VACON®100 INVERTER

OPTBJ SCHEDE OPZIONALI STO E ATEX MANUALE DELLA SICUREZZA

SOMMARIO Documento: DPD01064C

Data rilascio: 24042015

1.	Approvazioni	2
2.	Generale	8
2.1	Riferimenti	9
3.	Installazione della scheda OPTBJ	
4.	Impostazione della scheda OPTBJ	13
4.1	Jumper della scheda OPTBJ	
4.2	Jumper STO sull'inverter Vacon 100	
5.	Funzioni di sicurezza STO e SS1	15
5.1	Principio Safe Torque Off (STO)	15
5.2	Principio Safe Stop 1 (SS1)	
5.3	Dettagli tecnici	
5.3.1	Tempi di risposta	
5.3.2	Collegamenti	
5.3.3	Uscita relè	
5.3.4	Dati relativi alla sicurezza in conformità allo standard	
5.3.5	Esempi di cablaggi	
6.	Messa a punto	
6.1	Istruzioni generali di cablaggio	
6.2	Checklist per la messa a punto della scheda OPTBJ	
6.3 –	Test della funzione di sicurezza Safe Torque Off (STO) o Safe Stop 1 (SS1)	
7.	Manutenzione	
7.1	Guasti relativi alla funzione di sicurezza Safe Torque Off (STO) o Safe Stop 1 (SS1)	
8.	Funzione termistore (ATEX)	31
8.1	Dati tecnici	34
8.1.1	Descrizione funzionale	
8.1.2	Hardware e connessioni	
8.1.3	Funzione Atex	
8.1.4	Monitoraggio del corto circuito	
8.2	Messa a punto	
8.2.1	Istruzioni generali di cablaggio	
8.2.2	Diagnostica della funzione termistore	36

VACON ● 2 APPROVAZIONI

APPROVAZIONI

DICHIARAZIONE DI CONFORMITÀ AGLI STANDARD UE

Nome del produttore: Vacon Plc
Indirizzo del produttore: P.O.Box 25
Runsorintie 7
FIN-65381 Vaasa

Finland

Con la presente dichiariamo che le funzioni di sicurezza del seguente prodotto

Nome del prodotto: scheda opzionale Vacon OPTBJ da utilizzare con la famiglia di prodotti Vacon 100

Identificazione del prodotto 70CVB01380

Funzioni di sicurezza del prodotto Safe Torque Off (specificata in EN 61800-5-2)

soddisfano tutti i requisiti dei componenti di sicurezza pertinenti della Direttiva macchine 2006/42/CE.

Organismo notificato che ha eseguito l'esame CE di tipo:

TÜV Rheinland Industrie Service GmbH (NB0035)

Am Grauen Stein 51105 Köln, Germany

Sono stati utilizzati gli standard e/o le specifiche tecniche di riferimento indicate di seguito:

EN 61800-5-2:2007

Azionamenti elettrici a velocità variabile Parte 5-2: Requisiti di sicurezza – Funzionale

EN 61800-5-1:2007 (solo per conformità alla direttiva LV)

Azionamenti elettrici a velocità variabile

Parte 5-2: Requisiti di sicurezza – Elettrica, termica, energetica

EN 61800-3:2004/A1:2012 (solo per conformità alla direttiva EMC)

Azionamenti elettrici a velocità variabile

Parte 3: Requisiti EMC e metodi di prova specifici

EN ISO 13849-1:2008 + AC:2009

Sicurezza dei macchinari – Componenti di sicurezza dei sistemi di controllo –

Parte 1: Principi generali di progettazione

EN 62061:2005 + AC:2010

Sicurezza dei macchinari – Sicurezza funzionale dei sistemi di controllo elettrici, elettronici ed elettronici programmabili

IEC 61508 Parti 1-7:2010

Sicurezza funzionale dei sistemi di sicurezza elettrici, elettronici ed elettronici programmabili

EN 60204-1:2006 + A1:2009 + AC:2010 (in estratti)

Sicurezza dei macchinari -

Apparecchiature elettriche dei macchinari –

Parte 1: Requisiti generali

EN 61326-3-1:2008

Apparecchiature elettriche per la misurazione, il controllo e l'utilizzo in laboratorio – EMC, Parte 3-1: Requisiti di immunità per sistemi di sicurezza e per apparecchiature progettate per eseguire funzioni di sicurezza (sicurezza funzionale)

Firma

Vaasa, addì 10 febbraio 2015

Vesa Laisi Presidente e CEO

and are 10/222 12, 12 E A4 @ TUV, TUEV and TUV

EC Type-Examination Certificate

Reg.-No.: 01/205/5216.01/15

Product tested Safety Function "Safe Torque

Off (STO)" within Adjustable Frequency AC Drive

Certificate holder

Vacon PLC Runsorintie 7 65380 Vaasa Finland

Type designation Vacon 100 AC Drive with OPTBJ (STO and ATEX option board):

> Frame Sizes MR4 to MR10, VACON 0100-3L-xxxx-y, Details see Revision Release List

Codes and standards EN 61800-5-1:2007

> EN 61800-5-2:2007 A1:2013

EN 61800-3:2004 + A1:2012 EN ISO 13849-1:2008 + AC:2009 EN 62061:2005 + AC:2010 +

EN 61508 Parts 1-7:2010

EN 60204-1:2006 + A1:2009 + AC:2010 (in extracts)

Intended application The safety function "Safe Torque Off" complies with the requirements of the

relevant standards (PL e / Cat. 3 acc. to EN ISO 13849-1, SIL CL 3 acc. to EN 61800-5-2 / EN 62061 / IEC 61508) and can be used in applications up to PL e acc. to EN ISO 13849-1 and SIL 3 acc. to EN 62061 / IEC 61508.

Specific requirements The instructions of the associated Installation and Operating Manual shall

be considered.

It is confirmed that the product under test complies with the requirements for machines defined in Annex I of the EC Directive 2006/42/EC.

Valid until 2020-01-30

The issue of this certificate is based upon an examination, whose results are documented in

Report No. 968/M 350.01/15 dated 2015-01-30.

This certificate is valid only for products which are identical with the product tested. It becomes invalid at any change of

the codes and standards forming the basis of testing for the intended application.

Berlin, 2015-01-30

lified B Certification Body for Machinery, NB 0035

0035

Dipl.-Ing. Eberhard Frejno

www.fs-products.com www.tuv.com

Service GmbH, Alboinstr. 56, 12103 Berlin / Germany Fax: +49 30 7562-1370, E-Mall: industrie-service@de.tuv.com

VACON ● 4 Approvazioni

1. EC-TYPE EXAMINATION CERTIFICATE

2. Equipment or Protective System Intended for use in Potentially explosive atmospheres

Directive 94/9/EC

3. Reference: VTT 06 ATEX 048X Issue 1

4. Equipment: Thermal motor protection system for Vacon 100

drives

Certified types: **OPTBJ**

5. Manufactured by: Vacon Plc

6. Address: Runsorintie 7

FI-65380 VAASA

Finland

7. This equipment or protective system and any acceptable variations thereto are specified in the schedule and possible supplement(s) to this Certificate and the documents therein referred to.

8. VTT Expert Services Ltd, notified body number 0537, in accordance with Article 9 of the Council Directive 94/9/EC of March 1994, certifies that this equipment or protective system has been found to comply with the Essential Health and Safety Requirements relating to the design and construction of equipment and protective system intended for use in potentially explosive atmospheres given in Annex II to the Directive

The examination and test results are recorded in confidential reports nos. VTT-S-05774-06 and 968/M 350.00/12 by TÜV Rheinland Industrie Service GmbH.

9. Compliance with the Essential Health and Safety Requirements has been assured by compliance with:

EN ISO 13849-1 (2006) EN ISO 13849-2 (2003) EN 60079-14 (2007) EN 61508-3 (2010) EN 50495 (2010)

- 10. If the sign "X" is placed after the certificate number, it indicates that the equipment or protective system is subject to special conditions for safe use specified in the schedule to this certificate.
- This EC-Type examination certificate relates only to the design, examination and tests of the specified equipment or protective system in accordance to the directive 94/9/EC. Further requirements of the Directive apply to the manufacturing process and supply of this equipment or protective system. These are not covered by this certificate.
- 12. The marking of the equipment or protective system shall include the following:

II (2) GD

Espoo 26.4.2012

VTT Expert Services Ltd

Olavi Nevalainen

Deputy Service Manager

Risto Sulonen

Product Manager

13. Schedule

14. EC-TYPE EXAMINATION CERTIFICATE VTT 06 ATEX 048X Issue 1

15. Description of Equipment

Thermal motor protection system, type OPTBJ, consist one safe disable & ATEX option board with possibility to connect to temperature sensor (PTC). The temperature sensor is not included in this certificate. The ATEX safety function may be used with all Vacon 100 drives that are controlled with the M-platform STO option board.

Documents specifying the equipment:

Functional safety management plan for the M-Platform STO, rev 1.3.

- 16. Report No. VTT-S-05774-06 and 968/M 350.00/12 by TÜV Rheinland Industrie Service GmbH.
- 17. Special conditions for safe use
 - 1. In the case of Exe- and ExnA-motors, the end user has to confirm that the installation of measurement circuit is installed according to area classification. E.g. in Exe- and ExnA-motors PTC-sensors shall be certified together with the motor according to requirements of the type of protection.
 - 2. The allowed ambient temperature range is -10°C...+50°C.
- 18. Essential Health and Safety Requirements

Assessment using standards referred in point 9 have confirmed compliance with the Directive 94/9/EC, Annex II and in particular point 1.5. The device themselves are to be installed outside potentially explosive atmospheres (article 1, section 2 of the Directive).

Certificate history

Issue	Date	Report No.	Comment
-	19.6.2006	VTT-S-05774-06	Prime certificate
Supplement 1 and 2	26.6.2008 and 6.4.2010		The introduction of new revisions and STO function
1	26.4.2012	968/M 350.00/12	The introduction of M-Platform STO-function and changing equipment name and type designation. Updating the certificate with the latest edition of relevant standards

Espoo 26.4.2012

VTT Expert Services Ltd

Olavi Nevalainen

Deputy Service Manager

Risto Sulonen Product Manager VACON ● 8 GENERALE

2. GENERALE

NOTA! Queste sono le istruzioni originali.

NOTA! La progettazione di sistemi adibiti a funzioni di sicurezza richiede conoscenze e capacità particolari. L'installazione e la configurazione della scheda OPTBJ vanno affidate esclusivamente a personale qualificate.

Il presente documento tratta la scheda opzionale OPTBJ 70CVB01380 in abbinamento con la scheda di controllo Vacon 100 70CVB01582.

La scheda opzionale OPTBJ in abbinamento alla scheda di controllo Vacon 100 fornisce ai prodotti Vacon 100 le funzioni di sicurezza che seguono.

Nel presente manuale sono state utilizzate le seguenti abbreviazioni ed espressioni:

SIL	Safety Integrity Level (livello di integrità della sicurezza)
PL	Performance Level (livello delle prestazioni)
PFH	Probability of a dangerous random hardware Failure per Hour (probabilità di guasto hardware accidentale pericoloso per ora)
Categoria	Architettura designata per una funzione di sicurezza (dallo standard EN ISO 13849-1:2006)
MTTF _d	Mean time to dangerous failure (tempo medio tra guasti pericolosi)
DC _{avg}	Average diagnostic coverage (copertura diagnostica media)
PFD _{avg}	Average probability of (random hardware) failure on demand (probabilità media di guasto (hardware accidentale) su richiesta)
T _M	Mission time (tempo di missione)

Safe Torque Off (STO)

La funzione di sicurezza hardware "Safe Torque Off" impedisce all'inverter di generare coppia sull'albero motore. La funzione di sicurezza STO è stata studiata per conformarsi ai seguenti standard:

- EN 61800-5-2 Safe Torque Off (STO) SIL3
- EN ISO 13849-1 PL"e" Category 3
- EN 62061: SILCL3
- IEC 61508: SIL3
- Questa funzione corrisponde altresì a un arresto non controllato in conformità alla categoria di arresto 0, EN 60204-1.
- La funzione di sicurezza STO è certificata dalla TÜV Rheinland *

NOTA! La funzione STO non è alternativa alla funzione di prevenzione dell'avvio accidentale del motore. Per soddisfare tali requisiti, sono necessari componenti esterni supplementari atti a garantire la conformità a standard e requisiti applicativi appropriati. Tra i componenti esterni si possono citare, a titolo di esempio:

- Interruttore con bloccaggio di sicurezza
- Relè di sicurezza con funzione di reset

NOTA! Le funzioni di sicurezza di OPTBJ non soddisfano i requisiti dello spegnimento di emergenza secondo lo standard EN 60204-1.

NOTA! Non utilizzare la funzione STO come funzione di arresto standard dell'inverter.

NOTA! In una situazione di guasto IGBT l'albero di un motore a magneti permanenti può ruotare fino a 180 gradi rispetto al polo magnetico del motore.

NOTA! Se non è possibile garantire il livello di inquinamento 2, utilizzare la classe di protezione IP54.

ATTENZIONE! La scheda OPTBJ e le sue funzioni di sicurezza non determinano l'isolamento elettrico dell'inverter rispetto all'alimentazione della rete elettrica. Qualora sia necessario effettuare un intervento sull'impianto elettrico dell'inverter, del motore o sul cablaggio del motore, l'inverter va completamente isolato dall'alimentazione della rete elettrica, utilizzando ad esempio un interruttore generale esterno. Vedere, ad esempio, lo standard EN60204-1 sezione 6.3.

GENERALE VACON ● 9

Safe Stop 1 (SS1)

La funzione di sicurezza SS1 è realizzata in conformità al tipo C dello standard di sicurezza degli inverter EN 61800-5-2 (Tipo C: "La funzione PDS(SR) inizia la decelerazione del motore e avvia la funzione STO dopo un ritardo di tempo specifico per ogni applicazione").

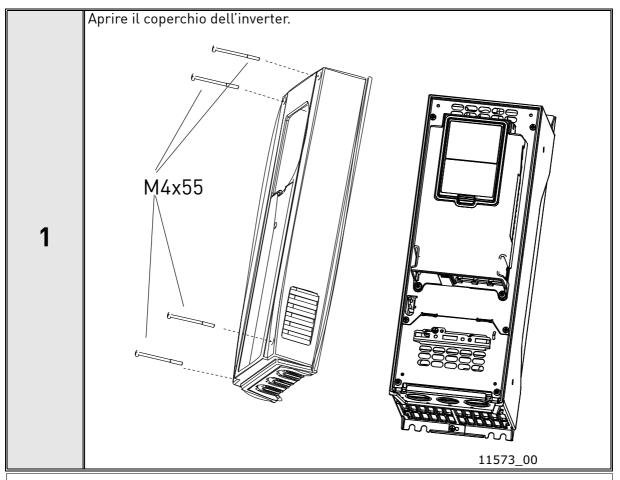
La funzione di sicurezza SS1 è stata studiata per conformarsi ai seguenti standard:

- EN 61800-5-2 Safe Stop 1 (SS1) SIL2
- EN ISO 13849-1 PL"d" Category 3
- EN 62061: SILCL2
- IEC 61508: SIL2
- Questa funzione corrisponde a un arresto controllato in conformità alla categoria di arresto 1, EN 60204-1.

Protezione da sovratemperatura tramite il termistore del motore (secondo ATEX)

Rilevazione della sovratemperatura tramite termistore. Può essere utilizzata come dispositivo di blocco per i motori certificati ATEX.

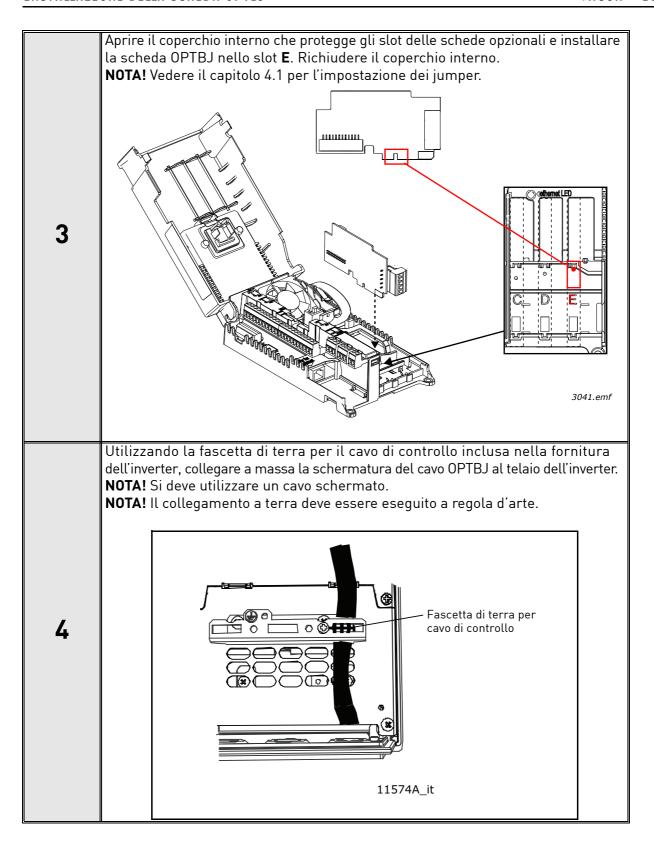
La funzione di blocco tramite termistore è certificata dal VTT** sulla base della direttiva ATEX 94/9/EC.


Tutte le funzioni di sicurezza della scheda OPTBJ sono descritte in questo manuale.

** VTT = Centro ricerche tecniche della Finlandia

2.1 RIFERIMENTI

Il manuale di installazione e il manuale dell'applicazione di Vacon 100 sono disponibili su www.vacon.com -> Support & downloads -> Vacon manuals -> Vacon 100 manuals.


3. INSTALLAZIONE DELLA SCHEDA OPTBJ

Le uscite relè e altri morsetti I/O potrebbero presentare una pericolosa tensione di controllo anche quando l'inverter Vacon 100 è scollegato dalla rete elettrica.

Se non è stato già fatto per gli altri cavi di controllo, tagliare l'apertura sul coperchio dell'inverter attraverso la quale dovrà passare il cavo OPTBJ (classe di protezione IP21). NOTA: tagliare l'apertura sul lato dello slot E. 5 11576 00 Rimontare il coperchio dell'inverter e stendere i cavi come illustrato nella figura. NOTA: quando si pianificano i percorsi dei cavi, non dimenticare di prevedere una distanza di almeno 30 cm tra i cavi OPTBJ e il cavo motore. Si consiglia di stendere i cavi OPTBJ lontano dai cavi di alimentazione come illustrato nella figura. 6 **OPTBJ**

4. IMPOSTAZIONE DELLA SCHEDA OPTBJ

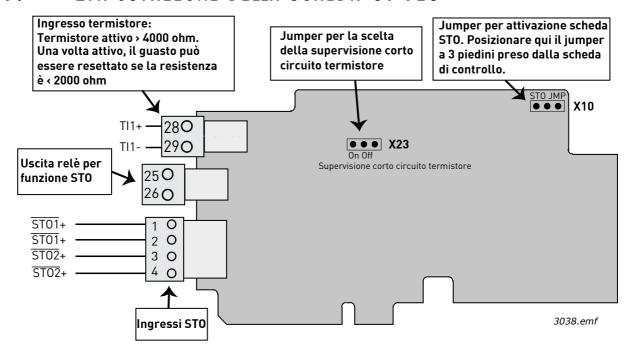


Figura 1. Impostazione della scheda OPTBJ

4.1 JUMPER DELLA SCHEDA OPTBJ

Sulla scheda opzionale OPTBJ sono montati due jumper. I jumper sono descritti qui di seguito:

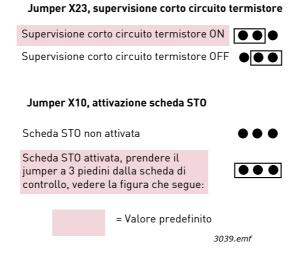


Figura 2. Jumper della scheda OPTBJ

Per attivare la scheda OPTBJ, è necessario prendere il jumper a tre piedini dalla scheda di controllo dell'inverter e inserirlo nel jumper X10 della scheda OPTBJ. Per ulteriori informazioni, vedere il prossimo capitolo.

NOTA! In caso di problemi con i jumper, vedere il capitolo 7.1.

4.2 JUMPER STO SULL'INVERTER VACON 100

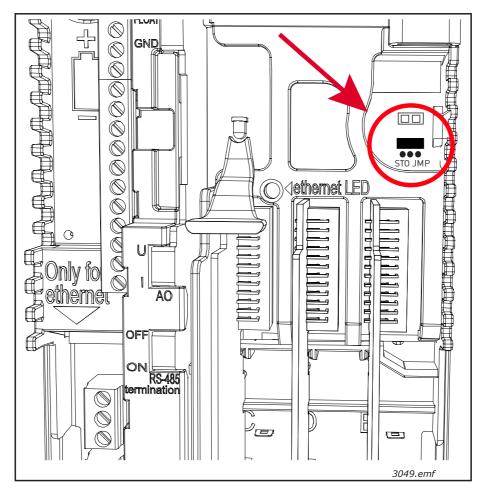


Figura 3. Posizione dei jumper STO sul Vacon 100. Aprire il coperchio principale e il coperchio interno per scoprire il jumper

5. FUNZIONI DI SICUREZZA STO E SS1

Le funzioni di sicurezza della scheda OPTBJ, ad esempio i dati e i principi tecnici, gli esempi di cablaggio e la messa a punto, verranno trattate in questo capitolo.

NOTA! L'uso delle funzioni STO e SS1 o di altre funzioni di sicurezza non serve da solo a garantire la sicurezza. Per fare in modo che un sistema pronto a partire sia effettivamente sicuro occorre adottare un strategia globale di valutazione dei rischi. È necessario che i dispositivi di sicurezza, come la scheda OPTBJ, siano correttamente integrati nell'intero sistema. L'intero sistema deve essere progettato in conformità a tutti gli standard pertinenti dello specifico settore industriale di appartenenza. Standard, quali EN12100 Parte 1, Parte 2 e ISO 14121-1, offrono metodologie che permettono di progettare macchinari sicuri ed eseguire una corretta analisi dei rischi.

ATTENZIONE! Le informazioni contenute nel presente manuale hanno lo scopo di istruire all'uso delle funzioni di sicurezza che la scheda opzionale OPTBJ è in grado di offrire in abbinamento alla scheda di controllo dell'inverter Vacon 100. Queste informazioni sono conformi a ogni procedura, standard o regolamento noto al momento della loro redazione. Tuttavia, il progettista del sistema/prodotto finito è responsabile della sicurezza del sistema e della conformità a ogni normativa pertinente.

5.1 PRINCIPIO SAFE TORQUE OFF (STO)

La funzione di sicurezza STO della scheda OPTBJ consente di disabilitare l'uscita dell'inverter in modo tale che l'inverter non possa generare coppia sull'albero motore. Per la funzione STO, la scheda OPTBJ dispone di due ingressi separati isolati galvanicamente: STO1 e STO2.

NOTA! Gli ingressi STO devono essere collegati a un segnale di +24 V perché l'inverter sia in grado di abilitarsi.

La funzione di sicurezza STO disabilita la modulazione dell'inverter. La modulazione dell'inverter viene disabilitata lungo due percorsi indipendenti controllati dagli ingressi STO1 e STO2, in modo tale che un singolo guasto di una delle parti del sistema di sicurezza non determini mai la perdita dell'intera funzione di sicurezza. Questo risultato è ottenuto disabilitando le uscite che portano i segnali di gate all'elettronica dell'inverter. Le uscite dei segnali di gate controllano il modulo IGBT. Quando le uscite dei segnali di gate sono disabilitate, l'inverter non genera coppia sull'albero motore. Vedere le figure 4 e 5.

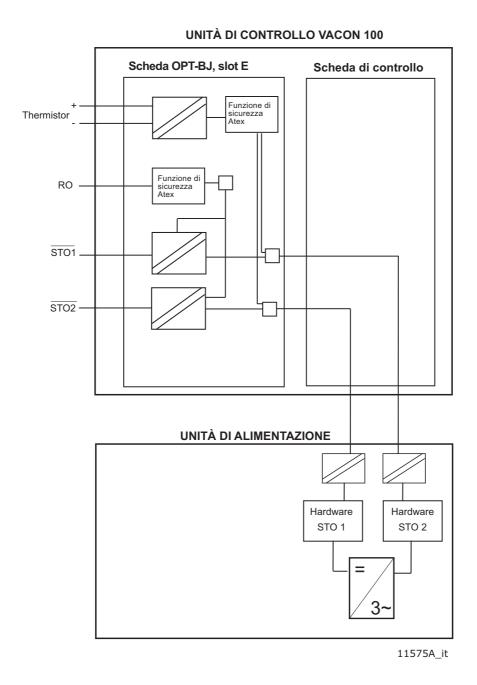


Figura 4. Principio STO con scheda OPTBJ e scheda di controllo di Vacon 100, MR4-10

UNITÀ DI CONTROLLO VACON 100 Scheda OPT-BJ, slot E Scheda di controllo Funzione di sicurezza Atex Thermistor Funzione RO di sicurezza Atex ST01_ STO2 -UNITÀ DI ALIMENTAZIONE **UNITÀ DI ALIMENTAZIONE SLAVE MASTER** Hardware Hardware Hardware Hardware STO 1 STO 2 STO 1 STO 2

Figura 5. Principio STO con scheda OPTBJ e scheda di controllo di Vacon 100, MR12

11654_it

5.2 PRINCIPIO SAFE STOP 1 (SS1)

Dopo un comando Safe Stop, il motore inizia a decelerare e la funzione di sicurezza SS1 avvia la funzione STO una volta trascorso il ritardo definito dall'utente.

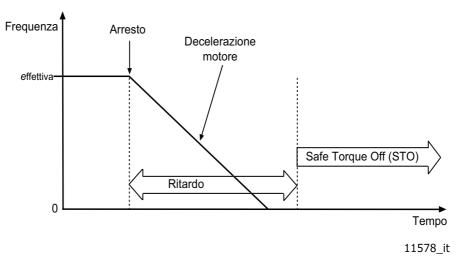


Figura 6. Il principio Safe Stop 1 (EN 61800-5-2, SS1 Tipo C)

La funzione di sicurezza Safe Stop 1 (SS1) è costituita da due sottosistemi, un relè esterno differito a tempo e la funzione di sicurezza STO. Questi due sottosistemi insieme costituiscono la funzione di sicurezza Safe Stop 1 illustrata nella Figura 7.

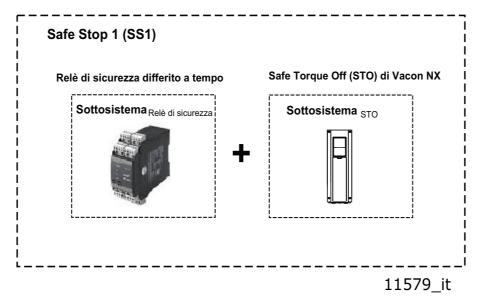


Figura 7. Funzione di sicurezza Safe Stop 1 (SS1)

La Figura 8 illustra il principio di collegamento della funzione di sicurezza Safe Stop 1, come già specificato nella 6.

- Le uscite relè differite a tempo sono collegate agli ingressi STO.
- Un'uscita digitale separata del relè di sicurezza è collegata a un ingresso digitale generale dell'inverter Vacon 100. Per poter eseguire il comando di arresto occorre programmare l'ingresso digitale generale che avvia la funzione di arresto dell'inverter senza alcun ritardo (deve essere impostata su "arresto tramite rampa") e determina la decelerazione del motore. Se il comportamento di SS1 nella figura 6 è obbligatorio, occorre garantire che l'arresto rampa venga attivato quando si riceve il segnale di arresto. È compito di chi progetta il sistema verificare questa condizione.

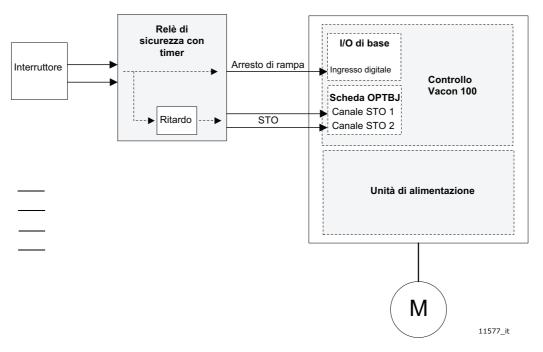


Figura 8. Il principio di collegamento Safe Stop 1 (SS1)

ATTENZIONE! Il progettista/utente del sistema è responsabile della comprensione e impostazione del ritardo per il relè di sicurezza, in quanto questo parametro dipende sostanzialmente dal processo e dalla macchina.

- Il ritardo deve essere impostato su un valore maggiore del tempo di decelerazione dell'inverter*. Il tempo di decelerazione del motore dipende dal processo e dalla macchina.
- La funzione di arresto dell'inverter deve essere impostata correttamente per il processo/macchina. L'attivazione della funzione di sicurezza SS1 deve determinare l'esecuzione dell'arresto configurato nell'inverter. Nel software applicativo predefinito di Vacon 100 si consiglia di utilizzare la funzionalità "Arresto rapido" per questo scopo.

^{*} Nel caso di un singolo guasto, l'inverter potrebbe non decelerare immediatamente, ma andare in modalità STO una volta trascorso il ritardo configurato.

ATTENZIONE! La postazione di controllo deve essere impostata in base ai requisiti dell'applicazione.

Vedere il capitolo 5.3.4 riguardante la parametrizzazione di Safe Stop 1 e il capitolo 5.3.5 per il cablaggio di Safe Stop 1.

5.3 DETTAGLI TECNICI

5.3.1 TEMPI DI RISPOSTA

Funzione di sicurezza		Tempo di disattivazione
Safe Torque Off (STO)	< 20 ms	500 ms

Tabella 1. Tempi di risposta STO

5.3.2 COLLEGAMENTI

Oltre agli ingressi STO, la scheda contiene anche un ingresso termistore. Se l'ingresso termistore non viene utilizzato, deve essere disabilitato. L'ingresso termistore può essere disabilitato provocando un corto circuito sui morsetti e impostando il jumper X23 su "OFF". Il funzionamento e le istruzioni dell'ingresso termistore sono riportati nel capitolo 8.1.

Morsetto		Informazioni tecniche
1	ST01+	Ingresso STO isolato 1, +24 V +-20% 1015 mA
2	ST01+	GND virtuale 1
3	ST02+	Ingresso ST0 isolato 2, +24 V +-20% 1015 mA
4	ST02+	GND virtuale 2
25	R01	Uscita relè 1 (N0) *
26	RO2	Capacità di commutazione: • 24 VDC/8 A • 250 VAC/8 A • 125 VDC/0,4 A Min. carico di commutazione: 5 V/10 mA
28	TI1+	Ingresso termistore; R $_{ m trip}$ > 4,0 k Ω (PTC)
29	TI1-	g. 2330 to

Tabella 2. Morsetti I/O OPTBJ

^{*} Se come tensione di controllo dai relè di uscita viene utilizzata 230 VAC, i circuiti di controllo devono essere alimentati con un trasformatore di isolamento separato per limitare la corrente di corto circuito e i picchi di sovratensione. Ciò consente di impedire la saldatura sui contatti dei relè.

V _{ST01+} - V _{ST01-}	V _{ST02+} - V _{ST02-}	Stato STO
0 VDC	0 VDC	STO attivo
24 VDC	0 VDC	Guasto diagnostica STO
0 VDC	24 VDC	Guasto diagnostica STO
24 VDC	24 VDC	STO inattivo

Tabella 3. Tabella dei valori della funzione STO

5.3.3 USCITA RELÈ

Quando la funzione STO è attiva, l'uscita relè è chiusa. Quando la funzione STO è inattiva, l'uscita relè è aperta. Quando la funzione STO rileva un guasto diagnostico non resettabile, l'uscita relè si attiva/disattiva alla frequenza di un hertz.

NOTA! L'ingresso ATEX non ha alcun effetto sull'uscita relè.

ATTENZIONE! L'uscita relè va utilizzata esclusivamente per la diagnostica della funzione STO.

ATTENZIONE! L'uscita relè non è direttamente correlata alle funzioni di sicurezza.

5.3.4 DATI RELATIVI ALLA SICUREZZA IN CONFORMITÀ ALLO STANDARD

Tabella 4. Dati relativi alla sicurezza della funzione Safe Torque Off (STO)

	MR4 – MR10	MR12
EN 61800-5-2:2007		SIL 3 PFH = 3,1 x 10 ⁻¹⁰ /ora HFT = 1
EN 62061:2005	SIL CL 3 PFH = 2.5×10^{-10} ora HFT = 1	SIL CL 3 PFH = 3.1×10^{-10} ora HFT = 1
EN/ISO 13849-1:2006	PL e MTTF _{d =2.600 anni} DC _{avg = media} Category 3	PL e MTTF _{d =1.100 anni} DC _{avg = media} Category 3
IEC 61508:2010, High Demand Mode	SIL 3 PFH = 2,5 x 10 ⁻¹⁰ /ora HFT = 1	SIL 3 PFH = 3.1×10^{-10} /ora HFT = 1
IEC 61508:2010, Low Demand Mode	SIL 3 PFD _{AVG} (T_M) = 2,2 x 10 ⁻⁵ /ora T_M = 20 anni HFT = 1	SIL 3 PFD _{AVG} (T _M)= 2,7 x 10 ⁻⁵ /ora T _M = 20 anni HFT = 1

Dati relativi alla sicurezza della funzione Safe Stop (SS1)

NOTA! Il capitolo che segue fornisce un esempio di combinazione di prodotti e come tale va considerato.

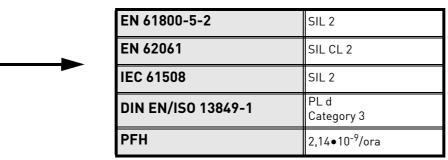
La funzione di sicurezza SS1 è costituita da due sottosistemi con differenti dati relativi alla sicurezza. Il sottosistema costituito dal relè differito a tempo è prodotto, ad esempio, dalla PHOENIX CONTACT. Sono disponibili i seguenti modelli di questo produttore:

- PSR-SCP-24DC/ESD/5X1/1X2/300 oppure
- PSR-SPP-24DC/ESD/5X1/1X2/300

Vedere il manuale d'uso del produttore per ulteriori informazioni inerenti al relè di sicurezza differito a tempo.

Dati relativi alla sicurezza di PSR-SC/PP-24DC/ESD/5X1/1X2/300 nel manuale dell'utente e nel certificato:

IEC 61 508	SIL 2
EN 62061	SIL CL 2
DIN EN/ISO 13849-1	PL d Category 3
PFH	1,89•10 ⁻⁹ /ora


Sottosistema_{RelèSicurezza}

Dati relativi alla sicurezza STO di Vacon 100:

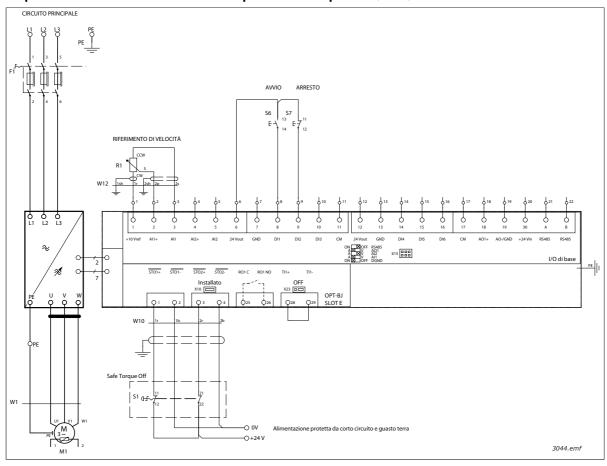
EN 61800-5-2	SIL 3
EN 62061	SIL CL 3
IEC 61508	SIL 3
DIN EN/ISO 13849-1	PL e
	Category 3
PFH	2,52•10 ⁻¹⁰ /ora

Sottosistema_{Vacon100ST0}

Dati relativi alla sicurezza di Safe Stop (SS1)

Quando i due sottosistemi sono utilizzati insieme, il livello massimo Safety Integrity Level o Performance Level è quello del sottosistema minore.

• SIL 2 e PL d


Il valore PFH per una funzione di sicurezza di sottosistemi combinati è la somma dei valori PFH di tutti i sottosistemi. PFH_{SS1} = PFH_{Relè di sicurezza} + PFH_{VACON100 ST0} = 1,89 \bullet 10⁻⁹/ora + 2,52 \bullet 10⁻¹⁰/ora = 2,14 \bullet 10⁻⁹/ora

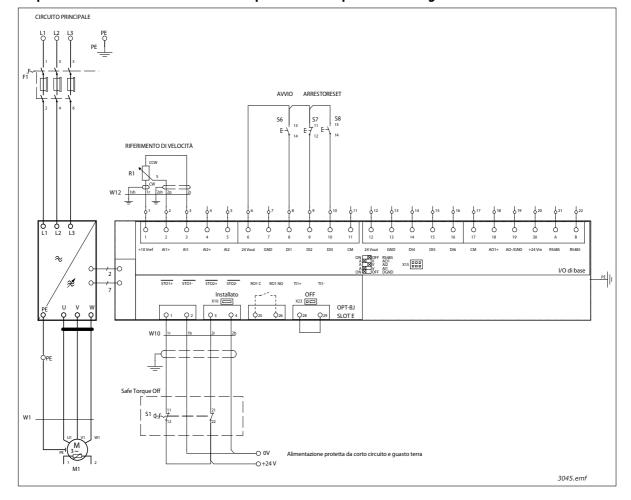
• Il risultato è entro i requisiti di SIL 2 e PL d.

5.3.5 ESEMPI DI CABLAGGI

Gli esempi riportati in questo capitolo mostrano i principi di base per il cablaggio della scheda OPTBJ. Nel progetto finale vanno sempre seguiti gli standard e i regolamenti locali.

Esempio 1: scheda OPTBJ senza reset per Safe Torque Off (STO)

La figura sopra mostra un esempio di connessione della scheda OPTBJ per la funzione di sicurezza Safe Torque Off senza reset. L'interruttore S1 è collegato con 4 fili alla scheda OPTBJ, come illustrato sopra.


L'interruttore S1 potrebbe essere alimentato dalla scheda di controllo (piedini 6 e 7 del connettore nella figura sopra) oppure potrebbe essere alimentato esternamente.

Quando l'interruttore S1 viene attivato (contatti aperti), l'inverter va in stato di STO e il motore (se in marcia) si arresta per inerzia. L'inverter indicherà: "30 SafeTorqueOff".

Per avviare di nuovo il motore, viene eseguita la seguenza riportata sotto.

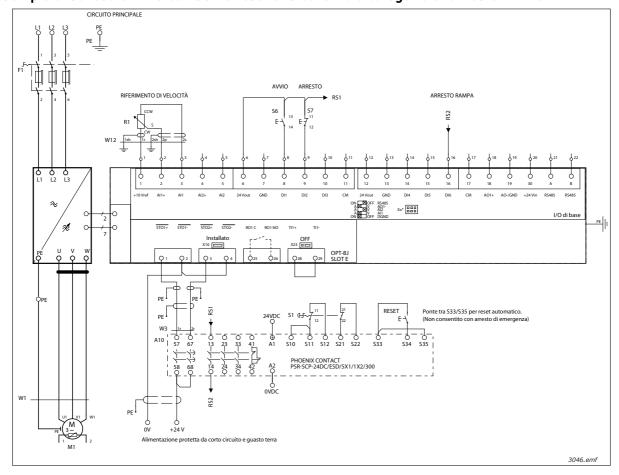
- Rilasciare l'interruttore S1 (contatti chiusi). L'hardware è ora abilitato, ma l'inverter continua a visualizzare il guasto "30 SafeTorqueOff".
- Confermare il rilascio dell'interruttore tramite la funzione di reset sensibile ai fronti. L'inverter ritorna nello stato di pronto.
- Immettendo un comando valido, il motore si rimetterà in marcia.

NOTA! Il software applicativo predefinito di Vacon 100 utilizza l'avvio sensibile ai fronti come comando di marcia predefinito, allo scopo di impedire un avvio accidentale dallo stato STO.

Esempio 2: la scheda OPTBJ con reset per Safe Torque Off o categoria di arresto 0 EN 60204-1.

La figura sopra presenta un esempio di connessione della scheda OPTBJ per la funzione di sicurezza STO con reset. L'interruttore S1 è collegato con 4 fili alla scheda OPTBJ, come illustrato sopra. L'ingresso digitale 3 (DIN3), ad esempio, è cablato per la funzione di reset guasti. La funzione di reset (che non fa parte di alcuna funzione di sicurezza) può essere programmata per uno qualunque degli ingressi digitali disponibili.

L'interruttore S1 potrebbe essere alimentato dalla scheda di controllo (piedini 6 e 7 del connettore nella figura sopra) oppure potrebbe essere alimentato esternamente, se protetto da guasti di terra o cortocircuiti.


Quando l'interruttore S1 viene attivato (contatti aperti), l'inverter va in stato di STO e il motore (se in marcia) si arresta per inerzia. L'inverter indicherà: "30 SafeTorqueOff".

Per avviare di nuovo il motore, viene eseguita la sequenza riportata sotto.

- Rilasciare l'interruttore S1 (contatti chiusi). L'hardware è ora abilitato, ma l'inverter continua a visualizzare il guasto "30 SafeTorqueOff".
- Confermare il rilascio dell'interruttore tramite la funzione di reset sensibile ai fronti. L'inverter ritorna nello stato di pronto.
- Immettendo un comando valido, il motore si rimetterà in marcia.

NOTA! Il software applicativo predefinito di Vacon 100 utilizza l'avvio sensibile ai fronti come comando di marcia predefinito, allo scopo di impedire un avvio accidentale dallo stato STO.

NOTA! Per l'arresto di emergenza EN 60204-1 in base alla categoria di arresto 0, usare il pulsante di arresto di emergenza.

Esempio 3: scheda OPTBJ con SS1 e reset di sicurezza o categoria di arresto 1 EN 60204-1.

La figura sopra riportata presenta un esempio di collegamento della scheda OPTBJ per la funzione di sicurezza SS1 con modulo relè di sicurezza esterno e reset di sicurezza.

Il modulo relè di sicurezza esterno è collegato all'interruttore S1. L'alimentazione utilizzata per l'interruttore S1 è 230 VCA a titolo di esempio. Il modulo relè di sicurezza è collegato alla scheda OPTBJ con 4 fili come illustrato nella figura sopra.

Quando l'interruttore S1 viene attivato (contatti aperti), l'inverter va in stato di STO e il motore (se in marcia) si arresta per inerzia. L'inverter indicherà: "30 SafeTorqueOff".

Per avviare di nuovo il motore, viene eseguita la sequenza riportata sotto.

- Rilasciare l'interruttore S1 (contatti chiusi). L'hardware è ora abilitato, ma l'inverter continua a visualizzare il guasto "30 SafeTorqueOff".
- Confermare il rilascio dell'interruttore tramite la funzione di reset sensibile ai fronti. L'inverter ritorna nello stato di pronto.
- Immettendo un comando valido, il motore si rimetterà in marcia

Ulteriori informazioni sul modulo relè di sicurezza sono disponibili nella documentazione del modulo stesso.

NOTA! Il software applicativo predefinito di Vacon 100 utilizza l'avvio sensibile ai fronti come comando di marcia predefinito, allo scopo di impedire un avvio accidentale dallo stato STO.

NOTA! Per l'arresto di emergenza EN 60204-1 in base alla categoria di arresto 1, usare il pulsante di arresto di emergenza.

VACON ● 26 MESSA A PUNTO

6. MESSA A PUNTO

NOTA! L'uso delle funzioni STO e SS1 o di altre funzioni di sicurezza non serve da solo a garantire la sicurezza. Verificare sempre che tutti dispositivi di sicurezza dell'intero sistema siano attivi e pronti per l'uso.

NOTA! L'utente è responsabile dell'esclusione dei guasti nel cablaggio esterno.

6.1 ISTRUZIONI GENERALI DI CABLAGGIO

- Il cablaggio va fatto seguendo le istruzioni generali specifiche del prodotto nel quale viene installata la scheda OPTBJ.
- Per il collegamento della scheda OPTBJ è necessario un cavo schermato.
- EN 60204-1 part 13.5: la caduta di tensione dal punto di alimentazione al punto di carico non deve superare il 5%.
- In pratica, a causa dei disturbi elettromagnetici, la lunghezza del cavo va limitata a massimo 200 m. In un ambiente rumoroso, per evitare eventi indesiderati, sarebbe opportuno che la lunghezza del cavo fosse anche minore di 200 m.

Cavo consigliato:

Tipo	Esempio: doppino schermato a bassa tensione $2 \times 2 \times 0.75 \text{ mm}^2$.
Lunghezza massima	200 m tra gli ingressi STO e il contatto operativo

6.2 CHECKLIST PER LA MESSA A PUNTO DELLA SCHEDA OPTBJ

Nr	Step	Sì	No
1	È stata fatta una seria valutazione dei rischi del sistema per essere certi che l'utilizzo della funzione di sicurezza Safe Torque Off (STO) o Safe Stop 1 (SS1) della scheda OPTBJ sia sicuro e conforme alle normative locali?		
2	La valutazione include anche un'analisi atta a stabilire se l'utilizzo di dispositivi esterni, come un freno meccanico, sia assolutamente necessario?		
3	L'interruttore S1 è stato scelto in base all'obiettivo di sicurezza obbligatorio (SIL o PL) definito nel corso della valutazione dei rischi?		
4	L'interruttore S1 deve necessariamente essere bloccabile o in altro modo assicurabile sulla posizione di OFF?		
5	È sicuro che la codifica tramite colori e contrassegni dell'interruttore S1 sia conforme all'uso stabilito?		
6	L'alimentazione esterna dell'interruttore S1 è protetta dai guasti di terra e da corto circuito (in conformità allo standard EN 60204-1)?		
7	L'albero di un motore a magneti permanenti potrebbe, in una situazione di guasto IGBT, ruotare fino a 180 gradi rispetto al polo magnetico del motore. È sicuro che il sistema sia stato progettato in modo tale da rendere accettabile questa eventualità?		
8	La configurazione dei jumper STO è stata fatta in base alle istruzioni di questo manuale?		
9	I requisiti di processo (incluso il tempo di decelerazione) sono stati attentamente considerati per una corretta esecuzione della funzione di sicurezza Safe Stop 1 (SS1) e sono state effettuate le corrispondenti impostazioni?		
10	Esiste il rischio di contaminazione conduttiva (ad esempio, polvere conduttiva) nell'ambiente?		
11	Se non è possibile garantire il livello di inquinamento 2, dovrà essere utilizzata la classe di protezione IP54.		
12	Sono state seguite le istruzioni specifiche del prodotto riportate nel Manuale d'uso?		
13	Il sistema necessita di una sicurezza certificata in relazione alla prevenzione di un avvio accidentale? La funzione di sicurezza deve essere fornita da un relè di sicurezza esterno.		
14	Il sistema è stato progettato in modo tale che l'attivazione (abilitazione) dell'inverter attraverso gli ingressi STO non provochi un avvio accidentale dell'inverter?		
15	Sono state utilizzate solo parti e unità approvate?		
16	La scheda di controllo Vacon 100 è la 70CVB01582? (Vedere l'adesivo posto sulla scheda di controllo del Vacon 100 oppure vedere "Info sul drive" in Vacon Live)		
17	Il software del sistema Vacon 100 è la versione FW0072V002 o successiva? (Verificare la versione del software del sistema sul pannello di comando o in Vacon Live)		
18	È stata messa a punto una procedura di routine per la verifica sistematica del funzionamento di tutti i dispositivi di sicurezza?		
19	Questo manuale è stato letto, compreso e seguito attentamente?		
20	Le funzioni di sicurezza STO e SS1 sono state testate accuratamente in conformità al capitolo 5.3?		

VACON ● 28 MESSA A PUNTO

6.3 TEST DELLA FUNZIONE DI SICUREZZA SAFE TORQUE OFF (STO) O SAFE STOP 1 (SS1)

NOTA! Prima di testare la funzione di sicurezza STO o SS1, verificare che la checklist (capitolo 6.2) sia sta esaminata e completata.

NOTA! Dopo aver connesso la scheda, controllare SEMPRE che la funzione di sicurezza STO o SS1 funzioni perfettamente testandola prima ancora del sistema operativo.

NOTA! Per quanto concerne la funzione di sicurezza SS1, verificare, testandola, che la funzione di arresto tramite rampa dell'inverter operi secondo i requisiti di processo.

NOTA! Se la funzione di sicurezza STO viene utilizzata in una modalità operativa di scarsa attività, deve testata periodicamente almeno una volta all'anno.

Quando la funzione di sicurezza STO è attivata, sul display del pannello di comando compare il codice: Guasto 30 "SafeTorqueOff". Questo codice indica che la funzione di sicurezza STO è attiva. Una volta disattivata la funzione di sicurezza STO, il guasto rimane attivo fino a quando non viene riconosciuto come tale.

MANUTENZIONE VACON ● 29

7. MANUTENZIONE

ATTENZIONE! Per qualunque intervento di manutenzione o riparazione da effettuare sull'inverter sul quale è installata la scheda OPTBJ, seguire la checklist riportata nel capitolo 6.2.

ATTENZIONE! Durante le interruzioni per manutenzione o in caso di assistenza/riparazione potrebbe essere necessario rimuovere la scheda OPTBJ dal suo slot. Dopo aver riconnesso la scheda, controllare SEMPRE, testandolo, che il dispositivo di sicurezza STO o SS1 sia perfettamente funzionante. Vedere il capitolo 6.3.

7.1 GUASTI RELATIVI ALLA FUNZIONE DI SICUREZZA SAFE TORQUE OFF (STO) O SAFE STOP 1 (SS1)

La tabella che segue mostra il guasto normale, generato quando la funzione di sicurezza STO è attiva:

Codice guasto	Guasto	ID	Spiegazione	Misure correttive
30	SafeTorqueOff	530		Funzione STO attivata. L'inverter è in sicurezza.

La tabella che segue mostra i guasti che potrebbero essere generati dalla porzione di software che controlla l'hardware relativo alla funzione di sicurezza STO. Se alcuni dei guasti elencati sotto si verificano, il guasto NON deve essere resettato:

Codice guasto	Guasto	ID	Spiegazione	Misure correttive
30	Configurazione sicurezza	500	Il jumper STO è installato sulla scheda di controllo.	Rimuovere il jumper STO dalla scheda di controllo. Vedere i par. 3.1 e 3.1.1.
30	Configurazione sicurezza	501	Sull'inverter sono state rilevate più schede opzionali OPTBJ.	L'inverter supporta una sola scheda OPTBJ. Rimuovere le altre schede OPTBJ dall'inverter, salvo quella che si trova nello slot E.
30	Configurazione sicurezza	502	La scheda opzionale OPTBJ è installata in uno slot errato.	La scheda opzionale OPTBJ può essere installata solo nello slot E. Installare la scheda nello slot E.
30	Configurazione sicurezza	503	Sulla scheda di controllo manca il jumper STO.	Installare il jumper STO sulla scheda di controllo, una volta rimossa la scheda OPTBJ dall'inverter. Vedere i par. 3.1 e 3.1.1.
30	Configurazione sicurezza	504	È stato rilevato un problema nell'installazione del jumper STO sulla scheda di controllo.	Controllare l'installazione del jumper STO sulla scheda di controllo. Vedere i par. 3.1 e 3.1.1.
30	Configurazione sicurezza	505	È stato rilevato un problema nell'installazione del jumper STO sulla scheda OPTBJ.	Controllare l'installazione del jumper STO sulla scheda OPTBJ. Vedere i par. 3.1 e 3.1.1.

Codice guasto	Guasto	ID	Spiegazione	Misure correttive
30	Configurazione sicurezza	506	Mancanza di comunicazione tra la scheda di controllo e la scheda opzionale OPTBJ.	 Controllare l'installazione della scheda OPTBJ. Riavviare l'inverter. Sostituire la scheda OPTBJ, se necessario. Se il guasto si ripresenta, contattare il distributore più vicino.
30	Configurazione sicurezza	507	L'hardware non supporta la scheda OPTBJ.	 Riavviare l'inverter. Se il guasto si ripresenta, contattare il distributore più vicino.
30	Diagnostica sicurezza	520	Si è verificato un guasto diagnostico nella funzione di sicurezza STO. Questo guasto si verifica quando gli ingressi STO si trovano in uno stato diverso per più di 100 ms.	 Riavviare l'inverter. Se il riavvio non risolve il problema, sostituire la scheda OPTBJ. Se il guasto si ripresenta, contattare il distributore più vicino. Far pervenire il rapporto dei guasti al distributore; per ulteriori informazioni, vedere il dettaglio di ciascun guasto.
30	Diagnostica sicurezza	521	Guasto diagnostico al termistore ATEX.	 Riavviare l'inverter. Se il riavvio non risolve il problema, sostituire la scheda OPTBJ. Se il guasto si ripresenta, contattare il distributore più vicino.
30	Diagnostica sicurezza	522	Corto circuito del termistore Atex.	 Verificare la connessione del termistore Atex. Controllare il termistore. Riavviare l'inverter. Se il riavvio non risolve il problema, sostituire la scheda OPTBJ. Se il guasto si ripresenta, contattare il distributore più vicino.
30	Diagnostica sicurezza	523	Si è verificato un problema nel circuito di sicurezza interno.	Resettare l'inverter e riavviare. Se il guasto si ripresenta, contattare il distributore più vicino.
30	Diagnostica sicurezza	524	Sovratensione rilevata nella scheda opzionale di sicurezza.	Resettare l'inverter e riavviare. Se il guasto si ripresenta, contattare il distributore più vicino.
30	Diagnostica sicurezza	525	Sottotensione rilevata nella scheda opzionale di sicurezza.	Resettare l'inverter e riavviare. Se il guasto si ripresenta, contattare il distributore più vicino.
30	Diagnostica sicurezza	526	Guasto interno rilevato nella CPU della scheda opzionale di sicurezza o nella gestione della memoria.	Resettare l'inverter e riavviare. Se il guasto si ripresenta, contattare il distributore più vicino.
30	Diagnostica sicurezza	527	Guasto interno rilevato nella funzione di sicurezza.	Resettare l'inverter e riavviare. Se il guasto si ripresenta, contattare il distributore più vicino.

8. FUNZIONE TERMISTORE (ATEX)

La supervisione di sovratemperatura tramite termistore è progettata in conformità alla direttiva ATEX 94/9/CE. È approvata da VTT Finlandia per il gruppo II (certificato nr. VTT 06 ATEX 048X), categoria (2) nelle aree "G" (area nella quale non sono presenti gas, vapori, fumi o miscele d'aria potenzialmente esplosive) e "D" (area con polveri combustibili). La "X" nel numero di certificato si riferisce a particolari condizioni per un utilizzo sicuro. Tali condizioni sono riportate nell'ultima nota di questa pagina.

0537

II (2) GD

Può essere utilizzato come dispositivo di blocco per sovratemperatura per i motori in area (motori EX).

NOTA! La scheda OPTBJ contiene anche la funzione di sicurezza Safe Torque Off (STO). Quando non si ha intenzione di utilizzare la funzione STO, gli ingressi STO1+(OPTBJ:1), STO2+(OPTBJ:3) vanno collegati a +24 V (ad esempio, il piedino 6 sulla scheda di controllo Vacon 100). STO1-(OPTBJ:2). STO2-(OPTBJ:4) vanno collegati a GND (ad esempio, il piedino 7 o 13 sulla scheda di controllo Vacon 100).

NOTA! È necessario che i dispositivi di sicurezza, come la scheda OPTBJ, siano correttamente integrati nell'intero sistema. La funzionalità della scheda OPTBJ non è necessariamente valida per tutti i sistemi. L'intero sistema deve essere progettato in conformità a tutti gli standard pertinenti dello specifico settore industriale di appartenenza.

ATTENZIONE! Le informazioni contenute nel presente manuale offrono una guida all'uso della funzione termistore per evitare il surriscaldamento dei motori in atmosfere esplosive. Tuttavia, il progettista del sistema/prodotto finito è responsabile della sicurezza del sistema e della conformità a ogni normativa pertinente.

ATTENZIONE! Durante le interruzioni per manutenzione o in caso di assistenza/riparazione potrebbe essere necessario rimuovere la scheda OPTBJ dal suo slot. Dopo aver riconnesso la scheda, controllare SEMPRE, testandolo, che il dispositivo termistore sia perfettamente funzionante.

ATTENZIONE! La funzione termistore sulla scheda OPTBJ con scheda di controllo Vacon 100 viene utilizzata per evitare il surriscaldamento dei motori in atmosfere esplosive. L'inverter stesso, anche con la scheda OPTBJ, non può essere installato in atmosfera esplosiva.

NOTA! Le condizioni particolari necessarie per un utilizzo sicuro (la X nel numero di certificato): Questa funzione può essere utilizzata con i motori di tipo Exe, Exd ed ExnA. In caso di motori Exe ed ExnA, l'utente finale deve confermare che l'installazione del circuito di misurazione è stato fatto sulla base della classificazione assegnata all'area di pertinenza. Ad esempio, nei motori Exe ed ExnA i sensori PTC devono essere certificati insieme al motore in conformità ai requisiti del tipo di protezione. L'intervallo di temperature ambiente per l'inverter va da -10°C a +50°C.

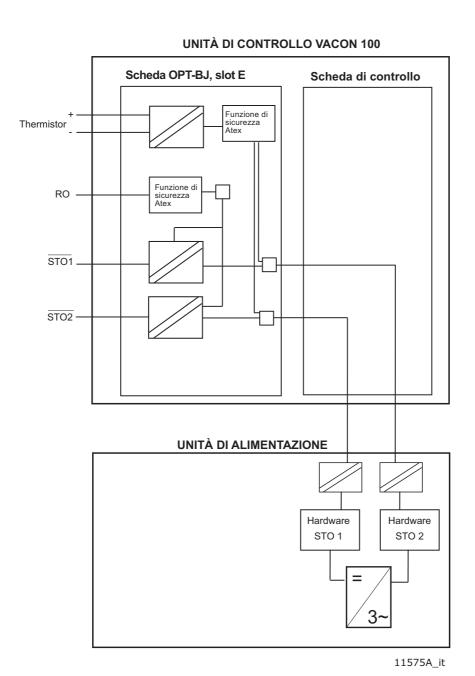
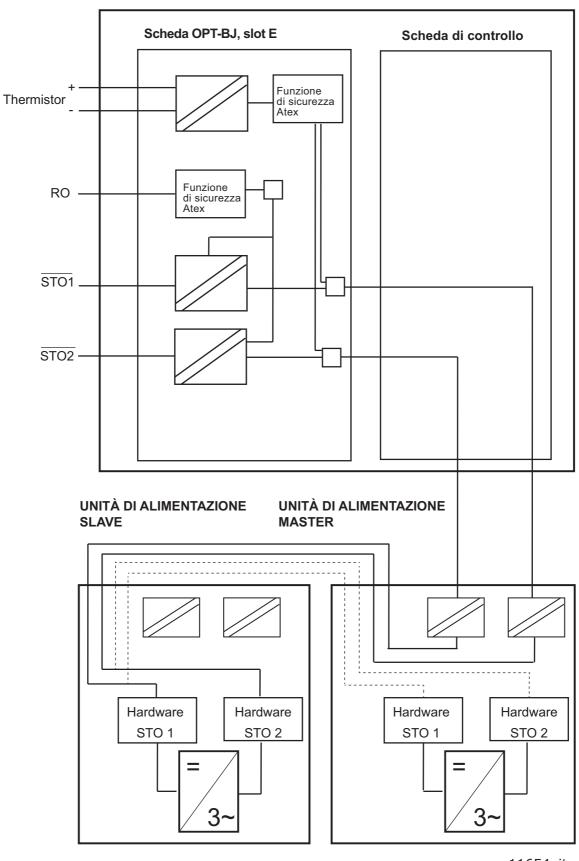



Figura 9. Principio della funzione termistore nell'inverter di frequenza Vacon 100 con scheda OPTBJ, MR4-10

UNITÀ DI CONTROLLO VACON 100

11654_it

Figura 10. Principio STO con scheda OPTBJ e scheda di controllo di Vacon 100, MR12

8.1 DATI TECNICI

8.1.1 DESCRIZIONE FUNZIONALE

Il circuito di supervisione tramite termistore della scheda OPTBJ è progettato per fornire un modo affidabile di disabilitare la modulazione dell'inverter in caso di sovratemperatura al termistore (o ai termistori) del motore.

Disabilitando la modulazione dell'inverter, il motore non riceve più energia dall'inverter evitando così un ulteriore surriscaldamento del motore.

Il circuito di supervisione tramite termistore risponde ai requisiti della direttiva ATEX in quando attiva direttamente la funzione di sicurezza "STO" dell'inverter Vacon 100 (vedere Figura 9) offrendo un modo affidabile e indipendente da software e parametri di impedire l'erogazione di energia al motore.

8.1.2 HARDWARE E CONNESSIONI

Vedere il capitolo 5.3.2.

Il termistore (PTC) è connesso ai morsetti 28(TI1+) e 29(TI1-) della scheda OPTBJ. Il fotoaccoppiatore isola gli ingressi termistore dal potenziale della scheda di controllo.

* Se come tensione di controllo dai relè di uscita viene utilizzata 230 VAC, i circuiti di controllo devono essere alimentati con un trasformatore di isolamento separato per limitare la corrente di corto circuito e i picchi di sovratensione. Ciò consente di impedire la saldatura sui contatti dei relè.

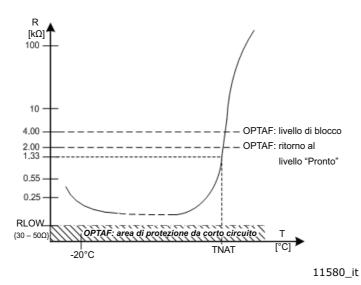


Figura 11. Caratteristiche tipiche di un sensore di protezione motore come specificate negli standard DIN 44081/DIN 440

8.1.3 FUNZIONE ATEX

Quando l'inverter è collegato alla rete di alimentazione e la temperatura del motore è sotto il limite di sovratemperatura (vedere Figura 11), l'inverter va in stato di pronto. Il motore potrebbe avviarsi dopo un comando di marcia valido.

Se la temperatura del motore è sopra il limite di sovratemperatura (vedere Figura 11), viene attivato il guasto 29 (termistore Atex).

Quando la resistenza del termistore (o dei termistori) montato sul motore va oltre i 4 k0hm a causa del surriscaldamento del motore, la modulazione dell'inverter viene disabilitata entro 20 ms.

In base alla Figura 11, quando la resistenza del termistore (o dei termistori) scende al di sotto dei 2 kOhm, la funzione termistore consente un reset del guasto e l'entrata in stato di pronto.

8.1.4 MONITORAGGIO DEL CORTO CIRCUITO

Gli ingressi termistore TI1+ e TI1- sono monitorati allo scopo di prevenire un corto circuito. Se viene rilevato un corto circuito, la modulazione dell'inverter viene disabilitata entro 20 ms e viene generato un Guasto 30 della diagnostica di sicurezza (sottocodice 522). Una volta rimosso il corto circuito, l'inverter può essere resettato solo dopo un ciclo di spegnimento/riavvio.

Il monitoraggio del corto circuito può essere abilitato o disabilitato utilizzando il jumper X23 in posizione ON od OFF, rispettivamente. Per impostazione predefinita, il jumper è in posizione ON.

8.2 MESSA A PUNTO

NOTA! Le attività di installazione, test e manutenzione della scheda OPTBJ vanno eseguite esclusivamente da personale qualificato.

NOTA! Non è consentito effettuare alcun intervento di riparazione sulla scheda OPTBJ. Eventuali schede difettose vanno restituite a Vacon per le opportune verifiche.

NOTA! Si consiglia di testare periodicamente (di norma, una volta all'anno) la funzionalità ATEX utilizzando l'ingresso termistore sulla scheda OPTBJ. Per il test attivare la funzionalità termistore (ad esempio, staccare il connettore del termistore Atex dalla scheda OPTBJ). L'inverter entra in stato di guasto e indica il guasto 29 (guasto del termistore Atex, sottocodice 280).

8.2.1 ISTRUZIONI GENERALI DI CABLAGGIO

Il termistore deve essere connesso utilizzando un cavo di controllo separato. Non è consentito utilizzare cavi appartenenti all'alimentazione del motore o altri cavi del circuito principale. Si deve utilizzare un cavo di controllo schermato. Vedere anche il capitolo 3.

		Lunghezza massima del cavo senza monitoraggio del corto circuito
	X23 : 0FF	X23 : ON
>= 1,5 mmq	1.500 metri	250 metri

8.2.2 DIAGNOSTICA DELLA FUNZIONE TERMISTORE

La tabella che segue riporta il quasto/avviso standard generato quando l'ingresso termistore è attivo

Codice guasto	Guasto	ID	Spiegazione	Misure correttive
29	Termistore Atex	280	Il termistore Atex ha rilevato una sovratemperatura.	

Vedere la tabella dei guasti nel capitolo 7.1.

VACON® DRIVEN BY DRIVES

Find your nearest Vacon office on the Internet at:

www.vacon.com

Manual authoring: documentation@vacon.com

Vacon Plc. Runsorintie 7 65380 Vaasa Finland

Subject to change without prior notice © 2015 Vacon Plc.

Rev. C

Sales code: DOC-OPTBJ+DLIT