerà il segno di cancelletto "#". Da questo momento il controller è in modalità comandi.

Più programmi possono coesistere in memoria. Ogni programma verrà eseguito indipendentemente dagli altri inviando un comando "G" seguito dall'indirizzo del programma da eseguire.

NOTA: Il segno di fine programma occupa un byte addizionale.

È inoltre possibile memorizzare una sequenza di istruzioni da eseguire quando viene raggiunto il punto di tappa (trip point).

Modifica di un programma esistente

I programmi memorizzati possono essere modificati in qualsiasi momento. L'utilizzatore può rivedere le istruzioni memorizzate inviando un comando "Q". Questo comando provoca la visualizzazione di una lista di istruzioni con a fianco il loro indirizzo.

Per modificare un programma esistente, digitare "P" seguito dall'indirizzo dal quale la modifica deve essere eseguita e digitare le variazioni come visto in modalità programma. La sessione di modifica può essere terminata in due modi. Se le modifiche comportano l'aumento della lunghezza del programma in memoria, o se il programmatore vuole trascurare le vecchie istruzioni (programma più corto), digitare "P" per terminare le modifiche ed inserire un segno di fine programma. Se si vuole modificare solo una o più istruzioni successive, digitando "ESC" il termine delle modifiche lascerà inalterata la memoria programma esterna all'area modificata.

NOTA: Se le nuove istruzioni occupano un numero di byte diversi da quelle presenti in precedenza, il programma può terminare eseguendo un'istruzione non valida . Per evitare ciò è utile tenere traccia del numero di byte introdotti e mantenere la medesima occupazione di memoria, inserendo istruzioni che non modifichino il ciclo da eseguire.

Passo singolo (Master/Slave)

Le istruzioni possono possedere un attributo di "passo singolo". Le istruzioni e i comandi dotati di questa proprietà attenderanno finché non verrà attivata la porta XP1. Questa modalità di funzionamento è utile per implementare sistemi di tipo master/slave.

Il controller "master" può generare un sincronismo ai dispositivi "slaves" che rimangono in attesa. Il sincronismo può provenire da qualsiasi dispositivo capace di generare un segnale con una durata compresa tra 10 e 100 microsecondi. È possibile generare un sincronismo software inviando un comando "." al controller in attesa. Il sincronismo è di tipo DC e le successive istruzioni con l'attributo "single step" vengono eseguite se la porta 1 è tenuta attiva.

Astel - Italy ISC-01 / ISC-02 Comandi software

L'attributo di passo singolo è implementato durante l'inserimento di un programma terminando l'istruzione con un segno "punto" (".") al posto del normale CR. L'istruzione mantiene il proprio attributo sia in modalità programma sia in modalità comandi. Durante l'esecuzione del comando "Q" le istruzioni vengono visualizzate seguite da un punto ".".

Funzione Tappa

Con il controller ISC è possibile impostare un punto di tappa (trip point).

Quando vengono eseguiti dei movimenti in modalità comandi, l'uscita trip (se abilitata) cambia stato ogni volta che viene raggiunta una posizione specificata. Durante l'esecuzione di un programma, al raggiungimento della posizione impostata, viene eseguita una routine posta all'indirizzo 200. La routine sarà eseguita anche se il movimento risultante dalla precedente istruzione non sarà ancora terminato.

Per disabilitare il punto di tappa è sufficiente impostarlo alla posizione "+0", per impostare la posizione zero come punto di tappa è necessario definirla come -0. Per ulteriori informazioni sul punto di tappa, vedere il comando "T" più avanti in questo capitolo.

L'uscita TRIP può essere inizializzate ad un livello alto usando il comando "A64". La lettura dell'uscita TRIP può essere effettuata usando il comando "A129" e controllando il bit 6 (valore 64 decimale).

La chiamata della routine di tappa verrà eseguita pochi millisecondi dopo il raggiungimento del punto di tappa, ma l'attivazione dell'uscita non possiede alcun ritardo apprezzabile.

comando	funzione	tipo		byte
	multi asse	dato1	dato2	risultato

Comando: Carattere ricevuto dal controller ISC.

Funzione: Descrizione del comando

Tipo:

Immediato: Comando eseguibile in modalità terminale.

Program: Comando inseribile all'interno di un programma

utente

Globale: Comando condiviso da tutti i controller collegati

Default: Comando che modifica i parametri di

funzionamento

Hardware: Per la medesima funzione è disponibile un

apposito piedino sul connettore della scheda

Byte: Spazio utilizzato nella memoria non volatile

Multi asse: Esempio di comando in modo multi-asse

Dato1: Primo parametro (se richiesto)

Dato2: Secondo parametro (se richiesto)

Risultato: Informazioni trasmesse dal controller dopo l'esecuzione del

comando inviato

comando	funzione	tipo		byte
	Termina ogni attività	Immediato,	globale	
ESC	multi asse	dato1	dato2	risultato
	carattere ESC	nessuno	nessuno	#

Interruzione

Termina ogni operazione attiva e forza il controller a tornare nello stato di attesa. Lo stato delle porte di ingresso/uscita non viene modificato. Il movimento e l' aggiornamento della posizione cessa immediatamente senza alcuna decelerazione.

Ogni programma viene terminato.

Ogni asse che si trova in modalità programma esce dal suo stato senza inserire il codice di "fine programma", perciò il carattere ESCAPE è utile nell' editare segmenti di programma che risiedono nella memoria non volatile.

In funzionamento singolo il controller ritorna il simbolo #.

ATTENZIONE: poiché la decelerazione è immediata (senza rampa) poterebbero verificarsi oscillazioni meccaniche, specialmente su carichi ad elevata inerzia o con movimenti veloci.

comando	funzione	tipo		byte
	Stop dolce	Imm. Prog	r. Glob.	1,1
@	multi asse	dato1	dato2	risultato
	(name) @	nessuno	nessuno	nessuno

Stop

Il comando di STOP è inteso come "stop dolce". Il suo comportamento è diverso a seconda del contesto. Se l'assè in movimento il comando causa una immediata decelerazione impostata dal parametro K. Se uno o più assi stanno eseguendo un programma, questo verrà terminato dopo la decelerazione.

Il comando di STOP può essere inserito all' internodi un programma. Durante l' esecuzionæli un programma, il comando non causa il termine dell' esecuzionæd è equivalente all' istruzione "M 0".

comando	funzione SOFTWARE RESET	tipo Imm. Glob.		byte
^C	multi asse	dato1	dato2	risultato
	^C (ctrl C)	nessuno	nessuno	nessuno

Reset Software

Software Reset è un comando globale. Tutti gli assi interrompono immediatamente il movimento ed è eseguito un reset equivalente a quello effettuato all' accensione:

- 1) Caricamento dei valori di default dalla memoria non volatile
- 2) Predisposizione dell' origine a 0.
- 3) Passaggio del controller nello stato inattivo e attesa di impulso di GO, di JOG o di un comando sulla linea seriale.

comando	funzione Lettura o scrittura sulle porte di I/O	tipo Imm. Prog.		byte 2/2
Α	multi asse	dato1	dato2	risultato
	(nome)A	0-129	nessuno	stato

Lettura e scrittura porte

Il dato di ingresso è invertito in complemento a 2 e posto in uscita sulle porte da 1 a 5.

La porta 1 è il bit meno significativo. Una combinazione binaria imposterà una o più di una porta di uscita. Esempio: "A7" mette a "ON" le porte 1,2,3. Al reset ogni porta è in condizione "OFF". Il comando "A 128" incrementa il valore posto sulle porte di uscita in modalità binaria (es. 000->001->010->011 ecc.). Il comando "A 129" legge e visualizza il valore delle porte.

Porta	Dato	Note
tappa	64	Inverte l'uscita "tappa"
Incrementa	128	Incrementa il valore delle uscite 1-5
Leggi	129	

La lettura del valore sulle porte (comando "A 129") ritorna i seguenti valori:

Dato letto	Significato	Dato letto	Significato
1	Porta 1 ON	16	Porta 5 ON
2	Porta 2 ON	32	In movimento
4	Porta 3 ON	64	Superato punto "tappa"
8	Porta 4 ON	128	Rotazione CW

Esempio:

Lettura	Binario	Significato
21	00010101	Motore fermo - Porte 1,3,5 ON - Rotazione CCW
129	10000001	Rotazione CW - Porta 1 ON - Porte 2,3.4,5 OFF
253	11111101	Rotazione oraria - Porte 1,3,4,5 ON - tappa superata -
		motore in movimento

comando	funzione Imposta la manuale	velocità	tipo Imm. Prog.		byte 3/3
В	multi asse (nome)B		dato1 vel. 0-255	dato2 nessuno	risultato nessuno

Impostazione velocità manuali

Dato1 rappresenta la velocità da usare quando sono utilizzati gli ingressi di "JOG". Il valore impostato deve essere moltiplicato per 30 per determinare l'effettiva velocità in passi al secondo. Impostando Dato1 a "0" vengono disabilitati gli ingressi di "JOG". Le rampe di accelerazione e decelerazione sono determinate per mezzo del valore di "K" impostato.

Quando, per mezzo degli ingressi di "JOG" si passa da una velocità alta a quella bassa il collegamento tra le velocità viene eseguito con un raccordo con rampa. Sia le rotazioni orarie che antiorarie utilizzano la medesima velocità.

Gli ingressi di "JOG" sono attivi:

- A) Subito dopo l'inizializzazione
- B) Quando il controller non sta eseguendo un movimento
- C) Quando il controller non sta eseguendo un programma impostato.

Il movimento di JOG è disabilitato durante la programmazione attraverso la linea seriale.

comando	funzione Caricamento e pulizia memoria	tipo Immediato		byte
С	multi asse	dato1	dato2	risultato
	(nome)C	pagina (0-8)	nessuno	nessuno

Caricamento e pulizia della memoria

Questo comando reinizializza il controller. I programmi già memorizzati e le costanti impostate sono riportate ai valori originali.

Usando questo comando con il dato1 impostato a "1" viene forzata una completa re-inizializzazione della memoria non volatile ai valori impostati dalla fabbrica con la cancellazione di tutti i programmi memorizzati in precedenza. Questo DEVE essere effettuato solo quando viene installata una nuova NV-RAM o quando la memoria contiene valori non corretti.

ATTENZIONE: l'uso frequente di questo comando deve essere evitato poiché la durata della memoria potrebbe venire compromessa.

comando	funzione Imposta risoluzione	tipo Imm. Progr. Default		byte 2 / 2
D	multi asse	dato1	dato2	risultato
	(nome)D	risoluzione (1-255)	nessuno	nessuno

Impostazione risoluzione

Tutte le velocità durante le rampe e durante i movimenti sono divise da un numero impostato. Questo numero può essere compreso tra 1 e 255. In questo modo possono essere ottenute velocità variabili tra 3 passi al minuto e 23,000 passi al secondo. Per mantenere costanti le velocità variando il numero "n", gli altri parametri relativi al movimento (velocità interne) devono venire corrispondentemente incrementate.

Questo comando è particolarmente utile per produrre rampe di accelerazioni adatte anche a velocità ridotte. Il parametro "D" non deve essere modificato durante un movimento.

comando	funzione Controllo delle correnti	tipo Immediato , default		byte 2
E	multi asse	dato1	dato2	risultato
	(nome)E	tipo (0-7)	nessuno	nessuno

Controllo delle correnti

Questo comando dispone di numerosi modi operativi.

Il comando "E" è particolarmente utile quando si vuole ridurre la corrente nell'azionamento durante le fasi di inattività del motore.

Quando il controller riceve un comando di movimento, automaticamente l'uscita di enable viene attivata. Se viene attivata la possibilità di "Auto power down", dopo un tempo equivalente a 255 passi alla velocità iniziale, l'uscita di enable passa allo stato di OFF.

In aggiunta alla programmazione delle correnti, possono essere programmati i livelli di attività sia dei fine corsa che dell'uscita di enable.

Valore	AUTO POWER-DOWN	ENABLE	FINECORSA
0	Abilitato	Attivo a "0"	Attivi a "0"
1	Non abilitato	Attivo a "0"	Attivi a "0"
2	Abilitato	Attivo a "1"	Attivi a "0"
3	Non abilitato	Attivo a "1"	Attivi a "0"
4	Abilitato	Attivo a "0"	Attivi a "1"
5	Non abilitato	Attivo a "0"	Attivi a "1"
6	Abilitato	Attivo a "1"	Attivi a "1"
7	Non abilitato	Attivo a "1"	Attivi a "1"

comando	funzione Ricerca della posizione di zero	tipo Immed. Prog.		byte 2/3
F	multi asse	dato1	dato2	risultato
	(nome)F	vel. 18 - 23,000 pps	dir. 0-1	nessuno

Ricerca della posizione di zero

L'algoritmo di ricerca della posizione di zero è utilizzato per eliminare le isteresi meccaniche tipiche di molti interruttori ed encoders che si traducono spesso sotto forma di giochi meccanici e di incertezze nel posizionamento.

La scheda ISC implementa un algoritmo di zero per il quale la posizione di zero è sempre ricercata secondo la medesima direzione basata sullo stato logico del finecorsa e sul valore del parametro "d".

1. FINE CORSA NORMALMENTE APERTO (attivo da livello alto a basso)

La velocità di ricerca dello zero è programmabile da 18 a 23,000 passi al secondo. Una volta che viene raggiunta la posizione di zero, tipicamente l'inerzia del sistema fa in modo di oltrepassare il punto esatto, in tale condizione il controller inverte la direzione di marcia e diminuisce la velocità portandola a quella predisposta dal parametro I (velocità iniziale). Successive inversioni di direzione e riduzioni di velocità continuano fino al raggiungimento della esatta posizione richiesta e la funzione di ricerca dello zero termina.

2. FINECORSA NORMALMENTE CHIUSO (attivo da livello basso ad alto)

La velocità di ricerca dello zero sarà sempre impostata a quella definita dal comando I (velocità iniziale). Una volta raggiunta la posizione di zero, il movimento avrà termine e la funzione sarà completata.

La tavola seguente illustra le possibili combinazioni dei parametri di movimento.

Interr. di finecorsa	parametro "d"	Direzione del moto
Norm. aperto (attivo basso)	0	Negativa
Norm. chiuso (attivo alto)	0	Positiva
Norm. aperto (attivo basso)	1	Negativa
Norm. chiuso (attivo alto)	1	Positiva

comando	funzione GO	tipo Imm. Prog. HW		byte 2/3
G	multi asse	dato1	dato2	risultato
	(nome)G	0-226, 256-2048	trace (0,1)	nessuno

Il comando GO esegue un programma utente partendo da una locazione predefinita. Benché molti programmi inizino alla locazione "0", l'utente può iniziare il suo programma ad un diverso indirizzo.

L'opzione TRACE impostata a "1" è utile per collaudare programmi in "singolo asse". Durante lo svolgimento del programma viene visualizzata l'istruzione in esecuzione. Il formato di visualizzazione è il medesimo di quello utilizzato dal comando "Q". L'opzione di trace è attiva fino al termine dell'esecuzione del programma o finché non viene incontrato un comando "GO" senza opzione "T".

Le locazioni comprese tra 225 e 255 sono riservate per la memorizzazione dei parametri e non possono essere utilizzate nei programmi.

Il controller ISC prevede un caso speciale per l'istruzione "GO". Se l'indirizzo specificato è 2048, il programma partirà da un indirizzo determinato dalla condizione presente sulle porte di I/O 1.2.3 e 4.

Stato	delle p	orte			Indirizzo di partenza
P1	P2	P3	P4	HEX	
OFF	OFF	OFF	OFF	0	256
ON	OFF	OFF	OFF	1	272
OFF	ON	OFF	OFF	2	288
ON	ON	OFF	OFF	3	304
OFF	OFF	ON	OFF	4	320
ON	OFF	ON	OFF	5	336
OFF	ON	ON	OFF	6	352
ON	ON	ON	OFF	7	368
OFF	OFF	OFF	ON	8	384
ON	OFF	OFF	ON	9	400
OFF	ON	OFF	ON	Α	416
ON	ON	OFF	ON	В	432
OFF	OFF	ON	ON	С	448
ON	OFF	ON	ON	D	464
OFF	ON	ON	ON	E	480
ON	ON	ON	ON	F	496

comando	funzione Risoluzione (passo intero/mezzo passo/ quarto di passo)	tipo Imm. Default		byte 1/2
H	multi asse	dato1	dato2	risultato
	(nome)H	intero/mezzo (0/2)	nessuno	nessuno

Risoluzione: passo intero/mezzo passo

Questo comando imposta la risoluzione del passo. Per selezionare il mezzo passo impostare "H 0". Per selezionare il passo intero impostare "H 1". Per selezionare il quarto di passo impostare "H 2"

Quando si passa dal passo intero al mezzo passo, la posizione è mantenuta sul più vicino passo intero. Default = mezzo passo.

Nota: Il valore impostato viene direttamente riflesso sullo stato delle uscite XHALF e XQUAR, permettendo in caso di particolari configurazioni, l'uso di queste porte come segnali di uscita generici.

Η	XQUAR	XHALF
0	OFF	OFF
1	OFF	ON
2	ON	OFF
3	ON	ON

comando	funzione Velocità iniziale	tipo Imm. Progr.	byte 3/3	
	multi asse	dato1	dato2	risultato
	(nome)I	vel. (18- 23,000 pps)	nessuno	nessuno

Velocità iniziale

Il comando di velocità iniziale imposta i parametri che devono essere utilizzati nei successivi comandi di movimento. Come per tutti i parametri di velocità la velocità iniziale è divisa per il fattore di risoluzione impostato dal comando "D".

La velocità iniziale è utilizzata per:

- Tutti i comando di posizionamento indicizzato (+, -, R).
- La velocità di partenza nei movimenti a velocità costante (M).
- · Per le decelerazioni a 0 nei movimenti a velocità costante o nello "stop dolce".
- Per le fasi finali delle sequenze di ricerca della posizione di zero.

Per ottenere informazioni sulla velocità impostata si può utilizzare il comando "X".

Valore impostato in fabbrica: 400 impulsi al secondo.

comando	funzione JUMP	tipo Progr.		byte 3/4
J	multi	dato1	dato2	risultato
	asse			
	(nome)J	indirizzo(0-225/2047)	ripet. (0-255)	nessuno

Jump

Prosegui all'indirizzo a, per n+1 volte.

Questo comando permette ripetizioni di sequenze fino a 255 volte. L'indirizzo specificato DEVE essere quello di una valida istruzione e può essere utilizzato solamente all'interno di un programma. Questa istruzione non può essere nidificata.

comando	funzione Pendenza delle rampe	tipo Progr. Default		byte 2/2
K	multi asse	dato1	dato2	risultato
	(nome)K	acc./dec. 0-255	nessuno	nessuno

Pendenza delle rampe

Il comando "K" è impiegato per tarare dv/dt durante le fasi di accelerazione e di decelerazione. Il profilo di accelerazione e di decelerazione è definito all'interno del controller in una tabella. In funzione dei valori di velocità iniziale e finale, possono essere necessarie da 0 a 500 diversi passi di velocità.

Il valore impostato da questo comando determina quanti passi sono effettuati ad ogni valore di velocità durante le rampe. Se vengono impostati valori elevati la rampa impiegherà parecchio tempo per essere eseguita, valori inferiori renderanno la rampa più ripida. Il valore K impostato a 0 eliminerà completamente sia la rampe di accelerazione che di decelerazione.

Nelle applicazioni pratiche è spesso più facile decelerare un sistema piuttosto che accelerarlo. La scheda ISC fornisce la possibilità di variare la pendenza di decelerazione indipendentemente da quella di accelerazione.

NOTA: Il valore della rampa di decelerazione normalmente è uguale a quello di accelerazione. Se il valore impostato dal comando "K" è inferiore od uguale a 127 entrambe le rampe assumeranno la stessa pendenza. Per modificare la rampa di decelerazione è necessario impostare un valore di "K" compreso tra 128 e 255.

Questo metodo è utile per introdurre rampe di accelerazione e di frenata uguali fra loro, dopo avere controllato che il sistema reagisce in modo corretto, è possibile modificare la sola rampa di decelerazione.

Esempio:

K3 Imposta il valore di entrambe le rampe a 3 passi per ogni valore di velocità contenuto nella tabella interna.

K130 Modifica solamente il valore della rampa di decelerazione portandolo a "2" lasciando immutato quello della rampa di accelerazione.

comando	funzione Test delle porte	tipo Programma		byte 2 / 3
L	multi asse	dato1	dato2	risultato
	(nome) L	indir. (0-226,	condiz. (0-8)	nessuno
		256-2048)		

Test delle porte

Questo comando controlla l'ingresso specificato. Se l'ingresso NON si trova alla condizione specificata, il programma proseguirà dall'indirizzo definito. Se l'indirizzo definito è quello di una precedente istruzione, il programma ciclerà fino a quando l'ingresso non si porterà alla condizione specificata, dopo di ciò il programma continuerà dalla prossima istruzione.

Gli ingressi sono controllati secondo la tabella seguente:

Ingresso	Condizione bassa	Condizione alta
1	0	1
2	2	3
3	4	5
4	6	7
5	8	9

La scheda ISC possiede un'ulteriore possibilità per implementare la funzione "aspetta fino a che..".

Il comando "L" controlla il valore dell'ingresso ogni 2-3 ms. Ad esempio se si indica 2048 come indirizzo dell'istruzione di salto, il controller esegue un ciclo sulla stessa istruzione interrompendolo quando la condizione impostata viene soddisfatta. Questo metodo permette il controllo di situazioni di breve durata.

comando	funzione Movimento a velocità costante	tipo Imm. Progr.		byte 3/3
M	multi asse	dato1	dato2	risultato
	(nome)M	vel. (±18- 23,000 pps)	nessuno	nessuno

Movimento a velocità costante

Il segno + o - determina la direzione durante l'esecuzione del movimento a velocità costante. Il motore effettuerà una rampa in accelerazione od in decelerazione verso la velocità impostata e continuerà fino all'introduzione di una nuova velocità. La velocità è impostata in passi al secondo. I parametri di rampa possono essere modificati prima di inviare il comando di velocità permettendo così l'utilizzo di rampe differenti. Con un singolo comando è possibile decelerare da una data velocità in una direzione e accelerare nella direzione opposta.

Il movimento può essere interrotto da:

- 1. Il comando "M 0"
- 2. Il comando di stop dolce "@"
- 3. Il comando di interruzione ESC (senza decelerazione)

I seguenti comandi modificano le velocità impiegate:

- Fattore di risoluzione "D"
- 1. Pendenza delle rampe "K"
- 1. La risoluzione "H"

comando	funzione	tipo		byte
	Imposta origine	lmm. Progr.		3/4
0	multi asse	dato1	dato2	risultato
	(nome)O	± 8,388,607	nessuno	nessuno

Imposta origine

Il comando di impostazione dell'origine inizializza il contatore interno a 24 bit e lo pone al valore specificato. Per i movimenti relativi, la posizione di zero è "O 0". Il reset hardware pone l'origine a 0.

comando	funzione Modalità programma	tipo immediato		byte n /a
Р	multi asse	dato1	dato2	risultato
	(nome) P	indirizzo 0- 226/256- 2047	nessuno	nessuno, #

Modalità programma

Il comando "P" consente l'impostazione di comandi per una esecuzione successiva attraverso il comando "GO" o per mezzo del segnale di GO esterno. I programmi presenti in memoria sono sovrascritti a mano a mano che vengono memorizzate le nuove istruzioni. Con l'inserimento di un secondo comando "P" verrà terminata la modalità programma ed inserito un simbolo di fine programma prima di ritornare in modalità comandi. Quando ci si trova in modo programma, i comandi ed i dati sono inseriti direttamente nella memoria non volatile.

L'indirizzo specifica il punto di partenza all'interno della memoria non volatile nella quale risiederà il programma. Non appena viene inserita un'istruzione il contatore degli indirizzi verrà incrementato e visualizzato sul terminale. È possibile la coesistenza di segmenti di programmi tra loro indipendenti; questi possono essere eseguiti per mezzo dei comandi "J","L","G" e di altre istruzioni.

comando	funzione	tipo		byte
	Lista programma	Immed.		
Q	multi asse	dato1	dato2	risultato
	(nome)Q	indir. (0-	nessuno	listato
		2047)		

Lista programma

Questo comando produce un listato del programma memorizzato nella memoria non volatile usando il seguente formato:

Indirizzo Istruzione Dato1 Dato2

Dato1 e Dato2 saranno visualizzati solo se applicabili alla particolare istruzione. Se l'istruzione possiede l'attributo "Passo singolo", questo sarà indicato con un punto ".". La visualizzazione procederà una linea alla volta richiedendo la pressione di una tasto qualsiasi ad esclusione di ESC.

Astel - Italy ISC-01 / ISC-02 Comandi software

comando	funzione Movimento relativo all'origine	tipo Imm. Progr.		byte 3 / 4
R	multi asse	dato1	dato2	risultato
	(nome)R	posiz. (± 8,388,607)	nessuno	nessuno

Movimento relativo all' origine

Esegue un movimento relativo all'origine "O". La posizione di destinazione può essere distante $\pm 8,388,607$ passi (risoluzione 24bit) dall'origine.

comando	funzione	tipo		byte
	Memorizza i parametri	Immediato		1
S	multi asse	dato1	dato2	risultato
	(nome)S	nessuno	nessuno	nessuno

Memorizzazione dei parametri

I seguenti parametri sono memorizzati nella memoria non volatile e saranno richiamati alla riaccensione del controller.

Parametro		Predisposizioni di fabbrica
Velocità iniziale	I	400 passi al secondo
Velocità di movimento	٧	5,016 passi al secondo
Fattore di divisione	D	1
Pendenza delle rampe	K	5
Velocità dei movimenti manuali	В	30 passi al secondo
Punto di TAPPA	Т	disabilitato
Passo intero / mezzo passo / quarto di passo	Н	Passo intero
Power down automatico	Ε	Abilitato
Polarità del power down	Ε	Alta
Polarità segnali di finecorsa	Е	Bassa
Lettura continua della posizione	Ζ	Disabilitata
Nome		Non modificato

Tutti questi parametri sano salvati in blocco ed i loro valori memorizzati sono quelli attualmente in uso dal controller. Il frequente utilizzo di questo comando dovrebbe essere evitato poiché la durata della memoria non volatile ne potrebbe risultare abbreviata.

Astel - Italy ISC-01 / ISC-02 Comandi software

comando	funzione Punto di tappa	tipo Progr. Default		byte 3/4
T	multi asse	dato1	dato2	risultato
	(nome)T	pos.	vettore	nessuno
		(±8,388,607)	(0-255)	

Punto di tappa

Il controller ISC possiede la possibilità di utilizzare un punto di "TAPPA". Durante i movimenti l'attuale posizione viene continuamente comparata con quella impostata come TAPPA. L'uscita di TAPPA cambierà di livello ogni volta che la posizione impostata verrà raggiunta od oltrepassata. Quando il controller sta eseguendo un programma, al raggiungimento della condizione di TAPPA verrà automaticamente richiamato un programma utente posto alla locazione 200. Al completamento della sua esecuzione , il programma tornerà alla esecuzione normale.

Quando il punto di TAPPA è abilitato, la velocità massima raggiungibile viene ridotta di circa il 10%. Un valore di tappa di "0" disabilita la funzione di tappa. Un valore di "-0" (meno zero) imposta il punto di tappa a "0".

Il valore del punto di tappa può essere visualizzato inviando al controller il comando "Z".

comando	funzione Velocità finale	tipo Imm. Progr. Default		byte 3/3
V	multi asse	dato1	dato2	risultato
	(nome)V	vel. (18-23,000)	nessuno	nessuno

Velocità finale

Questo comando imposta la velocità di "slew" (finale) che viene raggiunta dopo l'esecuzione della rampa di accelerazione. La velocità finale è divisa per il fattore di "D". Questo valore di velocità è indipendente da quelli impostati per i movimenti a velocità costante, per quelli di JOG e per quelli di ricerca della posizione di zero ed è usata per i movimenti indicizzati assoluti o relativi.

Il parametro "V" è utilizzato dai seguenti comandi:

- R Movimento relativo
- Movimento in senso orario
- Movimento in senso antiorario

Le seguenti funzioni NON usano e non modificano il parametro "V":

- J Movimento manuale (JOG)
- F Ricerca della posizione di zero
- M Movimenti a velocità costante

Astel - Italy ISC-01 / ISC-02 Comandi software

comando	funzione Attesa	tipo Imm. Progr. Default		byte 3/3
W	multi asse	dato1	dato2	risultato
	(nome)W	0.01sec. (0-65,535)	nessuno	nessuno

Attesa

Attendi n millisecondi.

Il controller rimarrà in stato di inattività per il tempo specificato. Il comando di attesa, se inviato durante un movimento indicizzato ("R", "+", "-", "F"), non andrà in esecuzione finché il movimento non sarà completato. Questo comando è utile per attendere la fine di un movimento indicizzato se viene specificato un tempo di attesa pari a 0 ms. Durante un movimento a velocità costante, il tempo impostato inizierà a trascorrere senza aspettare il termine del movimento.

comando	funzione Esamina parametri	tipo Imm.		byte
X	multi asse	dato1	dato2	risultato
	X	nessuno	nessuno	parametri

Esamina i parametri

Questo comando visualizza i valori dei principali parametri. Questo comando produrrà due diversi tipi di risposta a seconda della configurazione utilizzata. Quando il controller sta operando in singolo asse la visualizzazione sarà la seguente:

K=kk, I=ii, V=vv, (T=tt) nn [CR LF]

dove

kk = Pendenza delle rampe

ii = Velocità iniziale divisa per "D"
vv = Velocità finale divisa per "D"
tt = Posizione di tappa (se utilizzata)
nn = Nome assegnato alla scheda

Quando il controller sta operando in multi asse:

kk ii vv tt nn[LF]

Astel - Italy ISC-01 / ISC-02 Comandi software

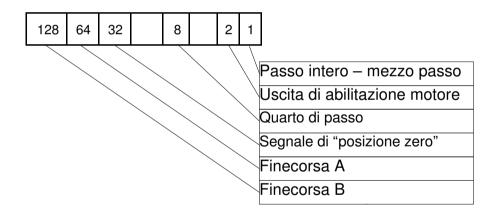
comando	funzione Lettura corrente	posizione	tipo Immed.		byte 1 /2
Z	multi asse		dato1	dato2	risultato
	(nome)Z		tipo (0-1)	nessuno	nessuno

Lettura posizione corrente

Legge e visualizza la posizione attuale. Il contatore di posizione è azzerato dal comando "O". Questo comando consente la possibilità di una lettura continua attraverso la linea seriale inviando "Z 1". In questo modo ogni variazione di posizione sarà trasmessa sulla linea.

La trasmissione della posizione, a differenza degli altri risultati, viene terminata con CR (carriage return).

comando	funzione	tipo		byte
	Leggi byte dalla memoria	Immediato		
[multi asse	dato1	dato2	risultato
_	(nome)[indirizzo		byte
		(0-2047)		


Lettura memoria

Questo comando consente la lettura di un qualsiasi byte all'interno della memoria non volatile. L'indirizzo specifica la locazione desiderata.

comando	funzione Lettura finecorsa	tipo Immed. Progr.		byte 1 / 1
1	multi asse	dato1	dato2	risultato
_	(nome)]	nessuno	nessuno	Stato

Lettura dei finecorsa

Questo comando consente all'utente di visualizzare la condizione degli ingressi della scheda. Il risultato contiene lo stato degli ingressi di finecorsa, dell'encoder, delle uscite di enable e di risoluzione.

Se il motore è disabilitato ed i finecorsa sono inattivi, il risultato sarà "0".

comando	funzione Movimento in direzione positiva	tipo Imm. Progr.		byte 3 / 4
+	multi asse	dato1	dato2	risultato
	(nome)+	passi (0-16,777,215)	nessuno	nessuno

Movimento in direzione positiva

Effettua un movimento in direzione positiva. Il motore eseguirà una rampa di accelerazione, muoverà a velocità costante e terminerà con una rampa di decelerazione utilizzando i parametri impostati. La distanza massima è di 16,777,215 passi. Il contatore interno verrà azzerato a 8,388,607 passi.

73

comando	funzione Movimento in direzione negativa	tipo Imm. Progr.		byte 3 / 4
-	multi asse	dato1	dato2	risultato
	(nome)-	passi (0-16,777,215)	nessuno	nessuno

Movimento in direzione negativa

Effettua un movimento in direzione negativa. Il motore eseguirà una rampa di accelerazione, muoverà a velocità costante e terminerà con una rampa di decelerazione utilizzando i parametri impostati. La distanza massima è di 16,777,215 passi. Il contatore interno verrà azzerato a 8,388,607 passi.

comando	funzione Lettura stato del movimento	tipo Immediato		byte
٨	multi asse	dato1	dato2	risultato
	(nome)^	nessuno	nessuno	nessuno

Lettura stato del movimento

Legge e visualizza lo stato del controller durante il movimento. Tre bit di stato sono codificati in forma decimale ed inviati alla porta seriale.

Il byte di risposte contiene lo stato corrente secondo la seguente codifica:

Bit	Decimale	Significato
0	1	1: posizionamento (es. Comando "+")
1	2	1: velocità costante (es. Comando "M")
2	4	Non considerare
3	8	1: ricerca della posizione di zero (es. Comando "F")
4	16	1: esecuzione della rampa
5	32	Non cosiderare

75

comando	funzione	tipo		byte
	Scrittura in memoria	Immed.		
\	multi asse	dato1	dato2	risultato
	(nome)\	indirizzo	dato (0-255)	nessuno
		(0-2047)		

Scrittura in memoria

Questo comando consente all'utente di modificare direttamente qualsiasi byte all'interno della memoria non volatile.

comando	funzione Generazione profili	tipo Immed. Progr.		byte 3
	multi asse	dato1	dato2	risultato
	(nome)_	posiz. (±8,388,607)	nessuno	nessuno

Generazione profili

Questo comando (segno di sottolineatura "_") aiuta nella generazione di profili e nelle applicazioni di interpolazione circolare. Il comando permette movimenti eseguiti verso una posizione specificata ad una data velocità. Quando il controller raggiunge la posizione desiderata, la prossima posizione e la prossima velocità sono accettate ed il movimento risulta continuo. Il comando di "Profilo" è una speciale combinazione dei comandi di "Muovi a velocità costante" finché l'obiettivo specificato viene raggiunto.

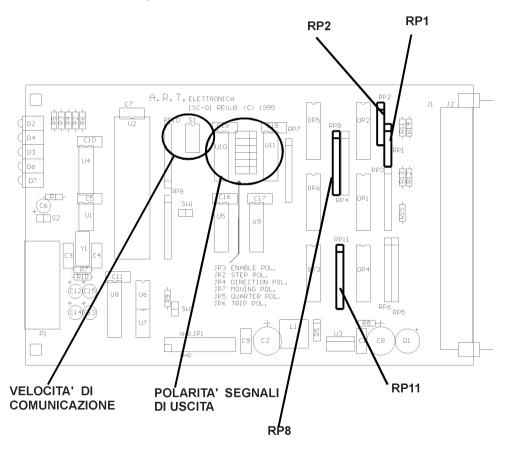
Per questo comando è utilizzato il registro di "tappa".

Esempio di utilizzo:

K 20	Rampa di accelerazione = 20
K 140	Rampa di decelerazione = 12 (140-128)
I 300	Velocità iniziale 300 passi al secondo
00	Imposta origine a 0
T 0	Imposta registro "tappa" a 0
V 5000	Velocità finale a 5000 passi al secondo
_ 2000	Prima posizione da raggiungere
V 4000	Velocità finale a 4000 passi al secondo
K 129	Rampa di decelerazione = 1 (129-128)
_ 5000	Seconda posizione da raggiungere
V 1000	Velocità finale = 1000 passi al secondo
_ 2000	Terza posizione da raggiungere
V 0	Fine della sequenza
_ 1000	Esegui uno stop dolce alla posizione 1000

Riepilogo dei comandi

Com	ando	Descrizione	Dato 1	Valori	Dato 2	Valori
ESC	Interrompi il movimento		No	No	No	No
@	Stop dolce		No	No	No	No
^C	Reset controller		No	No	No	No
Α	Ingresso uso	cita sulle porte	Scrittura/ Lettura	0-128/ 129	No	No
В	Velocità mar	nuali (JOG)	Velocità	0-255	No	No
С	Cancella me	moria	Pagina	0-9	No	No
D	Risoluzione	velocità	Risoluzione	1-255	No	No
Е	Controllo del	lle correnti	Tipo	0-7	No	No
F	Ricerca posi	zione di zero	Velocità	18-23,000	Direzione	0/1
G	Go		Indirizzo	0-226, 256-2048	Trace	0/1
Н	Passo intero	/ mezzo passo	Step size	0-3	No	No
I	Velocità inizi	ale	Velocità	18-23,000	No	No
J	Salta e/o ripe	eti istruzione	Indirizzo	0-225/ 2047	Ripetiz.	0-255
K	Pendenza delle rampe		Pendenza	0-255	No	No
L	Test della porta e ciclo		Indirizzo	0-226, 256-2048	Condiz.	0-8
М	Movimento a velocità cost.		Velocità	18-23,000	No	No
0	Imposta origine		Posizione	8,388,607	No	No
Р	Modalità programma		Indirizzo	0-226/ 256-2048	No	No
Q	Lista programma		Indirizzo	0-2047	No	No
R	Movimento relativo		Posizione	8,388,607	No	No
S	Memorizzazione parametri		No	No	No	No
Т	Punto di tapp	oa	Posizione	8,388,607	No	No
٧	Velocità di m	novimento	Velocità	18-23,000	No	No
W	Attesa tempo	0	Tempo (decimi)	0-65,535	No	No
Χ	Esamina i parametri		No	No	No	No
Z	Lettura della posizione corrente		Continuo	0/1	No	No
[Lettura memoria		Indirizzo	0-2047	No	No
]	Lettura finecorsa		No	No	No	No
+	Movimento in senso orario		Distanza	0-16,777,215	No	No
-	Movimento in senso antiorario		Distanza	0-16,777,215	No	No
٨	Lettura durante il movimento		No	No	No	No
\	Scrittura in memoria		Indirizzo	0-2047	Dato	0-255
_	Esecuzione profilo		Posizione	8,388,607	No	No


Astel - Italy ISC-01 / ISC-02 Installazione

INSTALLAZIONE

Installazione

Dopo aver disimballato la scheda ed aver effettuato i controlli preliminari, si può procedere, se necessario, con la predisposizione delle personalizzazioni.

La scheda viene fornita dalla fabbrica predisposta per tensioni di funzionamento degli ingressi di 24Vdc e con i circuiti di uscita in open-collector **senza** resistenze di pull-up. (Le resistenze di pull-up per 24Vdc si trovano in un imballo plastico accluso alla confezione).

Velocità di comunicazione

Per mezzo di questi dip switch è possibile cambiare i parametri di comunicazione secondo la tabella seguente:

Baud rate	SW1-1	SW1-2	SW1-3
300	OFF	ON	ON
1200	OFF	OFF	ON
2400	OFF	ON	OFF
4800	ON	OFF	OFF
9600	OFF	OFF	OFF
19,200	ON	ON	OFF
38,400	ON	OFF	ON

Polarità segnali in uscita

Per mezzo di questi ponticelli di configurazione è possibile invertire la polarità dei segnali di uscita secondo la tabella seguente:

Ponticello	1-2	2-3	SEGNALE
JP3	INVER.	NORM.	ENABLE
JP2	INVER.	NORM.	STEP
JP4	INVER.	NORM.	DIREZIONE
JP7	INVER.	NORM.	MOVING
JP5	INVER.	NORM.	QUARTER
JP6	INVER.	NORM.	TRIP

NOTA: In modalità normale i segnali sono attivi a livello basso ovvero i transistors di uscita all'accensione sono posti OFF.

RP1

Resistenze di pull-up sui segnali di ingresso/uscita XP1, XP2, XP3, XP4, XP5. Questo array di resistenze, normalmente non montato, va sostituito con un corrispondente di valore adatto alla tensione di funzionamento come da tabella seguente:

Tensione	Valore minimo	
5V	470	

12V	1.2 K
24V	2.7K

NOTA: Prestare la massima attenzione al segno di polarizzazione del componente: il segno (normalmente un pallino nero) va orientato verso l'alto della scheda.

RP2

Resistenze in serie al fotodiodo di ingresso sui segnali XP1, XP2, XP3, XP4, XP5. Questo array di resistenze, va sostituito con un corrispondente di valore adatto alla tensione di funzionamento come da tabella seguente:

Tensione	Valore tipico
5V	470
12V	1.2 K
24V	2.7K

NOTA: Prestare la massima attenzione al segno di polarizzazione del componente: il segno (normalmente un pallino nero) va orientato vero l'alto della scheda.

RP11

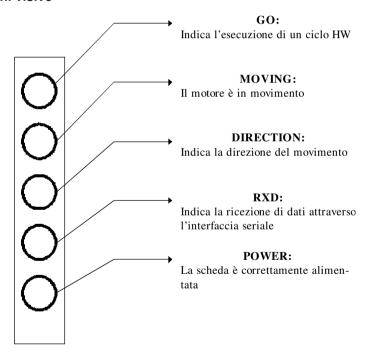
Resistenze in serie al fotodiodo di ingresso sui segnali XGO, XHOME, XLIMA, XLIMB, XSTOP, XJO1, XJO2.

Questo array di resistenze, va sostituito con un corrispondente di valore adatto alla tensione di funzionamento come da tabella seguente:

Tensione	Valore tipico
5V	470
12V	1.2 K
24V	2.7K

NOTA: Prestare la massima attenzione al segno di polarizzazione del componente: il segno (normalmente un pallino nero) va orientato vero l'alto della scheda.

RP8


Resistenze di pull-up sui segnali di uscita XHALF, XENA, XSTEP, XDIR, XMOV, XQUAR, XTRIP.

Questo array di resistenze, normalmente non montato, va sostituito con un corrispondente di valore adatto alla tensione di funzionamento come da tabella sequente:

Tensione	Valore minimo
5V	470
12V	1.2 K
24V	2.7K

NOTA: Prestare la massima attenzione al segno di polarizzazione del componente: il segno (normalmente un pallino nero) va orientato vero l'alto della scheda.

Indicazioni visive

83

Note sui cablaggi

Eseguire correttamente i collegamenti indicati per migliorare l'immunità ai disturbi.

Evitare di far passare i cavi di segnale nella stessa canalina dei conduttori di potenza.

Si consiglia, nel caso di ambienti particolarmente disturbati, di utilizzare cavi schermati collegandone la calza metallica solo in un punto e dal lato del controller. Se non si utilizzano cavi schermati è buona norma intrecciare tra loro i cavi di segnale con i loro riferimenti di massa.

Utilizzare conduttori con sezione di 0.5 / 1mm² per i segnali, 1.5mm² per correnti fino a 10A e 2.5mm² per correnti fino a 20A.

Selezione delle porte di ingresso/uscita

Per predisporre le porte di ingresso/uscita utilizzare la tabella seguente :

Porta	Componente	Direzione	
1	JP10	Ingresso	
		Uscita	
2	JP11	Ingresso	
		Uscita	
3	JP12	Ingresso	
		Uscita	
4	JP9		
		Ingresso	Uscita 🖳
5	JP8		
		Ingresso	Uscita 🔲

CARATTERISTICHE TECNICHE

CARATTERISTICHE TECNICHE

Alimentazione

Parametro	Min	Tip.	Max	
VIN (ac)	10	24	40	Vdc
VIN (dc)	10	18	24	Vac
ICC tip.		120	300	mA

Ingressi

Parametro	Min	Tip.	Max	
Corrente assorbita		5		mA
Caduta sui LEDs		1.5		Volt
Resistenza serie		*		

Uscite

Parametro	Min	Tip.	Max	
Corrente			30	mA
Tensione applicabile			35	Volt
Resistenza di pull-up		1		
Livello basso (Vol) @ 30mA			1.0	Volt
Livello alto (Voh)	fornito dall'esterno			Volt

Comunicazioni

Parametro	Min	Tip.	Max	
RS-232C Livelli di ingresso		5	25	Volt
RS-232C Livelli di uscita		9	12	Volt
RS-422 Livelli di ingresso		5	25	Volt
RS-422 Livelli di uscita		9	12	Volt
RS-232/422 carichi applicabili	1		32	Assi

NOTA: L'interfaccia RS-422 utilizza drivers progettati per i limiti RS-485 ovvero fino a 32 ricevitori e lunghezza del cavo fino a 1200m.

1

Dipende dalla tensione utilizzata (vedi Capitolo Installazione)

L'interfaccia RS-232 è garantita per 1 asse e per una lunghezza massima del cavo di 15m.

Risposte dinamiche

Parametro	Min	Tip.	Max	
Tempo di risposta sensore di zero		1	2	step
Tempo di risposta finecorsa		1	2	step

EEPROM

Parametro	Min	Tip.	Max	
Ciclo di lettura ed esecuzione		1.7		ms
Ciclo di scrittura dei parametri		63		ms
Capacità della memoria		2,048		bytes
Tempo di conservazione dei dati		10		anni
N. massimo cicli di scrittura		460k		cicli

Regimi di funzionamento

Parametro	Min	Tip.	Max	
Velocità	18		23,000	pps
Ciclo macchina		5	7	S
Frequenza di clock		14.745		MHz

Condizioni ambientali

Parametro	Min	Tip.	Max	
Temperatura di lavoro	0		+50	С
Temperatura di magazzino	-10		+70	С
Umidità (non condensata)			80	%

Dimensioni e peso

Parametro	Min	Tip.	Max	
Larghezza		100		mm
Lunghezza		160		mm
Peso		160		g

APPENDICI

Astel - Italy ISC-01 / ISC-02 Appendici

Appendici

Programma esempio

L'esempio seguente mostra il metodo per generare, modificare ed eseguire i programmi attraverso una porta seriale, in modalità asse singolo.

Dopo l'accensione della scheda controller ISC, premere la barra spazio. Il terminale visualizzerà la versione del controller.

Digitare: P 0 (Invio)

Il controller si trova ora in modalità programma ed è pronto per memorizzare le istruzioni dalla locazione 00.

Introdurre le seguenti istruzioni. L'indirizzo alla sinistra verrà visualizzato durante l'inserimento.

Indirizzo	Istruzione	Note	
0	H 0	Seleziona passo intero	
2	V 4000	Imposta velocità a 4000 p/s	
5	+1000	Avanti di 1000 passi	
9	-2000	Indietro di 1000 passi	
13	W 500	Aspetta .5 secondi	
16	J 5 6	Salta all'indirizzo 5 per 7 (6+1) volte	
20	H 1	Seleziona mezzo passo	
22	V 8000	Imposta velocità a 8000 p/s	
25	-1556	Retrocedi di 1556 mezzi passi	
29	+55667	Avanza di 55,667 mezzi passi	
33	W0	Aspetta fine movimento	
36	E0	Disabilita la scheda di potenza	

Digitare "P" (Invio) e "S" (invio).

Il programma adesso risiede nella memoria non volatile e il controller risponderà con "#".

Digitare "Q 00" (Invio)

Ad ogni linea visualizzata sul terminale, premere un tasto per la successiva.

Sul terminale compariranno le istruzioni come segue:

0	Н	0
2	V	4000
5	+	1000
9	-	2000
13	W	500
16	J	5 6
20	Н	1
22	V	8000
25	-	1556
29	+	55667
33	W	0
36	Е	0

Ora il programma risiede nella memoria ed è stato verificato.

Si supponga di voler lanciare il programma dalla locazione 0 visualizzando, durante la sua esecuzione, le varie istruzioni.

Digitare "G 0 1" (Invio)

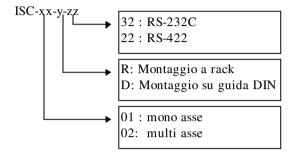
La scheda ISC inizierà l'esecuzione delle istruzioni memorizzate partendo dall'indirizzo 0. Poiché è stata attivata l'opzione Trace sul terminale compariranno i comandi prima di essere eseguiti.

L'utente può interrompere l'esecuzione del programma premendo il tasto ESCape.

Nel caso in cui si volesse modificare il programma memorizzato cambiando la direzione del movimento alla locazione 5 è sufficiente digitare:

P5 (Invio)

- +5000
- -5000
- "ESC"


Astel - Italy ISC-01 / ISC-02 Appendici

Listando il programma si ottiene:

"Q" 0

0	Н	0
2	V	4000
5	+	5000
9	-	5000
13	W	500
16	J	5 6
20	Н	1
22	V	8000
25	-	1556
29	+	55667
33	W	0
36	Ε	0

MODELLI E CODICI

Accessori a richiesta

Articolo	Codice
Cavo seriale 9 pin F/F	ISC-CA-01
Scheda retroquadro per rack 19"	MB-ISC-01
Convertitore RS232 / RS422	RS2DIFF
Software SmartStep	SW-SMS-1