Istruzioni operative Edizione 07/2007

SINAMICS G150

Convertitori da incasso da 75 kW a 1500 kW

sinamics

SIEMENS

SIEMENS

SINAMICS

SINAMICS G150 Convertitori in armadio

Istruzioni operative

Esecuzione regolazione V2.5

Prelazione	
Avvertenze di sicurezza	1
Panoramica degli apparecchi	2
Installazione meccanica	3
Installazione elettrica	4
Messa in servizio	5
Uso	6
Canale del valore di riferimento e regolazione	7
Morsetti di uscita	8
Funzioni, funzioni di sorveglianza e funzioni di protezione	9
Diagnostica / Anomalie e avvisi	10
Manutenzione e riparazione	11
Dati tecnici	12
Appendice	Α

Prefazione

Istruzioni di sicurezza

Questo manuale contiene delle norme di sicurezza che devono essere rispettate per salvaguardare l'incolumità personale e per evitare danni materiali. Le indicazioni da rispettare per garantire la sicurezza personale sono evidenziate da un simbolo a forma di triangolo mentre quelle per evitare danni materiali non sono precedute dal triangolo. Gli avvisi di pericolo sono rappresentati come segue e segnalano in ordine descrescente i diversi livelli di rischio.

PERICOLO

questo simbolo indica che la mancata osservanza delle opportune misure di sicurezza **provoca** la morte o gravi lesioni fisiche.

/ AVVERTENZA

il simbolo indica che la mancata osservanza delle relative misure di sicurezza **può causare** la morte o gravi lesioni fisiche.

/ CAUTELA

con il triangolo di pericolo indica che la mancata osservanza delle relative misure di sicurezza può causare lesioni fisiche non gravi.

CAUTELA

senza triangolo di pericolo indica che la mancata osservanza delle relative misure di sicurezza può causare danni materiali.

ATTENZIONE

indica che, se non vengono rispettate le relative misure di sicurezza, possono subentrare condizioni o conseguenze indesiderate.

Nel caso in cui ci siano più livelli di rischio l'avviso di pericolo segnala sempre quello più elevato. Se in un avviso di pericolo si richiama l'attenzione con il triangolo sul rischio di lesioni alle persone, può anche essere contemporaneamente segnalato il rischio di possibili danni materiali.

Personale qualificato

L'apparecchio/sistema in questione deve essere installato e messo in servizio solo rispettando le indicazioni contenute in questa documentazione. La messa in servizio e l'esercizio di un apparecchio/sistema devono essere eseguiti solo da **personale qualificato**. Con riferimento alle indicazioni contenute in questa documentazione in merito alla sicurezza, come personale qualificato si intende quello autorizzato a mettere in servizio, eseguire la relativa messa a terra e contrassegnare le apparecchiature, i sistemi e i circuiti elettrici rispettando gli standard della tecnica di sicurezza.

Uso regolamentare delle apparecchiature/dei sistemi:

Si prega di tener presente quanto segue:

/!\AVVERTENZA

L'apparecchiatura può essere destinata solo agli impieghi previsti nel catalogo e nella descrizione tecnica e può essere utilizzata solo insieme a apparecchiature e componenti di Siemens o di altri costruttori raccomandati o omologati dalla Siemens. Per garantire un funzionamento ineccepibile e sicuro del prodotto è assolutamente necessario che le modalità di trasporto, di immagazzinamento, di installazione e di montaggio siano corrette, che l'apparecchiatura venga usata con cura e che si provveda ad una manutenzione appropriata.

Marchio di prodotto

Tutti i nomi di prodotto contrassegnati con ® sono marchi registrati della Siemens AG. Gli altri nomi di prodotto citati in questo manuale possono essere dei marchi il cui utilizzo da parte di terzi per i propri scopi può violare i diritti dei proprietari.

Esclusione di responsabilità

Abbiamo controllato che il contenuto di questa documentazione corrisponda all'hardware e al software descritti. Non potendo comunque escludere eventuali differenze, non possiamo garantire una concordanza perfetta. Il contenuto di questa documentazione viene tuttavia verificato periodicamente e le eventuali correzioni o modifiche vengono inserite nelle successive edizioni.

Prefazione

Documentazione per l'utente

Prima di procedere all'installazione e alla messa in servizio del convertitore, si prega di leggere con attenzione tutte le indicazioni di sicurezza, le avvertenze e i segnali di pericolo presenti sull'apparecchio. Assicurarsi che i segnali di pericolo vengano mantenuti in uno stato leggibile e che le indicazioni mancanti o danneggiate vengano sostituite.

Per ulteriori informazioni rivolgersi a:

Technical Support

Tel.: +49 (0) 180 50 50 222

• Fax: +49 (0) 180 50 50 223

• Internet: http://www.siemens.de/automation/support-request

Indirizzo Internet

Informazioni sempre aggiornate sui prodotti SINAMICS sono reperibili in Internet al seguente indirizzo:

http://www.siemens.com/sinamics

Sommario

	Prefaz	ione	5
1	Avverte	enze di sicurezza	15
1 2 4	1.1	Avvertenze	15
	1.2	Avvertenze di sicurezza e indicazioni per l'uso	16
	1.3	Componenti danneggiabili dalle scariche elettrostatiche (ESD)	17
2	Panora	amica degli apparecchi	
	2.1	Contenuto del capitolo	19
	2.2 2.2.1 2.2.2	Campi d'impiego, caratteristiche, struttura	20
	2.3 2.3.1 2.3.2	Struttura Esecuzione A Esecuzione C	22
	2.4	Principio circuitale	26
	2.5	Targhetta	30
3	Installa	azione meccanica	35
	3.1	Contenuto del capitolo	35
	3.2	Trasporto, immagazzinaggio	36
	3.3 3.3.1 3.3.2 3.3.3 3.3.4 3.3.5	Montaggio Lista di controllo per l'installazione meccanica	39 40 41 41
4		azione elettrica	
7	4.1	Contenuto del capitolo	
	4.2	Lista di controllo per l'installazione elettrica	
	4.3	Importanti misure di sicurezza	
	4.4	Introduzione all'EMC	
	4.5	Installazione in conformità EMC	
	4.6	Collegamento elettrico di unità di trasporto fornite separatamente	
	4.6.1 4.6.2 4.6.3	Collegamento elettrico di unità di trasporto fornite separatamente Collegamento elettrico di unità di trasporto fornite separatamente Collegamento delle sbarre PE Attacco del collegamento del circuito intermedio	58

	4.6.4	Collegamento dell'alimentazione di tensione e dei cavi dei segnali	
	4.6.5	Collegamento della topologia DRIVE-CLiQ	
	4.7	Collegamenti di potenza	
	4.7.1	Sezioni di collegamento, lunghezze dei conduttori	
	4.7.2	Collegamento dei cavi del motore e dei cavi di rete	
	4.7.3	Adattamento della tensione del ventilatore (-U1 -T10)	64
	4.7.4 4.7.5	Adattamento della tensione di alimentazione interna (-A1 -T10, solo esecuzione A)	66
	4.7.3	nelle reti non collegate a terra	67
	4.8	Alimentazione ausiliaria esterna da una rete protetta	68
	4.8.1	Alimentazione ausiliaria AC 230 V	
	4.8.2	Alimentazione ausiliaria DC 24 V	
	4.9	Collegamenti dei segnali	
	4.9.1	Morsettiera utente (-A60)	
	4.10	Altri collegamenti	
	4.10.1	Filtro du/dt con Voltage Peak Limiter (opzione L10)	
	4.10.2	Contattore principale (opzione L13)	
	4.10.3 4.10.4	Filtro sinusoidale (opzione L15)	
	4.10.4	Interruttore principale incl. fusibili o interruttore automatico (opzione L26)	
	4.10.6	Pulsante di arresto d'emergenza (opzione L45)	
	4.10.7	Illuminazione armadio con presa di servizio (opzione L50)	85
	4.10.8	Riscaldamento anticondensa in armadio (opzione L55)	
	4.10.9	Arresto d'emergenza categoria 0; AC 230 V opp. DC 24 V (opzione L57)	
	4.10.10	Arresto d'emergenza categoria 1; AC 230 V (opzione L59)	
	4.10.11	Arresto d'emergenza categoria 1; DC 24 V (opzione L60)	
		Unità di frenatura 25 kW (opzione L61); unità di frenatura 50 kW (opzione L62)	
		Dispositivo di protezione del motore a termistore (opzione L83/L84)	
		Unità di rilevamento per PT100 (opzione L86)	
		Sorveglianza dell'isolamento (opzione L87)	
	4.10.16	Communication Board Ethernet CBE20 (opzione G33)	100
	4.10.17	Modulo encoder SMC30 per il rilevamento del numero di giri attuale del motore (opzione K50)	102
		1 Descrizione	
		2Collegamento	
		BEsempi di collegamento	107
	4.10.18	Voltage Sensing Module per il rilevamento del numero di giri del motore e dell'angolo di fase (opzione K51)	108
	4.10.19	Espansione morsettiera utente (opzione G61)	
	4.10.20	Modulo morsetti per il comando di "Safe Torque Off" e "Safe Stop 1" (opzione K82)	109
	4.10.21	Morsettiera NAMUR (opzione B00)	113
		Alimentazione 24 V DC con isolamento sicuro per NAMUR (opzione B02)	
	4.10.23	Uscita separata per utenze ausiliarie esterne per NAMUR (opzione B03)	115
5	Messa ir	servizio	117
	5.1	Contenuto del capitolo	117
	5.2	Tool di messa in servizio STARTER	
	5.2.1	Installazione del tool di messa in servizio Starter	
	5.2.2	Struttura dell'interfaccia operativa di Starter	119
	5.3	Sequenza di messa in servizio con STARTER	120
	5.3.1	Creazione di un progetto	120
	5.3.2	Configurazione di un apparecchio di azionamento	129

	5.3.3 5.3.4 5.3.5	Altre impostazioni necessarie per apparecchi in armadio di potenza elevata	153
	5.4	Pannello operativo AOP30	157
	5.5 5.5.1 5.5.2 5.5.3	Prima messa in servizio Primo avviamento Messa in servizio di base Altre impostazioni necessarie per apparecchi in armadio di potenza elevata	158 160
	5.6	Condizione dopo la messa in servizio	
	5.7	Ripristino dei parametri all'impostazione di fabbrica	
6			
•	6.1	Contenuto del capitolo	
	6.2	Informazioni generali sulle sorgenti dei comandi e di riferimento	
	6.3	Principi del sistema di azionamento	
	6.3.1	Parametri	
	6.3.2	Oggetti di azionamento (Drive Objects)	
	6.3.3	Record di dati	
	6.3.4	Tecnica BICO: interconnessione di segnali	
	6.4	Sorgenti dei comandi	
	6.4.1	Preimpostazione "PROFIdrive"	
	6.4.2	Preimpostazione "Morsetti TM31"	
	6.4.3 6.4.4	Preimpostazione "NAMUR" Preimpostazione "PROFIdrive NAMUR"	191
	6.5	Sorgenti del valore di riferimento	
	6.5.1 6.5.2	Ingressi analogici Potenziometro motore	
	6.5.3	Valori di riferimento fissi per numero di giri	
	6.6	PROFIBUS	
	6.6.1 6.6.2	Collegamento PROFIBUS Controllo tramite Profibus	
	6.6.3	Sorveglianza anomalia telegramma	
	6.6.4	Telegrammi e dati di processo	
	6.6.5	Descrizione delle parole di comando e dei valori di riferimento	
	6.6.6	Descrizione delle parole di stato e dei valori attuali	
	6.7	Gestione tramite pannello operativo	217
	6.7.1	Panoramica e struttura dei menu del pannello operativo (AOP30)	
	6.7.2	Menu Pagina operativa	
	6.7.3	Menu Parametrizzazione	219
	6.7.4	Menu Memoria anomalie / Memoria avvisi	
	6.7.5	Menu Messa in servizio / Service	
	6.7.5.1	Messa in servizio dell'azionamento	
	6.7.5.2	Messa in servizio dell'apparecchio	
	6.7.5.3 6.7.5.4	Impostazioni AOPListe dei segnali per la pagina operativa	
	6.7.5.5	Diagnostica AOP30	
	6.7.6	Language/Sprache/Langue/Idioma/Lingua	
	6.7.7	Comando tramite pannello operativo (modo LOCAL)	
	6.7.7.1	Tasto LOCAL/REMOTE	228
	6.7.7.2	Tasto ON / Tasto OFF	229

	6.7.7.3	Commutazione sinistrorso/destrorso	229
	6.7.7.4	Funzionamento a impulsi (JOG)	
	6.7.7.5	Incremento / decremento del valore di riferimento	
	6.7.7.6	Valore di riferimento AOP	
	6.7.7.7	Timeout sorveglianza	231
	6.7.7.8	Blocco di comando / blocco parametrizzazione	
	6.7.8	Anomalie e avvisi	233
	6.7.9	Memorizzazione permanente dei parametri	
	6.7.10	Errori di parametrizzazione	235
	6.8	PROFINET IO	236
	6.8.1	Attivazione del funzionamento online: STARTER tramite PROFINET IO	
	6.8.2	Generalità su PROFINET IO	
	6.8.2.1	Informazioni generali su PROFINET IO in SINAMICS	
	6.8.2.2	Comunicazione in tempo reale (RT) e comunicazione in tempo reale isocrona (IRT)	
	6.8.2.3	Indirizzi	
	6.8.2.4	Trasmissione dati	245
	6.8.3	Configurazione hardware	
	6.8.3.1	Configurazione degli azionamenti SINAMICS con PROFINET	
	6.8.4	Classi RT	248
	6.8.4.1	Classi RT con PROFINET IO	
	6.8.4.2	PROFINET IO con RT	
	6.8.4.3	Progettazione comunicazione RT in Simatic	
	6.8.4.4	PROFINET IO con IRT - Panoramica	
	6.8.4.5	PROFINET IO con IRTflex	
	6.8.4.6	PROFINET IO con IRTtop	
7	Canale	del valore di riferimento e regolazione	257
	7.1	Contenuto del capitolo	257
	7.2	Canale del valore di riferimento	258
	7.2.1	Addizione del valore di riferimento	
	7.2.2	Inversione del senso di rotazione	
	7.2.3	Numeri di giri escludibili, numero di giri minimo	
	7.2.4	Limitazione del numero di giri	
	7.2.5	Generatore di rampa	262
	7.3	Controllo V/f	264
	7.3.1	Aumento di tensione	267
	7.3.2	Compensazione dello scorrimento	
	7.4	Regolazione vettoriale di numero di giri/coppia con/senza encoder	271
	7.4.1	Regolazione vettoriale senza encoder	272
	7.4.2	Regolazione vettoriale con encoder	
	7.4.3	Regolatore del numero di giri	
	7.4.3.1	Precomando del regolatore del numero di giri (precomando integrato con	
		simmetrizzazione)	277
	7.4.3.2	Modello di riferimento	280
	7.4.3.3	Adattamento del regolatore del numero di giri	
	7.4.3.4	Statica	
	7.4.4	Regolazione della coppia	
	7.4.5 7.4.6	Limitazione di coppia Motori sincroni ad eccitazione permanente	

8	Morsetti	di uscita	291
	8.1	Contenuto del capitolo	291
	8.2	Uscite analogiche	292
	8.2.1	Lista dei segnali per i segnali analogici	
	8.3	Uscite digitali	
9	Funzion	i, funzioni di sorveglianza e funzioni di protezione	
	9.1	Contenuto del capitolo	
	9.2	Funzioni dell'azionamento	200
	9.2.1	Identificazione del motore e ottimizzazione automatica del regolatore del numero di giri	
	9.2.1.1	Misura in stato di fermo	
	9.2.1.2	Misura rotante e ottimizzazione del regolatore del numero di giri	
	9.2.2	Ottimizzazione del rendimento	
	9.2.3	Regolazione Vdc	
	9.2.4	Riaccensione automatica (WEA)	
	9.2.5	Avvio al volo	
	9.2.5.1	Avvio al volo senza encoder	
	9.2.5.2	Avvio al volo con encoder	
	9.2.5.3	Parametro	
	9.2.6	Commutazione motore	
	9.2.6.1	Descrizione	
	9.2.6.2	Esempio di commutazione motore di due motori	
	9.2.6.3	Schema logico	
	9.2.6.4	Parametro	
	9.2.7	Caratteristica di attrito	
	9.2.8	Aumento della frequenza di uscita	
	9.2.8.1	Descrizione	320
	9.2.8.2	Frequenze degli impulsi preimpostate	320
	9.2.8.3	Aumento della frequenza impulsi	
	9.2.8.4	Frequenza di uscita massima all'aumento della frequenza degli impulsi	
	9.2.8.5	Parametro	322
	9.2.9	Tempo di esecuzione (contatore ore d'esercizio)	323
	9.2.10	Modalità simulazione	324
	9.2.11	Inversione di direzione	325
	9.2.12	Commutazione di unità	326
	9.2.13	Comportamento di derating in presenza di elevata frequenza impulsi	328
	9.3	Funzioni di ampliamento	330
	9.3.1	Regolatore di tecnologia	
	9.3.2	Funzione bypass	333
	9.3.2.1	Bypass con sincronizzazione e sovrapposizione (p1260 = 1)	
	9.3.2.2	Bypass con sincronizzazione senza sovrapposizione (p1260 = 2)	
	9.3.2.3 9.3.2.4	Bypass senza sincronizzazione (p1260 = 3)	
	9.3.2.4	Schema logicoParametro	
	9.3.2.3	Comando freni esteso	
	9.3.4	Funzioni di sorveglianza estese	
	9.4	Funzioni di sorveglianza e di protezione	
	9.4.1	Protezione generale delle parti di potenza	
	9.4.2	Sorveglianze termiche e reazioni ai sovraccarichi	
	9.4.3	Protezione contro il blocco	
	9.4.4	Protezione contro lo stallo (solo con regolazione vettoriale)	
	9.4.5	Protezione termica del motore	

10	Diagnos	tica / Anomalie e avvisi	353
	10.1	Contenuto del capitolo	353
	10.2	Diagnostica	354
	10.2.1	Diagnostica tramite LED	
	10.2.2	Diagnostica tramite parametri	360
	10.2.3	Visualizzazione ed eliminazione degli errori	363
	10.3	Panoramica delle anomalie e degli avvisi	
	10.3.1	"Avviso esterno 1"	
	10.3.2 10.3.3	"Anomalia esterna 1"" "Anomalia esterna 2""	
	10.3.3	"Anomalia esterna 3"	
	10.4	Service e supporto	
11		zione e riparazione	
• •	11.1	Contenuto del capitolo	
		·	
	11.2	Manutenzione	
	11.2.1	Pulizia	
	11.3	Manutenzione preventiva	
	11.3.1 11.3.2	Telaio di montaggio	
		Trasporto dei Powerblock tramite i fori per il sollevamento	
	11.4 11.4.1	Sostituzione di componenti	
	11.4.1	Sostituzione del nitri Sostituzione del Powerblock, grandezza costruttiva FX	
	11.4.3	Sostituzione del Powerblock, grandezza costruttiva TX	
	11.4.4	Sostituzione del Powerblock, grandezza costruttiva HX	
	11.4.5	Sostituzione del Powerblock, grandezza costruttiva JX	
	11.4.6	Sostituzione della Control Interface Board, grandezza costruttiva FX	
	11.4.7	Sostituzione della Control Interface Board, grandezza costruttiva GX	
	11.4.8	Sostituzione della Control Interface Board, grandezza costruttiva HX	
	11.4.9 11.4.10	Sostituzione della Control Interface Board, grandezza costruttiva JX	
	11.4.10	Sostituzione del ventilatore, grandezza costruttiva GX	
	11.4.12	Sostituzione del ventilatore, grandezza costruttiva GX	400
	11.4.13	Sostituzione del ventilatore, grandezza costruttiva JX	
	11.4.14	Sostituzione dei fusibili del ventilatore (-U1 -F10 / -U1 -F11)	
	11.4.15		
		Sostituzione del fusibile -A1 -F21	408
	11.4.17	Sostituzione del pannello operativo dell'apparecchio	409
	11.4.18	Sostituzione della batteria tampone del pannello operativo dell'apparecchio in armadio	409
	11.5	Forming dei condensatori del circuito intermedio	411
	11.6	Segnalazioni dopo la sostituzione di componenti DRIVE-CLiQ	412
	11.7	Aggiornamento del firmware dell'apparecchio	413
	11.8	Caricamento dal PC del nuovo firmware del nannello operativo	414

12	Dati tec	enici	415
	12.1	Contenuto del capitolo	415
	12.2	Dati generali	
	12.2.1	Dati di derating	417
	12.2.2	Sovraccaricabilità	421
	12.3	Dati tecnici	422
	12.3.1	Apparecchi in armadio esecuzione A, 3 AC 380 V - 480 V	
	12.3.2	Apparecchi in armadio esecuzione C, 3 AC 380 V - 480 V	427
	12.3.3	Apparecchi in armadio esecuzione A, 3 AC 500 V - 600 V	430
	12.3.4	Apparecchi in armadio esecuzione C, 3 AC 500 V - 600 V	434
	12.3.5	Apparecchi in armadio esecuzione A, 3 AC 660 V - 690 V	437
	12.3.6	Apparecchi in armadio esecuzione C, 3 AC 660 V - 690 V	443
Α	Append	lice	449
	A.1	Indice delle abbreviazioni	449
	A.2	Macro dei parametri	451
	INDICE		463

Avvertenze di sicurezza

1.1 Avvertenze

/!\AVVERTENZA

Durante il funzionamento degli apparecchi elettrici, determinate parti di questi apparecchi sono inevitabilmente sottoposte a tensioni pericolose.

La mancata osservanza delle avvertenze può provocare lesioni gravi o ingenti danni materiali.

Solo personale adeguatamente qualificato può lavorare su questi apparecchi.

Il personale deve conoscere a fondo tutte le disposizioni di sicurezza e tutte le operazioni di manutenzione descritte nelle presenti Istruzioni operative.

Il funzionamento corretto e sicuro di questo apparecchio presuppone un trasporto, un immagazzinaggio, un'installazione ed un montaggio appropriati, nonché un utilizzo ed una manutenzione accurati.

Rispettare le norme di sicurezza vigenti a livello nazionale.

Certificazioni

Le certificazioni

- Dichiarazione di conformità CE
- · Certificazione di fabbrica
- Dichiarazione CE del costruttore

sono contenute nella cartella della documentazione, nella sezione "Avvertenze di sicurezza e indicazioni per l'uso".

1.2 Avvertenze di sicurezza e indicazioni per l'uso

PERICOLO

Le macchine elettriche sono strumenti concepiti per l'impiego in impianti industriali a corrente forte. Durante il funzionamento, tali dispositivi presentano parti scoperte sotto tensione e parti rotanti. In determinate condizioni, ad es. in caso di rimozione non autorizzata delle coperture necessarie, di impiego non conforme, di comando errato o di manutenzione non adeguata, essi possono perciò provocare lesioni fisiche gravissime o ingenti danni materiali.

In caso di impiego delle macchine al di fuori dell'area industriale, il luogo di installazione va protetto contro l'intrusione di persone non autorizzate mediante apposite strutture (ad es. recinzione) e relativi cartelli.

Premesse

I responsabili per la sicurezza dell'impianto devono garantire che:

- i lavori di progettazione per l'impianto nonché tutti gli altri interventi per il trasporto, il montaggio, l'installazione, la messa in servizio, la manutenzione e la riparazione vengano eseguiti esclusivamente da personale qualificato e controllati dai relativi responsabili.
- Le Istruzioni operative e la documentazione della macchina siano consultabili durante tutti gli interventi.
- I dati tecnici e le indicazioni relative alle condizioni di montaggio, di collegamento, di esercizio e alle condizioni ambientali vengano di conseguenza sempre rispettate.
- Vengano rispettate le prescrizioni di installazione e di sicurezza specifiche per l'impianto nonché quelle relative all'uso di indumenti di protezione.
- Gli interventi su queste macchine o nelle immediate vicinanze possano essere eseguiti solo da personale qualificato.

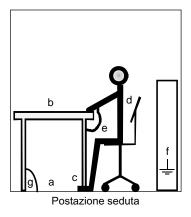
Conseguentemente, in queste Istruzioni operative sono riportate solo le avvertenze necessarie per l'uso corretto delle macchine da parte del personale qualificato.

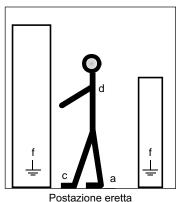
Le Istruzioni operative e la documentazione della macchina sono redatte nelle lingue previste nei rispettivi contratti di fornitura.

Nota

Si raccomanda di usufruire del supporto e dell'assistenza forniti dai centri SIEMENS competenti per gli interventi di progettazione, montaggio, messa in servizio e service.

1.3 Componenti danneggiabili dalle scariche elettrostatiche (ESD)


CAUTELA


L'unità contiene componenti sensibili alle cariche elettrostatiche. Questi componenti possono essere facilmente distrutti da un uso improprio. Se è strettamente necessario lavorare con i componenti elettronici, rispettare le seguenti avvertenze:

- Toccare le schede elettroniche solo se è strettamente indispensabile per eseguire interventi su di esse.
- Se occorre manipolare le schede, l'addetto deve scaricare il potenziale elettrostatico accumulate nel proprio corpo immediatamente prima dell'intervento.
- Le schede non devono venire a contatto con materiali isolanti ad es. parti in plastica, tavoli con rivestimenti isolanti, indumenti in fibre sintetiche.
- Le unità vanno appoggiate esclusivamente su supporti conduttivi.
- Le unità e i componenti devono essere conservati o spediti esclusivamente in imballaggi conduttivi (ad es. contenitori in plastica metallizzata o metallo).
- Se gli imballaggi sono di materiale non conduttivo, prima dell'imballaggio le unità vanno avvolte con materiale conduttivo. A questo scopo può essere utilizzata ad es. della resina espansa conduttiva o della comune pellicola di alluminio.

Le protezioni ESD necessarie vengono illustrate nuovamente nella figura seguente:

- a = pavimento conduttivo
- b = tavolo ESD
- c = scarpe ESD
- d = mantello ESD
- e = bracciale ESD
- f = messa a terra degli armadi elettrici
- g = collegamento con il pavimento elettricamente conduttivo

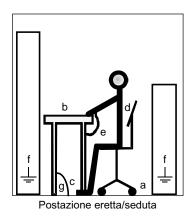


Figura 1-1 Misure protettive ESD

1.3 Componenti danneggiabili dalle scariche elettrostatiche (ESD)

Rischi residui di Power Drive System

Nell'ambito della valutazione dei rischi della macchina e dell'impianto, da eseguire conformemente alla direttiva macchine CE, il costruttore della macchina o il gestore dell'impianto deve considerare i seguenti rischi residui derivanti dai componenti per il controllo e l'azionamento di un Power Drive System (PDS).

- 1. Movimenti indesiderati di parti della macchina motorizzate durante la messa in servizio, il funzionamento, la manutenzione e la riparazione, dovuti ad esempio a
 - Errori hardware e/o software nei sensori, nel controllo, negli attuatori e nella tecnica di collegamento
 - Tempi di reazione del controllo e dell'azionamento
 - Funzionamento e/o condizioni ambientali esterni alla specifica
 - Errori durante la parametrizzazione, la programmazione, il cablaggio e il montaggio
 - Utilizzo di apparecchiature radio / telefoni cellulari nelle immediate vicinanze del controllo
 - Influenze esterne / danneggiamenti.
- 2. Temperature eccezionali nonché emissioni di luce, rumori, particelle e gas, dovuti ad esempio a
 - Guasto a componenti
 - Errore software
 - Funzionamento e/o condizioni ambientali esterni alla specifica
 - Influenze esterne / danneggiamenti.
- 3. Tensioni di contatto pericolose, ad esempio dovute a
 - Guasto a componenti
 - Influenza in caso di cariche elettrostatiche
 - Induzione di tensioni con motori in movimento
 - Funzionamento e/o condizioni ambientali esterni alla specifica
 - Condensa / imbrattamenti conduttivi
 - Influenze esterne / danneggiamenti
 - Collegamento improprio del conduttore di protezione con correnti di dispersione elevate.
- 4. Campi elettrici, magnetici ed elettromagnetici, che possono risultare pericolosi per portatori di pace-maker e/o impianti in caso non venga mantenuta una sufficiente distanza.
- 5. Rilascio di sostanze ed emissioni inquinanti in presenza di smaltimento non corretto di componenti o dei relativi imballaggi.

Nell'ambito di una valutazione dei rischi residui dei componenti del Power Drive System secondo i punti 1 - 5, è stato stabilito che questi rientrano nei valori limite prescritti.

Per ulteriori informazioni sui rischi residui derivanti dai componenti del Power Drive System, consultare la Documentazione tecnica per l'utente ai capitoli relativi.

Panoramica degli apparecchi

2.1 Contenuto del capitolo

Questo capitolo descrive:

- La presentazione degli apparecchi in armadio
- I principali componenti e caratteristiche degli apparecchi in armadio
- Il principio di collegamento degli apparecchi in armadio
- Spiegazione della targhetta dei dati tecnici

2.2 Campi d'impiego, caratteristiche, struttura

2.2.1 Campo di impiego

I convertitori in armadio SINAMICS G150 sono stati sviluppati specificamente per azionamenti con caratteristica di carico quadratica o lineare con requisiti prestazionali intermedi e senza alimentazione di recupero dalla rete, come ad es.:

- Pompe e ventilatori
- Compressori
- Estrusori e miscelatori
- Macinatori

2.2.2 Caratteristiche, qualità, service

Caratteristiche

L'elevata precisione della regolazione vettoriale senza encoder consente di coprire la maggior parte dei casi applicative e non è quindi necessario prevedere un encoder del valore attuale di velocità.

SINAMICS G150 tiene conto esattamente di questi aspetti e offre quindi una soluzione di azionamento conveniente e perfettamente adeguata all'effettiva necessità.

Naturalmente vengono tenuti in considerazione anche i fattori che permettono un facile utilizzo dell'azionamento, dalla progettazione all'esercizio, e cioè:

- struttura compatta e modulare con una facilità di manutenzione ottimale
- facilità di progettazione
- precablaggio effettuato in fabbrica e consequente facilità di montaggio
- rapida messa in servizio guidata tramite menu senza necessità di complicate parametrizzazioni
- comando chiaro e agevole tramite un comodo pannello operativo grafico con testo in chiaro o semianalogico nella rappresentazione ad istogrammi.
- SINAMICS è parte integrante della Totally Integrated Automation (TIA). TIA è il principio
 che riunisce una gamma di prodotti ottimizzati per la tecnica di automazione e
 azionamento. Il fulcro di questo principio è l'omogeneità di progettazione, comunicazione
 e gestione dei dati per tutti i prodotti. SINAMICS si inserisce perfettamente nel concetto
 TIA.

Per WinCC sono disponibili appositi faceplate e blocchi S7/PCS7.

L'integrazione nel sistema SIMATIC H è possibile grazie a un Y-Link.

Qualità

I convertitori in armadio SINAMICS G150 vengono realizzati nel rispetto di elevati standard qualitativi e di requisiti severi.

Ciò garantisce la massima affidabilità, disponibilità e funzionalità dei nostri prodotti.

Lo sviluppo, la costruzione, la produzione, il processo di lavorazione e il centro logistico sono stati certificati secondo DIN ISO 9001 da un ufficio indipendente.

Service

La nostra rete di assistenza e di distribuzione mondiale offre ai clienti la possibilità di usufruire di consulenze personalizzate, supporto durante la progettazione, corsi di formazione e di training.

Nel capitolo "Service e supporto" si possono trovare tutte le informazioni su come contattare il servizio di assistenza, nonché il link aggiornato alle nostre pagine Internet.

2.3 Struttura

Gli apparecchi in armadio SINAMICS G150 si distinguono per la struttura compatta, modulare e di facile manutenzione.

Le molteplici opzioni elettriche e meccaniche consentono di adattare il sistema di azionamento in modo ottimale alle diverse esigenze.

A seconda delle opzioni scelte, le apparecchiature in armadio sono disponibili in due esecuzioni.

2.3.1 Esecuzione A

Offre la possibilità di montare tutti i componenti di rete disponibili, come ad es. interruttore principale, interruttori automatici, contattore principale, fusibili di rete, filtro antidisturbi o componenti lato motore, nonché i dispositivi di protezione e di sorveglianza supplementari.

L'apparecchio in armadio è composto, in base alla potenza, da due parti con una larghezza complessiva compresa tra 800 mm e 1600 mm.

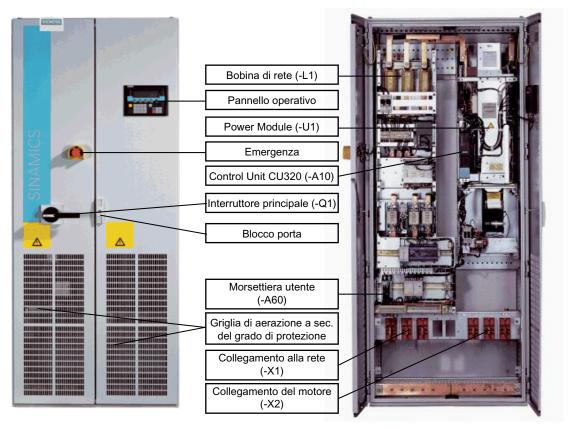


Figura 2-1 Esempio di apparecchio in armadio, esecuzione A (ad es. 132 kW, 3 AC 400 V) (componenti in parte opzionali)

Esecuzione A, potenza elevata mediante collegamento in parallelo

In caso di potenze elevate l'apparecchio in armadio è costituito da due unità che azionano congiuntamente un motore in un collegamento in parallelo:

- con 3 AC 380 V 480 V: 6SL3710-2GE41-1AA0, 6SL3710-2GE41-4AA0, 6SL3710-2GE41-6AA0
- con 3 AC 500 V 600 V: 6SL3710-2GF38-6AA0, 6SL3710-2GF41-1AA0, 6SL3710-2GF41-4AA0
- con 3 AC 660 V 690 V:
 6SL3710-2GH41-1AA0, 6SL3710-2GH41-4AA0, 6SL3710-2GH41-5AA0

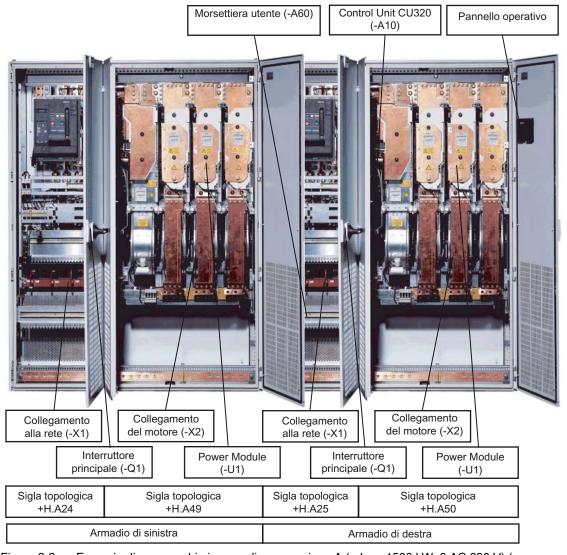


Figura 2-2 Esempio di apparecchio in armadio, esecuzione A (ad es. 1500 kW, 3 AC 690 V) (componenti in parte opzionali)

Peculiarità in caso di collegamento e funzionamento di apparecchi in armadio collegati in parallelo

Gli apparecchi in armadio possono essere collegati a 6 o a 12 impulsi alla rete di alimentazione.

In caso di collegamento a 6 impulsi si hanno le seguenti peculiarità:

- I circuiti intermedi non devono essere collegati, i cavi di collegamento tra i due armadi (numero di cavo -W001 e -W002) non devono essere collegati.
- Possono essere utilizzati solo motori con sistemi di avvolgimento separati, ogni connettore del motore di un armadio deve essere collegato a un proprio sistema di avvolgimento. Il parametro p7003 (sistema di avvolgimento) deve essere impostato a "1" (più sistemi di avvolgimento o motori separati).
- La modulazione dei fronti è possibile.

In caso di collegamento a 12 impulsi si hanno le seguenti peculiarità:

 Il collegamento a 12 impulsi alla rete deve essere eseguito solo con un trasformatore doppio con tre sistemi di avvolgimento o due trasformatori singoli con due sistemi di avvolgimento spostati elettricamente di 30° sul lato secondario del trasformatore. Preferibilmente devono essere scelti gruppi di commutazione dei trasformatori Dy5Dd0 o Dy11Dd0.

Con lo sfasamento elettrico degli avvolgimenti si riducono le ripercussioni sulla rete rispetto all'alimentatore a 6 impulsi.

Per l'installazione valgono i seguenti presupposti:

- Le tensioni a vuoto dei due avvolgimenti secondari possono differire al massimo dello 0,5 % (rispetto alla tensione nominale).
- Gli scostamenti delle impedenze di cortocircuito dei due avvolgimenti secondari devono essere inferiori al 5 % del valore nominale.
- L'impedenza minima di cortocircuito del trasformatore deve essere pari al 4 %.
- I circuiti intermedi devono essere collegati, i cavi di collegamento tra i due armadi (numero di cavo -W001 e -W002) devono essere collegati.
- I contatti di segnalazione dei contattori principali o degli interruttori di potenza sono
 collegati in serie già in fabbrica e cablati sull'ingresso digitale 5 dell'unità di regolazione.
 Nella messa in servizio occorre attivare la sorveglianza dei segnali di conferma.
 Ciò avviene con il parametro p0860{Vector} = 722.5{Control_Unit}.
- Possono essere utilizzati sia motori con due sistemi di avvolgimento separati galvanicamente, sia motori con un sistema di avvolgimento.
 - In caso di collegamento di un motore con un sistema di avvolgimento si hanno le seguenti peculiarità:
 - I connettori motore dei Power Module possono essere collegati uno con l'altro a seconda della fase. Il parametro p7003 (sistema di avvolgimento) deve essere impostato a "0" (un sistema di avvolgimento).
 - Se non è integrata una bobina del motore (opzione L08), occorre rispettare le lunghezze minime dei cavi del motore (vedere la sezione "Installazione elettrica").
 - La modulazione dei fronti non è possibile.

In caso di collegamento di un motore con sistemi di avvolgimento separati si hanno le seguenti peculiarità:

- Ogni connettore motore di un Power Module deve essere collegato al proprio sistema di avvolgimento. Il parametro p7003 (sistema di avvolgimento) deve essere impostato a "1" (più sistemi di avvolgimento o motori separati).
- La modulazione dei fronti è possibile.

2.3.2 Esecuzione C

Struttura particolarmente compatta con bobina di rete integrata.

Questa esecuzione può essere impiegata ad esempio se i componenti per il collegamento alla rete, quali contattore principale e interruttore principale, vengono impiegati in un ripartitore di bassa tensione (MCC) centrale sul lato dell'impianto con dei fusibili per la protezione dei cavi e dei semiconduttori.

Il vantaggio consiste nella possibilità di installare l'apparecchio in armadio in modo decentrato in prossimità del motore e quindi di eliminare i cavi motore troppo lunghi e i filtri di uscita aggiuntivi eventualmente necessari.

I fusibili di rete sono necessari per la protezione dei conduttori (VDE 636, Parte 10). I fusibili di rete possono essere anche impiegati per la protezione dei semiconduttori del convertitore comandato dalla rete (VDE 636, Parte 40/ EN 60 269-4).

L'apparecchio in armadio è composto da un unico armadio con una larghezza di 400 mm, 600 mm o 1000 mm.

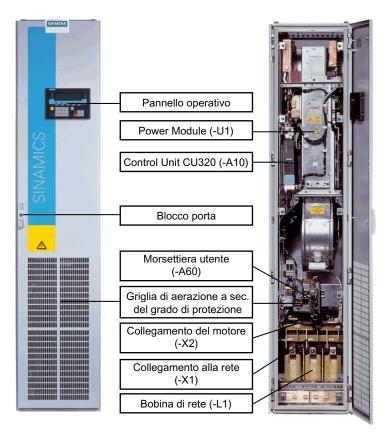
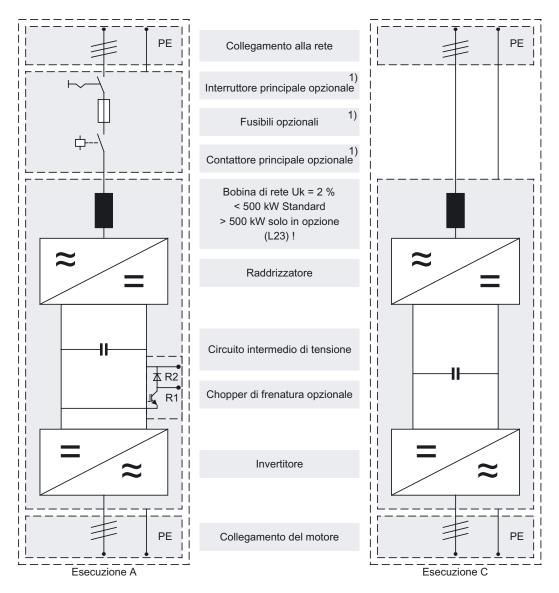
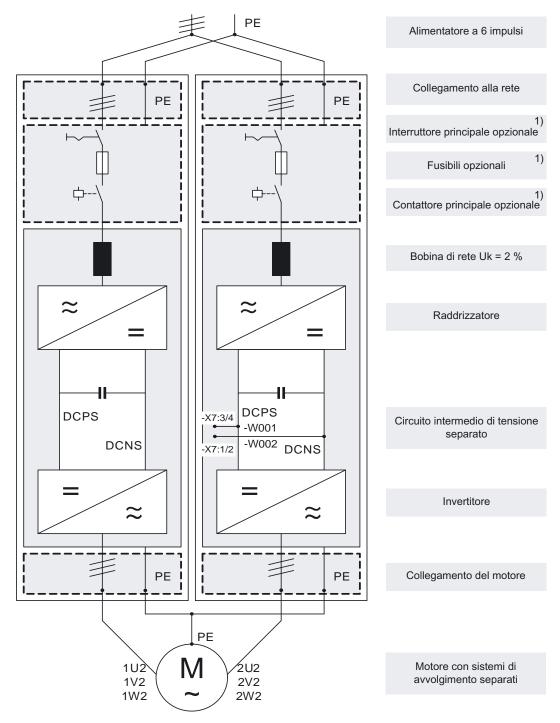



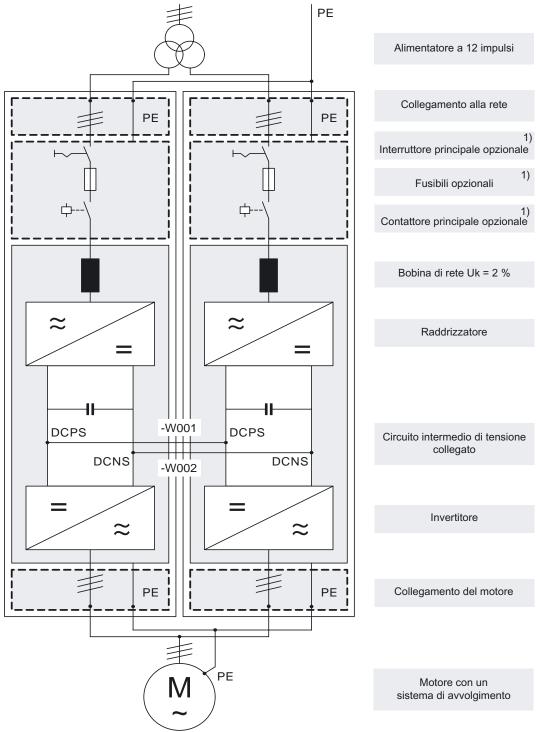
Figura 2-3 Esempio di apparecchio in armadio, esecuzione C (ad es. 315 kW, 3 AC 690 V)

2.4 Principio circuitale


Principio circuitale delle esecuzioni A e C

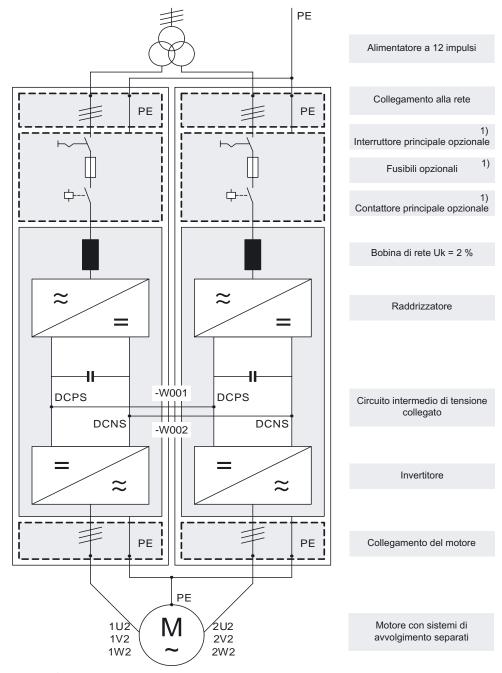
¹⁾Le funzioni di interruttore principale, fusibili e contattore principale vengono svolte dall'interruttore automatico a partire da una corrente di uscita > 800 A

Figura 2-4 Principio circuitale delle esecuzioni A e C


Principio di collegamento esecuzione A: collegamento in parallelo con alimentatore a 6 impulsi

¹⁾ Le funzioni di interruttore principale, fusibili e contattore principale vengono svolte dall'interruttore automatico a partire da una corrente di uscita > 800 A.

Figura 2-5 Principio di collegamento esecuzione A: collegamento in parallelo con alimentatore a 6 impulsi, collegamento a un motore con sistemi di avvolgimento separati


Principio di collegamento in caso di collegamento in parallelo con alimentatore a 12 impulsi, motore con un sistema di avvolgimento

1)Le funzioni di interruttore principale, fusibili e contattore principale vengono svolte dall'interruttore automatico a partire da una corrente di uscita > 800 A.

Figura 2-6 Principio di collegamento esecuzione A: collegamento in parallelo con alimentatore a 12 impulsi, collegamento a un motore con un sistema di avvolgimento

Principio di collegamento in caso di collegamento in parallelo con alimentatore a 12 impulsi, motore con sistemi di avvolgimento separati

1)Le funzioni di interruttore principale, fusibili e contattore principale vengono svolte dall'interruttore automatico a partire da una corrente di uscita > 800 A.

Figura 2-7 Principio di collegamento esecuzione A: collegamento in parallelo con alimentatore a 12 impulsi, collegamento a un motore con sistemi di avvolgimenti separati

ATTENZIONE

La messa a terra del motore deve essere ricollegata direttamente all'apparecchio in armadio.

2.5 Targhetta

Spiegazione della targhetta

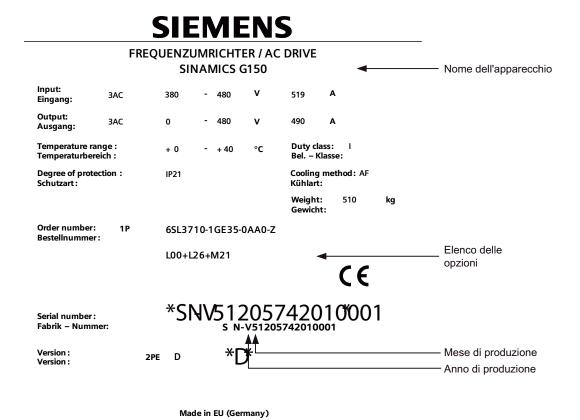


Figura 2-8 Targhetta dell'apparecchiatura in armadio

Data di produzione

La data di produzione può essere dedotta dallo schema seguente:

Tabella 2-1 Anno e mese di produzione

Carattere	Anno di produzione	Carattere	Mese di produzione
Т	2005	1 - 9	gennaio - settembre
U	2006	0	ottobre
V	2007	N	novembre
W	2008	D	dicembre

Dati della targhetta (sull'esempio della targhetta raffigurata)

Tabella 2-2 Dati della targhetta

Indicazione	Valore	Descrizione
Input Ingresso	3 AC 380 – 480 V 239 A	Collegamento corrente trifase Tensione d'ingresso nominale Corrente d'ingresso nominale
Output Uscita	3 AC 0 – 480 V 210 A	Collegamento corrente trifase Tensione di uscita nominale Corrente di uscita nominale
Temperature Range Campo di temperatura	0 – 40 °C	Campo della temperatura ambiente in cui l'apparecchio in armadio può essere caricato al 100 %
Degree of protection Grado di protezione	IP20	Grado di protezione
Duty Class Classe di carico	I	l: Categoria di carico I secondo EN 60146-1-1 = 100 % permanente (con i valori di corrente indicati, l'apparecchio può essere caricato al 100 % in servizio continuo)
Cooling method Tipo di raffreddamento	AF	A: Refrigerante: Luft F: Tipo di circolazione: raffreddamento forzato, unità di azionamento (ventilatore) nell'apparecchio
Weight Gewicht		Peso dell'apparecchiatura

Spiegazione delle sigle delle opzioni

Tabella 2-3 Spiegazione delle sigle delle opzioni

		Esecuzione A	Esecuzione C
Opzioni	lato ingresso		
L00	Filtro di rete per l'impiego nel primo ambiente in conformità ad EN 61800-3 Categoria C2 (reti TN / TT)	•	1
L13	Contattore principale (per correnti < 800 A)	•	-
L22	Senza induttanza di rete nel campo di potenza P < 500 kW	•	•
L23	Induttanza di rete uk = 2 % eventualmente necessaria se P > 500 kW	•	•
L26	Interruttore principale inclusi fusibili o interruttori automatici	•	-
Opzioni	lato uscita		
L08	Bobina motore	•	ı
L10	Filtro du/dt con Voltage Peak Limiter	•	-
L15	Filtro sinusoidale (solo per la serie con tensioni 3 AC 380 V – 480 V, fino a 200 kW)	•	-
Opzioni	lato ingresso e uscita		
M70	Sbarra di schermatura EMC (collegamento del cavo dal basso)	•	•
M75	Sbarra PE (collegamento del cavo dal basso)	•	•
Protezio	one del motore e funzioni di sicurezza		
L45	Pulsante di arresto d'emergenza sulla porta dell'armadio	•	-
L57	Arresto d'emergenza categoria 0, AC 230 V opp. DC 24 V, arresto non controllato	•	-
L59	Arresto d'emergenza categoria 1, AC 230 V, arresto controllato	•	-
L60	Arresto d'emergenza categoria 1, AC 24 V, arresto controllato	•	-
L83	Dispositivo di protezione motore a termistore con omologazione PTB (avviso)	•	-
L84	Dispositivo di protezione motore a termistore con omologazione PTB (disinserzione)	•	_
L86	Unità di rilevamento PT100 (per 6 sensori PT100)	•	-
L87	Sorveglianza dell'isolamento	•	ı
M60	Protezione aggiuntiva contro il contatto accidentale	•	•
Increme	ento del grado di protezione		
M21	Grado di protezione IP21	•	•
M23	Grado di protezione IP23	•	•
M43	Grado di protezione IP43	•	•
M54	Livello di protezione IP54	•	•
Opzioni	meccaniche		
M06	Zoccolo altezza 100 mm, RAL 7022	•	•
M07	Vano di adattamento cavi altezza 200 mm, RAL 7035	•	•
M13	Collegamento alla rete dall'alto	•	-
M78	Collegamento al motore dall'alto	•	-
M90	Golfari per trasporto tramite gru per armadi, montati in alto	•	•
Altre op	zioni		
G33	CBE20	•	•
G61	Ampliamento morsettiera utente TM31	•	_
K50	Modulo encoder SMC30 per rilevare il numero di giri attuale del motore	•	•

		Esecuzione A	Esecuzione C
K51	VSM10	•	•
K82	Modulo morsetti per il comando di "Safe Torque Off" e "Safe Stop 1"	•	•
L19	Collegamento per utenze ausiliarie esterne (controllate max. 10 A)	•	-
L50	Illuminazione del quadro con presa per service	•	-
L55	Riscaldamento anticondensa in armadio	•	ı
L61	Unità di frenatura 25 kW	•	ı
L62	Unità di frenatura 50 kW	•	ı
Y09	Verniciatura speciale dell'armadio	•	•
Lingue			
D58	Documentazione in inglese / francese	•	•
D60	Documentazione in inglese / spagnolo	•	•
D80	Documentazione in inglese / italiano	•	•
T58	Targhetta dei dati tecnici e lingua del pannello operativo in inglese / francese	•	•
T60	Targhetta dei dati tecnici e lingua del pannello operativo in inglese / spagnolo	•	•
T80	Targhetta dei dati tecnici e lingua del pannello operativo in inglese / italiano	•	•
Opzioni	specifiche per il settore chimico		
B00	Morsettiera NAMUR	•	_
B02	Alimentazione 24 V con isolamento sicuro (PELV)	•	_
B03	Uscita separata per utenze ausiliari esterne (non controllata)	•	-

- significa che questa opzione può essere fornita nell'esecuzione indicata.
- significa che questa opzione non può essere fornita nell'esecuzione indicata.

2.5 Targhetta

Installazione meccanica

3.1 Contenuto del capitolo

Questo capitolo descrive:

- Le condizioni per il trasporto, l'immagazzinaggio e l'installazione dell'apparecchio
- La preparazione e l'installazione dell'apparecchio

3.2 Trasporto, immagazzinaggio

Trasporto

AVVERTENZA

Durante il trasporto degli apparecchi osservare quanto segue:

- Gli apparecchi sono pesanti. Il loro baricentro è spostato e il peso può essere maggiore sul lato superiore.
- Il peso elevato degli apparecchi richiede in ogni caso l'impiego di dispositivi di sollevamento adeguati e l'intervento di personale esperto.
- Gli apparecchi possono essere trasportati solo nella posizione verticale indicata. Gli apparecchi non devono essere ribaltati e trasportati in posizione orizzontale.
- Un sollevamento e un trasporto improprio degli apparecchi possono provocare lesioni fisiche gravi o addirittura mortali e notevoli danni materiali.

Nota

Istruzioni per il trasporto

- Gli apparecchi vengono imballati in fabbrica in base alle sollecitazioni e alle condizioni climatiche che incontreranno durante il trasporto e nel paese di destinazione.
- Rispettare le indicazioni per il trasporto, l'immagazzinaggio e l'uso corretto riportate sull'imballaggio.
- Per il trasporto con elevatori a forca, gli apparecchi vengono montati su una base in legno (pallet).
- Una volta tolto l'imballaggio, gli apparecchi possono essere trasportati utilizzando i golfari e le guide per il trasporto opzionali (opzione M90) presenti sull'apparecchio stesso.
 Assicurarsi che il carico sia ripartito in modo uniforme. Durante il trasporto vanno evitati gli scossoni e gli urti violenti, ad es. durante l'appoggio a terra.
- Temperature ambiente ammesse:
 Raffreddamento ad aria: da -25 °C a +70 °C, classe 2K3 secondo IEC 60 721-3-2
 Per brevi intervalli fino a -40°C per max. 24 ore

Nota

Avvertenze relative al montaggio di componenti lato impianto

Se sul lato impianto è previsto il montaggio di componenti sulle porte o sulle pareti laterali, devono essere osservate le seguenti avvertenze:

- Il grado di protezione (IP20, IP21, IP23, IP43, IP54) non deve risultare ridotto.
- Il montaggio dei componenti aggiuntivi non deve incidere negativamente sulla compatibilità elettromagnetica dell'apparecchio.
- Se si montano elementi operativi sulle pareti laterali o posteriori, tali pareti devono essere messe a terra separatamente.

Nota

Avvertenze relative ai danni dovuti al trasporto

- Ispezionare attentamente l'apparecchio prima di accettare la fornitura della ditta di trasporto.
- Confrontare ciascun articolo ricevuto con la bolla di consegna.
- Comunicare immediatamente alla ditta di trasporto ogni mancanza o danno.
- Se vengono scoperti difetti o danni nascosti, contattare tempestivamente la ditta di trasporto per richiedere una perizia dell'apparecchio.
- Se non viene effettuata una comunicazione tempestiva, si potrebbe perdere il diritto al risarcimento danni per difetti e guasti.
- Se necessario, avvalersi del supporto della filiale Siemens più vicina.

In presenza di danni dovuti al trasporto, se ne deduce che l'apparecchio è stato sottoposto a sollecitazioni non consentite. La sicurezza elettrica dell'apparecchio potrebbe non essere più garantita. Ciò non può essere escluso senza un'apposita prova dell'alta tensione.

La mancata osservanza delle avvertenze può provocare la morte, lesioni gravi o ingenti danni materiali.

Immagazzinaggio

Gli apparecchi vanno conservati all'interno di locali asciutti e puliti. Sono ammesse temperature comprese tra –25 °C e +70 °C. Non sono ammesse variazioni di temperatura superiori a 20 K all'ora.

In caso di immagazzinaggio prolungato dopo l'eliminazione dell'imballaggio, l'apparecchio va protetto dall'imbrattamento e dagli influssi ambientali con delle apposite coperture o altre protezioni; in caso contrario decade la garanzia.

/!\AVVERTENZA

Il tempo di immagazzinaggio non deve superare i due anni. In caso di tempi di immagazzinaggio più lunghi, al momento della messa in servizio i condensatori del circuito intermedio degli apparecchi devono essere sottoposti a forming.

Il forming è descritto nel capitolo "Manutenzione e riparazione".

3.3 Montaggio

Il funzionamento sicuro degli apparecchi presuppone che essi siano stati correttamente montati e messi in servizio da personale qualificato nel rispetto delle avvertenze contenute nelle presenti istruzioni operative.

In particolare, vanno rispettate le norme di installazione e di sicurezza generali e nazionali per gli interventi sugli impianti ad alta tensione (ad es. VDE), nonché le prescrizioni relative all'impiego conforme degli attrezzi e all'uso di indumenti protettivi.

La mancata osservanza delle avvertenze può provocare la morte, lesioni gravi o ingenti danni materiali.

3.3.1 Lista di controllo per l'installazione meccanica

Procedere con l'installazione meccanica dell'apparecchio seguendo la seguente lista di controllo. Leggere il paragrafo "Avvertenze di sicurezza" all'inizio delle Istruzioni operative prima di iniziare a lavorare sull'apparecchio.

Nota

Contrassegnare con una crocetta nella colonna di destra le opzioni comprese nella fornitura. Dopo aver terminato l'installazione, contrassegnare le singole operazioni completate con un segno di spunta.

N.	Operazione	esistente/eseguita
1	Le condizioni ambientali devono essere accettabili. Vedere il capitolo "Dati tecnici, dati tecnici generali".	
	L'apparecchio deve essere montato correttamente sui punti di fissaggio appositamente previsti. Nell'esecuzione C con una larghezza di 400 mm è possibile fissare l'armadio ad una parete verticale non infiammabile con i supporti a parete forniti in opzione (vedere il capitolo "Installazione meccanica/preparativi").	
	L'aria di raffreddamento può circolare liberamente.	
2	Va rispettata l'altezza minima del soffitto indicata nelle Istruzioni operative (per consentire l'uscita dell'aria). Il flusso dell'aria di raffreddamento non deve essere ostacolato (vedere il capitolo "Installazione meccanica/preparativi").	
3	Le unità consegnate separatamente per ragioni di trasporto devono essere collegate tra di loro (vedere il capitolo "Installazione meccanica/preparativi - Collegamento di unità fornite").	
4	I componenti forniti separatamente per ragioni di trasporto, come lo sgocciolatoio o la calotta, devono essere montati (vedere il capitolo "Installazione meccanica/Montaggio di sgocciolatoi aggiuntivi (opzione M21) o calotte (opzione M23 / M43 / M54)").	
5	Rispettare la distanza a porta aperta indicata nelle norme antinfortunistiche (via di fuga).	
6	Per l'opzione M13/M78: In base alla sezione dei cavi, scegliere gli opportuni collegamenti a vite metrici o passacavi a vite PG ed eseguire i fori corrispondenti nelle piastre cieche. Quando si inseriscono i cavi dall'alto, fare attenzione che, in funzione del modo di introduzione e della sezione dei cavi, vi sia spazio sufficiente per i raggi di curvatura dei cavi eventualmente necessari. L'ingresso dei cavi deve essere verticale per evitare le sollecitazioni trasversali nel punto d'ingresso (vedere il capitolo "Installazione meccanica/Alimentazione dall'alto (opzione M13), Collegamento al motore dall'alto (opzione M78)").	

3.3.2 Preparativi

Requisiti per il luogo di installazione

Gli apparecchi in armadio sono adatti per l'installazione negli impianti più comuni (DIN VDE 0558 /edizione 7.87, parte 1 / paragrafo 5.4.3.2.4).

La norma prevede che:

Per i convertitori destinati all'installazione in stabilimenti industriali generici vanno rispettate le indicazioni relative alla protezione contro il contatto diretto, in modo che le parti pericolose non possano essere toccate né direttamente né indirettamente.

Le unità operative devono essere asciutte e prive di polvere. L'aria addotta non deve contenere gas, vapori e polveri conduttive che potrebbero compromettere il funzionamento dell'apparecchio. Se necessario, l'aria addotta nel locale di installazione va depurata tramite un filtro. Per l'aria contenente polveri possono essere montati degli appositi filtri (opzione M54) davanti alle griglie di ventilazione delle porte dell'armadio e davanti alle calotte (IP54).

Le condizioni ambientali nei locali dove sono installati gli apparecchi non devono superare i valori della lettera identificativa F secondo EN 60146. In caso di temperature > 40 °C (104 °F) e altitudini di montaggio > 2000 m è necessaria una riduzione della potenza.

Gli apparecchi in armadio sono conformi, nella versione base, al grado di protezione IP20 secondo EN 60529.

Il montaggio va eseguito seguendo i disegni quotati forniti. La distanza necessaria tra il bordo superiore dell'armadio e il soffitto è anch'essa riportata nei disegni quotati.

L'aria di raffreddamento per la parte di potenza viene aspirata dal lato anteriore attraverso le griglie di ventilazione nella parte inferiore. L'aria riscaldata si disperde attraverso la lamiera perforata della copertura o attraverso le griglie di ventilazione della parte superiore del tetto (opzione M13/M23/M43/M54/M78). L'adduzione dell'aria è possibile anche dal basso tramite pavimenti intermedi, canali d'aria, ecc. Per questo motivo devono essere realizzate aperture sulla lamiera di fondo divisa in tre parti.

Conformemente a EN 61800-3, l'apparecchio in armadio non è previsto per l'impiego in reti pubbliche a bassa tensione che alimentano edifici residenziali. In queste reti possono infatti prodursi disturbi ad alta frequenza.

Disimballaggio

Controllare la completezza della fornitura confrontandola con la bolla di consegna. Verificare l'integrità dell'armadio.

Lo smaltimento dell'imballaggio deve avvenire nel rispetto delle norme e delle regolamentazioni vigenti a livello nazionale.

Attrezzi necessari

Per il montaggio dei collegamenti sono necessari i seguenti attrezzi:

- Chiave per dadi oppure chiave a tubo da 10
- Chiave per dadi oppure chiave a tubo da 13
- Chiave per dadi oppure chiave a tubo, apertura della chiave 16/17
- Chiave per dadi oppure chiave a tubo, apertura della chiave 18/19

- Chiave esagonale gr. 8
- Chiave dinamometrica fino a 50 Nm
- Cacciavite gr. 2
- Cacciavite Torx T20
- Cacciavite Torx T30

3.3.3 Installazione

Sollevamento dal pallet di trasporto

Per il trasporto corretto dell'armadio dal pallet di trasporto al luogo di installazione vanno rispettate le prescrizioni vigenti a livello locale.

Come opzione, sulla parte superiore dell'armadio possono essere agganciati dei dispositivi di trasporto per gru (opzione M90).

Montaggio nel luogo di installazione

Per il collegamento con il basamento, su ogni pannello dell'armadio sono predisposti quattro fori per viti M12. Le quote di fissaggio sono riportate nei disegni quotati allegati.

La fornitura degli armadi aventi una larghezza di 400 mm comprende due supporti a parete per il fissaggio della parte superiore dell'armadio al muro. Ciò consente un'installazione particolarmente sicura degli armadi.

3.3.4 Collegamento meccanico di unità trasportate separatamente

Collegamento meccanico di unità trasportate separatamente

I seguenti armadi vengono forniti in due unità di trasporto separate:

- 3 AC 380 V 480 V: 6SL3710-2GE41-1AA0, 6SL3710-2GE41-4AA0, 6SL3710-2GE41-6AA0
- 3 AC 500 V 600 V: 6SL3710-2GF41-1AA0, 6SL3710-2GF41-4AA0
- 3 AC 660 V 690 V: 6SL3710-2GH41-1AA0, 6SL3710-2GH41-4AA0, 6SL3710-2GH41-5AA0

L'armadio sinistro riporta la dicitura "+H.A24" e "+H.A49", l'armadio destro la dicitura "+H.A25" e "+H.A50", qui è montato anche il pannello operativo dell'armadio.

Per il collegamento meccanico dei due armadi nella confezione sono forniti vari elementi di giunzione. Questi elementi devono essere utilizzati quanto più uniformemente possibile.

3.3.5 Montaggio di sgocciolatoi aggiuntivi (opzione M21) o calotte aggiuntive (opzione M23, M43, M54)

Per aumentare il grado di protezione degli armadi da IP20 (standard) a IP21, IP23, IP43 o IP54 vengono forniti sgocciolatoi o calotte aggiuntivi che vanno montati dopo l'installazione degli armadi.

Descrizione

L'aumento del grado di protezione a IP21 viene ottenuto mediante il montaggio di uno sgocciolatoio aggiuntivo. Con l'ausilio di un supporto distanziale, lo sgocciolatoio viene montato 250 mm sopra la lamiera del tetto dell'armadio. Tutti gli armadi provvisti di sgocciolatoio sono quindi più alti di 250 mm.

Gli apparecchi con grado di protezione IP23 vengono forniti provvisti di calotte aggiuntive, di griglie di ventilazione in plastica e di un filtro per l'entrata dell'aria (porte) e l'uscita dell'aria (calotte). Lateralmente e anteriormente le calotte sono allineate con gli armadi, mentre sul lato posteriore esse rientrano sufficientemente per consentire l'uscita dell'aria anche in caso di montaggio a parete. La fuoriuscita dell'aria avviene sul lato anteriore e posteriore. La calotta viene fissata avvitandola nei quattro fori dei ganci per il trasporto dell'armadio mediante un dispositivo di sollevamento. Il montaggio delle calotte aumenta l'altezza degli armadi di 400 mm.

Gli apparecchi con grado di protezione IP43 vengono forniti provvisti di calotte aggiuntive, di griglie di ventilazione in plastica e di un filtro a maglia fine per l'entrata dell'aria (porte) e l'uscita dell'aria (calotte). Lateralmente e anteriormente le calotte sono allineate con gli armadi, mentre sul lato posteriore esse rientrano sufficientemente per consentire l'uscita dell'aria anche in caso di montaggio a parete. La fuoriuscita dell'aria avviene sul lato anteriore e posteriore. La calotta viene fissata avvitandola nei quattro fori dei ganci per il trasporto dell'armadio mediante un dispositivo di sollevamento. Il montaggio delle calotte aumenta l'altezza degli armadi di 400 mm.

Il raggiungimento del grado di protezione IP43 richiede un filtro intatto, per il quale va perciò eseguita una manutenzione regolare in funzione delle condizioni ambientali presenti.

Gli apparecchi con grado di protezione IP54 vengono forniti provviste di calotte aggiuntive, di griglie di ventilazione in plastica e di un filtro per l'entrata dell'aria (porte) e l'uscita dell'aria (calotte). Lateralmente e anteriormente le calotte sono allineate con gli armadi, mentre sul lato posteriore esse rientrano sufficientemente per consentire l'uscita dell'aria anche in caso di montaggio a parete. La fuoriuscita dell'aria avviene sul lato anteriore e posteriore. La calotta viene fissata avvitandola nei quattro fori dei ganci per il trasporto dell'armadio mediante un dispositivo di sollevamento. Il montaggio delle calotte aumenta l'altezza degli armadi di 400 mm.

Il raggiungimento del grado di protezione IP54 richiede un filtro intatto, il quale va perciò sostituito regolarmente in funzione delle condizioni ambientali presenti. Il montaggio e la sostituzione del filtro avvengono facilmente dall'esterno.

Montaggio di uno sgocciolatoio per l'aumento del grado di protezione a IP21 (opzione M21)

- 1. Rimuovere i dispositivi per il trasporto tramite gru eventualmente presenti.
- 2. Montare i supporti distanziali nei punti di montaggio previsti sul tetto dell'armadio. In certi casi per il montaggio è necessario rimuovere la griglia di protezione.
- 3. Montare lo sgocciolatoio sui supporti distanziali.

ATTENZIONE

Per evitare la penetrazione di liquidi negli interstizi tra un armadio e l'altro quando si affiancano più apparecchi in armadio, gli sgocciolatoi sono provvisti lateralmente di apposite "canaline di scolo". In fase di montaggio degli sgocciolatoi, assicurarsi che le "canaline di scolo" siano agganciate l'una all'altra.

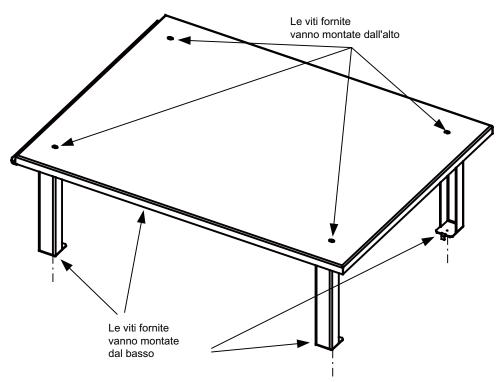


Figura 3-1 Montaggio di uno sgocciolatoio

Montaggio di una calotta per l'aumento del grado di protezione a IP23/IP43/IP54 (opzione M23/M43/M54)

- 1. Rimuovere i dispositivi per il trasporto tramite gru eventualmente presenti.
- 2. Tenere presente che sulla parte superiore dell'armadio non è presente una lamiera perforata (per ragioni di fabbricazione essa potrebbe essere ancora montata).
- 3. Solo per l'opzione M43 e M54: applicare il nastro isolante (compreso nella fornitura) sulle superfici di appoggio della calotta di copertura sul lato superiore dell'armadio.
- 4. Montare i supporti distanziali nei punti di montaggio previsti sul tetto dell'armadio (punti di fissaggio dei dispositivi di trasporto tramite gru).

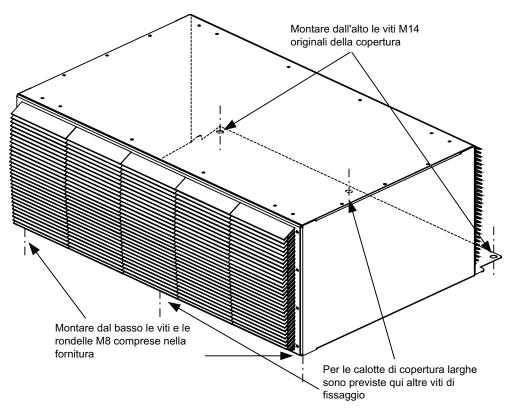


Figura 3-2 Montaggio di una calotta

3.3.6 Alimentazione dall'alto (opzione M13), collegamento al motore dall'alto (opzione M78)

Alimentazione dall'alto

Per le opzioni M13 e M78 l'armadio viene provvisto di una calotta aggiuntiva. All'interno di questa calotta si trovano le linguette di collegamento per i cavi di potenza e la guida di bloccaggio cavi per il fissaggio meccanico dei cavi, una sbarra di schermatura EMC e una sbarra di messa a terra.

L'altezza dell'armadio aumenta così di 405 mm. Il sistema di sbarre per il collegamento dall'alto viene fornito completamente montato. Per ragioni legate al trasporto, le calotte vengono fornite separatamente e devono essere montate sul lato impianto. Le opzioni M23, M43 e M54 prevedono inoltre la fornitura di griglie di ventilazione e filtri.

Per l'inserimento dei cavi è prevista una piastra di montaggio non forata in alluminio 5 mm nella parte superiore della calotta. A seconda del numero di cavi e della sezione dei cavi utilizzata, in questa piastra di montaggio devono essere previsti sul lato impianto dei fori per i collegamenti a vite dei cavi per l'inserimento dei cavi stessi.

Nota

Il collegamento dei cavi di comando e di resistenze di frenatura opzionali continua ad avvenire dal basso.

Montaggio della calotta

- 1. Rimuovere i dispositivi per il trasporto tramite gru eventualmente presenti.
- Solo per l'opzione M43 e M54: applicare il nastro isolante (compreso nella fornitura) sulle superfici di appoggio della calotta di copertura sul lato superiore dell'armadio.
- 3. Montare i supporti distanziali nei punti di montaggio previsti sul tetto dell'armadio (punti di fissaggio dei dispositivi di trasporto tramite gru).
- 4. Per il fissaggio dei cavi di potenza è necessario smontare la parte anteriore della calotta.

3.3 Montaggio

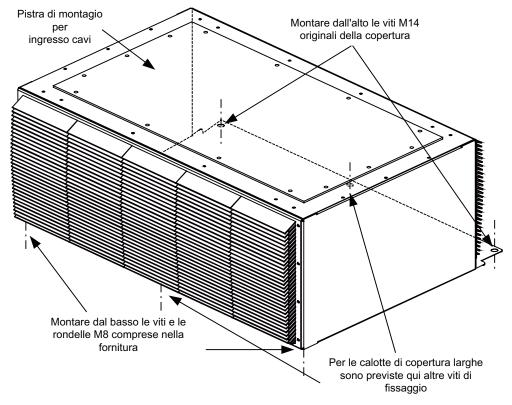


Figura 3-3 Montaggio della calotta per M13 / M78

Installazione elettrica

4.1 Contenuto del capitolo

Questo capitolo descrive:

- La realizzazione dei collegamenti elettrici dell'apparecchio in armadio
- L'adattamento della tensione del ventilatore e della tensione di alimentazione interna alle condizioni locali (tensione di rete)
- La morsettiera utente e le sue interfacce
- Le interfacce delle opzioni supplementari

4.2 Lista di controllo per l'installazione elettrica

Procedere con l'installazione elettrica dell'apparecchio seguendo la seguente lista di controllo. Leggere il paragrafo "Avvertenze di sicurezza" all'inizio delle Istruzioni operative prima di iniziare a lavorare sull'apparecchio.

Nota

Contrassegnare con una crocetta nella colonna di destra le opzioni comprese nella fornitura. Dopo aver terminato l'installazione, contrassegnare le singole operazioni completate con un segno di spunta.

N.	Operazione	esistente/eseguita
Colleg	amenti di potenza	
1	In caso di unità trasportate separatamente devono essere creati i collegamenti elettrici tra i due armadi (vedere il capitolo "Installazione elettrica/Collegamento elettrico di unità trasporto fornite separatamente").	
2	I cavi di potenza collegati alla rete e al motore vanno dimensionati e posati in base alle condizioni ambientali e di posa. Le lunghezze massime ammesse dei cavi tra il convertitore e il motore devono essere rispettate in base ai cavi utilizzati (vedere il capitolo "Installazione elettrica/Sezioni di collegamento, lunghezze dei conduttori"). Il conduttore di terra del motore deve essere ricondotto direttamente all'apparecchio in	
	armadio. I cavi vanno collegati correttamente ai morsetti dell'apparecchiatura con una coppia di 50 Nm. Anche i cavi del motore e dell'impianto a bassa tensione vanno collegati al motore con le coppie necessarie.	
3	In caso di potenze molto elevate i cavi di collegamento (-W001, -W002) del circuito intermedio tra i due armadi devono essere chiusi o separati (vedere il capitolo "Installazione elettrica/collegamento del circuito intermedio").	
4	I cavi tra l'impianto a bassa tensione e l'apparecchio in armadio devono essere protetti con dei fusibili di rete secondo quanto prescritto dalla normativa sulla protezione dei conduttori (VDE 636, parte 10). Nell'esecuzione C vanno impiegati dei fusibili combinati per la protezione dei conduttori e dei semiconduttori (VDE 636, parte 40 / EN 60269-4). I relativi fusibili sono elencati nella sezione "Dati tecnici".	
5	Per lo scarico del tiro, i cavi devono essere bloccati sulla guida di bloccaggio cavi (guida C).	
6	In caso di utilizzo dei cavi schermati EMC, nella morsettiera del motore devono essere impiegati dei pressacavi per schermare un'ampia superficie di contatto e realizzare il collegamento a terra. Sull'armadio i cavi vanno collegati a terra su un'ampia superficie con le fascette serracavo fornite insieme alla sbarra di schermatura EMC. (La sbarra di schermatura è contenuta nell'opzione L00 o può essere ordinata separatamente con l'opzione M70) (vedere il capitolo "Installazione elettrica/Installazione in conformità EMC").	
7	Le schermature dei cavi vanno collegate correttamente e l'armadio va collegato a terra in modo appropriato nei punti appositamente predisposti (vedere il capitolo "Installazione elettrica/Installazione in conformità EMC").	
8	La tensione del trasformatore del ventilatore (-U1-T10) nelle esecuzioni A e C e dell'alimentazione interna (-A1-T10) nell'esecuzione A (solo con l'opzione L13, L26, L83, L84, L86, L87) deve essere adattata alla tensione di allacciamento dell'apparecchio (vedere il capitolo "Installazione elettrica/Adattamento della tensione del ventilatore").	

N.	Operazione	esistente/eseguita			
9	collegamento del	namento con rete / rete IT non messa a terra va rimossa la staffa di condensatore antidisturbi (vedere il capitolo "Rimozione della staffa di condensatore antidisturbi per il funzionamento nelle reti non collegate			
10	trascorso fino alla inferiore a 2 anni intermedio. Se il	La data di costruzione può essere dedotta dalla targhetta dei dati tecnici. Se l'intervallo trascorso fino alla prima messa in servizio o il tempo di inutilizzo dell'apparecchio è inferiore a 2 anni, non è necessario alcun forming dei condensatori del circuito intermedio. Se il tempo di inutilizzo supera i 2 anni, è necessario eseguire il forming seguendo le indicazioni contenute nella sezione "Manutenzione e riparazione".			
11	collegati al morse	dell'alimentazione ausiliaria, i cavi per 230 V AC devono essere etto –X40, per DC 24 V a –X9 (vedere il capitolo "Installazione zione ausiliaria esterna da una rete protetta").			
12	Opzione L10 Filtro du/dt con Voltage Peak Limiter	Durante la messa in servizio il filtro deve essere selezionato mediante STARTER o AOP30. È consigliabile controllare la selezione verificando l'impostazione di p0230 = 2 Le parametrizzazioni necessarie vengono eseguite automaticamente (vedere il capitolo "Installazione elettrica/Filtro du/dt con Voltage Peak Limiter (opzione L10)".			
13	Opzione L15 Filtro sinusoidale	Durante la messa in servizio il filtro deve essere selezionato mediante STARTER o AOP30. È consigliabile controllare la selezione verificando l'impostazione di p0230 = 3. Le parametrizzazioni necessarie vengono eseguite automaticamente (vedere il capitolo "Installazione elettrica/Filtro sinusoidale (opzione L15)".			
14	Opzione L19 Collegamento per utenze ausiliarie esterne	Per l'alimentazione di utenze ausiliarie (ad es. ventilatore esterno del motore) l'azionamento va collegato correttamente ai morsetti da -X155:1 (L1) a -X155:3 (L3). La tensione di allacciamento dell'azionamento ausiliario deve corrispondere alla tensione d'ingresso dell'armadio. La corrente di carico deve essere al max. 10 A e deve essere impostata sull'utenza collegata (vedere il capitolo "Installazione elettrica/Collegamento per utenze ausiliarie esterne (opzione L19)").	Valore impostato:		
15	Opzione L50 Illuminazione del quadro con presa per service	L'alimentazione ausiliaria a 230 V per l'illuminazione dell'armadio con presa di servizio integrata va collegata al morsetto -X390 e protetta sul lato impianto con un fusibile da max. 10 A (vedere il capitolo "Installazione elettrica/Illuminazione armadio con presa (opzione L50)").			
16	Opzione L55 Riscaldamento anticondensa	L'alimentazione ausiliaria a 230 V per il riscaldamento anticondensa durante lo stato di fermo (230 V / 50 Hz, 100 W / e per armadi con larghezza compresa tra 800 e 1200 mm 230 V / 50 Hz 2 x 100 W) va collegata ai morsetti -X240: 1 3 devono essere collegati e protetti con max. 16 A (vedere il capitolo "Installazione elettrica/Riscaldamento anticondensa (opzione L55)").			
Colleg	ollegamenti dei segnali				
17	comando vanno o provvisti di scher analogici vanno p alimentazione pre	parecchio da un controllo / da una postazione sovraordinato/a. I cavi di collegati in base all'occupazione delle interfacce e devono essere matura. Tenendo conto degli eventuali disturbi, i segnali digitali e predisposti in cavi separati e va rispettata la distanza dai cavi di escritta. Il ingressi analogici della morsettiera del cliente come ingressi di			
	corrente o tensione, occorre impostare correttamente i commutatori S5.0 o S5.1 (vedere il capitolo "Installazione elettrica/Morsettiera utente (-A60)").				

4.2 Lista di controllo per l'installazione elettrica

N.	Operazione		esistente/eseguita	
18	Opzione K50 Modulo encoder	Per rilevare il numero di giri attuale del motore viene utilizzato il modulo encoder SMC30.		
	SMC30	Il modulo encoder SMC30 supporta i seguenti encoder:		
		Encoder TTL		
		Encoder HTL		
		Come impostazione di fabbrica viene configurato un encoder HTL in modo bipolare con 1024 impulsi al giro (vedere il capitolo "Installazione elettrica/Modulo encoder SMC30 per rilevare il numero di giri attuale del motore (opzione K50)").		
Colleg	amento di disposit	ivi di protezione e di sorveglianza		
19	Opzione L45 Pulsante di arresto d'emergenza	I contatti del pulsante di arresto d'emergenza sono inseriti nel morsetto -X120 e possono essere scollegati per integrare un dispositivo di protezione sovraordinato sul lato impianto (vedere il capitolo "Installazione elettrica/Pulsante di arresto d'emergenza (opzione L45)").		
20	Opzione L57 Categoria arresto d'emergenza 0 (AC 230 V / DC 24 V)	L'arresto d'emergenza della categoria 0 provoca l'arresto non controllato dell'azionamento. In combinazione con l'opzione L45 non è necessario alcun ulteriore cablaggio. Tuttavia, se l'apparecchio viene inserito in un circuito di sicurezza esterno, il contatto va inserito nella morsettiera -X120 (vedere il capitolo "Installazione elettrica/Categoria arresto d'emergenza 0; AC 230 V o DC 24 V (opzione L57)").		
21	Opzione L59 Arresto di emergenza in categoria 1 (AC 230 V)	L'arresto d'emergenza della categoria 1 provoca l'arresto controllato dell'azionamento. A causa della caratteristica di carico e dei tempi di arresto necessari, può rendersi necessario l'impiego di unità di frenatura (chopper di frenatura e resistenze di frenatura esterne). In combinazione con l'opzione L45 non è necessario alcun ulteriore cablaggio. Tuttavia, se l'apparecchio viene inserito in un circuito di sicurezza esterno, il contatto va inserito nella morsettiera -X120 (vedere il capitolo "Installazione elettrica/Categoria arresto d'emergenza 1; AC 230 V (opzione L59)").		
22	Opzione L60 Categoria arresto d'emergenza 1 (DC 24 V)	L'arresto d'emergenza della categoria 1 provoca l'arresto controllato dell'azionamento. A causa della caratteristica di carico e dei tempi di arresto necessari, può rendersi necessario l'impiego di unità di frenatura (chopper di frenatura e resistenze di frenatura esterne). In combinazione con l'opzione L45 non è necessario alcun ulteriore cablaggio. Tuttavia, se l'apparecchio viene inserito in un circuito di sicurezza esterno, il contatto va inserito nella morsettiera -X120 (vedere il capitolo "Installazione elettrica/Categoria arresto d'emergenza 1; DC 24 V (opzione L60)").		
23	Opzione L61/L62 Unità di frenatura 25 / 50 kW	I cavi di collegamento e la messa a terra della resistenza di frenatura devono essere collegati al blocco morsetti –X5: 1/2. Il collegamento tra interruttore termico sulla resistenza di frenatura e morsettiera utente –A60 deve essere realizzato. Nella messa in servizio tramite AOP30 devono essere eseguite le impostazioni per la valutazione come "anomalia esterna 3". Devono essere effettuate le impostazioni per la valutazione dell'interruttore termico come "anomalia esterna 2" (vedere il capitolo "Installazione elettrica/Unità di frenatura 25 kW (opzione I 61): Unità di frenatura 50 kW (opzione I 62)").		

N.	Operazione		esistente/eseguita
24	Opzione L83 Protezione motore a termistore (avviso)	Ai morsetti T1 e T2 del dispositivo di protezione del motore a termistore -F127 vanno collegati i sensori di temperatura a termistore PTC (resistenze PTC di tipo A) per scopi di avviso (vedere il capitolo "Installazione elettrica/Dispositivo di protezione del motore a termistore (opzione L83/L84)").	
25	Opzione L84 Protezione motore a termistore (disinserzione)	Ai morsetti T1 e T2 del dispositivo di protezione del motore a termistore -F125 vanno collegati i sensori di temperatura a termistore PTC (resistenze PTC di tipo A) per la disinserzione (vedere il capitolo "Installazione elettrica/Dispositivo di protezione del motore a termistore (opzione L83/L84)").	
26	Opzione L86 Unità di rilevamento per PT100	Per la valutazione di PT100 è necessario collegare i termometri resistivi all'unità di rilevamento -A140. Il collegamento del sensore PT100 può avvenire in tecnica a due o a tre fili. Per la valutazione (nel rispetto delle impostazioni di fabbrica) è necessario tenere conto della suddivisione dei sensori in due gruppi distinti (vedere il capitolo "Installazione elettrica/Unità di rilevamento per PT100 (opzione L86)").	
27	Opzione L87 Sorveglianza dell'isolamento	Il dispositivo di sorveglianza dell'isolamento può essere impiegato solo con reti isolate. Tenere presente che può essere impiegato un solo dispositivo di sorveglianza dell'isolamento in una rete senza separazione galvanica. I relè di segnalazione vanno collegati correttamente al controllo sul lato impianto; negli azionamenti singoli (alimentazione dell'apparecchio in armadio tramite un apposito trasformatore) essi vanno inseriti nel circuito di segnalazione dell'apparecchio in armadio (vedere il capitolo "Installazione elettrica/Sorveglianza dell'isolamento (opzione L87)"). A questo proposito deve essere considerato anche il punto 9: "In caso di funzionamento con rete / rete IT non messa a terra va rimossa la staffa di collegamento del condensatore antidisturbi (vedere il capitolo "Rimozione della staffa di collegamento dal condensatore antidisturbi per il funzionamento nelle reti non collegate a terra").	
Safety	Integrated	Janes 7.	
28	Opzione K82 Safety Integrated	La morsettiera -X41 deve essere collegata all'apparecchio, le funzioni di sicurezza devono essere attivate attraverso la parametrizzazione prima dell'utilizzo, inoltre va eseguito un test di collaudo e redatto un protocollo di collaudo (ved. Capitolo "Modulo morsetti per il comando di "Safe Torque Off" e "Safe Stop 1" (opzione K82)").	

4.2 Lista di controllo per l'installazione elettrica

Attrezzi necessari

Per il montaggio dei collegamenti sono necessari i seguenti attrezzi:

- Chiave per dadi oppure chiave a tubo da 10
- Chiave per dadi oppure chiave a tubo da 13
- Chiave per dadi oppure chiave a tubo, apertura della chiave 16/17
- Chiave per dadi oppure chiave a tubo, apertura della chiave 18/19
- Chiave esagonale gr. 8
- Chiave dinamometrica fino a 50 Nm
- Cacciavite gr. 2
- Cacciavite Torx T20
- Cacciavite Torx T30

4.3 Importanti misure di sicurezza

/!\AVVERTENZA

Gli apparecchi in armadio funzionano con tensioni elevate.

Eseguire tutte le operazioni di collegamento in assenza di tensione!

Tutti gli interventi sull'apparecchio possono essere eseguiti unicamente da personale qualificato.

La mancata osservanza di questa avvertenza può provocare la morte, lesioni gravi o ingenti danni materiali.

Gli interventi sull'apparecchio aperto vanno eseguiti con estrema cautela, dato che potrebbero essere presenti tensioni di alimentazione esterne. Anche a motore fermo sui morsetti di alimentazione e sui morsetti di comando potrebbe essere presente della tensione.

Sui condensatori del circuito intermedio può essere presente una tensione pericolosa fino a 5 min. dopo la disinserzione. Per questo motivo l'apertura dell'apparecchio è consentita solo dopo che è trascorso un determinato intervallo di attesa.

Forming dei condensatori del circuito intermedio:

il tempo di immagazzinaggio non deve superare i due anni. In caso di tempi di immagazzinaggio più lunghi, al momento della messa in servizio i condensatori del circuito intermedio degli apparecchi devono essere sottoposti a forming.

Il forming è descritto nella sezione "Manutenzione e riparazione".

L'utente è responsabile per l'installazione e il collegamento del motore, del convertitore e degli altri apparecchi in conformità alle regolamentazioni tecniche riconosciute nel proprio paese e alle altre prescrizioni regionali. Va dedicata un'attenzione particolare al dimensionamento dei cavi, alla protezione, alla messa a terra, alla disinserzione, alla separazione e alla protezione contro la sovracorrente.

Se in un ramo interviene un dispositivo di protezione, è possibile che sia stata rilevata una corrente di dispersione. Per ridurre il pericolo di incendio e di scariche elettriche è necessario controllare le parti conduttive e gli altri componenti dell'apparecchio e sostituire le parti danneggiate. Dopo l'intervento di un dispositivo di protezione va ricercata ed eliminata la "causa della disinserzione".

Nota

Nell'esecuzione standard gli apparecchi in armadio sono dotati di una protezione contro i contatti accidentali secondo BGV A 3 a norma DIN 57 106 parte 100 / VDE 0106 parte 100.

Nell'esecuzione con l'opzione M60 sono montate delle coperture di protezione aggiuntive, le quali forniscono a porta aperta una protezione superiore contro il contatto accidentale delle parti conduttive.

Durante gli interventi di montaggio e di collegamento potrebbe essere necessario rimuovere le coperture di protezione. Al termine degli interventi le coperture di protezione vanno rimontate correttamente.

Nota

Nelle reti con conduttore esterno messo a terra e una tensione di rete >600 V AC vanno adottate le seguenti misure sul lato impianto per limitare eventuali sovratensioni alla categoria di sovratensione II in conformità a IEC 60664-1.

4.4 Introduzione all'EMC

Cosa si intende con EMC?

Per compatibilità elettromagnetica (EMC) si intende la capacità di un apparecchio elettrico di funzionare senza problemi in un dato ambiente elettromagnetico, senza influenzare dannosamente l'ambiente circostante.

L'EMC rappresenta quindi una caratteristica qualitativa per

- Immunità intrinseca ai disturbi: resistenza ai disturbi elettrici interni
- Immunità ai disturbi esterni: resistenza ai disturbi elettromagnetici esterni al sistema
- Grado di emissione dei disturbi: influsso sull'ambiente circostante dovuto alla dispersione elettromagnetica

Per un funzionamento dell'apparecchio esente da disturbi, nell'impianto non va trascurato l'ambiente circostante. Per questo motivo in fase di installazione dell'impianto occorre rispettare particolari requisiti relativi alla compatibilità elettromagnetica.

Sicurezza di esercizio e immunità ai disturbi

Per ottenere la massima sicurezza operativa e l'immunità disturbi di un intero impianto (convertitore, automazione, azionamento ecc.), il costruttore del convertitore e l'utente devono mettere in atto determinate precauzioni. Solo se vengono prese tutte le precauzioni necessarie è possibile garantire il funzionamento corretto del convertitore e soddisfare i requisiti prescritti dalla legge (89/336/CEE).

Emissione di disturbi

I requisiti EMC per i "sistemi di azionamento a velocità variabile" sono descritti nella norma EN 61800 – 3. Vengono elencati i requisiti per convertitori con tensioni di esercizio inferiori a 1000 V. A seconda del luogo di installazione del sistema di azionamento, vengono definiti vari ambienti e categorie.

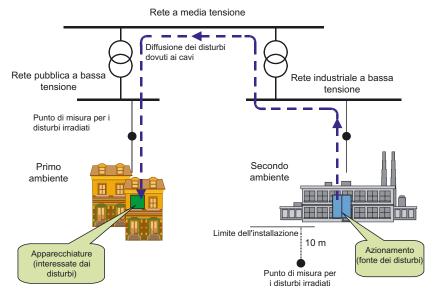


Figura 4-1 Definizione di primo e secondo ambiente

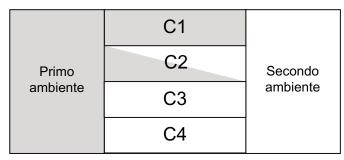


Figura 4-2 Definizione delle categorie da C1 a C4

Tabella 4-1 Definizione del primo e secondo ambiente

Definizione del primo e secondo ambiente		
Primo ambiente	Edifici residenziali o luoghi in cui il sistema di azionamento è collegato senza trasformatore alla rete pubblica a bassa tensione.	
Secondo ambiente Zone industriali alimentate dalla rete a media tensione tramite il proprio trasformatore.		

Tabella 4-2 Definizione delle categorie da C1 a C4

Definizione delle categorie da C1 a C4			
Categoria C1 Tensione nominale <1000 V, per l'impiego illimitato nel primo ambiente.			
Categoria C2	Sistemi di azionamento fissi, tensione nominale <1000 V, per l'impiego nel secondo ambiente. Impiego nel primo ambiente se venduti e installati da personale qualificato.		
Categoria C3	Tensione nominale <1000 V, per l'impiego esclusivo nel secondo ambiente.		
Categoria C4	Tensione nominale ≥1000 V o per correnti nominali ≥400 A in sistemi complessi nel secondo ambiente.		

4.5 Installazione in conformità EMC

Di seguito vengono riassunte alcune delle principali informazioni e indicazioni che facilitano il rispetto delle direttive EMC e CE.

Montaggio dell'armadio

- Collegare le parti metalliche verniciate o anodizzate con rondelle dentate oppure rimuovere lo strato isolante.
- Utilizzare lamiere di montaggio non verniciate e sgrassate.
- Eseguire un collegamento centrale tra la massa ed il cavo di protezione del sistema (terra).

Interruzioni schermate

 Ponticellare le interruzioni della schermatura, ad esempio nelle morsettiere, interruttori, ecc. il più possibile con bassa impedenza ed ampie superfici di contatto.

Utilizzo di grandi sezioni

Realizzare i cavi di terra e di massa con grandi sezioni, preferibilmente con trecce di terra
o cavi flessibili multifilari.

Posa separata del cavo motore

• La distanza tra cavo del motore e cavo dei segnali dovrebbe essere almeno > 20 cm. Non posare il cavo di rete e quello del motore in modo parallelo.

Garanzia di potenziale verso terra tra unità con potenziale di disturbo molto diverso

- Posare un cavo equipotenziale parallelo al cavo di comando; la sezione deve essere almeno di 16 mm².
- Se vengono comandati relè, contattori e carichi induttivi o capacitivi, i relè o i contattori di comando devono essere dotati di dispositivi antidisturbo.

Posa dei cavi

- Disporre alla distanza maggiore possibile i cavi che emettono disturbi e quelli più sensibili agli stessi.
- L'immunità ai disturbi aumenta se i cavi vengono posati il più vicino possibile al potenziale di massa. Si consiglia quindi una posa negli angoli e sul potenziale di massa.
- Collegare a terra i cavi di riserva almeno da un lato.
- Accorciare i cavi lunghi oppure posarli in zone non soggette a disturbi. Possono nascere altrimenti ulteriori punti di accoppiamento.

- Conduttori o cavi che portano segnali di diverse specie, si devono incrociare con un angolo corretto, in particolare quando si tratta di segnali sensibili ai disturbi o che possono generare disturbi.
 - Classe 1:

cavi non schermati per DC ≤ 60 V
cavi non schermati per AC ≤ 25 V
cavi schermati per segnali analogici
cavi schermati per bus e dati
collegamenti per pannelli operativi, cavi per encoder incrementali e assoluti

- Classe 2:

cavi non schermati per DC > 60 V e ≤ 230 V cavi non schermati per AC > 25 V e ≤ 230 V

 Classe 3: cavi non schermati per AC/DC > 230 V e ≤ 1000 V

Collegamento della schermatura

- Le schermature non devono essere utilizzate per condurre corrente. La schermatura non può essere utilizzata contemporaneamente come conduttore di neutro o conduttore di protezione.
- Collegare le schermature su ampie superfici di contatto. Ciò può avvenire mediante fascette, morsetti o collegamenti a vite di messa a tessa.
- Evitare il prolungamento dello schermo verso il punto di terra con uno spezzone di filo (treccina), l'efficacia dello schermo in questo caso viene ridotta fino al 90%.
- Collegare la schermatura alla sbarra direttamente all'ingresso del cavo nell'armadio.
 Isolare il cavo schermato senza interruzioni e portare la schermatura fino al collegamento dell'apparecchio ma senza collegarlo nuovamente.

Collegamento delle periferie

- Realizzare il collegamento di massa con ulteriori armadi, parti di impianto e apparecchi decentralizzati con la sezione più grande possibile, bassa impedenza, almeno 16 mm².
- Collegare a terra i cavi non utilizzati solo dal lato dell'armadio.
- Scegliere la massima distanza possibile tra i cavi di energia e dei segnali, tuttavia almeno 20 cm. Normalmente vale la regola che, tanto più lungo è il percorso parallelo tanto più grande deve essere la distanza. Se la distanza non può essere osservata, è necessario prevedere adeguate precauzioni per la schermatura.
- Evitare grandi anelli di cavi.

Filtraggio dei cavi

- In alcuni casi i cavi di rete e di alimentazione per gli apparecchi e i moduli devono essere filtrati in armadio per ridurre i disturbi indotti ed emessi dai cavi.
- Per limitare l'emissione di disturbi, l'apparecchio viene equipaggiato in fabbrica con un filtro antidisturbi conformemente ai valori limite stabiliti per categoria C3. Per l'impiego nel primo ambiente (categoria C2) sono disponibili filtri opzionali su richiesta.

4.6 Collegamento elettrico di unità di trasporto fornite separatamente

4.6.1 Collegamento elettrico di unità di trasporto fornite separatamente

Collegamento elettrico di unità di trasporto fornite separatamente

In caso di unità trasportate separatamente devono essere creati i seguenti collegamenti elettrici tra l'armadio destro e quello sinistro al termine dell'installazione meccanica:

- Collegamento delle sbarre PE
- · Attacco del collegamento del circuito intermedio
- Collegamento dell'alimentazione di tensione DC 24 V, AC 230 V e dei cavi dei segnali
- Collegamento della topologia DRIVE-CLiQ

4.6.2 Collegamento delle sbarre PE

Collegamento delle sbarre PE

Per il collegamento delle sbarre PE dei due armadi nella confezione è fornito un ponticello di collegamento.

Creazione del collegamento

- 1. Sul lato destro dell'armadio sinistro allentare un dado M12 della sbarra PE, quindi rimuovere dado, rondella e vite.
- 2. Sul lato sinistro dell'armadio destro allentare un dado M12 della sbarra PE, quindi rimuovere dado, rondella e vite.
- 3. Applicare il ponticello di collegamento da dietro sulle sbarre PE degli armadi da collegare.
- 4. Inserire le viti dal davanti nelle linguette di messa a terra delle sbarre PE.
- 5. Riposizionare rondelle e dadi.
- 6. Serrare i dadi (coppia di serraggio: 50 Nm).

4.6.3 Attacco del collegamento del circuito intermedio

Attacco del collegamento del circuito intermedio

Per l'attacco del collegamento del circuito intermedio tra i due armadi sono previsti cavi preconfezionati, che devono essere collegati dall'armadio di sinistra (+H.A49) all'armadio di destra (+H.A25/50).

/!\AVVERTENZA

I connettori non devono essere invertiti o cortocircuitati!

L'inversione o il cortocircuito dei connettori del circuito intermedio provoca la distruzione dell'apparecchio in armadio!

Alimentatore a 6 impulsi -> non collegare i circuiti intermedi

Con un alimentatore a 6 impulsi devono essere collegati i cavi di collegamento DCPS (numero di cavo -W001) a +H.A25/50 -X7:3/4 e DCNS (numero di cavo -W002) a +H.A25/50 -X7:1/2, i circuiti intermedi non devono essere collegati.

Alimentatore a 12 impulsi -> collegare i circuiti intermedi

Con un alimentatore a 12 impulsi devono essere collegati i cavi di collegamento DCPS (numero di cavo -W001) a +H.A25/50 DCPS e DCNS (numero di cavo -W002) a +H.A25/50 DCNS, i circuiti intermedi devono essere collegati.

4.6.4 Collegamento dell'alimentazione di tensione e dei cavi dei segnali

Collegamento dell'alimentazione di tensione e dei cavi dei segnali

I cavi di collegamento per DC 24 V e AC 230 V con l'alimentazione di tensione dell'armadio sinistro e per i cavi dei segnali devono essere collegati. Si tratta, a seconda dell'opzione integrata, di un massimo di 3 cavi di collegamento che partono dall'armadio destro (pannello +H.A25) e che vanno collegati nella parte inferiore del connettore nell'armadio sinistro (pannello +H.A24):

- Cavo di collegamento con la dicitura –A1–X97 nella parte inferiore del connettore -A1– X97.
- Cavo di collegamento con la dicitura –A1–X98 nella parte inferiore del connettore -A1– X98
- Cavo di collegamento con la dicitura –A1–X99 nella parte inferiore del connettore -A1– X99.

La posa dei cavi deve essere eseguita in modo da evitare che i cavi di potenza esercitino effetti di disturbo sui cavi di collegamento.

4.6 Collegamento elettrico di unità di trasporto fornite separatamente

4.6.5 Collegamento della topologia DRIVE-CLiQ

Collegamento della topologia DRIVE-CLiQ

È necessario creare il collegamento DRIVE-CLiQ tra il Power Module nell'armadio sinistro (pannello +H.A49) e l'unità di regolazione CU320 (pannello +H.A50).

Il cavo di collegamento (numero di cavo –W003) è inserito nel Power Module in fabbrica e deve essere inserito nella presa DRIVE-CLiQ –X102 dell'unità di regolazione. La posa dei cavi deve essere eseguita in modo da evitare che i cavi di potenza esercitino effetti di disturbo sul collegamento DRIVE-CLiQ.

4.7 Collegamenti di potenza

/!\AVVERTENZA

Lo scambio dei morsetti di ingresso e di uscita provoca il danneggiamento dell'apparecchio!

Lo scambio o il cortocircuito dei morsetti del circuito intermedio provoca il danneggiamento dell'apparecchio!

Le bobine di eccitazione dei contattori e dei relè collegate alla stessa rete dell'apparecchio o che si trovano in prossimità dello stesso devono essere provviste di limitatori di sovratensione, ad es. elementi RC.

L'apparecchio non deve essere alimentato tramite un interruttore automatico FI (DIN VDE 0160).

4.7.1 Sezioni di collegamento, lunghezze dei conduttori

Sezioni di collegamento

Le sezioni di collegamento dell'apparecchio per allacciamento alla rete, collegamento al motore e messa a terra possono essere ricavate dalle tabelle contenute nella sezione "Dati tecnici".

Lunghezze cavi

Le lunghezze massime dei conduttori utilizzabili si riferiscono ai tipi di cavi comuni o raccomandati da SIEMENS. Lunghezze superiori dei cavi possono essere impiegate solo previa conferma della SIEMENS.

Le lunghezze dei cavi indicate rappresentano la distanza effettiva tra il convertitore e il motore, tenendo conto di fattori quali la posa in parallelo, la portata di corrente e il fattore di posa:

- Conduttore non schermato (ad es. Protodur NYY): max. 450 m
- Conduttore schermato (ad es. Protodur NYCWY, Protoflex EMV 3 Plus): max. 300 m.

Nota

Le lunghezze dei conduttori specificate sono valide anche con le bobine motore presenti (opzione L08).

Nota

Nei cavi raccomandati da Siemens del tipo PROTOFLEX-EMV-3 PLUS, il conduttore di protezione è composto da tre conduttori di protezione simmetrici. I conduttori di protezione devono essere quindi provvisti di capocorda e collegati a terra singolarmente. Inoltre, il cavo è dotato di uno schermo a calza in rame a filo fine concentrico. Per la soppressione dei radiodisturbi secondo EN55011, lo schermo deve essere provvisto di un'ampia superficie di contatto su entrambi i lati.

Sul lato del motore si consiglia di impiegare delle giunzioni per cavi nelle morsettiere per creare un'ampia superficie di contatto sullo schermo.

4.7 Collegamenti di potenza

Lunghezze minime dei cavi del motore con alimentatore a 12 impulsi e collegamento a un motore con sistema a un solo avvolgimento

In caso di alimentatore a 12 impulsi e collegamento a un motore con sistema a un solo avvolgimento, per gli apparecchi in armadio successivi occorre rispettare le lunghezze minime dei cavi del motore se non è integrata una bobina del motore (opzione L08).

Tabella 4-3 Lunghezze minime dei cavi

N. di ordinazione	Potenza [kW]	Lunghezza minima dei cavi [m]		
3 AC 380 V – 480 V				
6SL3710-2GE41-1AA0	630	13		
6SL3710-2GE41-4AA0	710	10		
6SL3710-2GE41-6AA0	900	9		
	3 AC 500 V – 600 V			
6SL3710-2GF38-6AA0	630	18		
6SL3710-2GF41-1AA0	710	15		
6SL3710-2GF41-4AA0	1000	13		
3 AC 660 V – 690 V				
6SL3710-2GH41-1AA0	1000	20		
6SL3710-2GH41-4AA0	1350	18		
6SL3710-2GH41-5AA0	1500	15		

4.7.2 Collegamento dei cavi del motore e dei cavi di rete

Collegamento dei cavi del motore e dei cavi di rete all'apparecchio in armadio

Nota

La posizione dei collegamenti è riportata negli schemi strutturali alla sezione 3 della cartella della documentazione.

- 1. Aprire l'armadio, se necessario rimuovere le coperture dal pannello di connessione per i cavi del motore (collegamenti U2/T1, V2/T2, W2/T3; X2) e i cavi di rete (collegamenti U1/L1, V1/L2, W1/L3; X1).
- 2. Togliere o spostare la lamiera di fondo sotto il pannello di connessione per inserire i cavi del motore.
- 3. Avvitare il conduttore di protezione (PE) nei punti previsti nell'armadio con il relativo collegamento contrassegnato con il simbolo di terra (50 Nm per M12).

Nota

Nell'esecuzione C, collegare prima i cavi di rete e successivamente i cavi del motore.

 Avvitare i cavi del motore con i collegamenti.
 Rispettare la sequenza di collegamento corretta dei conduttori U2/T1, V2/T2, W2/T3 e U1/L1, V1/L2, W1/L3!

CAUTELA

Per prima cosa serrare le viti con la coppia prevista (50 Nm per M12). In caso contrario, i contatti di collegamento potrebbero bruciarsi durante l'esercizio.

Nota

La messa a terra del motore deve essere ricondotta direttamente all'armadio e qui collegata.

Senso di rotazione del motore

Nelle macchine asincrone con rotazione destrorsa (vista sull'albero motore), il motore va collegato all'apparecchio in armadio nel modo seguente.

Tabella 4-4 Morsetti di collegamento dell'armadio e del motore

Apparecchio (morsetti di collegamento)	Motore (morsetti di collegamento)
U2/T1	U
V2/T2	V
W2/T3	W

In caso di rotazione sinistrorsa (vista sull'albero motore) è necessario scambiare due fasi rispetto al collegamento per la rotazione destrorsa.

Nota

Se viene riscontrato che durante il montaggio dei cavi è stato utilizzato il senso di rotazione errato e il senso di rotazione non può essere corretto con una successiva sostituzione dei cavi del motore, è possibile modificare il senso di rotazione nel corso della messa in servizio dell'azionamento tramite p1821 (inversione del senso di rotazione), in modo da ottenere l'inversione del senso di rotazione (ved. sezione "Inversione del senso di rotazione").

Nei motori con funzionamento a stella/triangolo è necessario fare attenzione al collegamento degli avvolgimenti. Consultare la relativa documentazione del motore e rispettare la tensione d'isolamento necessaria per il funzionamento dell'apparecchio.

4.7.3 Adattamento della tensione del ventilatore (-U1 -T10)

L'alimentazione di tensione del ventilatore dell'apparecchiatura (1AC 230 V) nel Power Module (-U1 -T10) è prodotta dalla rete principale con l'ausilio di un trasformatore. La posizione del trasformatore è indicata negli schemi strutturali allegati. Per l'adattamento fine alla rispettiva tensione nominale di rete, il trasformatore è dotato di prese sul lato primario. Al momento della fornitura queste prese sono sempre impostate sul livello più alto. Nell'utilizzo con una tensione di rete inferiore occorre attivare sul trasformatore la rispettiva presa.

Nota

Per i seguenti apparecchi in armadio sono integrati due trasformatori (-U1 -T10 e -T20). In questi apparecchi i due morsetti sul lato primario devono essere impostati insieme.

- 3 AC 380 V 480 V: 6SL3710-1GE41-0 A0
- 3 AC 500 V 600 V: 6SL3710-1GF37-4 A0, 6SL3710-1GF38-1 A0
- 3 AC 660 V 690 V: 6SL3710-1GH37-4_A0, 6SL3710-1GH38-1_A0

Nota

Per i seguenti apparecchi in armadio i morsetti di impostazione devono essere impostati insieme in entrambi gli armadi:

- 3 AC 380 V 480 V: 6SL3710-2GE41-1AA0, 6SL3710-2GE41-4AA0, 6SL3710-2GE41-6AA0
- 3 AC 500 V 600 V: 6SL3710-2GF38-6AA0, 6SL3710-2GF41-1AA0, 6SL3710-2GF41-4AA0
- 3 AC 660 V 690 V: 6SL3710-2GH41-1AA0, 6SL3710-2GH41-4AA0, 6SL3710-2GH41-5AA0

I collegamenti sui morsetti di impostazione devono avvenire sul morsetto "0" e sulla rispettiva tensione di rete.

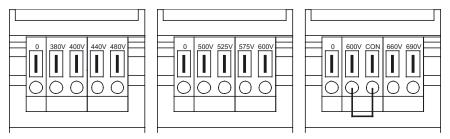


Figura 4-3 Morsetti di impostazione per il trasformatore del ventilatore (3AC 380 V - 480 V / 3AC 500 V - 600 V / 3AC 660 V - 690 V)

L'abbinamento della tensione di rete effettiva per l'impostazione del trasformatore del ventilatore è illustrata nelle tabelle seguenti.

Nota

Nel trasformatore per ventilatore da 3 AC 660 V – 690 V è inserito un ponticello dal morsetto "600 V" al morsetto "CON". I morsetti "600V" e "CON" sono riservati ad uso interno.

CAUTELA

Se i morsetti non vengono adattati alla tensione di rete effettiva:

- non può essere raggiunta la potenza di raffreddamento necessaria, poiché il ventilatore gira troppo lentamente.
- la sovracorrente può provocare un guasto dei fusibili del ventilatore.

Nota

I numeri di ordinazione per i fusibili del ventilatore sono riportati nella lista delle parti di ricambio.

Tabella 4-5 Abbinamento della tensione di rete effettiva per l'impostazione del trasformatore del ventilatore (3 AC 380 V – 480 V)

Tensione di rete	Collegamento trasformatore ventilatore (-U1 - T10)
380 V ± 10 %	380 V
400 V ± 10 %	400 V
440 V ± 10 %	440 V
480 V ± 10 %	480 V

Tabella 4-6 Abbinamento della tensione di rete effettiva per l'impostazione del trasformatore del ventilatore (3 AC 500 V – 600 V)

Tensione di rete	Collegamento trasformatore ventilatore (-U1 - T10)
500 V ± 10 %	500 V
525 V ± 10 %	525 V
575 V ± 10 %	575 V
600 V ± 10 %	600 V

Tabella 4-7 Abbinamento della tensione di rete effettiva per l'impostazione del trasformatore del ventilatore (3 AC 660 V – 690 V)

Tensione di rete	Collegamento trasformatore ventilatore (-U1 - T10)
660 V ± 10 %	660 V
690 V ± 10 %	690 V

4.7 Collegamenti di potenza

4.7.4 Adattamento della tensione di alimentazione interna (-A1 -T10, solo esecuzione A)

Per la tensione di alimentazione interna 230 V AC dell'armadio elettrico è previsto un trasformatore (-A1-T10). La posizione del trasformatore è indicata negli schemi strutturali allegati.

Al momento della fornitura queste prese sono sempre impostate sul livello più alto. Potrebbe essere necessario invertire i collegamenti dei morsetti lato primario del trasformatore per adattarli alla tensione di rete effettiva.

L'abbinamento della tensione di rete effettiva per l'impostazione del trasformatore per l'alimentazione interna è illustrata nelle tabelle seguenti.

ATTENZIONE

Se i morsetti non vengono adattati alla tensione di rete effettiva, l'alimentazione di tensione interna non è corretta.

Tabella 4-8 Abbinamento della tensione di rete effettiva per l'alimentazione di tensione interna (3 AC 380 V - 480 V)

Campo tensione di rete	Presa	Prese del trasformatore di adattamento (-A1 -T10) LH1 – LH2		
342 V – 390 V	380 V	1 - 2		
391 V – 410 V	400 V	1 – 3		
411 V – 430 V	415 V	1 – 4		
431 V – 450 V	440 V	1 – 5		
451 V – 470 V	460 V	1 – 6		
471 V – 528 V	480 V	1 – 7		

Tabella 4-9 Abbinamento della tensione di rete effettiva per l'alimentazione di tensione interna (3 AC 500 V - 600 V)

Campo tensione di rete	Presa	Prese del trasformatore di adattamento (-A1 -T10) LH1 – LH2		
450 V – 515 V	500 V	1 - 8		
516 V – 540 V	525 V	1 – 9		
541 V – 560 V	550 V	1 – 10		
561 V – 590 V	575 V	1 – 11		
591 V – 670 V	600 V	1 – 12		

Tabella 4-10 Abbinamento della tensione di rete effettiva per l'alimentazione di tensione interna (3 AC 660 V - 690 V)

Campo tensione di rete	Presa	Prese del trasformatore di adattamento (-A1 -T10) LH1 – LH2		
591 V – 630 V	600 V	1 – 12		
631 V – 680 V	660 V	1 - 14, i morsetti 12 e 13 sono ponticellati		
681 V – 759 V	690 V	1 - 15, i morsetti 12 e 13 sono ponticellati		

4.7.5 Rimozione della staffa di collegamento dal condensatore antidisturbi per il funzionamento nelle reti non collegate a terra

Se l'apparecchio viene collegato ad una rete/rete IT non collegata a terra, è necessario rimuovere la staffa di collegamento del condensatore antidisturbi dal convertitore (-U1).

Togliere le viti M4 (Torx T20) e la staffa di collegamento

Figura 4-4 Rimozione della staffa di collegamento del condensatore antidisturbi

/!\avvertenza

La mancata rimozione della staffa di collegamento dal condensatore antidisturbi in una rete o una rete IT non collegata a terra può causare gravi danni all'apparecchio.

Nota

Per i seguenti apparecchi in armadio le staffe di collegamento devono essere rimosse in entrambi gli armadi:

- con 3 AC 380 480 V: 6SL3710-2GE41-1AA0, 6SL3710-2GE41-4AA0, 6SL3710-2GE41-6AA0
- con 3 AC 500 V 600 V:
 6SL3710-2GF38-6AA0, 6SL3710-2GF41-1AA0, 6SL3710-2GF41-4AA0
- con 3 AC 660 V 690 V: 6SL3710-2GH41-1AA0, 6SL3710-2GH41-4AA0, 6SL3710-2GH41-5AA0

4.8 Alimentazione ausiliaria esterna da una rete protetta

Descrizione

Un'alimentazione ausiliaria esterna è sempre consigliata quando la comunicazione e la regolazione devono avvenire indipendentemente dalla rete di alimentazione principale. Questo vale in particolare in caso di reti deboli nelle quali possono verificarsi spesso interruzioni o cadute di rete.

Inoltre un'alimentazione esterna indipendente dall'alimentazione principale offre la possibilità di continuare a visualizzare i messaggi di avviso e di anomalia sul pannello operativo e sui dispositivi di protezione e di sorveglianza interni dell'apparecchio.

PERICOLO

Con l'alimentazione ausiliaria esterna collegata, nell'apparecchio è comunque presente una tensione pericolosa anche se l'interruttore principale è disinserito.

ATTENZIONE

Un alimentatore esterno ausiliario deve essere sempre utilizzato quando occorre servirsi della funzione di riaccensione automatica (WEA) con l'opzione di arresto di emergenza installata (L57, L59, L60).

In caso contrario la funzione di riaccensione automatica non funziona.

Tabella 4-11 Possibilità di collegamento della tensione ausiliaria esterna in funzione delle opzioni selezionate

Opzioni dell'apparecchiatura in armadio	Alimentazione esterna da una tensione ausiliaria non dipendente dall'alimentazione principale					
	DC 24 V Morsetto –X9	AC 230 V Morsetto –X40	DC 24 V (morsetto –X9) AC 230 V (morsetto –X40) *1)	AC 230 V (morsetto –X40) in combinazione con le opzioni L13 e L26 (con l > 800 A)		
- Senza le seguenti opzioni	Х					
- Esecuzione C						
L13		X				
L26 (con I > 800 A)		X				
L83			Х	X		
L84			X	X		
L86			Х	X		
L87			X	X		

^{*1)} Necessario qualora, nel caso di guasto dell'alimentazione principale, oltre al controllo e alla regolazione debba restare attiva anche l'utenza AC 230 V (protezione motore a termistori, rilevamento di PT 100 o sorveglianza dell'isolamento).

4.8.1 Alimentazione ausiliaria AC 230 V

La protezione può essere al massimo da 16 A.

Il collegamento è protetto internamente con 3 A o con 5 A.

Collegamento

- Rimuovere i ponticelli sulla morsettiera -X40 tra i morsetti 1 e 2, 5 e 6.
- Collegare l'alimentazione AC 230 V esterna ai morsetti 2 (L1) e 6 (N).

4.8.2 Alimentazione ausiliaria DC 24 V

La corrente necessaria è di 5 A.

Collegamento

Collegare l'alimentazione DC 24 V esterna ai morsetti 1 (P 24 V) e 2 (Mext) della morsettiera –X9.

4.9 Collegamenti dei segnali

4.9.1 Morsettiera utente (-A60)

Nota

Le preimpostazioni di fabbrica e la descrizione della morsettiera utente sono contenute negli schemi elettrici.

La posizione della morsettiera utente all'interno dell'apparecchio è illustrata nello schema strutturale dei collegamenti.

Collegamento della schermatura

Il collegamento della schermatura dei cavi di comando sulla morsettiera utente -A60 avviene direttamente in prossimità della morsettiera stessa. A questo scopo la morsettiera utente – A60 e le lamiere di montaggio sono provviste di rientranze in cui è possibile inserire a scatto le molle della schermatura contenute nel pacco allegato alla fornitura. Le schermature dei cavi in entrata e in uscita vanno applicate direttamente su questi supporti. Assicurarsi che il collegamento copra una superficie ampia e che sia provvisto di una buona conduttività.

Nota

Queste molle per schermatura possono essere utilizzate per tutti i cavi di comando dell'apparecchio, dal momento che le schermature sono realizzate tutte allo stesso modo.

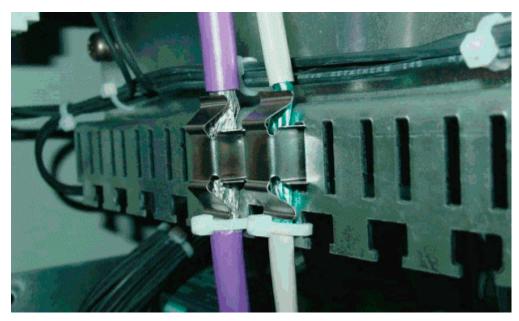


Figura 4-5 Collegamento della schermatura

Panoramica

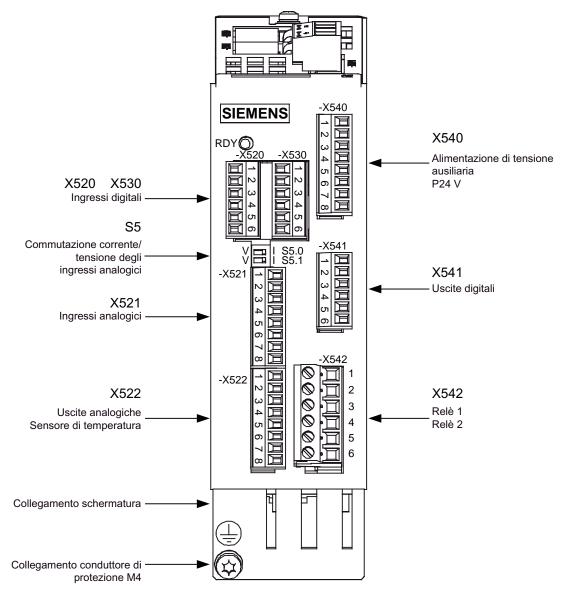


Figura 4-6 Morsettiera utente TM31

4.9 Collegamenti dei segnali

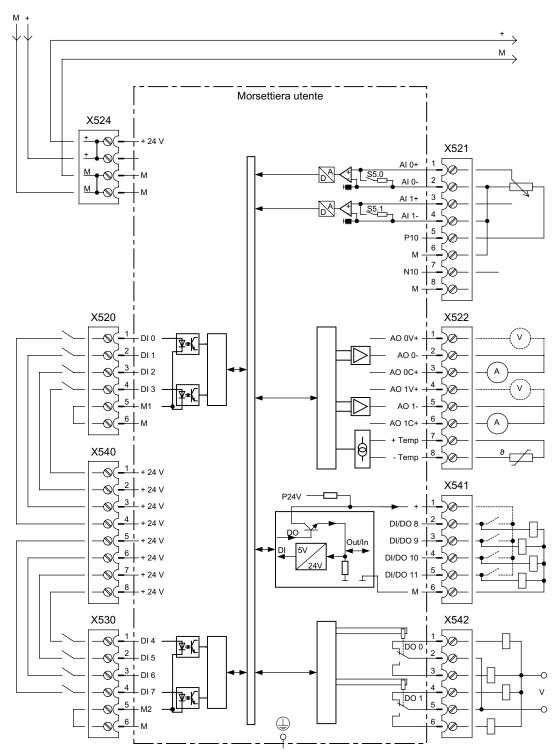


Figura 4-7 Panoramica dei collegamenti della morsettiera utente TM31

Nota

Nell'esempio di collegamento, gli ingressi digitali (morsetto -X520 e -X530) sono alimentati con la tensione interna 24 V della morsettiera utente (morsetto -X540).

Gli ingressi digitali riuniti in due gruppi (ingressi optoisolati) hanno un potenziale di riferimento comune (massa di riferimento M1 o M2). Per chiudere il circuito elettrico quando viene impiegata l'alimentazione 24 V interna, le masse di riferimento M1 / M2 sono collegate con la massa interna.

Se l'alimentazione non avviene tramite l'alimentatore 24 V interno (morsetto –X540), per prevenire un collegamento del potenziale è necessario rimuovere il ponticello tra le masse M1 e M oppure M2 e M. La massa esterna deve quindi essere collegata ai morsetti M1 e M2.

X520: 4 ingressi digitali

Tabella 4-12 Morsettiera X520

	Morsetto	Designazione 1)	Indicazioni tecniche	
	1	DI 0	Tensione: - 3 V 30 V	
	2	DI 1	Corrente assorbita tipica: 10 mA 24 V	
Щω	3	DI 2	Con separazione di potenziale: il potenziale di riferimento è il morsetto M1	
₽.	4	DI 3	Livello:	
₩S	5	M1	- Livello High: 15 V 30 V	
	6	M	- Livello Low: -3 V 5 V	

1) DI: ingresso digitale; M1: massa di riferimento; M: massa elettronica

Sezione max. collegabile: 1,5 mm² (AWG 14)

Nota

Un ingresso aperto viene interpretato come "Low".

Per il funzionamento degli ingressi digitali è necessario collegare il morsetto M1. Esistono le seguenti possibilità:

- 1. La massa di riferimento degli ingressi digitali, oppure
- 2. un ponticello con il morsetto M (Attenzione! In questo modo viene meno la separazione del potenziale degli ingressi digitali).

4.9 Collegamenti dei segnali

X530: 4 ingressi digitali

Tabella 4-13 Morsettiera X530

	Morsetto	Designazione 1)	Indicazioni tecniche		
	1	DI 4	Tensione: - 3 V 30 V		
	2	DI 5	Corrente assorbita tipica: 10 mA 24 V		
\square	3	DI 6	Con separazione di potenziale: il potenziale di riferimento è il morsetto M2		
₽ 4	4	DI 7	Livello:		
₩5	5 M2 - Livello High: 15 V 30 V		- Livello High: 15 V 30 V		
6		М	- Livello Low: -3 V 5 V		

1) DI: ingresso digitale; M2: massa di riferimento; M: massa elettronica

Sezione max. collegabile: 1,5 mm² (AWG 14)

Nota

Un ingresso aperto viene interpretato come "Low".

Per il funzionamento degli ingressi digitali è necessario collegare il morsetto M2. Esistono le seguenti possibilità:

- 1. La massa di riferimento degli ingressi digitali, oppure
- 2. un ponticello con il morsetto M (Attenzione! In questo modo viene meno la separazione del potenziale degli ingressi digitali).

X521: 2 ingressi analogici (ingressi differenziali)

Tabella 4-14 Morsettiera X521

	Morsetto	Designazione 1)	Indicazioni tecniche	
1	1	AI 0+	-10 V - +10 V, Ri = 70 kΩ	
2	2	AI 0-	+4 mA - +20 mA	
3 	3	Al 1+	-20 mA - +20 mA, Ri = 250 Ω	
*	4	AI 1-	0 mA - +20 mA (impostazione di fabbrica)	
	5	P10	+10 V ± 1 %, Imax 5 mA	
\square	6	М	Potenziale di riferimento per Al 0	
\sim	7	N10	-10 V ± 1 %, Imax 5 mA	
	8	М	Potenziale di riferimento per Al 1	

1) Al: ingresso analogico; P10/N10: tensione ausiliaria; M: Massa di riferimento

Sezione max. collegabile: 1,5 mm² (AWG 14)

CAUTELA

La corrente di ingresso degli ingressi analogici durante la misurazione della corrente non deve superare i 35 mA.

S5: Convertitore tensione/corrente AI0, AI1

Tabella 4-15 Convertitore tensione/corrente S5

Interruttore	Funzione	Indicazioni tecniche	
S5.0	Commutazione tensione/corrente Al0	V I S5.0 Tensione V I S5.1 Corrente	
S5.1	Commutazione tensione/corrente Al1	Tollololic V T con contents	

X522: 2 uscite analogiche, collegamento sensore temperatura

Tabella 4-16 Morsettiera X522

	Morsetto	Designazione 1)	Indicazioni tecniche
	1	AO 0 V+	-10 V - +10 V
	2	AO 0 rif.	+4 mA - +20 mA
ω Ξ	3	AO 0 A+	-20 mA - +20 mA
* -	4	AO 1 V+	0 mA - +20 mA
	5	AO 1 rif.	
~ 	6	AO 1 A+	
\square	7	KTY+	KTY84: 0200 °C
	8	KTY-	PTC: R _{PTC} ≤ 1,5 kΩ

1) AO: uscita analogica; KTY: collegamento sensore di temperatura

Sezione max. collegabile: 1,5 mm² (AWG 14)

X 540: tensione ausiliaria ingressi digitali

Tabella 4-17 Morsettiera X540

	Morsetto	Denominazione	Indicazioni tecniche
	1	P24	DC 24 V
12	2	P24	Imax = 150 mA (somma di tutti i morsetti P24)
l ^ω 🏻	3	P24	resistente al cortocircuito permanente
 	4	P24	
	5	P24	
	6	P24	
\mathbb{H}^{8}	7	P24	
	8	P24	

Sezione max. collegabile: 1,5 mm² (AWG 14)

X541: 4 ingressi/uscite digitali senza separazione di potenziale

Tabella 4-18 Morsettiera X541

	Morsetto	Designazione 1)	Indicazioni tecniche	
	1	P24	Come ingresso:	
	2	DI/DO 8	Tensione: -3 V a 30 V	
\square	3	DI/DO 9	Corrente assorbita tipica: 10 mA a DC 24 V	
4 5 6	4	DI/DO 10	Come uscita:	
	5	DI/DO 11	Corrente di carico max. per uscita: 20 mA	
	6	М	Le correnti globali delle quattro uscite sono limitate a 80 mA.	
			resistente al cortocircuito permanente	

1) DI/DO: ingresso/uscita digitale: M: Massa elettronica

Sezione max. collegabile: 1,5 mm² (AWG 14)

Nota

Un ingresso aperto viene interpretato come "Low".

Quando vengono collegati segnali DC 24 V generati esternamente, occorre collegare anche la massa.

CAUTELA

A causa della limitazione della somma delle correnti di uscita, è possibile che una sovracorrente o un cortocircuito in uno dei morsetti di uscita generino anche l'interruzione del segnale di un altro morsetto.

X542: 2 uscite a relè (contatti di scambio)

Tabella 4-19 Morsettiera X542

	Morsetto	Designazione 1)	Indicazioni tecniche	
	1	DO 0.NC	Corrente di carico max.: 8 A	
	2	DO 0.COM	Tensione di commutazione max.:	
Щω	3	DO 0.NO	AC 250 V, DC 30 V	
4 5 6	4	DO 1.NC	Potenza di commutazione max.: - con AC 250 V: 2000 VA	
	5	DO 1.COM	- con DC 30 V: 240 W (carico ohmico)	
	6	DO 1.NO	Carico minimo necessario: 20 mA	

¹⁾ NO: contatto normalmente aperto, NC: contatto normalmente chiuso, COM: contatto centrale

Sezione max. collegabile: 2,5 mm² (AWG 12)

Nota

Se le uscite a relè vengono collegate a AC 230 V, il Terminal Module deve essere collegato a terra con un ulteriore conduttore di protezione da 6 mm².

In base alla quantità di opzioni installate è necessario predisporre ulteriori collegamenti, quali ad es. filtro du/dt, contattore principale, filtro sinusoidale, collegamenti per utenze ausiliarie esterne, interruttore principale incl. fusibili e interruttori automatici, pulsante di arresto d'emergenza, illuminazione dell'armadio elettrico con presa Service, riscaldamento anticondensa, combinazioni di contattori di sicurezza (arresto d'emergenza), dispositivo di protezione del motore a termistore, unità di rilevamento per PT100, dispositivo di sorveglianza dell'isolamento, analisi encoder e opzione NAMUR.

Informazioni dettagliate sul collegamento di queste opzioni con le interfacce sono contenute nella sezione "Istruzioni per l'uso aggiuntive" nella cartella della documentazione.

4.10.1 Filtro du/dt con Voltage Peak Limiter (opzione L10)

Descrizione

I filtro du/dt con VPL (Voltage Peak Limiter) è costituito da due componenti: la reattanza du/dt e il limitatore di tensione (Voltage Peak Limiter) che taglia i picchi di tensione e recupera energia nel circuito intermedio.

I filtri du/dt con VPL si devono utilizzare per i motori con una rigidità dielettrica del sistema di isolamento sconosciuta o non sufficiente. I motori standard della serie 1LA5, 1LA6 e 1LA8 hanno bisogno del filtro solo con tensioni di collegamento > 500 V +10 %.

I filtri du/dt con VPL limitano la velocità di incremento della tensione su valori < 500 V/μs e i tipici picchi di tensione sui seguenti valori (con lunghezze dei cavi motore < 150 m):

- < 1000 V con U_{rete} < 575 V
- < 1250 V a 660 V < U_{rete} < 690 V.

In base alla potenza del convertitore l'opzione L10 può essere sistemata nel convertitore in armadio oppure in un armadio supplementare largo 400 mm.

Tabella 4-20 Installazione del limitatore di tensione di rete nell'apparecchio in armadio o in un armadio supplementare

Campo di tensione	Montaggio del filtro du/dt con VPL all'interno del convertitore in armadio	Montaggio del limitatore di tensione (VPL) in un armadio supplementare
3 AC 380 V 480 V	6SL3710-1GE32-1AA0 6SL3710-1GE32-6AA0 6SL3710-1GE33-1AA0 6SL3710-1GE33-8AA0 6SL3710-1GE35-0AA0	6SL3710-1GE36-1AA0 6SL3710-1GE37-5AA0 6SL3710-1GE38-4AA0 6SL3710-1GE41-0AA0
3 AC 500 V 600 V	6SL3710-1GF31-8AA0 6SL3710-1GF32-2AA0 6SL3710-1GF32-6AA0 6SL3710-1GF33-3AA0	6SL3710-1GF34-1AA0 6SL3710-1GF34-7AA0 6SL3710-1GF35-8AA0 6SL3710-1GF37-4AA0 6SL3710-1GF38-1AA0

Campo di tensione	Montaggio del filtro du/dt con VPL all'interno del convertitore in armadio	Montaggio del limitatore di tensione (VPL) in un armadio supplementare
3 AC 660 V 690 V	6SL3710-1GH28-5AA0 6SL3710-1GH31-0AA0 6SL3710-1GH31-2AA0 6SL3710-1GH31-5AA0 6SL3710-1GH31-8AA0 6SL3710-1GH32-2AA0 6SL3710-1GH32-6AA0 6SL3710-1GH33-3AA0	6SL3710-1GH34-1AA0 6SL3710-1GH34-7AA0 6SL3710-1GH35-8AA0 6SL3710-1GH37-4AA0 6SL3710-1GH38-1AA0

Limitazioni

Se si utilizza un filtro du/dt con VPL, vanno tenute presenti le seguenti limitazioni:

- La frequenza di uscita è limitata a max. 150 Hz.
- Le lunghezze massime ammesse per i cavi del motore sono:
 - cavo schermato: max. 300 m
 - cavo non schermato: max. 450 m

Messa in servizio

Durante la messa in servizio il filtro du/dt con VPL deve essere dichiarato con STARTER o con il pannello operativo AOP30 (p0230 = 2).

Nota

Al ripristino delle impostazioni di fabbrica il parametro p0230 viene azzerato. Alla successiva messa in servizio occorre impostare nuovamente il parametro.

4.10.2 Contattore principale (opzione L13)

Descrizione

L'apparecchio SINAMICS G150 normalmente non è provvisto di contattore di rete. Se per la separazione dall'alimentazione si desidera inserire un elemento di commutazione (necessario per l'arresto di emergenza), va impiegata l'opzione L13 (contattore principale). L'attivazione e l'alimentazione del contattore avvengono all'interno dell'armadio.

Collegamento

Tabella 4-21 Morsettiera X50 – Contatto di segnalazione "Contattore principale chiuso"

Morsetto	Designazione 1)	Indicazioni tecniche		
4	NO	Corrente di carico max.: 10 A		
5	NC	Tensione di commutazione max.: AC 250 V		
6	COM	Potere d'interruzione max.: 250 VA		
		Carico minimo necessario: ≥1 mA		

¹⁾ NO: contatto normalmente aperto, NC: contatto normalmente chiuso, COM: contatto centrale

Sezione max. collegabile: 4 mm² (AWG 10)

4.10.3 Filtro sinusoidale (opzione L15)

Descrizione

Il filtro sinusoidale limita la transconduttanza della tensione e le correnti di carica capacitive che si presentano normalmente durante il funzionamento del convertitore. Elimina inoltre il rumore addizionale generato dalla frequenza impulsi. La durata del motore raggiunge i valori tipici del funzionamento di rete diretto.

CAUTELA

Se al convertitore è collegato un filtro sinusoidale, quest'ultimo deve essere necessariamente attivato alla messa in servizio, perché altrimenti il filtro rischia di essere danneggiato irrimediabilmente (vedere la sezione Messa in servizio)!

Limitazioni

Se si utilizza un filtro sinusoidale vanno tenute presenti le seguenti limitazioni:

- La frequenza di uscita massima è limitata a 115 Hz (con 500 600 V) o 150 Hz (con 380 480 V).
- Il tipo di modulazione è impostato fisso a modulazione vettoriale nello spazio senza sovracomando. In questo modo la tensione di uscita massima si riduce a circa 85 % della tensione nominale di uscita.

• Le lunghezze massime ammesse per i cavi del motore sono:

- cavo non schermato: max. 150 m

- cavo schermato: max. 100 m

 Alla messa in servizio, la frequenza impulsi viene aumentata al doppio della frequenza impulsi impostata in fabbrica. Ciò attiva un derating di corrente che deve essere applicato alle correnti specificate nei dati tecnici relative agli apparecchi in armadio.

Nota

Se non si può parametrizzare un filtro (p0230 ± 3), significa che per l'apparecchio in armadio il filtro non è previsto. In questo caso non si può far funzionare l'apparecchio in armadio con il filtro sinusoidale.

Tabella 4-22 Dati tecnici in caso di utilizzo di filtri sinusoidali per SINAMICS G150

N. d'ordinazione SINAMICS G150	Tensione [V]	Frequenza impulsi [kHz]	Corrente di uscita [A] ^{1).}
6SL3710-1GE32-1AA0	3 AC 380 – 480	4	172 A
6SL3710-1GE32-6AA0	3 AC 380 – 480	4	216 A
6SL3710-1GE33-1AA0	3 AC 380 – 480	4	273 A
6SL3710-1GE33-8AA0	3 AC 380 – 480	4	331 A
6SL3710-1GE35-0AA0	3 AC 380 – 480	4	382 A
6SL3710-1GF31-8AA0	3 AC 500 – 600	2,5	152 A
6SL3710-1GF32-2AA0	3 AC 500 – 600	2,5	187 A

¹⁾ I valori valgono per il funzionamento con filtro sinusoidale e non corrispondono alla corrente nominale indicata sulla targhetta

Messa in servizio

Alla messa in servizio mediante STARTER o AOP30, occorre attivare il filtro sinusoidale tramite le apposite finestre di selezione o di dialogo; vedere la sezione "Messa in servizio".

I seguenti parametri vengono modificati automaticamente durante la messa in servizio.

Tabella 4-23 Impostazioni dei parametri in caso di utilizzo di filtri sinusoidali per SINAMICS G150

Parametri	Nome	Impostazione
p0233	Parte di potenza bobina motore	Induttanza filtro
p0234	Parte di potenza, capacità filtro sinusoidale	Capacità filtro
p0290	Parte di potenza, reazione al sovraccarico	Blocco riduzione della frequenza impulsi
p1082	Numero di giri max.	Fmax filtro / n. coppie di poli
p1800	Frequenza impulsi	Frequenza impulsi nominale del filtro (vedere la tabella precedente)
p1802	Modalità modulatore	Modulazione vettoriale nello spazio senza sovracomando

Nota

Al ripristino delle impostazioni di fabbrica il parametro p0230 viene azzerato. Alla successiva messa in servizio occorre impostare nuovamente il parametro.

4.10.4 Collegamento per utenze ausiliarie esterne (opzione L19)

Descrizione

Questa opzione comprende un'uscita protetta con max. 10 A per le utenze ausiliarie esterne (ad es. ventilatore esterno del motore). La tensione viene prelevata all'ingresso del convertitore a monte del contattore principale/interruttore automatico e corrisponde quindi al livello della tensione di allacciamento. Il collegamento dell'uscita può avvenire internamente al convertitore o dall'esterno.

Collegamento

Tabella 4-24 Blocco morsetti X155 - Collegamento per utenze ausiliarie esterne

Morsetto	Denominazione	Indicazioni tecniche
1	L1	3 AC 380 - 480 V
2	L2	3 AC 500 - 600 V
3	L3	3 AC 660 - 690 V
11	Comando contattore	AC 230 V
12		
13	Segnalazione	AC 230 V / 0,5 A
14	interruttore automatico	DC 24 V / 2 A
15	Segnalazione	AC 240 V / 6 A
16	contattore	
PE	PE	PE

Sezione max. collegabile: 4 mm² (AWG 10)

Nota

Il collegamento per utenze ausiliarie esterne deve essere impostato sull'utenza collegata (-Q155).

Collegamento consigliato per l'attivazione del contattore principale all'interno del convertitore

Se l'attivazione del contattore ausiliario deve avvenire all'interno del convertitore, ciò può essere ottenuto ad es. con il seguente collegamento. La segnalazione "Funzionamento" in tal caso non è più disponibile per altri impieghi.

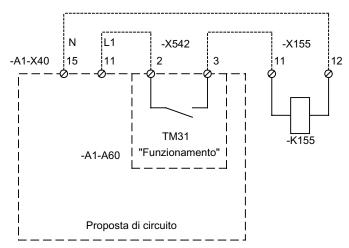


Figura 4-8 Collegamento consigliato per l'attivazione del contattore principale all'interno del convertitore

Nota

Se le uscite dei relè vengono collegate a AC 230 V, la morsettiera utente deve essere collegata a terra con un ulteriore conduttore di protezione da 6 mm².

4.10.5 Interruttore principale incl. fusibili o interruttore automatico (opzione L26)

Descrizione

Fino a 800 A come interruttore principale viene utilizzato un sezionatore sottocarico con fusibili. Per correnti superiori a 800 A l'interruttore automatico presente nella dotazione standard assume la funzione di disinserzione della tensione. L'attivazione e l'alimentazione dell'interruttore automatico avvengono all'interno del convertitore.

Collegamento

Tabella 4-25 Morsettiera X50 – Contatto di segnalazione "Contattore principale/interruttore automatico chiuso"

Morsetto	Designazione 1) Indicazioni tecniche		
1	NO	Corrente di carico max.: 10 A	
2	NC	Tensione di commutazione max.: AC 250 V	
3	COM	Potere d'interruzione max.: 250 VA	
		Carico minimo necessario: ≥ 1mA	

¹⁾ NO: contatto normalmente aperto, NC: contatto normalmente chiuso, COM: contatto centrale

Sezione max. collegabile: 4 mm² (AWG 10)

PERICOLO

Con correnti superiori a 800 A e con la tensione di rete allacciata, nell'apparecchio in armadio permangono tensioni pericolose anche con l'interruttore automatico disinserito. Tutti gli interventi sull'apparecchio in armadio devono essere eseguiti con il dispositivo di protezione a monte in assenza di tensione.

4.10.6 Pulsante di arresto d'emergenza (opzione L45)

Descrizione

Il pulsante di arresto d'emergenza con cappuccio di protezione è integrato nella porta dell'armadio elettrico e i suoi contatti sono collegati con la morsettiera –X120. In combinazione con le opzioni L57, L59, L60 possono essere attivate le funzioni di arresto d'emergenza della categoria 0 o 1.

Per poter rispettare i tempi di arresto richiesti potrebbe essere necessario l'impiego di un'unità di frenatura.

Nota

Come previsto dalla norma EN 60204-1 (VDE 0113), azionando il pulsante di arresto d'emergenza, il motore viene arrestato e la tensione principale scollegata dal motore. Le tensioni ausiliarie, come l'alimentazione del ventilatore esterno o il riscaldamento anticondensa, possono continuare ad essere applicate. Continuano ad essere sotto tensione anche determinate zone all'interno del convertitore come la regolazione ed eventuali utenze esterne. Se è necessaria la disinserzione completa di tutte le tensioni, il pulsante di arresto d'emergenza deve essere combinato con un dispositivo di protezione da prevedere sul lato impianto. A questo scopo è disponibile un contatto normalmente chiuso sul morsetto -X120.

Collegamento

Tabella 4-26 Blocco morsetti X120 - Contatto di segnalazione "Pulsante d'emergenza nella porta dell'armadio"

Morsetto	Designazione 1) Indicazioni tecniche		
1	NC	Contatti di segnalazione del pulsante d'emergenza nella porta	
2	NC	dell'armadio	
3	NC ²⁾	Corrente di carico max.: 10 A	
4	NC ²⁾	Tensione di commutazione max.: AC 250 V	
	- 	Potere d'interruzione max.: 250 VA	
	<u> </u>	Carico minimo necessario: ≥1 mA	

¹⁾ NC: Contatto normalmente chiuso

Sezione max. collegabile: 4 mm² (AWG 10)

²⁾ Nell'opzione L57, L59, L60 preimpostati all'interno del convertitore

4.10.7 Illuminazione armadio con presa di servizio (opzione L50)

Descrizione

In ogni pannello dell'armadio è montata una lampada universale con presa di servizio integrata. L'alimentazione dell'illuminazione dell'armadio, presa inclusa, avviene dall'esterno e va protetta con max. 10 A. L'accensione dell'illuminazione dell'armadio avviene manualmente tramite un cursore o automaticamente tramite un segnalatore di movimento integrato (impostazione di fabbrica). La modalità operativa viene determinata tramite l'interruttore sulla lampada.

Collegamento

Tabella 4-27 Blocco morsetti X390 – Collegamento per illuminazione armadio con presa di servizio

Morsetto	Denominazione	Indicazioni tecniche
1	L1	
2	N	AC 230 V
3	PE	

Sezione max. collegabile: 4 mm² (AWG 10)

4.10.8 Riscaldamento anticondensa in armadio (opzione L55)

Descrizione

Il riscaldamento in stato di fermo viene utilizzato in presenza di temperatura ambiente bassa e umidità dell'aria elevata per prevenire la formazione di acqua di condensa.

Nei pannelli da 400 mm e 600 mm viene montato un riscaldatore da 100 W, nei pannelli da 800/1000 e 1200 mm vengono montati due riscaldatori da 100 W ciascuno. La tensione di alimentazione (AC 110 V – 230 V) deve essere prelevata dall'esterno e protetta con max. 16 A

PERICOLO

Con l'alimentazione di tensione collegata per il riscaldamento anticondensa dell'armadio, nell'apparecchio è comunque presente una tensione pericolosa anche se l'interruttore principale è disinserito.

Collegamento

Tabella 4-28 Blocco morsetti X240 - Collegamento per riscaldamento anticondensa in armadio

Morsetto	Denominazione	Indicazioni tecniche
1	L1	AC 110 V – 230 V
2	N	Alimentazione di tensione
3	PE	Conduttore di protezione

Sezione max. collegabile: 4 mm² (AWG 10)

4.10.9 Arresto d'emergenza categoria 0; AC 230 V opp. DC 24 V (opzione L57)

Descrizione

Arresto di emergenza categoria 0 per l'arresto non controllato secondo EN 60204. La funzione comprende la disinserzione e lo scollegamento dalla tensione dell'apparecchio in armadio tramite il contattore di rete con esclusione dell'elettronica mediante una combinazione di sicurezza secondo EN 60204-1. Il motore si ferma per inerzia. Affinché il contattore principale non si attivi sotto carico, interviene contemporaneamente anche un OFF2. Tre LED (-A120) segnalano lo stato operativo e la funzione.

Nell'impostazione di fabbrica, l'esecuzione è impostata con circuito del pulsante in AC 230 V.

Nota

Come previsto dalla norma EN 60204-1 (VDE 0113), azionando il pulsante di arresto d'emergenza, il motore viene arrestato in modo non controllato e la tensione principale viene scollegata dal motore. Le tensioni ausiliarie, come l'alimentazione del ventilatore esterno o il riscaldamento anticondensa, possono continuare ad essere applicate. Continuano ad essere sotto tensione anche determinate zone all'interno del convertitore come la regolazione ed eventuali utenze esterne. Se è necessaria la disinserzione completa di tutte le tensioni, il pulsante di arresto d'emergenza deve essere combinato con un dispositivo di protezione da prevedere sul lato impianto. A questo scopo è disponibile un contatto normalmente chiuso sul morsetto -X120.

Collegamento

Tabella 4-29 Blocco morsetti X120 – Collegamento per arresto d'emergenza categoria 0, AC 230 V e DC 24 V

Morsetto	Circuito pulsante AC 230 V e DC 24 V	
7	Collegamento dei pulsanti d'emergenza sul lato impianto,	
8	rimuovere il ponticello 7-8!	
15	"ON" per start controllato:	
16	rimuovere il ponticello 15–16 e collegare il pulsante	
17	Segnalazione "Attivazione della combinazione di sicurezza"	
18		

Sezione max. collegabile: 4 mm² (AWG 10)

Richiusura sul circuito del pulsante DC 24 V

Se si utilizza il circuito del pulsante a DC 24 V devono essere rimossi i seguenti ponticelli sul blocco morsetti X120:

• ponticello 4-5, ponticello 9-10, ponticello 11-14

Inoltre devono essere eseguiti i seguenti ponticelli sul blocco morsetti X120:

ponticello 4-11, ponticello 5-10, ponticello 9-14

Diagnostica

I messaggi emessi durante il funzionamento e in caso di anomalia (significato dei LED su - A120) sono descritti nelle Istruzioni operative nella sezione "Istruzioni operative aggiuntive".

4.10.10 Arresto d'emergenza categoria 1; AC 230 V (opzione L59)

Descrizione

Arresto d'emergenza di categoria 1 per l'arresto controllato secondo EN 60 204. La funzione comprende l'arresto dell'azionamento tramite arresto rapido con una rampa di decelerazione parametrizzabile. Al termine avviene lo scollegamento dalla tensione dell'apparecchio tramite il contattore di rete bypassando l'elettronica tramite una combinazione di fusibili secondo EN 60 204-1.

In totale otto LED (-A120, -A121) segnalano lo stato operativo e il funzionamento.

Collegamento

Tabella 4-30 Blocco morsetti X120 - Collegamento per arresto d'emergenza categoria 1 (AC 230 V)

Morsetto	Indicazioni tecniche		
7	Collegamento dei pulsanti d'emergenza sul lato impianto,		
8	rimuovere il ponticello 7-8!		
15	"ON" per start controllato:		
16	rimuovere il ponticello 15–16 e collegare il pulsante		
17	Segnalazione "Attivazione della combinazione di sicurezza"		
18			

Sezione max. collegabile: 4 mm² (AWG 10)

Impostazione

Il tempo di decelerazione dell'azionamento per il fermo tramite arresto rapido (tempo di decelerazione OFF3, p1135) dovrebbe essere inferiore (o al massimo uguale) al tempo impostato sulla combinazione di sicurezza a contattori dopo il quale il convertitore viene scollegato dalla tensione.

Diagnostica

I messaggi emessi durante il funzionamento e in caso di anomalia (significato dei LED su - A120, -A121) sono descritti nelle Istruzioni operative nella sezione "Istruzioni operative aggiuntive".

4.10.11 Arresto d'emergenza categoria 1; DC 24 V (opzione L60)

Descrizione

Arresto d'emergenza di categoria 1 per l'arresto controllato secondo EN 60 204. La funzione comprende l'arresto dell'azionamento tramite arresto rapido con una rampa di decelerazione parametrizzabile. Al termine avviene lo scollegamento dalla tensione dell'apparecchio tramite il contattore di rete bypassando l'elettronica tramite una combinazione di fusibili secondo EN 60 204-1.

Cinque LED (-A120) segnalano lo stato operativo e il funzionamento.

Collegamento

Tabella 4-31 Blocco morsetti X120 - Collegamento per arresto d'emergenza categoria 1 (DC 24 V)

Morsetto	Indicazioni tecniche
7	Collegamento dei pulsanti d'emergenza sul lato impianto,
8	rimuovere il ponticello 7-8!
15	"ON" per start controllato:
16	rimuovere il ponticello 15–16 e collegare il pulsante
17	Segnalazione "Attivazione della combinazione di sicurezza"
18	

Sezione max. collegabile: 4 mm² (AWG 10)

Impostazione

Il tempo di decelerazione dell'azionamento per il fermo tramite arresto rapido (tempo di decelerazione OFF3, p1135) dovrebbe essere inferiore (o al massimo uguale) al tempo impostato sulla combinazione di sicurezza a contattori dopo il quale il convertitore viene scollegato dalla tensione.

Diagnostica

I messaggi emessi durante il funzionamento e in caso di anomalia (significato dei LED su - A120) sono descritti nelle Istruzioni operative nella sezione "Istruzioni operative aggiuntive".

4.10.12 Unità di frenatura 25 kW (opzione L61); unità di frenatura 50 kW (opzione L62)

Descrizione

Le unità di frenatura vengono utilizzate quando è presente sporadicamente e per brevi periodi un'energia generatoria, ad es. in caso di frenatura dell'azionamento (arresto di emergenza) Le unità di frenatura sono costituite da una parte di potenza chopper e da una resistenza di carico da montare esternamente. Per scopi di sorveglianza, nella resistenza di frenatura è previsto un interruttore termico, che viene integrato nel circuito di disinserzione dell'apparecchio.

Tabella 4-32 Dati di carico delle unità di frenatura

Tensione di rete	Potenza continuativa chopper PDB	Potenza di picco chopper P ₁₅	Chopper P ₂₀ -Potenza P ₂₀	Chopper P ₄₀ -Potenza P ₄₀	Resistenza di frenatura R _B	Corrente max.
380 V – 480 V	25 kW	125 kW	100 kW	50 kW	4,4 Ω ± 7,5 %	189 A
380 V – 480 V	50 kW	250 kW	200 kW	100 kW	2,2 Ω ± 7,5 %	378 A
500 V – 600 V	50 kW	250 kW	200 kW	100 kW	3,4 Ω ± 7,5 %	306 A
660 V – 690 V	25 kW	125 kW	100 kW	50 kW	9,8 Ω ± 7,5 %	127 A
660 V – 690 V	50 kW	250 kW	200 kW	100 kW	4,9 Ω ± 7,5 %	255 A

Montaggio della resistenza di frenatura

La resistenza di frenatura dovrebbe essere installata all'esterno del convertitore. Il luogo di installazione deve soddisfare le seguenti condizioni:

- Le resistenze di frenatura sono idonee esclusivamente per il montaggio a terra.
- La lunghezza massima dei cavi tra l'armadio elettrico e la resistenza di frenatura deve essere di 50 m.
- L'ambiente deve essere in grado di scaricare l'energia convertita dalla resistenza di frenatura.
- Mantenere una distanza sufficiente da eventuali oggetti infiammabili.
- Installare la resistenza di frenatura in modo non vincolato.
- Non collocare alcun oggetto sopra la resistenza di frenatura.
- Non installare la resistenza di frenatura sotto sensori antincendio; questi potrebbero essere attivati dal calore prodotto dalla resistenza.
- In caso di installazione all'aperto, a causa del grado di protezione IP20, è necesario prevedere una copertura di protezione contro le precipitazioni atmosferiche.

CAUTELA

Prevedere degli spazi di ventilazione di 200 mm con griglie di ventilazione su tutti i lati della resistenza di frenatura.

Tabella 4-33 Misure delle resistenze di frenatura

	Unità	Resistenza 25 kW (opzione L61)	Resistenza 50 kW (opzione L62)
Lunghezza	mm	740	810
Larghezza	mm	485	485
Altezza	mm	605	1325

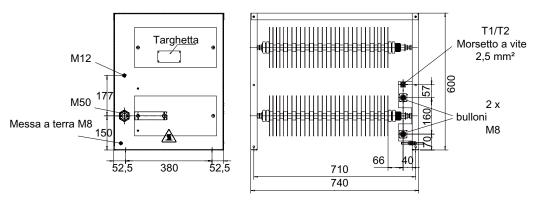


Figura 4-9 Disegno quotato della resistenza di frenatura a 25 kW

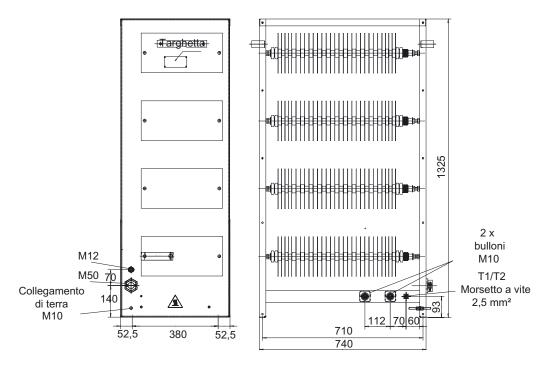


Figura 4-10 Disegno quotato della resistenza di frenatura a 50 kW

Collegamento della resistenza di frenatura

/!\AVVERTENZA

Il collegamento dei connettori al blocco morsetti -X5 dell'armadio elettrico è possibile solo con l'armadio elettrico disinserito e i condensatori del circuito intermedio scaricati.

CAUTELA

I cavi verso la resistenza di frenatura devono essere posati con le adeguate protezioni contro il cortocircuito e la dispersione verso terra!

La lunghezza dei cavi di collegamento tra apparecchio e resistenza di frenatura esterna deve essere al massimo di 50 m.

Tabella 4-34 Blocco morsetti -X5 - Collegamento per resistenza di frenatura esterna

Morsetto	Descrizione della funzione		
1	Connettore resistenza di frenatura		
2	Connettore resistenza di frenatura		

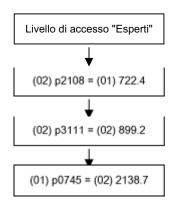
Sezione max. collegabile: 70 mm² (AWG 2/0)

Le sezioni consigliate sono:

• per L61 (25 kW): 35 mm² (AWG 1)

• per L62 (50 kW): 50 mm² (AWG 1/0)

Tabella 4-35 Collegamento dell'interruttore termico della resistenza di frenatura esterna nel circuito di sorveglianza dell'apparecchio in armadio


Morsetto	Descrizione della funzione		
T1	Collegamento interruttore termico: con morsetto X541:1 (P24 V)		
T2	Collegamento interruttore termico: con morsetto X541:5 (DI11)		

Sezione max. collegata (a causa di TM31): 1,5 mm² (AWG 14)

Messa in servizio

Per la messa in servizio tramite STARTER, dopo la selezione dell'opzione L61 o L62 vengono eseguite automaticamente la parametrizzazione dell'anomalia esterna 3 e la tacitazione.

Nella messa in servizio mediante AOP30 i parametri necessari devono essere impostati successivamente.

Impostare il livello di accesso Esperti sul pannello operativo <tasto chiave> - - chivello di accesso> - impostare "Esperti" e scegliere "Applica".

Interconnettere l'ingresso digitale 4 (DI4) della CU320 sul primo ingresso dell'anomalia esterna 3.

Interconnettere il segnale "Funzionamento" sul secondo ingresso dell'anomalia esterna 3.

Interconnettere il segnale "Tacitazione anomalia" sull'ingresso digitale 15 (DO15) della CU320.

Impostazioni sull'apparecchio

Se l'interruttore termico della resistenza di frenatura è collegato all'ingresso digitale 11, è necessario eseguire ancora alcune impostazioni affinché l'azionamento venga arrestato in caso di errore.

Dopo la messa in servizio occorre apportare le seguenti modifiche:

Impostare il livello di accesso Esperti sul pannello operativo <tasto chiave> - - chivello di accesso> - impostare "Esperti" e scegliere "Applica".

Interconnettere l'anomalia esterna 2 su DI 11 del TM31

Blocco regolatore Vdc-max

Nel funzionamento con chopper di frenatura il regolatore Vdc-max deve essere disinserito.

Diagnostica

Se sulla resistenza di frenatura interviene l'interruttore termico a causa di sovraccarico termico, viene segnalata l'anomalia F7861 "Anomalia esterna 2" e l'azionamento viene disinserito con OFF2.

In caso di errore nel chopper di frenatura, nell'azionamento viene segnalata l'anomalia F7862 "anomalia esterna 3".

Un'anomalia dell'unità di frenatura può essere tacitata premendo il pulsante di tacitazione sul pannello operativo (se è presente la tensione del circuito intermedio).

Cicli di carico

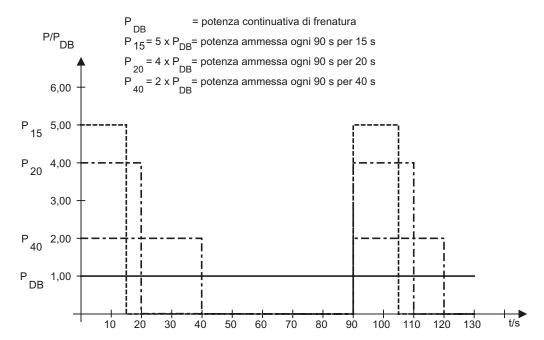


Figura 4-11 Cicli di carico per resistenze di frenatura

Interruttore del valore di soglia

La soglia di intervento per l'attivazione dell'unità di frenatura e per la conseguente tensione del circuito intermedio in caso di funzionamento di frenatura è riportata nella tabella seguente.

L'interruttore del valore di soglia può essere commutato solo con l'armadio elettrico disinserito e i condensatori del circuito intermedio scaricati.

Tabella 4-36 Soglie di intervento delle unità di frenatura

Tensione nominale	Soglia di intervento	Posizione interruttore	Osservazioni	
380 V – 480 V	673 V	1	774 V è l'impostazione di fabbrica. Per ridurre la sollecitazione di tensione	
	774 V	2	di motore e convertitore, in caso di tensioni di rete comprese tra 380 V e 400 V è possibile impostare la soglia di intervento a 673 V. In questo modo, però, anche la potenza di frenatura raggiungibile diminuisce con il quadrato della tensione (673/774) ² = 0,75.	
			La potenza di frenatura disponibile ammonta quindi al massimo al 75 %.	
500 V – 600 V	841 V	1	967 V è l'impostazione di fabbrica. Per ridurre la sollecitazione di tension di motore e convertitore, in caso di tensione di rete di 500 V è possibile impostare la soglia di intervento a 841 V. In questo modo, però, anche la potenza di frenatura raggiungibile diminuisce con il quadrato della tensio (841/967)² = 0,75.	
	967 V	2		
			La potenza di frenatura disponibile ammonta quindi al massimo al 75 %.	
660 V – 690 V	1070 V	1	1158 V è l'impostazione di fabbrica. Per ridurre la sollecitazione di tensione	
	1158 V	2	di motore e convertitore, in caso di tensione di rete di 660 V è possibile impostare la soglia di intervento a 1070 V. In questo modo, però, anche la potenza di frenatura raggiungibile diminuisce con il quadrato della tensione (1070/1158)² = 0,85.	
			La potenza di frenatura disponibile ammonta quindi al massimo al 85 %.	

4.10.13 Dispositivo di protezione del motore a termistore (opzione L83/L84)

Descrizione

L'opzione contiene un dispositivo di protezione del motore (con omologazione PTB) per sensori di temperatura a termistori (resistenze PTC di tipo A) per l'avviso o la disinserzione. L'alimentazione del dispositivo di protezione del motore a termistori e la rilevazione sono interne al convertitore.

Con l'opzione L83 in caso di errore viene segnalato un "avviso esterno 1" (A7850).

Con l'opzione L84 in caso di errore viene segnalata una "anomalia esterna 1" (F7860).

Collegamento

Tabella 4-37 F127/F125 – Collegamento per dispositivo di protezione motore a termistore

Targhetta di identificazione apparecchio	Descrizione della funzione
-F127:T1,T2	Protezione motore a termistore (avviso)
-F125: T1, T2	Protezione motore a termistore (disinserzione)

Il sensore di temperatura a termistori viene collegato direttamente ai morsetti T1 e T2 dell'unità di rilevamento.

Tabella 4-38 Massima lunghezza dei conduttori del circuito dei sensori

Sezione del cavo in mm²	Lunghezza del cavo in m
2,5	2 x 2800
1,5	2 x 1500
0,5	2 x 500

Diagnostica

I messaggi emessi durante il funzionamento e in caso di anomalia (significato dei LED su -F125, -F127) sono descritti nelle istruzioni operative nella sezione "Istruzioni per l'uso aggiuntive".

4.10.14 Unità di rilevamento per PT100 (opzione L86)

Descrizione

Nota

La descrizione dell'unità di rilevamento per PT100 e della parametrizzazione dei canali di misura è contenuta nella sezione "Istruzioni per l'uso aggiuntive".

L'unità di rilevamento per PT100 può sorvegliare fino a 6 sensori. I sensori possono essere collegati in tecnica a due o tre fili. Nella tecnica a due fili vanno occupati gli ingressi Tx1 e Tx3. Nella tecnica a tre fili va collegato anche l'ingresso Tx2 (x = 1, 2, ...6). I valori limite per ciascun canale sono liberamente programmabili. Si consiglia l'uso di cavi segnale schermati. Se ciò non fosse possibile, i cavi dei sensori dovrebbero essere almeno intrecciati a coppie.

Nelle impostazioni di fabbrica, i canali di misura sono suddivisi in due gruppi da 3 canali ciascuno. Ciò consente di sorvegliare, ad es. nei motori, tre PT100 negli avvolgimenti dello statore e due PT100 nei cuscinetti motore. I canali non utilizzati possono essere disattivati mediante dei parametri.

I relè di uscita sono integrati nella sequenza di anomalie e avvisi dell'apparecchio. Due relè di segnalazione allarmi esterni consentono la visualizzazione dei messaggi anche da parte dell'utente. Sono inoltre disponibili due uscite analogiche liberamente programmabili (0/4 - 20 mA e 0/2 - 10 V) per l'integrazione in un controllo sovraordinato. L'alimentazione di tensione dell'unità di rilevamento per PT100 e la valutazione avvengono all'interno del convertitore.

In caso di errore viene segnalato un "avviso esterno 1" (A7850) o una "anomalia esterna 1" (F7860).

Collegamento

Tabella 4-39 Blocco morsetti -A1-A140 – Collegamento per le resistenze PT100 dell'unità di rilevamento

Morsetto	Denominazion e	Indicazioni tecniche
T11-T13		AC/DC 90 – 240 V; PT100; sensore 1; gruppo 1
T21-T23		AC/DC 90 – 240 V; PT100; sensore 2; gruppo 1
T31-T33		AC/DC 90 – 240 V; PT100; sensore 3; gruppo 1
T41-T43		AC/DC 90 – 240 V; PT100; sensore 1; gruppo 2
T51-T53		AC/DC 90 – 240 V; PT100; sensore 2; gruppo 2
T61-T63		AC/DC 90 – 240 V; PT100; sensore 3; gruppo 2
51/52/54		AC/DC 90 – 240 V Uscita del relè - valore limite gruppo 1 raggiunto; (contatto di commutazione)
61/62/64		AC/DC 90 – 240 V Uscita del relè - valore limite gruppo 2 raggiunto; (contatto di commutazione)
Massa _	OUT 1	0/4 – 20 mA
U1	OUT 1	0/2 – 10V
I1	OUT 1	Uscita analogica Out 1; sensore gruppo 1
Massa _	OUT 2	0/4 – 20 mA
U2	OUT 2	0/2 – 10V
12	OUT 2	Uscita analogica Out 2; sensore gruppo 2

Sezione max. collegabile: 2,5 mm² (AWG 12)

Diagnostica

I messaggi emessi durante il funzionamento e in caso di guasto (significato dei LED su -A140) sono descritti nelle istruzioni operative nella sezione "Istruzioni per l'uso aggiuntive".

4.10.15 Sorveglianza dell'isolamento (opzione L87)

Descrizione

L'apparecchio sorveglia il circuito collegato e completamente isolato galvanicamente ricercando anomalie d'isolamento. Vengono rilevati la resistenza d'isolamento e tutti gli errori d'isolamento nel circuito intermedio a corrente continua e sul lato motore dell'apparecchio in armadio. Possono essere impostati due valori d'intervento (compresi tra 1 k Ω ...10 M Ω). Se il valore d'intervento non viene raggiunto, viene emesso un allarme sul morsetto. Il relè di segnalazione Sistema emette un errore di sistema.

Dato che al momento della fornitura dell'apparecchio la struttura dell'impianto (una o più utenze collegate ad una rete senza separazione galvanica) e il principio di protezione (disinserzione immediata in caso di anomalie d'isolamento oppure funzionamento limitato) non sono noti, i relè di segnalazione del dispositivo di sorveglianza dell'isolamento non sono collegati con la catena degli avvisi e dei preavvisi. Se la struttura dell'impianto e il principio di protezione lo consentono, questi relè di uscita dovrebbero essere collegati con la sequenza di anomalie e avvisi dell'apparecchio.

Nota

Se si impiega il dispositivo di sorveglianza dell'isolamento, occorre rimuovere la staffa di collegamento del condensatore antidisturbi (vedere il capitolo "Rimozione della staffa di collegamento dal condensatore antidisturbi per il funzionamento nelle reti non collegate a terra").

ATTENZIONE

All'interno di una rete senza separazione galvanica può funzionare un unico dispositivo di sorveglianza ISO!

Collegamento

Tabella 4-40 Blocco morsetti A1-A101 - Collegamento per un dispositivo di sorveglianza dell'isolamento

Morsetto	Indicazioni tecniche		
11	Relè di segnalazione ALARM 1 (base)		
12	Relè di segnalazione ALARM 1 (contatto normalmente chiuso)		
14	Relè di segnalazione ALARM 1 (contatto normalmente aperto)		
21	Relè di segnalazione ALARM 2 (base)		
22	Relè di segnalazione ALARM 2 (contatto normalmente chiuso)		
24	Relè di segnalazione ALARM 2 (contatto normalmente aperto)		
M+	Segnalazione k Ω esterna, uscita analogica (0 μ A 400 μ A)		
M-	Segnalazione k Ω esterna, uscita analogica (0 μA 400 μA)		
R1	Tasto di cancellazione esterno (contatto normalmente chiuso o ponticello, altrimenti il messaggio di errore non viene memorizzato)		
R2	Tasto di cancellazione esterno (contatto normalmente chiuso o ponticello)		
T1	Tasto di prova esterno		
T2	Tasto di prova esterno		

Sezione max. collegabile: 2,5 mm² (AWG 12)

Diagnostica

I messaggi emessi durante il funzionamento e in caso di anomalie (significato dei LED su - A101) sono descritti nelle istruzioni operative nella sezione "Istruzioni per l'uso aggiuntive".

4.10.16 Communication Board Ethernet CBE20 (opzione G33)

Descrizione

Per la comunicazione via PROFINET viene impiegato il modulo di interfaccia CBE20.

Il modulo viene fornito in un pacchetto allegato fissato all'unità di regolazione CU320 e deve essere montato sull'apparecchio nello slot opzioni dell'unità di regolazione CU320.

Quest'unità dispone di 4 interfacce Ethernet; la diagnostica dello stato operativo e della comunicazione è segnalata tramite LED.

Panoramica delle interfacce

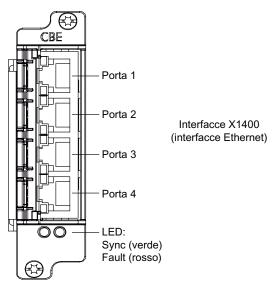


Figura 4-12 Communication Board Ethernet CBE20

Indirizzo MAC

L'indirizzo MAC delle interfacce Ethernet è riportato sul lato superiore del CBE20. La targhetta è visibile solo quando l'unità non è ancora stata montata.

Nota

Prima di montare il modulo, annotare l'indirizzo MAC, cosicché risulti disponibile alla successiva messa in servizio.

Interfaccia Ethernet X1400

Tabella 4-41 Connettore X1400, porta 1 - 4

	Pin	Nome del segnale	Indicazioni tecniche
	1	RX+	Dati ricevuti +
	2	RX-	Dati ricevuti -
	3	TX+	Dati inviati +
8	4		riservato, lasciare libero
1	5		riservato, lasciare libero
	6	TX-	Dati inviati -
	7		riservato, lasciare libero
	8		riservato, lasciare libero
	Collare dello schermo	M_EXT	Schermo fisso

Montaggio

CAUTELA

Una Option Board può essere inserita e disinserita soltanto con la Control Unit e l'Option Board in assenza di corrente.

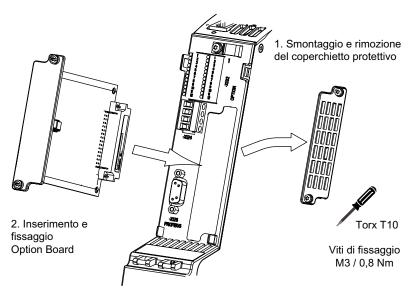


Figura 4-13 Montaggio CBE20

4.10.17 Modulo encoder SMC30 per il rilevamento del numero di giri attuale del motore (opzione K50)

4.10.17.1 Descrizione

Per rilevare il numero di giri attuale del motore viene utilizzato il modulo encoder SMC30. I segnali provenienti dall'encoder rotativo vengono convertiti e messi a disposizione della regolazione tramite l'interfaccia DRIVE-CLiQ per la relativa elaborazione.

Al modulo encoder SMC30 possono essere collegati i seguenti encoder:

- Encoder TTL
- Encoder HTL
- Sensore temperatura KTY o PTC

Tabella 4-42 Encoder collegabili con tensione di alimentazione

Tipo di encoder	Remote Sense	X520 (Sub D)	X521 (morsetto)	X531 (morsetto)	Sorveglianza rottura cavo
HTL bipolare 24 V	no	no	sì	sì	no
HTL unipolare 24 V	no	no	sì	sì	no
TTL bipolare 24 V	no	sì	sì	sì	sì
TTL bipolare 5 V	sul X520	sì	sì	sì	sì
TTL unipolare	no	no	no	no	no

Tabella 4-43 Lunghezze max. dei cavi dei segnali

Tipo di encoder	Lunghezza max. dei cavi dei segnali in m
TTL	100
HTL unipolare	100 m
HTL bipolare	300 m

Nota

Per ridurre gli effetti di disturbo negli encoder HTL si consiglia il collegamento bipolare.

Per gli encoder con alimentazione a 5 V su X521/X531 la lunghezza dei cavi dipende dalla corrente dell'encoder (vale per una sezione dei cavi di 0,5 mm²):

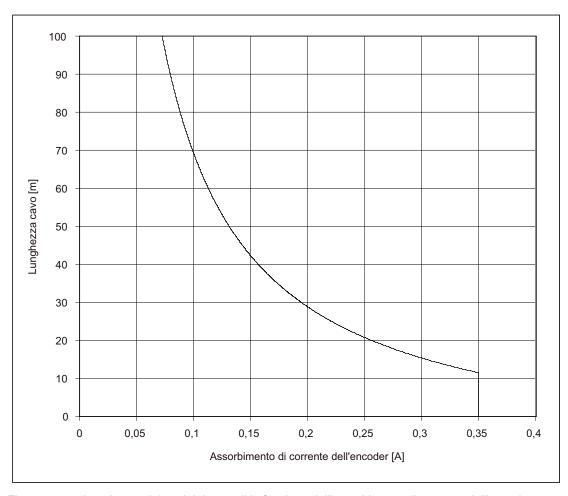


Figura 4-14 Lunghezza dei cavi dei segnali in funzione dell'assorbimento di corrente dell'encoder

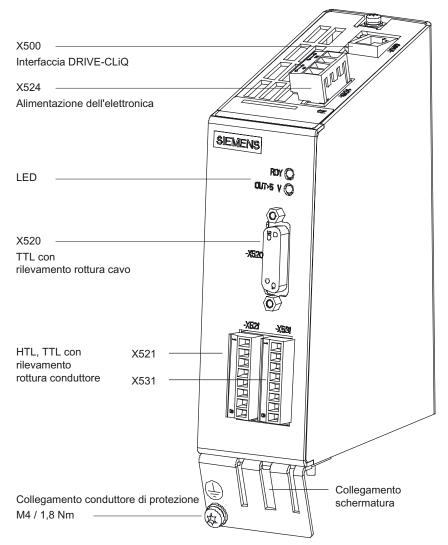


Figura 4-15 Modulo encoder SMC30

4.10.17.2 Collegamento

X520: collegamento encoder 1 per encoder TTL con rilevamento rottura cavo

Tabella 4-44 Collegamento encoder X520

	Pin	Nome del segnale	Indicazioni tecniche
	1	riservato, lasciare libero	
	2	riservato, lasciare libero	
(15.0	3	riservato, lasciare libero	
(15 O)	4	P_Encoder 5 V / 24 V	Alimentazione encoder
0 0 1	5	P_Encoder 5 V / 24 V	Alimentazione encoder
	6	P_Sense	Ingresso Sense alimentazione encoder
	7	M_Encoder (M)	Massa alimentazione encoder
0001	8	riservato, lasciare libero	
	9	M_Sense	Massa ingresso Sense
	10	R	Segnale di riferimento R
	11	R*	Segnale di riferimento inverso R
	12	B*	Segnale incrementale inverso B
	13	В	Segnale incrementale B
	14	A*	Segnale incrementale inverso A
	15	A	Segnale incrementale A

Tipo di connettore: presa a 15 poli

CAUTELA

L'alimentazione dell'encoder è parametrizzabile a 5 V o 24 V. Una parametrizzazione errata può danneggiare irreparabilmente l'encoder.

X521 / X531: collegamento encoder 2 per encoder HTL/TTL con rilevamento rottura cavo

Tabella 4-45 Collegamento encoder X521

	Morsetto	Nome del segnale	Indicazioni tecniche
	1	А	Segnale incrementale A
2	2	A*	Segnale incrementale inverso A
l ^ω 🎞	3	В	Segnale incrementale B
156	4	B*	Segnale incrementale inverso B
	5	R	Segnale di riferimento R
~ =	6	R*	Segnale di riferimento inverso R
\mathbb{H}^{8}	7	CTRL	Segnale di controllo
	8	М	Massa tramite un'induttanza

Sezione max. collegabile: 1,5 mm² (AWG 14)

Nota

Per il funzionamento degli encoder HTL unipolari è necessario ponticellare A*, B*, R* sulla morsettiera con M_Encoder (X531).

Tabella 4-46 Collegamento encoder X531

	Morsetto	Nome del segnale	Indicazioni tecniche
	1	P_Encoder 5 V / 24 V	Alimentazione encoder
12	2	M_Encoder	Massa alimentazione encoder
~ 	3	-Temp	Collegamento sensore temperatura KTY84-1C130/PTC
 	4	+Temp	
	5	riservato, lasciare libero	
~ =	6	riservato, lasciare libero	
\square	7	riservato, lasciare libero	
	8	riservato, lasciare libero	

Sezione max. collegabile: 1,5 mm² (AWG 14)

Nota

Prestare attenzione che nel collegamento dell'encoder tramite morsetti la schermatura dei cavi venga connessa al modulo.

ATTENZIONE

Il sensore della temperatura KTY deve essere collegato rispettando la corretta polarità.

4.10.17.3 Esempi di collegamento

Esempio di collegamento 1: encoder HTL, bipolare, senza tacca di zero -> p0405 = 9 (hex)

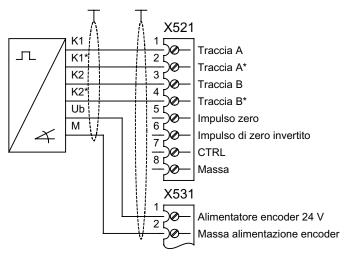


Figura 4-16 Esempio di collegamento 1: encoder HTL, bipolare, senza tacca di zero

Esempio di collegamento 2: encoder TTL, unipolare, senza traccia di zero -> p0405 = A (hex)

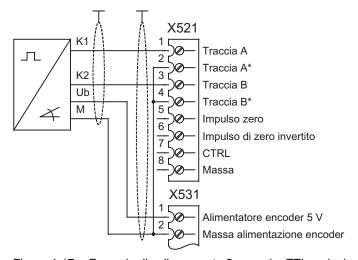


Figura 4-17 Esempio di collegamento 2: encoder TTL, unipolare, senza traccia di zero

4.10.18 Voltage Sensing Module per il rilevamento del numero di giri del motore e dell'angolo di fase (opzione K51)

Per il funzionamento di un motore sincrono ad eccitazione permanente senza encoder che deve potersi inserire su un motore già in rotazione (funzione di riavviamento al volo), viene impiegata l'unità di rilevamento della tensione VSM10.

I morsetti sull'unità di rilevamento della tensione sono preimpostati e non devono essere modificati sul lato impianto.

4.10.19 Espansione morsettiera utente (opzione G61)

Descrizione

Nell'esecuzione standard degli apparecchi in armadio è già contenuto un modulo interfaccia TM31 (morsettiera utente –A60). Mediante un secondo modulo (–A61), si aumenta il numero di ingressi/uscite digitali presenti e il numero di ingressi/uscite analogiche all'interno del sistema di azionamento; pertanto si vengono ad avere:

- 8 ingressi digitali
- 4 ingressi/uscite digitali bidirezionali
- 2 uscite a relè con contatto in commutazione
- 2 ingressi analogici
- 2 uscite analogiche
- 1 ingresso sensore di temperatura (KTY84-130/PTC)

Il collegamento del secondo TM31 deve avvenire sul lato impianto. Non è prevista alcuna impostazione di fabbrica.

4.10.20 Modulo morsetti per il comando di "Safe Torque Off" e "Safe Stop 1" (opzione K82)

Descrizione

L'opzione K82 (modulo morsetti per il comando di "Safe Torque Off" e "Safe Stop 1") serve al comando con separazione di potenziale tramite un campo di tensione di comando variabile delle funzioni di sicurezza già presenti nello standard, utilizzabili anche senza opzione K82.

Nota

Le funzioni di sicurezza devono essere attivate prima di utilizzare la parametrizzazione. Va eseguito un test di collaudo e redatto un protocollo di collaudo. Ved. le Istruzioni operative "Safety Integrated, SINAMICS S150, G150, G130, S120 Chassis,

Ved. le Istruzioni operative "Safety Integrated, SINAMICS \$150, G150, G130, \$120 Chas SINAMICS \$120 Cabinet Modules".

Attraverso l'opzione K82 è possibile comandare le seguenti funzioni Safety-Integrated (concetti secondo la Bozza IEC 61800-5-2)

- Safe Torque Off (STO)
- Safe Stop 1 (SS1) (con sorveglianza del tempo)

Nota

Le funzioni di sicurezza integrate soddisfano, a partire dai morsetti di ingresso Safety Integrated (SI) dei componenti SINAMICS (Control Unit, Power Module, Motor Module), i requisiti conformi alla Direttiva macchine 98/37/CE, alla EN 60204-1, alla DIN EN ISO 13849-1 Categoria 3 (ex EN954-1) nonché per Performance Level (PL) d e IEC 61508 SIL2. Questi sono certificati BGIA.

In combinazione con l'opzione K82 vengono soddisfatti i requisiti conformi alla Direttiva macchine 98/37/CE, alla EN 60204-1 nonché alla DIN EN ISO 13849-1 Categoria 3 (ex EN954-1). La certificazione dell'opzione K82 è in preparazione.

Per una lista dei componenti certificati rivolgersi alla filiale Siemens di zona.

Campo d'impiego consigliato

L'opzione è impiegata quando:

- il comando deve essere effettuato in un campo di tensione di DC/AC 24 V 230 V con separazione di potenziale;
- si lavora con cavi di comando non schermati, di lunghezza superiore a 30 m;
- gli apparecchi vengono impiegati in impianti con estensione spaziale notevole (assenza di una compensazione di potenziale ideale);
- il soddisfacimento della norma DIN EN ISO 13849-1 (ex EN 954-1) Cat. 3 è sufficiente e non sussistono requisiti in base al Safety Integrity Level (SIL) 2 secondo IEC 61508 o al Performance Level d secondo DIN EN ISO 13849-1.

4.10 Altri collegamenti

Funzionamento

Attraverso i relè (K41, K42) vengono comandati i due canali indipendenti delle funzioni di sicurezza integrate.

Il relè K41 comanda il segnale richiesto per la funzione di sicurezza sulla Control Unit, mentre il relè K42 sul Power Module o Motor Module.

La selezione e deselezione devono essere concomitanti. Il ritardo temporale, inevitabile a causa delle commutazioni meccaniche, può essere adattato tramite parametri.

La commutazione è strutturata in modo da essere sicura contro la rottura conduttori, ossia se viene a mancare la tensione di comando dei relè, la funzione di sicurezza resta attiva.

Dai contatti NC in serie dei relè è possibile inviare un contatto di segnalazione per scopi di informazione, diagnosi o ricerca errori. Il cablaggio del contatto di segnalazione può essere effettuato su opzione e non costituisce parte integrante del presente sistema di sicurezza.

Nota

Il segnale di conferma non è necessario ai fini dell'adempimento della norma DIN EN ISO 13849-1 (ex. EN954-1) Cat. 3.

La selezione della funzione di sicurezza va effettuata a due canali. Quale elemento di azionamento utilizzare un interruttore conforme ISO 13850/EN 418 ad apertura forzata secondo IEC 60947-5-1 oppure un comando di sicurezza certificato. La scelta corretta dell'elemento di azionamento ai fini del rispetto di una norma applicata all'intero sistema rientra nella responsabilità dell'utente.

Interfaccia utente -X41

Tabella 4-47 Morsettiera -X41

Morsetto	Significato	
-X41:1	Comando –K41: A1	
-X41:2	Collegato a -X41:1	
-X41:3	Comando –K41:A2, -K42:A2, conduttore N o massa	
-X41:4	Collegato a -X41:3	
-X41:5	Contatto di segnalazione stato -K41, -K42	
-X41:6	Contatto di segnalazione stato -K41, -K42	
-X41:7	Comando –K42: A1	
-X41:8	Collegato a -X41:7	
-X41:9	Non occupato	
-X41:10	Uscita -K41: cablata in modo fisso con CU320: X132:4 (DI7)	·

Circuito di comando:

Tensione nominale: DC/AC 24 - 230 V (0,85 ... 1,1 x Us) max. lunghezza cavo (valido per conduttore di invio e ritorno):

• AC (capacità cavo: 300 pF/m):

24 V: 5000 m110 V: 800 m230 V: 200 m

I valori sono validi per 50 Hz; per 60 Hz le lunghezze dei cavi vanno ridotte del 20%.

AVVERTENZA

Se viene superata la lunghezza e/o la capacità consentita per il cavo, a causa delle capacità di accoppiamento del cavo e della corrente residua collegata può accadere che il relè resti eccitato nonostante l'apertura dell'elemento di comando.

• Tensione di commutazione: DC/AC max. 250 V

Sezione max. collegabile: 2,5 mm² (AWG 12)

Protezione: max. 4 A

Lato carico:

Tensione di commutazione: DC/AC max. 250 V

Correnti di esercizio nominali:

- AC-15 (secondo IEC 60947-5-1): 24 230 V = 3 A
- DC-13 (secondo IEC 60947-5-1):
 - 24 V = 1 A
 - 10 V = 0.2 A
 - 230 V = 0,1 A

Carico di contatto min.: DC 5 V, 1 mA con errore 1 ppm

Protezione: max. 4 A (fusibile senza saldatura classe di esercizio gL/gG con lk ≥ 1 kA)

4.10 Altri collegamenti

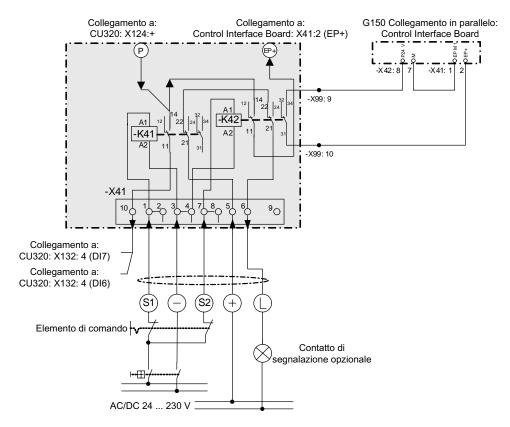


Figura 4-18 Commutazione modulo morsetti con opzione K82

Quale elemento di azionamento utilizzare un interruttore conforme ISO 13850/EN 418 ad apertura forzata secondo IEC 60947-5-1 oppure un comando di sicurezza certificato.

Nota

Il morsetto -X41:10 è collegato in modo fisso all'ingresso digitale DI7.

Nota

Nei seguenti apparecchi ad armadio è occupato anche l'ingresso digitale DI6:

- con 3 AC 380 V 480 V: 6SL3710-2GE41-1AA0, 6SL3710-2GE41-4AA0, 6SL3710-2GE41-6AA0
- con 3 AC 500 V 600 V: 6SL3710-2GF38-6AA0, 6SL3710-2GF41-1AA0, 6SL3710-2GF41-4AA0
- con 3 AC 660 V 690 V:
 6SL3710-2GH41-1AA0, 6SL3710-2GH41-4AA0, 6SL3710-2GH41-5AA0

Cablaggio

I cavi di comando vanno posati in modo fisso.

La disposizione dei cablaggi prevede che i cavi dei segnali siano separati a livello spaziale dai cavi di potenza.

Gli schermi dei cavi di comando vanno messi a terra su ampia superficie direttamente dopo l'ingresso nel quadro elettrico ad armadio.

4.10.21 Morsettiera NAMUR (opzione B00)

Descrizione

La morsettiera è realizzata in conformità ai requisiti ed alle direttive per la tecnica di misura e regolazione nell'industria chimica (raccomandazione NAMUR NE37), il che significa che a certe funzioni degli apparecchi sono assegnati determinati morsetti. Gli ingressi e le uscite presenti sui morsetti soddisfano i requisiti sulla bassa tensione di funzionamento e sull'isolamento sicuro PELV.

La morsettiera e le relative funzioni sono ridotte al minimo necessario. Rispetto alla raccomandazione NAMUR, non sono presenti morsetti opzionali.

L'alimentazione 24 V DC avviene sul lato impianto tramite i morsetti –A1-X2:1-3 (protetti all'interno del convertitore con 1 A). Occorre garantire che siano soddisfatti i requisiti di sicurezza relativi alla bassa tensione di funzionamento e all'isolamento sicuro PELV.

Per la sorveglianza della temperatura di motori a prova di esplosione, l'opzione B00 contiene un dispositivo di protezione a termistori con omologazione PTB. Quando viene superato il valore limite, l'apparecchio viene disinserito. La relativa sonda PTC viene collegata al morsetto –A1-X3:90, 91.

La morsettiera è divisa in tre segmenti:

- -X1; -X2: per i collegamenti di potenza
- -A1-X2: per i cavi dei segnali, che devono essere conformi ai requisiti relativi alla bassa tensione di funzionamento e all'isolamento sicuro PELV.
- -A1-X3: per il collegamento dei sensori a termistore del motore

Collegamento

Tabella 4-48 Blocco morsetti -A1-X2 - Collegamento dell'alimentazione 24 V

Morsetto	Denominazione	Preimpostazione	Note
1	M	Conduttore di riferimento	
2	P24 V	Ingresso 24 V DC	Protetto internamente con 1 A
3	P24 V	Uscita 24 V DC	

Sezione max. collegabile: 2,5 mm² (AWG 12)

Tabella 4-49 Blocco morsetti -A1-X2 - Collegamento della morsettiera di controllo NAMUR

Morsetto	Denominazione	Preimpostazione	Note
10	DI	ON (dinamico) / ON/OFF (statico)	La modalità operativa attiva è codificabile tramite un ponticello sul morsetto -A1-400:9;10.
11	DI	OUT (dinamico)	
12	DI	Più veloce	Potenziometro motore
13	DI	Più lento	Potenziometro motore
14	DI	RESET	Conferma dell'errore
15	DI	Interblocco	OFF2

4.10 Altri collegamenti

Morsetto	Denominazione	Preimpostazione	Note
16	DI	Rotazione sinistrorsa	"0" segnale rotazione destrorsa "1" segnale rotazione sinistrorsa
17		Separazione dalla rete	Sequenza arresto d'emergenza
18			
30		Pronto al funzionamento	Uscita relè (contatto NO)
31			
32		Motore in rotazione	Uscita relè (contatto NO)
33			
34	DO (NO)	Anomalia	Uscita relè (contatto di commutazione)
35	DO (COM)		
36	DO (NC)		
50/51	AI 0/4-20 mA	Valore di riferimento della velocità	Preassegnazione: 4 - 20 mA
60/61	AO 0/4-20 mA	Frequenza motore	Preassegnazione: 4 - 20 mA
62/63	AO 0/4-20 mA	Corrente motore	Preassegnazione: 4 - 20 mA

Sezione max. collegabile: 2,5 mm² (AWG 12)

Tabella 4-50 Blocco morsetti -A1-X3 – Collegamento delle sonde a termistore del motore

Morsetto	Denominazione	Preimpostazione	Note
90/91	Al	Collegamento di una sonda PTC	Quando viene superato il valore limite,
			l'apparecchio viene disinserito.

Sezione max. collegabile: 2,5 mm² (AWG 12)

Adattamento di ingressi e uscite analogici

Per modificare i campi di impostazione di ingressi e uscite analogici, è necessario impostare i convertitori di interfaccia corrispondenti (U401 / U402 / U403). A questo scopo, estrarre il convertitore di interfaccia corrispondente e posizionare sull'impostazione corretta ("S1") il selettore rotante situato sul lato del convertitore.

Tabella 4-51 Blocco morsetti -A1-X2 – Adattamento di ingressi e uscite analogici

Morsetto	Denominazione	Codice materiale del convertitore di interfaccia	Impostazioni del selettore rotante S1
50/51	Al	U401	2: 0 - 20 mA 4: 4 - 20 mA (valore predefinito)
60/61	AO	U402	1: 0 - 20 mA 2: 4 - 20 mA (valore predefinito)
62/63	AO	U403	1: 0 - 20 mA 2: 4 - 20 mA (valore predefinito)

4.10.22 Alimentazione 24 V DC con isolamento sicuro per NAMUR (opzione B02)

Descrizione

Se sul lato impianto non è disponibile un'alimentazione 24 V DC con isolamento sicuro (tensione PELV), con questa opzione viene integrato un secondo alimentatore per garantire la tensione PELV (occupazione dei morsetti come opzione B00, l'alimentazione a 24 V al morsetto –A1-X1:1,2,3 viene a mancare).

4.10.23 Uscita separata per utenze ausiliarie esterne per NAMUR (opzione B03)

Descrizione

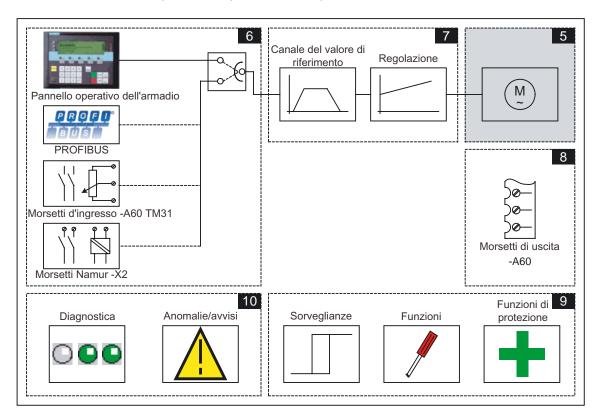
Se sul lato impianto viene fornito un ventilatore motore, con l'opzione B03 si prevede un'uscita separata non controllata protetta con 10 A. Appena viene applicata la tensione di alimentazione all'ingresso del convertitore, è presente tensione anche su questi morsetti. La tensione corrisponde alla tensione di ingresso del convertitore. Questo va considerato al momento della progettazione dei ventilatori esterni.

Collegamento

Tabella 4-52 Blocco morsetti -A1-X1 – uscita di potenza non controllata (10 A) per l'alimentazione di un ventilatore esterno del motore

Morsetto	Preimpostazione	Note
1,2,3,PE	Uscita separata per ventilatore esterno del motore	U = U _{rete}

Sezione max. collegabile: 2,5 mm² (AWG 12)


4.10 Altri collegamenti

Messa in servizio

5.1 Contenuto del capitolo

Questo capitolo descrive:

- Le funzioni del pannello operativo
- La prima messa in servizio dell'apparecchio (inizializzazione)
 - L'impostazione dei dati del motore (messa in servizio dell'azionamento)
 - L'impostazione dei parametri più importanti (messa in servizio di base) e conclusione con l'identificazione del motore
- Salvataggio dei dati
- Ripristino dei parametri all'impostazione di fabbrica

5.2 Tool di messa in servizio STARTER

Descrizione

Il tool per la messa in servizio STARTER consente di configurare e mettere in servizio gli azionamenti e i sistemi di azionamento SINAMICS. È possibile effettuare la configurazione dell'azionamento con il wizard di configurazione azionamento STARTER.

Nota

In questo capitolo viene descritta la messa in servizio con STARTER. TARTER dispone di un'ampia guida online che spiega dettagliatamente tutte le procedure e le possibilità di impostazione del sistema.

In questo capitolo vengono quindi trattate solo alcune fasi della messa in servizio.

Requisiti per l'installazione di STARTER

Requisiti hardware:

- PG o PC con
- Windows 2000: Pentium II 400 MHz, 256 MB RAM (consigliati 512 MB)
- Windows XP: Pentium III 500 MHz, 256 MB RAM (consigliati 512 MB)
- 1024x768 pixel di risoluzione dello schermo

Requisiti software:

- Windows 2000 SP3 oppure SP4
- oppure Windows XP SP1 o SP2
- Windows Server 2003 SP1
- e Internet Explorer V6.0

5.2.1 Installazione del tool di messa in servizio Starter

STARTER viene installato mediante il file "Setup" contenuto sul CD fornito con il prodotto. Con un doppio clic sul file "Setup", il wizard di installazione guida l'utente attraverso tutte le fasi dell'installazione di STARTER.

5.2.2 Struttura dell'interfaccia operativa di Starter

STARTER presenta le seguenti 4 aree operative:

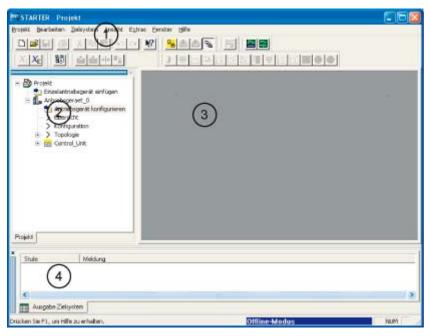


Figura 5-1 Interfaccia operativa di STARTER

Area operativa	Descrizione
1: Barra degli strumenti	In quest'area le funzioni maggiormente utilizzate sono accessibili mediante simboli.
2: Navigazione di progetto	In quest'area vengono visualizzati gli elementi e gli oggetti presenti nel progetto.
3: Area di lavoro	In quest'area vengono eseguite le modifiche degli apparecchi di azionamento.
4: Visualizzazione dei dettagli	In quest'area vengono visualizzate informazioni dettagliate, ad es. in riferimento ad anomalie e avvisi.

5.3 Sequenza di messa in servizio con STARTER

Procedura di base con STARTER

STARTER utilizza una serie di finestre di dialogo per il rilevamento dei dati necessari per l'apparecchio di azionamento.

ATTENZIONE

Queste finestre di dialogo contengono impostazioni predefinite che l'utente deve eventualmente adattare alla propria applicazione e alla configurazione.

Procedendo in questo modo,

se l'impostazione dei dati di configurazione avviene in modo preciso e ponderato, è possibile evitare scostamenti tra i dati di progetto e i dati dell'apparecchio di azionamento (rilevabili in modalità online).

5.3.1 Creazione di un progetto

Fare clic sul simbolo STARTER sul desktop oppure selezionare il comando di menu Start > Simatic > STEP 7 > STARTER nel menu Start di Windows per avviare il tool per la messa in servizio STARTER.

Dopo il primo avvio viene visualizzata la schermata di base con le finestre di dialogo:

- STARTER Getting Started Messa in servizio azionamento
- Wizard di progetto STARTER

Le fasi della messa in servizio vengono elencate di seguito in ordine numerico.

Accesso al wizard di progetto di STARTER

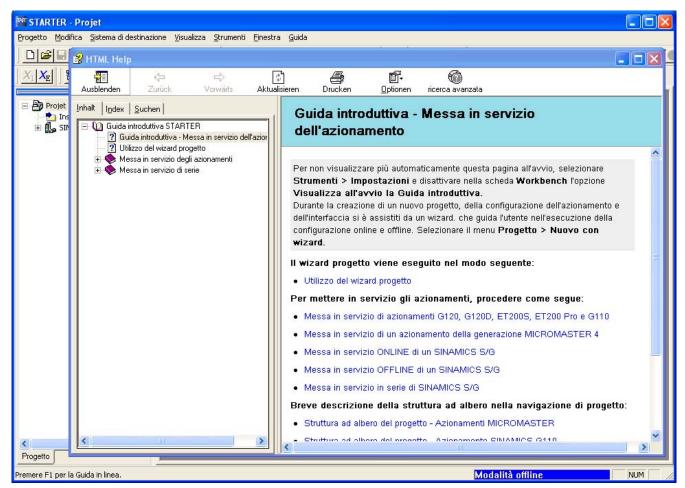


Figura 5-2 Schermata di base del tool di parametrizzazione e messa in servizio STARTER

1. Chiudere la finestra di dialogo STARTER Guida introduttiva Messa in servizio dell'azionamento tramite **Guida HTML > Chiudi**

Nota

Se si disattiva il campo **Visualizza Wizard all'avvio**, il wizard di progetto non viene più visualizzato al successivo avvio di STARTER.

Il wizard di progetto può essere aperto selezionando Progetto > Nuovo con wizard.

Per disattivare la **Guida introduttiva** in linea, attenersi alle indicazioni riportate nella guida stessa.

La guida in linea può essere visualizzata in qualsiasi momento selezionando **Guida -> Guida introduttiva**.

STARTER dispone di un'ampia guida online.

Il wizard di progetto di STARTER

Figura 5-3 Wizard di progetto STARTER

2. Fare clic su **Raggruppa apparecchi di azionamento offline...** nel wizard di progetto di STARTER

Figura 5-4 Creazione nuovo progetto

- 3. Immettere il **nome del progetto** ed eventualmente **autore, percorso di memorizzazione** e **commento**.
- 4. Fare clic su **Avanti >** per impostare l'interfaccia PG/PC.

Figura 5-5 Impostazione dell'interfaccia

Nota

Il collegamento online con l'apparecchio di azionamento può avvenire solo tramite PROFIBUS.

5. Fare clic su **Modifica e test...** e impostare l'interfaccia in base alla configurazione dell'apparecchio.

I pulsanti disponibili sono Proprietà..., Copia... e Seleziona....

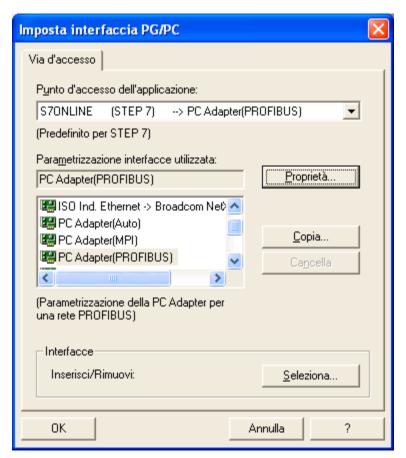


Figura 5-6 Impostazione interfaccia

Nota

Per eseguire questa parametrizzazione dell'interfaccia, è necessario che sia installata un'adeguata scheda di interfaccia, ad es: PC Adapter (PROFIBUS).

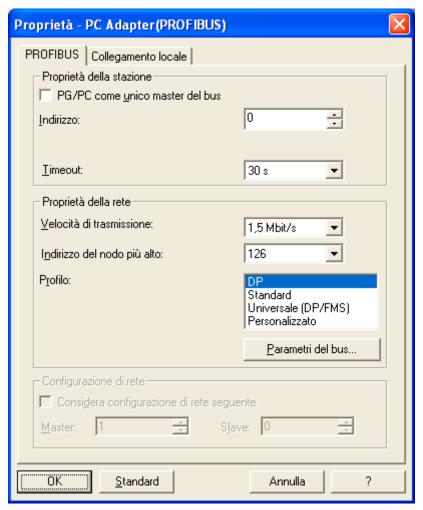


Figura 5-7 Impostazione interfaccia - Proprietà

ATTENZIONE

L'opzione **PG/PC come unico master del bus** deve essere attivata se non sono disponibili altri master (PC, S7, ecc.) sul bus.

Nota

Anche se nel PC non è prevista alcuna interfaccia PROFIBUS, è possibile creare progetti e assegnare indirizzi PROFIBUS per gli oggetti di azionamento.

Vengono proposti solo gli indirizzi bus disponibili nel progetto. In questo modo si evita che gli indirizzi bus vengano assegnati due volte.

6. Al termine fare clic su **OK** per confermare le impostazioni e tornare al wizard di progetto.

Figura 5-8 Impostazione interfaccia

7. Fare clic su **Avanti >** per configurare un apparecchio di azionamento nel wizard di progetto.

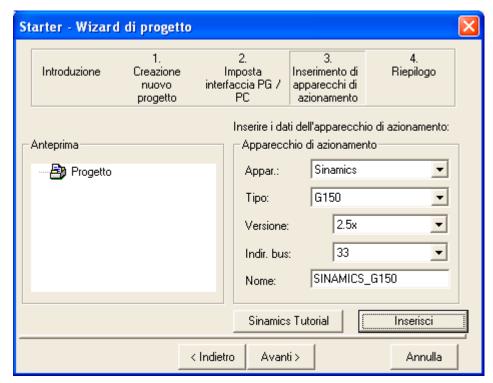


Figura 5-9 Inserimento di un apparecchio di azionamento

8. Selezionare i seguenti dati dagli elenchi a discesa:

Apparecchio: Sinamics

Tipo: G150 Versione: 2,5x

Indirizzo del bus: il corrispondente indirizzo bus dell'apparecchio in armadio

L'immissione nel campo Nome: è libera

9: Fare clic su Inserisci

L'apparecchio di azionamento selezionato viene visualizzato nella finestra di anteprima del wizard di progetto.

Figura 5-10 Inserimento di un apparecchio di azionamento

10. Fare clic su Avanti >

Viene visualizzato un riepilogo del progetto.

Figura 5-11 Riepilogo

11. Fare clic su **Fine** per terminare la creazione di un nuovo progetto per l'apparecchio di azionamento.

5.3.2 Configurazione di un apparecchio di azionamento

Nella navigazione di progetto aprire la struttura che contiene l'apparecchio di azionamento desiderato.



Figura 5-12 Navigazione di progetto – Configurazione di un apparecchio di azionamento

- 1. Nella navigazione di progetto fare clic sul segno + (più) accanto all'apparecchio di azionamento che si desidera configurare. Il segno + (più) si trasforma in segno (meno) e le opzioni per la configurazione dell'apparecchio di azionamento vengono visualizzate sotto l'apparecchio di azionamento.
- 2. Fare doppio clic su Configura apparecchio di azionamento.

Configurazione di un apparecchio di azionamento

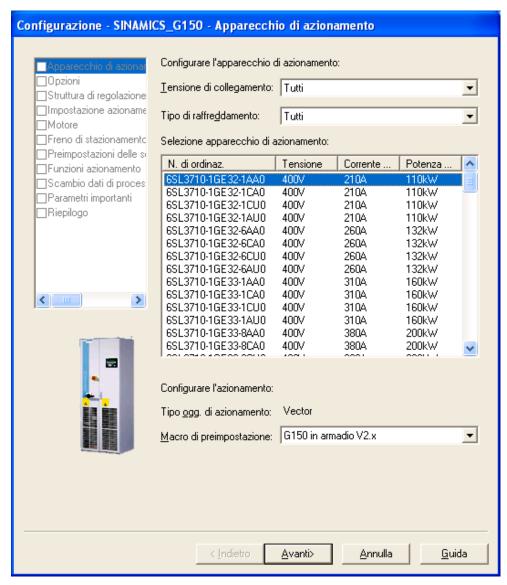


Figura 5-13 Configurazione di un apparecchio di azionamento

3. In **Tensione di allacciamento**: selezionare la tensione corretta e in **Filtro di visualizzazione**: il tipo di raffreddamento corretto per l'apparecchio di azionamento.

Nota

Questa è un'impostazione preliminare per gli apparecchi in armadio. La tensione di rete e il tipo di raffreddamento non vengono ancora impostati definitivamente.

- 4. Nell'elenco **Selezione apparecchio di azionamento:** selezionare il corrispondente apparecchio di azionamento in base al tipo (numero di ordinazione; vedere la targhetta dei dati tecnici).
- 5. Fare clic su Avanti >.

Selezione delle opzioni

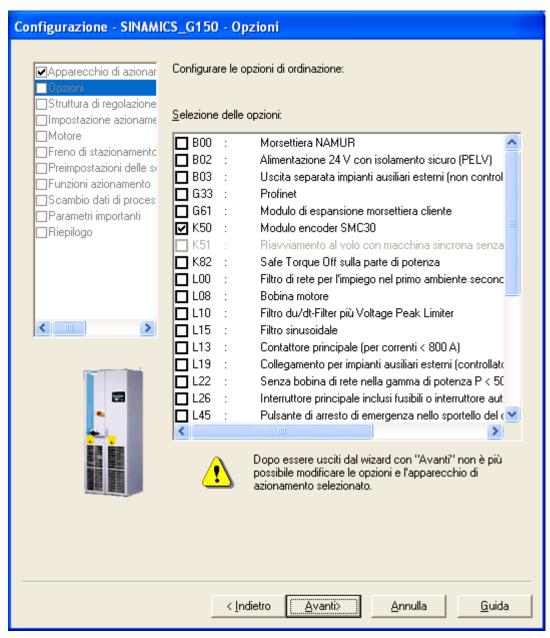


Figura 5-14 Selezione delle opzioni

6. Nella casella combinata **Selezione delle opzioni:** selezionare le opzioni che fanno parte dell'apparecchio di azionamento facendo clic sulla casella corrispondente (fare riferimento alla targhetta dei dati tecnici).

CAUTELA

Se al convertitore è collegato un filtro sinusoidale (opzione L15), questo deve essere necessariamente attivato durante la messa in servizio, altrimenti il filtro rischia di essere danneggiato irrimediabilmente!

5.3 Sequenza di messa in servizio con STARTER

Nota

Confrontare attentamente le opzioni selezionate con quelle indicate sulla targhetta dei dati tecnici.

In base alle opzioni selezionate, il wizard effettua delle interconnessioni interne, per cui non è possibile annullare le opzioni selezionate mediante il pulsante < **Indietro**. In caso di errore di immissione, è necessario eliminare l'intero apparecchio di azionamento nella navigazione di progetto e inserirne uno nuovo!

7. Dopo avere attentamente verificato le opzioni, fare clic su Avanti >

Selezione della struttura di regolazione

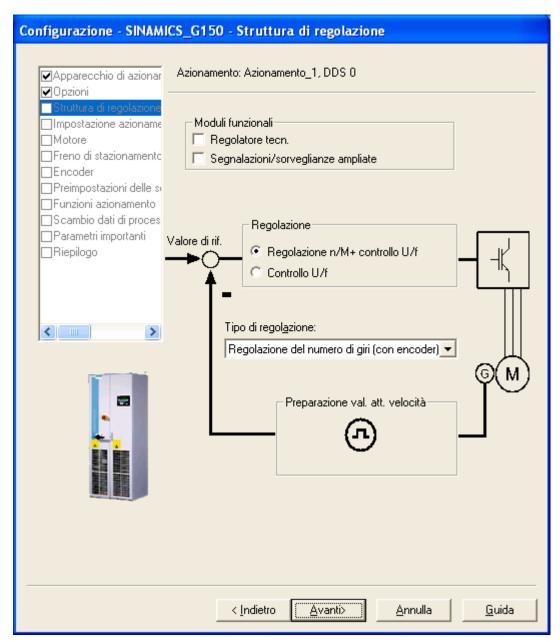


Figura 5-15 Selezione della struttura di regolazione

- 8. Selezionare i dati corrispondenti:
- Moduli funzionali:
 - Regolatore di tecnologia
 - Segnalazioni/sorveglianze ampliate

5.3 Sequenza di messa in servizio con STARTER

• Tipo di regolazione:

scegliere uno dei seguenti tipi di regolazione/controllo:

- Regolazione della coppia (senza encoder)
- Regolazione della coppia (con encoder)
- Regolazione del numero di giri (senza encoder)
- Regolazione del numero di giri (con encoder)
- Controllo I/f con corrente fissa
- Controllo V/f per azionamenti con frequenza precisa (settore tessile)
- Controllo V/f per azionamenti con frequenza precisa con FCC
- Controllo V/f con caratteristica lineare
- Controllo V/f con caratteristica lineare e FCC
- Controllo V/f con caratteristica parabolica
- Controllo V/f con caratteristica parametrizzabile
- Controllo V/f con valore di riferimento della tensione indipendente
- 9. Fare clic su Avanti >.

Configurazione delle proprietà dell'azionamento

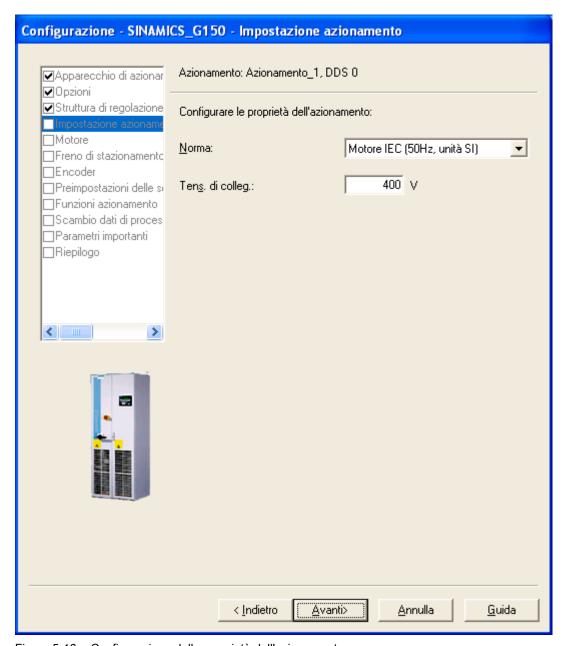


Figura 5-16 Configurazione delle proprietà dell'azionamento

- 10. Selezionare nel campo **Norma:**: la normativa corrispondente al motore utilizzato. Viene definito quanto segue:
- Motore IEC (50 Hz, unità SI): Frequenza di rete 50 Hz, dati del motore in kW
- Motore NEMA (60 Hz, unità SI): Frequenza di rete 60 Hz, dati del motore in hp
- 11. Nel campo **Tensione di allacciamento:** immettere la tensione corrispondente dell'apparecchio in armadio.
- 12. Fare clic su Avanti >.

Configurazione del motore – Selezione del tipo di motore

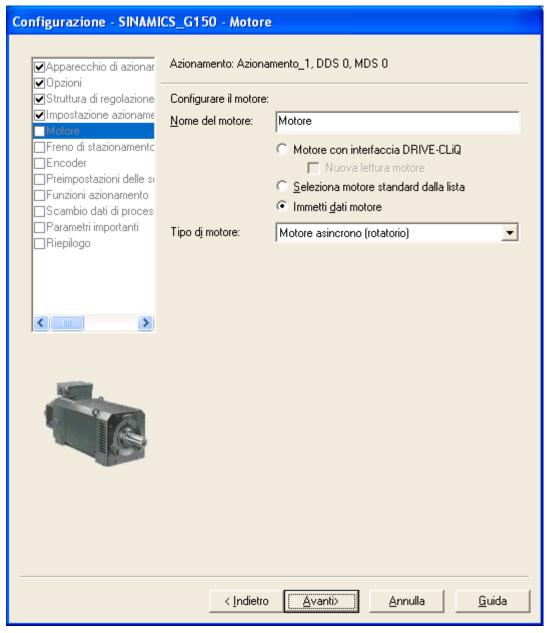


Figura 5-17 Configurazione del motore – Selezione del tipo di motore

- 13. Nel campo **Nome motore:** immettere un nome qualsiasi per il motore.
- 14. Nella casella di riepilogo accanto a **Tipo di motore**: selezionare il motore corrispondente per la propria applicazione.

5.3 Sequenza di messa in servizio con STARTER

Nota

La descrizione dei passi seguenti si riferisce alla messa in servizio di un motore asincrono.

Per la messa in servizio di un motore sincrono ad eccitazione permanente valgono alcune particolari condizioni marginali che vengono descritte in un capitolo a parte (vedere il capitolo "Canale del valore di riferimento e regolazione / Motori sincroni ad eccitazione permanente").

15. Fare clic su Avanti >.

Configurazione del motore - Immissione dei dati del motore

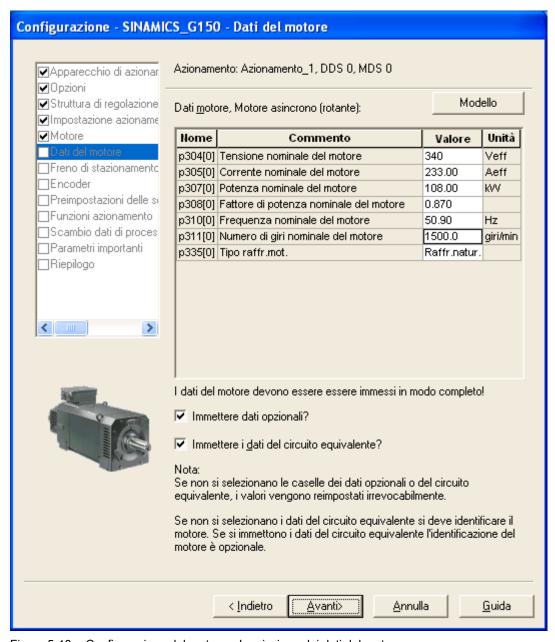


Figura 5-18 Configurazione del motore – Immissione dei dati del motore

- 16. Immettere i dati del motore (vedere la targhetta dei dati tecnici del motore).
- 17. Se necessario, attivare la casella di controllo Immettere i dati opzionali?.
- 18. Se necessario, attivare la casella di controllo **Immettere i dati del circuito equivalente?**.

Nota

Facendo clic sul pulsante **Modello** viene visualizzata un'ulteriore finestra di selezione che consente di selezionare il motore utilizzato nell'applicazione tra un'ampia gamma di tipi di motore predisposti. In questo modo, i dati relativi al motore selezionato, che sono memorizzati nel sistema, vengono immessi automaticamente nei campi dati.

ATTENZIONE

L'opzione "Immettere i dati del circuito equivalente?" va attivata solo se è disponibile la specifica con i dati del circuito equivalente. Se nella finestra non vengono immessi tutti i dati, il tentativo di caricare il progetto dell'azionamento nel sistema di destinazione genererà dei messaggi d'errore.

19. Fare clic su Avanti >.

Configurazione del motore – Immissione dei dati opzionali

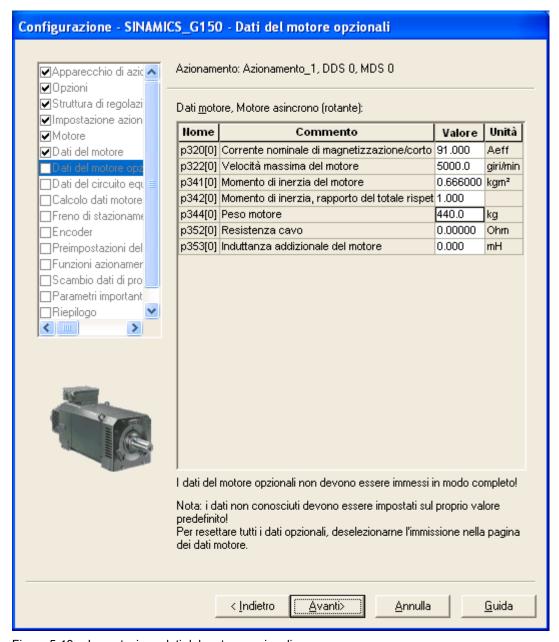


Figura 5-19 Impostazione dati del motore opzionali

- 20. Immettere eventualmente i dati del motore opzionali.
- 21. Fare clic su Avanti >.

Configurazione del motore – Immissione dei dati del circuito equivalente

Figura 5-20 Immissione dei dati del circuito equivalente

- 22. Immettere eventualmente i dati del circuito equivalente.
- 23. Fare clic su Avanti >.

Calcolo dei dati del motore/regolatore

Figura 5-21 Calcolo dei dati del motore/regolatore

24. In **Calcolo dei dati motore/regolatore** selezionare le rispettive preimpostazioni per la configurazione dell'apparecchio.

Nota

Se si immettono manualmente i dati del circuito equivalente (vedere la figura "Immissione dei dati del circuito equivalente"), il calcolo dei dati del motore e del regolatore dovrebbe avvenire senza calcolo dei dati del circuito equivalente .

25. Fare clic su Avanti >.

Configurazione del freno di stazionamento motore

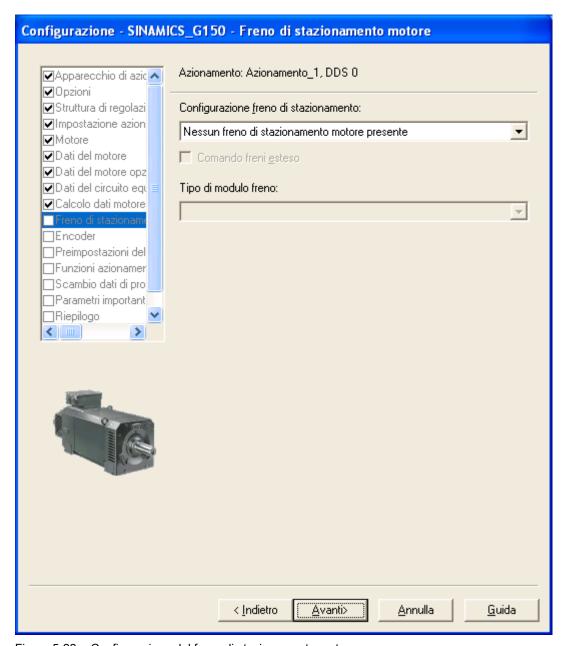


Figura 5-22 Configurazione del freno di stazionamento motore

- 26. In **Configurazione freno di stazionamento:** selezionare la rispettiva impostazione per la configurazione dell'apparecchio.
- 27. Fare clic su Avanti >.

Immissione dei dati dell'encoder (opzione K50)

Nota

Se è stata impostata l'opzione K50 (modulo encoder SMC30) durante la selezione delle opzioni, viene visualizzata la seguente finestra per l'immissione dei dati dell'encoder.

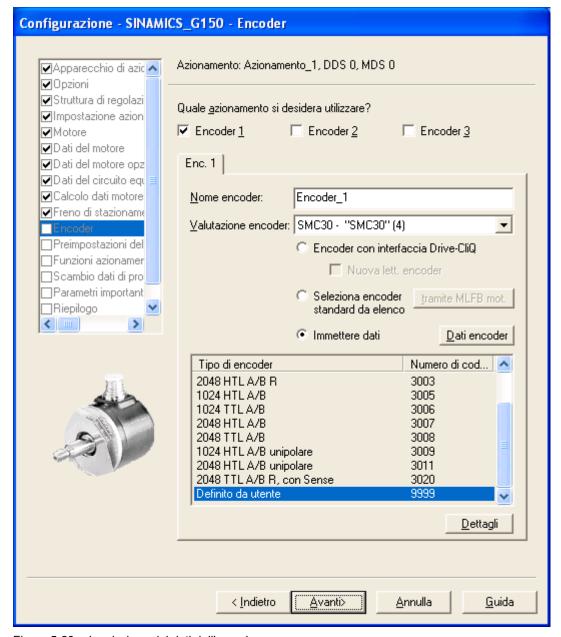


Figura 5-23 Immissione dei dati dell'encoder

28. Nel campo Nome encoder: immettere un nome qualsiasi.

Nota

Nell'impostazione di fabbrica un encoder HTL viene configurato in modo bipolare con 1024 impulsi per giro sulla morsettiera X521/X531.

- 29. Per selezionare un'altra configurazione dell'encoder predefinita, fare clic sulla casella di opzione **Seleziona encoder standard dall'elenco** e selezionare uno degli encoder proposti nell'elenco.
- 30. Per immettere una configurazione speciale, fare clic sulla casella di opzione **Immettere dati** e quindi sul pulsante **Dati encoder**. Viene visualizzata la seguente finestra per l'immissione dei relativi dati.

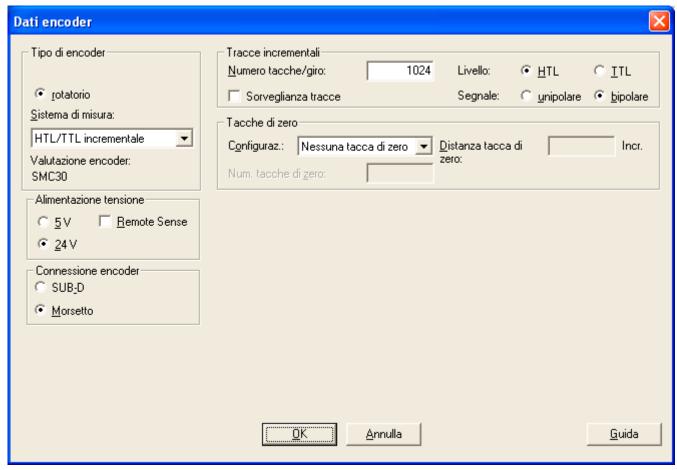


Figura 5-24 Immissione dei dati dell'encoder – Dati dell'encoder definiti dall'utente

31. Selezionare il Sistema di misura.

Si possono selezionare i seguenti encoder:

- HTL
- TTL
- 32. Immettere i valori corrispondenti dell'encoder.
- 33. Fare clic su OK

CAUTELA

Dopo la messa in servizio dell'encoder viene attivata la tensione di alimentazione (5/24 V) impostata per l'encoder sull'unità modulare SMC30. Se viene collegato un encoder a 5 V e la tensione di alimentazione non è impostata correttamente, l'encoder rischia di essere danneggiato.

Preimpostazioni valori di riferimento / sorgenti di comando

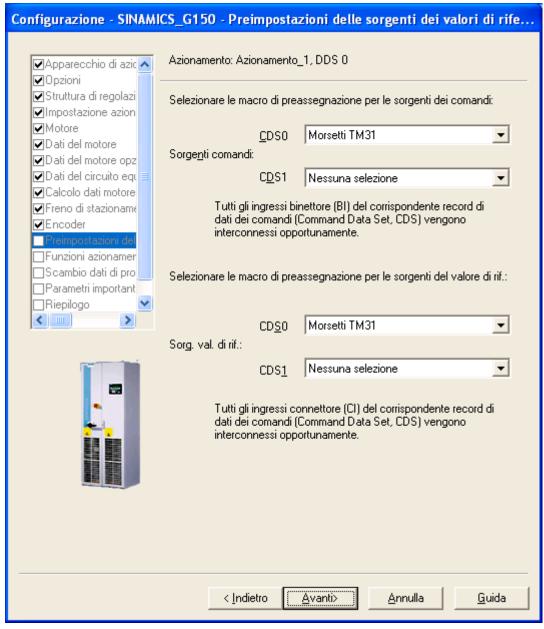


Figura 5-25 Preimpostazione valori di riferimento / sorgenti di comando

34. Selezionare in **Sorgenti di comandi:** e **Sorgenti valori di riferimento:** le rispettive preimpostazioni per la configurazione dell'apparecchio.

Sono disponibili le seguenti selezioni come sorgenti di comando e di riferimento:

Sorgenti dei comandi: PROFIdrive

Morsetti TM31

NAMUR

PROFIdrive NAMUR

Sorgenti valori di riferimento: PROFIdrive

Morsetti TM31

Potenziometro motore Valore di riferimento fisso

Nota

In SINAMICS G150 si utilizza per default solo CDS0 per la preimpostazione delle sorgenti di comando e di riferimento.

Controllare che la preimpostazione selezionata corrisponda alla configurazione effettiva del sistema

Non è possibile modificare successivamente le preimpostazioni selezionate con il pulsante < **Indietro** (tranne che con il valore corrente "Nessuna selezione").

In caso di errore di immissione, è necessario eliminare l'intero apparecchio di azionamento nella navigazione di progetto e inserirne uno nuovo!

35. Dopo avere attentamente verificato le preimpostazioni selezionate, fare clic su Avanti >

Definizione dell'applicazione tecnologica / identificazione motore

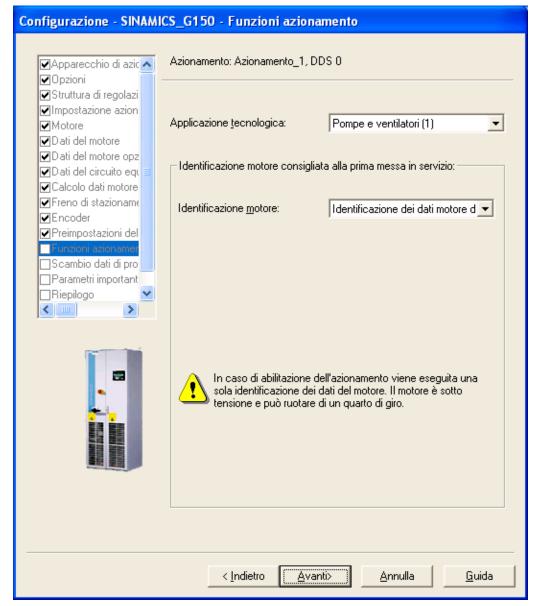


Figura 5-26 Definizione dell'applicazione tecnologica / identificazione motore

36. Selezionare i dati corrispondenti:

Applicazione tecnologica:

- "Pompe e ventilatori": la modulazione del fronte è abilitata (preimpostazione).
- "Azionamento standard (VECTOR)": la modulazione del fronte non è abilitata.

• Identificazione motore:

Nella maggior parte dei casi, l'impostazione corretta per SINAMICS G150 è "Identificazione dei dati motore a motore fermo".

37. Fare clic su Avanti >.

Scelta del telegramma PROFIBUS

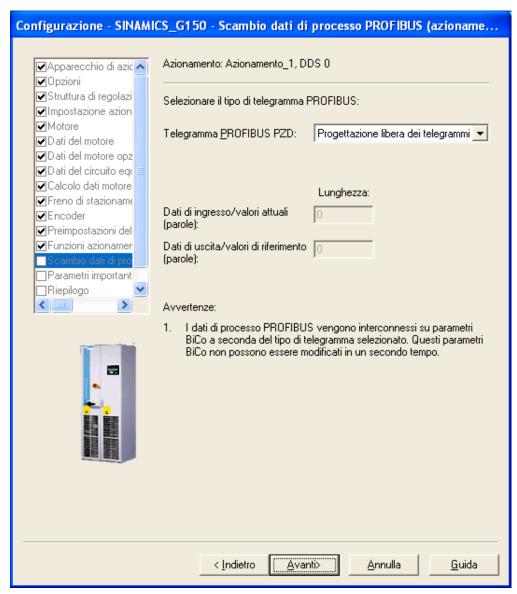


Figura 5-27 Scelta del telegramma PROFIBUS

38. In Telegramma PROFIBUS PZD: selezionare il tipo di telegramma PROFIBUS.

Tipi di telegramma

- Telegramma standard 1
- Telegramma standard 2
- Telegramma standard 3
- Telegramma standard 4
- Telegramma VIK-NAMUR 20
- Telegramma PCS7 352
- Progettazione libera dei telegrammi con BICO
- 39. Fare clic su Avanti >.

Immissione dei parametri importanti



Figura 5-28 Parametri importanti

40. Immettere i valori corrispondenti dei vari parametri.

Nota

STARTER propone delle descrizioni dei comandi se si posiziona il puntatore del mouse sul campo desiderato **senza farvi clic sopra**.

41. Fare clic su Avanti >.

Riepilogo dei dati dell'apparecchio di azionamento

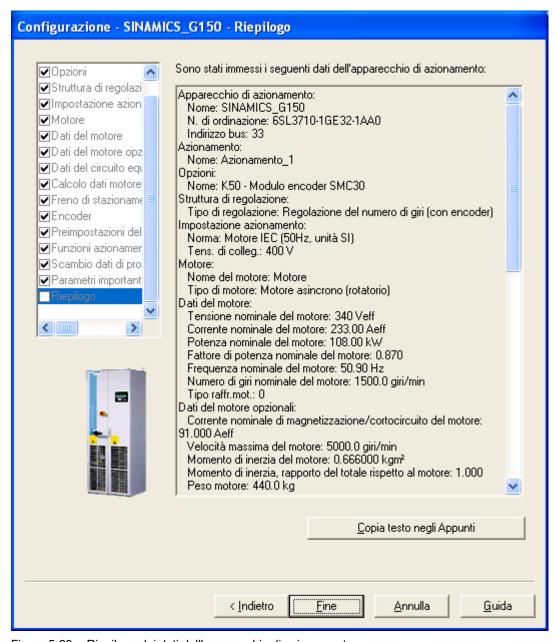


Figura 5-29 Riepilogo dei dati dell'apparecchio di azionamento

- 42. Con **Copia testo negli Appunti** si può inserire il riepilogo visualizzato dei dati dell'azionamento in un programma di elaborazione testi per poterlo ulteriormente utilizzare.
- 43. Fare clic su Fine.
- 44. Salvare il progetto sul disco rigido tramite Progetto > Salva.

5.3.3 Altre impostazioni necessarie per apparecchi in armadio di potenza elevata

Dopo la messa in servizio con STARTER devono essere eseguite delle impostazioni supplementari per i seguenti apparecchi in armadio:

- con 3 AC 380 V 480 V:
 6SL3710-2GE41-1AA0, 6SL3710-2GE41-4AA0, 6SL3710-2GE41-6AA0
- con 3 AC 500 V 600 V:
 6SL3710-2GF38-6AA0, 6SL3710-2GF41-1AA0, 6SL3710-2GF41-4AA0
- con 3 AC 660 V 690 V:
 6SL3710-2GH41-1AA0, 6SL3710-2GH41-4AA0, 6SL3710-2GH41-5AA0

Impostazioni per la sorveglianza del contatto di segnalazione del contattore principale o dell'interruttore automatico con alimentazione a 12 impulsi e circuito intermedio collegato

I contatti di segnalazione dei contattori principali o degli interruttori automatici sono collegati in serie già in fabbrica e cablati sull'ingresso digitale 5 dell'unità di regolazione CU320.

Dopo la messa in servizio occorre attivare la sorveglianza dei segnali di conferma. Ciò avviene con il parametro p0860{Vector} = 722.5{Control_Unit}.

PERICOLO

Se non si attiva la sorveglianza del contatto di segnalazione dei contattori principali o degli interruttori automatici, l'azionamento può inserirsi anche in caso di guasto di un contattore principale o di un interruttore automatico di un singolo sistema. In questo caso, i raddrizzatori di ingresso del singolo sistema possono risultare sovraccarichi ed essere danneggiati.

ATTENZIONE

Se si ripristinano le impostazioni di fabbrica della parametrizzazione, occorre effettuare nuovamente questa impostazione dopo la successiva messa in servizio.

Impostazioni con alimentazione a 12 impulsi e collegamento a un motore con sistema a un solo avvolgimento

Durante la messa in servizio viene impostato automaticamente un motore con più sistemi di avvolgimento.

L'impostazione per un sistema a un solo avvolgimento viene effettuata dopo la messa in servizio con il parametro p7003 = 0.

ATTENZIONE

Se non viene effettuata l'impostazione "Motore con sistema a un avvolgimento" tramite p7003 = 0, durante l'identificazione del motore l'azionamento si disinserisce con un messaggio di errore "Sovracorrente". Il sistema non è ottimizzato.

ATTENZIONE

Se si ripristinano le impostazioni di fabbrica della parametrizzazione, occorre effettuare nuovamente questa impostazione dopo la successiva messa in servizio.

5.3.4 Avvio del progetto dell'azionamento

Si è creato un progetto e lo si è salvato sul disco rigido. L'operazione successiva consiste nel copiare i dati di configurazione del progetto nell'apparecchio di azionamento.

Trasferimento del progetto STARTER nell'apparecchio di azionamento

La procedura seguente consente di copiare il progetto STARTER creato offline nell'apparecchio di azionamento:

Passo		Selezione nella barra degli strumenti
1	Selezionare la voce di menu Progetto > Collega al sistema di destinazione	
2	Selezionare la voce di menu Sistema di destinazione > Carica > Progetto nel sistema di destinazione	<u>. 41 '</u>

ATTENZIONE

I dati di progetto sono stati trasferiti nell'apparecchio di azionamento. Questi dati sono presenti momentaneamente solo nella memoria volatile dell'apparecchio di azionamento, ma non sono salvati sulla scheda CompactFlash!

Per salvare i dati di progetto in modo sicuro sulla scheda CompactFlash dell'apparecchio di azionamento, eseguire l'operazione seguente.

Passo		Selezione nella barra degli strumenti
3	Selezionare la voce di menu Sistema di destinazione > Copia da RAM a ROM	

Nota

Il simbolo di **Copia da RAM a ROM** può essere selezionato solo se l'apparecchio di azionamento è selezionato nella navigazione di progetto.

5.3 Sequenza di messa in servizio con STARTER

Risultati della procedura descritta

- Si è creato un progetto per l'apparecchio di azionamento offline con STARTER
- Si sono salvati i dati di progetto sul disco rigido del PC
- Si sono copiati i dati di progetto nell'apparecchio di azionamento
- Si sono salvati i dati di progetto in modo sicuro sulla scheda CompactFlash dell'apparecchio di azionamento

Nota

STARTER è un tool di messa in servizio che facilita in ogni momento gli interventi complessi sul sistema di azionamento.

Se in modalità online il sistema entra in uno stato non più controllabile, si consiglia di cancellare il progetto nella navigazione di progetto e di crearne uno nuovo con STARTER utilizzando i relativi dati di configurazione.

5.3.5 Collegamento mediante interfaccia seriale

Oltre al collegamento via PROFIBUS, lo scambio dei dati può avvenire mediante l'interfaccia seriale.

Presupposti

II PC a partire dal quale deve essere eseguito il collegamento deve disporre di un'interfaccia seriale (COM).

Impostazioni

1. In STARTER, tramite **Progetto > Imposta interfaccia PC/PG**, selezionare l'interfaccia **Serial cable (PPI)**.

Se non è disponibile nell'elenco, aggiungerla tramite **Seleziona**.

Nota

Se non è possibile aggiungere l'interfaccia nel menu di selezione, significa che occorre installare il driver per l'interfaccia seriale.

Il driver si trova nel seguente percorso sul CD STARTER:

\installation\starter\Disk1\SerialCable_PPI\

Durante l'installazione del driver STARTER non deve essere attivo.

2. Effettuare le seguenti impostazioni. Sono particolarmente importanti l'indirizzo "0" e la velocità di trasmissione 19,2 kbit/s.

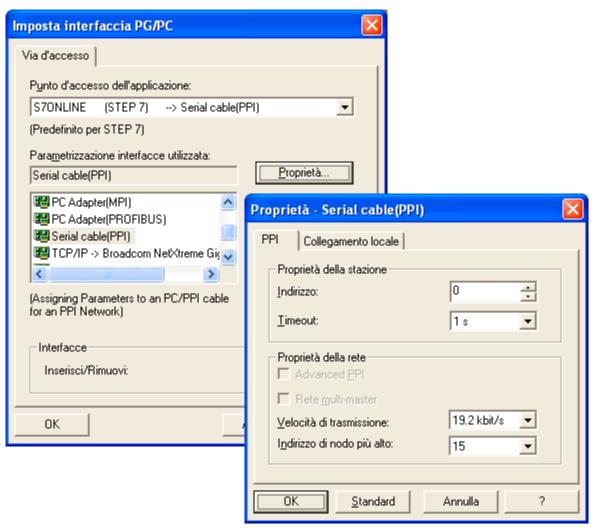


Figura 5-30 Impostazione interfaccia

- 3. Impostare per la CU320 l'indirizzo del bus "3" sullo switch degli indirizzi.
- 4. Alla creazione dell'apparecchio di azionamento impostare anche l'indirizzo di bus "3".

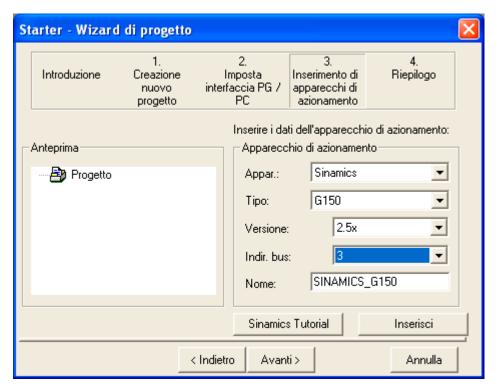


Figura 5-31 Impostazione dell'indirizzo del bus

Nota

Gli indirizzi del bus impostati sulla CU320 e sul PC non devono essere uguali.

 Il cavo di collegamento tra la CU320 e l'AOP30 deve essere scollegato dalla CU320. Al suo posto collegare un cavo null modem dal PC (interfaccia COM) alla CU320. Questa interfaccia non deve essere commutata.

5.4 Pannello operativo AOP30

Descrizione

L'apparecchio è dotato di un pannello operativo nella porta dell'armadio per il servizio e la supervisione, nonché per la messa in servizio, che presenta le seguenti caratteristiche:

- Display LCD grafico con retroilluminazione per la visualizzazione di testi in chiaro e "diagrammi a barre" di variabili di processo
- LED per la visualizzazione degli stati operativi
- Funzione di help con descrizione delle cause e dei rimedi per anomalie ed avvisi
- Blocco di tasti per la gestione di un azionamento
- Commutazione LOCAL/REMOTE per la selezione della postazione operativa (priorità di comando da pannello operativo o da morsettiera utente/PROFIBUS)
- Tastiera decimale per l'introduzione di valori numerici per il riferimento o per i valori dei parametri
- Tasti funzionali per la navigazione guidata nel menu di sistema
- Sistema di sicurezza a due livelli contro la modifica involontaria o non autorizzata delle impostazioni
- Grado di protezione IP 54 (se montato)

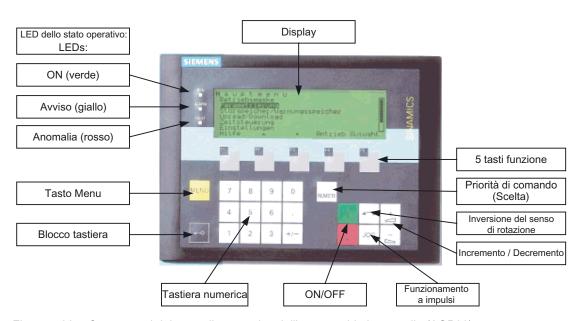


Figura 5-32 Componenti del pannello operativo dell'apparecchio in armadio (AOP30)

5.5 Prima messa in servizio

5.5.1 Primo avviamento

Finestra iniziale

Dopo la prima inserzione inizia automaticamente l'inizializzazione della scheda di regolazione (CU320). Viene visualizzata la seguente schermata:

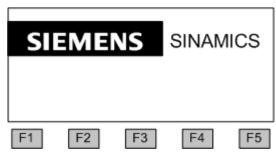


Figura 5-33 Schermata iniziale

Durante l'avviamento del sistema, le descrizioni dei parametri vengono caricati dalla scheda CompactFlash nel pannello operativo.

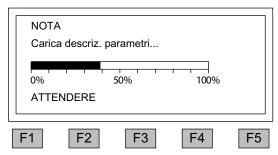
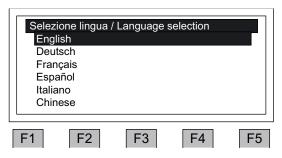



Figura 5-34 Caricamento delle descrizioni dei parametri durante l'avviamento del sistema

Scelta lingua

Quando si avvia il sistema per la prima volta, viene visualizzata una finestra per la selezione della lingua.

Nella finestra di dialogo occorre selezionare la lingua.

Modifica della lingua con <F2> e <F3> Selezione della lingua con <F5>

Una volta selezionata la lingua, l'avviamento del sistema prosegue.

Al termine dell'avviamento, alla prima inserzione dopo la fornitura occorre eseguire una messa in servizio dell'azionamento. Successivamente è possibile inserire il convertitore.

Per i successivi avviamenti si può passare direttamente al normale funzionamento.

Navigazione all'interno delle finestre di dialogo

All'interno di una finestra di dialogo si possono generalmente selezionare i vari campi o caselle di riepilogo con i tasti <F2> o <F3>. Le caselle di riepilogo sono generalmente dei testi inquadrati che, se selezionati, vengono evidenziati con colori invertiti (scritta bianca su sfondo nero).

Il valore effettivo di una casella di riepilogo selezionata può essere confermato con <F5> "OK" oppure cambiato con "Modifica"; viene visualizzata allora un'altra finestra di immissione, nella quale è possibile immettere direttamente il valore desiderato tramite il tastierino numerico oppure selezionare il valore da un elenco.

Per passare da una finestra di dialogo ad una finestra precedente o successiva, selezionare "Avanti" o "Indietro" quindi confermare con <F5> "OK".

Nelle maschere con parametri particolarmente importanti, il pulsante "Avanti" viene visualizzato solo sull'estremità inferiore della finestra di dialogo. È infatti necessario verificare e correggere ogni singolo parametro di questa finestra di dialogo prima di poter passare alla finestra di dialogo successiva.

5.5.2 Messa in servizio di base

Rilevamento dei dati del motore

Durante la messa in servizio di base i dati del motore devono essere immessi tramite il pannello operativo. Essi possono essere ricavati dalla targhetta del motore.

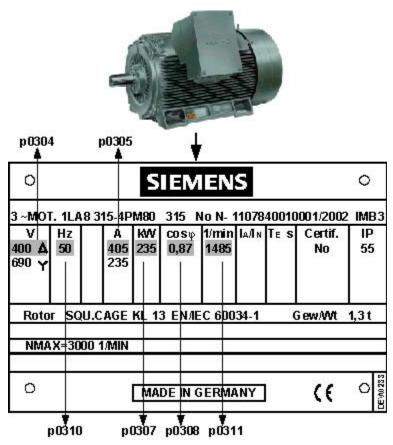
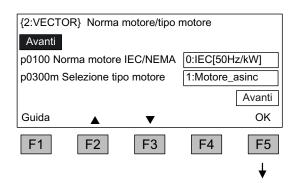


Figura 5-35 Esempio di targhetta identificativa del motore


Tabella 5-1 Dati del motore

	N. di parametro	Valori	Unità
Unità di sistema per frequenza di rete e introduzione dati del motore	p0100	0	IEC [50 Hz / kW] NEMA [60 Hz / hp]
Motore:			
Tensione nominale	p0304		[V]
Corrente nominale	p0305		[A]
Potenza nominale	p0307		[kW] / [hp]
Fatt. potenza nom. cos φ (solo con p0100 = 0)	p0308		
Rendimento nominale η (solo con p0100 = 1)	p0309		[%]
Frequenza nominale	p0310		[Hz]
Giri nominali	p0311		[min-1] / [rpm]

Messa in servizio di base: Selezione del tipo di motore e impostazione dei dati del motore

Per i seguenti apparecchi in armadio può essere necessario eseguire impostazioni supplementari prima di proseguire (vedere il capitolo "Altre impostazioni necessarie per apparecchi in armadio di potenza elevata"):

- con 3 AC 380 V 480 V:
 6SL3710-2GE41-1AA0, 6SL3710-2GE41-4AA0, 6SL3710-2GE41-6AA0
- con 3 AC 500 V 600 V: 6SL3710-2GF38-6AA0, 6SL3710-2GF41-1AA0, 6SL3710-2GF41-4AA0
- con 3 AC 660 V 690 V:
 6SL3710-2GH41-1AA0, 6SL3710-2GH41-4AA0, 6SL3710-2GH41-5AA0

Nella finestra di dialogo occorre scegliere la norma motore e il tipo di motore.

Per la norma motore viene definito quanto segue:

- 0: frequenza di rete 50 Hz, dati del motore in kW
- 1: frequenza di rete 60 Hz, dati del motore in hp

Per il tipo di motore esistono le seguenti possibilità:

- 1: motore asincrono
- 2: motore sincrono ad eccitazione permanente.

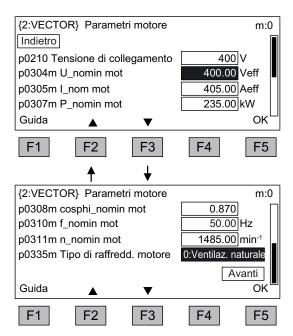
Altri valori non sono consentiti.

Navigazione tra le caselle di riepilogo con <F2> e <F3>

Attivazione della selezione effettuata nella navigazione con <F5>

Immissione dei dati del motore secondo la targhetta dei dati tecnici

Navigazione tra le caselle di riepilogo con <F2> e <F3>

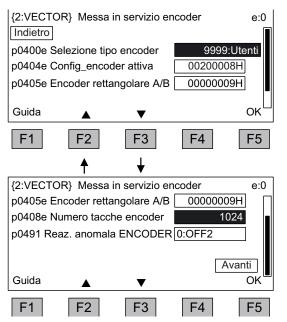

Attivazione della selezione effettuata nella navigazione con <F5>

Per modificare il valore di un parametro, posizionarsi sulla casella di riepilogo selezionata e selezionare <F5>.

Viene visualizzata una finestra di immissione nella quale

- è possibile immettere il valore desiderato oppure
- selezionare il valore da un elenco.

L'immissione dei dati del motore termina quando si seleziona la casella "Avanti" situata sotto l'ultimo valore del parametro e si attiva con <F5>.



Nota

La descrizione dei passi seguenti si riferisce alla messa in servizio di un motore asincrono.

Per la messa in servizio di un motore sincrono ad eccitazione permanente (p0300 = 2) valgono alcune particolari condizioni marginali che vengono descritte in un capitolo a parte (vedere il capitolo "Canale del valore di riferimento e regolazione / Motori sincroni ad eccitazione permanente").

Messa in servizio di base: Immissione dei dati dell'encoder (se presente)

Quando è collegata l'unità SMC30 per l'analisi dell'encoder, questa unità viene riconosciuta dall'AOP30 (per l'opzione K50) e viene visualizzata una finestra per l'immissione dei dati dell'encoder.

Navigazione tra le caselle di riepilogo con <F2> e <F3>

Attivazione della selezione effettuata nella navigazione con <F5>

Selezionando il parametro p0400 (selezione tipo di encoder) si possono facilmente impostare degli encoder predefiniti:

3001:	1024 HTL A/B R su X521/X531
3002:	1024 TTL A/B R su X521/X531
3003:	2048 HTL A/B R su X521/X531
3005:	1024 HTL A/B su X521/X531
3006:	1024 HTL A/B su X521/X531
3007:	2048 HTL A/B su X521/X531
3008:	2048 HTL A/B su X521/X531
3009	1024 HTL A/B unipolare su X521/X531
3011:	2048 HTL A/B unipolare su X521/X531
3020:	2048 TTL A/B R con Sense su X520

Nota

Nell'impostazione di fabbrica un encoder HTL bipolare viene impostato con 1024 impulsi per giro e tensione di alimentazione di 24 V.

Nella sezione "Installazione elettrica" vengono illustrati due esempi di collegamento per encoder HTL e TTL.

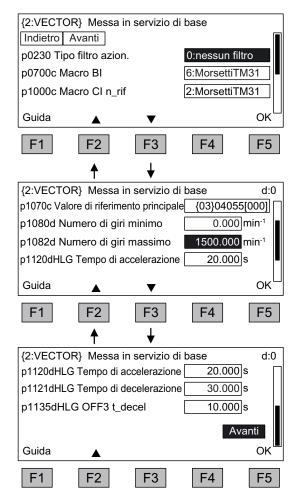
Nota

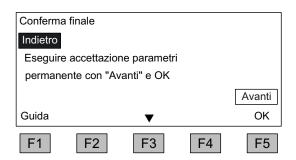
Se l'encoder collegato non dovesse corrispondere esattamente a uno preimpostato in p0400, è possibile semplificare l'immissione dei dati dell'encoder procedendo nel modo seguente:

- Selezionare tramite p0400 un tipo di encoder, i cui dati siano simili a quelli dell'encoder collegato.
- Selezionare "Encoder definito dall'utente" (p0400 = 9999); in questo modo vengono mantenuti i valori impostati in precedenza.
- Adattare i campi dei bit di p0404, p0405 e p0408 ai dati dell'encoder collegato.

Tabella 5-2 Significato delle impostazioni dei bit per p0404

Bit	Significato	Valore 0	Valore 1
20	Tensione 5 V	No	Sì
21	Tensione 24 V	No	Sì


Tabella 5-3 Significato delle impostazioni dei bit per p0405


Bit	Significato	Valore 0	Valore 1
0	Segnale	Unipolare	Bipolare
1	Livello	HTL	TTL
2	Sorveglianza traccia	Nessuna	A/B>< -A/B
3 Impulso zero		24 V unipolare	Come traccia A/B

CAUTELA

Dopo la messa in servizio dell'encoder viene attivata la tensione di alimentazione (5/24 V) impostata per l'encoder sull'unità modulare SMC30. Se è stato collegato un encoder a 5 V e la tensione di alimentazione non è impostata correttamente tramite p0404 (bit 20 = "sì", bit 21 = "no"), l'encoder rischia di essere danneggiato.

Messa in servizio di base: Immissione dei parametri di base

Impostazione dei parametri della messa in servizio di base:

Se è collegato un filtro sinusoidale (opzione L15), questo deve essere obbligatoriamente attivato in p0230 (p0230 = 3), altrimenti può andare distrutto!

p0700: Preassegnazione sorgente di comando

- 5: PROFIdrive
- 6: Morsetti TM31
- 7: Namur
- 10: PROFIdrive Namur

p1000: Preassegnazione sorgente di comando

- 1: PROFIdrive
- 2: Morsetti TM31
- 3: Potenziometro motore
- 4: Valore di riferimento fisso

Dopo la selezione di una sorgente del valore di riferimento (p1000), il valore di riferimento principale p1070 viene impostato di conseguenza.

Navigazione tra le caselle di riepilogo con <F2> e <F3>

Attivazione della selezione effettuata nella navigazione con <F5>

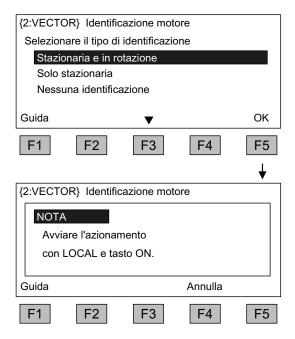
Per modificare il valore di un parametro, posizionarsi sulla casella di riepilogo selezionata e selezionare <F5>.

Viene visualizzata un'altra finestra di immissione nella quale è possibile

- immettere direttamente il valore desiderato oppure
- selezionare il valore da un elenco.

Conferma finale

Segue una conferma finale per l'applicazione dei parametri di base immessi.


Dopo la selezione di "Avanti" e l'attivazione con <F5>, i parametri di base vengono memorizzati in modo permanente e vengono eseguiti i calcoli necessari per la regolazione.

ATTENZIONE

Deve essere immesso un filtro disponibile sul lato motore in p0230 (opzione L08 – bobina motore: p0230 = 1, opzione L10 – filtro du/dt con Voltage Peak Limiter: p0230 = 2, opzione L15 - filtro sinusoidale: p0230 = 3). In caso contrario la regolazione del motore potrebbe funzionare in modo non ottimale.

Con p0230 = 4 "Filtro sinusoidale di terze parti" è possibile registrare un proprio filtro sinusoidale; viene quindi visualizzata una finestra di immissione per i dati di filtro specifici.

Messa in servizio di base: Identificazione motore

Selezione dell'identificazione motore

Navigazione tra le caselle di riepilogo con <F2> e <F3>

Attivazione della selezione effettuata nella navigazione con <F5>

La misura a motore fermo aumenta la precisione di regolazione dato che vengono ridotti al minimo gli scostamenti dei valori elettrici caratteristici dovuti a dispersioni delle proprietà dei materiali e a tolleranze di lavorazione.

La misura rotante rileva i dati necessari (ad es. il momento di inerzia) per l'impostazione del regolatore del numero di giri. Inoltre vengono misurate la curva caratteristica di magnetizzazione e la corrente nominale di magnetizzazione del motore.

L'inserzione avviene premendo il tasto LOCAL (attendere finché non si accende il LED del tasto LOCAL) e quindi il tasto ON.

Se non viene eseguita alcuna identificazione del motore, la regolazione del motore non funziona con i valori misurati, bensì con i valori caratteristici calcolati a partire dai dati della targhetta.

Se si seleziona la misura rotante, l'azionamento provoca movimenti del motore che raggiungono il numero di giri massimo del motore stesso. Le funzioni di ARRESTO D'EMERGENZA devono essere efficienti al momento della messa in servizio. Devono essere rispettate tutte le normative di sicurezza in materia al fine di evitare qualsiasi pericolo per gli operatori e le macchine.

5.5 Prima messa in servizio

Nota

Se si verifica un errore durante la selezione della misura a motore fermo o della misura rotante, non può essere eseguita l'identificazione del motore.

Per eliminare l'anomalia, occorre chiudere la finestra con "Nessuna identificazione" ed eliminare l'anomalia.

Per selezionare nuovamente l'identificazione del motore, selezionare <MENU> - <Messa in servizio/Service> - <Messa in servizio dell'azionamento> - <Identificazione motore>.

5.5.3 Altre impostazioni necessarie per apparecchi in armadio di potenza elevata

Prima di scegliere il motore e di immettere i dati del motore tramite il pannello operativo dell'armadio, occorre effettuare delle impostazioni supplementari per i seguenti apparecchi in armadio:

- con 3 AC 380 V 480 V:
 6SL3710-2GE41-1AA0, 6SL3710-2GE41-4AA0, 6SL3710-2GE41-6AA0
- con 3 AC 500 V 600 V: 6SL3710-2GF38-6AA0, 6SL3710-2GF41-1AA0, 6SL3710-2GF41-4AA0
- con 3 AC 660 V 690 V:
 6SL3710-2GH41-1AA0, 6SL3710-2GH41-4AA0, 6SL3710-2GH41-5AA0

Impostazioni per la sorveglianza del contatto di segnalazione del contattore principale o dell'interruttore automatico con alimentazione a 12 impulsi e circuito intermedio collegato

I contatti di segnalazione dei contattori principali o degli interruttori automatici sono collegati in serie già in fabbrica e cablati sull'ingresso digitale 5 dell'unità di regolazione CU320.

Dopo la messa in servizio occorre attivare la sorveglianza dei segnali di conferma. Ciò avviene con il parametro p0860{Vector} = 722.5{Control_Unit}.

p0860 = r0722.5

Selezionare il parametro p0860 "Contatto di segnalazione del contattore di rete" e collegarlo con l'ingresso digitale DI5

Selezionare <MENU> <Parametrizzazione> <DO singolo> <2:VECTOR> <OK> "p0860", Selezionare <Modifica> "{1:CU_G}", Selezionare <OK> "r0722", Selezionare <OK> ".05 DI 5 (X132.2)", Selezionare <OK>

Viene visualizzata una finestra di conferma nella quale viene visualizzato il riepilogo del collegamento del contatto di segnalazione del contattore di rete.

Dopo la conferma con <F5> il collegamento impostato viene applicato.

PERICOLO

Se non si attiva la sorveglianza del contatto di segnalazione dei contattori principali o degli interruttori automatici, l'azionamento può inserirsi anche in caso di guasto di un contattore principale o di un interruttore automatico di un singolo sistema. In questo caso, i raddrizzatori di ingresso del singolo sistema possono risultare sovraccarichi ed essere danneggiati.

ATTENZIONE

Se si ripristinano le impostazioni di fabbrica della parametrizzazione, occorre effettuare nuovamente questa impostazione dopo la successiva messa in servizio.

Impostazioni con alimentazione a 12 impulsi e collegamento a un motore con sistema a un solo avvolgimento

Prima della messa in servizio viene impostato automaticamente un motore con più sistemi di avvolgimento.

L'impostazione per un sistema a un solo avvolgimento viene effettuata durante la messa in servizio con il parametro p7003 = 0.

Impostazioni tramite AOP30

Durante la messa in servizio il sistema richiede se il motore è collegato a un sistema a un solo avvolgimento o a più avvolgimenti. Questa impostazione deve essere effettuata in funzione del motore collegato.

ATTENZIONE

Se non viene effettuata l'impostazione "Motore con sistema a un avvolgimento" tramite p7003 = 0, durante l'identificazione del motore l'azionamento si disinserisce con un messaggio di errore "Sovracorrente". Il sistema non è ottimizzato.

ATTENZIONE

Se si ripristinano le impostazioni di fabbrica della parametrizzazione, occorre effettuare nuovamente questa impostazione prima della successiva nuova messa in servizio.

5.6 Condizione dopo la messa in servizio

Modo LOCAL (comando tramite pannello operativo)

- La commutazione nel modo LOCAL avviene premendo il tasto "LOCAL/REMOTE".
- Il comando (ON/OFF) avviene con i tasti "ON" e "OFF".
- La preimpostazione del valore di riferimento avviene con i tasti "Incremento" e "Decremento" oppure come introduzione alfanumerica con la tastiera numerica.

Uscite analogiche

- Dall'uscita analogica 0 (X522:2,3) viene emesso il numero di giri attuale (r0063) come uscita in corrente nel campo da 0 ... 20 mA.
 Una corrente di 20 mA corrisponde al numero di giri massimo impostato in p1082.
- Dall'uscita analogica (X522:5,6) viene emesso il valore attuale di corrente (r0068) come uscita di corrente nel campo 0 ... 20 mA.
 Una corrente di 20 mA corrisponde al limite di corrente (p0640) impostato a 1,5volte la corrente nominale del motore (p0305).

Uscite digitali

- Dall'uscita digitale 0 (X542:2,3) viene emesso il segnale "Impulsi abilitati".
- Dall'uscita digitale 1 (X542:5,6) viene emesso il segnale "Nessun guasto presente" (motivo: sicurezza contro la rottura del conduttore).
- Dall'uscita digitale 8 (X541:2) viene emesso il segnale "Pronto all'inserzione".

5.7 Ripristino dei parametri all'impostazione di fabbrica

L'impostazione di fabbrica è la condizione originale dell'apparecchio definita al momento della spedizione.

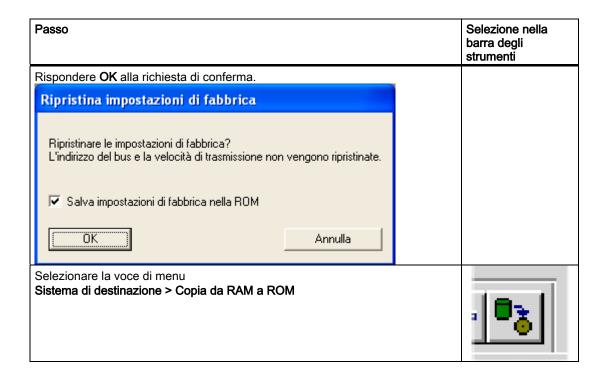
Con un ripristino dei parametri all'impostazione di fabbrica è possibile annullare tutte le modifiche dei parametri eseguite dopo la fornitura.

Ripristino dei parametri tramite AOP30

Tabella 5-4 Procedura di ripristino dei parametri alle impostazioni di fabbrica con AOP30

Impostare il livello di accesso "Esteso" sul pannello operativo <tasto chiave> - <Livello di accesso> - Impostare "Esteso".

Impostare il filtro parametri su "Reset parametri" <MENU> <Messa in servizio/Service> <OK> <Messa in servizio dell'apparecchio> <OK> <30: Reset parametri> <OK>


Ripristino di tutti i parametri alle impostazioni di fabbrica Tutti i parametri dell'apparecchio vengono ripristinati alle impostazioni di fabbrica.

Ripristino dei parametri tramite STARTER

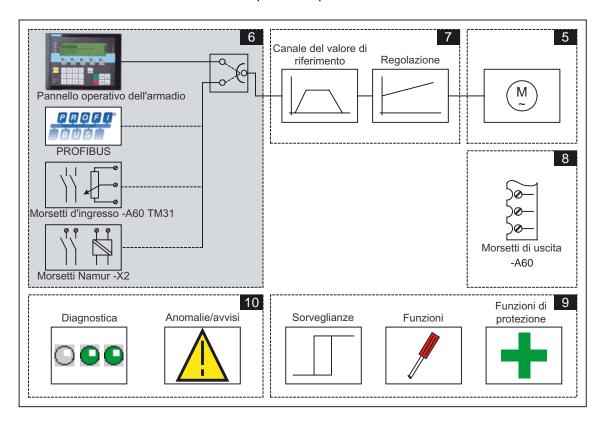
Il ripristino dei parametri in STARTER avviene in modalità online. La procedura necessaria viene descritta di seguito.

Passo	Selezione nella barra degli strumenti
Selezionare la voce di menu Progetto > Collega al sistema di destinazione	<mark> 22</mark>
Fare clic sull'apparecchio di azionamento i cui parametri devono essere ripristinati all'impostazione di fabbrica e selezionare il simbolo Ripristina impostazioni di fabbrica nella barra degli strumenti.	

5.7 Ripristino dei parametri all'impostazione di fabbrica

Nota

Il simbolo di **Copia da RAM a ROM** può essere selezionato solo se l'apparecchio di azionamento è selezionato nella navigazione di progetto.


Dopo un ripristino dei parametri all'impostazione di fabbrica è necessario eseguire una prima messa in servizio.

Uso

6.1 Contenuto del capitolo

Questo capitolo descrive:

- Principi del sistema di azionamento
- Selezione della sorgente dei comandi tramite
 - PROFIdrive
 - Morsettiera
 - morsettiera NAMUR
- Impostazione del valore di riferimento tramite
 - PROFIdrive
 - ingressi analogici
 - potenziometro motore
 - valori di riferimento fissi
- Comando tramite pannello operativo AOP30

6.2 Informazioni generali sulle sorgenti dei comandi e di riferimento

Descrizione

Sono disponibili 4 preimpostazioni per la selezione delle sorgenti di comando e 4 preimpostazioni per la selezione delle sorgenti del valore di riferimento dell'apparecchio in armadio SINAMICS G150.

Sorgenti dei comandi

- PROFIdrive
- Morsetti TM31
- NAMUR
- PROFIdrive NAMUR

Sorgenti del valore di riferimento

- PROFIdrive
- Ingressi analogici
- Potenziometro motore
- Valori di riferimento fissi

Le impostazioni vengono spiegate nelle sezioni seguenti.

Nota

Le opportune preimpostazioni per la configurazione dell'apparecchio devono essere selezionate al momento della messa in servizio (vedere la sezione "Messa in servizio").

I segnali di arresto d'emergenza (L57, L59, L60) e quelli della protezione motore (L83, L84) sono sempre attivi (indipendentemente dalla sorgente di comando).

Schemi logici

A integrazione delle presenti Istruzioni operative, la cartella della documentazione contiene una raccolta degli schemi logici semplificati che descrivono il funzionamento. Questi schemi sono articolati secondo i capitoli delle Istruzioni operative; i fogli numerati con 6xx descrivono la funzionalità di questo capitolo.

In alcuni punti di questo capitolo si fa riferimento a schemi logici con fogli identificati da numeri a 4 cifre. Questi si trovano nel CD della documentazione nel "Libretto di descrizione parametri SINAMICS G", in cui è descritta nei dettagli la funzionalità complessiva ad uso degli utenti più esperti.

6.3 Principi del sistema di azionamento

6.3.1 Parametri

Panoramica

L'azionamento viene adattato al compito da svolgere mediante l'impostazione di parametri. Ogni parametro viene contrassegnato con un numero univoco e con attributi specifici (ad es. leggibile, scrivibile, attributo BICO, attributo di gruppo, ecc.).

L'accesso ai parametri è possibile tramite le seguenti unità di comando:

- PC con tool di messa in servizio "STARTER" tramite PROFIBUS
- Pannello operativo "comfort" AOP30

Tipi di parametri

Esistono parametri di impostazione e parametri di supervisione:

• Parametri di impostazione (leggibili e scrivibili)

Questi parametri influenzano direttamente il comportamento di una funzione.

Esempio: Tempo di accelerazione e decelerazione del generatore di rampa

• Parametri di supervisione (solo lettura)

Questi parametri permettono di visualizzare grandezze interne.

Esempio: corrente attuale del motore

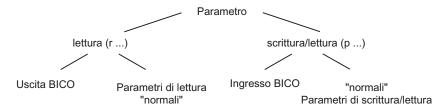


Figura 6-1 Tipi di parametri

Tutti questi parametri dell'azionamento possono essere letti e modificati tramite PROFIBUS con i meccanismi definiti nel profilo PROFIdrive.

Classificazione dei parametri

I parametri dei singoli oggetti di azionamento (vedere il capitolo "Oggetti di azionamento (Drive Objects)") vengono suddivisi in record di dati (vedere il capitolo "Uso/record di dati") nel seguente modo:

- Parametri indipendenti da record di dati
 Questi parametri sono presenti una sola volta per ogni oggetto di azionamento.
- Parametri dipendenti da record di dati
 Questi parametri possono essere presenti più volte per ogni oggetto di azionamento e
 possono essere indirizzati tramite l'indice dei parametri per la lettura e la scrittura. Si
 distinguono vari tipi di record di dati:
 - CDS: Command Data Set, record di dati di comando
 Mediante un'opportuna parametrizzazione di più record di dati dei comandi e la commutazione dei record di dati è possibile far funzionare l'azionamento con varie sorgenti dei segnali preconfigurate.
 - DDS: Drive Data Set record di dati dell'azionamento
 Nel Drive Data Set sono riassunti i parametri per la commutazione della parametrizzazione della regolazione dell'azionamento.

I record di dati CDS e DDS possono essere commutati durante il funzionamento. Esistono inoltre altri tipi di record di dati che però possono essere attivati solo indirettamente tramite una commutazione del DDS.

- EDS: Encoder Data Set record di dati dell'encoder
- MDS: Motor Data Set record di dati del motore

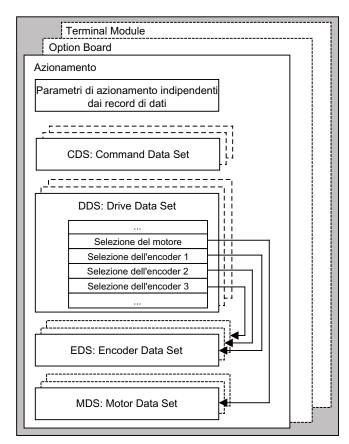


Figura 6-2 Classificazione dei parametri

6.3.2 Oggetti di azionamento (Drive Objects)

Un oggetto di azionamento è una funzionalità software indipendente che ha i propri parametri ed eventualmente anche le proprie anomalie e i propri avvisi. Gli oggetti di azionamento possono essere presenti per impostazione predefinita (ad es. rilevazione ingressi/uscite), si possono creare in modo semplice (ad es. Option Board) o anche più volte (ad es. regolazione azionamento).

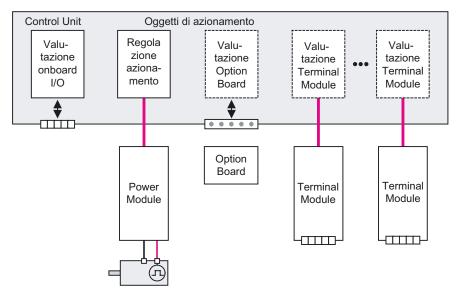


Figura 6-3 Oggetti di azionamento - Drive Objects

Oggetti di azionamento presenti per impostazione predefinita

- Regolazione azionamento

 La regolazione azionamento esegue la regolazione del motore. Alla regolazione
 azionamento sono assegnati 1 Power Module, almeno 1 motore e massimo 3 encoder.
- Control Unit, ingressi/uscite
 Gli ingressi/uscite presenti sulla Control Unit vengono analizzati nell'ambito di un oggetto di azionamento. Oltre agli ingressi e alle uscite digitali bidirezionali, qui vengono elaborati anche ingressi rapidi per tastatori di misura.

Proprietà di un oggetto di azionamento

- Propria area parametri
- Propria finestra in STARTER
- Proprio sistema di anomalia/avviso
- Proprio telegramma PROFIdrive per dati di processo

6.3 Principi del sistema di azionamento

Oggetti di azionamento opzionali

• Valutazione Option Board

Un ulteriore oggetto di azionamento esegue la valutazione di una Option Board eventualmente inserita. Il funzionamento specifico dipende dal tipo di Option Board.

Valutazione Terminal Module

La valutazione dei Terminal Module collegabili opzionalmente è affidata ad uno specifico oggetto di azionamento.

Configurazione di oggetti di azionamento

Gli "oggetti di azionamento" elaborati via software nella Control Unit vengono impostati in STARTER alla prima messa in servizio mediante dei parametri di configurazione. In una Control Unit si possono creare diversi oggetti di azionamento (Drive Objects).

Gli oggetti di azionamento sono blocchi funzionali configurabili con i quali si possono eseguire determinate funzioni di azionamento.

Se dopo la prima messa in servizio devono essere configurati ulteriori oggetti di azionamento, bisogna utilizzare la modalità di configurazione del sistema di azionamento.

Si può accedere ai parametri di un oggetto di azionamento soltanto dopo aver configurato l'oggetto in questione ed essere entrati nella modalità di parametrizzazione.

Nota

Ad ogni oggetto di azionamento presente (Drive Object) viene assegnato alla prima messa in servizio un numero da 0 a 63 per la sua identificazione.

Parametri

- p0101 Numeri degli oggetti di azionamento
- r0102 Numero di oggetti di azionamento
- p0107 Tipo di oggetti di azionamento
- p0108 Configurazione oggetti di azionamento

6.3.3 Record di dati

Descrizione

Per molte applicazioni risulta vantaggioso poter modificare più parametri durante il funzionamento o nella condizione di pronto al funzionamento con **un solo**segnale esterno.

Questa funzionalità si realizza con l'ausilio dei parametri indicizzati. Nel far ciò i parametri vengono raggruppati e indicizzati in un gruppo (record o set di dati) in base alla loro funzionalità. Con l'indicizzazione si possono memorizzare in ogni parametro diverse impostazioni, che a loro volta vengono attivate commutando il record di dati.

Nota

In STARTER possono essere copiati i record di dati di comando e di azionamento (Azionamento -> Configurazione -> Scheda "Record di dati di comando" o "Record di dati azionamento").

Nelle finestre STARTER interessate è possibile selezionare il record dei dati di azionamento visualizzato.

CDS: Record di dati di comando (CDS, Command Data Set)

In un record di dati di comando sono raccolti i parametri BICO (ingressi binettore e connettore). Questi parametri gestiscono l'interconnessione delle sorgenti dei segnali di un azionamento (vedere il capitolo "Uso/Tecnica BICO: interconnessione di segnali").

Tramite opportuna parametrizzazione di più record di dati di comando e commutazione dei record di dati, è possibile far funzionare l'azionamento con diverse sorgenti di segnale preconfigurate.

Un record di dati di comando comprende (esempi):

- Ingressi binettore per istruzioni di controllo (segnali digitali)
 - ON/OFF, abilitazioni (p0844, ecc.)
 - Funzionamento a impulsi (p1055, ecc.)
- Ingressi connettore per valori di riferimento (segnali analogici)
 - Valore di riferimento di tensione per controllo V/f (p1330)
 - Valori limite della coppia e fattori di scala (p1522, p1523, p1528, p1529)

Esistono due record di dati di comando.

Per selezionare i record di dati di comando e per visualizzare quello selezionato, attualmente sono disponibili i seguenti parametri:

Tabella 6-1 Record dati comando: selezione e visualizzazione

	Selezione bit 0	Visualizzazione		
CDS	p0810	selezionata (r0836)	attiva (r0050)	
0	0	0	0	
1	1	1	1	

Se si seleziona un record di dati di comando non esistente, resta attivo il record di dati attuale.

6.3 Principi del sistema di azionamento

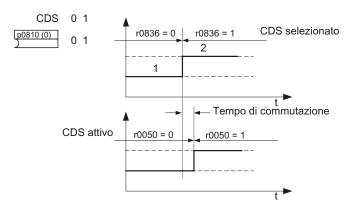


Figura 6-4 Esempio: commutazione tra il record di dati di comando 0 e 1

DDS: Record di dati dell'azionamento (Drive Data Set)

Un record di dati dell'azionamento contiene vari parametri di impostazione rilevanti per la regolazione e il comando di un azionamento:

- Numeri dei record di dati motore e encoder assegnati:
 - p0186: record di dati del motore assegnato (MDS)
 - Da p0187 a p0189: fino a 3 record di dati encoder assegnati (EDS)
- Vari parametri di regolazione, come ad es.:
 - Valori di riferimento fissi per numeri di giri (da p1001 a p1015)
 - Limiti di numero di giri min./max. (p1080, p1082)
 - Dati caratteristici del generatore di rampa (p1120 e segg.)
 - Dati caratteristici del regolatore (p1240 e segg.)
 - ..

I parametri raccolti in un record di dati dell'azionamento sono identificati nella lista parametri SINAMICS con "Record di dati DDS" e sono provvisti dell'indice [0..n].

È possibile la parametrizzazione di più record di dati dell'azionamento. Risulta così più semplice la commutazione tra diverse configurazioni dell'azionamento (tipo di regolazione, motore, encoder) grazie alla selezione del corrispondente record di dati.

Un oggetto di azionamento può gestire al massimo 32 record di dati dell'azionamento. La selezione dei record di dati dell'azionamento viene configurata con p0180.

Per selezionare un record di dati dell'azionamento si usano gli ingressi binettore da p0820 a p0824. Questi formano il numero del record di dati dell'azionamento (da 0 a 31) in formato binario (con p0824 come bit più significativo).

- p0820 BI: Selezione record di dati dell'azionamento DDS bit 0
- p0821 BI: Selezione record di dati dell'azionamento DDS bit 1
- p0822 BI: Selezione record di dati dell'azionamento DDS bit 2
- p0823 BI: Selezione record di dati dell'azionamento DDS bit 3
- p0824 BI: Selezione record di dati dell'azionamento DDS bit 4

Condizioni marginali e raccomandazioni

- Raccomandazione per il numero di DDS di un azionamento: il numero di DDS di un azionamento deve corrispondere alle possibilità di commutazione, per cui deve essere valido quanto segue: p0180 (DDS) ≥ p0130 (MDS)
- Numero massimo di DDS per un oggetto di azionamento = 32 DDS

EDS: Record di dati dell'encoder (Encoder Data Set)

Un record di dati dell'encoder contiene vari parametri di impostazione dell'encoder collegato che sono rilevanti per la configurazione dell'azionamento.

- Parametri di impostazione, ad es.:
 - Numero di componente interfaccia encoder (p0141)
 - Numero di componente encoder (p0142)
 - Selezione tipo di encoder (p0400)

I parametri raccolti in un record di dati dell'encoder sono identificati nella lista parametri SINAMICS con "Record di dati EDS" e provvisti dell'indice [0..n].

Per ogni encoder gestito dalla Control Unit è necessario un record di dati specifico. Ad un record di dati dell'azionamento vengono assegnati fino a 3 record di dati dell'encoder tramite i parametri p0187, p0188 e p0189.

Una commutazione del record di dati dell'encoder può avvenire solo tramite una commutazione DDS.

Ogni encoder può essere associato a un solo azionamento e all'interno di quest'ultimo, nel record di dati dell'azionamento, deve essere sempre l'encoder 1, 2 o 3.

Un'applicazione per la commutazione EDS può essere ad esempio una parte di potenza con la quale possono essere azionati alternativamente più motori. Per passare da un motore all'altro si utilizza una commutazione di protezione. Ciascuno dei motori può essere dotato di un encoder o essere azionato senza encoder. Ogni encoder deve essere collegato ad un proprio SMx.

Se l'encoder 1 (p0187) viene commutato tramite DDS, è necessario commutare anche un MDS.

Un oggetto di azionamento può gestire al massimo 16 record di dati dell'encoder. Il numero dei record di dati dell'encoder configurati è indicato in p0140.

Selezionando un record di dati dell'azionamento si selezionano anche i record di dati assegnati dell'encoder.

MDS: Record dati del motore (Motor Data Set)

Un record di dati del motore contiene vari parametri di impostazione del motore collegato che sono rilevanti per la configurazione dell'azionamento. Inoltre contiene alcuni parametri di supervisione con dati calcolati.

- Parametri di impostazione, ad es.:
 - Numero di componente motore (p0131)
 - Selezione tipo di motore (p0300)
 - Dati nominali motore (p0304 e segg.)
 - ..
- Parametri di supervisione, ad es.:
 - Dati nominali calcolati (r0330 e segg.)
 - ..

I parametri raccolti in un record di dati del motore sono identificati nella lista parametri SINAMICS con "Record di dati MDS" e sono provvisti dell'indice [0..n].

Per ogni motore comandato dalla Control Unit tramite un Motor Module è necessario un proprio record di dati del motore. Il record di dati del motore viene assegnato a un record di dati dell'azionamento mediante il parametro p0186.

Una commutazione del record di dati può avvenire solo tramite una commutazione DDS.

La commutazione del record di dati del motore viene utilizzata ad esempio nei casi seguenti:

- · commutazione di motori diversi
- commutazione di diversi avvolgimenti di un motore (ad es. commutazione stella-triangolo)
- adattamento dei dati motore

Se più motori vengono fatti funzionare alternativamente con uno stesso Motor Module, è necessario creare un numero corrispondente di record di dati dell'azionamento. Per maggiori informazioni sulla commutazione del motore, vedere il capitolo "Funzioni/Funzioni dell'azionamento".

Un oggetto di azionamento può gestire al massimo 16 record di dati del motore. Il numero dei record di dati del motore in p0130 non può superare quello dei record di dati dell'azionamento in p0180.

Esempio di assegnazione del record di dati

Tabella 6-2 Esempio di assegnazione del record di dati

DDS	Motore (p0186)	Encoder 1 (p0187)	Encoder 2 (p0188)	Encoder 3 (p0189)
DDS 0	MDS 0	EDS 0	EDS 1	EDS 2
DDS 1	MDS 0	EDS 0	EDS 3	
DDS 2	MDS 0	EDS 0	EDS 4	EDS 5
DDS 3	MDS 1	EDS 0		

Copia di record di dati di comando (CDS)

Impostare il parametro p0809 nel seguente modo:

- 1. p0809[0] = numero del record di dati di comando da copiare (sorgente)
- 2. p0809[1] = numero del record di dati di comando nel quale deve essere effettuata la copia (destinazione)
- 3. p0809[2] = 1

La copia viene avviata.

La copia termina quando p0809[2] = 0.

Copia di un record di dati dell'azionamento (DDS)

Impostare il parametro p0819 nel seguente modo:

- 1. p0819[0] = numero del record di dati dell'azionamento da copiare (sorgente)
- 2. p0819[1] = numero del record di dati dell'azionamento nel quale deve essere effettuata la copia (destinazione)
- 3. p0819[2] = 1

La copia viene avviata.

La copia termina quando p0819[2] = 0.

Copia di record di dati del motore (MDS)

Impostare il parametro p0139 nel seguente modo:

- 1. p0139[0] = numero del record dei dati motore che deve essere copiato (sorgente)
- 2. p0139[1] = numero del record dei dati motore in cui deve essere eseguita la copia (destinazione)
- 3. p0139[2] = 1

La copia viene avviata.

La copia termina quando p0139[2] = 0.

Schema logico

FP 8560	Record di dati di comando (Command Data Set, CDS)
FP 8565	Record di dati dell'azionamento (Drive Data Set, DDS)
FP 8570	Record di dati dell'encoder (Encoder Data Set, EDS)
FP 8575	Record di dati del motore (Motor Data Set, MDS)

Parametri

•	p0120	Quantità di record di dati della parte di potenza (PDS)
•	p0130	Quantità di record di dati motore (MDS)
•	p0139[02]	Copia di record di dati del motore (MDS)
•	p0140	Quantità di record di dati dell'encoder (EDS)
•	p0170	Quantità di record di dati di comando (CDS)
•	p0180	Quantità di record di dati dell'azionamento (DDS)
•	p0186	record di dati del motore assegnato (MDS)
•	p0187[0n]	Encoder 1, numero record di dati dell'encoder
•	p0188[0n]	Encoder 2, numero record di dati dell'encoder
•	p0189[0n]	Encoder 3, numero record di dati dell'encoder
•	p0809	Copia di record di dati di comando CDS
•	p0810	BI: record di dati di comando CDS bit 0
•	p0811	BI: record di dati di comando CDS bit 1
•	p0812	BI: record di dati di comando CDS bit 2
•	p0813	BI: record di dati di comando CDS bit 3
•	p0819[02]	Copia di un record di dati dell'azionamento (DDS)
•	p0820	BI: Selezione record di dati dell'azionamento bit 0
•	p0821	BI: Selezione record di dati dell'azionamento bit 1
•	p0822	BI: Selezione record di dati dell'azionamento bit 2
•	p0823	BI: Selezione record di dati dell'azionamento bit 3
•	p0824	BI: Selezione record di dati dell'azionamento bit 4

6.3.4 Tecnica BICO: interconnessione di segnali

Descrizione

In ogni apparecchio di azionamento esistono molteplici grandezze di ingresso e di uscita nonché varie grandezze di regolazione interne.

Con la tecnica BICO (acronimo inglese per Binector Connector Technology) è possibile adattare l'apparecchio di azionamento alle più disparate esigenze.

I segnali digitali e analogici che possono essere interconnessi liberamente tramite parametri BICO sono identificati nei nomi dei parametri con le lettere iniziali BI, BO, CI o CO. Questi parametri sono opportunamente contrassegnati anche nella lista parametri o negli schemi logici.

Nota

Per impiegare la tecnica BICO si consiglia di usare il tool di parametrizzazione e messa in servizio STARTER.

Binettori, BI: ingresso binettore, BO: Uscita binettore

Un binettore è un segnale digitale (binario) senza unità che può assumere il valore 0 o 1.

I binettori si suddividono in ingressi binettore (ricevitore del segnale) e uscite binettore (sorgente del segnale).

Tabella 6-3 Binettori

Abbreviazione e simbolo	Nome	Descrizione
ВІ	Ingresso binettore Binector Input	Può essere interconnesso con un'uscita binettore come sorgente.
	(ricevitore del segnale)	Il numero dell'uscita binettore deve essere immesso come valore del parametro.
во	Uscita binettore Binector Output (sorgente del segnale)	Può essere usata come sorgente per un ingresso binettore.

Connettori, CI: ingresso connettore, CO: Uscita connettore

Un connettore è un segnale digitale, ad es. in formato a 32 bit, Esso può essere utilizzato per la rappresentazione di parole (16 bit), doppie parole (32 bit) o segnali analogici. I connettori si suddividono in ingressi connettore (ricevitore del segnale) e uscite connettore (sorgente del segnale).

Per motivi legati alle prestazioni, le possibilità di interconnessione dei connettori sono limitate.

Tabella 6-4 Connettori

Abbreviazione e simbolo	Nome	Descrizione
CI	Ingresso connettore Connector Input (ricevitore del segnale)	Pu essere interconnesso a un'uscita connettore come sorgente. Il numero dell'uscita connettore deve essere immesso come valore del parametro.
co	Uscita connettore Connector Output (sorgente del segnale)	Può essere usata come sorgente per un ingresso connettore.

Interconnessione di segnali con tecnica BICO

Per interconnettere due segnali occorre assegnare il parametro di uscita BICO desiderato (sorgente del segnale) a un parametro di ingresso BICO (ricevitore del segnale).

Per interconnettere un ingresso binettore/connettore a un'uscita binettore/connettore sono necessarie le seguenti informazioni:

Binettori: numero di parametro, numero di bit e Drive Object ID

• Connettori senza indice: numero di parametro e Drive Object ID

• Connettori con indice: numero di parametro, indice e Drive Object ID

6.3 Principi del sistema di azionamento

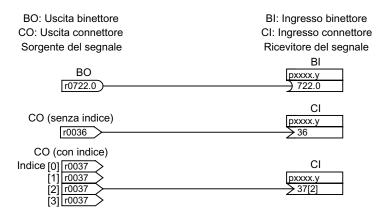


Figura 6-5 Interconnessione di segnali con tecnica BICO

Nota

Una sorgente di segnale (BO) può essere interconnessa con un numero a piacere di ricevitori di segnale (BI).

Un ricevitore di segnale (BI) può essere sempre interconnesso con una sola sorgente di segnale (BO).

L'interconnessione tramite parametri BICO può essere eseguita in diversi record di dati di comando (CDS). Commutando i record di dati diventa attiva la diversa interconnessione nei record di dati di comando. È possibile anche l'interconnessione tramite oggetti di azionamento.

Codifica interna dei parametri di uscita binettore/connettore

La codifica interna è necessaria ad es. per scrivere parametri d'ingresso BICO tramite PROFIdrive.

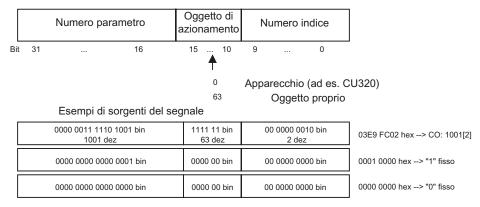


Figura 6-6 Codifica interna dei parametri di uscita binettore/connettore

Esempio 1: interconnessione di segnali digitali

Un azionamento deve essere comandato tramite i morsetti DI 0 e DI 1 della Control Unit con JOG 1 e JOG 2.

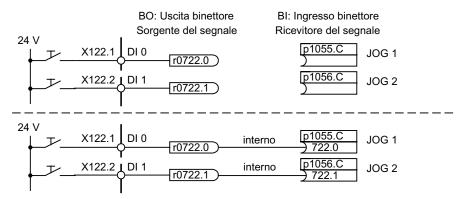


Figura 6-7 Interconnessione di segnali digitali (esempio)

Esempio 2: interconnessione di BB/OFF3 con più azionamenti

Il segnale OFF3 deve essere interconnesso con due azionamenti tramite il morsetto DI 2 della Control Unit.

Per ogni azionamento esiste un ingresso connettore 1. OFF3 e 2. OFF3. I due segnali vengono elaborati tramite interconnessione AND alla parola di comando STW1.2 (OFF3).

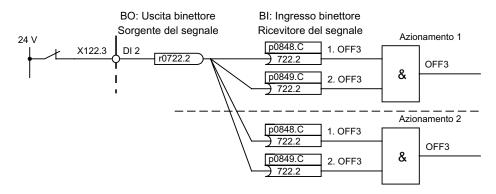


Figura 6-8 Interconnessione di OFF3 con più azionamenti (esempio)

Interconnessioni BICO con altri azionamenti

Per le interconnessioni BICO di un azionamento con altri azionamenti esistono i seguenti parametri:

•	r9490	Numero di interconnessioni BICO con altri azionamenti
•	r9491[015]	BI/CI delle interconnessioni BICO con altri azionamenti
•	r9492[015]	BO/CO delle interconnessioni BICO con altri azionamenti
•	p9493[015]	Ripristino delle interconnessioni BICO con altri azionamenti

Convertitore binettore-connettore e convertitore connettore-binettore

Convertitore binettore-connettore

- Più segnali digitali vengono convertiti in una parola doppia Integer a 32 bit o in una parola Integer a 16 bit.
- p2080[0...15] BI: PROFIdrive Invio dati di processo bit per bit

Convertitore connettore-binettore

- Una parola doppia Integer a 32 bit o una parola Integer a 16 bit viene convertita in segnali digitali singoli.
- p2099[0...1] CI: PROFIdrive Selezione PZD ricevuto bit per bit

Valori fissi per l'interconnessione tramite tecnica BICO

Per l'interconnessione di valori fissi impostabili liberamente esistono le seguenti uscite connettore:

p2900[0...n] CO: Val.fisso _%_1
 p2901[0...n] CO: Val.fisso _%_2
 p2930[0...n] CO: Val.fisso _M_1

Esempio:

Questi parametri possono essere usati per interconnettere il fattore di scala per il valore di riferimento principale o per interconnettere una coppia supplementare.

6.4 Sorgenti dei comandi

6.4.1 Preimpostazione "PROFIdrive"

Premesse

L'impostazione "PROFIdrive" è stata selezionata al momento della messa in servizio:

STARTER: "PROFIdrive"AOP30: "5: PROFIdrive"

Sorgenti dei comandi

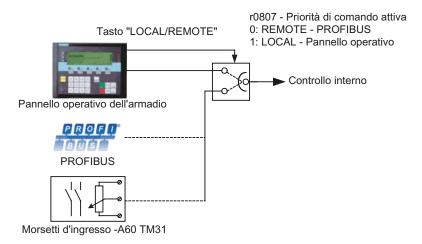


Figura 6-9 Sorgenti dei comandi - AOP30 ←→ PROFIdrive

Priorità

La priorità delle sorgenti dei comandi è illustrata nella figura "Sorgenti dei comandi - AOP30 ←→ PROFIdrive".

Nota

I segnali di emergenza come quelli della protezione motore sono sempre attivi (indipendentemente dalla sorgente di comando).

Con la priorità di comando LOCAL tutti i valori di riferimento aggiuntivi vengono disattivati.

Occupazione dei morsetti TM31 con la preimpostazione "PROFIdrive"

La selezione della preimpostazione "PROFIdrive" produce la seguente occupazione dei morsetti per il TM31:

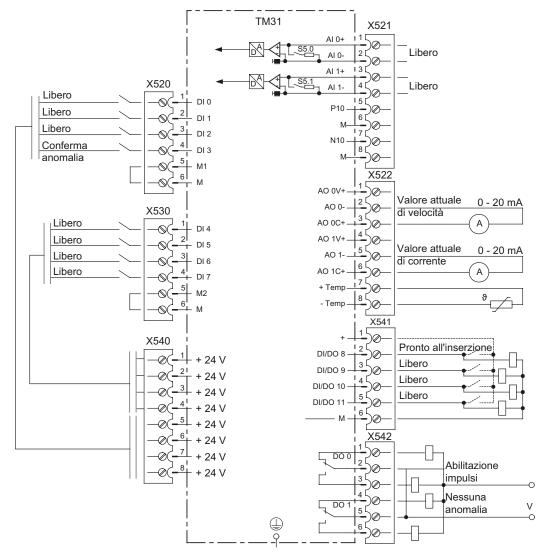


Figura 6-10 Occupazione dei morsetti TM31 con la preimpostazione "PROFIdrive"

Parola di comando 1

L'occupazione dei bit per la parola di comando 1 è descritta nella sezione "Descrizione delle parole di comando e dei valori di riferimento".

Parola di stato 1

L'occupazione dei bit per la parola di stato 1 è descritta nella sezione "Descrizione delle parole di stato e dei valori attuali".

Commutazione della sorgente dei comandi

La sorgente di comando può essere commutata tramite il tasto LOCAL/REMOTE sull'AOP30.

6.4.2 Preimpostazione "Morsetti TM31"

Presupposti

La preimpostazione "Morsetti TM31" è stata selezionata al momento della messa in servizio:

STARTER: "Morsetti TM31"AOP30: "6: Morsetti TM31"

Sorgenti dei comandi

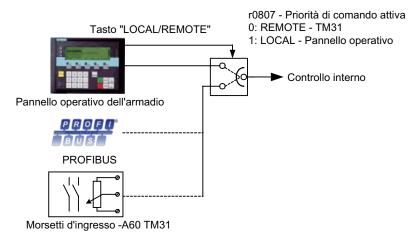


Figura 6-11 Sorgenti dei comandi - AOP30 ←→ Morsetti TM31

Priorità

La priorità delle sorgenti dei comandi è illustrata nella figura "Sorgenti dei comandi - AOP30 ←→ Morsetti TM31".

Nota

I segnali di emergenza come quelli della protezione motore sono sempre attivi (indipendentemente dalla sorgente di comando).

Con la priorità di comando LOCAL tutti i valori di riferimento aggiuntivi vengono disattivati.

Occupazione dei morsetti TM31 con la preimpostazione "Morsetti TM31"

La selezione della preimpostazione "Morsetti TM31" produce la seguente occupazione dei morsetti per il TM31:

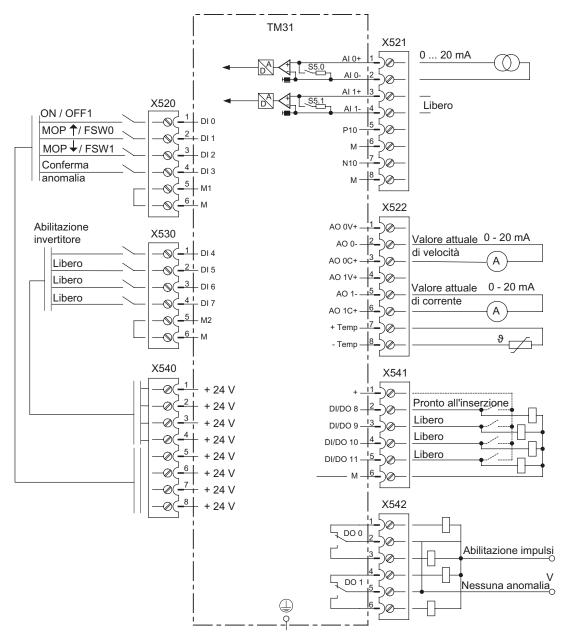


Figura 6-12 Occupazione dei morsetti TM31 con la preimpostazione "Morsetti TM31"

Commutazione della sorgente dei comandi

La sorgente di comando può essere commutata tramite il tasto LOCAL/REMOTE sull'AOP30.

6.4.3 Preimpostazione "NAMUR"

Presupposti

L'opzione morsettiera NAMUR (B00) è integrata nell'apparecchio.

La preimpostazione "NAMUR" è stata selezionata al momento della messa in servizio:

STARTER: "NAMUR"AOP30: "7: NAMUR

Sorgenti dei comandi

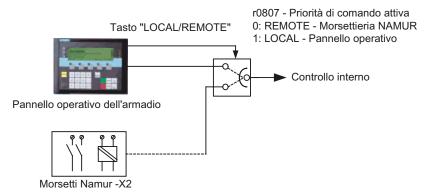


Figura 6-13 Sorgenti dei comandi - AOP30 ←→ Morsettiera NAMUR

Priorità

La priorità delle sorgenti dei comandi è illustrata nella figura "Sorgenti dei comandi - AOP30 ←→ Morsettiera NAMUR".

Nota

I segnali di emergenza come quelli della protezione motore sono sempre attivi (indipendentemente dalla sorgente di comando).

Con la priorità di comando LOCAL tutti i valori di riferimento aggiuntivi vengono disattivati.

Occupazione dei morsetti con la preimpostazione "NAMUR"

La selezione della preimpostazione "NAMUR" produce la seguente occupazione dei morsetti (come per l'opzione B00):

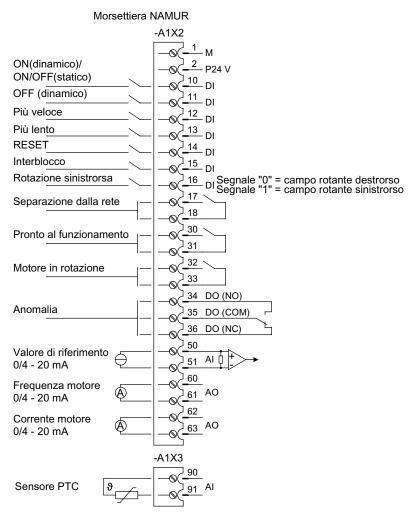


Figura 6-14 Occupazione dei morsetti TM31 con la preimpostazione "Morsettiera NAMUR"

Commutazione della sorgente dei comandi

La sorgente di comando può essere commutata tramite il tasto LOCAL/REMOTE sull'AOP30.

6.4.4 Preimpostazione "PROFIdrive NAMUR"

Presupposti

L'opzione morsettiera NAMUR (B00) è integrata nell'apparecchio.

L'impostazione "PROFIdrive" è stata selezionata al momento della messa in servizio:

STARTER: "PROFIdrive Namur"AOP30: "10: PROFIdrive Namur"

Sorgenti dei comandi

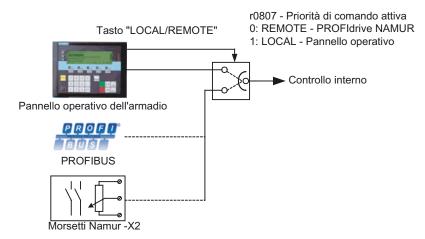


Figura 6-15 Sorgenti dei comandi - AOP30 ←→ PROFIdrive NAMUR

Priorità

La priorità delle sorgenti dei comandi è illustrata nella figura "Sorgenti dei comandi - AOP30 ←→ PROFIdrive NAMUR".

Nota

I segnali di emergenza come quelli della protezione motore sono sempre attivi (indipendentemente dalla sorgente di comando).

Con la priorità di comando LOCAL tutti i valori di riferimento aggiuntivi vengono disattivati.

Assegnazione dei morsetti con la preimpostazione "PROFIdrive NAMUR"

La selezione della preimpostazione "PROFIdrive NAMUR" produce la seguente occupazione dei morsetti (come per l'opzione B00):

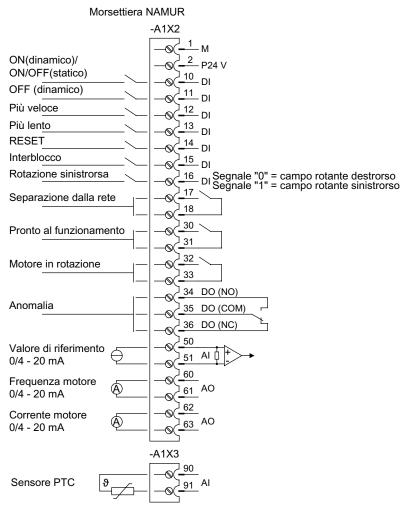


Figura 6-16 Assegnazione dei morsetti con la preimpostazione "PROFIdrive NAMUR"

Parola di comando 1

L'occupazione dei bit per la parola di comando 1 è descritta nella sezione "Descrizione delle parole di comando e dei valori di riferimento".

Parola di stato 1

L'occupazione dei bit per la parola di stato 1 è descritta nella sezione "Descrizione delle parole di stato e dei valori attuali".

Commutazione della sorgente dei comandi

La sorgente di comando può essere commutata tramite il tasto LOCAL/REMOTE sull'AOP30.

6.5 Sorgenti del valore di riferimento

6.5.1 Ingressi analogici

Descrizione

Sulla morsettiera utente TM31 sono disponibili due ingressi analogici per l'introduzione dei valori di riferimento tramite segnali in tensione o corrente.

Nelle impostazioni di fabbrica, l'ingresso analogico 0 (morsetto X521:1/2) viene utilizzato come ingresso in corrente nell'intervallo 0 ... 20 mA.

Presupposti

La preimpostazione per ingressi analogici è stata selezionata al momento della messa in servizio:

STARTER: "Morsetti TM31"AOP30: "2: Morsetti TM31"

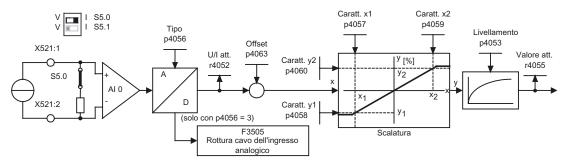


Figura 6-17 Schema del flusso dei segnali: ingresso analogico 0

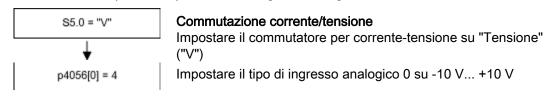
Schema logico

FP 9566 TM31 - Ingresso analogico 0 (AI 0) FP 9568 TM31 - Ingresso analogico 1 (AI 1)

Parametri

- r4052 Tensione / corrente di ingresso attuale
- p4053 Costante del tempo di livellamento ingressi analogici
- r4055 Valore di ingresso attuale riferito
- p4056 Tipo di ingressi analogici
- p4057 Valore x1 della curva caratteristica degli ingressi analogici

6.5 Sorgenti del valore di riferimento


•	p4058	Valore y1 della curva caratteristica degli ingressi analogici
•	p4059	Valore x2 della curva caratteristica degli ingressi analogici
•	p4060	Valore y2 della curva caratteristica degli ingressi analogici
•	p4063	Offset ingressi analogici

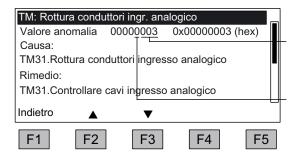
Nota

Nell'impostazione di fabbrica e dopo la messa in servizio di base, una corrente di ingresso di 20 mA corrisponde al valore di riferimento principale 100% della velocità di riferimento (p2000) che è stata impostata alla velocità massima (p1082).

Esempio di variazione dell'ingresso analogico 0 da corrente a tensione -10 - +10 V

Tabella 6-5 Esempio di un'impostazione dell'ingresso analogico 0

Nota


Per la protezione in caso di interruzioni di rete, la modifica dell'ingresso analogico deve essere anche memorizzata sulla scheda CompactFlash.

F3505 – Anomalia "Rottura conduttori dell'ingresso analogico"

L'anomalia si verifica quando il tipo di ingresso analogico (p4056) è impostato a 3 (4 ... 20 mA con sorveglianza rottura conduttori) e il valore della corrente di ingresso è sceso sotto 2 mA.

Tramite il codice dell'anomalia si può determinare l'ingresso analogico coinvolto.

Tabella 6-6 Pagina anomalie

Numero componente

- 3: modulo -A60
- 4: modulo -A61 (opzione)
- 0: ingresso analogico 0: -X521:1/2
- 1: ingresso analogico 1: -X521:3/4

6.5.2 Potenziometro motore

Descrizione

Il potenziometro motore digitale consente un'impostazione del numero dei giri telecomandata tramite segnali logici (tasti +/-). L'attivazione avviene tramite morsetti o PROFIBUS. Se all'ingresso del segnale "Incremento MOP" (Incremento del riferimento) è applicato un 1 logico, il contatore interno aumenta il valore di riferimento. Il tempo di integrazione (velocità di incremento della modifica del valore di riferimento) può essere impostato con il parametro p1047. Tramite l'ingresso di segnale "Decremento MOP" il riferimento può essere ridotto. La rampa di decelerazione può essere impostata tramite il parametro p1048. Il parametro di configurazione p1030.0 = 1 (impostazione di fabbrica = 0) attiva il salvataggio nella memoria non volatile del valore attuale del potenziometro motore al momento della disinserzione. All'inserzione il valore di partenza del potenziometro motore viene impostato

Presupposti

La preimpostazione per il potenziometro motore è stata selezionata al momento della messa in servizio:

STARTER: "Potenziometro motore"AOP30: "3: Potenziometro motore"

all'ultimo valore attuale al momento della disinserzione.

Schema del flusso dei segnali

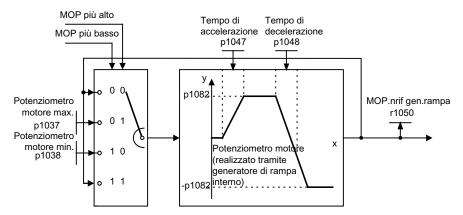


Figura 6-18 Schema del flusso dei segnali: Potenziometro motore

Schema logico

FP 3020 Potenziometro motore

Parametri

•	p1030	Potenziometro motore, configurazione
•	p1037	Potenziometro motore, numero di giri massimo
•	p1038	Potenziometro motore, numero di giri minimo
•	p1047	Potenziometro motore, tempo di accelerazione
•	p1048	Potenziometro motore, tempo di decelerazione
•	r1050	Potenziometro motore, riferimento numero di giri dopo generatore di rampa

6.5.3 Valori di riferimento fissi per numero di giri

Descrizione

Sono disponibili 3 valori di riferimento fissi per numeri di giri impostabili. La selezione di questi valori di riferimento fissi per numero di giri avviene tramite morsetti o PROFIBUS.

Presupposti

La preimpostazione per i valori di riferimento fissi per numero di giri è stata selezionata al momento della messa in servizio:

STARTER: "Valore di riferimento fisso"
 AOP30: "4: Valore di riferimento fisso"

Schema del flusso dei segnali

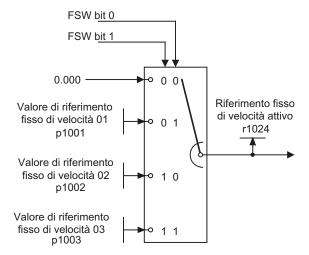


Figura 6-19 Schema del flusso dei segnali: Valori di riferimento fissi per numero di giri

Schema logico

FP 3010 Valori di riferimento fissi per numero di giri

Parametri

•	p1001	Valore di riferimento fisso per numero di giri 01
•	p1002	Valore di riferimento fisso per numero di giri 02
•	p1003	Valore di riferimento fisso per numero di giri 03
•	r1024	Valore di riferimento fisso del numero di giri attivo

Nota

I parametri da p1004 a p1015 forniscono ulteriori valori di riferimento del numero di giri fissi, che possono essere selezionati mediante i parametri da p1020 a p1023.

6.6 PROFIBUS

6.6.1 Collegamento PROFIBUS

Posizione del collegamento PROFIBUS, switch degli indirizzi e LED di diagnostica

Collegamento PROFIBUS, switch degli indirizzi e LED di diagnostica si trovano sull'unità di regolazione CU320.

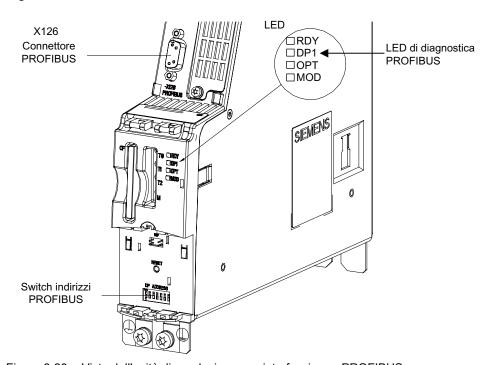
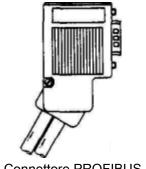


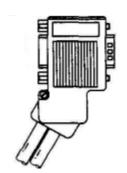
Figura 6-20 Vista dell'unità di regolazione con interfaccia per PROFIBUS

Collegamento PROFIBUS

Il collegamento PROFIBUS avviene con un connettore femmina a 9 poli Sub-D (X126), i collegamenti sono con separazione di potenziale.


Tabella 6-7 Collegamento PROFIBUS X126

	Pin	Nome del segnale	Significato	Intervallo
	1	SHIELD	Collegamento di terra	
	2	M24_SERV	Alimentazione per teleservice, massa	0 V
0	3	RxD/TxD-P	Ricezione / trasmissione dati - P (B/B')	RS485
	4	CNTR-P	Segnale di comando	TTL
	5	DGND	Potenziale di riferimento per dati PROFIBUS (C/C')	
0 8	6	VP	Tensione di alimentazione positiva	5 V ± 10 %
	7	P24_SERV	Alimentazione per teleservice P, +(24 V)	24 V (20,4 V - 28,8 V)
	8	RxD/TxD-N	Ricezione / trasmissione dati - N (A/A')	RS485
	9	-	Non occupato	


Connettori

Il collegamento dei cavi deve avvenire con connettori PROFIBUS in quanto in questo tipo di connettori sono presenti le resistenze di chiusura del bus.

I connettori PROFIBUS idonei, con le diverse uscite per cavi, sono raffigurati di seguito.

Connettore PROFIBUS senza collegamento PG/PC 6ES7972-0BA41-0XA0

Connettore PROFIBUS con collegamento PG/PC 6ES7972-0BB41-0XA0

Resistenza terminale di chiusura bus

La resistenza di chiusura del bus deve essere inserita o disinserita in funzione della posizione sul bus stesso per garantire il trasferimento corretto dei dati.

Regola: le resistenze di chiusura devono essere inserite solo alle due estremità del segmento del bus, su tutti gli altri connettori le resistenze devono essere disinserite.

Lo schermo del cavo deve essere collegato ad entrambi i lati con una superficie di contatto ampia.

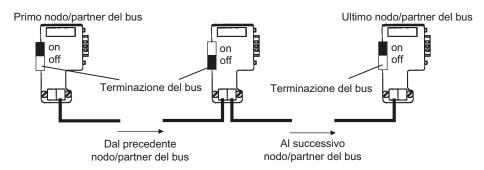


Figura 6-21 Posizione delle resistenze terminali di chiusura bus

Passaggio dei cavi

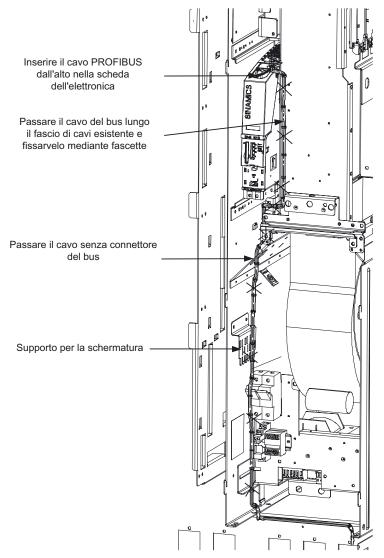


Figura 6-22 Passaggio dei cavi

6.6.2 Controllo tramite Profibus

LED di diagnostica "DP1 (PROFIBUS)"

Il LED di diagnostica per PROFIBUS si trova sul lato frontale dell'unità di regolazione CU320. Il relativo significato si ricava dalla tabella seguente.

Tabella 6-8 Descrizione dei LED

Colore	Stato	Descrizione
	Spento	La comunicazione ciclica non è (ancora) avvenuta.
Verde	Luce fissa	Il PROFIBUS è pronto per la comunicazione ed è in corso la comunicazione ciclica
Verde	Lampeggio 0,5 Hz	La comunicazione ciclica non avviene ancora in modo completo.
		Causa possibile: Il master non trasmette valori di riferimento.
Rosso	Luce fissa	La comunicazione ciclica è stata interrotta.

Impostazione degli indirizzi PROFIBUS

L'impostazione degli indirizzi PROFIBUS può avvenire in due modi:

- Tramite switch degli indirizzi (DIP-switch) sulla parte frontale dell'unità di regolazione dietro il coperchietto di copertura (vedere il capitolo "Collegamento PROFIBUS"). Il parametro p0918 è quindi di sola lettura e indica l'indirizzo impostato. La modifica dello switch diventa effettiva solo dopo un POWER ON dell'unità di regolazione.
- Tramite immissione del parametro p0918 dal pannello operativo.
 Questo è possibile solo se l'indirizzo è impostato a 0 o a 127 tramite switch degli indirizzi, cioè quando gli switch da S1 a S7 sono posizionati tutti su ON o su OFF.
 In questo caso una modifica del parametro è subito attiva.

Tabella 6-9 Switch degli indirizzi PROFIBUS

Switch	Valenza	Indicazioni tecniche
S1	20 = 1	Valenza 2 ⁰ 2 ¹ 2 ² 2 ³ 2 ⁴ 2 ⁵ 2 ⁶
S2	21 = 2	1 2 4 8 16 32 64
S3	22 = 4	ONOFF
S4	23 = 8	C1 07
S5:	24 = 16	
S6	2 ⁵ = 32	Esempio iiiii iiiii ON
S7	26 = 64	1 + 4 + 32 = 37

Impostazione del PROFIBUS Ident Number

II PROFIBUS Ident Number (PNO-ID) può essere impostato tramite p2042.

SINAMICS può funzionare su PROFIBUS con varie identità. Ciò consente di utilizzare un PROFIBUS GSD indipendente dall'apparecchio (ad es. PROFIdrive VIK-NAMUR con Ident Number 3AA0 hex).

- 0: SINAMICS S/G
- 1: VIK-NAMUR

Una nuova impostazione diventa attiva solo dopo POWER ON, reset o download.

Nota

I vantaggi della Totally Integrated Automation (TIA) possono essere sfruttati solo selezionando "0".

6.6.3 Sorveglianza anomalia telegramma

Descrizione

In caso di anomalia di un telegramma, e dopo che è trascorso il tempo di sorveglianza (t_An), il bit r2043.0 viene impostato a "1" e viene emesso l'avviso A01920. L'uscita del binettore r2043.0 può essere utilizzata ad es. per un arresto rapido.

Dopo che è trascorso il tempo di ritardo (p2044) viene emessa l'anomalia F01910 ed attivata la reazione all'anomalia OFF3 (arresto rapido). Se non deve essere eseguita nessuna reazione OFF è possibile modificare la parametrizzazione della reazione su anomalia.

L'anomalia F01910 può essere subito tacitata. L'azionamento può funzionare anche senza PROFIBUS.

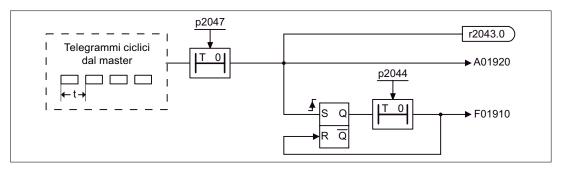


Figura 6-23 Sorveglianza anomalia telegramma

6.6.4 Telegrammi e dati di processo

Informazioni generali

Selezionando un telegramma tramite il parametro CU p0922 si determinano i dati di processo che vengono trasmessi tra master e slave.

Dal punto di vista dello slave (SINAMICS) i dati di processo ricevuti rappresentano le parole di ricezione e i dati di processo da inviare le parole di invio.

Le parole di ricezione e di invio sono costituite dai seguenti elementi :

Parole di parole di comando e valori di riferimento

ricezione:

• Parole di invio: parole di stato e valori attuali

Preimpostazione "Profidrive"

Se si sceglie l'impostazione "Profidrive" nella selezione di comando e riferimento (vedere il capitolo "Sorgenti dei comandi / Preimpostazione "Profidrive"), viene selezionato un telegramma libero (p0922 = 999).

Il telegramma di ricezione viene parametrizzato nel seguente modo con la preimpostazione (schema 622):

STW 1 N_RIF

Il telegramma di invio è il seguente (impostazione di fabbrica, schema 623):

ZSW 1	N_ATT	I_ATT	M_ATT	P_ATT	Fault

Per utilizzare questi telegrammi non è necessario effettuare altre impostazioni.

Selezione di telegrammi definita dall'utente

a. Telegrammi standard

I telegrammi standard sono strutturati in base al profilo PROFIdrive V3 o all'impostazione di fabbrica. L'interconnessione interna dei dati di processo avviene automaticamente in base al numero di telegramma impostato nel parametro CU p0922.

Tramite il parametro p0922 possono essere impostati i seguenti telegrammi standard:

- p0922 = 1 -> Regolazione del numero di giri, 2 parole
- p0922 = 2 -> Regolazione del numero di giri, 4 parole
- p0922 = 3 -> Regolazione del numero di giri, 1 encoder di posizione
- p0922 = 4 -> Regolazione del numero di giri, 2 encoder di posizione
- p0922 = 20 -> Telegramma NAMUR
- p0922 = 352 -> Telegramma PCS7

6.6 PROFIBUS

A seconda dell'impostazione in p0922 viene impostato automaticamente l'Interface Mode della parola di comando e di stato:

p0922 = 1, 352, 999:
 STW 1/ZSW 1: Interface Mode SINAMICS / MICROMASTER, p2038 = 0

 p0922 = 20: STW 1/ZSW 1: Interface Mode PROFIdrive VIK-NAMUR, p2038 = 2

b. Telegrammi liberi (p0922 = 999)

Il telegramma di ricezione e invio può essere progettato liberamente con l'interconnessione di parole di ricezione e invio tramite la tecnica BICO. Una preassegnazione dei dati di processo effettuata come spiegato al punto a) viene mantenuta anche se si commuta p0922 = 999, ma può essere modificata o integrata in qualsiasi momento.

Per rispettare il profilo PROFIdrive occorre comunque mantenere la seguente assegnazione:

- Interconnessione della parola di ricezione PZD 1 come parola di comando 1 (STW 1)
- Interconnessione della parola di ricezione PZD 1 come parola di stato 1 (ZSW 1)

Per maggiori dettagli sulle possibilità di interconnessione, consultare gli schemi logici FP2460 e FP2470 e gli schemi semplificati da 620 a 622.

Struttura dei telegrammi

Tabella 6-10 Struttura dei telegrammi

Telegr.	PZD 1	PZD 2	PZD 3	PZD 4	PZD 5	PZD 6	PZD 7	PZD 8	PZD 9	PZD 10
1	STW 1	N_rif_A								
	ZSW 1	N_att_A								
2	STW 1	N_ri	if_B	STW2						
	ZSW 1	N_a	tt_B	ZSW2						
3	STW 1	N_ri	if_B	STW2	G1_STW					
	ZSW 1	N_a	tt_B	ZSW2	G1_ZSW	G1_XIS	T1	G1_X	(IST2	
4	STW 1	N_ri	if_B	STW2	G1_STW					
	ZSW 1	N_a	tt_B	ZSW2	G1_ZSW	Ulteriore ass	egnazion	e, vedere	FP2420	
20	STW 1	N_rif_A								
	ZSW 1	N_att_A	la_att_ LIV	M_att_ LIV	P_att_ LIV	SEGN_NA MUR				
352	STW 1	N_rif_A	PCS_3	PCS7_4	PCS7_5	PCS7_6				
	ZSW 1	N_att_A	la_att_ LIV	M_att_ LIV	WARN_ CODE	FAULT_ CODE				
999	STW 1	Libero	Libero	Libero	Libero	Libero	Libero	Libero	Libero	Libero
	ZSW 1	Libero	Libero	Libero	Libero	Libero	Libero	Libero	Libero	Libero

6.6.5 Descrizione delle parole di comando e dei valori di riferimento

Panoramica

Tabella 6-11 Panoramica delle parole di comando e dei valori di riferimento

Abbreviazione	Descrizione	Parametro	Schema logico
STW 1	Parola di comando 1 (Interface Mode SINAMICS / MICROMASTER, p2038 = 0)	Vedere la tabella "Parola di comando 1 (Interface Mode SINAMICS / MICROMASTER, p2038 = 0)"	FP2442
STW 1	Parola di comando 1 (Interface Mode PROFIdrive VIK-NAMUR, p2038 = 2)	Vedere la tabella "Parola di comando 1"	FP2441
STW 2	Parola di comando 2 (Interface Mode SINAMICS / MICROMASTER, p2038 = 0)		FP2444
N_rif_A	Valore di riferimento del numero di giri A (16 bit)	p1070	FP3030
N_rif_B	Valore di riferimento del numero di giri B (32 bit)	p1155	FP3080
PCS7_x	Valori di riferimento specifici PCS7		

Parola di comando 1 (STW 1) (Interface Mode SINAMICS / MICROMASTER, p2038 = 0)

Tabella 6-12 Parola di comando 1 (Interface Mode SINAMICS / MICROMASTER, p2038 = 0)

Bit	Significato	Spiegazione	Condizione operativa	BICO
0	0 = OFF1 (OFF1)	F1 (OFF1) 0: arresto con la rampa di decelerazione (p1121), dopodiché blocco impulsi, il contattore principale (se presente) viene diseccitato		BI: p0840
	1 = ON			
1	0 = arresto per inerzia (OFF2)	0: blocco impulsi, il contattore principale (se presente) viene diseccitato	1	BI: p0844 BI: p0845
	1 = nessun arresto per inerzia			
	Avvertenza:il segnale di com	nando OFF2 è costituito dall'interconnessione AND di B	II: p0844 e BI: լ	00845.
2	0 = arresto rapido (OFF3)	0: arresto con la rampa di arresto rapido (p1135), dopodiché blocco impulsi, il contattore principale (se presente) viene diseccitato	1	BI: p0848
	1 = nessun arresto rapido			
	Avvertenza:il segnale di com	nando OFF3 è costituito dall'interconnessione AND di B	II: p0848 e BI: լ	00849.
3	0 = funzionamento inibito 1 = funzionamento abilitato	1: abilitazione invertitore, abilitazione impulsi, avviamento con valore di riferimento applicato	1	BI: p0852
		0: blocco impulsi, il motore si arresta per inerzia. Lo stato "Pronto al funzionamento" resta impostato.		
4	0 = impostazione riferimento zero del	0: l'uscita del generatore di rampa viene impostata al valore di riferimento "0"	1	BI: p1140
	generatore di rampa 1 = abilitazione generatore di rampa			

Bit	Significato	Spiegazione	Condizione operativa	BICO			
5	0 = congelare generatore di rampa	0: il riferimento attuale viene congelato all'uscita del generatore di rampa	1	BI: p1141			
	1 = generatore di rampa nuovamente attivo						
6	1 = abilitazione valore di riferimento numero di giri	1: il valore di riferimento del numero di giri all'ingresso del generatore di rampa è abilitato	1	BI: p1142			
	0 = blocco valore di riferimento numero di giri	0: il valore di riferimento del numero di giri all'ingresso del generatore di rampa è impostato a zero. L'azionamento frena in base al tempo di decelerazione impostato in p1121.					
7	0 -> 1 = tacitazione anomalia	Un fronte positivo tacita tutte le anomalie attive	_	BI: p2103			
	Nota: per un fronte 0/1, la ta	citazione avviene tramite BI: p2103 o BI: p2104 o BI: p	2105.				
8	riservato		_	_			
9	riservato		_	_			
10	1 = gestione da PLC	1: le parole di comando e i valori di riferimento provenienti da Profibus vengono analizzati	1	BI: p0854			
		0: le parole di comando e i valori di riferimento provenienti da Profibus non vengono analizzati					
	Nota:questo bit dovrebbe es "1".	sere impostato a "1" solo dopo che lo slave PROFIBUS	S ha risposto co	on ZSW1.9 =			
11	1 = inversione del senso di	1: senso di rotazione sinistrorso	_	BI: p1113			
	rotazione	0: senso di rotazione destrorso					
12	riservato		_	_			
13	1 = incremento potenziometro motore		_	BI: p1035			
14	1 = decremento potenziometro motore		-	BI: p1036			
	Nota: se l'incremento e il decremento del potenziometro motore sono contemporaneamente 0 o 1, il valore di riferimento attuale viene congelato.						
15	riservato			_			

Parola di comando 1 (STW 1) (Interface Mode PROFIdrive VIK-NAMUR, p2038 = 2)

Tabella 6-13 Parola di comando 1 (Interface Mode PROFIdrive VIK-NAMUR, p2038 = 2)

Bit	Significato	Spiegazione	Condizione operativa	BICO
0	0 = OFF1 (OFF1)	0: arresto con la rampa di decelerazione (p1121), dopodiché blocco impulsi , il contattore principale (se presente) viene diseccitato	1	BI: p0840
	1 = ON			
1	0 = arresto per inerzia (OFF2)	0: blocco impulsi, il contattore principale (se presente) viene diseccitato	1	BI: p0844 BI: p0845
	1 = nessun arresto per inerzia			

Bit	Significato	Spiegazione	Condizione operativa	BICO
	Nota:il segnale di comando	OFF2 è costituito dall'interconnessione AND di BI: p084	14 e BI: p0845.	
2	0 = arresto rapido (OFF3)	0: arresto con la rampa di arresto rapido (p1135), dopodiché blocco impulsi, il contattore principale (se presente) viene diseccitato	1	BI: p0848
	1 = nessun arresto rapido			
	Nota:il segnale di comando	OFF3 è costituito dall'interconnessione AND di BI: p084	18 e BI: p0849.	
3	0 = funzionamento inibito 1 = funzionamento abilitato	abilitazione invertitore, abilitazione impulsi, avviamento con valore di riferimento applicato	1	BI: p0852
		0: blocco impulsi, il motore si arresta per inerzia. Lo stato "Pronto al funzionamento" resta impostato.		
4	0 = impostazione riferimento zero del generatore di rampa	0: l'uscita del generatore di rampa viene impostata al valore di riferimento "0"	1	BI: p1140
	1 = abilitazione generatore di rampa			
5	0 = congelare generatore di rampa	0: il riferimento attuale viene congelato all'uscita del generatore di rampa	1	BI: p1141
	1 = generatore di rampa nuovamente attivo			
6	1 = abilitazione valore di riferimento numero di giri	1: il valore di riferimento del numero di giri all'ingresso del generatore di rampa è abilitato	1	BI: p1142
	0 = blocco valore di riferimento numero di giri	0: il valore di riferimento del numero di giri all'ingresso del generatore di rampa è impostato a zero. L'azionamento frena in base al tempo di decelerazione impostato in p1121.		
7	0 -> 1 = tacitazione anomalia	Un fronte positivo tacita tutte le anomalie attive	_	BI: p2103
	Nota: per un fronte 0/1, la ta	citazione avviene tramite Bl: p2103 o Bl: p2104 o Bl: p	2105.	
8	riservato		_	_
9	riservato		_	_
10	1 = gestione da PLC	le parole di comando e i valori di riferimento provenienti da Profibus vengono analizzati	1	BI: p0854
		0: le parole di comando e i valori di riferimento provenienti da Profibus non vengono analizzati		
	Nota:questo bit dovrebbe es "1".	sere impostato a "1" solo dopo che lo slave PROFIBUS	S ha risposto co	on ZSW1.9 =
11	1 = inversione del senso di	1: senso di rotazione sinistrorso	_	BI: p1113
	rotazione	0: senso di rotazione destrorso		
12	riservato		-	-
13	riservato		-	-
14	riservato		_	_
15	1 = record di dati 2 0 = record di dati 1	1: commutazione record di dati dei parametri (DDS), record di dati 2 attivo	_	BI: p0820
		0: commutazione record di dati dei parametri (DDS), record di dati 1 attivo		

6.6 PROFIBUS

Valore di riferimento del numero di giri (N_rif_A)

- Valore di riferimento del numero di giri con una risoluzione di 16 bit incluso bit del segno
- Il bit 15 determina il segno del valore di riferimento:
 - Bit = 0 -> valore di riferimento positivo
 - Bit = 1 -> valore di riferimento negativo
- Il valore di riferimento del numero di giri viene normalizzato mediante il parametro p2000. N_rif_A = 4000Hex oppure 16384Dec = numero di giri in p2000

Valore di riferimento del numero di giri (N_rif_B)

- Valore di riferimento del numero di giri con una risoluzione di 32 bit incluso bit del segno
- Il bit 31 determina il segno del valore di riferimento:
 - Bit = 0 -> valore di riferimento positivo
 - Bit = 1 -> valore di riferimento negativo
- Il valore di riferimento del numero di giri viene normalizzato mediante il parametro p2000. N_rif_B = 4000 0000Hex oppure 1073741824Dec = numero di giri in p2000

Valori di riferimento specifici per PCS7 (PCS7 x)

A seconda della progettazione, qui vengono trasmessi ad es. valori per l'adattamento KP del regolatore di velocità, valori di accelerazione o altri valori di riferimento. Di norma queste grandezze sono normalizzate a seconda dell'impiego mediante i parametri da p2000 a p2004.

6.6.6 Descrizione delle parole di stato e dei valori attuali

Panoramica

Tabella 6-14 Panoramica delle parole di stato e dei valori attuali

Abbreviazione	Descrizione	Parametro	Schema logico
ZSW 1	Parola di stato 1 (Interface Mode SINAMICS / MICROMASTER, p2038 = 0)"	Vedere la tabella "Parola di stato 1 (Interface Mode SINAMICS / MICROMASTER, p2038 = 0)"	FP2452
ZSW 1	Parola di stato 1 (Interface Mode PROFIdrive VIK-NAMUR, p2038 = 2)	Vedere la tabella "Parola di stato 1 (Interface Mode PROFIdrive VIK- NAMUR, p2038 = 2)"	FP2451
N_att_A	Valore attuale del numero di giri A (16 bit)	r0063[0]	FP4715
N_att_B	Valore attuale del numero di giri B (32 bit)	r0063	FP4710
la_att	Valore attuale di corrente	r0068[0]	FP6714
M_att	Valore attuale di coppia	r0080[0]	FP6714
P_att	Valore attuale di potenza	r0082[0]	FP6714
N_att_LIV	Valore attuale del numero di giri livellato	r0063[1]	FP4715
la_att_LIV	Valore attuale di corrente livellato	r0068[1]	FP6714
M_att_LIV	Valore attuale della coppia livellato	r0080[1]	FP6714
P_att_LIV	Valore attuale di potenza livellato	r0082[1]	FP6714
SEGN_NAMUR	VIK-NAMUR Barra bit di segnalazione	r3113, vedere la tabella "NAMUR Barra bit di segnalazione"	
WARN_CODE	Codice di avviso	r2132	FP8065
CODICE_ERROR E	Codice di errore	r2131	FP8060

Parola di stato 1 (Interface Mode SINAMICS / MICROMASTER, p2038 = 0)

Tabella 6-15 Parola di stato 1 (Interface Mode SINAMICS / MICROMASTER, p2038 = 0)

Bit	Significato		Spiegazione	BICO
0	Pronto all'inserzione	1	Pronto all'inserzione	BO: r0899.0
			Alimentazione di corrente inserita, elettronica inizializzata, contattore di rete eventualmente diseccitato, impulsi bloccati	
		0	Non pronto all'inserzione	
1	Pronto al funzionamento	1	Pronto al funzionamento	BO: r0899.1
			Tensione sul Line Module, ovvero contattore di rete ON (se presente). Viene stabilito il campo	
		0	Non pronto al funzionamento	
			Causa: assenza di comando ON	
2	Funzionamento abilitato	1	Funzionamento abilitato	BO: r0899.2
			Abilitazione di elettronica e impulsi, quindi accelerazione fino al valore di riferimento impostato	
		0	Funzionamento inibito	

6.6 PROFIBUS

Bit	Significato		Spiegazione	BICO
3	Anomalia attiva	1	Anomalia attiva	BO: r2139.3
			L'azionamento è guasto ed è fuori servizio. Dopo la tacitazione e l'eliminazione della causa, l'azionamento va in blocco di inserzione.	
			Le anomalie presenti si trovano nel relativo buffer.	
		0	Nessuna anomalia presente	
			Nessuna anomalia presente nel buffer.	
4	Nessun OFF2 attivo /	1	Nessun OFF2 attivo	BO: r0899.4
	arresto per inerzia attivo (OFF2)	0	Arresto per inerzia attivo (OFF2)	
			È attivo un comando OFF2.	
5	0 = arresto rapido attivo (OFF3)	1	Nessun OFF3 attivo	BO: r0899.5
		0	Arresto per inerzia attivo (OFF3)	
			È attivo un comando OFF3.	
6	Blocco inserzione	1	Blocco inserzione	BO: r0899.6
			La riaccensione è possibile solo con OFF1 e quindi ON.	
		0	Nessun blocco inserzione	
			L'inserzione è possibile.	
7	Avviso attivo	1	Avviso attivo	BO: r2139.7
			L'azionamento rimane in funzione. Non è necessaria la tacitazione.	
			Gli avvisi attivi si trovano nel relativo buffer.	
		0	Nessun avviso attivo	
			Nessun avviso nel relativo buffer.	
8	Differenza tra valore di riferimento e valore attuale nella	1	Sorveglianza dello scostamento tra valore di riferimento e valore attuale nella fascia di tolleranza	BO: r2197.7
	fascia di tolleranza		Valore attuale compreso nella fascia di tolleranza; superamento dinamico in eccesso o in difetto consentito per t < tmax, tmax è parametrizzabile. Vedere FP8010	
		0	Sorveglianza dello scostamento tra valore di riferimento e valore attuale non nella fascia di tolleranza	
9	Gestione richiesta per PLC	1	Gestione richiesta	BO: r0899.9
	è impostato sempre il valore "1"	0	Funzionamento in locale	
10	Valore di confronto f o n	1	Valore di confronto f o n raggiunto o superato	BO: r2199.1
	raggiunto o superato	0	Valore di confronto f o n non raggiunto	
	Nota:			•
	la segnalazione viene parametriz p2141 valore di soglia p2142 isteresi	zata	nel seguente modo:	
11	Limite I, M o P non raggiunto /	1	Limite I, M o P non raggiunto	BO: r1407.7
	Limite I, M o P raggiunto	0	Limite I, M o P raggiunto	
12	riservato			
40	Assiss disconice 11	_	Accidental disconsissa del consenta con de conse	DO: =0105.11
13	Avviso di surriscaldamento motore	1	Avviso di surriscaldamento motore attivo	BO: r2135.14
4.4		0	Avviso di surriscaldamento motore non attivo	DO: =0407.0
14	Motore gira avanti	1	Motore gira avanti (n_att ≥ 0)	BO: r2197.3

Bit	Significato		Spiegazione	BICO
	(valore att. >= 0)	0	Motore non gira avanti (n_att < 0)	
15	Avviso di sovraccarico termico	1	Nessun avviso attivo	BO: r2135.15
	convertitore	0	Avviso di sovraccarico termico convertitore	
			L'avviso per sovraccarico termico del convertitore è attivo	

Parola di stato 1 (Interface Mode PROFIdrive VIK-NAMUR, p2038 = 2)

Tabella 6-16 Parola di stato 1 (Interface Mode PROFIdrive VIK-NAMUR, p2038 = 2)

Bit	Significato		Spiegazione	BICO
0	Pronto all'inserzione	1	Pronto all'inserzione Alimentazione di corrente inserita, elettronica inizializzata, contattore di rete eventualmente diseccitato, impulsi bloccati	BO: r0899.0
		0	Non pronto all'inserzione	
1	Pronto al funzionamento	1	Pronto al funzionamento	BO: r0899.1
			Tensione sul Line Module, ovvero contattore di rete ON (se presente). Viene stabilito il campo	
		0	Non pronto al funzionamento	
			Causa: assenza di comando ON	
2	Funzionamento abilitato	1	Funzionamento abilitato	BO: r0899.2
			Abilitazione di elettronica e impulsi, quindi accelerazione fino al valore di riferimento impostato	
		0	Funzionamento inibito	
3	Anomalia attiva	1	Anomalia attiva	BO: r2139.3
			L'azionamento è guasto ed è fuori servizio. Dopo la tacitazione e l'eliminazione della causa, l'azionamento va in blocco di inserzione.	
			Le anomalie presenti si trovano nel relativo buffer.	
		0	Nessuna anomalia presente	
			Nessuna anomalia presente nel buffer.	
4	Nessun OFF2 attivo /	1	Nessun OFF2 attivo	BO: r0899.4
	arresto per inerzia attivo (OFF2)	0	Arresto per inerzia attivo (OFF2)	
			È attivo un comando OFF2.	
5	0 = arresto rapido attivo (OFF3)	1	Nessun OFF3 attivo	BO: r0899.5
		0	Arresto per inerzia attivo (OFF3)	
			È attivo un comando OFF3.	
6	Blocco inserzione	1	Blocco inserzione	BO: r0899.6
			La riaccensione è possibile solo con OFF1 e quindi ON.	
		0	Nessun blocco inserzione	
			L'inserzione è possibile.	
7	Avviso attivo	1	Avviso attivo	BO: r2139.7
			L'azionamento rimane in funzione. Non è necessaria la tacitazione.	
			Gli avvisi attivi si trovano nel relativo buffer.	

6.6 PROFIBUS

Bit	Significato		Spiegazione	BICO		
		0	Nessun avviso attivo			
			Nessun avviso nel relativo buffer.			
8	Differenza tra valore di riferimento e valore attuale nella fascia di tolleranza	1	Sorveglianza dello scostamento tra valore di riferimento e valore attuale nella fascia di tolleranza	BO: r2197.7		
			Valore attuale compreso nella fascia di tolleranza; superamento dinamico in eccesso o in difetto consentito per t < tmax, tmax è parametrizzabile. Vedere FP8010			
		0	Sorveglianza dello scostamento tra valore di riferimento e valore attuale non nella fascia di tolleranza			
9	Gestione richiesta per PLC è impostato sempre il valore "1"	1	Gestione richiesta	BO: r0899.9		
		0	Funzionamento in locale			
10	Valore di confronto f o n raggiunto o superato	1	Valore di confronto f o n raggiunto o superato	BO: r2199.1		
		0	Valore di confronto f o n non raggiunto			
	la segnalazione viene parametrizzata nel seguente modo: p2141 valore di soglia p2142 isteresi					
11	Limite I, M o P non raggiunto / Limite I, M o P raggiunto	1	Limite I, M o P non raggiunto	BO: r1407.7		
		0	Limite I, M o P raggiunto	1		
12	riservato					
13	Avviso di surriscaldamento motore	1	Avviso di surriscaldamento motore attivo	BO: r2135.14		
		0	Avviso di surriscaldamento motore non attivo	1		
14	Motore gira avanti (valore att. >= 0)	1	Motore gira avanti (n_att ≥ 0)	BO: r2197.3		
		0	Motore non gira avanti (n_att < 0)			
15	riservato					

NAMUR Barra bit di segnalazione

Tabella 6-17 NAMUR Barra bit di segnalazione

Bit	Significato	Segnale 0	Segnale 1
00	Errore elettronica dati del convertitore / Errore SW	No	Sì
01	Errore di rete	No	Sì
02	Sovratensione del circuito intermedio	No	Sì
03	Errore elettronica di potenza del convertitore	No	Sì
04	Sovratemperatura convertitore	No	Sì
05	Cortocircuito verso terra	No	Sì
06	Sovraccarico motore	No	Sì
07	Errore bus	No	Sì
80	Disinserzione di sicurezza esterna	No	Sì
09	Errore encoder motore	No	Sì
10	Errore comunicazione interna	No	Sì
11	Errore alimentatore	No	Sì
15	Altri errori	No	Sì

Valore attuale del numero di giri (N_att_A, N_att_LIV)

- Valore attuale del numero di giri con una risoluzione di 16 bit incluso bit del segno
- Il bit 15 determina il segno del valore attuale:
 - Bit = 0 -> valore attuale positivo
 - Bit = 1 -> valore attuale negativo
- Il valore attuale del numero di giri viene normalizzato mediante il parametro p2000.
 N_att_A = 4000Hex oppure 16384Dec = numero di giri in p2000

Valore attuale del numero di giri (N_att_B)

- Valore attuale del numero di giri con una risoluzione di 32 bit incluso bit del segno
- Il bit 31 determina il segno del valore attuale:
 - Bit = 0 -> valore attuale positivo
 - Bit = 1 -> valore attuale negativo
- Il valore attuale del numero di giri viene normalizzato mediante il parametro p2000.
 N_att_B = 4000 0000Hex oppure 1073741824Dec = numero di giri in p2000

Valore attuale di corrente (la_att, la_att_LIV)

- Importo del valore attuale di corrente con una risoluzione di 16 bit
- Il valore attuale di corrente viene normalizzato mediante il parametro p2002. la_att= 4000Hex oppure16384Dec = corrente in p2002

6.6 PROFIBUS

Valore attuale di coppia (M_att, M_att_LIV)

- Valore attuale di coppia con una risoluzione di 16 bit incluso bit del segno
- Il bit 15 determina il segno del valore attuale:
 - Bit = 0 -> valore attuale positivo
 - Bit = 1 -> valore attuale negativo
- Il valore attuale di coppia viene normalizzato mediante il parametro p2003.
 M_att = 4000Hex oppure 16384Dec = numero di giri in p2003

Valore attuale di potenza (P_att, P_att_LIV)

- Valore attuale di potenza con una risoluzione di 16 bit incluso bit del segno
- Il bit 15 determina il segno del valore attuale:
 - Bit = 0 -> valore attuale positivo
 - Bit = 1 -> valore attuale negativo
- Il valore attuale di potenza viene normalizzato mediante il parametro p2004. P_att = 4000Hex oppure 16384Dec = numero di giri in p2004

Codice di avviso (WARN_CODE)

Qui viene visualizzato il numero dell'ultimo avviso verificatosi e non ancora tacitato. Il formato è decimale, ovvero con un valore di 7910Dec viene visualizzato l'avviso A07910 (surriscaldamento motore).

Codice di errore (CODiCE_ERRORE)

Qui viene visualizzato il numero dell'ultima anomalia ancora attiva. Il formato è decimale, ovvero con un valore di 7860Dec viene visualizzata l'anomalia F07860 (anomalia esterna 1).

6.7 Gestione tramite pannello operativo

6.7.1 Panoramica e struttura dei menu del pannello operativo (AOP30)

Descrizione

Il pannello operativo serve per

- la parametrizzazione (messa in servizio)
- la visualizzazione delle variabili di stato
- la gestione dell'azionamento
- la visualizzazione delle anomalie e degli avvisi

Tutte le funzioni sono attivabili tramite il menu.

Il punto di partenza è il menu principale che può essere sempre richiamato con il tasto giallo MENU:

Finestra di dialogo del menu principale: sempre richiamabile con il tasto "MENU".

Premendo i tasti "F2" e "F3" è possibile spostarsi tra le opzioni del menu principale.

Struttura del menu del pannello operativo

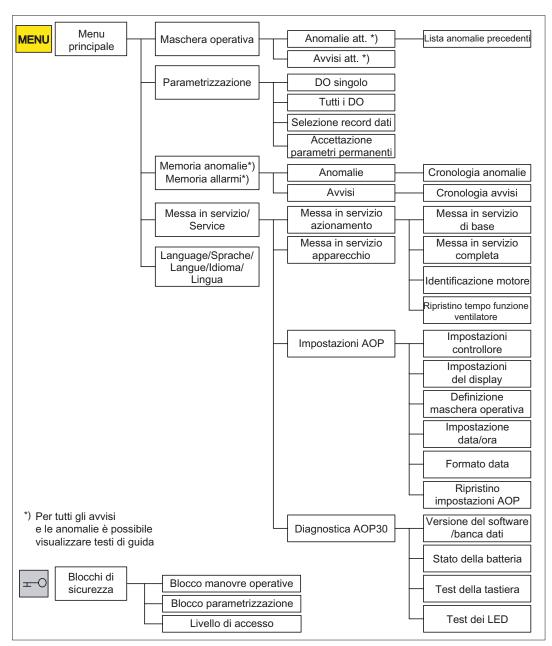


Figura 6-24 Struttura del menu del pannello operativo

6.7.2 Menu Pagina operativa

Descrizione

La pagina operativa raggruppa le variabili di stato più importanti dell'apparecchio di azionamento:

Per impostazione predefinita vengono visualizzati permanentemente gli stati operativi dell'azionamento, il senso di rotazione, l'ora, nonché quattro variabili dell'azionamento (parametri) in rappresentazione numerica e due in rappresentazione ad istogrammi.

È possibile accedere a questa pagina operativa in due modi:

- 1. al termine dell'avviamento dopo l'inserzione dell'alimentazione,
- 2. premendo due volte il tasto MENU e F5 "OK".

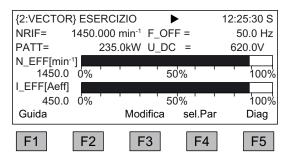


Figura 6-25 Pagina operativa

Al verificarsi di un'anomalia viene automaticamente richiamata la pagina delle anomalie (vedere il capitolo "Anomalie e avvisi").

Nel modo di controllo LOCAL è possibile selezionare l'immissione numerica del valore di riferimento (F2: valore di riferimento).

Con F3 "Modifica" è possibile selezionare il menu "Definisci pagina operativa".

Con F4 "Sel.Par" è possibile selezionare i singoli parametri della pagina operativa. Con F1 "Guida+" viene visualizzato il numero di parametro dell'abbreviazione corrispondente e può anche essere richiamata una descrizione del parametro.

Possibilità di impostazione

Nel menu Messa in servizio / Service – Impostazioni AOP – Definisci pagina operativa, in caso di necessità è possibile adeguare la forma di rappresentazione e i valori visualizzati (vedere il capitolo "Comando / Impostazioni AOP30").

6.7.3 Menu Parametrizzazione

Nel menu Parametrizzazione si possono adattare le impostazioni dell'apparecchio.

Il software dell'azionamento è strutturato in modo modulare. I singoli moduli vengono detti DO ("DriveObject").

In un G150 sono presenti i seguenti DO:

CU: parametri generali dell'unità di regolazione (CU320)

• VECTOR: regolazione dell'azionamento

TM31: modulo morsetti TM31

I parametri con funzionalità identica possono essere presenti in più DO con lo stesso numero di parametro (ad es. p0002).

L'AOP30 comanda gli apparecchi costituiti da più di un azionamento (in questo senso anche un alimentatore regolato è un "azionamento") in modo tale che viene considerato un solo azionamento, quello "attuale". La commutazione può avvenire nella pagina operativa o nel menu principale. Il tasto funzione corrispondente porta la dicitura "Azionamento".

Questo azionamento determina

- la pagina operativa
- la visualizzazione di anomalie e avvisi
- lo stato (ON, OFF, ...) di un azionamento

Nell'AOP possono essere selezionate due modalità di visualizzazione:

1. Tutti i parametri

qui sono elencati tutti i parametri disponibili nell'apparecchio. Il DO a cui appartiene il parametro attualmente selezionato (rappresentato invertito) viene visualizzato in alto a sinistra nella finestra tra parentesi graffe.

2. Selezione DO

In questa rappresentazione è possibile selezionare dapprima un DO. Vengono elencati solo i parametri di questo DO.

(la rappresentazione della Lista esperti in STARTER supporta solo questa vista DO)

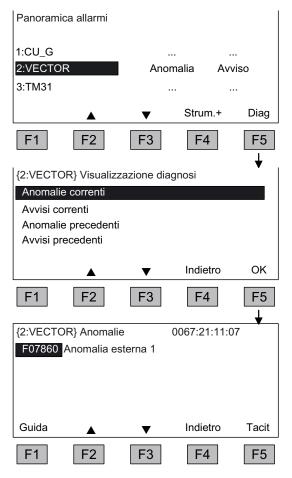
In entrambi i casi il numero di parametri visualizzati dipende dal livello di accesso impostato. Il livello di accesso può essere impostato nel menu Blocco di sicurezza, che si apre premendo il tasto chiave.

Per applicazioni semplici sono sufficienti i parametri dei livelli di accesso 1 e 2.

Nel livello di accesso 3 Esperti è possibile modificare la struttura della funzione tramite interconnessioni di cosiddetti parametri BICO.

Nel menu Selezione record di dati si selezionano i record di dati da visualizzare. I parametri dei record di dati sono contrassegnati con una lettera c, d, m, e, p tra numero del parametro e identificativo del parametro. La prima riga dall'alto mostra, con allineamento a destra, quali record di dati sono visualizzati attualmente.

Modificando un parametro del record di dati, la selezione cambia.


Figura 6-26 Selezione del record di dati

6.7.4 Menu Memoria anomalie / Memoria avvisi

Quando si seleziona il menu, viene visualizzata una pagina con la panoramica delle anomalie e degli avvisi in corso.

Per ogni Drive Object viene indicato se sono presenti anomalie o avvisi. A tal fine accanto al Drive Object viene visualizzato il termine "Anomalia" o "Avviso".

Nella figura seguente si può vedere che per il Drive Object "VECTOR" è presente almeno un'anomalia attiva o un avviso attivo. Gli altri due Drive Object non presentano anomalie o avvisi.

Memoria anomalie/Memoria avvisi

Se ci si sposta nella riga con anomalie o avvisi attivi e si preme quindi il tasto F5 <Diag>, viene visualizzata una finestra di dialogo nella quale occorre selezionare le anomalie o gli avvisi attuali o precedenti.

Visualizza diagnostica

Se ci si sposta nella riga desiderata e si preme quindi il tasto F5 <OK>, vengono visualizzati gli avvisi e le anomalie corrispondenti.

Ad esempio qui viene selezionata la lista delle anomalie attuali.

Visualizzazione delle anomalie attuali

Vengono visualizzate al massimo 8 anomalie attuali con il numero e la definizione dell'anomalia.

Premendo F1 <Guida> viene visualizzata un'ulteriore guida sulla causa dell'anomalia e i relativi rimedi.

Il tasto di tacitazione F5 permette di tacitare le anomalie. Se la tacitazione di un'anomalia non è possibile, l'anomalia persiste.

6.7.5 Menu Messa in servizio / Service

6.7.5.1 Messa in servizio dell'azionamento

Tramite questa selezione è possibile avviare dal menu principale la messa in servizio dell'azionamento.

Messa in servizio di base

Solo i parametri della messa in servizio di base vengono richiesti e memorizzati in modo permanente.

Messa in servizio completa

Viene eseguita una messa in servizio completa con immissione dei dati di motore ed encoder e quindi vengono ricalcolati i parametri motore importanti a partire dai dati motore. Con questa azione i valori dei parametri calcolati durante la messa in servizio precedente vanno persi.

Alla successiva identificazione del motore i valori calcolati vengono sovrascritti.

Identificazione motore

Viene visualizzata la finestra di selezione per l'identificazione del motore.

Reset tempo funz. ventil.

Dopo la sostituzione di un ventilatore è necessario resettare il contatore cronometrico per la sorveglianza del tempo di funzionamento del ventilatore.

6.7.5.2 Messa in servizio dell'apparecchio

Messa in servizio dell'apparecchio

In questo menu si può impostare direttamente lo stato della messa in servizio dell'apparecchio. Solo in questo modo è possibile, ad esempio, eseguire un ripristino dei parametri alle impostazioni di fabbrica.

6.7.5.3 Impostazioni AOP

Impostazioni di comando

Definisce le impostazioni per i tasti di comando in LOCAL Mode (vedere il capitolo "Comando / Comando tramite pannello operativo")

Impostazioni del display

In questo menu vengono impostate l'illuminazione, l'intensità dell'illuminazione ed il contrasto del display.

Definisci pagina operativa

In questo menu si può commutare tra le cinque pagine operative. Possono essere impostati i parametri che vengono visualizzati sul display.

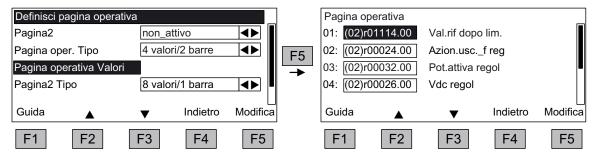


Figura 6-27 Definisci pagina operativa

L'abbinamento delle immissioni alle posizioni delle schermate viene rappresentato nella figura seguente:

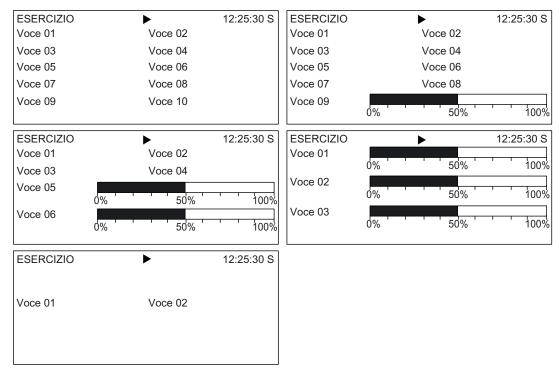


Figura 6-28 Posizioni delle immissioni nella pagina operativa

6.7.5.4 Liste dei segnali per la pagina operativa

Nelle tabelle seguenti sono elencati alcuni segnali importanti per la pagina operativa con le relative grandezze di riferimento e la preimpostazione in caso di messa in servizio rapida.

Oggetto Vector

Tabella 6-18 Lista dei segnali per la pagina operativa - Oggetto Vector

Segnale		Parametri	Abbreviazion e	Unità	Normalizzazione (100%=) vedere la tabella seguente
Impostazione di fabbrica (n. di immissione)					
Valore di riferimento del numero di giri prima del generatore di rampa	(1)	r1114	NRIF	1/min	p2000
Frequenza di uscita	(2)	r0024	F_OFF	Hz	Frequenza di riferimento
Potenza livellata	(3)	r0032	PATT	kW	r2004
Tensione del circuito intermedio livellata	(4)	r0026	U_DC	V	p2001
Valore attuale del numero di giri livellato	(5)	r0021	N_ATT	1/min	p2000
Valore attuale di corrente livellato	(6)	r0027	I_ATT	Α	p2002
Temperatura del motore	(7)	r0035 1)	T_MOT	°C	Temperatura di riferimento
Temperatura convertitore	(8)	r0037	T_LT	°C	Temperatura di riferimento
Valore attuale della coppia livellato	(9)	r0031	M_ATT	Nm	p2003
Tensione di uscita del convertitore livellata	(10)	r0025	U_OFF	V	p2001
Per scopi diagnostici					
Valore di riferimento del numero di giri livellato		r0020	NRIF	1/min	p2000
Fattore di comando livellato		r0028	CONTR	%	Fattore di comando di riferimento
Componente di corrente per formazione del campo		r0029	IDATT	Α	p2002
Componente di corrente per formazione della coppia		r0030	IQATT	Α	p2002
Sovraccarico convertitore Grado di sovraccarico termico		r0036	LTI2T	%	100 % = disattivazione
Valore attuale del numero di giri, encoder motore		r0061	N_ATT	1/min	p2000
Valore di riferimento del numero di giri dopo il filtro		r0062	NRIF	1/min	p2000
Valore attuale del numero di giri dopo livellamen	ito	r0063	N_ATT	1/min	p2000
Deviazione di regolazione		r0064	NDIFF	1/min	p2000
Frequenza di scorrimento		r0065	FSCOR	Hz	Frequenza di riferimento
Frequenza di uscita		r0066	F_OFF	Hz	Frequenza di riferimento
Tensione di uscita		r0072	UATT	V	p2001
Grado di controllo		r0074	CONTR	%	Fattore di comando di riferimento
Valore attuale di corrente che forma la coppia		r0078	IQATT	Α	p2002
Valore attuale di coppia		r0080	M_ATT	Nm	p2003
Per scopi diagnostici ampliati					
Valore di riferimento fisso del numero di giri attivo		r1024		1/min	p2000
Valore di riferimento attivo potenziometro motore		r1050		1/min	p2000

Segnale	Parametri	Abbreviazion e	Unità	Normalizzazione (100%=) vedere la tabella seguente
Valore di riferimento del numero di giri risultante	r1119	NRIF	1/min	p2000
Uscita regolatore di velocità	r1508	NREGY	Nm	p2003
Componente I regolatore numero di giri	r1482	NREGI	Nm	p2003
Valore di riferimento da PROFIBUS	r2050	PBRIF	1/min	p2000

¹⁾ Se non sono montati i sensori di temperatura, viene visualizzato un valore di –200 °C.

Normalizzazioni per l'oggetto Vector

Tabella 6-19 Normalizzazioni per l'oggetto Vector

Grandezza	Parametro di normalizzazione	Preimpostazione durante la messa in servizio rapida
N. giri di riferimento	100 % = p2000	p2000 = n. di giri massimo (p1082)
Tensione di riferimento	100 % = p2001	p2001 = 1000 V
Corrente di riferimento	100 % = p2002	p2002 = limite di corrente (p0640)
Coppia di riferimento	100 % = p2003	p2003 = 2 x coppia nominale motore
Potenza di riferimento	100 % = r2004	r2004 = (p2003 x p2000 x π) / 30
Frequenza di riferimento	100% = p2000 / 60	
Fattore di comando di riferimento	100 % = tensione di uscita massima senza sovracomando	
Flusso di riferimento	100 % = flusso nominale del motore	
Temperatura di riferimento	100 % = 100 °C	

Oggetto TM31

Tabella 6-20 Lista dei segnali per la pagina operativa - Oggetto TM31

Segnale	Parametro	Abbreviazione	Unità	Normazione (100 % =)
Ingresso analogico 0 [V, mA]	r4052[0]	AI_UI	V, mA	V: 100 V / mA: 100 mA
Ingresso analogico 1 [V, mA]	r4052[1]	AI_UI	V, mA	V: 100 V / mA: 100 mA
Ingresso analogico 0, in scala	r4055[0]	AI_%	%	V: 100 V / mA: 100 mA
Ingresso analogico 1, in scala	r4055[1]	AI_%	%	V: 100 V / mA: 100 mA

Impostazione data / ora (per l'indicazione oraria in caso di messaggi di errore)

In questo menu vengono impostate la data e l'ora.

Inoltre è possibile impostare se e come deve essere effettuata una sincronizzazione tra l'AOP e l'apparecchio di azionamento. La sincronizzazione AOP -> Drive permette di associare l'indicazione di data e ora ai messaggi di errore.

- Nessuna (impostazione di fabbrica):
 non viene eseguita alcuna sincronizzazione tra l'AOP e l'apparecchio di azionamento.
- AOP -> Drive
 - Se si attiva questa opzione, la sincronizzazione viene eseguita immediatamente e l'ora attuale dell'AOP viene copiata nell'apparecchio di azionamento.
 - Dopo ogni riavvio dell'AOP l'ora attuale dell'AOP viene copiata nell'apparecchio di azionamento.
 - Ogni giorno alle 2 (ora AOP) l'ora attuale dell'AOP viene copiata nell'apparecchio di azionamento.
- Drive -> AOP
 - Se si attiva questa opzione, la sincronizzazione viene eseguita immediatamente e l'ora attuale dell'AOP dell'apparecchio di azionamento viene copiata nell'AOP.
 - Dopo ogni riavvio dell'AOP l'ora attuale dell'apparecchio di azionamento viene copiata nell'AOP.
 - Ogni giorno alle 2 (ora AOP) l'ora attuale dell'apparecchio di azionamento viene copiata nell'AOP.

Formato data

Questo menu permette di impostare il formato della data:

- DD.MM.YYYY: formato data europeo
- MM/DD/YYYY: formato data nordamericano

Ripristino impostazioni AOP

Selezionando questa voce di menu, le seguenti opzioni vengono ripristinate alle impostazioni di fabbrica:

- Lingua
- display (luminosità, contrasto)
- Pagina operativa
- Impostazioni di comando

ATTENZIONE

Con il ripristino tutte le modifiche eseguite sul pannello operativo che deviano dalle impostazioni di fabbrica vengono immediatamente cancellate. Questo può provocare eventualmente una condizione di funzionamento indesiderata dell'apparecchio.

Pertanto il ripristino deve essere eseguito solo con grande cautela!

6.7.5.5 Diagnostica AOP30

Versione di software / banca dati

In questo menu vengono visualizzate le versioni del firmware e della banca dati.

La versione della banca dati deve essere adeguata alla versione del software dell'azionamento (da verificare nel parametro r0018).

Stato della batteria

In questo menu la tensione della batteria viene visualizzata in volt e come barra. Mediante la batteria vengono mantenuti i dati nella banca dati e l'ora attuale.

Nella rappresentazione in percentuale, una tensione della batteria \leq 2 V corrisponde al valore 0 %, una tensione \geq 3 V corrisponde al 100 %.

La sicurezza dei dati viene garantita fino a una tensione della batteria di 2 V.

- Con una tensione della batteria ≤2,45 V nella riga di stato viene emesso il messaggio "Sostituire la batteria".
- Con una tensione della batteria ≤ 2,30V appare la finestra a comparsa: "Avviso batteria quasi scarica".
- Con una tensione della batteria ≤ 2 V appare la finestra a comparsa: "Attenzione: la batteria è scarica".
- Se, dopo uno stato di disattivazione prolungata a causa di una tensione troppo bassa, l'ora e/o la banca dati sono mancanti, tale perdita viene riconosciuta all'accensione dal CRC-Check. In questo caso viene emessa una segnalazione per la sostituzione della batteria e il successivo ricaricamento dell'ora e della banca dati.

Le indicazioni per la sostituzione della batteria sono riportate nel capitolo "Manutenzione e riparazione".

Test della tastiera

Nella schermata viene verificata la funzionalità dei tasti. I tasti premuti vengono rappresentati sul display sotto forma di una tastiera simbolica. Essi possono essere premuti in una sequenza qualsiasi. La schermata può essere chiusa (F4 - "Indietro") solo quando tutti i tasti sono stati premuti almeno una volta.

Nota

Si può uscire dal test della tastiera anche premendo a lungo un tasto qualsiasi.

Test dei LED

In questa schermata viene verificata la funzionalità dei 4 LED.

6.7.6 Language/Sprache/Langue/Idioma/Lingua

Il pannello operativo carica i testi per le diverse lingue dall'azionamento.

La lingua del pannello operativo può essere cambiata tramite il menu "Language/Sprache/Langue/Idioma/Lingua".

Nota

Altre lingue del pannello operativo

Altre lingue oltre a quelle presenti nel pannello operativo sono disponibili su richiesta.

6.7.7 Comando tramite pannello operativo (modo LOCAL)

I tasti di comando vengono attivati con la commutazione nel funzionamento LOCAL. Se non è acceso il LED verde del tasto LOCAL-REMOTE, essi sono inattivi.

Nota

Quando la funzione "OFF in REMOTE" è attivata, il LED del tasto LOCAL/REMOTE lampeggia.

Con la priorità di comando LOCAL tutti i valori di riferimento aggiuntivi vengono disattivati.

Dopo il trasferimento della priorità di comando al pannello operativo le interconnessioni BICO sui bit da 0 a 10 della parola di comando del controllo sequenziale non sono attive (vedere schema logico 2501).

6.7.7.1 Tasto LOCAL/REMOTE

Attivazione modo LOCAL: Premere il tasto LOCAL

Modo LOCAL: LED acceso

Modo REMOTE: il LED non è acceso; i tasti ON, OFF, JOG, Inversione senso di rotazione, Più veloce, Più lento, non sono attivi.

Impostazioni: MENU - Messa in servizio / Service - Impostazioni AOP - Impostazioni di comando

Memorizzare il modo operativo LOCAL (impostazione di fabbrica: Sì)

- Sì: il modo operativo "LOCAL" oppure "REMOTE" viene memorizzato alla disinserzione dell'alimentazione e ripristinato alla riaccensione.
- No: il modo operativo "LOCAL" oppure "REMOTE" non viene memorizzato. All'inserzione viene attivato il modo operativo "REMOTE".

OFF in REMOTE (impostazione di fabbrica: No)

- Sì: il tasto OFF agisce anche in caso di comando dell'azionamento dall'esterno in modalità REMOTE (PROFIBUS, morsettiera utente, morsettiera NAMUR).
 AVVERTENZA: questa non è una funzione di arresto di emergenza!
- No: il tasto OFF agisce solo in modo LOCAL.

LOCAL/REMOTE anche durante il funzionamento (impostazione di fabbrica: No)

- Sì: il passaggio LOCAL/REMOTE è possibile anche con l'azionamento (e il motore) in funzione.
- No: prima della commutazione a LOCAL viene verificato se l'azionamento si trova nella condizione di "Funzionamento". In caso affermativo la commutazione viene rifiutata con la segnalazione di errore "Local non possibile". Prima della commutazione a REMOTE l'azionamento viene disattivato e il valore di riferimento viene impostato a 0.

6.7.7.2 Tasto ON / Tasto OFF

Tasto ON: in LOCAL sempre attivo, se il blocco di comando è disattivato.

Tasto OFF: nelle impostazioni di fabbrica agisce come OFF1 = arresto con la rampa di decelerazione (p1121), con n = 0: abilitazione tensione (solo in presenza di contattore principale).

Il tasto OFF è attivo in LOCAL Mode e quando è attiva la funzione "OFF in REMOTE".

Impostazioni: MENU – Messa in servizio / Service – Impostazioni AOP – Impostazioni di comando

Il tasto rosso OFF agisce come: (impostazione di fabbrica: OFF1)

- OFF1: arresto con rampa di decelerazione (p1121)
- OFF2: blocco impulsi immediato, il motore si ferma per inerzia
- OFF3: arresto con rampa di decelerazione rapida (p1135)

6.7.7.3 Commutazione sinistrorso/destrorso

Impostazioni: MENU – Messa in servizio / Service – Impostazioni AOP – Impostazioni di comando

Commutazione sinistrorso/destrorso (impostazione di fabbrica: No)

- Sì: nel modo LOCAL la commutazione sinistrorso/destrorso è possibile con il tasto sinistra/destra
- No: il tasto sinistra/destra non è efficace nel modo LOCAL

Per motivi di sicurezza il tasto sinistra/destra è disabilitato nelle impostazioni di fabbrica (pompe e ventilatori normalmente devono funzionare solo in una direzione).

La direzione di rotazione attualmente selezionata viene visualizzata nello stato di "Funzionamento" del modo LOCAL, con una freccia vicino allo stato di funzionamento.

Nota

Se si attiva la Commutazione sinistrorso/destrorso, è necessario effettuare altre impostazioni.

6.7.7.4 Funzionamento a impulsi (JOG)

JOG

Impostazioni: MENU – Messa in servizio / Service – Impostazioni AOP – Impostazioni di comando

Tasto JOG (funzionamento a impulsi) attivo (impostazione di fabbrica: No)

- Sì: Il tasto del funzionamento a impulsi è attivo in modalità LOCAL nello stato "Pronto all'inserzione" (non nello stato "Funzionamento"). Viene raggiunto il numero di giri impostato nel parametro p1058.
- No: Il tasto JOG non è efficace nel modo LOCAL.

6.7.7.5 Incremento / decremento del valore di riferimento

Con i tasti di incremento e decremento si può impostare il valore di riferimento con una risoluzione di 1 min-1 del numero di giri massimo.

In alternativa il valore di riferimento può essere impostato in modo numerico. Per fare questo premere il tasto F2 nella pagina operativa. Appare un campo di editazione in reverse per l'immissione del numero di giri desiderato. Il valore viene introdotto con la tastiera numerica. Con F5 "OK" viene accettato il valore di riferimento.

Con l'introduzione numerica è possibile impostare qualsiasi numero di giri compreso tra quelli minimi (p1080) e quelli massimi (p1082).

La preimpostazione del valore di riferimento in modo LOCAL è del tipo unipolare. L'inversione del senso di rotazione può avvenire con il tasto "Commutazione sinistrorso/destrorso".

- Senso di rotazione destrorso e tasto di incremento significa:
 il valore di riferimento visualizzato è positivo e la frequenza di uscita viene aumentata.
- Senso di rotazione sinistrorso e tasto di incremento significa:
 il valore di riferimento visualizzato è negativo e la frequenza di uscita viene aumentata.

6.7.7.6 Valore di riferimento AOP

Impostazioni: MENU – Messa in servizio / Service – Impostazioni AOP – Impostazioni di comando Salva valore di riferimento AOP (impostazione di fabbrica: No)

- Sì: Nel modo LOCAL viene memorizzato l'ultimo valore di riferimento eseguito (al momento del rilascio del tasto INCREMENTO o decremento, oppure con la conferma dell'introduzione numerica).
 - Alla successiva attivazione del modo LOCAL viene nuovamente utilizzato il valore di riferimento memorizzato. Questo avviene anche se nel frattempo si commuta in REMOTE oppure se viene tolta la tensione di alimentazione.
 - Nella commutazione da REMOTE a LOCAL ad azionamento inserito (motore funzionante) l'ultimo valore attuale viene applicato come valore di uscita per il valore di riferimento AOP e memorizzato.
 - Se la commutazione da REMOTE a LOCAL avviene ad azionamento disinserito, viene usato l'ultimo valore di riferimento AOP memorizzato.
- No: All'attivazione del modo LOCAL viene sempre utilizzato il numero di giri immesso in "Valore di riferimento iniziale AOP". Commutando da REMOTE a LOCAL con

azionamento attivo (motore in rotazione), come valore di uscita per il valore di riferimento di AOP viene impostato l'ultimo valore attuale.

AOP Riferimento tempo di accelerazione (impostazione di fabbrica: 10 s)

AOP Valore di riferimento tempo di decelerazione (impostazione di fabbrica: 10 s)

Raccomandazione: impostare come il tempo di accelerazione/decelerazione (p1120 / p1121)

La modifica di questi tempi di accelerazione e decelerazione non influenza l'impostazione dei parametri p1120, p1121, in quanto si tratta di una possibilità di impostazione tipica di AOP.

AOP Valore di riferimento iniziale (impostazione di fabbrica: 0.000 min-1)

Nota

Il generatore di rampa interno dell'azionamento deve essere sempre attivo.

Impostazioni: MENU – Messa in servizio / Service – Impostazioni AOP – Impostazioni di comando Blocco modo Local AOP (impostazione di fabbrica: No)

- Sì: La funzionalità "Controllo tramite pannello operativo" è disattivata. Il tasto LOCAL/REMOTE non è attivo.
- No: Il tasto LOCAL/REMOTE è attivo.

Nota

La funzionalità LOCAL può anche essere bloccata sull'azionamento tramite il parametro p0806 (BI: blocco priorità di comando).

Impostazioni: MENU – Messa in servizio / Service – Impostazioni AOP – Impostazioni di comando Conferma errore tramite AOP (impostazione di fabbrica: Sì)

- Sì: la tacitazione degli errori tramite l'AOP è possibile.
- No: la tacitazione degli errori tramite l'AOP è bloccata.

6.7.7.7 Timeout sorveglianza

In modo "LOCAL" o quando "OFF in REMOTE" è attivo, se si disinserisce il cavo dati tra AOP e l'azionamento, l'azionamento viene disattivato dopo 1 s.

6.7.7.8 Blocco di comando / blocco parametrizzazione

Per la protezione contro l'utilizzo errato dei tasti di comando e contro modifiche involontarie di parametri, è possibile attivare il blocco di comando e il blocco parametrizzazione tramite un tasto chiave. L'attivazione di questi blocchi di sicurezza viene segnalata in alto a destra sul display con due simboli di chiavi.

Tabella 6-21 Visualizzazione di blocco di comando e blocco parametrizzazione

Tipo di blocco	Funzionamento online	Funzionamento offline	
Nessun blocco di sicurezza			
Blocco di comando	-0	-	
Blocco parametrizzazione	-8		
Blocco di comando + blocco parametrizzazione	73	= :	

Impostazioni

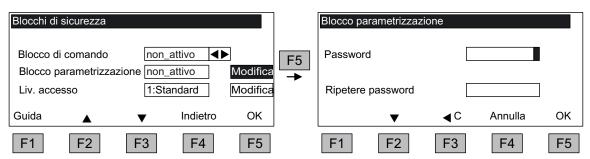


Figura 6-29 Impostazione dei blocchi di sicurezza

L'impostazione "Blocco di comando" può essere modificata direttamente dopo la selezione del campo direttamente tramite <F5> "Modifica".

All'attivazione del "Blocco parametrizzazione" è necessario immettere e ripetere una password numerica. Questa password deve essere immessa anche al momento della disattivazione.

Blocco di comando (impostazione di fabbrica: non attivo)

 Attivo: i contenuti dei parametri possono essere comunque visualizzati, solo la memorizzazione dei valori dei parametri è in ogni caso bloccata (messaggio: "Nota: Blocco di comando attivo"). Il tasto OFF (rosso) è attivo. I tasti LOCAL/REMOTE, ON (verde), JOG, SINISTRA/DESTRA, INCREMENTO e DECREMENTO sono disattivati.

Blocco parametrizzazione (impostazione di fabbrica: non attivo)

 Attivo: viene attivato il blocco della modifica dei parametri con protezione tramite password. La parametrizzazione si comporta come nella condizione di blocco di comando. Se si tenta di modificare i valori dei parametri, viene emesso il messaggio: "Nota: blocco parametrizzazione attivo"). Tutti i tasti di comando sono comunque attivi.

Livello di accesso (impostazione di fabbrica: Esperti):

Per ottenere una rappresentazione compatta delle possibilità di parametrizzazione legate alla complessità dell'applicazione, la visualizzazione dei parametri viene filtrata e la scelta avviene con il livello di accesso.

Per particolari operazioni è necessario il livello "Esperti" che può essere utilizzato solo da personale tecnico istruito.

6.7.8 Anomalie e avvisi

Visualizzazione di anomalie / avvisi

L'azionamento visualizza una condizione di errore segnalando la relativo anomalia e/o il relativo avviso tramite il pannello operativo. Le anomalie vengono segnalate mediante il LED rosso di "FAULT" e la pagina delle anomalie viene richiamata sul display. Premendo il tasto della guida F1 si ottengono informazioni sulla causa e sul possibile rimedio. Con il tasto tacitazione F5 è possibile tacitare un'anomalia memorizzata.

Gli avvisi attivi vengono indicati dall'accensione del LED giallo "ALARM", inoltre nella riga di stato del pannello operativo viene riportata una indicazione relativa alla causa.

Cos'è un'anomalia?

Un'anomalia è un messaggio dell'azionamento relativo ad un errore oppure ad una condizione anomala (non voluta). La causa potrebbe derivare da un'anomalia interna dell'azionamento ma anche esterna, come ad esempio dalla sorveglianza di temperatura dell'avvolgimento del motore. Le anomalie vengono visualizzate sul display e possono essere segnalate via PROFIBUS ad un sistema di controllo sovraordinato. Inoltre, un'uscita di relè con la segnalazione "Convertitore guasto" viene preassegnata nelle impostazioni di fabbrica. Dopo l'eliminazione della causa dell'anomalia, è necessario tacitare il relativo messaggio.

Cos'è un avviso?

Un avviso è una reazione dell'azionamento al riconoscimento di una condizione di errore che non provoca la disinserzione dell'azionamento e non deve essere tacitata. Gli avvisi sono perciò "autotacitanti": vengono cancellati non appena la causa sparisce.

Visualizzazione di anomalie e avvisi

Ogni anomalia o avviso viene memorizzata/o nel relativo buffer con l'indicazione dell'ora di comparsa. L'indicazione dell'ora si riferisce al tempo di sistema in millisecondi (r0969).

Mediante MENU – Memoria anomalie / Memoria avvisi si passa a una finestra di riepilogo nella quale viene visualizzato lo stato corrente delle anomalie e/o degli avvisi per ogni Drive Object del sistema.

Con F4 "Altri" viene visualizzato un menu a comparsa con le opzioni "Indietro" e "Tacita". La funzione desiderata può essere selezionata con F2 e F3 e con F5 "OK". La funzione di tacitazione invia un segnale di tacitazione a ogni Drive Object. Quando tutte le anomalie vengono tacitate, il LED rosso FAULT si spegne.

6.7 Gestione tramite pannello operativo

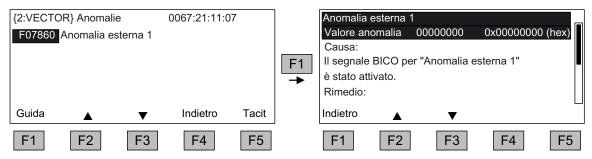


Figura 6-30 Pagina anomalie

Con il tasto tacitazione F5 è possibile tacitare un'anomalia memorizzata.

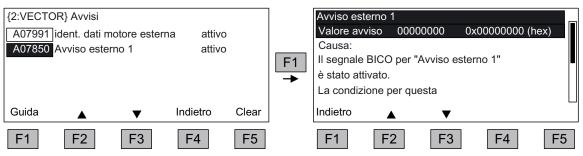


Figura 6-31 Pagina avvisi

Con F5-Clear gli avvisi non più attivi vengono rimossi dalla memoria avvisi.

6.7.9 Memorizzazione permanente dei parametri

Descrizione

Quando vengono modificati dei parametri con il pannello operativo (conferma con OK nell'editor dei parametri), i nuovi valori sono dapprima memorizzati in una memoria volatile (RAM) del convertitore. Fino alla memorizzazione permanente, in alto a destra nel display AOP lampeggia una "S". In questo modo viene segnalato che è stato modificato almeno un parametro senza che lo stesso sia stato memorizzato in modo permanente.

Ci sono due possibilità di eseguire la memorizzazione permanente dei parametri modificati:

- Tramite <MENU> <Parametrizzazione> <OK> <Applicazione permanente parametri> viene avviata la memorizzazione permanente.
- Mantenere premuto a lungo il tasto OK (>1 s) al momento della conferma della modifica di un parametro con OK. Il sistema chiede se la memorizzazione deve avvenire nella EEPROM.

Rispondendo "Sì", viene eseguita la memorizzazione. Rispondendo "No", non avviene la memorizzazione permanente e questo viene segnalato con una "S" lampeggiante.

Con entrambe le possibilità di memorizzazione, vengono memorizzate nella EEPROM **tutte** le modifiche non ancora memorizzate in modo permanente.

6.7.10 Errori di parametrizzazione

Se durante la lettura o la scrittura dei parametri si verifica un errore, viene visualizzata una finestra a comparsa che indica la causa dell'errore.

Viene visualizzato

Errore di scrittura del parametro (d)pxxxx.yy:0xnn

e una spiegazione in testo in chiaro relativa al tipo di errore del parametro.

6.8 PROFINET IO

6.8.1 Attivazione del funzionamento online: STARTER tramite PROFINET IO

Descrizione

Per il funzionamento online tramite PROFINET IO vi sono le seguenti possibilità:

• Funzionamento online via IP

Presupposti

- STARTER con la versione ≥ 4.1.1
- Firmware Versione ≥ 2.5.1
- CBE20

STARTER tramite PROFINET IO (esempio)

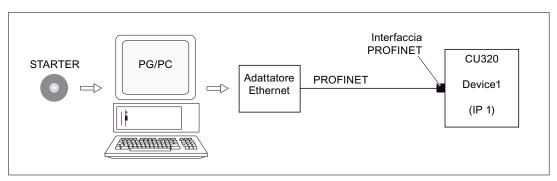


Figura 6-32 STARTER tramite PROFINET (esempio)

Procedura di attivazione del funzionamento online tramite PROFINET

- Impostazione dell'indirizzo IP in Windows XP
 Qui viene assegnato un indirizzo IP libero e fisso al PC/PG.
- 2. Impostazioni in STARTER
- 3. Assegnazione dell'indirizzo IP e del nome per l'interfaccia PROFINET dell'apparecchio di azionamento

Affinché STARTER possa creare una comunicazione, è necessario attribuire un nome all'interfaccia PROFINET.

4. Selezionare il funzionamento online in STARTER.

Impostazione dell'indirizzo IP in Windows XP

Nel desktop fare clic con il tasto destro del mouse su "Risorse di rete"-> Proprietà -> Fare doppio clic sulla scheda di rete -> Proprietà -> selezionare "Internet Protocol (TCP/IP)" -> Proprietà -> Specificare gli indirizzi liberamente assegnabili.

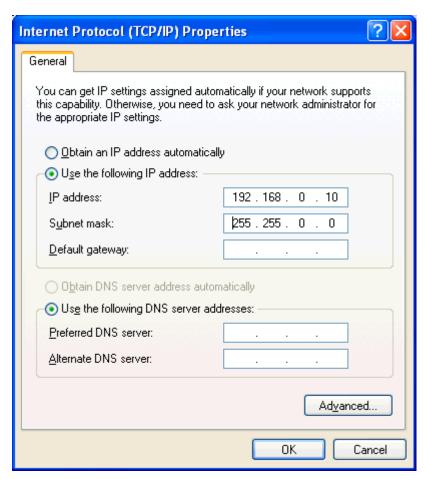


Figura 6-33 Proprietà di Internet Protocol (TCP/IP)

Impostazioni in STARTER

In STARTER la comunicazione tramite PROFINET deve essere impostata come segue:

• Strumenti -> Imposta interfaccia PG/PC...

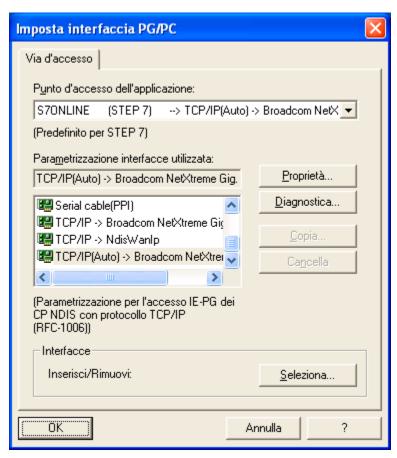


Figura 6-34 Impostazione dell'interfaccia PG/PC

Assegnazione dell'indirizzo IP e del nome per l'interfaccia PROFINET dell'apparecchio di azionamento

Con STARTER è possibile assegnare all'interfaccia PROFINET (CBE20) un indirizzo IP e un nome.

Presupposto:

- Installare un cavo diretto Ethernet dal PG/PC all'interfaccia PROFINET della Control Unit CU320.
- Attivare la Control Unit CU320.

In STARTER vanno ricercati i nodi raggiungibili:

Progetto -> Nodi raggiungibili

Dopodiché i nodi trovati vengono visualizzati nella finestra di dialogo.

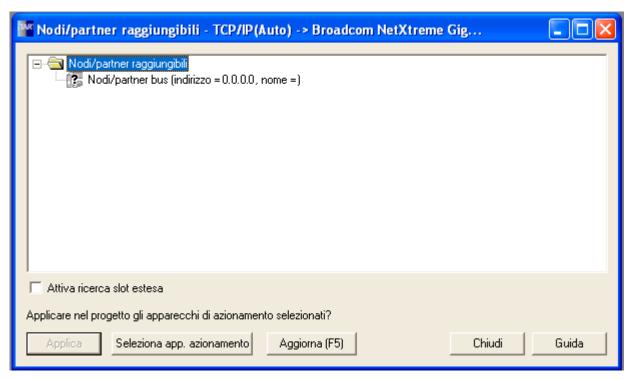


Figura 6-35 STARTER - Nodi raggiungibili

Il nodo selezionato può essere modificato evidenziando il campo relativo al nodo con il tasto destro del mouse e selezionando l'opzione "Modifica dei nodi Ethernet...".

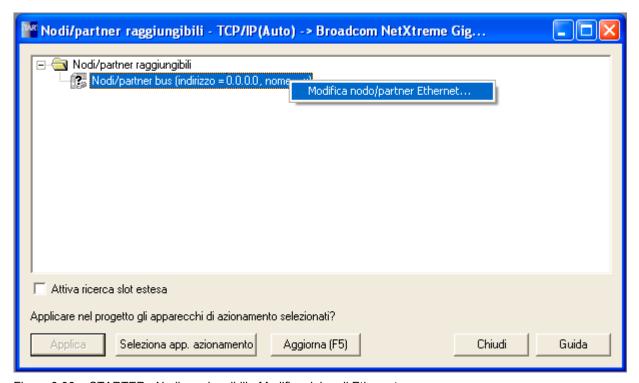


Figura 6-36 STARTER - Nodi raggiungibili - Modifica dei nodi Ethernet

Nella finestra di dialogo seguente vengono immessi un nome dell'apparecchio a scelta, l'indirizzo IP e la maschera di sottorete.

Per il funzionamento di STARTER le maschere della sottorete devono corrispondere.

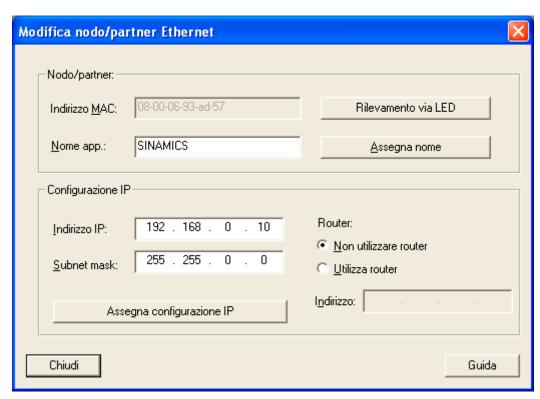


Figura 6-37 STARTER - Modifica dei nodi Ethernet

Dopo aver selezionato il pulsante "Assegna nome" ed effettuato un'assegnazione, viene visualizzata la seguente conferma.

Figura 6-38 STARTER - Assegnazione del nome dell'apparecchio effettuata con successo

Dopo aver selezionato il pulsante "Assegna configurazione IP" ed effettuato un'assegnazione, viene visualizzata la seguente conferma.

Figura 6-39 STARTER - Assegnazione della configurazione IP effettuata con successo

Una volta chiusa la finestra di dialogo "Modifica dei nodi Ethernet", dopo aver aggiornato (F5) la panoramica dei nodi viene visualizzato il nome assegnato al nodo.

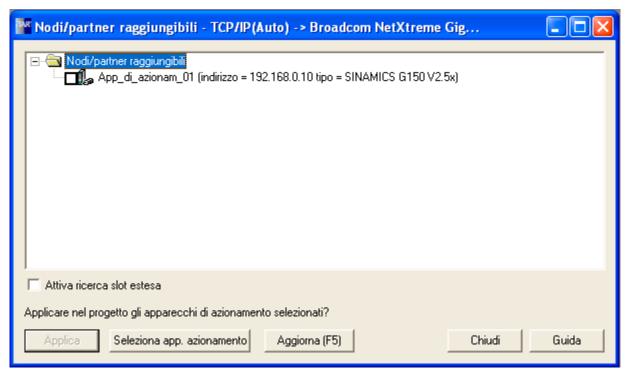


Figura 6-40 STARTER - Aggiornamento dei nodi raggiungibili effettuato

Nota

Nella Control Unit l'indirizzo IP e il nome dell'apparecchio vengono salvati in modo non volatile sulla CompactFlash Card.

6.8.2 Generalità su PROFINET IO

6.8.2.1 Informazioni generali su PROFINET IO in SINAMICS

Generalità

PROFINET IO è uno standard Industrial Ethernet aperto con un vasto campo di applicazione nell'automazione della produzione e dei processi. PROFINET IO si basa su Industrial Ethernet e utilizza il protocollo TCP/IP e gli standard IT.

L'indipendenza dai costruttori e l'apertura sono garantite dalle seguenti norme:

Norma internazionale IEC 61158

PROFINET IO è ottimizzato per il trasferimento veloce di dati al livello di campo.

PROFINET

Nell'ambito della Totally Integrated Automation (TIA), PROFINET rappresenta il proseguimento naturale di:

- PROFIBUS DP, il bus di campo ormai consolidato, e
- Industrial Ethernet, il bus di comunicazione per il livello di cella.

Le esperienze maturate in entrambi i sistemi sono state e vengono tuttora integrate in PROFINET. PROFINET è uno standard di automazione basato su Ethernet dell'organizzazione PROFIBUS International (PROFIBUS Nutzerorganisation e.V.) che definisce un modello di comunicazione ed engineering esteso a tutti i produttori.

Con la scheda Communication Board CBE20 inserita, SINAMICS G150 diventa un IO Device nel senso di PROFINET. Con SINAMICS G150 e CBE20 la comunicazione può avvenire tramite PROFINET IO con RT.

Nota

PROFINET per la tecnica di azionamento è standardizzato e definito nella seguente documentazione:

Bibliografia:

PROFIdrive Profile Drive Technology PROFINET Descrizione del sistema,

Nr. di ordinazione 6ES7398-8FA10-8AA0, 6ES7151-1AA10-8AA0

6.8.2.2 Comunicazione in tempo reale (RT) e comunicazione in tempo reale isocrona (IRT)

Comunicazione in tempo reale

Se i Supervisor intervengono nella comunicazione si hanno tempi di ciclo che per l'automazione della produzione risultano troppo lunghi . Per la comunicazione di dati utili IO con criticità temporale, PROFINET non utilizza perciò il protocollo TCP/IP ma un proprio canale in tempo reale (real time).

Definizione: tempo reale (real time, RT) e determinismo

Tempo reale significa che un sistema elabora gli eventi esterni in un tempo definito.

Determinismo significa che un sistema reagisce in modo pronosticabile (deterministico).

Entrambi i requisiti sono importanti nelle reti industriali. PROFINET soddisfa questi requisiti. PROFINET è quindi realizzato come rete in tempo reale deterministica nel modo seguente:

- la trasmissione di dati con criticità temporale ha luogo a intervalli di tempo garantiti.
 PROFINET offre un canale di comunicazione ottimizzato per la comunicazione in tempo reale: Real time (RT).
- Esso consente un'esatta determinazione (previsione) nell'istante del trasferimento dei dati.
- Esso garantisce una comunicazione perfetta attraverso altri protocolli standard nella stessa rete.

Definizione: Comunicazione in tempo reale isocrona (real time isocrono, IRT)

Isochronous Real Time Ethernet: Proprietà tempo reale di PROFINET IO, con la quale i telegrammi IRT vengono trasferiti in modo deterministico tramite vie di comunicazione pianificate in una sequenza definita per ottenere sincronizzazione e performance ai massimi livelli. Viene detta anche comunicazione pianificata temporalmente; nella stessa si utilizzano le conoscenze della struttura di rete. Per IRT sono necessari speciali componenti di rete in grado di supportare una trasmissione di dati pianificata.

Con l'implementazione del procedimento di trasmissione in ERTEC-ASIC (Enhanced Real-Time Ethernet Controller), si ottengono dei tempi di ciclo di min. 500 μ s e una precisione di jitter inferiore a 1 μ s.

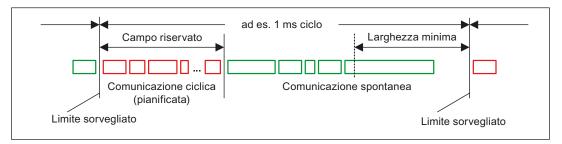


Figura 6-41 Distribuzione/prenotazione delle larghezze di banda PROFINET IO IRT

Nota

Le stazioni S7-300 possono per il momento funzionare con gli azionamenti SINAMICS solo comunicando tramite PROFINET IO con RT.

6.8.2.3 Indirizzi

Definizione: Indirizzo MAC

A ogni dispositivo PROFINET viene assegnato in fabbrica un identificativo univoco internazionale. Questo identificativo di 6 byte è l'indirizzo MAC. L'indirizzo MAC è suddiviso in:

- 3 byte per l'identificativo del produttore e
- 3 byte per l'identificativo del dispositivo (numero progressivo).

L'indirizzo MAC è normalmente leggibile dalla parte anteriore sul dispositivo.

ad es.: 08-00-06-6B-80-C0

Indirizzo IP

Per poter essere indirizzato come nodo della rete Industrial Ethernet, un dispositivo PROFINET deve avere un indirizzo IP univoco all'interno della rete. L'indirizzo IP è costituito da 4 numeri decimali con un campo di valori da 0 a 255. I numeri decimali sono separati da un punto. L'indirizzo IP è formato da

- Indirizzo della (sotto)rete e
- Indirizzo del nodo (in generale definito anche host o nodo di rete).

Assegnazione dell'indirizzo IP

Per effettuare il collegamento e la parametrizzazione è necessario il protocollo TCP/IP. Perciò è necessario un indirizzo IP.

Gli indirizzi IP dei device IO possono essere assegnati attraverso l'IO Controller e hanno sempre la stessa maschera di sottorete dell'IO Controller. Essi possono essere assegnati per incremento dall'indirizzo IP dell'IO Controller. All'occorrenza questo indirizzo IP può essere modificato manualmente e salvato nella memoria volatile.

Se l'indirizzo IP deve essere memorizzato nella memoria volatile, si dovrà eseguire l'assegnazione dell'indirizzo con il Primary Setup Tool (PST).

Questa funzione può anche essere eseguita con Config HW di STEP 7 dove la funzione viene denominata "Modifica dei nodi Ethernet".

Nota

Se la rete fa parte di una rete aziendale Ethernet esistente, occorre richiedere i dati necessari (indirizzo IP, maschera di sottorete e un router eventualmente presente) all'amministratore di rete.

Nome dell'apparecchio

All'atto della fornitura gli IO Device non hanno un nome dell'apparecchio. Solo dopo aver assegnato un nome dell'apparecchio con l'IO Supervisor, un IO è indirizzabile da parte di un IO Controller, ad es. per il trasferimento dei dati di progettazione (fra l'altro l'indirizzo IP) all'avviamento o per lo scambio dei dati utili in funzionamento ciclico.

Sostituzione della Control Unit CU320 (IO Device)

Se l'indirizzo IP e il nome dell'apparecchio sono salvati in modo non volatile, anche questi dati vengono trasmessi con la scheda di memoria (CF Card) della Control Unit.

In caso di sostituzione completa di un IO Device a causa di un difetto del dispositivo o del modulo, la Control Unit esegue automaticamente la parametrizzazione e la configurazione del nuovo dispositivo o modulo. Quindi viene ripristinato lo scambio ciclico dei dati utili. In caso di errore nel dispositivo PROFINET, la CF Card consente di sostituire un'unità senza ricorrere a IO Supervisor.

Definizione: Maschera di sottorete

I bit impostati della maschera di sottorete determinano la parte dell'indirizzo IP che contiene l'indirizzo della (sotto)rete. In generale vale quanto segue:

- l'indirizzo di rete risulta dalla combinazione logica AND di indirizzo IP e maschera di sottorete.
- L'indirizzo del nodo risulta dalla combinazione logica AND negato di indirizzo IP e maschera di sottorete.

Esempio di maschera di sottorete

Maschera di sottorete: 255.255.0.0 (decimale) = 11111111.1111111.00000000.00000000 (binario) Indirizzo IP: 140.80.0.2 Significato: i primi 2 byte dell'indirizzo IP determinano la sottorete, quindi 140.80. Gli ultimi due byte indirizzano il nodo, quindi 0.2.

Default router

Il router di default è il router che viene utilizzato quando i dati devono essere inoltrati attraverso il protocollo TCP/IP a un partner della comunicazione che non si trova all'interno della "propria" sottorete. In STEP 7, nella finestra Proprietà dell'interfaccia Ethernet> Parametri > Accoppiamento ad altra rete, il router di default viene chiamato Router. Normalmente STEP 7 assegna al router di default il proprio indirizzo IP.

6.8.2.4 Trasmissione dati

Proprietà

La Communication Board CBE20 supporta il funzionamento di:

- IRT realtime Ethernet isocrona
- RT realtime Ethernet
- Servizi Ethernet standard (TCP/IP, LLDP, UDP e DCP)

Telegramma PROFIdrive per la trasmissione di dati ciclica ed i servizi aciclici

Per ogni oggetto di azionamento di un apparecchio di azionamento con scambio di dati di processo ciclico esistono telegrammi per l'invio e la ricezione di dati di processo. Oltre allo scambio dati ciclico possono essere utilizzati servizi aciclici per parametrizzare e configurare l'azionamento. Questi servizi aciclici possono essere utilizzati dal Supervisor o dal Controller.

6.8 PROFINET IO

La lunghezza complessiva del Frame Ethernet aumenta in base al numero degli oggetti di un azionamento.

Sequenza degli oggetti di azionamento nella trasmissione dati

La sequenza degli oggetti di azionamento viene visualizzata con una lista in p0978[0...15] e può anche essere modificata.

Nota

La sequenza degli oggetti di azionamento nella configurazione HW deve coincidere con la sequenza nell'azionamento (p0978).

ATTENZIONE

Una topologia ad anello non è consentita.

6.8.3 Configurazione hardware

6.8.3.1 Configurazione degli azionamenti SINAMICS con PROFINET

Communication Board Ethernet CBE20

La scheda opzionale CBE20 viene inserita nello slot opzionale della CU320. La scheda CBE20 dispone di 4 porte attraverso le quali è possibile collegare la sottorete PROFINET.

Step 7 Routing con CBE20

La CBE20 non supporta il routing Step 7 tra PROFIBUS e PROFINET IO.

Collegamento del Supervisor

Per poter passare online con STARTER esistono varie possibilità che vengono rappresentate nella figura seguente.

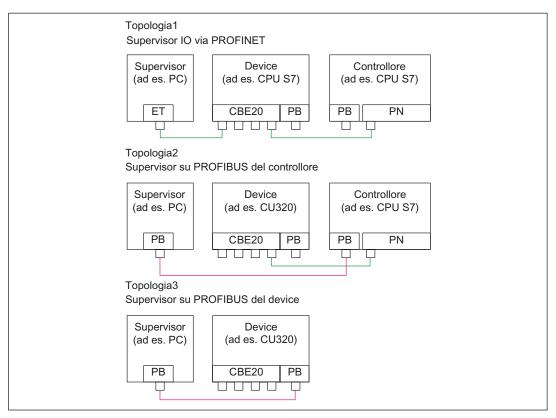


Figura 6-42 Collegamento del Supervisor

ATTENZIONE

Il routing di PROFIBUS su PROFINET e viceversa non è supportato da SINAMICS.

ATTENZIONE

In caso di guasto a un modulo della CBE20 (ad es. per una mancanza di corrente), la comunicazione con i nodi successivi viene interrotta in questo punto.

6.8.4 Classi RT

6.8.4.1 Classi RT con PROFINET IO

Descrizione

PROFINET IO è un sistema di comunicazione in tempo reale scalabile basato sulla tecnologia Ethernet. L'approccio scalabile prevede tre classi di tempo reale.

RT

La comunicazione RT è basata sullo standard Ethernet. I dati vengono trasmessi tramite telegrammi Ethernet con priorità.

IRTflex (funzionalità SW pianificata per FW2.5 SP1)

I telegrammi vengono inviati ciclicamente in un clock deterministico (Real Time isocrono). I telegrammi vengono scambiati in una larghezza di banda riservata dall'hardware. Per ogni ciclo si creano quindi un intervallo di tempo IRT e un intervallo di tempo Ethernet standard.

IRTtop

Oltre alla riserva della larghezza di banda, è possibile ottimizzare ancora lo scambio di telegrammi mediante una topologia definita al momento della progettazione. Vengono così ulteriormente migliorate le prestazioni nello scambio di dati e il determinismo. In questo modo l'intervallo di tempo IRT può essere ulteriormente ottimizzato o ridotto al minimo rispetto a IRTflex.

Oltre alla trasmissione dati a sincronismo di clock, con l'IRT può essere sincronizzata anche l'applicazione (ciclo del regolatore di posizione, ciclo IPO) negli apparecchi. Questa condizione è fondamentale per la regolazione degli assi e la sincronizzazione tramite il bus.

Tabella 6-22 Confronto tra RT, IRTflex e IRTtop

Classe RT	RT	IRTflex	IRTtop
Tipo di trasmissione	Switching in base all'indirizzo MAC; possibile assegnazione della priorità al telegramma RT tramite Ethernet-Prio (tag VLAN).	Switching in base all'indirizzo MAC; riserva dell'ampiezza di banda tramite riserva di un intervallo IRTflex nel quale vengono trasmessi solo frame IRTflex e, ad esempio, nessun frame TCP/IP.	Switching in base al percorso secondo una pianificazione basata sulla topologia; nessuna trasmissione di frame TCP/IP nell'intervallo IRTtop.
MinDeviceIntervall	Tipico 2-8 msec	Tipico 1 msec	Determinismo completo anche a 250 µsec.
Applicazione a sincronismo di clock	-	-	Sì

Classe RT	RT	IRTflex	IRTtop
Istante di avvio dell'applicazione a sincronismo di clock	-	Gli istanti esatti di ricezione dei dati non sono prefissati; sono definiti solo l'inizio dell'intervallo e la fine dell'intervallo.	Gli istanti di ricezione dei dati sono pianificati con esattezza. L'applicazione sincrona può essere avviata subito dopo (come per DP).
Determinismo	Varianza della durata della trasmissione mediante i telegrammi TCP/IP iniziati	Trasmissione garantita del telegramma IRTflex nel ciclo attuale tramite larghezza di banda riservata.	Trasmissione pianificata con precisione, gli istanti di invio e di ricezione sono garantiti per qualsiasi topologia.
Nuovo caricamento della progettazione della rete dopo una modifica	-	Solo quando occorre adattare le dimensioni dell'intervallo IRTflex (riserve possibili).	Sempre, quando vengono modificate la topologia o i rapporti di comunicazione.
Traffico trasversale (Controller-Controller)	-	-	Sì
Densità massima di switch (numero di switch in una serie)	10 per 1 ms	20	20
Precisione di sincronizzazione	-	Inoltro del telegramma Sync nel software.	L'inoltro del telegramma Sync avviene nell'hardware. Precisione <1 µs)
Clock di invio possibili (rispettare le limitazioni specifiche dell'apparecchio)	1000, 2000, 4000 μs	500 (pianificato a partire dalla versione FW2.5 SP1), 1000, 2000, 4000 μs	500 (pianificato a partire dalla versione FW2.5 SP1)/1000 – 4000 µs in incrementi di 125 µs. L'ampiezza dell'incremento dipende dal controller.

Impostazione della classe RT

Il controller IO determina la classe RT supportata dal rispettivo sistema IO, impostando sull'interfaccia del controller la classe di tempo reale. Se viene impostato IRTtop, sul controller IO non è possibile utilizzare dispositivi IRTflex e viceversa. I dispositivi RT possono sempre essere utilizzati, anche quando sono impostate le classi IRT.

La classe RT può essere impostata in Config HW dell'apparecchio PROFINET interessato.

- In Config HW, fare doppio clic sulla voce della scheda PROFINET nel componente.
 Viene visualizzata la finestra di dialogo Proprietà.
- 2. Nella scheda **Sincronizzazione** selezionare sotto classe RT la classe di tempo reale.
- 3. Confermare con OK.

6.8.4.2 PROFINET IO con RT

PROFINET IO con RT è la soluzione ottimale per l'integrazione di sistemi di periferia senza requisiti particolari in termini di prestazioni e di sincronismo di clock. Si tratta di una soluzione basata su Ethernet standard per apparecchi e Industrial Switch standard utilizzati come componenti dell'infrastruttura. Non è necessario un supporto hardware particolare.

Non a sincronismo di clock

Ethernet standard non supporta meccanismi di sincronizzazione, per cui con PROFINET IO con RT non è possibile il funzionamento a sincronismo di clock!

La funzionalità Realtime è comparabile alle moderne soluzioni PROFIBUS DP a 12 Mbaud, che prevedono sullo stesso cavo un'ampiezza di banda sufficiente per la trasmissione parallela di servizi IT.

Ai telegrammi PROFINET IO viene assegnata la priorità in conformità alla norma IEEE802.1q relativa ai telegrammi IT. Questo garantisce il determinismo necessario per la tecnica di automazione.

Scambio dati

La comunicazione è possibile solo nell'ambito di una rete (subnet).

Tempo di aggiornamento

Il tempo di aggiornamento è compreso nell'ambito di 1 ms, 2 ms e 4 ms. Il tempo di aggiornamento reale dipende dal carico del bus, dagli apparecchi utilizzati e dalla struttura d'insieme dei dati di I/O. Il tempo di aggiornamento è un multiplo del clock di invio.

6.8.4.3 Progettazione comunicazione RT in Simatic

Comunicazione RT con GSDML v1.0

Presupposti

Si ipotizzi ad esempio di aver progettato una CPU Simatic 300 versione <2.5 con una sottorete PROFINET e di inserire un azionamento tramite il file GSD **SINAMICS S120 CBE20 Pilot RT**.

Ora devono essere parametrizzati gli azionamenti e gli oggetti di azionamento (DO). Per questa versione dell'azionamento i telegrammi devono essere inseriti passo-passo. Prima deve essere inserito un **Parameter Access Point** poi un telegramma e quindi nuovamente un **Parameter Access Point** e così via.

Nota

La sequenza della struttura del telegramma deve coincidere con la sequenza degli oggetti di azionamento nella maschera di configurazione dell'azionamento in STARTER.

Procedura

- 1. Nel Catalogo hardware selezionare l'azionamento inserito.
- Trascinare il Parameter Access Point sul posto connettore 1 nella finestra della stazione dell'azionamento.
- 3. Per il primo oggetto di azionamento (DO) trascinare il telegramma corrispondente per lo scambio dati ciclico sul posto connettore successivo.
- 4. Per ogni oggetto di azionamento per il quale devono essere scambiati dati ciclici occorre ripetere i punti 2 e 3.
- 5. Quando tutti gli oggetti di azionamento sono inseriti, è necessario salvare e compilare il progetto.
- 6. Assegnazione del nome del dispositivo.
 - Impostando l'opzione "Assegna indirizzo IP mediante controller", all'avvio gli indirizzi IP del controller IO e dell'IO device progettati vengono assegnati in modo non volatile. A tal fine il nome dell'apparecchio deve coincidere con il nome dell'apparecchio dell'IO Device.
- 7. La configurazione in Config HW è terminata.

Comunicazione RT con GSDML v2.0

Presupposti

Si ipotizzi di aver progettato una CPU 300 versione 2.5 o superiore con una sottorete RT PROFINET IO e di inserire un azionamento tramite il file GSD SINAMICS S120 CBE20.

Ora devono essere parametrizzati gli azionamenti e gli oggetti di azionamento (DO). Per questa versione del file GSDML i telegrammi possono essere inseriti in successione.

Nota

La sequenza della struttura del telegramma deve coincidere con la sequenza degli oggetti di azionamento nella maschera di configurazione dell'azionamento in STARTER.

Procedura

- 1. Nel Catalogo hardware selezionare l'azionamento inserito.
- 2. Per il primo oggetto di azionamento (DO) trascinare il telegramma corrispondente per lo scambio dati ciclico sul posto connettore successivo della finestra della stazione. Viene inserito automaticamente un Parameter Access Point.
- 3. Per ogni oggetto di azionamento per il quale devono essere scambiati dei dati ciclici occorre ripetere il punto 2.
- 4. Quando tutti gli oggetti di azionamento sono inseriti, è necessario salvare e compilare il progetto.
- 5. Fare doppio clic sull'apparecchio di azionamento. Viene visualizzata la finestra di dialogo delle caratteristiche dell'IO Device.

6.8 PROFINET IO

Impostando l'opzione "Assegna indirizzo IP mediante controller", all'avvio gli indirizzi IP del controller IO e dell'IO device progettati vengono assegnati in modo non volatile. A tal fine il nome dell'apparecchio deve coincidere con il nome dell'apparecchio dell'IO Device.

6. La configurazione in Config HW è terminata.

Comunicazione RT con Device OM

Introduzione

Se sulla stazione di engineering (PC) è installata una versione completa di STEP7 V5.4, con il setup di STARTER viene installato Device OM.

SIMOTION SCOUT contiene anche Device OM. La condizione necessaria è che sia stata installata una versione completa di STEP 7. A meno che non sia installato SCOUT Stand Alone, e quindi viene fornita una versione OEM di STEP 7 che consente di elaborare progetti SIMOTION.

SCOUT contiene STARTER, che consente di mettere in servizio gli azionamenti. Permette inoltre di progettare azionamenti SINAMICS con SIMATIC CPU e PROFINET. Device OM consente di progettare agevolmente gli oggetti di azionamento, i quali contengono automaticamente le informazioni di routing.

Nota

Per versioni FW precedenti di controlli SIMATIC (ad es. CPU317 PN/DP < V2.4) si dovrà continuare ad utilizzare i file GSD degli azionamenti.

SIMATIC CPU con azionamenti SINAMICS e PROFINET IO con RT

Nell'esempio si descrive Device OM in relazione alla CPU319 e PROFINET IO con RT.

Per un elenco delle unità SIMATIC S7 che funzionano con Device OM, rivolgersi al servizio di assistenza dei prodotti SIEMENS.

1. Nel Catalogo hardware aprire la cartella **PROFINET IO -> Drives -> SINAMICS -> azionamento corrispondente** .

Vengono elencati gli oggetti di azionamento SINAMICS Device OM disponibili. Se sono già installati dei file GSD, viene visualizzata anche una directory GSD.

- 2. Selezionare e l'oggetto di azionamento corrispondente (DO) e trascinarlo sullo slot corrispondente della finestra della stazione. Il posto connettore previsto della CPU viene ora rappresentato in verde.
- 3. Trascinare l'oggetto di azionamento su questo posto connettore. Viene visualizzata la finestra di dialogo **Proprietà SINAMICS** .
- 4. Confermare il mantenimento del firmware 2.5 con OK.
- 5. Fare doppio clic sull'apparecchio di azionamento. Viene visualizzata la finestra di dialogo delle caratteristiche dell'IO Device.

Impostando l'opzione "Assegna indirizzo IP mediante controller", all'avvio gli indirizzi IP del controller IO e dell'IO device progettati vengono assegnati in modo non volatile. A tal fine il nome dell'apparecchio deve coincidere con il nome dell'apparecchio dell'IO Device.

- 6. L'oggetto di azionamento viene inserito con il telegramma 1 previsto di default. Queste impostazioni del telegramma possono essere modificate.
- Fare doppio clic sulla voce del telegramma
 Viene visualizzata la finestra di dialogo delle caratteristiche del Telegramma_x .
- 8. Selezione del telegramma per l'oggetto di azionamento
- 9. Per ogni azionamento inserire un altro oggetto di azionamento e progettare il telegramma corrispondente.
- 10.La configurazione dei telegrammi ciclici è ora terminata.

Nota

Gli oggetti di azionamento senza PZD non trasmettono dati di processo e vengono utilizzati ad es. per la trasmissione di parametri.

6.8.4.4 PROFINET IO con IRT - Panoramica

Panoramica

PROFINET IO con IRT è caratterizzato da intervalli di tempo separati per la comunicazione IRT, RT e TCP/IP. Questa funzionalità è garantita da una sorveglianza del ciclo di alta precisione con supporto hardware.

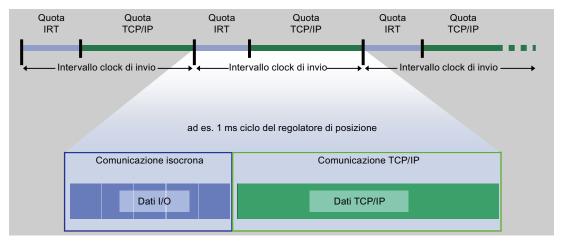


Figura 6-43 Comunicazione IRT - Panoramica

PROFINET IO con IRT è disponibile in due versioni:

- IRTflex (flexible) con riserva della larghezza di banda fissa
- IRTtop (top Performance) con comunicazione IRT pianificata

Sincronizzazione dell'ora e funzionamento a sincronismo di clock in PROFINET IO con IRTflex e IRTtop

In seguito viene garantito un collegamento efficiente e a sincronismo di clock (isocrono) all'applicazione con carico più ridotto sulla CPU dell'applicazione. La trasmissione dati a sincronismo di clock con tempi di ciclo inferiori a un millisecondo per uno scostamento dall'inizio del ciclo (jitter) inferiore a un microsecondo offre riserve di potenza sufficienti per applicazioni Motion Control complesse.

Contrariamente a quanto avviene per Standard-Ethernet e PROFINET IO con RT, i tempi di trasmissione dei telegrammi in PROFINET IO con IRT sono pianificati.

Dominio Sync

Il dominio Sync può essere progettato in Config HW. SINAMICS S120 è un dispositivo IO e deve essere assegnato a un master Sync come slave Sync.

6.8.4.5 PROFINET IO con IRTflex

Descrizione

In PROFINET IO con IRTflex viene riservato il più alto fabbisogno di ampiezza di banda IRT di un apparecchio, compresa una riserva per l'intera rete. Non è stabilito quale tipo di telegramma della finestra IRT viene trasmesso, in quale momento e tramite quale porta.

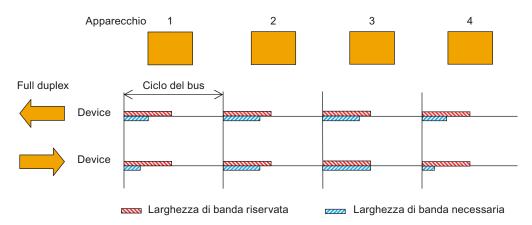


Figura 6-44 Panoramica sulla comunicazione con IRTflex

Come avviene per PROFINET IO con IRTtop, è necessario sincronizzare tutti gli apparecchi sullo stesso master Sync. L'insieme di tutti gli apparecchi sincronizzati costituisce un dominio Sync.

Clock di invio

Come valori di clock di invio è possibile selezionare 0,5 ms (pianificato a partire dalla versione FW2.5 SP1)/1,0 ms, 2,0 ms e 4,0 ms.

Compatibilità

Un dominio Sync può contenere solo apparecchi IRTtop o solo apparecchi IRTflex.

La comunicazione tra e mediante domini Sync diversi è possibile tramite PROFINET RT. Se non è stata progettata alcuna topologia, quando si collegano gli apparecchi non è necessario rispettare una topologia, contrariamente a quanto avviene per IRTtop, in cui gli apparecchi devono essere collegati l'uno all'altro secondo la topologia progettata.

6.8.4.6 PROFINET IO con IRTtop

Le potenzialità delle applicazioni Motion Control risultano decisamente ampliate con PROFINET IRTtop. Il supporto hardware garantisce notevoli miglioramenti rispetto alle attuali soluzioni di bus di campo. La pianificazione temporale del traffico telegrammi in IRTtop permette inoltre l'ottimizzazione del traffico dati rispetto a IRTflex.

IRTtop è particolarmente adatto per:

- la regolazione e la sincronizzazione degli assi tramite PROFINET
- un collegamento di periferia rapido, a sincronismo di clock, con tempi brevi morsettomorsetto

Per PROFINET con IRTtop, è necessario sincronizzare tutti gli apparecchi sullo stesso master Sync. L'insieme di tutti gli apparecchi sincronizzati costituisce un dominio Sync.

Clock di invio e tempo di aggiornamento

Questo tempo indica l'ambito entro il quale vengono trasmessi tutti i dati ciclici e aciclici (dati di IRTtop). Il clock di invio di 500 μ s (pianificato a partire dalla versione FW2.5 SP1)/1 ms-4 ms è l'intervallo massimo nel quale è possibile impostare il ciclo di invio. Il clock di invio effettivamente impostabile dipende da vari fattori:

- · il carico del bus
- il tipo di apparecchi utilizzati
- la potenza di calcolo a disposizione nel controllo
- i clock di invio supportati negli apparecchi PROFINET inclusi in un dominio Sync.

Un clock di invio tipico, ad es., è 1 ms; questo valore può essere impostato in una griglia di 125 µs nei limiti di 500 µs (pianificato a partire dalla versione FW2.5 SP1)/1 ms - 4 ms.

Trasmissione dati a pianificazione temporale

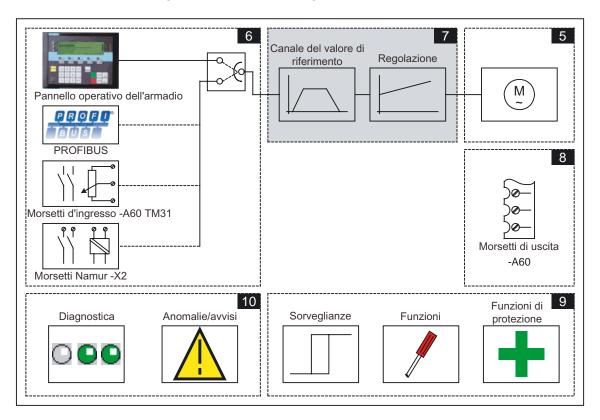
Per pianificazione temporale si intende la definizione del percorso di comunicazione e degli istanti esatti di trasmissione relativi ai dati da trasmettere. La pianificazione della comunicazione permette di sfruttare l'ampiezza di banda in modo ottimale e di ottenere quindi le migliori prestazioni possibili. La definizione temporale degli istanti di trasmissione consente di ottenere la qualità più elevata per quanto riguarda il determinismo, caratteristica particolarmente vantaggiosa per il collegamento di un'applicazione a sincronismo di clock.

La pianificazione temporale della comunicazione avviene tramite il sistema di engineering, con un algoritmo di pianificazione IRT specifico. I risultati della pianificazione devono essere trasferiti tramite download in ogni controller IO. Il controller IO li carica quindi nei dispositivi di IO all'avvio. Sulla base di questi dati di pianificazione avviene la comunicazione di IRTtop.

6.8 PROFINET IO

La trasmissione dei dati a pianificazione temporale richiede per PROFINET IO con IRTtop un supporto hardware sotto forma di circuito di comunicazione ASIC (Application Specific Integrated Circuit). Per non deteriorare la comunicazione pianificata temporalmente con telegrammi IT trasmessi spontaneamente, una determinata parte della comunicazione ciclica è riservata esclusivamente alla trasmissione di IRTtop. Questa parte viene definita riserva dell'ampiezza di banda. La parte restante dei cicli di comunicazione può essere utilizzata per la comunicazione RT e IT.

Scambio dati


La comunicazione, in linea di massima, è anche possibile oltre i limiti della rete tramite router. PROFINET IO con IRTtop, tuttavia, è attivo solo nell'ambito di un dominio Sync.

Canale del valore di riferimento e regolazione

7.1 Contenuto del capitolo

Questo capitolo descrive le funzioni Canale del valore di riferimento e Regolazione

- · Canale del valore di riferimento
 - Inversione del senso di rotazione
 - Giri escludibili
 - Numero di giri minimo
 - Limitazione del numero di giri
 - Generatore di rampa
- Controllo V/f
- Regolazione del numero di giri con/senza encoder

Schemi logici

A integrazione delle presenti istruzioni operative, la directory della documentazione contiene una raccolta degli schemi logici semplificati che descrivono il funzionamento. Questi schemi sono articolati secondo i capitoli del manuale; i fogli numerati con 7xx descrivono la funzionalità del capitolo seguente.

In alcuni punti di questo capitolo si fa riferimento a schemi logici con fogli identificati da numeri a 4 cifre. Questi si trovano nel CD della documentazione nel "Libretto di descrizione parametri SINAMICS", in cui è descritta nei dettagli la funzionalità complessiva ad uso degli utenti più esperti.

7.2 Canale del valore di riferimento

7.2.1 Addizione del valore di riferimento

Descrizione

Il valore di riferimento aggiuntivo può essere usato per applicare valori di correzione da unità di regolazione sovraordinate. Ciò si può realizzare tramite il punto di addizione di valore di riferimento principale/aggiuntivo nel canale del riferimento. Entrambe le grandezze vengono lette contemporaneamente tramite due sorgenti del valore di riferimento separate o una sola sorgente del valore di riferimento e sommate nell'apposito canale.

Schema logico

FP 3030 Valore di riferimento principale/aggiuntivo, scala del valore di riferimento, JOG

Parametro

 r1073 Valore di riferimento principale attivo p1075 Valore di riferimento aggiuntivo p1076 Valore di riferimento aggiuntivo, scalatu r1077 Valore di riferimento aggiuntivo attivo 	•	p1070	Valore di riferimento principale
 p1075 Valore di riferimento aggiuntivo p1076 Valore di riferimento aggiuntivo, scalatu r1077 Valore di riferimento aggiuntivo attivo 	•	p1071	Valore di riferimento principale, scalatura
 p1076 Valore di riferimento aggiuntivo, scalatu r1077 Valore di riferimento aggiuntivo attivo 	•	r1073	Valore di riferimento principale attivo
 r1077 Valore di riferimento aggiuntivo attivo 	•	p1075	Valore di riferimento aggiuntivo
Tallotto di Montalia di Aggianti di Catalo	•	p1076	Valore di riferimento aggiuntivo, scalatura
 r1078 Valore di riferimento totale attivo 	•	r1077	Valore di riferimento aggiuntivo attivo
	•	r1078	Valore di riferimento totale attivo

7.2.2 Inversione del senso di rotazione

Descrizione

Attraverso l'inversione del senso di rotazione nel canale del valore di riferimento, l'azionamento può essere effettuato in entrambe le direzioni.

Attraverso i parametri p1110 o p1111 è possibile limitare il senso di rotazione positivo o negativo.

Nota

Se viene riscontrato che durante il montaggio dei cavi è stato utilizzato il senso di rotazione errato e il senso di rotazione non può essere corretto con una successiva sostituzione dei cavi del motore, è possibile modificare il senso di rotazione nel corso della messa in servizio dell'azionamento tramite p1821 (inversione del senso di rotazione), in modo da ottenere l'inversione del senso di rotazione (ved. sezione "Inversione del senso di rotazione").

Presupposti

L'inversione del senso di rotazione avviene:

- con la gestione via PROFIBUS della parola di comando 1, Bit 11
- con la gestione tramite pannello operativo (modo LOCAL) del tasto "Inversione del senso di rotazione"

Nota

Occorre ricordare che, se il controllo avviene tramite AOP30, l'impostazione di fabbrica prevede che sia abilitato un solo senso di rotazione.

Schema logico

FP 3040 Limitazione del senso di rotazione e commutazione del senso di rotazione

- p1110 Blocco della rotazione in senso negativo
 p1111 Blocco della rotazione in senso positivo
- p1113 Inversione di direzione

7.2.3 Numeri di giri escludibili, numero di giri minimo

Descrizione

Per gli azionamenti regolati in velocità può accadere che nel campo di regolazione dell'intera catena cinematica degli azionamenti si trovino dei numeri di giri critici, nell'ambito dei quali non è possibile un funzionamento stazionario. Ciò vuol dire che questo campo può essere superato ma che l'azionamento non deve stazionarvi altrimenti si verificano fenomeni di oscillazione dovuti alle risonanze. Con le bande escludibili si ha la possibilità di inibire questi settori per poter avere il funzionamento stazionario. Poiché i punti critici del campo di regolazione di una catena cinematica di azionamenti si possono spostare a causa dell'invecchiamento o di fenomeni termici, è necessario inibire un vasto campo di regolazione. Per evitare che si verifichino costantemente variazioni di giri a gradino nell'ambito di queste bande di giri escludibili, esse sono dotate di isteresi.

Impostando un numero di giri minimo è possibile bloccare un determinato campo intorno al numero di giri min⁻¹ per il funzionamento stazionario.

Schema del flusso dei segnali

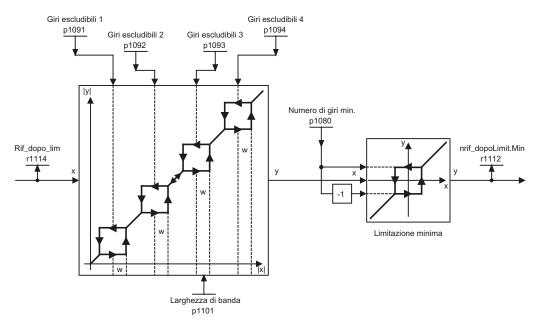


Figura 7-1 Schema del flusso dei segnali: giri escludibili, numero di giri minimo

Schema logico

FP 3050 Bande di arresto e limitazioni del senso di rotazione

Parametri

p1080 Numero di giri minimo
p1091 Giri escludibili 1
p1092 Giri escludibili 2
p1093 Giri escludibili 3
p1094 Giri escludibili 4
p1101 Giri escludibili, larghezza di banda
r1112 Valore di riferimento del numero di giri dopo limitazione minima

7.2.4 Limitazione del numero di giri

Descrizione

Con la limitazione del numero di giri è possibile definire il limite massimo consentito per la catena cinematica di azionamenti allo scopo di proteggere la macchina / il processo da danni provocati dal superamento del numero di giri.

Schema del flusso dei segnali

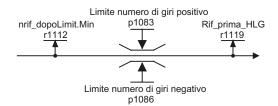


Figura 7-2 Schema del flusso dei segnali: limitazione del numero di giri

Schema logico

FP 3050 Bande di arresto e limitazioni del senso di rotazione

Parametro

p1082 Limite di numero di giri
 p1083 Limite di numero di giri, senso di rotazione positivo
 p1086 Limite di numero di giri, senso di rotazione negativo

7.2.5 Generatore di rampa

Descrizione

Con il generatore di rampa viene limitata la velocità di variazione del valore di riferimento ad ogni accelerazione o decelerazione dell'azionamento. Esso impedisce che variazioni repentine e involontarie del valore di riferimento sovraccarichino la catena cinematica di azionamenti. Inoltre gli arrotondamenti impostati nel campo di giri inferiore e superiore migliorano le proprietà di regolazione relative a carichi impulsivi. In questo modo vengono preservati i componenti meccanici come alberi e giunti.

Il tempo di rampa di accelerazione e di decelerazione si riferisce sempre al numero di giri massimo (p1082). I tempi di arrotondamento ulteriormente impostabili possono contribuire ad evitare le sovraelongazioni del numero di giri al raggiungimento del valore di riferimento impostato. In questo modo viene migliorata la qualità della regolazione.

Attenzione: tempi di arrotondamento troppo elevati provocano sovraelongazioni del valore di riferimento in caso di riduzioni improvvise dello stesso durante le fasi di rampa. L'arrotondamento è attivo anche nel passaggio per lo zero, cioè nella fase di inversione del senso di rotazione l'uscita del generatore di rampa viene ridotta fino a zero passando dall'arrotondamento iniziale alla decelerazione e all'arrotondamento finale; successivamente dall'arrotondamento iniziale all'accelerazione e all'arrotondamento finale con il nuovo valore di riferimento invertito. In caso di arresto rapido (OFF3) sono attivi tempi di arrotondamento impostabili separatamente. I tempi di accelerazione e decelerazione effettivi si allungano con l'arrotondamento attivo.

Il tipo di arrotondamento può essere impostato mediante p1134 e attivato e disattivato separatamente mediante p1151.00 nel passaggio per lo zero.

Schema del flusso dei segnali

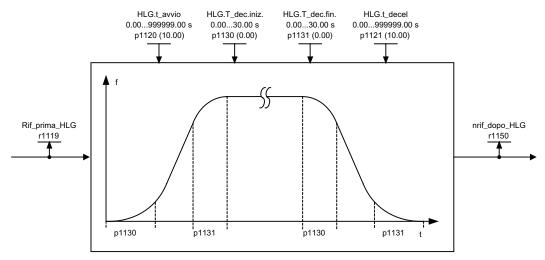


Figura 7-3 Schema del flusso dei segnali: generatore di rampa

Schema logico

FP 3060 Generatore di rampa semplice FP 3060 Generatore di rampa esteso

Parametri

•	r1119	Generatore di rampa, valore di riferimento all'ingresso
•	p1120	Generatore di rampa, tempo di accelerazione
•	p1121	Generatore di rampa, tempo di decelerazione
•	p1130	Generatore di rampa, tempo di arrotondamento iniziale
•	p1131	Generatore di rampa, tempo di arrotondamento finale
•	p1134	Generatore di rampa, tipo di arrotondamento
•	p1135	OFF3 Tempo di decelerazione
•	p1136	OFF3 Tempo di arrotondamento iniziale
•	p1137	Tempo di arrotondamento finale OFF3
•	r1150	Generatore di rampa, valore di riferimento numero di giri all'uscita
•	p1151	Configurazione generatore di rampa

Nota

Il tempo di accelerazione effettivo si allunga impostando i tempi di arrotondamento iniziale e finale.

Tempo di accelerazione effettivo = $p1120 + (0.5 \times p1130) + (0.5 \times p1131)$

7.3 Controllo V/f

Descrizione

La soluzione più semplice di un processo di controllo è rappresentata dalla curva caratteristica V/f. Qui la tensione dello statore del motore asincrono o del motore sincrono viene controllata proporzionalmente alla frequenza dello statore. Questa procedura si è rivelata valida per un'ampia serie di applicazioni senza elevate esigenze dinamiche, quali:

- pompe e ventilatori
- azionamenti di nastri trasportatori
- azionamenti di più motori

Lo scopo del controllo V/f consiste nel mantenere costante il flusso Φ nel motore. Questo flusso è proporzionale alla corrente di magnetizzazione I μ o al rapporto tra tensione V e frequenza f.

$$\Phi \sim I\mu \sim U/f$$

La coppia M sviluppata dai motori asincroni è a sua volta proporzionale al prodotto (o per meglio dire al prodotto vettoriale Φ x I) di flusso e corrente.

$$M \sim \Phi \times I$$

Per generare la coppia più elevata possibile per una data corrente, il motore deve lavorare con un flusso costante e quanto più elevato. Per mantenere costante il flusso Φ , in caso di variazione della frequenza f deve essere modificata proporzionalmente anche la tensione in modo da avere un flusso di corrente di magnetizzazione $I\mu$ costante. Da queste basi deriva il controllo della curva caratteristica V/f.

Il campo di deflussaggio si trova al di sopra della frequenza nominale del motore dove è raggiunta la tensione massima. Il flusso e il valore di coppia massimo diminuiscono all'aumentare della frequenza, come illustrato nella seguente figura.

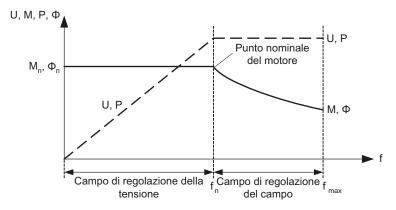


Figura 7-4 Aree operative e andamenti della curva caratteristica del motore asincrono in caso di alimentazione del convertitore

Esistono vari tipi di curva caratteristica V/f, rappresentati nella tabella seguente.

Tabella 7-1 p1300 Caratteristiche V/f

Valore parametro	Significato	Impiego/pro	prietà
0	Caratteristica lineare	Caso standard con aumento di tensione impostabile	p1300 = 0 f _n
1	Caratteristica lineare con flux current control (FCC)	Curva caratteristica che compensa le perdite di tensione della resistenza dello statore in caso di carichi statici / dinamici (flux current control FCC). Si rivela utile in particolare per motori piccoli, poiché questi hanno una resistenza dello statore relativamente elevata.	V _{max} r0071 Dipendente dalla corrente di carico
2	Caratteristica parabolica	Curva caratteristica che tiene conto dell'andamento della coppia del motore (ad es. ventilatore / pompa). Caratteristica quadratica (caratteristica f²) Risparmio energetico poiché la bassa tensione comporta anche correnti e perdite minori.	v _n p1300 = 2
3	Caratteristica programmabile	Caratteristica che tiene conto dell'andamento della coppia motore / macchina.	V V _{max} r0071 p1327 p1325 p1323 p1321 r1315 0 11 12 f3 f4 fmax p1320 p1322 p1324 p1326 p1082
5	Azionamenti a frequenza precisa	Curva caratteristica (vedere il valore del parai peculiarità tecnologica di un'applicazione (ad mediante influenza della limitazione di cor tensione di uscita e non sulla frequenza di mediante blocco della compensazione del	es. applicazioni tecniche) rente (regolatore Imax) solo sulla i uscita oppure

7.3 Controllo V/f

Valore parametro	Significato	Impiego/proprietà
6	Azionamenti a frequenza precisa con flux current control (FCC)	Curva caratteristica (vedere il valore del parametro 1) che tiene conto della peculiarità tecnologica di un'applicazione (ad es. applicazioni tecniche) • mediante influenza della limitazione di corrente (regolatore Imax) solo sulla tensione di uscita e non sulla frequenza di uscita oppure • mediante blocco della compensazione dello scorrimento Inoltre vengono compensate le perdite di tensione della resistenza dello statore in caso di carichi statici / dinamici (flux current control, FCC). Si rivela utile in particolare per motori piccoli, poiché questi hanno una resistenza dello statore relativamente elevata.
19	Riferimento di tensione indipendente	La tensione di uscita del Power Module può essere impostata dall'utente indipendentemente dalla frequenza con il parametro BICO p1330 tramite le interfacce (ad es. ingresso analogico AI0 del TM31 -> p1330 = r4055[0]).

Schema logico

FP 6300 Caratteristica V/f e aumento di tensione

Parametri

• p1300 Modalità operativa di controllo/regolazione

7.3.1 Aumento di tensione

Descrizione

A frequenze di uscita basse le curve caratteristiche V/f forniscono solo una bassa tensione di uscita.

Alle basse frequenze le resistenze ohmiche dell'avvolgimento dello statore si manifestano e non possono più essere trascurate rispetto alla reattanza della macchina, ovvero alle basse frequenze il flusso magnetico non è più proporzionale alla corrente di magnetizzazione o al rapporto V/f.

Pertanto la tensione di uscita può essere troppo bassa per:

- realizzare la magnetizzazione del motore asincrono,
- mantenere il carico,
- compensare le cadute di tensione (perdite ohmiche nelle resistenze degli avvolgimenti) nel sistema.
- applicare una coppia di spunto / accelerazione / frenatura.

È possibile scegliere se l'aumento di tensione deve agire in modo permanente (p1310) o durante l'accelerazione (p1311).

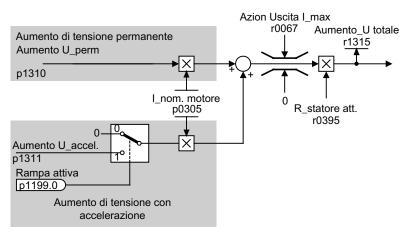


Figura 7-5 Aumento di tensione totale

Nota

L'aumento di tensione si ripercuote su tutte le curve caratteristiche V/f (p1300) da 0 a 6.

ATTENZIONE

Un valore troppo elevato dell'aumento di tensione può provocare un sovraccarico termico dell'avvolgimento del motore.

Aumento di tensione permanente (p1310)

L'aumento di tensione è attivo su tutto il campo di frequenza, ma il valore diminuisce continuamente alle alte frequenze.

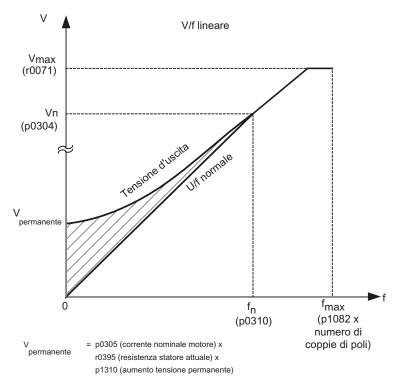


Figura 7-6 Aumento di tensione permanente (esempio: p1300 = 0, p1310 >0, p1311 = 0)

Aumento di tensione all'accelerazione (p1311)

L'aumento di tensione si verifica solo per un procedimento di accelerazione o di frenatura. L'aumento di tensione si verifica solo se è presente il segnale "Acceleraz. attiva" (r1199.0 = 1).

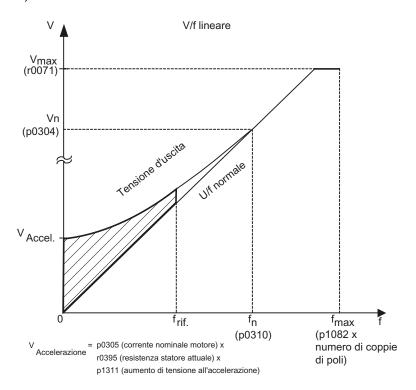


Figura 7-7 Aumento di tensione all'accelerazione (esempio: p1300 = 0, p1310 = 0, p1311 > 0)

Schema logico

FP 6300 Caratteristica V/f e aumento di tensione

•	p0304	Tensione nominale del motore
•	p0305	Corrente nominale del motore
•	r0395	Resistenza statore attuale
•	p1310	Aumento di tensione permanente
•	p1311	Aumento di tensione all'accelerazione
•	r1315	Aumento di tensione totale

Compensazione dello scorrimento 7.3.2

Descrizione

La compensazione dello scorrimento consente di mantenere in gran parte costante il numero di giri di motori asincroni indipendentemente dal carico.

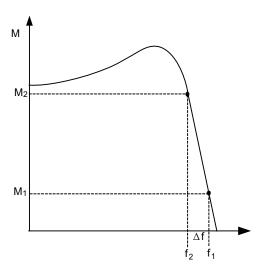


Figura 7-8 Compensazione dello scorrimento

Schema logico

FP 6310 Smorzamento risonanza e compensazione scorrimento

Parametro

p1335 Compensazione dello scorrimento p1335 = 0.0 %: compensazione dello scorrimento disattivata. p1335 = 100.0 %: lo scorrimento è completamente compensato. p1336 Compensazione dello scorrimento, valore limite r1337

Compensazione dello scorrimento, valore attuale

7.4 Regolazione vettoriale di numero di giri/coppia con/senza encoder

Descrizione

La regolazione vettoriale presenta i seguenti vantaggi rispetto al controllo V/f:

- Stabilità in caso di variazioni di carico e valore di riferimento
- Tempi di regolazione brevi in caso di variazioni del valore di riferimento (-> migliore comportamento di controllo)
- Tempi di regolazione brevi in caso di variazioni di carico (-> migliore comportamento di reazione ai disturbi)
- Accelerazione e frenatura possibili con coppia massima impostabile
- Protezione del motore grazie a limitazione della coppia impostabile in caso di funzionamento motorico e anche generatorico
- Regolazione della coppia di azionamento e frenatura indipendentemente dal numero di giri

Questi vantaggi vengono raggiunti già senza retroazione di numero di giri.

La regolazione vettoriale può essere utilizzata sia con che senza encoder del numero di giri.

I criteri elencati di seguito indicano quali sono i casi nei quali è richiesto un encoder per il valore attuale del numero di giri:

- Massimi requisiti di precisione di numero di giri
- Massimi requisiti di dinamica
 - Miglior comportamento di controllo
 - Tempi di regolazione rapidi in caso di influssi di grandezze di disturbo
- Regolazione della coppia nel campo di regolazione maggiore di 1:10
- Mantenimento di una coppia definita e/o variabile in caso di velocità inferiori del 10 % circa della frequenza nominale del motore p0310

Per quanto riguarda l'impostazione del riferimento, la regolazione vettoriale è suddivisa in:

- Regolazione del numero di giri
- Regolazione di coppia/regolazione di corrente (in breve: regolazione della coppia)

7.4.1 Regolazione vettoriale senza encoder

Descrizione

Nella regolazione vettoriale senza encoder (SLVC: Sensorless Vector Control) la posizione del flusso o la velocità reale deve essere calcolata mediante il modello di motore elettrico. Il modello viene supportato dalle correnti o tensioni accessibili. In caso di frequenze ridotte (di circa 0 Hz) il modello non è in grado di calcolare la velocità.

Per questo motivo e a causa di incertezze nei parametri del modello o nelle precisioni di misura, in questo campo si passa dal funzionamento regolato al funzionamento controllato.

La commutazione tra funzionamento regolato e controllato viene gestita dalle condizioni di tempo e frequenza (p1755, p1756, p1758 solo per i motori asincroni). La condizione di tempo non viene attesa se la frequenza di riferimento all'ingresso del generatore di rampa e la frequenza reale si trovano contemporaneamente al di sotto di p1755 x (1 - (p1756 / 100 %)).

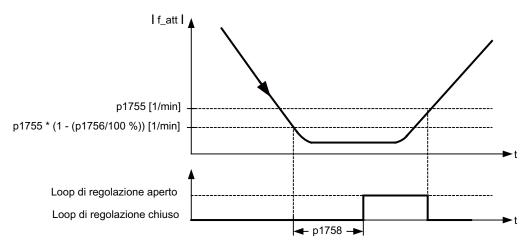


Figura 7-9 Condizioni di commutazione

Nel funzionamento controllato il valore reale del numero di giri calcolato è identico al valore di riferimento. Per carichi sospesi o processi di accelerazione i parametri p1610 (aumento di coppia costante) o p1611 (aumento di coppia all'accelerazione) devono essere modificati per applicare la coppia di carico statica o dinamica dell'azionamento. Se nei motori asincroni p1610 viene impostato a 0 %, viene applicata solo la corrente di magnetizzazione r0331 con un valore di 100 % della corrente nominale del motore p0305. Per i motori sincroni ad eccitazione permanente con p1610 = 0 % permane un valore di corrente di precomando derivato dalla coppia aggiuntiva r1515, al posto della corrente di magnetizzazione. Per evitare lo stallo dell'azionamento durante l'accelerazione, si può aumentare p1611 oppure utilizzare il precomando di accelerazione per il regolatore di velocità. Questo permette anche di non sovraccaricare termicamente il motore in caso di velocità ridotte.

La regolazione vettoriale senza encoder del valore attuale di velocità possiede le caratteristiche seguenti nel campo delle basse frequenze:

- Funzionamento regolato fino a circa 1 Hz di frequenza di uscita
- Avvio in funzionamento regolato (direttamente dopo l'eccitazione dell'azionamento) (solo per i motori asincroni)

Nota

Per questa eventualità il valore di riferimento del numero di giri a monte del generatore di rampa deve essere maggiore di p1755.

Grazie al funzionamento regolato fino a ca. 1 Hz (impostabile con il parametro p1755) e alla possibilità di avviamento diretto/inversione diretta a 0 Hz (impostabile con il parametro p1750), si ottengono i seguenti vantaggi:

- Non è necessario alcun processo di commutazione nell'ambito della regolazione (comportamento regolare, nessuna variazione brusca di frequenza)
- È possibile la regolazione stazionaria di velocità/coppia fino a circa 1 Hz.

Nota

Durante l'inversione regolata o l'avviamento regolato da 0 Hz occorre tenere conto che in caso di permanenza troppo prolungata (> 2 s oppure > p1758) nel campo di 0 Hz, la regolazione passa automaticamente dal funzionamento regolato al funzionamento controllato.

Per i motori sincroni ad eccitazione permanente tanto l'accostamento quanto l'inversione avvengono sempre nel funzionamento controllato. Come numero di giri di commutazione è preimpostato il 10% e il 5% del numero di giri nominale del motore. La commutazione avviene senza vincoli di tempo (p1758 non viene valutato). Le coppie di carico presenti (nel funzionamento come motore o generatore) vengono adattate nel funzionamento controllato, rendendo possibile una sovrapposizione a coppia costante, anche con carichi statici elevati, nel funzionamento regolato. Ad ogni nuova abilitazione impulsi avviene anzitutto l'identificazione della posizione del rotore.

Schema logico

FP 6730 Interfaccia con il Motor Module

•	p0305	Corrente nominale del motore
•	r0331	Corrente/corrente di cortocircuito di magnetizzazione del motore
•	p1610	Valore di riferimento statico della coppia (SLVC)
•	p1611	Coppia aggiuntiva di accelerazione (SLVC)
•	p1750	Modello di motore, configurazione
•	p1755	Modello di motore, numero di giri di commutazione, funzionamento senza encoder
•	p1756	Modello di motore, numero di giri di commutazione, isteresi
•	p1758	Modello di motore, tempo di attesa di commutazione regolato controllato
•	p1759	Modello di motore, tempo di attesa di commutazione controllato regolato

7.4.2 Regolazione vettoriale con encoder

Descrizione

Vantaggi della regolazione vettoriale con encoder:

- Regolazione del del numero di giri fino a 0 Hz (quindi fino alla condizione di fermo).
- Comportamento di regolazione stabile nell'intero campo del numero di giri.
- Mantenimento di una coppia definita e/o variabile a numeri di giri inferiori del 10% circa rispetto al numero di giri nominale del motore.
- Rispetto alla regolazione del numero di giri senza encoder, la dinamica è notevolmente superiore per gli azionamenti con encoder in quanto il numero di giri viene misurato direttamente e confluisce nella formazione del modello delle componenti di corrente.

Cambiamento del modello motore

All'interno della gamma del numero di giri p1752 x (100 % - p1756) e p1752 ha luogo un cambio di modello tra il modello di corrente e il modello osservatore. Nell'ambito del modello di corrente, ossia a velocità di rotazione più basse, la precisione della coppia dipende dal corretto inseguimento della temperatura della resistenza del rotore. Nell'ambito del modello osservatore e a velocità di rotazione inferiori a circa il 20 % del numero di giri nominale, la precisione della coppia dipende principalmente dal corretto inseguimento della temperatura della resistenza dello statore. Se la resistenza dei cavi della linea di alimentazione ammonta a oltre il 20 - 30 % della resistenza complessiva, dovrebbe essere registrata dall'identificazione dati del motore (p1900/p1910) in p0352.

Tramite p0620 = 0 è possibile disinserire l'adattamento termico. Questo può rendersi necessario se l'adattamento non può funzionare in modo sufficientemente preciso in ragione delle seguenti condizioni marginali. Tale situazione può verificarsi se non si utilizza un sensore KTY per il rilevamento della temperatura e le temperature ambiente oscillano notevolmente o se le sovratemperature del motore (p0626 ... p0628) si discostano sensibilmente, a causa della sua costruzione, dalle preimpostazioni.

Schema logico

FP 4715	Rilevamento valore attuale numero di giri e posizione dei poli encoder motore
FP 6030	Valore di riferimento del numero di giri, statica
FP 6040	Regolatore di velocità
FP 6050	Adattamento Kp_n/Tn_n
FP 6060	Valore di riferimento della coppia
FP 6490	Configurazione regolazione numero di giri

7.4.3 Regolatore del numero di giri

Descrizione

Entrambi i processi di regolazione, con e senza encoder (VC, SLVC), possiedono la stessa struttura di regolazione della velocità, contenente i seguenti componenti essenziali:

- Regolatore PI
- · Precomando del regolatore di velocità
- Statica

La somma delle grandezze di uscita costituisce il valore di riferimento di coppia, che viene ridotto al valore consentito dalla funzione di limitazione del riferimento di coppia.

Il regolatore di velocità riceve il suo valore di riferimento (r0062) dal canale del valore di riferimento, il valore attuale (r0063) direttamente dall'encoder del valore attuale del numero di giri in caso di regolazione del numero di giri con encoder (VC) o indirettamente tramite il modello del motore in caso di regolazione del numero di giri senza encoder (SLVC). La differenza di regolazione viene amplificata dal regolatore PI e forma, insieme al precomando, il valore di riferimento di coppia.

Con l'aumento della coppia di carico e la funzione statica attiva, il riferimento di velocità viene ridotto proporzionalmente e di conseguenza l'azionamento singolo nell'ambito di un gruppo (due o più motori accoppiati meccanicamente) viene scaricato in caso di coppia troppo elevata.

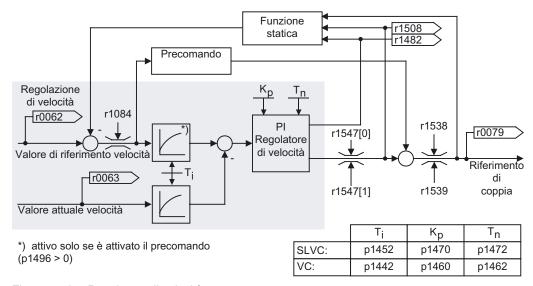


Figura 7-10 Regolatore di velocità

L'impostazione ottimale del regolatore di velocità può essere rilevata mediante l'ottimizzazione automatica dello stesso (p1900 = 1, misura in rotazione).

Se il momento di inerzia è stato impostato, è possibile calcolare il regolatore di velocità (Kp, Tn) con la parametrizzazione automatica (p0340 = 4). I parametri di regolazione vengono determinati nel seguente modo in base al valore ottimale simmetrico:

 $Tn = 4 \times Ts$

 $Kp = 0.5 \times r0345 / Ts = 2 \times r0345 / Tn$

Ts = somma dei tempi di ritardo brevi (comprende p1442 oppure p1452)

Se questa impostazione dovesse dare luogo a vibrazioni, il guadagno del regolatore di velocità (Kp) deve essere ridotto manualmente. È anche possibile aumentare il livellamento del valore attuale di velocità (generalmente in caso di gioco del riduttore o vibrazioni torsionali ad alta frequenza) ed eseguire nuovamente il calcolo del regolatore, in quanto il valore confluisce nel calcolo di Kp e Tn.

Per l'ottimizzazione valgono le seguenti relazioni:

- Incrementando Kp il regolatore diventa più veloce e la sovraelongazione diminuisce. I
 picchi di segnale e le oscillazioni nel circuito di regolazione del numero di giri vengono
 però incrementati.
- In caso di diminuzione di Tn, il regolatore diventa anche in questo caso più veloce. La sovraelongazione viene tuttavia amplificata.

Per l'impostazione manuale della regolazione del numero di giri, il modo più semplice consiste nel determinare dapprima la dinamica tramite Kp (e il livellamento del valore attuale del numero di giri) e quindi ridurre il più possibile il tempo dell'azione integratrice. Accertarsi che la regolazione rimanga costante anche nel campo di deflussaggio.

In caso di oscillazioni nella regolazione del numero di giri, di solito è sufficiente un aumento del tempo di livellamento in p1452 per funzionamento senza encoder o p1442 per funzionamento con encoder, oppure una riduzione del guadagno del regolatore per attenuare le oscillazioni.

È possibile sorvegliare l'uscita integrale del regolatore di velocità tramite r1482 e l'uscita limitata del regolatore tramite r1508 (riferimento di coppia).

Nota

Rispetto alla regolazione del numero di giri con encoder, la dinamica è notevolmente ridotta per gli azionamenti senza encoder. Il numero di giri attuale viene ricavato da un calcolo di modello tratto dalle grandezze di uscita del convertitore per la corrente e la tensione, caricate dai livelli di disturbo. A questo scopo, il numero di giri attuale deve essere corretto nel software da algoritmi di filtraggio.

Schema logico

FP 6040	Regolatore di velocità
11 0070	1 Cadiatore ar velocita

•	r0062	CO: Valore di riferimento del numero di giri dopo il filtro
•	r0063	CO: Valore attuale del numero di giri livellato
•	p0340	Calcolo automatico dei parametri di regolazione
•	r0345	CO: Tempo di avviamento nominale del motore
•	p1442	Valore attuale del numero di giri, tempo di livellamento (VC)
•	p1452	Valore attuale del numero di giri, tempo di livellamento (SLVC)
•	p1460	Regolatore di velocità, guadagno P con encoder
•	p1462	Regolatore di velocità, tempo dell'azione integratrice con encoder
•	p1470	Regolatore di velocità, funzionamento senza encoder, guadagno P
•	p1472	Regolatore di velocità, funzionamento senza encoder, tempo dell'azione integratrice
•	r1482	CO: Uscita coppia I, regolatore di velocità

- r1508
 CO: Valore di riferimento della coppia prima della coppia aggiuntiva
- p1960 Ottimizzazione regolatore di velocità, selezione

Esempi di impostazioni del regolatore del numero di giri

Di seguito sono forniti alcuni valori di esempio per le impostazioni del regolatore del numero di giri nella regolazione vettoriale senza encoder (p1300 = 20). Questi valori non devono essere considerati come se fossero sempre validi, ma devono essere verificati tenendo conto del comportamento desiderato del regolatore.

Ventilatori (grandi masse centrifughe) e pompe

Kp (p1470) = 2 ... 10

Tn (p1472) = 250 ... 500 ms

L'impostazione Kp = 2 e Tn = 500 ms provoca un avvicinamento asintotico del numero di giri attuale al numero di giri di riferimento dopo un salto del valore. Ciò è sufficiente in molti processi di regolazione semplici per pompe e ventilatori.

Mulini a macina, vagliatrici (grandi masse centrifughe)

 $Kp(p1470) = 12 \dots 20$

Tn (p1472) = 500 ... 1000 ms

Azionamenti per impastatrici

Kp(p1470) = 10

Tn (p1472) = 200 ... 400 ms

Nota

Si consiglia di controllare il guadagno del regolatore del numero di giri attivo (r1468) durante il funzionamento. Se questo valore cambia durante il funzionamento, significa che è attivato l'adattamento Kp (p1400.5 = 1). Se necessario è possibile disattivare l'adattamento Kp o modificarne il comportamento.

• Funzionamento con encoder (p1300 = 21)

Un valore di livellamento del valore attuale del numero di giri (p1442) = 5 ... 20 ms consente un funzionamento più silenzioso dei motori con riduttore.

7.4.3.1 Precomando del regolatore del numero di giri (precomando integrato con simmetrizzazione)

Descrizione

Il comportamento di controllo del circuito di regolazione di velocità può essere migliorato se la coppia di accelerazione viene calcolata dal valore di riferimento della velocità e inserita a monte del regolatore di velocità. Questo valore di riferimento della coppia mv viene commutato/precomandato direttamente sul regolatore di corrente mediante elementi di interfaccia (abilitazione mediante p1496) come grandezza di comando aggiuntiva. Il valore di riferimento della coppia mv si ricava da:

 $mv = p1496 \times J \times (d\omega/dt) = p1496 \times p0341 \times p0342 \times (d\omega/dt), \omega = 2\pi f$

La coppia di inerzia del motore p0341 si calcola al momento della messa in servizio. Il fattore p0342 tra il momento di inerzia totale J e il momento di inerzia motore si determinano manualmente o tramite ottimizzazione del regolatore di velocità.

Nota

Applicando l'ottimizzazione del regolatore di velocità si determina il momento di inerzia totale/motore (p0342), inoltre la scala del precomando di accelerazione (p1496) viene impostata su 100%.

Se p1400.2 = p1400.3 = 0, allora si imposta automaticamente la simmetrizzazione dei precomandi.

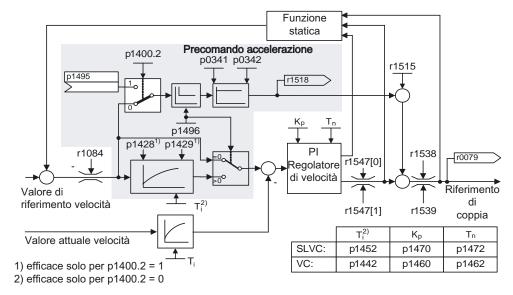


Figura 7-11 Regolatore di velocità con precomando

Se l'adattamento è stato eseguito in modo corretto, il regolatore di velocità dovrà solo livellare le grandezze di disturbo nel proprio circuito di regolazione e ottenere ciò mediante modifica relativamente modesta delle grandezze di regolazione. Al contrario, le variazioni del valore di riferimento del numero di giri vengono fatte passare oltre il regolatore di velocità e quindi eseguite più rapidamente.

Mediante il fattore di valutazione p1496 è possibile adeguare in base all'applicazione l'effetto della grandezza di precomando. Con p1496 = 100% viene calcolato il precomando in base al momento di inerzia del motore e del carico (p0341, p0342). Per evitare che il regolatore di velocità agisca contro il valore di riferimento di coppia fornito, interviene automaticamente un filtro di simmetria. La costante di tempo del filtro di simmetria corrisponde al ritardo equivalente del circuito di regolazione di velocità. Il precomando del regolatore di velocità è impostato correttamente (p1496 = 100%, calibratura mediante p0342) quando la componente I del regolatore di velocità (r1482) resta invariata nel campo di valori n > 20 % x p0310 durante un'accelerazione o una decelerazione. Mediante il precomando è quindi possibile avvicinare un nuovo valore di riferimento del numero di giri senza sovraregolazione (condizione: non deve intervenire la limitazione di coppia e il momento d'inerzia deve rimanere costante).

Se il regolatore di velocità viene provvisto di precomando, il valore di riferimento del numero di giri (r0062) viene influenzato con lo stesso livellamento (p1442 o p1452) del valore reale (r1445). Ciò garantisce che nelle fasi di accelerazione non si formi una differenza di

regolazione (r0064) all'ingresso del regolatore che sarebbe condizionata solamente dal tempo di transito del segnale.

Occorre prestare particolare attenzione nell'attivazione del precomando del numero di giri al fatto che il valore di riferimento del numero di giri venga impostato in modo livellato oppure senza un rilevante livello di disturbi (ad evitare sbalzi di coppia). Con il livellamento del valore di riferimento del numero di giri o l'attivazione degli arrotondamenti del generatore di rampa p1130 - p1131 è possibile generare un adeguato segnale.

Il tempo di avviamento r0345 (T_{avviam.}) è una misura del momento di inerzia complessivo J della macchina e descrive il tempo in cui l'azionamento senza carico può accelerare con la coppia nominale del motore r0333 (M_{mot,nom}) da fermo al numero di giri nominale del motore p0311 (n_{Mot,nom}).

 $r0435 = T_{avviam.} = J \times (2 \times \pi \times n_{Mot,nom}) / (60 \times M_{Mot,nom}) = p0341 \times p0342 \times (2 \times \pi \times p0311) / (60 \times r0333)$

Se queste condizioni marginali coincidono con l'applicazione, il tempo di avviamento può essere utilizzato quale valore minimo per il tempo di accelerazione o decelerazione.

Nota

In linea di massima, i tempi di accelerazione o decelerazione (p1120; p1121) del generatore di rampa nel canale del valore di riferimento devono essere ridotti fino al limite che consenta al numero di giri del motore di seguire il valore di riferimento durante l'accelerazione e la decelerazione. Ciò garantisce la potenzialità funzionale ottimale del precomando del regolatore di velocità.

Il precomando di accelerazione collegato a un ingresso connettore (p1495) viene attivato impostando i parametri p1400.2 = 1 e p1400.3 = 0. Per simmetria è possibile impostare p1428 (tempo morto) e p1429 (costante di tempo).

Schema logico

FP 6031 Simmetrizzazione di precomando modello di riferimento/accelerazione

•	p0311	Numero di giri nominale del motore
•	r0333	Coppia nominale del motore
•	p0341	Momento di inerzia del motore
•	p0342	Momento di inerzia, rapporto del totale rispetto al motore
•	r0345	Tempo di avviamento nominale del motore
•	p1400.2	Sorgente precomando accelerazione
•	p1428	Precomando del numero di giri, simmetrizzazione tempo morto
•	p1429	Precomando del numero di giri, simmetrizzazione costante di tempo
•	p1496	Precomando di accelerazione, scalatura
•	r1518	Momento di accelerazione

7.4.3.2 Modello di riferimento

Descrizione

Il modello di riferimento diventa attivo con p1400.3 = 1 e p1400.2 = 0.

Il modello di riferimento serve a riprodurre il percorso del circuito di regolazione della velocità con un regolatore di velocità P.

La riproduzione del circuito è impostabile nei parametri da p1433 a p1435. Diventa attiva quando p1437 è collegato all'uscita del modello r1436.

Il modello di riferimento ritarda lo scostamento valore di riferimento/valore attuale per la componente integrale del regolatore di velocità, in modo da sopprimere i processi di assestamento.

Il modello di riferimento può anche essere riprodotto esternamente e il segnale esterno può essere accoppiato tramite p1437.

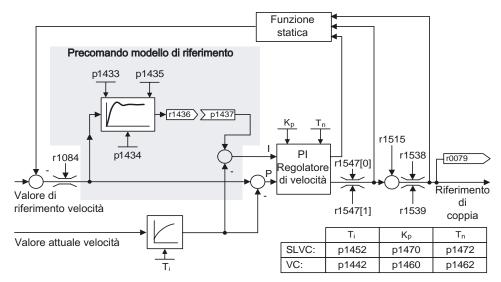


Figura 7-12 Modello di riferimento

Schema logico

FP 6031 Simmetrizzazione di precomando modello di riferimento/accelerazione

•	p1400.3	Modello di riferimento del valore di riferimento del numero di giri, componente I
•	p1433	Regolatore di velocità, modello di riferimento frequenza intrinseca
•	p1434	Regolatore di velocità, modello di riferimento livellamento
•	p1435	Regolatore di velocità, modello di riferimento tempo morto
•	r1436	Regolatore di velocità, modello di riferimento, uscita valore di riferimento del numero di giri
•	p1437	Regolatore di velocità, modello di riferimento, componente I ingresso

7.4.3.3 Adattamento del regolatore del numero di giri

Descrizione

Sono disponibili due possibilità di adattamento, l'adattamento Kp_n libero e l'adattamento Kp_n/Tn_n dipendente dal numero di giri.

L'adattamento Kp_n libero è attivo anche nel funzionamento senza encoder e serve nel funzionamento con encoder come fattore aggiuntivo per l'adattamento Kp_n dipendente dal numero di giri.

L'adattamento Kp_n/Tn_n dipendente dal numero di giri è attivo solo nel funzionamento con encoder e influenza anche il valore Tn_n.

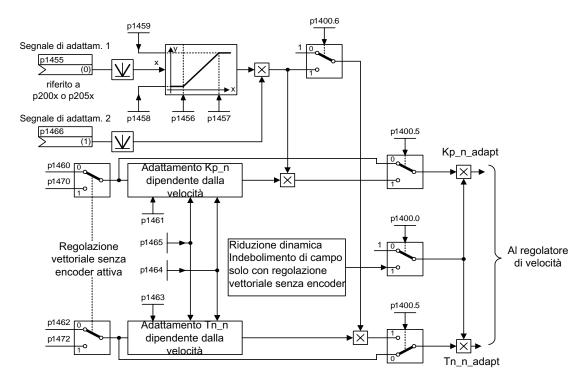


Figura 7-13 Adattamento KP libero

In caso di funzionamento senza encoder è possibile attivare una riduzione della dinamica nel campo di deflussaggio (p1400.0). Tale riduzione viene attivata nell'ottimizzazione del regolatore di velocità per raggiungere una maggiore dinamica nel campo di numeri di giri di base.

Esempio di adattamento dipendente dal numero di giri

Nota

Questo adattamento è attivo solo nel funzionamento con encoder!

7.4 Regolazione vettoriale di numero di giri/coppia con/senza encoder

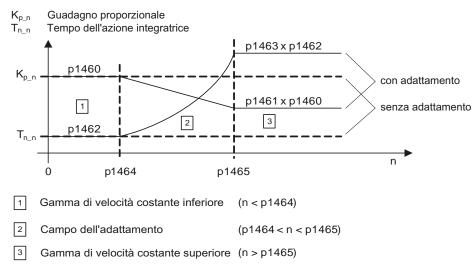


Figura 7-14 Esempio di adattamento dipendente dal numero di giri

Schema logico

FP 6050 Adattamento Kp_n/Tn_n

Parametri

- p1400.5 Configurazione regolazione numero di giri: Adat Kp-/Tn attivo Adattamento Kp_n libero
- p1455 Regolatore di velocità, guadagno P, segnale di adattamento
- p1456 Regolatore di velocità, guadagno P, adattamento punto di inizio inferiore
- p1457 Regolatore di velocità, guadagno P, adattamento punto di inizio superiore
- p1458 Fattore di adattamento inferiore
- p1459 Fattore di adattamento superiore
- p1470 Regolatore di velocità, funzionamento senza encoder, guadagno P

Adattamento Kp_n/Tn_n dipendente dalla velocità (solo VC)

- p1460 Regolatore di velocità, guadagno P, numero di giri di adattamento inferiore
- p1461 Regolatore di velocità, guadagno P, numero di giri di adattamento superiore
- p1462 Regolatore di velocità, tempo dell'azione integratrice numero di giri di adattamento inferiore
- p1463 Regolatore di velocità, tempo azione integratrice numero di giri di adattamento superiore
- p1464 Regolatore di velocità, numero di giri di adattamento inferiore
- p1465 Regolatore di velocità, numero di giri di adattamento superiore
- p1466 Regolatore di velocità, guadagno P, scalatura

Riduzione dinamica, deflussaggio (solo SLVC)

 p1400.0 Configurazione regolazione numero di giri: Adattamento automatico Kp-/Tn attivo

7.4.3.4 Statica

Descrizione

La funzione statica (abilitazione con P1492) comporta una riduzione proporzionale del valore di riferimento di velocità in funzione dell'incremento della coppia del carico.

La statica ha un'azione limitatrice della coppia se l'azionamento è accoppiato meccanicamente a un altro numero di giri (ad es. rullo conduttore su un nastro trasportatore). In combinazione con il valore di riferimento della coppia di un azionamento pilota con regolazione del numero di giri è possibile realizzare anche una ripartizione del carico molto efficace che, con le dovute impostazioni, è in grado di gestire persino un accoppiamento meccanico morbido o lo scorrimento (a differenza della regolazione della coppia o della ripartizione del carico con sovracomando e limitazione).

Per gli azionamenti che vengono spesso accelerati e frenati con forti variazioni del numero di giri, questo metodo è solo parzialmente idoneo.

La decelerazione statica viene impiegata ad es. per applicazioni in cui due o più motori funzionano accoppiati meccanicamente o su albero comune e soddisfano i requisiti di cui sopra. Essa limita le differenze di coppia che possono verificarsi a causa dell'accoppiamento meccanico modificando opportunamente il numero di giri dei singoli motori (l'azionamento viene alleggerito del carico in caso di coppia troppo elevata).

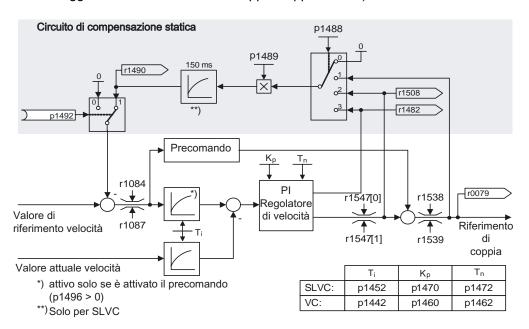


Figura 7-15 Regolatore di velocità con statica

Presupposti

- Tutti gli azionamenti accoppiati devono funzionare in regolazione vettoriale con regolazione del numero di giri (con o senza encoder)
- Per gli azionamenti con accoppiamento meccanico può essere utilizzato solo un (1) generatore di rampa comune.

7.4 Regolazione vettoriale di numero di giri/coppia con/senza encoder

Schema logico

FP 6030 Valore di riferimento del numero di giri, statica

Parametri

•	r0079	Valore di riferimento totale della coppia
•	r1482	Regolatore di velocità, uscita coppia I
•	p1488	Ingresso statica, sorgente
•	p1489	Ritorno statica, scalatura
•	r1490	Retroazione funzione statica, riduzione del numero di giri
•	p1492	Ritorno statica, abilitazione
•	r1508	Valore di riferimento della coppia prima della coppia aggiuntiva

7.4.4 Regolazione della coppia

Descrizione

Nella regolazione del numero di giri senza encoder SLVC (p1300 = 20) o con encoder VC (p1300 = 21) è possibile, mediante il parametro BICO p1501, passare alla regolazione di coppia (azionamento slave). La commutazione tra regolazione del numero di giri e regolazione di coppia non è possibile se è stata scelta direttamente la regolazione di coppia con p1300 = 22 o 23. L'impostazione del valore di riferimento della coppia o del valore di riferimento aggiuntivo della coppia può avvenire tramite i parametri BICO p1503 (CI: valore di riferimento della coppia) o p1511 (CI: valore di riferimento aggiuntivo della coppia). La coppia aggiuntiva agisce sia per la regolazione della coppia sia per quella del numero di giri. Con questa caratteristica è possibile realizzare con il valore nominale aggiuntivo di coppia una coppia di precontrollo nella regolazione del numero di giri.

Nota

Per motivi di sicurezza, attualmente non è prevista un'assegnazione di valori di riferimento fissi di coppia.

Se si produce energia rigenerativa e la stessa non può essere recuperata in rete, è necessario impiegare un Braking Module collegato a resistenza di frenatura.

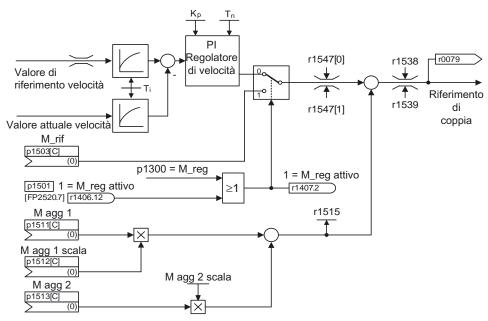


Figura 7-16 Regolatore di velocità/della coppia

La somma dei due valori di riferimento di coppia viene limitata nello stesso modo del valore di riferimento di coppia della regolazione della velocità. Al di sopra del numero di giri massimo (p1082), un limitatore del numero di giri riduce i limiti di coppia per evitare l'ulteriore accelerazione dell'azionamento.

Una "vera" regolazione di coppia (con autoimpostazione del numero di giri) è possibile solo nel funzionamento regolato della regolazione vettoriale senza encoder (SLVC), ma non in quello controllato. Nel funzionamento controllato, il valore di riferimento di coppia agisce sul numero di giri di riferimento tramite un integratore di accelerazione (tempo di integrazione ~ p1499 x p0341 x p0342). Per questo motivo la regolazione di coppia senza encoder nel campo di motore fermo è adatta solo per applicazioni che necessitano di una coppia di accelerazione e non di una coppia di carico (ad es., azionamenti per movimento orizzontale). Questa limitazione non esiste nel caso di regolazione di coppia con encoder.

Reazioni OFF

- OFF1 e p1300 = 22, 23
 - Reazione come per OFF2
- OFF1, p1501 = segnale "1" e p1300 ± 22, 23
 - Nessuna reazione di frenatura propria, la reazione di frenatura ha luogo tramite un azionamento che imposta la coppia.
 - Al termine del tempo di chiusura del freno motore (p1217) vengono cancellati gli impulsi. Lo stato di fermo viene rilevato quando il valore reale del numero di giri scende al di sotto della soglia del numero di giri (p1226) oppure quando è trascorso il tempo di sorveglianza (p1227) avviato con il valore di riferimento del numero di giri ≤ soglia del numero di giri (p1226).
 - Viene attivato il blocco inserzione.

7.4 Regolazione vettoriale di numero di giri/coppia con/senza encoder

• OFF2

- Cancellazione impulsi immediata, il motore si ferma per inerzia.
- Se è stato parametrizzato un freno motore, lo stesso viene immediatamente attivato.
- Viene attivato il blocco inserzione.

OFF3

- Passaggio al funzionamento con regolazione del numero di giri
- L'azionamento viene frenato con l'impostazione immediata di n_rif = 0 sulla rampa di decelerazione OFF3 (p1135).
- Dopo il riconoscimento dell'arresto, un freno motore eventualmente parametrizzato viene immediatamente chiuso.
- Al termine del tempo di chiusura del freno motore (p1217) vengono cancellati gli impulsi. Lo stato di fermo viene rilevato quando il valore reale del numero di giri scende al di sotto della soglia del numero di giri (p1226) oppure quando è trascorso il tempo di sorveglianza (p1227) avviato con il valore di riferimento del numero di giri ≤ soglia del numero di giri (p1226).
- Viene attivato il blocco inserzione.

Schema logico

ED 0000	
FP 6060	Valore di riferimento della coppia
11 0000	valore ai iliciliticillo aciia coppia

•	p0341	Momento di inerzia motore
•	p0342	Momento di inerzia, rapporto del totale rispetto al motore
•	p1300	Modalità operativa di controllo/regolazione
•	p1499	Accelerazione con regolazione di coppia, scalatura
•	p1501	Commutazione regolazione numero di giri/coppia
•	p1503	Valore di riferimento della coppia
•	p1511	Coppia aggiuntiva 1
•	p1512	Coppia aggiuntiva 1, scalatura
•	p1513	Coppia aggiuntiva 2
•	p1514	Coppia aggiuntiva 2, scalatura
•	r1515	Coppia aggiuntiva totale

7.4.5 Limitazione di coppia

Descrizione

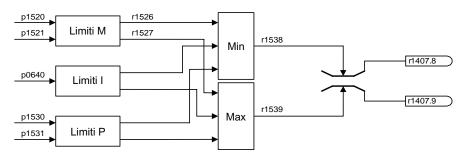


Figura 7-17 Limitazione di coppia

Questo valore indica la coppia massima ammessa, per la quale possono essere parametrizzati limiti differenti per il funzionamento come motore e come generatore.

- p0640 Limite di corrente
- p1520 Limite di coppia superiore/funzionamento motorico
- p1521 Limite di coppia inferiore/generatorico
- p1522 Limite di coppia superiore/funzionamento motorico
- p1523 Limite di coppia inferiore/generatorico
- p1524 Limite di coppia superiore/motorico, scalatura
- p1525 Limite di coppia inferiore/generatorico, scalatura
- p1530 Limite di potenza motorico
- p1531 Limite di potenza generatorico

I valori limite attuali di coppia attivi vengono visualizzati nei seguenti parametri:

- r0067 Azionamento, corrente di uscita massima
- r1526 Limite di coppia superiore/motorico senza offset
- r1527 Limite di coppia inferiore/generatorico senza offset

Le seguenti limitazioni agiscono tutte sul valore di riferimento di coppia presente sull'uscita del regolatore di velocità in caso di regolazione del numero di giri oppure quale ingresso di coppia in caso di regolazione di coppia. Delle diverse limitazioni viene utilizzato rispettivamente il minimo o il massimo. Questo minimo o massimo viene calcolato ciclicamente e visualizzato in r1538 o r1539.

- r1538 Limite di coppia superiore attivo
- r1539 Limite di coppia inferiore attivo

7.4 Regolazione vettoriale di numero di giri/coppia con/senza encoder

Questi valori ciclici limitano quindi il valore di riferimento o di coppia in uscita del regolatore di velocità o in ingresso del regolatore di coppia, oppure indicano l'istante di massima coppia possibile. Se avviene una limitazione del valore di riferimento di coppia, ciò viene indicato dal parametro p1407:

r1407.8 Limite superiore coppia attivo
r1407.9 Limite inferiore coppia attivo

Schema logico

FP 6060	Valore di riferimento della coppia
FP 6630	Limite coppia superiore/inferiore
FP 6640	Limiti di corrente/potenza/coppia

7.4.6 Motori sincroni ad eccitazione permanente

Descrizione

Sono supportati i motori sincroni ad eccitazione permanente senza encoder nel funzionamento senza encoder. In questo caso non è possibile il funzionamento regolato in stato di fermo.

Le applicazioni tipiche sono gli azionamenti diretti con motori torque caratterizzati da coppia elevata con numeri di giri ridotti, ad es. i motori torque completi Siemens della serie 1FW3. Questi azionamenti consentono, nelle relative applicazioni, di fare a meno dei riduttori e quindi di parti meccaniche soggette ad usura.

/!\AVVERTENZA

Appena il motore gira, viene generata una tensione. Quando si lavora sul convertitore, è necessario che il motore sia separato in modo sicuro. Se ciò non è possibile, il motore deve essere protetto ad es. con un freno di stazionamento.

Caratteristiche

- Deflussaggio di campo fino a ca. 1,2 x numero di giri nominale (in funzione della tensione di allacciamento del convertitore e dei dati motore, vedere anche le condizioni marginali)
- Riavviamento al volo (solo con impiego di un modulo VSM per il rilevamento del numero di giri del motore e dell'angolo di fase (opzione K51))
- Regolazione di numero di giri e coppia Vector
- · Controllo V/f Vector per scopi di diagnostica
- Identificazione motore
- Ottimizzazione del regolatore di velocità (misura in rotazione)

Condizioni generali

- Il numero di giri massimo e la coppia massima dipendono dalla tensione di uscita disponibile del convertitore e dalla forza elettromotrice del motore (norme per il calcolo: La FEM non deve superare V_{nom. convertitore}).
- Calcolo del numero di giri massimo:

$$n_{\text{max}} = V_{\text{nom,AC}} \times \frac{\sqrt{3} \times 30}{k_{\text{T}} \times \pi}$$

Calcolo di kT, vedere la sezione Messa in servizio

- Il numero di giri massimo in funzione della tensione dei morsetti e del ciclo può essere ricavato dai fogli dati del motore / dalle istruzioni di progettazione.
- Per la regolazione dei motori sincroni ad eccitazione permanente non esiste alcun modello termico. La protezione del motore dal surriscaldamento può essere garantita solo mediante una sonda termica (PTC, KTY). Per raggiungere una precisione di coppia elevata si consiglia di effettuare una misura della temperatura del motore tramite sonda termica (KTY).

Messa in servizio

Per la messa in servizio si consiglia di procedere nel seguente ordine:

• Eseguire la configurazione dell'azionamento

Durante la messa in servizio con STARTER o con il pannello operativo AOP30 è necessario selezionare il motore sincrono ad eccitazione permanente. Quindi devono essere immessi i dati del motore indicati nella tabella seguente. Infine viene attivata l'identificazione del motore e l'ottimizzazione del numero di giri (p1900). La regolazione encoder viene attivata automaticamente con l'identificazione del motore.

- Identificazione del motore (misura in stato di fermo, p1910)
- Ottimizzazione del regolatore di velocità (misura in rotazione, p1960)

Dati del motore per motori sincroni ad eccitazione permanente

Tabella 7-2 Dati del motore sulla targhetta

Parametri	Descrizione	Osservazioni
p0304	Tensione nominale del motore	Se questo valore non è noto, si può immettere anche il valore "0". Immettendo il valore corretto è comunque possibile calcolare più precisamente l'induttanza di dispersione dello statore (p0356, p0357).
p0305	Corrente nominale del motore	
p0307	Potenza nominale del motore	
p0310	Frequenza nominale del motore	
p0311	Numero di giri nominale del motore	
p0314	Numero di coppie di poli del motore	Se questo valore non è noto, si può immettere anche il valore "0".
p0316	Costante di coppia del motore	Se questo valore non è noto, si può immettere anche il valore "0".

7.4 Regolazione vettoriale di numero di giri/coppia con/senza encoder

Se sulla targhetta del motore o nella specifica dati manca l'indicazione della costante di coppia k_T , la si può ricavare dai dati nominali del motore o dalla corrente di fermo l_0 e dalla coppia di fermo M0 con il seguente calcolo:

$$k_T = \frac{M_N}{I_N} = \frac{60 \frac{s}{min} \times P_N}{2\pi \times n_N \times I_N} \quad oppure k_T = \frac{M_0}{I_0}$$

I dati opzionali del motore possono essere immessi, se sono noti. In caso contrario vengono stimati sulla base dei dati della targhetta oppure tramite l'identificazione del motore o l'ottimizzazione del numero di giri.

Tabella 7-3 Dati del motore sulla targhetta

Parametri	Descrizione	Osservazioni
p0320	Corrente di cortocircuito nominale del motore	Viene utilizzata per la curva caratteristica dell'attenuazione di campo
p0322	Numero di giri massimo del motore	Numero di giri meccanico massimo
p0323	Corrente massima del motore	Protezione contro la smagnetizzazione
p0325	Identificazione della posizione del rotore, corrente 1ª fase	-
p0327	Angolo di carico opzionale	Opzionale, altrimenti lasciare 90°
p0328	Costante del momento di riluttanza	-
p0329	Corrente di identificazione della posizione rotore	-
p0341	Momento di inerzia motore	per il precomando del regolatore di velocità
p0344	Massa del motore	-
p0350	Resistenza dello statore a freddo	-
p0356	Induttanza trasversale dello statore Lq	-
p0357	Induttanza longitudinale dello statore Ld	-

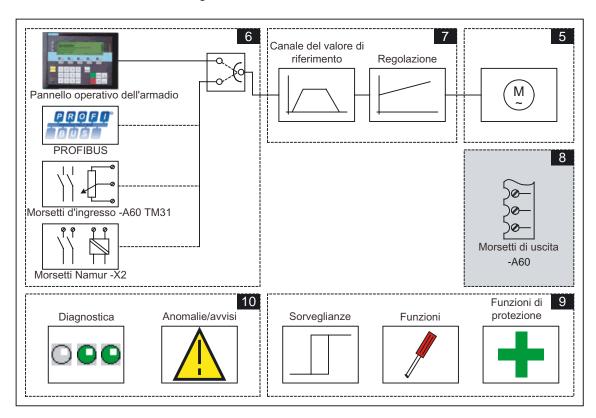
Protezione da cortocircuito

In caso di cortocircuito del convertitore o del cavo del motore, la macchina rotante alimenterebbe il cortocircuito fino all'arresto. Come protezione può essere impiegato un contattore di uscita che deve trovarsi il più vicino possibile al motore. Questo è necessario soprattutto se il motore può continuare ad essere azionato dal carico in caso di guasto. Il contattore deve essere dotato di un circuito di protezione contro le sovratensioni sul lato motore allo scopo di evitare un danno dell'avvolgimento del motore come conseguenza della disinserzione.

Per comandare il contattore si usa il segnale di comando r0863.1 mediante un'uscita digitale libera, il contatto di segnalazione del contattore viene cablato tramite un'uscita digitale libera sul parametro p0864.

In caso di guasto del convertitore il motore viene così separato dal convertitore con una reazione di disinserzione nel momento del blocco degli impulsi, in modo da evitare un recupero nel punto in cui si è verificato il guasto.

Schema logico


FP 6721	Regolazione di corrente - Valore di riferimento Id (PEM, p0300 = 2)
FP 6724	Regolazione di corrente - Regolatore di diseccitazione (PEM, p0300 = 2)
FP 6731	Regolazione di corrente - Interfaccia verso il Motor Module (PEM, p0300 = 2)

Morsetti di uscita

8.1 Contenuto del capitolo

Questo capitolo descrive:

- Uscite analogiche
- Uscite digitali

Schemi logici

A integrazione delle presenti istruzioni operative, la directory della documentazione contiene una raccolta degli schemi logici semplificati che descrivono il funzionamento. Questi schemi sono articolati secondo i capitoli del manuale; i fogli numerati con 8xx descrivono la funzionalità del capitolo seguente.

In alcuni punti di questo capitolo si fa riferimento a schemi logici con fogli identificati da numeri a 4 cifre. Questi si trovano nel CD della documentazione nel "Libretto di descrizione parametri SINAMICS", in cui è descritta nei dettagli la funzionalità complessiva ad uso degli utenti più esperti.

8.2 Uscite analogiche

Descrizione

Sulla morsettiera utente sono disponibili due uscite analogiche per l'emissione dei riferimenti tramite segnali in tensione o corrente.

Impostazione di fabbrica:

- AO0: valore attuale del numero di giri 0 20 mA
- AO1: valore attuale di corrente motore 0 20 mA

Schema del flusso dei segnali

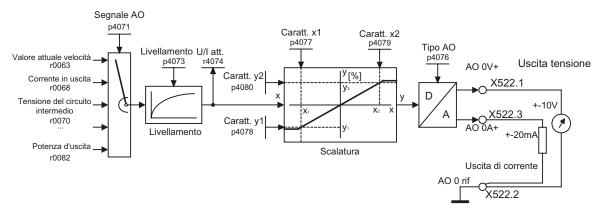


Figura 8-1 Schema del flusso dei segnali: uscita analogica 0

Schema logico

FP 1840, TM31 - Uscite analogiche (AO 0 ... AO 1) FP 9572

Parametro

•	p4071	Sorgente del segnale per l'uscita analogica
•	p4073	Tempo di livellamento uscita analogica
•	r4074	Tensione / corrente di uscita attuale
•	p4076	Tipo di uscita analogica
•	p4077	Valore x1 della curva caratteristica delle uscite analogiche
•	p4078	Valore y1 della curva caratteristica delle uscite analogiche
•	p4079	Valore x2 della curva caratteristica delle uscite analogiche
•	p4080	Valore y2 della curva caratteristica delle uscite analogiche

8.2.1 Lista dei segnali per i segnali analogici

Lista dei segnali per le uscite analogiche

Tabella 8-1 Lista dei segnali per le uscite analogiche

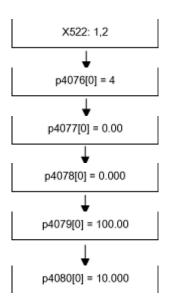
Segnale	Parametro	Unità	Normalizzazione (100%=) vedere la tabella seguente
Valore di riferimento del numero di giri a monte del filtro del valore di riferimento	r0060	1/min	p2000
Giri del motore non livellati	r0061	1/min	p2000
Valore attuale del numero di giri dopo livellamento	r0063	1/min	p2000
Frequenza di uscita	r0066	Hz	Frequenza di riferimento
Corrente in uscita	r0068	Aeff	p2002
Tensione del circuito intermedio	r0070	V	p2001
Valore di riferimento di coppia	r0079	Nm	p2003
Potenza d'uscita	r0082	kW	r2004
Per scopi diagnostici			
Deviazione di regolazione	r0064	1/min	p2000
Grado di controllo	r0074	%	Fattore di comando di riferimento
Valore di riferimento della corrente che costituisce la coppia	r0077	А	p2002
Valore attuale di corrente che forma la coppia	r0078	Α	p2002
Valore di riferimento del flusso	r0083	%	Flusso di riferimento
Valore attuale di flusso	r0084	%	Flusso di riferimento
Per scopi diagnostici ampliati			
Uscita regolatore di velocità	r1480	Nm	p2003
Componente I regolatore numero di giri	r1482	Nm	p2003

Normalizzazioni

Tabella 8-2 Normalizzazioni

Grandezza	Parametro di normalizzazione	Preimpostazione durante la messa in servizio rapida
Numero di giri di riferimento	100 % = p2000	p2000 = n. di giri massimo (p1082)
Tensione di riferimento	100 % = p2001	p2001 = 1000 V
Corrente di riferimento	100 % = p2002	p2002 = limite di corrente (p0640)
Coppia di riferimento	100 % = p2003	p2003 = 2 x coppia nominale motore
Potenza di riferimento	100 % = r2004	r2004 = (p2003 x p2000 x π) / 30
Frequenza di riferimento	100 % = p2000/60	
Fattore di comando di riferimento	100 % = massima tensione di uscita senza sovra comando	
Flusso di riferimento	100 % = flusso nominale del motore	
Temperatura di riferimento	100 % = 100 °C	

8.2 Uscite analogiche


Modifica dell'uscita analogica 0 da corrente a tensione -10 ... +10 V (esempio)

L'uscita di tensione si trova sul morsetto 1, la massa sul morsetto 2

Impostare il tipo di uscita analogica 0 su -10 V... +10 V

Modifica dell'uscita analogica 0 da corrente a tensione –10 ... +10 V (esempio) con impostazione della caratteristica

L'uscita di tensione si trova sul morsetto 1, la massa sul morsetto 2

Impostare il tipo TM31.AO [uscita analogica 0] su -10 V... +10 V

Impostare la caratteristica TM31.AO x1 su 0.00 %

Impostare la caratteristica TM31.AO y1 su 0.000 V

Impostare la caratteristica TM31.AO x2 su 100.00 %

Impostare la caratteristica TM31.AO y2 su 10.000 V

8.3 Uscite digitali

Descrizione

Sono presenti 4 uscite digitali bidirezionali (morsetto X541) e 2 uscite a relè (morsetto X542). Queste uscite sono liberamente parametrizzabili.

Schema del flusso dei segnali

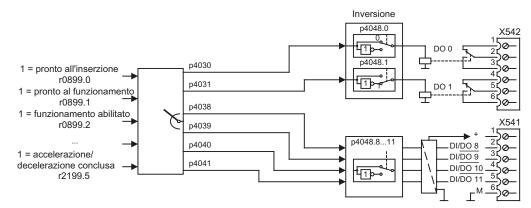


Figura 8-2 Schema del flusso dei segnali: uscite digitali

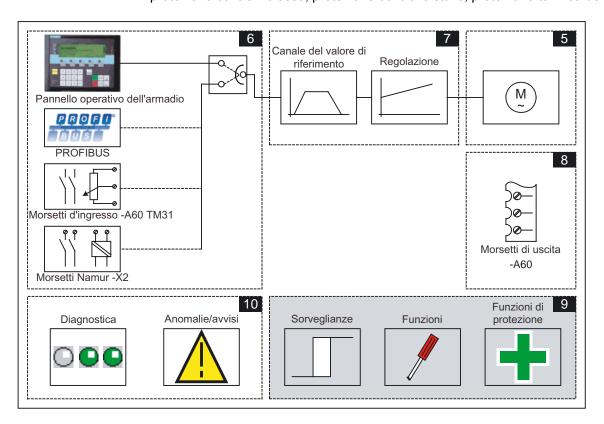
Impostazioni di fabbrica

Tabella 8-3 Impostazione di fabbrica uscite digitali

Uscita digitale	Morsetto	Impostazione di fabbrica
DO0	X542: 2,3	"Impulsi abilitati"
DO1	X542: 5,6	"Nessuna anomalia"
DI/DO8	X541: 2	"Pronto all'inserzione"
DI/DO9	X541: 3	
DI/DO10	X541:4	
DI/DO11	X541: 5	

Selezione delle possibili interconnessioni per le uscite digitali

Tabella 8-4 Selezione delle possibili interconnessioni per le uscite digitali


Segnale	Bit nella parola di stato 1	Parametro
1 = pronto all'inserzione	0	r0889.0
1 = pronto al funzionamento (circuito intermedio caricato, impulsi bloccati)	1	r0889.1
1 = funzionamento abilitato (l'azionamento segue n_rif)	2	r0889.2
1 = anomalia attiva	3	r2139.3
0 = arresto per inerzia (OFF2)	4	r0889.4
0 = arresto rapido attivo (OFF3)	5	r0889.5
1 = blocco inserzione	6	r0889.6
1 = avviso attivo	7	r2139.7
1 = differenza tra valore di riferimento e valore attuale nella fascia di tolleranza (p2163, p2166)	8	r2197.7
1 = gestione richiesta dal PLC	9	r0899.9
1 = il valore di confronto per la frequenza o il numero di giri è stato raggiunto o superato (p2141, p2142)	10	r2199.1
1 = è stato raggiunto il valore limite di corrente, coppia o potenza (p0640, p1520, p1521)	11	r1407.7
riservato	12	
0 = avviso sovratemperatura motore (A7910)	13	r2129.14
riservato	14	
0 = avviso sovraccarico termico della parte di potenza (A5000)	15	r2129.15
1 = impulsi abilitati (l'invertitore è sincronizzato, l'azionamento conduce corrente)		r0899.11
1 = n_att ≤ p2155		r2197.1
1 = n_att > p2155		r2197.2
1 = accelerazione/decelerazione conclusa		r2199.5
1 = n_att < p2161 (preferibile rispetto al messaggio n_min oppure n=0)		r2199.0
1 = valore di riferimento della coppia < p2174		r2198.10
1 = modo LOCAL attivo (comando tramite pannello operativo)		r0807.0
0 = motore bloccato		r2198.6

Funzioni, funzioni di sorveglianza e funzioni di protezione

9.1 Contenuto del capitolo

Questo capitolo descrive:

- Funzioni dell'azionamento: identificazione motore, regolazione Vdc, riavviamento automatico, riavviamento al volo, commutazione motore, caratteristica di attrito, aumento della frequenza di uscita, tempo di esecuzione, modalità simulazione, inversione di direzione, commutazione di unità
- Funzioni di ampliamento: regolatore di tecnologia, funzione di bypass, comando freni esteso, funzioni di sorveglianza estese
- Funzioni di sorveglianza e di protezione: protezione della parte di potenza, sorveglianze termiche e reazioni al sovraccarico, protezione contro il blocco, protezione contro lo stallo, protezione termica del motore

9.1 Contenuto del capitolo

Schemi logici

A integrazione delle presenti istruzioni operative, la directory della documentazione contiene una raccolta degli schemi logici semplificati che descrivono il funzionamento. Questi schemi sono articolati secondo i capitoli del manuale; i fogli numerati con 9xx descrivono la funzionalità del capitolo seguente.

In alcuni punti di questo capitolo si fa riferimento a schemi logici con fogli identificati da numeri a 4 cifre. Questi si trovano nel CD della documentazione nel "Libretto di descrizione parametri SINAMICS", in cui è descritta nei dettagli la funzionalità complessiva ad uso degli utenti più esperti.

9.2 Funzioni dell'azionamento

9.2.1 Identificazione del motore e ottimizzazione automatica del regolatore del numero di giri.

Descrizione

Esistono due possibilità per l'identificazione del motore, basate l'una sull'altra:

- Misura in stato di fermo con p1910 (identificazione del motore)
- Misura in rotazione con p1960 (ottimizzazione del regolatore di velocità)

Questi metodi possono essere selezionati in modo semplificato tramite p1900. Con p1900 = 2 si seleziona la misura in stato di fermo (nessun motore in rotazione). Con p1900 = 1 si attiva anche la misura in rotazione, p1900 = 1 imposta p1910 = 1 e p1960 a seconda del tipo di regolazione attuale (p1300).

Il parametro p1960 viene impostato in funzione di p1300:

- p1960 = 1, se p1300 = 20 o 22 (regolazione senza encoder)
- p1960 = 2, se p1300 = 21 o 23 (regolazione con encoder)

Le misure parametrizzate in p1900 vengono avviate nell'ordine seguente in base alla rispettiva abilitazione dell'azionamento:

- Misura in stato di fermo, dopo il completamento della misura si verifica un blocco impulsi e il parametro p1910 viene resettato a 0.
- Regolazione encoder, dopo il completamento della misura si verifica un blocco impulsi e il parametro p1990 viene resettato a 0.
- Misura rotante, dopo il completamento della misura si verifica un blocco impulsi e il parametro p1960 viene resettato a 0.
- Al termine di tutte le misure attivate tramite p1900, il parametro viene resettato a 0.

Nota

Per mantenere in modo permanente la nuova impostazione del regolatore, è necessario salvare i dati con p0977 o p0971 nella memoria non volatile della scheda CompactFlash.

PERICOLO

Durante lo svolgimento dell'identificazione, l'azionamento può attivare dei movimenti del motore.

Le funzioni di arresto di emergenza devono essere disponibili in fase di messa in servizio. Devono essere rispettate tutte le normative di sicurezza in materia al fine di evitare qualsiasi pericolo per gli operatori e le macchine.

9.2.1.1 Misura in stato di fermo

Descrizione

L'identificazione del motore con p1910 permette di determinare i parametri del motore durante lo stato di fermo (vedere anche p1960: ottimizzazione del regolatore di velocità):

- Dati del circuito equivalente p1910 = 1
- Curva caratteristica di magnetizzazione p1910 = 3

Per motivi legati alla regolazione, si consiglia di effettuare assolutamente l'identificazione del motore, in quanto sulla base dei dati della targhetta identificativa, i dati del circuito equivalente, la resistenza dei cavi del motore, la tensione diretta IGBT oppure la compensazione dei tempi di interblocco dell'IGBT possono solo essere stimati. La resistenza dello statore, ad esempio, è di grande importanza per la stabilità della regolazione vettoriale senza encoder o per l'aumento di tensione con curva caratteristica V/f.

L'identificazione del motore va effettuata soprattutto in caso di lunghe linee di alimentazione o di utilizzo di motori di altri produttori. Quando si avvia per la prima volta l'identificazione del motore, in base ai dati della targhetta identificativa (dati nominali) vengono ricavati i seguenti dati con p1910 = 1:

- Dati circuito equivalente
- Resistenza totale data da:
 - resistenza del cavo di potenza (R_{cavo}) e
 - resistenza dello statore (R_S)
- Tensione diretta IGBT risp. compensazione dei tempi di interblocco IGBT

Poiché i dati della targhetta identificativa indicano i valori di inizializzazione per l'identificazione, per determinare i dati summenzionati occorre immettere in modo corretto e coerente i dati della targhetta identificativa, tenendo conto del tipo di collegamento (stella/triangolo).

Se la resistenza del cavo motore è nota, si consiglia di immetterla prima della misura in stato di fermo (p0352) affinché la stessa, durante il calcolo della resistenza statorica p0350, possa essere detratta dalla resistenza totale misurata.

Con l'immissione di questa resistenza cavi migliora la precisione dell'adattamento di resistenza termico, soprattutto nel caso di linee di alimentazione lunghe. Particolarmente durante la regolazione vettoriale senza encoder, questo aspetto influisce sul comportamento ai bassi regimi.

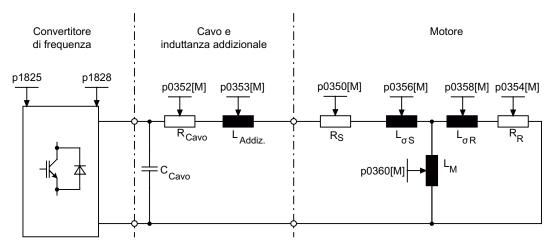


Figura 9-1 Circuito equivalente motore asincrono e cavo

Se è presente un filtro di uscita (vedere p0230) o un'induttanza in serie (p0353), anche i relativi dati vanno immessi prima della misura da fermo.

Il valore dell'induttanza viene quindi detratto dal valore totale misurato della dispersione. Per i filtri sinusoidali si misurano solo la resistenza statorica, la tensione di soglia della valvola e il tempo di interdizione della valvola.

Nota

In caso di dispersione superiore al 35 - 40 % dell'impedenza nominale del motore, la dinamica della regolazione del numero di giri e della corrente è limitata nel campo dei limiti di tensione e nel funzionamento di deflussaggio.

Nota

La misura in stato di fermo va eseguita a motore freddo. In p0625 va immessa la temperatura ambiente stimata del motore presente durante la misurazione (per il sensore KTY: impostazione in p0600, p0601 e lettura da r0035). Questo è il punto di riferimento per il modello di motore termico e l'adattamento termico Rs/Rs.

Oltre ai dati del circuito equivalente è possibile determinare mediante l'identificazione dati del motore (p1910 = 3) la curva di magnetizzazione del motore nelle macchine asincrone. In ragione della maggiore precisione, se possibile la caratteristica di magnetizzazione andrebbe determinata nell'ambito della misura in rotazione (senza encoder: p1960 = 1, 3; con encoder: p1960 = 2, 4). Se l'azionamento opera nel campo di deflussaggio, questa curva caratteristica deve essere soprattutto stabilita nella regolazione vettoriale. La caratteristica di magnetizzazione consente di calcolare con maggiore precisione la corrente formante il campo nel campo di deflussaggio e di ottenere quindi una migliore precisione di coppia.

Nota

La misura in rotazione (p1960) permette di determinare, nelle macchine asincrone, la corrente nominale di magnetizzazione e la curva caratteristica di saturazione in modo più preciso rispetto alla misura in stato di fermo (p1910).

9.2 Funzioni dell'azionamento

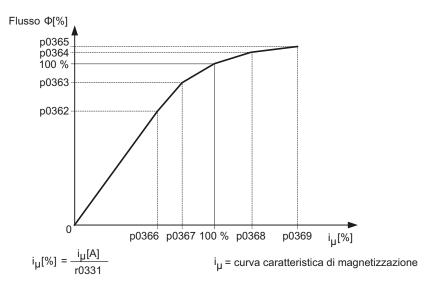


Figura 9-2 Curva caratteristica di magnetizzazione

Svolgimento dell'identificazione del motore

- Immettere p1910 > 0, viene visualizzato l'allarme A07991.
- L'identificazione inizia dopo il successivo comando di inserzione.
- p1910 si azzera (identificazione avvenuta correttamente) oppure viene segnalata l'anomalia F07990
- r0047 indica lo stato attuale della misurazione.

Nota

Per mantenere in modo permanente la nuova impostazione del regolatore, è necessario memorizzare i dati con p0977 o p0971 in modo non volatile sulla scheda CompactFlash.

/!\AVVERTENZA

Durante lo svolgimento dell'identificazione, l'azionamento può attivare dei movimenti del motore.

Le funzioni di arresto di emergenza devono essere disponibili in fase di messa in servizio. Devono essere rispettate tutte le normative di sicurezza in materia al fine di evitare qualsiasi pericolo per gli operatori e le macchine.

L'identificazione del motore rileva i seguenti parametri

- p1910 = 1 e motore asincrono: p0350, p0354, p0356, p0358, p0360, p1825, p1828, p1829, p1830
- p1910 = 3 e motore asincrono: p0362 ... p0366
- p1910 = 1 e motore sincrono a eccitazione permanente: p0350, p0356, p0357, p1825, p1828, p1829, p1830

9.2.1.2 Misura rotante e ottimizzazione del regolatore del numero di giri

Descrizione

La "misura in rotazione" può essere attivata tramite p1960 o tramite p1900 = 1.

La differenza principale della misura in rotazione è l'ottimizzazione del regolatore di velocità, durante la quale viene misurato il momento di inerzia dell'azionamento e viene impostato il regolatore di velocità. Nei motori asincroni vengono Inoltre misurate la curva caratteristica di saturazione e la corrente nominale di magnetizzazione del motore.

Se la misura in rotazione non deve essere eseguita con la velocità impostata in p1965, questo parametro può essere regolato prima di iniziare la misurazione. Sono consigliati numeri di giri più elevati. Lo stesso vale per il numero di giri definito in p1961, per il quale si determina la caratteristica di saturazione e si esegue il test dell'encoder.

Il regolatore di velocità viene impostato in base al fattore di dinamica p1967 secondo l'ottimo simmetrico. p1967 va impostato prima del ciclo di ottimizzazione e ha effetto solo sul calcolo dei parametri del regolatore.

Se durante la misurazione emerge che con il fattore dinamico specificato l'azionamento non può funzionare stabilmente oppure che le ondulazioni della coppia sono troppo elevate, la dinamica viene automaticamente ridotta e il risultato visualizzato in r1968. In seguito occorre verificare se l'azionamento funziona stabilmente per l'intero campo di regolazione. Può essere necessario ridurre la dinamica o effettuare la parametrizzazione richiesta dell'adattamento Kp/Tn del regolatore di velocità.

Per la messa in servizio delle macchine asincrone si raccomanda di procedere come segue:

- Si consiglia di eseguire, prima di procedere all'accoppiamento del carico, una "misura in rotazione" completa (senza encoder: p1960 = 1; con encoder: p1960 = 2). Non essendo caricata la macchina asincrona, sono prevedibili risultati particolarmente precisi della caratteristica di saturazione e della corrente di magnetizzazione nominale.
- Con il carico accoppiato, l'ottimizzazione del numero di giri va nuovamente ripetuta essendosi modificato il momento di inerzia totale. La ripetizione avviene tramite il parametro p1960 (senza encoder: p1960 = 3; con encoder: p1960 = 4).

Alla messa in servizio di macchine sincrone ad eccitazione permanente occorre eseguire un'ottimizzazione del regolatore di velocità (p1960 = 2/4) con il carico accoppiato.

Svolgimento della misura in rotazione (p1960 > 0)

Le seguenti misure vengono eseguite, per l'impostazione delle abilitazioni e il successivo comando di inserzione, secondo le impostazioni in p1959 e p1960.

- Test dell'encoder
 Per l'encoder di velocità presente vengono verificati il senso di rotazione e il numero di
 incrementi.
- Solo per i motori asincroni:
 - Misura della curva caratteristica di magnetizzazione (da p0362 a p0369)
 - Misurazione della corrente di magnetizzazione (p0320) e definizione della tensione di offset del convertitore per la compensazione dell'offset
 - Misurazione della saturazione dell'induttanza di dispersione e impostazione dell'adattamento del regolatore di corrente (p0391...p0393)

9.2 Funzioni dell'azionamento

Per i motori 1LA1 e 1LA8 (p0300 = 11, 18) viene attivata automaticamente (vedere p1959.5).

- Ottimizzazione del regolatore di velocità
 - p1470 e p1472, se p1960 = 1 (funzionamento senza encoder)
 - p1460 e p1462, se p1960 = 2 (funzionamento con encoder)
 - Disattivazione dell'adattamento Kp
- Impostazione del precomando di accelerazione (p1496)
- Impostazione del rapporto tra momento di inerzia globale e motore (p0342)

Nota

Per mantenere in modo permanente la nuova impostazione del regolatore, è necessario memorizzare i dati con p0977 o p0971 in modo non volatile sulla scheda CompactFlash.

Durante l'ottimizzazione del regolatore di velocità, l'azionamento attiva movimenti del motore che raggiungono il numero di giri massimo corrispondente.

Le funzioni di arresto di emergenza devono essere disponibili in fase di messa in servizio. Devono essere rispettate tutte le normative di sicurezza in materia al fine di evitare qualsiasi pericolo per gli operatori e le macchine.

Nota

Se viene eseguita l'ottimizzazione del regolatore di velocità per l'azionamento con encoder, la modalità operativa di regolazione viene commutata automaticamente sulla regolazione del numero di giri senza encoder per poter effettuare il test dell'encoder.

Parametri

•	r0047	Identificazione di stato
•	p1300	Modalità operativa di controllo/regolazione
•	p1900	Identificazione dati del motore e misura in rotazione
•	p1959	Ottimizzazione regolatore di velocità, configurazione
•	p1960	Ottimizzazione regolatore di velocità, selezione
•	p1961	Curva caratteristica di magnetizzazione, numero di giri per il rilevamento
•	p1965	Ottimizzazione regolatore di velocità, numero di giri
•	p1967	Ottimizzazione regolatore di velocità, fattore di dinamica
•	r1969	Ottimizzazione regolatore di velocità, momento di inerzia identificato
•	r3925	Segnalazione fine, identificazioni
•	r3927	IdMot, parola di comando
•	r3928	Configurazione misura rotante

9.2.2 Ottimizzazione del rendimento

Descrizione

L'ottimizzazione del rendimento tramite il parametro p1580 consente di realizzare:

- Perdite del motore nel campo del carico parziale
- Riduzione della rumorosità nel motore

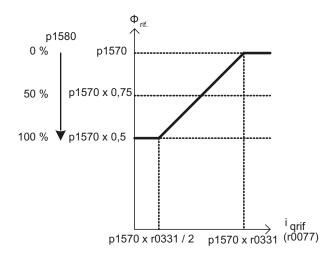


Figura 9-3 Ottimizzazione del rendimento

L'attivazione di questa funzione può rivelarsi utile soltanto se i requisiti dinamici richiesti non sono elevati (ad es. ventilatori e pompe).

Il parametro p1580 = 100 % consente di dimezzare a (p1570/2) il flusso di riferimento della macchina nel funzionamento a vuoto. Non appena l'azionamento registra un carico, il flusso di riferimento aumenta con andamento lineare rispetto al carico stesso e raggiunge, a ca. r0077 = r0331 x p1570, il valore di riferimento impostato in p1570.

Nell'area di deflussaggio del campo, il valore finale viene ridotto dal grado di deflussaggio del campo attuale. Il tempo di livellamento (p1582) deve essere impostato su un valore compreso tra ca. 100 e 200 ms. La differenziazione del flusso (vedere anche p1401.1) viene disattivata automaticamente e a livello interno dopo la magnetizzazione.

Schema logico

FP 6722	Caratteristica di deflussaggio del campo, valore di riferimento Id (ASM, p0300 = 1)
FP 6723	Regolatore di deflussaggio del campo, reg. flusso nel motore asincrono (p0300 = 1)

Parametri

•	r0077	Valori di riferimento di corrente, formante la coppia
•	r0331	Corrente di magnetizzazione/cortocircuito del motore (attuale)
•	p1570	Valore di riferimento del flusso
•	p1580	Ottimizzazione del rendimento

9.2.3 Regolazione Vdc

Descrizione

In caso di sovratensione o sottotensione del circuito intermedio, la funzione "Regolazione Vdc" permette di reagire con misure appropriate.

- Sovratensione nel circuito intermedio
 - Causa tipica: l'azionamento lavora in modo generatorico o rigenerativo e l'energia addotta al circuito intermedio è eccessiva.
 - Rimedio:
 riducendo la coppia generatorica la tensione del circuito intermedio viene mantenuta
 entro i limiti consentiti.

Nota

Qualora alla disattivazione o alla variazione rapida del carico si verifichi di frequente un guasto con l'anomalia F30002 "Sovratensione circuito intermedio", l'aumento del fattore di guadagno per il regolatore Vdc p1250 (p1290), ad esempio da "1,00" a "2,00", potrebbe apportare un miglioramento.

- Sottotensione nel circuito intermedio
 - Causa tipica: interruzione della tensione di rete o dell'alimentazione al circuito intermedio.
 - Rimedio: tramite la preimpostazione di una coppia generatorica per l'azionamento in rotazione vengono compensate le perdite esistenti e viene stabilizzata la tensione nel circuito intermedio. Questo processo viene definito bufferizzazione cinetica. La bufferizzazione cinetica può essere mantenuta solo fino a quando è disponibile l'energia generata dal movimento dell'azionamento.

Proprietà

- Regolazione Vdc
 - Viene composta in modo indipendente dalle regolazioni Vdc massima e minima (bufferizzazione cinetica).
 - Contiene un regolatore PI comune. Con il fattore di dinamica viene effettuata un'impostazione delle regolazioni di Vdc_min e Vdc_max reciprocamente indipendente.
- Regolazione Vdc minima (bufferizzazione cinetica)
 - In caso di temporanea caduta di rete, con questa funzione viene utilizzata l'energia cinetica del motore per la bufferizzazione della tensione del circuito intermedio e l'azionamento viene ritardato.
- Regolazione Vdc max
 - Con questa funzione viene gestito un carico generatorico di breve durata senza disinserzione con "Sovratensione nel circuito intermedio".
 - La regolazione Vdc_max ha senso solo nel caso di alimentazione senza regolazione attiva del circuito intermedio e senza alimentazione di recupero.

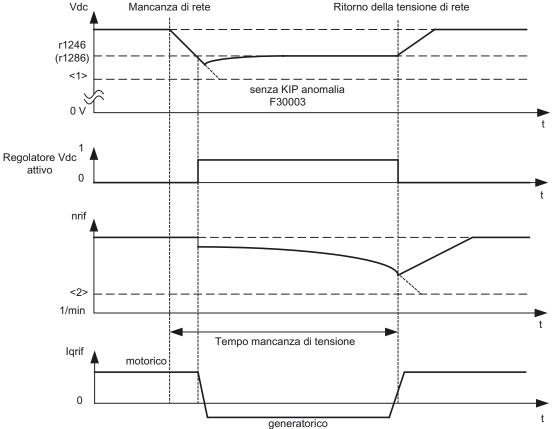


Figura 9-4 Attivazione/disattivazione della regolazione Vdc minima (bufferizzazione cinetica)

Nota

L'attivazione della bufferizzazione cinetica nell'esecuzione A è ammessa solo in combinazione con una tensione di alimentazione esterna.

Se la regolazione Vdc minima viene abilitata con p1240 = 2,3 (p1280), in caso di interruzione di rete dopo il mancato superamento della soglia di inserzione Vdc minima r1246 (r1286) viene attivata la regolazione Vdc minima. Nel complesso l'energia generatorica (di frenatura) dell'azionamento viene utilizzata durante la riduzione dei giri del motore per supportare la tensione del circuito intermedio del convertitore. Questo significa che con la regolazione Vdc_minima attivata i giri del motore non seguono più il valore di riferimento principale, ma possono essere ridotti fino allo stato di fermo. Il convertitore SINAMICS rimane in funzione finché la soglia di disinserzione della tensione del circuito intermedio viene superata in negativo (vedere la figura "Attivazione/disattivazione della regolazione Vdc minima" <1>).

Nota

Tutti i dati di parametrizzazione tra parentesi si riferiscono al controllo V/f.

Controllo V/f

Il regolatore Vdc_min agisce sul canale del valore di riferimento del numero di giri. Con la regolazione Vdc_min attivata, la velocità di riferimento dell'azionamento si riduce al punto che l'azionamento funziona in rigenerazione.

Regolazione del numero di giri Il regolatore Vdc_min agisce sull'uscita del regolatore di velocità e influisce sul valore di riferimento di corrente formante la coppia. Con la regolazione Vdc_min attivata, il valore di riferimento di corrente formante la coppia si riduce al punto che l'azionamento funziona in rigenerazione.

Se si verifica una mancanza di rete, la tensione del circuito intermedio si riduce a causa della mancata fornitura di energia dalla rete. Quando si raggiunge la soglia di tensione del circuito intermedio impostata su un valore superiore al parametro p1245 (p1285), il regolatore Vdc_min viene attivato. Le funzioni PID del regolatore riducono il numero di giri del motore in modo che l'energia generatorica dell'azionamento mantenga la tensione del circuito intermedio al livello impostato in p1245 (p1285). L'energia cinetica dell'azionamento ha quindi un'importanza fondamentale per la perdita di giri del motore, oltre che per la durata della bufferizzazione. Mentre la bufferizzazione di un azionamento con massa volanica (ad es. ventilatore) può richiedere molti secondi, una massa volanica ridotta (ad es. pompe) sull'azionamento limita il tempo di bufferizzazione a un intervallo di 100 – 200 ms. Il ripristino della rete disattiva il regolatore Vdc_min e imposta il valore di riferimento dell'azionamento sul generatore di rampa. Finché il regolatore Vdc_min è attivo, rimane visualizzato un avviso A7402 (azionamento: regolatore minimo tensione circuito intermedio attivo).

Se l'azionamento non può più emettere energia generatorica, ad es. perché il numero di giri è vicino allo stato di fermo, la tensione del circuito intermedio si riduce ulteriormente. Se la tensione del circuito intermedio scende al di sotto del valore minimo (vedere la figura "Attivazione/disattivazione della regolazione Vdc minima" <1>), l'azionamento si disinserisce segnalando l'anomalia F30003 (parte di potenza: sottotensione circuito intermedio).

Se con regolazione Vdc_min attiva si supera una soglia di numero di giri impostata con il parametro p1257 (p1297) (vedere la figura "Attivazione/disattivazione della regolazione Vdc minima" <2>), l'azionamento si disinserisce segnalando l'errore F7405 (azionamento: superamento in negativo della velocità minima bufferizzazione cinetica).

Se nonostante la regolazione Vdc minima abilitata la sottotensione nel circuito intermedio (F30003) provoca la disinserzione prima dell'arresto dell'azionamento, è necessario eventualmente ottimizzare il regolatore tramite il fattore di dinamica p1247 (p1287). Un incremento del fattore di dinamica in p1247 (p1287) causa un'inserzione più rapida del regolatore. La preimpostazione di questo parametro dovrebbe tuttavia essere sufficiente per la maggior parte delle applicazioni.

Tramite il parametro p1256 = 1 (p1296) si può attivare una sorveglianza del tempo di bufferizzazione cinetica. Il tempo di sorveglianza può essere impostato nel parametro p1255 (p1295). Se la bufferizzazione (anche con mancanza di rete) richiede un tempo più lungo di quello impostato, l'azionamento si disinserisce segnalando l'errore F7406 (azionamento: superamento in negativo della durata massima di bufferizzazione cinetica). La reazione all'anomalia segnalata da questo errore viene impostata in fabbrica su OFF3. Con questa funzione viene eseguito l'arresto guidato di un azionamento in caso di mancanza di rete. In questo caso, un livello troppo alto di energia generata dall'azionamento può essere compensato da una resistenza di frenatura aggiuntiva.

Descrizione della regolazione Vdc_max

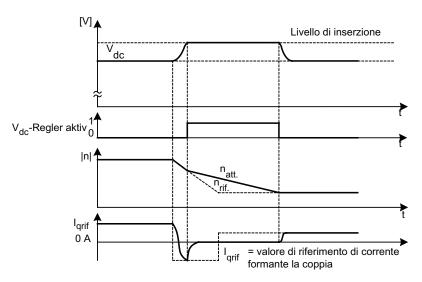


Figura 9-5 Attivazione/disattivazione della regolazione Vdc massima

Il livello di inserzione della regolazione Vdc_max (r1242 o r1282) si calcola nel modo sequente:

- con rilevamento automatico disattivato: livello di inserzione (p1254 = 0) r1242 (r1282) = 1,15 x p0210 (tensione di allacciamento apparecchiature, circuito intermedio)
- con rilevamento automatico attivo: livello di inserzione (p1254 = 1)
 r1242 (r1282) = Vdc_max 50 V (Vdc_max: soglia di sovratensione del convertitore)

Schema logico

FP 6220 (FP 6320) Regolatore Vdc_max e regolatore Vdc_min

Parametro

• p1240 (p1280)	Configurazione del regolatore Vdc
 r1242 (r1282) 	Regolatore Vdc_max, livello d'inserzione
 p1243 (p1283) 	Regolatore Vdc_max, fattore di dinamica
 p1245 (p1285) 	Livello d'inserzione del regolatore Vdc minimo
 p1246 (p1286) 	Regolatore Vdc_max, livello d'inserzione
 p1247 (p1287) 	Fattore di dinamica del regolatore Vdc minimo
 p1250 (p1290) 	Regolatore Vdc, guadagno proporzionale
 p1251 (p1291) 	Regolatore Vdc, tempo dell'azione integratrice
 p1252 (p1292) 	Regolatore Vdc, tempo di anticipo
• (p1293)	Limite di uscita del regolatore Vdc minimo (controllo V/f)
 p1254 (p1294) 	Regolatore Vdc_max, acquisizione automatica livello ON
 p1255 (p1295) 	Soglia temporale del regolatore Vdc minimo
 p1256 (p1296) 	Reazione del regolatore Vdc minimo
 p1257 (p1297) 	Soglia del numero di giri del regolatore Vdc minimo
 r1258 (r1298) 	Uscita regolatore Vdc

9.2.4 Riaccensione automatica (WEA)

Descrizione

La reinserzione automatica consente un ripristino dell'apparecchio dopo una disinserzione dovuta alla mancanza o ad una caduta della rete. In questo caso avviene una tacitazione automatica degli avvisi presenti e l'azionamento riprende automaticamente il funzionamento.

Per il riavviamento dell'azionamento si devono distinguere due diversi casi:

- L'avviamento normale dell'azionamento da una situazione di fermo.
- L'avviamento dell'azionamento con la funzione Avvio al volo.
 Per azionamenti con bassi momenti di inerzia e basse coppie di carico che consentono l'arresto nel giro di qualche secondo, ad es. pompe con colonna d'acqua, si consiglia l'avviamento da fermo.

Nota

Per azionamenti con coppie di inerzia molto elevate (ad es. comando di ventilatori) in aggiunta può essere attivata la funzione Avvio al volo, che consente la sincronizzazione con il motore ancora in rotazione.

/!\AVVERTENZA

Se il p1210 è impostato su valori >1, il riavviamento del motore può avvenire automaticamente anche senza il comando di ON.

Nel caso di lunghe mancanze di rete con la funzione di reinserzione automatica attiva (p1210 > 1), l'azionamento può entrare in uno stato di fermo più lungo e può erroneamente essere considerato disinserito.

Se si entra nel campo dell'azionamento in questo stato, si incorre nel pericolo di morte e di gravi lesioni fisiche. Possono inoltre verificarsi danni materiali.

Modo di reinserzione automatica

Tabella 9-1 Modo di reinserzione automatica

p1210	Modo	Significato
0	Blocco reinserzione automatica	Reinserzione automatica non attiva
1	Tacitazione di tutte le anomalie senza reinserzione	Con p1210 = 1 le anomalie presenti vengono tacitate automaticamente se la loro causa viene eliminata. Se compaiono nuovamente delle anomalie dopo la tacitazione, anche queste vengono di nuovo tacitate automaticamente. Tra la tacitazione e la ricomparsa di un'anomalia deve intercorrere un tempo minimo di p1212 + 1s se il segnale ON/OFF1 (parola di comando 1, bit 0) si trova su HIGH. Se il segnale ON/OFF1 si trova su LOW, il tempo tra la tacitazione e una nuova anomalia deve essere di almeno 1s. Con p1210 = 1 non viene generata l'anomalia F07320 se fallisce il tentativo di tacitazione, ad es. a causa di anomalie troppo frequenti.
4	Reinserzione dopo interruzione di rete, nessun altro tentativo di avviamento	Con p1210 = 4 l'esecuzione del riavvio automatico avviene soltanto se sul Motor Module si è verificata anche l'anomalia F30003 o se sull'ingresso binettore p1208[1] si trova un segnale High, oppure se, in caso dell'oggetto di azionamento Alimentazione (A_Infeed), si è verificata l'anomalia F06200. Eventuali ulteriori anomalie vengono a loro volta tacitate e, ad eliminazione riuscita, viene ritentato l'avvio. Un'interruzione dell'alimentazione di corrente 24 V della CU viene interpretata come interruzione di rete.
6	Reinserzione dopo anomalia con altri tentativi di avviamento	Con p1210 = 6 il riavvio automatico viene eseguito dopo una qualsiasi anomalia oppure con p1208[0] = 1. Se le anomalie si verificano in sequenza cronologica, il numero dei tentativi di avvio viene determinato con il parametro p1211. La sorveglianza temporale è impostabile tramite il parametri p1213.

Tentativi di avviamento (p1211) e tempo di attesa (p1212)

Tramite p1211 viene specificato il numero di tentativi di avviamento. Dopo ogni tacitazione di anomalia, questo numero viene diminuito internamente (è necessario che la tensione di rete sia nuovamente disponibile oppure che l'alimentazione sia pronta al funzionamento). Se è esaurito il numero di tentativi di avviamento parametrizzati, viene segnalata l'anomalia F07320.

Con p1211 = x vengono effettuati x + 1 tentativi di avviamento.

Nota

Il tentativo di avviamento inizia subito dopo il verificarsi dell'anomalia.

La tacitazione automatica delle anomalie avviene in intervalli di tempo corrispondenti alla metà del tempo di attesa di p1212.

Alla tacitazione riuscita e dopo il ripristino della tensione segue la reinserzione automatica.

9.2 Funzioni dell'azionamento

Il tentativo di avviamento può considerarsi riuscito se il riavviamento al volo e la magnetizzazione del motore (r0056.4 = 1) si sono conclusi e se dalla conclusione è decorso un ulteriore secondo. Soltanto allora il contatore di avviamento viene riportato al valore iniziale p1211.

Qualora tra una tacitazione riuscita e la fine di un tentativo di avviamento si verificassero ulteriori anomalie, durante la relativa tacitazione, il contatore di avviamento viene a sua volta decrementato.

Tempo di sorveglianza ripristino rete (p1213)

Il tempo di sorveglianza inizia con il rilevamento delle anomalie. Se le tacitazioni automatiche non avvengono correttamente, il tempo di sorveglianza prosegue. Se, decorso il tempo di sorveglianza, l'avviamento dell'azionamento non è ancora riuscito (il riavviamento al volo e la magnetizzazione del motore devono essere completati: r0056.4 = 1), viene segnalata l'anomalia F07320. Con p1213 = 0 viene disattivata la sorveglianza.

Se p1213 viene impostato ad un valore inferiore alla somma di p1212, del tempo di magnetizzazione p0346 nonché del tempo di attesa supplementare dovuto al riavviamento al volo, l'anomalia F07320 viene generata ad ogni processo di reinserzione. Se nel parametro p1210 = 1, il tempo in p1213 viene impostato su un valore inferiore a p1212, l'anomalia F07320 viene generata anche in questo caso ad ogni processo di reinserzione. Qualora la tacitazione immediata delle anomalie non fosse possibile (ad es. nel caso di anomalie presenti in permanenza), è necessario prolungare il tempo di sorveglianza.

Parametri

- p1210 Modo resinserzione automatica
- p1211 Reinserzione automatica, tentativi di avviamento
- p1212 Reinserzione automatica, tempo di attesa tentativo avviamento
- p1213 Reinserzione automatica, sorveglianza di ripristino della rete

Impostazioni

Per non avviare il motore in contrapposizione di fase durante la reinserzione dell'azionamento, innanzitutto viene atteso il tempo di smagnetizzazione del motore (t = 2,3 x costante di tempo di magnetizzazione del motore). E' necessario attendere questo tempo prima che venga abilitato l'invertitore e che venga fornita tensione al motore.

9.2.5 Avvio al volo

Descrizione

La funzione "Avvio al volo", abilitata tramite p1200, permette di avviare il convertitore su un motore ancora in rotazione. Durante l'inserzione del convertitore senza avvio al volo non verrebbe generato alcun flusso nel motore in fase di rotazione. Poiché il motore senza flusso non genera coppia, si può verificare una disinserzione provocata da sovracorrente (F07801).

L'avvio al volo rileva innanzitutto il numero di giri dell'azionamento con cui è stato inizializzato il controllo V/f o la regolazione vettoriale. In questo modo la frequenza del convertitore viene sincronizzata con la frequenza del motore.

Con l'inserzione "normale" del convertitore si presuppone che il motore sia fermo e che il convertitore esegua l'accelerazione del motore dallo stato di fermo e con il numero di giri impostato sul valore di riferimento. In molti casi, però, questo requisito non è soddisfatto.

Si devono distinguere due casi:

- 1. L'azionamento ruota a causa di influenze esterne come ad esempio flussi d'acqua di pompe oppure correnti d'aria di ventilatori. In questo caso l'azionamento potrebbe anche ruotare in senso opposto.
- 2. L'azionamento ruota a causa di una precedente disinserzione, ad es. OFF2, oppure mancanza rete. A causa dell'energia cinetica accumulata nella catena cinematica, l'azionamento ruota lentamente (esempio: ventilatori a tiraggio indotto con momento di inerzia elevato e curva caratteristica del carico in forte calo nel campo di giri inferiore).

L'inizio del riavviamento al volo avviene indipendentemente dall'impostazione selezionata (p1200):

- dopo il ripristino della rete con la reinserzione automatica attivata,
- dopo la disinserzione tramite il comando OFF2 (blocco impulsi) con la reinserzione automatica attivata,
- durante l'applicazione del comando ON.

Nota

La funzione di avvio al volo deve essere utilizzata nei casi in cui il motore è possibilmente ancora in rotazione oppure viene azionato dal carico. In caso contrario si verificano disinserzioni provocate da sovracorrente (F7801).

Nota

Un valore maggiore del parametro p1203 (fattore del numero di giri di ricerca) determina una curva di ricerca più piatta e, di conseguenza, un tempo di ricerca più lungo. Un valore inferiore ha l'effetto contrario.

Nei motori con momento di inerzia ridotto, l'avvio al volo può contribuire a un'accelerazione insignificante dell'azionamento.

Negli azionamenti di gruppo, l'avvio al volo non deve essere attivato a causa dei diversi comportamenti dei singoli motori.

9.2.5.1 Avvio al volo senza encoder

Descrizione

In funzione del parametro p1200, al termine del tempo di diseccitazione p0347 viene avviato l'avvio al volo con velocità di ricerca massima n_{Ricerca,max} (vedere la figura "Avvio al volo").

 $n_{Ricerca,max} = 1,25 \text{ x } n_{max} \text{ (p1082)}$

La procedura di avvio al volo è diversa per il controllo V/f e la regolazione vettoriale:

- Caratteristica V/f (p1300 < 20):
 con la velocità di ricerca ricavata dal parametro p1203, la frequenza corrispondente si
 riduce in funzione della corrente del motore. In questo modo viene impressa la corrente
 di ricerca parametrizzabile p1202. Se la corrente di ricerca è vicina alla frequenza del
 rotore, viene impostato un minimo di corrente. Con la frequenza rilevata viene infine
 effettuata la magnetizzazione del motore. Durante la magnetizzazione (p0346), la
 tensione di uscita aumenta fino a raggiungere il valore della tensione derivante dalla
 curva caratteristica V/f (vedere la figura "Avvio al volo").
- Regolazione vettoriale senza encoder del numero di giri: il rilevamento del numero di giri del motore avviene tramite l'anello di regolazione della velocità del modello di motore elettrico. In questo modo viene innanzitutto applicata la corrente di ricerca (p1202) e quindi viene avviato il regolatore a partire dalla frequenza di ricerca massima. La dinamica del regolatore viene influenzata tramite il fattore della velocità di ricerca (p1203). Se gli scostamenti del regolatore del numero di giri sono sufficientemente contenuti, si prosegue con la magnetizzazione di durata parametrizzata in p0346.

Al termine del tempo di eccitazione p0346, il generatore di rampa viene impostato sul valore reale del numero di giri e il motore funziona alla frequenza di riferimento attuale.

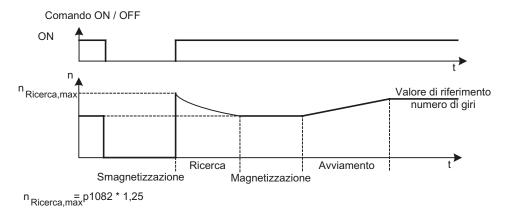


Figura 9-6 Avvio al volo

/NAVVERTENZA

Se la funzione "Avvio al volo" è attiva (p1200), l'azionamento potrebbe subire un'accelerazione a causa della corrente di ricerca nonostante lo stato di fermo e il valore di riferimento 0!

Pertanto l'accesso all'area di lavoro dei motori in questa condizione può comportare pericolo di morte, gravi lesioni fisiche o danni materiali.

9.2.5.2 Avvio al volo con encoder

Descrizione

La procedura di avvio al volo è diversa per il controllo V/f e la regolazione vettoriale:

- Curva caratteristica V/f (p1300 < 20): procedura come per l'avvio al volo senza encoder (vedere il capitolo "Avvio al volo senza encoder")
- Regolazione vettoriale con encoder del numero di giri:
 poiché il numero di giri è già noto, si può immediatamente proseguire con la
 magnetizzazione alla relativa frequenza. La durata del processo di magnetizzazione è
 indicata in p0346. Al termine del tempo di eccitazione, il generatore di rampa viene
 impostato sul valore reale del numero di giri e il motore funziona al numero di giri di
 riferimento attuale.

Con l'avvio al volo attivato (p1200) l'azionamento potrebbe essere accelerato dalla corrente di ricerca nonostante lo stato di fermo e il valore di riferimento a 0!

Perciò l'accesso all'area di lavoro del motore in questa condizione può comportare pericolo di morte, gravi lesioni fisiche o danni materiali.

9.2.5.3 Parametro

- p1200 Avvio al volo, modo operativo
 - 0: avvio al volo inattivo
 - 1: avvio al volo sempre attivo. Avvio in direzione del valore di riferimento
 - 2: avvio al volo attivo dopo: inserzione, errore, OFF2. Avvio in direzione del valore di riferimento
 - 3: avvio al volo attivo dopo: errore, OFF2. Avvio in direzione del valore di riferimento
 - 4: avvio al volo sempre attivo. Avvio solo in direzione del valore di riferimento
 - 5: avvio al volo attivo dopo: inserzione, errore, OFF2. Avvio solo in direzione del valore di riferimento
 - 6: avvio al volo attivo dopo: errore, OFF2, avvio solo in direzione del valore di riferimento
- p1202 Avvio al volo, corrente di ricerca
- p1203 Avvio al volo, velocità di ricerca
- r1204 Avvio al volo, controllo V/f, stato
- r1205 Avvio al volo, regolazione vettoriale, stato

9.2.6 Commutazione motore

9.2.6.1 Descrizione

La commutazione del record di dati del motore viene utilizzata ad esempio nei casi seguenti:

- commutazione di motori diversi
- · adattamento dei dati motore

Nota

Per una commutazione motore di un motore in rotazione occorre attivare la funzione "Riavviamento al volo"

9.2.6.2 Esempio di commutazione motore di due motori

Premesse

- La prima messa in servizio è conclusa.
- 2 record di dati del motore (MDS), p0130 = 2
- 2 record di dati dell'azionamento (DDS), p0180 = 2
- 2 uscite digitali per il comando dei contattori ausiliari
- 2 ingressi digitali per la sorveglianza dei contattori ausiliari
- 1 ingresso digitale per la selezione del record di dati
- 2 contattori ausiliari con contatti ausiliari (1 contatto normalmente aperto)
- 2 contattori del motore con contatti ausiliari a guida forzata (1 contatto normalmente chiuso, 1 contatto normalmente aperto)

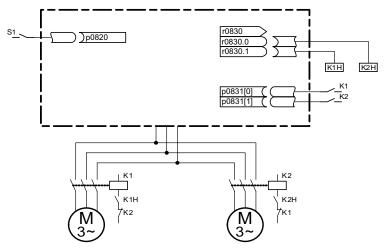


Figura 9-7 Esempio di commutazione motore

Tabella 9-2 Impostazioni per l'esempio di commutazione motore

Parametri	Impostazioni	Osservazioni
p0130	2	Configurare 2 MDS
p0180	2	Configurare 2 DDS
p0186[01]	0, 1	Gli MDS vengono assegnati ai DDS.
p0820	Selezione ingresso digitale tramite DDS	Viene selezionato l'ingresso digitale per una commutazione motore tramite selezione DDS. La codifica è binaria (p0820 =
p0821 p0824	0	bit 0 ecc.).
p0826[01]	1, 2	Numeri diversi significano un modello termico differente.
p0827[01]	0, 1	Assegnazione dei bit da p0830 a MDS. Se, ad es., p0827[0] = 0, selezionando MDS0 tramite DDS0 viene impostato il bit p0830.0.
p0830.0 e p0830.1	Uscite digitali contattori ausiliari	Le uscite digitali per i contattori ausiliari vengono assegnate ai bit.
p0831[01]	Ingressi digitali contatti ausiliari	Gli ingressi digitali per la risposta dei contattori del motore vengono assegnate ai bit.
p0833.00 e .01	0, 0	L'azionamento assume il controllo della commutazione dei contattori e la cancellazione degli impulsi.

Sequenza della commutazione motore

- 1. Cancellazione degli impulsi:
 - Dopo la selezione di un nuovo record di dati dell'azionamento tramite p0820 ... p0824 viene eseguita una cancellazione degli impulsi.
- 2. Apertura del contattore motore:
 - il contattore motore 1 viene aperto r0830 = 0 e il bit di stato "Commutazione motore attiva" (r0835.0) impostato.
- 3. Commutazione del record di dati dell'azionamento: il record di dati richiesto viene attivato (r0051 = record di dati effettivo, r0837 = record di dati richiesto).
- 4. Comando del contattore motore:
 - dopo la risposta (contattore motore aperto) del contattore motore 1 avviene l'impostazione del relativo bit di r0830 e l'attivazione del contattore motore 2.
- 5. Abilitazione degli impulsi:
 - dopo la risposta (contattore motore chiuso) del contattore motore 2, il bit "commutazione record di dati motore attiva" (r0835.0) viene reimpostato e gli impulsi abilitati. La commutazione motore è conclusa.

9.2.6.3 Schema logico

FP 8565	Record di dati dell'azionamento (Drive Data Set, DDS)
FP 8575	Record di dati del motore (Motor Data Set, MDS)

9.2.6.4 Parametro

•	r0051	Record di dati dell'azionamento DDS attivo
•	p0130	Quantità di record di dati motore (MDS)
•	p0180	Quantità di record di dati dell'azionamento (DDS)
•	p0186	Numero record di dati motore (MDS)
•	p0819[02]	Copia di un record di dati dell'azionamento (DDS)
•	p0820	BI: Selezione record di dati dell'azionamento bit 0
•	p0821	BI: Selezione record di dati dell'azionamento bit 1
•	p0822	BI: Selezione record di dati dell'azionamento bit 2
•	p0823	BI: Selezione record di dati dell'azionamento bit 3
•	p0824	BI: Selezione record di dati dell'azionamento bit 4
•	p0826	Commutazione motore, numero motore
•	p0827	Commutazione motore, parola di stato, numero di bit
•	p0828	Commutazione motore, risposta di conferma
•	p0830	Commutazione motore, stato
•	p0831	Commutazione motore, conferma contattore
•	p0833	Commutazione del record di dati, configurazione

9.2.7 Caratteristica di attrito

Descrizione

La caratteristica di attrito serve a compensare la coppia di attrito del motore e della macchina operatrice. Una caratteristica di attrito consente il precomando del regolatore di velocità e migliora il comportamento di controllo.

Per la caratteristica di attrito vengono utilizzati 10 punti di interpolazione. Le coordinate di ogni punto di interpolazione sono descritte da un parametro del numero di giri (p382x) e uno di coppia (p383x) (punto di interpolazione 1 = p3820 e p3830).

Caratteristiche

- Sono disponibili 10 punti di supporto per la raffigurazione della curva caratteristica di attrito.
- Una funzione automatica supporta la registrazione della caratteristica di attrito (record caratteristica di attrito).
- È possibile interconnettere un'uscita connettore (r3841) come coppia di attrito (p1569).
- La caratteristica di attrito può essere attivata e disattivata (p3842)

Messa in servizio

In p382x vengono preassegnati, durante la prima messa in servizio, i numeri di giri per la misura in funzione del numero di giri massimo p1082. È possibile modificarle a seconda delle esigenze.

Tramite p3845 è possibile attivare la registrazione (record) automatica della caratteristica di attrito. La registrazione della curva caratteristica avviene alla successiva abilitazione.

Sono possibili le seguenti impostazioni:

•	p3845 = 0	Caratteristica di attrito, record disattivato
•	p3845 = 1	Caratteristica di attrito, record attivato, tutti i sensi di rotazione La caratteristica di attrito viene rilevata in entrambi i sensi di rotazione. Il risultato della misurazione positiva e negativa viene calcolato come media e registrato in p383x.
•	p3845 = 2	Caratteristica di attrito, record attivato, senso di rotazione positivo
•	p3845 = 3	Caratteristica di attrito, record attivato, senso di rotazione negativo

Durante la registrazione della caratteristica di attrito, l'azionamento causa movimenti del motore che raggiungono il numero di giri massimo del motore stesso.

Le funzioni di arresto d'emergenza devono essere efficienti al momento della messa in servizio. Devono essere rispettate tutte le normative di sicurezza in materia al fine di evitare qualsiasi pericolo per gli operatori e le macchine.

Schema logico

FP 7010 Caratteristica di attrito

Parametri

•	p3820	Caratteristica di attrito, valore n0
•		
•	p3839	Caratteristica di attrito, valore M9
•	r3840	Stato caratteristica di attrito
•	r3841	Uscita caratteristica di attrito
•	p3842	Caratteristica di attrito, attivazione
•	p3845	Caratteristica di attrito, attivazione record

9.2.8 Aumento della frequenza di uscita

9.2.8.1 Descrizione

Per le applicazioni che richiedono frequenze di uscita maggiori può essere necessario incrementare la frequenza impulsi del convertitore.

Allo stesso modo può essere necessario modificare la frequenza impulsi, in modo da evitare possibili fenomeni di risonanza.

Poiché l'aumento della frequenza impulsi determina un incremento delle perdite di commutazione, in fase di dimensionamento dell'azionamento va considerato un fattore di "derating" per la corrente di uscita.

Dopo l'incremento della frequenza impulsi vengono automaticamente applicate le nuove correnti di uscita nel calcolo della protezione della parte di potenza.

Nota

L'impiego di un filtro sinusoidale (opzione L15) deve essere selezionato durante la messa in servizio tramite p0230 = 3. In questo modo la frequenza impulsi viene impostata su 4 kHz o 2,5 kHz; questo valore non può essere modificato.

9.2.8.2 Frequenze degli impulsi preimpostate

Le frequenze impulsi preimpostate in fabbrica e riportate di seguito permettono di ottenere le frequenze di uscita massime indicate.

Tabella 9-3 Frequenza di uscita massima con la frequenza impulsi preimpostata

Potenza del convertitore [kW]	Frequenza impulsi preimpostata [kHz]	Frequenza di uscita max. [Hz]	
	Tensione di rete 3 AC 380 – 480 V		
110 – 250	2	160	
315 – 900	1,25	100	
Tensione di rete 3 AC 500 – 600 V			
110 – 1000	1,25	100	
Tensione di rete 3 AC 660 – 690 V			
75 – 1500	1,25	100	

Le frequenze impulsi impostate in fabbrica rappresentano anche la frequenza minima.

I tempi di campionamento per gli ingressi e le uscite della morsettiera utente TM31 sono impostati in fabbrica a 4000 μs; questo è anche il valore minimo.

9.2.8.3 Aumento della frequenza impulsi

Descrizione

È possibile aumentare la frequenza impulsi a un valore compreso tra la frequenza impulsi preimpostata in fabbrica e la frequenza impulsi massima impostabile in modo quasi continuo.

Dopo l'immissione della nuova frequenza impulsi in p0113 viene eseguito un controllo per verificare se la frequenza impulsi desiderata è effettivamente impostabile.

- A questo scopo il valore desiderato viene impiegato nella formula seguente: X = (0,5 x 1000 μs) / p0113 Se il risultato "X" è un multiplo intero di 1,25 μs, il valore viene accettato; altrimenti viene visualizzato l'avviso A1224 "Frequenza impulsi incoerente".
- 2. Per ottenere un valore ammesso per p0113 si può ricorrere al calcolo seguente:
 - Il risultato "X" deve essere diviso per 1,25 µs e questo risultato deve essere arrotondato al numero intero successivo.
 - Il risultato ottenuto deve essere di nuovo moltiplicato per 1,25 µs e trasformato, invertendo la suddetta formula, in una freguenza impulsi raccomandata.
 - La frequenza impulsi raccomandata deve essere arrotondata a 3 cifre dopo la virgola e immessa nel parametro p0113.
- 3. Infine occorre impostare il tempo di campionamento della morsettiera utente TM31 (p4099[x]) su un multiplo intero del tempo di campionamento di p0115[0]. Occorre tenere presente il limite inferiore del campo d'impostazione.

Esempio

Impostazione di fabbrica: 1,25 kHz, frequenza impulsi desiderata: 1,3 kHz.

- 1. $(0.5 \times 1000 \,\mu\text{s}) / \text{p0113} = 384,61538461 \,\mu\text{s}$ non è un multiplo intero di 1,25 μs , per cui non viene accettato.
- 2. Calcolo di p0113:
 - $-384,61538461 \,\mu s / 1,25 \,\mu s = 307,692307688 => 308$
 - $-308 \times 1,25 \mu s = 385 \mu s = r0114[1] = (0,5 \times 1000 \text{ kHz}) / 385 = 1,2987 \text{ kHz}$
 - p0113 = 1,299 kHz
- 3. $p0115[0] = 385 \ \mu s \Rightarrow p4099[0] = p4099[1] = p4099[2] = 11 \ x \ 385 \ \mu s = 4235 \ \mu s$

Procedura di impostazione per l'esempio descritto

- 1. Impostare l'azionamento sul blocco impulsi
- 2. DO1 (CU320): p0009 = 3 (configurazione base azionamento)
- 3. DO2 (VECTOR): p0112 = 0 (esperti)
- 4. DO2 (VECTOR): p0113 = 1,299 kHz -> il valore viene accettato
- 5. DO3 (TM31): p0112 = 0 (esperti)
- 6. DO3 (TM31): p4099[0] = p4099[1] = p4099[2] = 4235 -> i valori vengono accettati
- 7. DO1 (CU320): p0009 = 0 -> vengono effettuati i calcoli, quindi viene eseguito un riavvio.

Nota

L'esempio descritto è valido solo per un SINAMICS G150 senza opzione G61 e senza collegamento in parallelo. Per l'opzione G61 devono inoltre essere eseguiti i passi 5 e 6 per il DO4 (2° TM31).

Per gli armadi SINAMICS G150 con collegamento in parallelo devono inoltre essere eseguiti i passi 3 e 4 per il DO2 (VECTOR, armadio sinistro) e per il DO3 (VECTOR, armadio sinistro). Inoltre occorre eseguire i passi 5 e 6 per il DO4 (TM31) ed eventualmente per il DO5 (2° TM31).

9.2.8.4 Frequenza di uscita massima all'aumento della frequenza degli impulsi

Frequenza di uscita massima all'aumento della frequenza degli impulsi

Moltiplicando per numeri interi la frequenza degli impulsi di base, si ottengono le seguenti frequenze di uscita tenendo conto dei fattori di derating:

Tabella 9-4 Frequenza di uscita massima all'aumento della frequenza degli impulsi

Frequenza impulsi [kHz]	Frequenza di uscita max. [Hz]
1,25	100
2	160
2,5	200
4	300 ¹⁾
5	300 ¹⁾

¹⁾ Mediante la regolazione la frequenza di uscita massima viene limitata a 300 Hz.

9.2.8.5 Parametro

•	p0009	Messa in servizio dell'apparecchio, filtro parametri
•	p0112	Preimpostazione tempi di campionamento p0115
•	p0113	Selezione frequenza impulsi minima
•	p0115	Tempi di campionamento
•	p1800	Frequenza impulsi
•	p4099	TM31 Tempo di campionamento ingressi/uscite

9.2.9 Tempo di esecuzione (contatore ore d'esercizio)

Runtime di sistema totale

Il runtime di sistema totale viene visualizzato in p2114 (Control Unit). L'indice 0 mostra il runtime di sistema in millisecondi, al raggiungimento di 86.400.000 ms (24 ore) il valore viene azzerato. L'indice 1 mostra il runtime di sistema in giorni.

Il valore viene memorizzato alla disinserzione.

Dopo l'accensione dell'apparecchio di azionamento il contatore prosegue partendo dal valore salvato con l'ultimo spegnimento.

Runtime di sistema relativo

Il runtime di sistema relativo dopo l'ultimo POWER ON viene riportato in p0969 (Control Unit). Il valore viene espresso in millisecondi, dopo 49 giorni il contatore si azzera.

Ore di esercizio motore attuali

I contatori delle ore di esercizio del motore p0650 (azionamento) proseguono il conteggio con l'abilitazione degli impulsi. Quando viene tolta l'abilitazione degli impulsi, il contatore viene arrestato e il valore memorizzato.

Per il salvataggio del valore è necessaria una CU320 con numero di ordinazione 6SL3040-....-0AA1 e versione C o successiva.

Con p0651 = 0 il contatore viene disattivato.

Quando si raggiunge l'intervallo di manutenzione impostato in p0651, viene segnalata l'anomalia F01590. Una volta eseguita la manutenzione del motore, occorre reimpostare l'intervallo di manutenzione.

Contatore delle ore di esercizio del ventilatore

L'indicazione delle ore di esercizio del ventilatore nella parte di potenza avviene in p0251 (azionamento).

Il numero di ore di funzionamento contenute in questo parametro può essere solo resettato a 0 (ad es. dopo la sostituzione di un ventilatore).

La durata di esercizio del ventilatore viene impostata in p0252 (azionamento).

500 ore prima che questo numero venga raggiunto viene emesso un avviso A30042.

Con p0252 = 0 la sorveglianza viene disattivata.

9.2.10 Modalità simulazione

Descrizione

La modalità simulazione consente sostanzialmente la simulazione dell'azionamento senza motore collegato e senza tensione del circuito intermedio. A questo proposito occorre osservare che la modalità simulazione è attivabile solo sotto una tensione effettiva del circuito intermedio di 40 V. Se la tensione eccede questa soglia, la modalità simulazione si azzera e viene emessa la segnalazione di guasto F07826.

Con la modalità simulazione è possibile testare la comunicazione con un sistema di automazione sovraordinato. Se è previsto che l'azionamento restituisca anche i valori attuali, occorre verificare che durante la modalità di simulazione sia commutato sul funzionamento senza encoder. Pertanto è possibile testare anticipatamente le parti grandi del software SINAMICS, come il canale del valore di riferimento, il controllo di sequenziamento, la comunicazione, la funzione tecnologica, ecc.

Un'altra applicazione è il test di funzionalità della parte di potenza. Soprattutto nel settore degli apparecchi che eccedono 75 kW (690 V) e 110 kW (400 V) è necessario testare, dopo le riparazioni, il controllo dei semiconduttori di potenza. Ciò accade effettuando l'alimentazione con una modesta tensione continua (ad es. 12 V), come tensione del circuito intermedio, quindi attivando l'apparecchio e abilitando gli impulsi. Deve essere possibile testare via via tutti i modelli di impulsi del software dell'unità di comando.

Il software deve perciò consentire l'attivazione degli impulsi e l'uso di diverse frequenze. Ciò si realizza normalmente senza encoder di velocità, con controllo V/f o regolazione di velocità senza encoder.

Nota

Nella modalità di simulazione le seguenti funzioni sono disattivate:

- Identificazione dati motore
- · Identificazione dati motore in movimento senza encoder
- Identificazione della posizione dei poli

Con il controllo V/f e la regolazione vettoriale senza encoder, l'avvio al volo non viene eseguito.

Messa in servizio

La modalità simulazione viene attivata tramite p1272 =1; devono essere soddisfatte le seguenti condizioni:

- La messa in servizio dell'azionamento deve essere conclusa (impostazione predefinita: motori asincroni standard).
- La tensione del circuito intermedio deve essere inferiore a 40 V (osservare la tolleranza del rilevamento del circuito intermedio).

Durante la modalità simulazione viene emesso l'avviso A07825 (modalità simulazione attivata).

Parametri

p1272 Modalità simulazione

9.2.11 Inversione di direzione

Descrizione

Con l'inversione di direzione attivata da p1821 è possibile invertire il senso di rotazione del motore senza modificare il campo rotante invertendo due fasi sul motore e senza invertire tramite p0410 i segnali dell'encoder.

L'inversione di direzione tramite p1821 è individuabile sulla base del senso di rotazione del motore. Il valore attuale e il valore di riferimento del numero di giri, il valore attuale e il valore di riferimento della coppia, nonché la modifica del posizionamento relativo rimangono invariati.

L'inversione di direzione può avvenire soltanto in stato di blocco impulsi.

L'inversione di direzione può essere impostata diversamente per ogni record di dati dell'azionamento.

Nota

In caso di commutazione del record di dati dell'azionamento con inversione di direzione impostata diversamente e con abilitazione impulsi, viene emessa l'anomalia F7434.

Un'inversione di direzione effettuata può essere osservata controllando i parametri r0069 (correnti di fase) e r0089 (tensione di fase). Nell'inversione di direzione, il riferimento di posizione va perduto.

Schema logico

FP 4704, 4715 Valutazione encoder FP 6730, 6731 Regolazione di corrente

•	r0069	Correnti di fase, valore attuale
•	r0089	Valore attuale tensione di fase
•	p1820	Inversione di direzione delle fasi di uscita
•	p1821	Inversione di direzione

9.2.12 Commutazione di unità

Descrizione

Con l'ausilio della commutazione delle unità di misura è possibile convertire parametri e grandezze di processo in ingresso e in uscita in un sistema di misura unitario adeguato (unità SI, unità US o nelle relative grandezze di riferimento (%)).

Per la commutazione di unità valgono le seguenti condizioni marginali:

- La commutazione di unità è possibile solo per il Drive Object "VECTOR".
- I parametri indicati sulla targhetta del convertitore o del motore possono essere convertiti da unità di misura statunitensi a unità di misura SI, ma senza rappresentazione di riferimento.
- Dopo aver modificato il parametro di commutazione, tutti i parametri assegnati al suo gruppo di unità vengono commutati in blocco alla nuova unità.
- Il regolatore di tecnologia dispone, per la rappresentazione di grandezze, di un parametro indipendente per la selezione dell'unità di misura tecnologica (p0595).
- Se la commutazione di unità è impostata sulla grandezza riferita e la grandezza riferita viene in seguito modificata, il valore percentuale immesso in un parametro non viene modificato.

Esempio:

- Un numero di giri fisso dell'80 % corrisponde, ad un numero di giri di riferimento di 1500 1/min, ad un valore di 1200 1/min.
- Se il numero di giri di riferimento viene modificato a 3000 1/min, il valore dell'80% viene mantenuto e corrisponde a 2400 1/min.

Limitazioni

- Quando si commuta l'unità di misura, l'arrotondamento avviene alle cifre dopo la virgola.
 Questo significa che il valore originario può essere modificato di una cifra decimale al massimo.
- Se si seleziona una rappresentazione riferita e successivamente si modificano i parametri di riferimento (ad es. p2000), il valore riferito di alcuni parametri di regolazione viene adeguato affinché il comportamento di regolazione non si modifichi.
- Se in STARTER vengono modificate le grandezze di riferimento (da p2000 a p2007) in modalità offline, i valori limite dei parametri possono risultare danneggiati e al caricamento nell'apparecchio di azionamento potrebbero comparire dei messaggi di errore.

Commutazione delle unità

La commutazione delle unità può essere effettuata tramite AOP30 e tramite STARTER.

- La commutazione delle unità mediante AOP30 viene sempre eseguita immediatamente.
 Dopo la modifica dei parametri, i valori corrispondenti vengono visualizzati nella nuova unità selezionata.
- In caso di comando tramite STARTER, la commutazione delle unità può avvenire soltanto in modalità offline nella finestra di configurazione dell'oggetto di azionamento corrispondente. Le nuove unità vengono visualizzate soltanto dopo un download riuscito ("Carica progetto nel sistema di destinazione") e un successivo upload ("Carica progetto in PG").

Gruppi di unità

Ogni parametro commutabile è assegnato a un gruppo di unità, che a seconda del gruppo può essere commutato entro limiti definiti.

L'assegnazione relativa ad ogni parametro e i gruppi di unità si possono consultare nella lista di parametri SINAMICS contenuta nel Manuale delle liste.

I gruppi di unità possono essere commutati singolarmente tramite quattro parametri (p0100, p0349, p0505 e p0595).

• p0010	Messa in servizio, filtro parametri
• p0100	Norma motori IEC/NEMA
• p0349	Selezione sistema di unità, dati del circuito equivalente motore
• p0505	Selezione sistema di unità
• p0595	Selezione unità tecnologica
• p0596	Grandezza di riferimento unità tecnologica
• p2000	Frequenza/numero di giri di riferimento
• p2001	Tensione di riferimento
• p2002	Corrente di riferimento
• p2003	Coppia di riferimento
• p2004	Potenza di riferimento
• p2005	Angolo di riferimento
• p2007	Accelerazione di riferimento

9.2.13 Comportamento di derating in presenza di elevata frequenza impulsi

Descrizione

Al fine di ridurre la rumorosità motore o di aumentare la frequenza di uscita, è possibile aumentare la frequenza impulsi rispetto alle impostazioni di fabbrica.

L'aumento della frequenza impulsi provoca normalmente una riduzione della corrente di uscita massima (ved. "Dati tecnici/Derating di corrente a seconda della frequenza impulsi").

Alla messa in servizio del convertitore, il comportamento in caso di sovraccarico viene impostato automaticamente in modo tale che la frequenza impulsi venga ridotta in maniera variabile, così da produrre la potenza desiderata.

Proprietà:

- A seconda dell'impostazione del parametro p0290, si verifica una reazione al sovraccarico:
 - p0290 = 0: Riduzione corrente di uscita o frequenza di uscita
 - p0290 = 1: Nessuna riduzione, disinserzione al raggiungimento della soglia di sovraccarico
 - p0290 = 2: Riduzione corrente di uscita o frequenza di uscita e di impulsi (non tramite l²t)
 - p0290 = 3: Riduzione freguenza impulsi (non tramite I²t)
- Con p0290 = 2, in caso di sovraccarico viene prima ridotta la frequenza impulsi fino al valore della frequenza impulsi nominale, dopodiché, se il sovraccarico persiste, viene ridotta la corrente di uscita.
- La riduzione della frequenza impulsi viene effettuata per multipli interi in riferimento alla frequenza impulsi nominale (5 kHz -> 2,5 kHz -> 1,25 kHz o 4 kHz -> 2 kHz).
- Una volta immesso il numero di giri massimo in p1082, viene automaticamente calcolato se la frequenza impulsi per il numero di giri massimo immesso è sufficiente ed eventualmente la frequenza impulsi viene automaticamente aumentata a un valore richiesto.

In caso di sovraccarico, anche con p0290 = 2 o 3 la nuova frequenza impulsi verrà allora raggiunta, e la reazione conseguente (riduzione o disattivazione della corrente di uscita) verrà scatenata.

Eccezioni:

 Con filtro sinusoidale attivo (p0230 = 3, 4) questo comportamento non è consentito, in quanto la frequenza impulsi impostata di fabbrica (2,5 kHz o 4 kHz) non può in questo caso essere modificata. Pertanto, la possibilità di scelta per il parametro p0290 risulta qui limitata a "0" e "1".

Attivazione della frequenza impulsi variabile

Alla messa in servizio il parametro p0290 viene automaticamente impostato sul valore "2". In tal modo viene attivata la riduzione della frequenza impulsi in caso di sovraccarico.

Disattivazione della frequenza impulsi variabile

Modificando il parametro p0290 in "0" o "1", la frequenza impulsi variabile viene disattivata.

Schema logico

FP 8014 Segnali e funzioni di sorveglianza - Sorveglianza termica parte di potenza

•	r0036	Parte di potenza, sovraccarico l2t
•	r0037	CO: Parte di potenza, temperature
•	p0230	Azionamento, tipo di filtro lato motore
•	p0290	Parte di potenza, reazione al sovraccarico
•	p1082	Numero di giri max.
•	r2135.13	Guasto sovraccarico termico modulo potenza
•	r2135.15	Avviso di sovraccarico termico della parte di potenza

9.3 Funzioni di ampliamento

9.3.1 Regolatore di tecnologia

Descrizione

Il modulo funzionale "Regolatore di tecnologia" consente di realizzare funzioni di regolazione semplici, come ad es.:

- Regolazione del livello di riempimento
- Regolazione della temperatura
- Regolazione della posizione del ballerino
- Regolazione della pressione
- Regolazione della portata
- Regolazioni semplici senza controllo sovraordinato
- Regolazione della trazione

Il regolatore di tecnologia possiede le seguenti caratteristiche:

- Due valori di riferimento scalabili
- Segnale di uscita scalabile
- Propri valori fissi
- Proprio potenziometro motore
- Le limitazioni di uscita vengono attivate e disattivate tramite generatore di rampa.
- La quota D può essere commutata nel canale dell'errore di regolazione o in quello del valore reale.
- Il potenziometro motore del regolatore di tecnologia è attivo soltanto se è avvenuta l'abilitazione degli impulsi dell'azionamento.

Il regolatore di tecnologia è eseguito come un regolatore PID. Il differenziatore può essere commutato nel canale dell'errore di regolazione o nel canale del valore attuale (impostazione di fabbrica). Le componenti P, I e D possono essere impostate separatamente.

Un valore 0 provoca la disinserzione del relativo azionamento. Due ingressi connettore permettono di impostare i valori di riferimento. I valori di riferimento possono essere scalati mediante parametri (p2255 e p2256).

Un generatore di rampa nel canale del riferimento consente di impostare il tempo di accelerazione/decelerazione del valore di riferimento mediante parametri (p2257 e p2258). Il canale del valore di riferimento e quello del valore reale dispongono ciascuno di uno stadio livellatore; il tempo di livellamento può essere impostato mediante parametri (p2261 e p2265).

I valori di riferimento possono essere impostati con valori di riferimento fissi propri (da p2201 a p2215), tramite il potenziometro motore o il bus di campo (ad es. PROFIBUS).

Un precomando può essere alimentato da un ingresso connettore.

È possibile scalare l'uscita mediante un parametro (p2295) e invertire il senso di regolazione. Il senso di regolazione può essere limitato mediante parametri (p2291 e p2292) e interconnesso liberamente mediante un'uscita connettore (r2294).

Il valore attuale può essere immesso ad es. mediante un ingresso analogico del TM31.

Se dal punto di vista della tecnica di regolazione si rende necessario utilizzare un regolatore PID, contrariamente all'impostazione di fabbrica la componente D viene commutata come differenza tra valore di riferimento e valore attuale (p2263 = 1). Questo è sempre necessario quando la componente D deve agire anche in caso di variazioni delle grandezze pilota. L'attivazione della componente D avviene solo se p2274 > 0.

Nota

Immettendo "0 sec." quale tempo di accelerazione/decelerazione per il generatore di rampa del regolatore di tecnologia, i valori attuali del generatore di rampa in questione vengono congelati.

Messa in servizio

Il modulo funzionale "Regolatore di tecnologia" può essere attivato durante l'esecuzione del wizard della messa in servizio. Il parametro r0108.16 consente di verificarne l'attivazione.

Schema logico

FP 7950	Regolatore di tecnologia - valori fissi
FP 7954	Regolatore di tecnologia - potenziometro motore
FP 7958	Regolatore di tecnologia - regolazione

Esempio di regolazione del livello di riempimento

Lo scopo consiste nel mantenere costante il livello in un recipiente.

Per raggiungere questo obiettivo si impiega una pompa regolata in velocità collegata a un sensore per il rilevamento del livello.

Il livello viene rilevato da un ingresso analogico (ad es. Al0 TM31) e inviato al regolatore di tecnologia. Il valore di riferimento del livello è memorizzato in un valore di riferimento fisso. La grandezza di regolazione che ne risulta funge da valore di riferimento per il regolatore del numero di giri.

In questo esempio viene utilizzato un Terminal Module TM31.

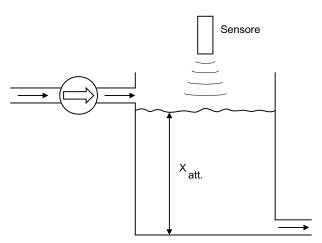


Figura 9-8 Regolazione di livello: applicazione

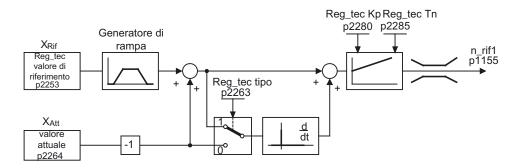


Figura 9-9 Regolazione di livello: struttura di regolazione

Parametri importanti per la regolazione

•	p1155 = r2294	n_rif1 dopo generatore di rampa [FP 3080]
•	p2253 = r2224	valore di riferimento regolatore di tecnologia attivo tramite FSW [FP 7950]
•	p2263 = 1	componente D nel segnale di errore [FP 7958]
•	p2264 = r4055	segnale del valore attuale X _{att} tramite AI0 del TM31 [FP 9566]
•	p2280 = Kp	P - calcolo del guadagno mediante ottimizzazione
•	p2285 = Tn	calcolo del tempo azione integratrice mediante ottimizzazione
•	p2200 = 1	abilitazione del regolatore di tecnologia

9.3.2 Funzione bypass

La funzione di bypass pilota due contattori tramite le uscite digitali del convertitore e ne analizza le risposte attraverso gli ingressi digitali (ad es. tramite TM31). Questo circuito permette di far funzionare il motore tramite il convertitore o direttamente dalla rete. I contattori vengono comandati tramite il convertitore e i segnali di riposta corrispondenti alle varie posizioni del contattore devono essere rinviati al convertitore.

Il circuito di bypass può essere realizzato in due varianti:

- senza sincronizzazione del motore con la rete e
- con sincronizzazione del motore con la rete.

Per tutte le varianti di bypass vale quanto segue:

- Il bypass viene sempre disinserito quando viene meno il segnale della parola di comando "OFF2" o "OFF3".
- Eccezione:

l'interruttore di bypass può essere eventualmente bloccato da un controllore sovraordinato per poter completamente disinserire il convertitore (e quindi anche l'elettronica di regolazione) mentre il motore funzione con la rete. L'interblocco dei contattori deve essere eseguito sul lato impianto.

- Al riavvio del convertitore dopo un POWER OFF viene analizzato lo stato del contattore di bypass. Il convertitore può quindi passare allo stato "Pronto all'inserzione e bypass" direttamente dopo l'avviamento. Ciò è possibile solo se il bypass viene attivato tramite un segnale di comando, se il segnale di comando (p1266) è ancora applicato dopo l'avviamento e se la funzione di riaccensione automatica è attiva (p1200 = 4).
- Il passaggio del convertitore allo stato "Pronto all'inserzione e bypass" dopo l'avviamento ha una priorità più alta rispetto alla riaccensione automatica.
- La sorveglianza delle temperature del motore tramite il sensore è attiva mentre il convertitore si trova in uno dei due stati "Pronto all'inserzione e bypass" o "Pronto al funzionamento e bypass".
- Entrambi i contattori del motore devono essere progettati per la commutazione sotto carico.

Nota

Gli esempi contenuti nelle descrizioni seguenti rappresentano solo circuiti schematici il cui scopo è di illustrare il funzionamento di base. I circuiti reali vanno progettati (contattori, dispositivi di protezione) e dimensionati in funzione dell'impianto specifico.

Presupposti

La funzione di bypass si può realizzare solo con regolazione del numeri di giri senza encoder (p1300 = 20) o con il controllo V/f (p1300 = 0...19) impiegando un motore asincrono.

Messa in servizio della funzione bypass

La funzione bypass fa parte del modulo funzionale "Regolatore di tecnologia", che si può attivare eseguendo il wizard della messa in servizio. Il parametro r0108.16 consente di verificarne l'attivazione.

9.3.2.1 Bypass con sincronizzazione e sovrapposizione (p1260 = 1)

Descrizione

Attivando il parametro "Bypass con sincronizzazione con sovrapposizione (p1260 = 1)", il motore viene commutato in modo sincronizzato all'alimentazione in rete e viceversa. Durante la commutazione si ha, per un certo lasso di tempo, la chiusura contemporanea di entrambi i contattori K1 e K2 (phase lock synchronization).

Una bobina permette di scollegare il motore dalla tensione del convertitore e della tensione di rete. Il valore uk per la bobina è di $10 \% \pm 2 \%$.

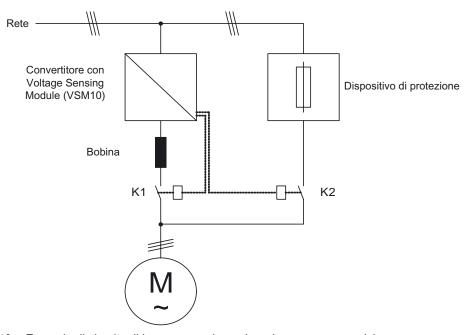


Figura 9-10 Esempio di circuito di bypass con sincronizzazione e sovrapposizione

Attivazione

L'attivazione della funzione di bypass con sincronizzazione (p1260 = 1) può avvenire solo tramite un segnale di comando. L'attivazione non può avvenire tramite una soglia di velocità o un'anomalia.

Parametrizzazione

Dopo aver attivato la funzione di bypass con sincronizzazione e sovrapposizione (p1260 = 1) occorre impostare ancora i seguenti parametri:

Tabella 9-5 Impostazione dei parametri per la funzione di bypass con sincronizzazione con sovrapposizione

Parametri	Descrizione
p1266 =	Impostazione del segnale di comando con p1267.0 = 1
p1267.0 = 1 p1267.1 = 0	La funzione di bypass viene attivata dal segnale di comando
p1269[0] =	Sorgente di segnale per la risposta del contattore K1
p1269[1] =	Sorgente di segnale per la risposta del contattore K2
p3800 = 1	Per la sincronizzazione viene impiegata la tensione interna.
p3802 = r1261.2	L'attivazione della sincronizzazione avviene tramite la funzione di bypass.

Processo di trasferimento

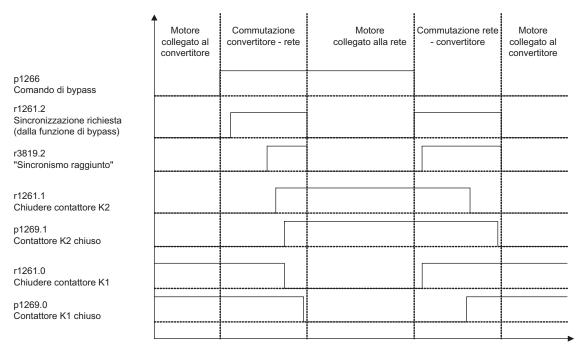


Figura 9-11 Diagramma segnale di bypass con sincronizzazione con sovrapposizione

Trasferimento del motore alla rete (il comando dei contattori K1 e K2 avviene tramite il convertitore):

- Si ha la seguente situazione di partenza: Il contattore K1 è chiuso, il contattore K2 è aperto e il motore viene azionato dal convertitore.
- Viene impostato il bit di comando "Comando di bypass" (p1266), (ad es. tramite sistema di automazione sovraordinato).
- La funzione di bypass imposta il bit della parola di comando "Sincronizzazione" (r1261.2).

9.3 Funzioni di ampliamento

- Poiché questo bit viene impostato mentre il convertitore è in funzione, viene avviata l'operazione di sincronizzazione "Trasferimento del motore alla rete".
- Una volta che il motore è sincronizzato con la frequenza, la tensione e la posizione di fase della rete, l'algoritmo di sincronizzazione segnala questo stato (r3819.2).
- Il meccanismo di bypass analizza questo segnale e chiude il contattore K2 (r1261.1 = 1).
 L'analisi del segnale avviene internamente, il cablaggio BICO non è necessario.
- Dopo che il contattore K2 ha segnalato lo stato "chiuso" (r1269[1] = 1), viene aperto il contattore K1 e il convertitore provvede al blocco degli impulsi. Il convertitore si trova nello stato "Pronto al funzionamento e bypass".
- Se viene tolto il comando ON in questa fase, il convertitore passa allo stato "Pronto al funzionamento e bypass". Se i relativi contattori sono disponibili, il convertitore viene separato dalla rete e il circuito intermedio scaricato.

Il distacco del motore dal funzionamento di rete avviene secondo la procedura inversa: All'inizio del processo il contattore K2 è chiuso e il contattore K1 è aperto.

- Viene cancellato il bit di comando "Comando di bypass", (ad es. tramite sistema di automazione sovraordinato).
- La funzione di bypass imposta il bit della parola di comando "Sincronizza".
- Gli impulsi vengono abilitati. Poiché la funzione "Sincronizzazione" viene impostata prima della funzione "Abilitazione impulsi", il convertitore interpreta questo comportamento come un comando di recupero del motore dalla rete e di controllo dello stesso.
- Una volta che il convertitore è sincronizzato con la frequenza, la tensione e la posizione di fase della rete, l'algoritmo di sincronizzazione segnala questo stato.
- Il meccanismo di bypass analizza questo segnale e chiude il contattore K1. L'analisi del segnale avviene internamente, il cablaggio BICO non è necessario.
- Dopo che il contattore K1 ha segnalato lo stato "chiuso", viene aperto il contattore K2. Il motore viene nuovamente azionato sul convertitore.

9.3.2.2 Bypass con sincronizzazione senza sovrapposizione (p1260 = 2)

Descrizione

Attivando "Bypass con sincronizzazione senza sovrapposizione (p1260 = 2)", il contattore K2 da chiudere viene chiuso solo quando il contattore K1 è aperto (anticipatory type synchronization). La posizione di fase della tensione motore prima della sincronizzazione deve essere impostata in modo che vi sia un "salto" prima della rete, rispetto alla quale deve avvenire la sincronizzazione; ciò si ottiene impostando il valore di riferimento di sincronizzazione (p3809). La frenatura del motore nel breve lasso di tempo in cui entrambi i contattori sono aperti, determina, alla chiusura del contattore K2, una differenza di frequenza e di fase circa pari a zero.

Il presupposto per il funzionamento corretto è un momento di inerzia sufficientemente elevato.

Il dispendio dovuto alla rilevazione del valore di riferimento di sincronizzazione (p3809) rende superfluo l'impiego della bobina di disaccoppiamento.

La funzione "Riavviamento al volo" deve essere attivata (p1200 = 1).

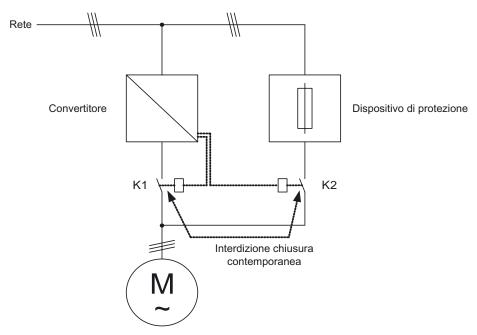


Figura 9-12 Esempio di circuito di bypass con sincronizzazione senza sovrapposizione

Attivazione

L'attivazione della funzione di bypass senza sincronizzazione (p1260 = 2) può avvenire solo tramite un segnale di comando. L'attivazione non può avvenire tramite una soglia di numero di giri o un'anomalia.

Parametrizzazione

Dopo aver attivato la funzione di bypass con sincronizzazione senza sovrapposizione (p1260 = 2) occorre impostare ancora i seguenti parametri:

Tabella 9-6 Impostazione dei parametri per la funzione di bypass con sincronizzazione senza sovrapposizione

Parametri	Descrizione
p1266 =	Impostazione del segnale di comando con p1267.0 = 1
p1267.0 = 1 p1267.1 = 0	La funzione di bypass viene attivata dal segnale di comando
p1269[0] =	Sorgente di segnale per la risposta del contattore K1
p1269[1] =	Sorgente di segnale per la risposta del contattore K2
p3800 = 1	Per la sincronizzazione viene impiegata la tensione interna.
p3802 = r1261.2	L'attivazione della sincronizzazione avviene tramite la funzione di bypass.
p1200 = 1	Funzione "Riavviamento al volo" sempre attiva.

9.3.2.3 Bypass senza sincronizzazione (p1260 = 3)

Descrizione

Al momento del passaggio del motore al funzionamento in rete, si ha l'apertura del contattore K1 (dopo il blocco impulsi del convertitore), un tempo di attesa necessario alla diseccitazione del motore, quindi la chiusura del contattore K2. Ciò consente l'azionamento diretto del motore in rete.

In seguito alla commutazione non sincronizzata del motore, quando si chiude il circuito passa una corrente di compensazione di cui si deve tenere conto in fase di progettazione del dispositivo di protezione (vedere la figura "Circuito di bypass senza sincronizzazione").

Con il recupero del motore tramite il convertitore dopo il funzionamento in rete si ha innanzitutto l'apertura del contattore K2 e, decorso il tempo di diseccitazione, la chiusura del connettore K1. Dopodiché il convertitore esegue il riavviamento al volo del motore in rotazione. Il motore viene ora azionato sul convertitore.

Il contattore K2 deve essere dimensionato per la commutazione sotto carico induttivo.

I contattori K1 e K2 devono essere bloccati contro la chiusura simultanea.

La funzione "Riavviamento al volo" deve essere attivata (p1200 = 1).

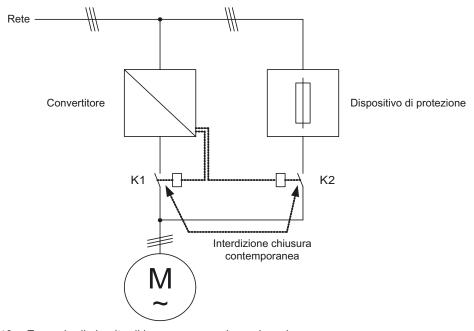


Figura 9-13 Esempio di circuito di bypass senza sincronizzazione

Attivazione

L'attivazione del bypass senza sincronizzazione (p1260 = 3) può avvenire mediante i seguenti segnali (p1267):

 Bypass tramite segnale di comando (p1267.0 = 1): l'attivazione del bypass viene provocata da un segnale digitale (p1266), ad es. da un sistema di automazione sovraordinato. Se il segnale digitale viene nuovamente tolto, una volta trascorso il tempo di ritardo per il debypass (p1263) si verifica una commutazione al funzionamento con convertitore. Bypass alla soglia di numero di giri (p1267.1 = 1):
 quando viene raggiunto un determinato numero di giri, si attiva il bypass e il convertitore
 funge da convertitore di avvio. Un presupposto per l'attivazione del bypass consiste nel
 fatto che il valore di riferimento del numero di giri superi la soglia del numero di giri di
 bypass (p1265).

Il ritorno al funzionamento con convertitore viene avviato dalla diminuzione del valore di riferimento (sull'ingresso del generatore di rampa, r1119) sotto la soglia del numero di giri di bypass (p1265). Attraverso la condizione valore di riferimento > valore di confronto si impedisce che il bypass venga subito riattivato se dopo la commutazione al funzionamento con convertitore il numero di giri reale è ancora superiore alla soglia di bypass (p1265).

L'impostazione delle grandezze tempo di bypass, tempo di debypass, numero di giri di bypass e la sorgente di comando per la commutazione, avviene tramite parametri.

Parametrizzazione

Dopo aver attivato la funzione di bypass senza sincronizzazione (p1260 = 3) occorre impostare ancora i seguenti parametri:

Tabella 9-7 Impostazione dei parametri per la funzione di bypass con sincronizzazione senza sovrapposizione

Parametri	Descrizione
p1262 =	Impostazione del tempo morto di bypass
p1263 =	Impostazione del tempo morto di debypass
p1264 =	Impostazione del tempo di ritardo di bypass
p1265 =	Impostazione della soglia del numero di giri con p1267.1 = 1
p1266 =	Impostazione del segnale di comando con p1267.0 = 1
p1267.0 = p1267.1 =	Impostazione del segnale che attiva la funzione di bypass
p1269[1] =	Sorgente di segnale per la risposta del contattore K2
p3800 = 1	Per la sincronizzazione viene impiegata la tensione interna.
p3802 = r1261.2	L'attivazione della sincronizzazione avviene tramite la funzione di bypass.
p1200 = 1	Funzione "Riavviamento al volo" sempre attiva.

9.3.2.4 Schema logico

FP 7020 Sincronizzazione

9.3.2.5 Parametro

Funzione bypass

•	p1200	Avvio al volo, modo operativo
•	p1260	Configurazione bypass
•	r1261	CO/BO: parola di comando/stato bypass
•	p1262	Tempo morto bypass
•	p1263	Tempo di ritardo debypass
•	p1264	Tempo di ritardo bypass
•	p1265	Soglia di numero di giri bypass
•	p1266	BI: Comando di controllo di bypass
•	p1267	Configurazione sorgente di commutazione bypass
•	p1268	BI: Sincronizzazione conferma di bypass conclusa
•	p1269	BI: Interruttore di bypass, risposta
•	p1274	BI: Tempo di sorveglianza interruttore di bypass

Sincronizzazione

• p3800	Attivazione sincronizzazione rete azionamento
• p3801	Numero oggetto di azionamento sincronizzazione rete azionamento
• p3802	BI: abilitazione della sincronizzazione rete azionamento
• r3803	CO/BO: parola di comando sincronizzazione rete azionamento
• r3804	CO: frequenza di destinazione sincronizzazione rete azionamento
• r3805	CO: differenza di frequenza sincronizzazione rete azionamento
• p3806	Valore di soglia differenza di frequenza sincronizzazione rete azionamento
• r3808	CO: differenza di fase sincronizzazione rete azionamento
• p3809	Valore di riferimento fase sincronizzazione rete azionamento
• p3811	Limite di frequenza sincronizzazione rete azionamento
• r3812	CO: frequenza di correzione sincronizzazione rete azionamento
• p3813	Valore di soglia del sincronismo di fase sincronizzazione rete azionamento
• r3814	CO: differenza di tensione sincronizzazione rete azionamento
• p3815	Valore di soglia differenza di tensione sincronizzazione rete azionamento
• r3819	CO/BO: parola di stato sincronizzazione rete azionamento

9.3.3 Comando freni esteso

Descrizione

Il modulo funzionale "Comando freni esteso" consente di realizzare comandi di frenatura complessi, ad es. per freni di stazionamento motore e freni di esercizio.

Il freno viene comandato nel seguente modo (la sequenza indica la priorità):

- Tramite il parametro p1215
- Tramite i parametri binettore p1219[0..3] e p0855
- Tramite il riconoscimento di fermo
- Tramite il valore di soglia dell'interconnessione connettore

Messa in servizio

Il modulo funzionale "Comando freni esteso" può essere attivato durante l'esecuzione del wizard della messa in servizio. Il parametro r0108.14 consente di verificarne l'attivazione.

Il parametro p1215 deve essere impostato a "3" e il freno deve essere comandato tramite un'uscita digitale sulla morsettiera utente TM31.

Schema logico

FP 2704	Riconoscimento di fermo
FP 2707	Apertura e chiusura freno
FP 2711	Uscite di segnale

Esempio 1: Avviamento contro freno chiuso

Al momento dell'inserzione il riferimento viene abilitato immediatamente (se sono date altre abilitazioni particolari) anche se il freno non è ancora aperto (p1152 = 1). L'impostazione di fabbrica p1152 = r0899.15 deve essere separata. In un primo tempo l'azionamento forma la coppia contro il freno chiuso; il freno viene aperto solo quando la coppia del motore o la corrente del motore (p1220) scendono al di sotto della soglia di frenatura 1 (p1221).

Questa configurazione viene utilizzata ad es. quando l'azionamento viene accoppiato a un nastro sotto trazione (formatura di anse nella laminazione dell'acciaio).

Esempio 2: Freno di emergenza

In caso di emergenza la frenatura deve avvenire contemporaneamente sia a livello elettrico che a livello meccanico. Per ottenere questo si utilizza OFF3 come segnale di trigger della frenatura di emergenza:

p1219[0] = r0898.2 (OFF3 su "Chiudere subito il freno").

Affinché il convertitore non lavori in opposizione al freno, occorre impostare la rampa OFF3 (p1135) a 0 secondi. Può venire prodotta un'energia generatorica, che deve essere trasformata in calore mediante una resistenza di frenatura.

Questa è un'applicazione tipica, ad es. per calandre, utensili di taglio, carrelli e presse.

Esempio 3: Freno di esercizio per gli azionamenti di gru

Per i dispositivi di sollevamento con comando manuale è importante che l'azionamento reagisca immediatamente al movimento della leva di comando (combinatore pilota). A questo scopo, l'azionamento viene inserito tramite un comando ON (p0840) (gli impulsi sono abilitati). Il valore di riferimento del numero di giri (p1142) e il regolatore di velocità (p0856) sono inibiti. Il motore è magnetizzato. Non si ha pertanto il tempo di magnetizzazione (1-2 sec.), tipico dei motori trifase.

Come ritardo tra la deviazione del combinatore pilota e il movimento del motore resta ora soltanto il tempo di rilascio del freno. Se il combinatore pilota viene deviato, vi è uno "sblocco riferimento del controllo" (bit interconnesso con p1142, p1229.2, p1224.0). Il regolatore di velocità viene immediatamente abilitato; dopo il tempo di rilascio del freno (p1216) avviene l'abilitazione del riferimento del numero di giri. Quando il combinatore pilota è nella posizione zero, il valore di riferimento del numero di giri viene inibito e l'azionamento arrestato con rampa di decelerazione del generatore di rampa. Se il limite di fermo (p1226) viene superato in negativo, il freno si chiude. Dopo il tempo di chiusura del freno (p1217) il regolatore di velocità viene inibito (il motore cessa di generare forza!). Viene utilizzato il controllo freni esteso con le modifiche sotto descritte.

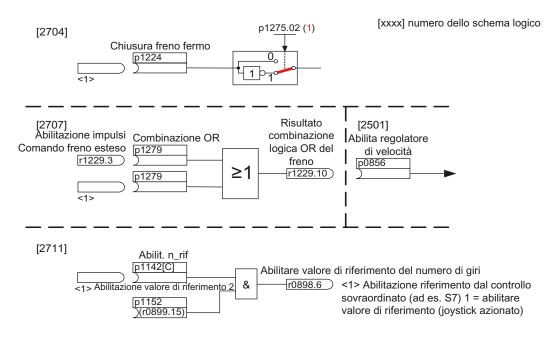


Figura 9-14 Esempio di freno di esercizio per azionamento di gru

9.3.4 Funzioni di sorveglianza estese

Descrizione

Il modulo funzionale "Funzioni di sorveglianza estese" permette di realizzare le seguenti funzioni di sorveglianza:

- Sorveglianza valore di riferimento del numero di giri: |n_rif| ≤ p2161
- Sorveglianza valore di riferimento del numero di giri: n_rif > 0
- Modulo di controllo carico

Descrizione della sorveglianza del carico

Questa funzione consente di sorvegliare la trasmissione della forza tra motore e macchina di lavoro. Applicazioni tipiche sono ad es. cinghie trapezoidali, cinghie piane o catene che avvolgono pulegge o rocchetti di catene di alberi motore e alberi di uscita trasmettendo velocità e forze periferiche. Il controllo del carico può determinare sia il blocco della macchina di lavoro che l'interruzione della trasmissione della forza.

Nel controllo del carico la curva attuale di numero di giri/coppia viene confrontata con la curva programmata di numero di giri/coppia (p2182 – p2190). Se il valore attuale si trova al di fuori della fascia di tolleranza programmata, a seconda del parametro p2181 viene segnalata un'anomalia o un allarme. Un ritardo della segnalazione di anomalia o di allarme può essere impostato con il parametro p2192. Si evitano in questo modo allarmi errati provocati da stati di passaggio transitori.



Figura 9-15 Sorveglianza del carico (p2181 =1)

9.3 Funzioni di ampliamento

Messa in servizio

Il modulo funzionale "Funzioni di sorveglianza estese" può essere attivato durante l'esecuzione del wizard della messa in servizio. Il parametro r0108.17 consente di verificarne l'attivazione.

Schema logico

FP 8010	Segnalazioni di numeri di giri
FP 8013	Modulo di controllo carico

•	p2150	Numero di giri isteresi 3
•	p2151	CI: Valore di riferimento velocità
•	p2161	Valore di soglia numero di giri 3
•	p2181	Sorveglianza del carico, reazione
•	p2182	Sorveglianza carico, soglia di numero di giri 1
•	p2183	Sorveglianza carico, soglia di numero di giri 2
•	p2184	Sorveglianza carico, soglia di numero di giri 3
•	p2185	Sorveglianza coppia del carico, soglia del numero di giri 1 superiore
•		
•	p2190	Sorveglianza coppia del carico, soglia del numero di giri 3 inferiore
•	p2192	Sorveglianza del carico, tempo di ritardo
•	r2198.4	BO: sorv. ZSW 2, n_rif ≤ p2161
•	r2198.5	BO: sorv. ZSW 2, n_rif < 0

9.4 Funzioni di sorveglianza e di protezione

9.4.1 Protezione generale delle parti di potenza

Descrizione

Le parti di potenza SINAMICS dispongono di una protezione completa dei componenti di potenza.

Tabella 9-8 Protezione generale delle parti di potenza

Protezione contro	Misura di protezione	Reazione
Sovracorrente ¹⁾	Sorveglianza con due soglie: • Superamento della prima soglia	A30031, A30032, A30033 Intervento della limitazione di corrente di una fase. L'invio degli impulsi nella fase interessata viene bloccato per un periodo di impulsi. In caso di superamento frequente della soglia si ha F30017 -> OFF2
	Superamento della seconda soglia	F30001 "Sovracorrente" -> OFF2
Sovratensione ¹⁾	Confronto tra la tensione del circuito intermedio e la soglia di disinserzione dell'hardware	F30002 "Sovratensione" -> OFF2
Sottotensione ¹⁾	Confronto tra la tensione del circuito intermedio e la soglia di disinserzione dell'hardware	F30003 "Sottotensione" -> OFF2
Cortocircuito ¹⁾	Seconda soglia della sorveglianza di sovracorrente	F30001 "Sovracorrente" -> OFF2
	Sorveglianza Uce del modulo IGBT	F30022 "Sorveglianza Uce" -> OFF2
Cortocircuito verso terra	Sorveglianza della somma di tutte le correnti di fase	Dopo il superamento della soglia in p0287: F30021 "Parte di potenza: Cortocircuito verso terra" -> OFF2 Nota: la somma di tutte le correnti di fase viene indicata in r0069[6]. Per l'esercizio il valore in p0287[1] deve essere impostato a un valore maggiore della somma delle correnti di fase con isolamento intatto.
Rilevamento di mancanza di fase sulla rete 1)		F30011 "Mancanza di fase sulla rete nel circuito principale" -> OFF2

¹⁾ Le soglie di sorveglianza sono predefinite nel convertitore e non possono essere modificate dall'utente.

9.4.2 Sorveglianze termiche e reazioni ai sovraccarichi

Descrizione

Il presupposto fondamentale della sorveglianza termica della parte di potenza è il riconoscimento degli stati critici. Dopo il superamento delle soglie di avviso sono disponibili reazioni sotto forma di opzioni parametrizzabili che consentono di proseguire il funzionamento (ad es. a potenza ridotta) impedendo una disinserzione immediata. Le opzioni di parametrizzazione sono tuttavia semplici interventi al di sotto delle soglie di disinserzione non modificabili dall'utente.

Sono disponibili le seguenti sorveglianze termiche:

- Sorveglianza i²t A07805 F30005
 La sorveglianza i²t protegge i componenti che presentano grandi costanti di tempo termiche rispetto ai semiconduttori. Un sovraccarico relativo a i²t si verifica quando la capacità di utilizzazione del convertitore r0036 rileva un valore superiore al 100 % (capacità di utilizzazione percentuale riferita al funzionamento nominale).
- Temperatura del dissipatore di calore A05000 F30004
 Sorveglianza della temperatura del dissipatore di calore r0037 del semiconduttore di potenza (IGBT).
- Temperatura del chip A05001 F30025
 Tra la giunzione dell'IGBT e il dissipatore di calore possono verificarsi notevoli differenze di temperatura. Queste differenze sono analizzate e sorvegliate tramite la temperatura del chip r0037.

In caso di sovraccarico relativo a una di queste sorveglianze, viene visualizzato un avviso. La soglia di avviso p0294 (sorveglianza i²t) è parametrizzabile in funzione dei valori di disinserzione.

Esempio

La soglia di allarme per la sorveglianza della temperatura del chip viene impostata in fabbrica a 15 Kelvin (K), quella per la sorveglianza della temperatura del dissipatore di calore e dell'aria in entrata a 5 K. Questo significa che al di sotto della soglia di disinserzione di 15 K o 5 K viene emesso l'allarme "Sovratemperatura, sovraccarico".

L'introduzione delle reazioni parametrizzabili tramite p0290 avviene contemporaneamente alla visualizzazione dell'avviso. Le reazioni possibili sono:

- Riduzione della frequenza degli impulsi (p0290 = 2, 3)
 Questo è un metodo molto efficace per ridurre le perdite nella parte di potenza, poiché le perdite di commutazione rappresentano una parte molto consistente delle perdite totali. In molte applicazioni può essere tollerata una riduzione temporanea della frequenza degli impulsi a favore di una conservazione del processo.
 Svantaggio:
 - la riduzione della frequenza degli impulsi favorisce una maggiore ondulazione di corrente, che può avere come conseguenze l'incremento dell'ondulazione della coppia sull'albero motore (con basso momento di inerzia) e l'aumento del livello di rumorosità. La riduzione della frequenza degli impulsi non ha effetti sulla dinamica del circuito di regolazione della corrente poiché il tempo di campionamento della regolazione di corrente rimane costante.
- Riduzione della frequenza di uscita (p0290 = 0, 2)
 Questa variante è utile se non si desidera una riduzione della frequenza degli impulsi o se la frequenza degli impulsi è già impostata al livello minimo. Il carico deve inoltre avere

caratteristiche di ventilazione, ossia una curva caratteristica di coppia quadratica con riduzione della velocità. La diminuzione della frequenza di uscita provoca una sensibile riduzione della corrente di uscita del convertitore e minori perdite nella parte di potenza.

Nessuna riduzione (p0290 = 1) Questa opzione deve essere selezionata se non si verifica una riduzione della frequenza degli impulsi o della corrente di uscita. Il convertitore non cambia punto di lavoro dopo il superamento della soglia di avviso affinché l'utente possa continuare a utilizzare l'azionamento fino al raggiungimento dei valori di disinserzione. Dopo il raggiungimento di tale soglia, il convertitore si disinserisce segnalando l'anomalia "Sovratemperatura, sovraccarico". Il tempo di disinserzione non è tuttavia definito e dipende dall'entità del sovraccarico. Si può modificare solo la soglia di avviso e mantenere quindi un allarme preventivo, eventualmente intervenendo dall'esterno nel processo di azionamento (ad es. riduzione del carico, diminuzione della temperatura ambiente).

Schema logico

FP 8014 Sorveglianza termica parte di potenza

•	r0036	Sovraccarico parte di potenza
•	r0037	Temperature parte di potenza
•	p0290	Reazione al sovraccarico della parte di potenza
•	p0294	Soglia di avviso sovraccarico i²t parte di potenza

9.4.3 Protezione contro il blocco

Descrizione

Il messaggio di errore "Motore bloccato" viene emesso solo quando il numero di giri dell'azionamento è inferiore alla soglia del numero di giri impostabile in p2175. Per la regolazione vettoriale deve essere ancora soddisfatta la condizione che prevede che il regolatore di velocità si trovi al limite e che il controllo V/f abbia raggiunto il limite di corrente. Al termine del ritardo di inserzione p2177 viene emesso il messaggio "Motore bloccato" e viene segnalata l'anomalia F7900.

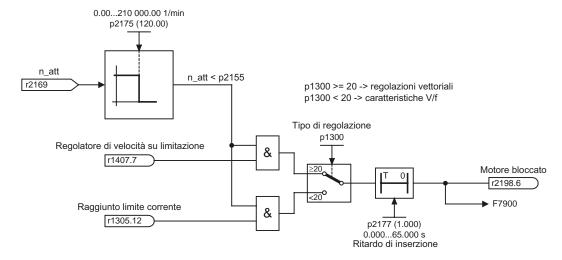


Figura 9-16 Protezione contro il blocco

Schema logico

FP 8012 Segnalazioni e sorveglianze - Segnalazioni relative alla coppia, motore bloccato/danneggiato

- p2175 Soglia di velocità motore bloccato
- p2177 Tempo di ritardo motore bloccato

9.4.4 Protezione contro lo stallo (solo con regolazione vettoriale)

Descrizione

Se nella regolazione del numero di giri con encoder si supera la soglia del numero di giri impostata in p1744 per il riconoscimento di stallo, viene impostato r1408.11 (adattamento del numero di giri, scostamento del numero di giri).

Se ai bassi regimi (inferiori a p1755 x p1756) viene superato il valore di soglia di errore impostato in p1745, viene impostato r1408.12 (motore fuori sincronismo).

Se è impostato uno dei due segnali, dopo il tempo di ritardo in p2178 viene emessa l'anomalia F7902 (motore in stallo).

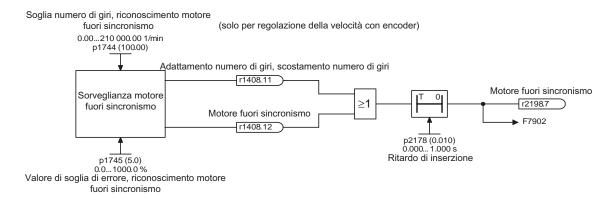


Figura 9-17 Protezione contro lo stallo

Schema logico

FP 6730	Regolazione di corrente
FP 8012	Segnalazioni e sorveglianze - Segnalazioni relative alla coppia, motore
	bloccato/danneggiato

•	r1408	CO/BO: Parola di stato di regolazione 3
•	p1744	Modello di motore, soglia di numero di giri, riconoscimento motore fuori sincronismo
•	p1745	Modello di motore, valore di soglia di errore, riconoscimento motore fuori sincronismo
•	p1755	Modello di motore, numero di giri di commutazione, funzionamento senza encoder
•	p1756	Modello di motore, numero di giri di commutazione, isteresi
•	p2178	Tempo di ritardo motore fuori sincronismo

9.4.5 Protezione termica del motore

Descrizione

Il presupposto fondamentale della protezione termica del motore è il riconoscimento degli stati critici. Dopo il superamento delle soglie di avviso sono disponibili reazioni sotto forma di opzioni parametrizzabili (p0610) che consentono di continuare il funzionamento (ad es. a potenza ridotta) impedendo una disinserzione immediata.

L'andamento del segnale è riportato nello schema 902.

- La protezione può avvenire correttamente anche senza sensore di temperatura (p4100 = 0). Le temperature delle diverse parti del motore (statore, ferro, rotore) sono calcolate indirettamente tramite un modello di temperatura.
- La temperatura del motore viene calcolata direttamente tramite il collegamento dei sensori di temperatura (KTY84 o PTC100 sulla morsettiera del cliente (TM31), in corrispondenza del morsetto X522:7(+)/8(-)). Alla reinserzione o dopo un'interruzione di rete sono immediatamente disponibili le temperature iniziali.

Rilevamento della temperatura tramite KTY

Il collegamento avviene nel senso di passaggio del diodo sulla morsettiera del cliente (TM31), in corrispondenza dei morsetti X522:7 (anodo) e X522:8 (catodo). La temperatura misurata viene limitata a un valore compreso tra -48 °C e +248 °C che viene messo a disposizione per l'ulteriore analisi.

- Impostazione del tipo di sensore di temperatura KTY: p4100 = 2
- Attivazione del rilevamento della temperatura del motore tramite un sensore esterno: p0600 = 10
- Al raggiungimento della soglia di avviso (impostabile tramite p0604, impostazione di fabbrica 120 C) viene emesso l'allarme A7910.
- Tramite il parametro p0610 si può impostare la reazione dell'azionamento all'avviso emesso:
 - 0: nessuna reazione, solo avviso, nessuna riduzione di l_max
 - 1: avviso con riduzione di I_max e anomalia (F7011)
 - 2: avviso e anomalia (F7011), nessuna riduzione di l_max
- Al raggiungimento della soglia di anomalia (impostabile tramite p0605, impostazione di fabbrica 155 °C) viene segnalata l'anomalia F7011 in abbinamento a p0610.

Rilevamento della temperatura tramite PTC

Il collegamento avviene sulla morsettiera del cliente (TM31), in corrispondenza del morsetto X522:7/8. Il valore di soglia per la commutazione in caso di avviso o anomalia è impostato a 1650 Ω . Al superamento della soglia, il valore di temperatura di –50°C generato artificialmente viene convertito internamente a +250 °C, quindi messo a disposizione per l'ulteriore analisi.

- Impostazione del tipo di sensore di temperatura KTY: p4100 = 1
- Attivazione del rilevamento della temperatura del motore tramite un sensore esterno: p0600 = 10
- Dopo la risposta del PTC viene emesso l'avviso A7910.
- Trascorso l'intervallo di attesa in p0606 viene segnalata l'anomalia F7011.

Sorveglianza dei sensori per rottura conduttore o cortocircuito

Se il valore della sorveglianza della temperatura del motore non è compreso nel range da -50 °C a +250 °C, questo significa che si sono verificati una rottura conduttore e/o un cortocircuito del cavo del sensore; viene quindi emesso l'avviso A07915 "Errore sensore di temperatura". Trascorso l'intervallo di attesa in p0607 viene segnalata l'anomalia F07016 "Anomalia ed errore del sensore di temperatura".

L'anomalia F07016 può essere esclusa tramite il parametro p0607 = 0. Se è collegato un motore asincrono, l'azionamento continua a funzionare con i dati calcolati del modello di motore termico.

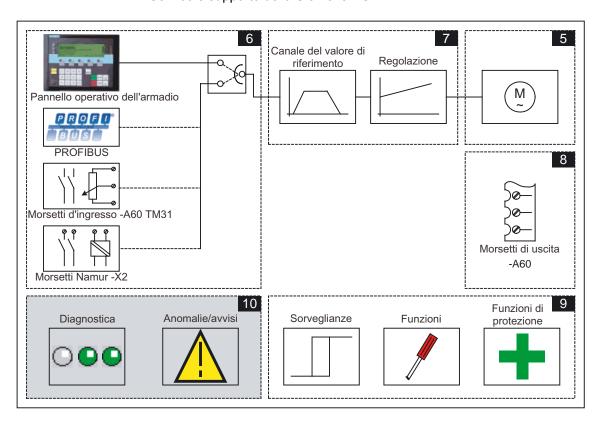
Se si riscontra che il sensore di temperatura del motore impostato in p0600 non è collegato, viene emesso l'allarme A07820 "Sensore di temperatura non collegato".

Schema logico

FP 8016	Sorveglianza termica motore
FP 9576	TM31 - Analisi della temperatura KTY/PTC
FP 9577	TM31 - Sorveglianza dei sensori KTY/PTC

•	p0600	Sensore della temperatura motore per sorveglianza
•	p0604	Sovratemperatura motore, soglia di anomalia
•	p0605	Sovratemperatura motore, soglia di avviso
•	p0606	Sovratemperatura motore, temporizzatore
•	p0607	Errore sensore della temperatura, temporizzatore
•	p0610	Sovratemperatura motore, reazione in caso di superamento
•	p4100	Rilevamento della temperatura, tipo di sensore

9.4 Funzioni di sorveglianza e di protezione


Diagnostica / Anomalie e avvisi

10

10.1 Contenuto del capitolo

Questo capitolo descrive:

- Indicazioni per le possibili risoluzioni delle cause di errore
- Service e supporto della Siemens AG

10.2 Diagnostica

Descrizione

Questa sezione descrive la procedura per circoscrivere le cause di errore e le relative contromisure per la loro eliminazione.

Nota

Nel caso dovessero verificarsi errori o condizioni anomale sull'apparecchio, è necessario verificare immediatamente le possibili cause e prendere le relative contromisure. Se non è possibile identificare le cause dell'errore o se vengono rilevati componenti difettosi, è necessario contattare l'assistenza Siemens della filiale più vicina fornendo una descrizione dettagliata delle condizioni di errore.

10.2.1 Diagnostica tramite LED

Unità di regolazione CU320 (-A10)

Tabella 10-1 Descrizione dei LED della CU320

LED	Colore	Stato	Descrizione
		OFF	L'alimentazione di corrente dell'elettronica manca oppure è al di fuori della fascia di tolleranza consentita.
RDY	Verde	Luce fissa	Il componente è pronto per il funzionamento e avviene la comunicazione ciclica DRIVE-CLiQ. La Control Unit è in attesa della prima messa in servizio.
"Ready"		Lampeggio 2 Hz	Scrittura sulla scheda CompactFlash.
	Rosso	Luce fissa	È presente almeno un'anomalia di questo componente.
		Lampeggio 0,5 Hz	CompactFlash Card non inserita. Errore di avviamento (ad es. il firmware non può essere caricato nella RAM).
	Verde rosso	Lampeggio 0,5 Hz	Control Unit 320 pronta per il funzionamento. Mancano però le licenze Software.
	Arancione	Luce fissa	Vengono stabiliti l'avvio del sistema e la comunicazione DRIVE- CLiQ.
		Lampeggio 0,5 Hz	Aggiornamento del firmware dei componenti DRIVE-CLiQ collegati in corso.
		Lampeggio 2 Hz	Aggiornamento del firmware dei componenti completato. Attesa di POWER ON del relativi componenti.
		OFF	La comunicazione ciclica non è (ancora) avvenuta. Nota: PROFIdrive è pronto per la comunicazione quando la Control Unit è pronta per il funzionamento (vedere LED RDY).
DP1	Verde	Luce fissa	La comunicazione ciclica è in corso.
(PROFIdrive funzionamento ciclico)		Lampeggio 0,5 Hz	La comunicazione ciclica non avviene ancora in modo completo. Cause possibili: - Il controller non trasmette valori di riferimento Nel funzionamento con sincronizzazione di clock il Controller non trasmette alcun Global Control (GC) o ne trasmette uno errato.
	Rosso	Luce fissa	La comunicazione ciclica è stata interrotta.
	Arancione	Lampeggio 2 Hz	Errore di checksum del firmware (errore CRC).
OPT (Opzione)		OFF	Alimentazione dell'elettronica al di fuori del campo di tolleranza ammesso. Il componente non è pronto per il funzionamento. Option Board assente oppure non è stato creato l'oggetto di azionamento corrispondente.
	Verde	Luce fissa	Option Board pronta al funzionamento
		Lampeggio 0,5 Hz	In funzione dell'Option Board installato.
	Rosso	Luce fissa	È presente almeno un'anomalia del componente. Option Board non pronta al funzionamento (ad es. dopo l'inserimento).
MOD		OFF	Riservato

Morsettiera utente TM31 (-A60)

Tabella 10-2 Descrizione dei LED del TM31

LED	Colore	Stato	Descrizione
RDY		OFF	L'alimentazione di corrente dell'elettronica manca oppure è al di fuori della fascia di tolleranza consentita.
	Verde	Luce fissa	Il componente è pronto per il funzionamento e può avvenire la comunicazione ciclica DRIVE-CLiQ.
	Arancione	Luce fissa	Viene stabilita la comunicazione DRIVE-CLiQ.
	Rosso	Luce fissa	È presente almeno un'anomalia di questo componente. Nota: II LED viene comandato indipendentemente dalla riprogettazione dei messaggi corrispondenti.
	Verde rosso	Lampeggio 0,5 Hz	Download del firmware in corso.
		Lampeggio 2 Hz	Download del firmware completato. Attesa di POWER ON.
	Verde arancione oppure Rosso arancione	Lampeggio 2 Hz	Riconoscimento del componente tramite LED attivato (p0154). Nota: Le due possibilità dipendono dallo stato del LED all'attivazione tramite p0154 = 1.

Control Interface Board – unità di interfaccia nel Power Module (-U1)

Tabella 10-3 Descrizione dei LED della Control Interface Board

LED, stato		Descrizione		
H200 H201				
Spento	Spento	L'alimentazione di corrente dell'elettronica manca oppure è al di fuori della fascia di tolleranza consentita.		
Verde	Spento	Il componente è pronto per il funzionamento e può avvenire la comunicazione ciclica DRIVE-CLiQ.		
	Arancione	Il componente è pronto per il funzionamento e può avvenire la comunicazione ciclica DRIVE-CLiQ. La tensione del circuito intermedio è applicata.		
	Rosso	Il componente è pronto per il funzionamento e può avvenire la comunicazione ciclica DRIVE-CLiQ. La tensione del circuito intermedio è troppo elevata.		
Arancione	Arancione	Viene stabilita la comunicazione DRIVE-CLiQ.		
Rosso		È presente almeno un'anomalia di questo componente. Nota: Il LED viene comandato indipendentemente dalla riprogettazione dei messaggi corrispondenti.		
Lampeggio 0,5 Hz: verde rosso				
Lampeggio 2 Hz: verde rosso		Download del firmware completato. Attesa di POWER ON.		
Lampeggio 2 Hz: verde arancione oppure rosso arancione		Riconoscimento del componente tramite LED attivato (p0124). Nota: Le due possibilità dipendono dallo stato del LED all'attivazione tramite p0124 = 1.		

/!\AVVERTENZA

Indipendentemente dallo stato del LED "H201" può essere sempre presente una tensione del circuito intermedio pericolosa.

Tenere presente le segnalazioni di pericolo applicate sul componente!

SMC30 - Analisi encoder (-A81)

Tabella 10-4 Descrizione dei LED dell'SMC30

LED	Colore	Stato	Descrizione
RDY		OFF	L'alimentazione di corrente dell'elettronica manca oppure è al di fuori della fascia di tolleranza consentita.
	Verde	Luce fissa	Il componente è pronto per il funzionamento e può avvenire la comunicazione ciclica DRIVE-CLiQ.
	Arancione	Luce fissa	Viene stabilita la comunicazione DRIVE-CLiQ.
	Rosso	Luce fissa	È presente almeno un'anomalia di questo componente. Nota: Il LED viene comandato indipendentemente dalla riprogettazione dei messaggi corrispondenti.
	Verde rosso	Lampeggio 0,5 Hz	Download del firmware in corso.
		Lampeggio 2 Hz	Download del firmware completato. Attesa di POWER ON.
	Verde arancione oppure Rosso arancione	Lampeggio 2 Hz	Riconoscimento del componente tramite LED attivato (p0144). Nota: Le due possibilità dipendono dallo stato del LED all'attivazione tramite p0144 = 1.
OUT>5 V		OFF	Alimentazione dell'elettronica al di fuori del campo di tolleranza consentito. Alimentazione sistema di misura ≤ 5 V (solo se pronto per il funzionamento).
	Arancione	Luce fissa	Alimentazione dell'elettronica per il sistema di misura presente. Alimentazione sistema di misura > 5 V. Attenzione: occorre garantire che l'encoder collegato possa essere utilizzato con un'alimentazione di tensione a 24 V. Il funzionamento a 24 V di un encoder previsto per il collegamento a 5 V può provocare la distruzione dell'elettronica dell'encoder.

CBE20 - Communication Board Ethernet (opzione G33)

Tabella 10-5 Descrizione dei LED della CBE20

LED	Colore	Stato	Descrizione
Link Port		OFF	L'alimentazione di corrente dell'elettronica manca oppure è al di fuori della fascia di tolleranza consentita.
	Verde	Luce fissa	Un altro apparecchio è collegato alla porta x e il collegamento fisico è disponibile.
Activity Port		OFF	L'alimentazione di corrente dell'elettronica manca oppure è al di fuori della fascia di tolleranza consentita.
	Giallo	Luce fissa	Componente attivo (scarica del circuito intermedio in corso tramite resistenza del freno).

LED	Colore	Stato	Descrizione
Fault		OFF	Se il LED Link Port è verde: il CBE20 funziona correttamente, scambio dei dati con il controller IO configurato in corso.
	Rosso	Lampeggio	 Il tempo di sorveglianza della risposta è scaduto. La comunicazione è interrotta. L'indirizzo IP è errato. Progettazione errata o nessuna progettazione. Parametrizzazione errata. Nome dell'apparecchio errato o mancante. Controller IO non disponibile/disattivato, ma il collegamento Ethernet è disponibile. Altri errori CBE20
		Luce fissa	Errore del bus del CBE20 - Nessun collegamento fisico ad una sottorete/switch Velocità di trasmissione non corretta Trasmissione duplex non attivata.
Sync		OFF	Se il LED Link Port è verde: Il sistema di task della Control Unit non è sincronizzato con il clock IRT. Viene generato un clock sostitutivo interno.
	Verde	Lampeggio	Il sistema di task della Control Unit è sincronizzato con il clock IRT e lo scambio dei dati è in corso.
		Luce fissa	Sistema di task e MC-PLL sincronizzati con il clock IRT.
OPT sulla Control Unit		OFF	L'alimentazione di corrente dell'elettronica manca oppure è al di fuori del campo di tolleranza ammesso. Communication Board difettosa o non inserita.
	Verde	Luce fissa	La Communication Board è pronta per il funzionamento ed avviene la comunicazione ciclica.
		Lampeggio 0,5 Hz	La Communication Board è pronta per il funzionamento, ma non avviene ancora alcuna comunicazione ciclica. Possibili cause: - È presente almeno un'anomalia La comunicazione è in fase di realizzazione.
	Rosso	Luce fissa	La comunicazione ciclica tramite PROFINET non è ancora attiva. Tuttavia è possibile una comunicazione aciclica. SINAMICS attende il telegramma di parametrizzazione/configurazione.
		Lampeggio 0,5 Hz	Il download del firmware nel CBE20 si è concluso con errori. Possibili cause: - Il CBE20 è difettoso. - La scheda CompactFlash della Control Unit è difettosa. Il CBE20 non è utilizzabile in questo stato.
		Lampeggio 2,5 Hz	La comunicazione tra la Control Unit e il CBE20 è disturbata. Cause possibili: - CBE20 sfilato dopo l'avviamento Il CBE20 è difettoso.
	Arancione	Lampeggio 2,5 Hz	Download del firmware in corso.

10.2.2 Diagnostica tramite parametri

Tutti gli oggetti: Parametri di diagnostica importanti (per i dettagli vedere il libretto di descrizione parametri)

Parametro	Name			
	Descrizione			
r0945	Codice anomalia			
	Indica il numero dell'anomalia. L'indice 0 rappresenta il caso di guasto più recente (ultima anomalia che si è verificata).			
r0948	Tempo in cui è avvenuta l'anomalia in millisecondi			
	Indica il runtime di sistema in ms in cui si è verificata l'anomalia.			
r0949	Valore anomalia			
	Indica le informazioni aggiuntive sull'anomalia verificatasi. Queste informazioni consentono una diagnostica dettagliata del guasto verificatosi.			
r2109	Tempo di eliminazione anomalia in millisecondi			
	Indica il runtime di sistema in ms in cui è stata eliminata l'anomalia.			
r2123	Tempo in cui è avvenuto l'avviso in millisecondi			
	Indica il runtime di sistema in ms in cui si è verificato l'avviso.			
r2124	Valore avviso			
	Indica le informazioni aggiuntive sull'avviso verificatosi. Queste informazioni consentono una diagnostica dettagliata dell'avviso verificatosi.			
r2125	Tempo di eliminazione avviso in millisecondi			
	Indica il runtime di sistema in ms in cui è stata eliminato l'avviso.			

CU320: Parametri di diagnostica importanti (per i dettagli vedere il libretto di descrizione parametri)

Parametro	Name Descrizione			
r0002	Segnalazione di funzionamento della Control Unit			
	Segnalazione di funzionamento per la Control Unit			
r0018	Versione del firmware della Control Unit			
	Indica la versione del firmware della Control Unit. Dalla descrizione dei parametri nel libretto di descrizione parametri si possono ricavare i parametri di visualizzazione della versione del firmware degli altri componenti collegati.			
r0721	Valore attuale morsetti ingressi digitali			
	Indica il valore attuale sui morsetti degli ingressi digitali della CU. Questo parametro rappresenta il valore attuale non influenzato dalla modalità di simulazione degli ingressi digitali.			
r0722	Stato degli ingressi digitali (CU)			
	Indica lo stato degli ingressi digitali della CU. Questo parametro rappresenta lo stato degli ingressi digitali nella modalità di simulazione degli ingressi digitali.			
r0747	Stato degli ingressi digitali (CU)			
	Indica lo stato delle uscite digitali della CU. Questo parametro rappresenta lo stato degli ingressi digitali nella modalità di simulazione degli ingressi digitali.			

	Name
r2054	Stato Profibus
	Indica lo stato dell'interfaccia Profibus
r9976[07]	Carico del sistema
	Indica il carico di sistema.
	I singoli valori (carico di calcolo e carico ciclico) vengono misurati per periodi di tempo brevi. Dalle misure si ottengono i valori minimo, massimo e medio, che sono poi visualizzati negli indici corrispondenti. Inoltre viene visualizzato il grado di utilizzo della memoria dati e programmi.

Vector: Parametri di diagnostica importanti (per i dettagli vedere il libretto di descrizione parametri)

Parametro	Name		
	Descrizione		
r0002	Segnalazione di funzionamento		
	Il valore fornisce informazioni sullo stato operativo attuale nonché sulle condizioni necessarie per raggiungere il successivo stato.		
r0020	Valore di riferimento del numero di giri livellato		
	Indica il valore di riferimento di velocità/giri attuale livellato all'ingresso del regolatore di numero di velocità/giri o della curva caratteristica V/f (dopo l'interpolatore).		
r0021	Valore attuale del numero di giri livellato		
	Indica il valore di velocità/giri attuale livellato del motore.		
r0026	Tensione del circuito intermedio livellata		
	Indica il valore attuale livellato del circuito intermedio.		
r0027	Valore attuale di corrente livellato		
	Indica il valore attuale di corrente livellato.		
r0031	Valore attuale della coppia livellato		
	Indica il valore attuale livellato della coppia.		
r0035	Temperatura motore		
	Se r0035 è diverso da -200.0 °C, vale quanto segue:		
	Questa indicazione di temperatura è valida.		
	Un sensore KTY è collegato.		
	• In caso di motore asincrono, il modello di motore termico è attivato (p0600 = 0 o p0601 = 0).		
	Se r0035 è uguale a -200.0 °C, vale quanto segue:		
	Questa indicazione di temperatura non è valida (errore del sensore di temperatura).		
	Un sensore PTC è collegato. Un sensore PTC à collegato.		
0007	In caso di motore sincrono, il modello di motore termico è attivato (p0600 = 0 o p0601 = 0).		
r0037	Temperature della parte di potenza		
00.40	Indica le temperature misurate nella parte di potenza.		
r0046	Azionamento, abilitazioni mancanti		
	Visualizzazione di abilitazioni mancanti che impediscono la messa in servizio della regolazione dell'azionamento.		
r0049	Record di dati motore/azionamento attivo (MDS, EDS)		
	Visualizzazione del record di dati del motore (MDS) e del record di dati dell'encoder (EDS) attivi.		

10.2 Diagnostica

	Name
r0050	Record di dati di comando attivo (CDS)
	Indica il record di dati di comando attivo (CDS).
r0051	Record di dati dell'azionamento attivo (DDS)
	Visualizzazione del record di dati dell'azionamento attivo (DDS).
r0206	Parte di potenza, potenza nominale
	Visualizzazione della potenza nominale della parte di potenza per diversi cicli.
r0207	Parte di potenza, corrente nominale
	Visualizzazione della corrente nominale della parte di potenza per diversi cicli.
r0208	Parte di potenza, tensione nominale di rete
	Visualizzazione della tensione nominale di rete della parte di potenza.

TM31: Parametri di diagnostica importanti (per i dettagli vedere il libretto di descrizione parametri)

Parametro	Name	
	Descrizione	
r0002	TM31 Segnalazione di funzionamento	
	Segnalazione di funzionamento per il Terminal Module 31 (TM31).	
r4021	Valore attuale morsetti ingressi digitali	
	Visualizzazione del valore attuale sui morsetti degli ingressi digitali del TM31. Questo parametro rappresenta il valore attuale non influenzato dalla modalità di simulazione degli ingressi digitali.	
r4022	Stato ingressi digitali	
	Indica lo stato degli ingressi digitali del TM31. Questo parametro rappresenta lo stato degli ingressi digitali nella modalità di simulazione degli ingressi digitali.	
r4047	Stato uscite digitali	
	Visualizzazione dello stato delle uscite digitali del TM31. Viene tenuta in considerazione un'inversione tramite p4048.	

Altri parametri di diagnostica per apparecchi in armadio di potenza elevata (per i dettagli vedere il libretto di descrizione parametri)

Per i seguenti apparecchi in armadio esistono altri parametri di diagnostica che forniscono informazioni dettagliate sui singoli Power Module in caso di collegamento in parallelo.

- 3 AC 380 V 480 V: 6SL3710-2GE41-4AA0, 6SL3710-2GE41-6AA0
- 3 AC 500 V 600 V: 6SL3710-2GF38-6AA0, 6SL3710-2GF41-1AA0, 6SL3710-2GF41-4AA0
- 3 AC 660 V 690 V: 6SL3710-2GH41-1AA0, 6SL3710-2GH41-5AA0

r7000 - r7322 Parametri speciali per Power Module collegati in parallelo

10.2.3 Visualizzazione ed eliminazione degli errori

L'apparecchio dispone di una molteplicità di funzioni di protezione che intervengono in caso di errore dell'azionamento preservandolo da eventuali danni (anomalie e avvisi).

Visualizzazione di anomalie / avvisi

L'azionamento visualizza una condizione di errore segnalando la relativa anomalia e/o il relativo avviso tramite il pannello operativo AOP30. Le anomalie vengono segnalate mediante il LED rosso di "FAULT" e la pagina delle anomalie richiamata sul display. Premendo il tasto della guida F1 si ottengono informazioni sulla causa e sul possibile rimedio. Con il tasto tacitazione F5 è possibile tacitare un'anomalia memorizzata.

Gli avvisi presenti vengono indicati dal lampeggio del LED giallo "ALARM", inoltre nella riga di stato del pannello operativo viene riportata un'indicazione relativa alla causa.

Ogni anomalia o avviso viene memorizzata/o nel relativo buffer con l'indicazione dell'ora di intervento. L'indicazione dell'ora si riferisce al tempo di sistema in millisecondi (r0969).

Sull'AOP30 è possibile memorizzare gli errori con la data e l'ora, se è stata selezionata l'opzione "Imposta data/ora - Sincronizzazione AOP -> Drive".

Cos'è un'anomalia?

Un'anomalia è un messaggio dell'azionamento relativo a un errore o a una condizione anomala (non voluta). La causa potrebbe derivare da un'anomalia interna dell'azionamento ma anche esterna, come ad esempio dalla sorveglianza di temperatura dell'avvolgimento del motore asincrono. Le anomalie vengono visualizzate sul display e possono essere segnalate via PROFIdrive a un sistema di controllo sovraordinato. Inoltre, un'uscita di relè con la segnalazione "Convertitore guasto" viene preassegnata nelle impostazioni di fabbrica. Dopo l'eliminazione della causa dell'anomalia, è necessario tacitare il relativo messaggio.

Cos'è un avviso?

Un avviso è una reazione dell'azionamento al riconoscimento di una condizione di errore che non provoca la disinserzione dell'azionamento e non deve essere tacitata. Gli avvisi sono perciò "autotacitanti", ovvero vengono cancellati non appena la causa sparisce.

10.3 Panoramica delle anomalie e degli avvisi

L'azionamento rileva una condizione di errore segnalando un'anomalia e/o un avviso corrispondente. I possibili avvisi o anomalie sono raggruppati in un'apposita lista. In questa lista sono riportati i seguenti criteri:

- Numero di anomalia/avviso dell'errore
- Reazione standard dell'azionamento
- Descrizione della possibile causa dell'anomalia/avviso
- Descrizione della possibile procedura per l'eliminazione dell'errore
- Tacitazione standard dell'anomalia dopo l'eliminazione dell'errore

Nota

La lista di anomalie e avvisi è contenuta sul CD della documentazione fornito con il prodotto.

Sul CD vengono descritte anche le possibili reazioni agli errori (OFF1, OFF2,...).

10.3.1 "Avviso esterno 1"

Cause

La segnalazione A7850 "Avviso esterno 1" viene emessa dai seguenti dispositivi di protezione opzionali presenti nell'apparecchio:

- Avviso dispositivo di protezione del motore a termistore (opzione L83)
- Unità di rilevamento per PT100 (opzione L86)

Soluzione

In caso di segnalazione di un errore viene consigliata la seguente procedura:

- 1. Localizzazione della relativa causa prendendo in visione i suddetti dispositivi (indicazione del display o dei LED).
- Verifica dell'indicazione di errore del rispettivo dispositivo di protezione e determinazione dell'errore.
- 3. Eliminazione del guasto segnalato previa consultazione del relativo manuale alla sezione "Istruzioni per l'uso aggiuntive".

10.3.2 "Anomalia esterna 1"

Cause

La segnalazione di errore F7860 "Anomalia esterna 1" viene emessa dai seguenti dispositivi di protezione opzionali presenti nell'apparecchio:

- Disinserzione dispositivo di protezione del motore a termistore (opzione L84)
- Unità di rilevamento per PT100 (opzione L86)

Soluzione

In caso di segnalazione di un errore viene consigliata la seguente procedura:

- Localizzazione della relativa causa prendendo in visione i suddetti dispositivi (indicazione del display o dei LED).
- Verifica dell'indicazione di errore del rispettivo dispositivo di protezione e determinazione dell'errore.
- 3. Eliminazione del guasto segnalato previa consultazione del relativo manuale alla sezione "Istruzioni per l'uso aggiuntive".

10.3.3 "Anomalia esterna 2"

Cause

La segnalazione di errore F7861 "Anomalia esterna 2" viene emessa quando la resistenza di frenatura collegata per l'opzione L61 o L62 è sovraccaricata termicamente e disinserisce così l'interruttore termico. L'azionamento viene disinserito con OFF2.

Soluzione

Eliminazione della causa del sovraccarico termico della resistenza di frenatura e tacitazione della segnalazione di errore.

10.3.4 "Anomalia esterna 3"

Cause

Il messaggio di errore F7862 "Anomalia esterna 3" viene emesso quando la Braking Unit installata nell'opzione L61 o L62 emette un'anomalia. L'azionamento viene disinserito con OFF2.

Rimedi

La causa del sovraccarico della Braking Unit deve essere eliminata e la segnalazione di errore deve essere tacitata.

10.4 Service e supporto

Helpline per service e supporto

Può accadere di aver bisogno di aiuto e di non sapere chi contattare. Noi facciamo in modo di fornire velocemente questo aiuto.

La Helpline assicura che l'esperto più vicino al cliente fornisca il supporto specialistico necessario. La Helpline, ad esempio per la Germania, fornisce un supporto 365 giorni all'anno, 24 ore su 24, in tedesco e in inglese.

Tel.: 0180 50 50 111

Supporto online

Il nostro supporto online fornisce un'assistenza rapida ed efficiente 24 ore su 24, in tutto il mondo in cinque lingue. L'ampio sistema di informazione è raggiungibile in ogni momento via Internet e spazia dall'assistenza relativa ai prodotti tramite le prestazioni del Service & Support fino ai Support Tools in officina.

Il supporto online offre numerose informazioni tecniche:

- FAQ, consigli e suggerimenti, download, attualità
- Manuali tecnici
- Programmi utili e prodotti software
- http://www.siemens.de/automation/service&support

Field Service

Può accadere che l'impianto si blocchi e che sia necessario un intervento rapido sul posto. Noi abbiamo gli specialisti che dispongono del know-how necessario in tutto il mondo, in prossimità dei clienti.

Grazie alla fitta rete di assistenza siamo in grado di reagire rapidamente e di realizzare interventi competenti, veloci e sicuri.

È possibile richiedere l'intervento di un tecnico specializzato in Germania 365 giorni all'anno, 24 ore su 24.

Tel.: 0180 50 50 444

Naturalmente offriamo anche contratti di assistenza personalizzati. Per ogni informazione si consiglia di rivolgersi alla filiale Siemens di competenza.

Pezzi di ricambio e riparazioni

La nostra rete mondiale di magazzini di ricambi e centri di riparazione regionali reagisce velocemente e in modo affidabile avvalendosi della logistica più avanzata.

Durante la fase di funzionamento di una macchina garantiamo un servizio completo di riparazione e di fornitura di pezzi di ricambio. Ciò assicura il massimo grado di sicurezza di funzionamento, una consulenza competente per questioni tecniche e un'ampia gamma di servizi personalizzati relativi a tutti i nostri prodotti e sistemi.

Per richieste relative a riparazioni o pezzi di ricambio, si prega di contattare il seguente numero di telefono (in Germania)

Tel.: 0180 50 50 448

Al di fuori del normale orario di lavoro e nei fine settimana, è possibile rivolgersi al nostro servizio di emergenza per i pezzi di ricambio.

Technical Support

La consulenza tecnica per l'impiego dei prodotti, dei sistemi e delle soluzioni nel campo della tecnica degli azionamenti e dell'automazione è fornita in tedesco e in inglese.

Per problemi specifici, tecnici specializzati competenti e adeguatamente formati offrono anche il collegamento in teleservice e videoconferenza.

Free Contact - l'assistenza tecnica gratuita

in Europa/ Africa

Tel.: +49 (0)180 50 50 222 Fax: +49 (0)180 50 50 223

Internet: http://www.siemens.de/automation/support-request

in America

Tel.: +14232622522 Fax: +14232622289

E-mail: simatic.hotline@sea.siemens.com

in Asia/ Pacifico

Tel.: +86 1064 757575 Fax: +86 1064 747474

e-mail: adsupport.asia@siemens.com

10.4 Service e supporto

Manutenzione e riparazione

11.1 Contenuto del capitolo

Questo capitolo descrive:

- Attività di manutenzione e di riparazione che devono essere eseguite a intervalli regolari per garantire la disponibilità degli apparecchi in armadio
- Sostituzione di componenti dell'apparecchio in caso di intervento di service
- · Forming dei condensatori del circuito intermedio
- Aggiornamento del firmware dell'apparecchio
- Caricamento dal PC del nuovo firmware del pannello operativo

Prima di eseguire interventi di manutenzione e di riparazione sull'apparecchio privo di tensione, è necessario lasciare trascorrere 5 minuti dopo la disinserzione dell'alimentazione. Questo tempo è necessario per consentire la scarica dei condensatori fino ad un valore non pericoloso (<25 V) dopo la disinserzione della tensione di alimentazione.

Anche dopo aver atteso 5 minuti, misurare la tensione residua prima dell'inizio dei lavori! La tensione si può misurare sui morsetti del circuito intermedio DCP e DCN.

PERICOLO

Quando la tensione di alimentazione esterna è collegata per le singole opzioni (L50 / L55) oppure in presenza di alimentazione ausiliaria esterna AC 230 V, nell'apparecchio è comunque presente una tensione pericolosa anche se l'interruttore principale è disinserito.

11.2 Manutenzione

Poiché l'apparecchio è composto in gran parte da componenti elettronici, tranne che per il ventilatore / i ventilatori, raramente gli altri componenti sono soggetti ad usura e necessitano di manutenzione o riparazione. La manutenzione serve a mantenere l'apparecchio in condizioni ottimali. Prevede interventi regolari di pulizia e di sostituzione di componenti usurati.

Generalmente devono essere osservati i seguenti punti.

11.2.1 Pulizia

Depositi di polvere

I depositi di polvere all'interno dell'apparecchio devono essere rimossi ad intervalli regolari, comunque almeno una volta all'anno, da personale qualificato ed osservando le prescrizioni di sicurezza. La pulizia deve avvenire con pennello ed aspirapolvere, mentre per le parti non accessibili occorre utilizzare aria compressa asciutta (max. 1 bar).

Ventilazione

Le fessure di aerazione dell'armadio devono sempre essere lasciate libere. Deve essere garantita la perfetta funzionalità del ventilatore.

Cavi e morsetti a vite

Il fissaggio corretto dei cavi e dei morsetti a vite deve essere verificato regolarmente ed eventualmente riserrato. Devono essere ricercati difetti del cablaggio. I pezzi di ricambio guasti devono essere immediatamente sostituiti.

Nota

Gli intervalli di tempo nell'ambito dei quali devono essere eseguite le attività di manutenzione, dipendono dalle condizioni di impiego (ambiente dell'apparecchio) e di funzionamento.

La Siemens offre la possibilità di stipulare un contratto di manutenzione. Per ulteriori informazioni contattare la filiale o il punto vendita di zona.

11.3 Manutenzione preventiva

Fanno parte dell'attività di riparazione quei provvedimenti atti a ripristinare la condizione ottimale dell'apparecchio.

Attrezzi necessari

Per eventuali interventi di sostituzione sono necessari i seguenti attrezzi:

- Chiave per dadi oppure chiave a tubo da 10
- Chiave per dadi oppure chiave a tubo da 13
- Chiave per dadi oppure chiave a tubo, apertura della chiave 16/17
- Chiave per dadi oppure chiave a tubo, apertura della chiave 18/19
- Chiave esagonale gr. 8
- Chiave dinamometrica fino a 50 Nm
- Cacciavite gr. 1 / 2
- Cacciavite Torx T20
- Cacciavite Torx T30

Coppie di serraggio per parti conduttive

Nell'avvitamento di parti conduttive (connessioni di circuito intermedio, motore, sbarre collettrici) valgono le seguenti coppie di serraggio.

Tabella 11-1 Coppie di serraggio per il collegamento di parti conduttive

Vite	Coppia
M6	6 Nm
M8	13 Nm
M10	25 Nm
M12	50 Nm

11.3.1 Telaio di montaggio

Descrizione

Il telaio di montaggio è previsto per il montaggio e lo smontaggio del Powerblock.

Per agevolare il montaggio, il telaio viene collocato davanti al modulo e fissato a quest'ultimo. Grazie alle sbarre telescopiche, il telaio può essere regolato all'altezza di montaggio opportuna per i Powerblock. Una volta rimossi i collegamenti meccanici ed elettrici, è possibile estrarre il Powerblock dal modulo. In questo modo il Powerblock viene guidato e supportato dalle guide del telaio di montaggio.

Figura 11-1 Telaio di montaggio

N. di ordinazione

Il numero di ordinazione del telaio di montaggio è 6SL3766-1FA00-0AA0.

11.3.2 Trasporto dei Powerblock tramite i fori per il sollevamento

Fori per il sollevamento tramite gru

I Powerblock sono provvisti di fori che permettono di sollevarli con un apposito attrezzo durante la sostituzione.

La posizione dei fori è indicata dalle frecce nelle illustrazioni che seguono.

/!\AVVERTENZA

Occorre tuttavia assicurarsi di utilizzare un attrezzo di sollevamento che consenta alla fune e/o alle cinghie di scorrere verticalmente, in modo da non provocare danni alla custodia.

CAUTELA

Non è permesso utilizzare le sbarre di corrente per afferrare i Powerblock o per fissare un attrezzo di sollevamento.

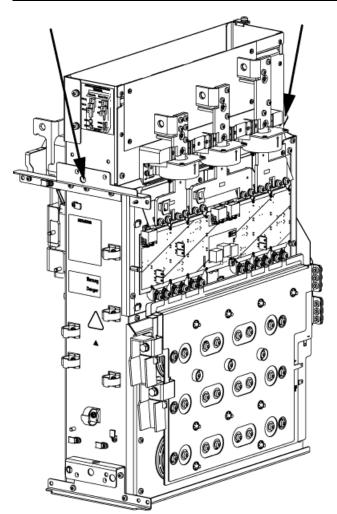


Figura 11-2 Fori di sollevamento nei Powerblock della grandezza costruttiva FX, GX

11.3 Manutenzione preventiva

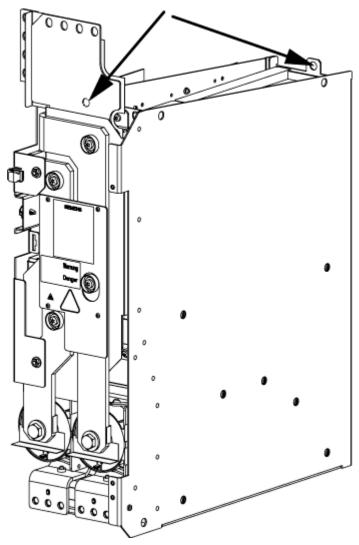


Figura 11-3 Fori di sollevamento nei Powerblock della grandezza costruttiva HX, JX

Nota

Nei Powerblock della grandezza costruttiva HX, JX il foro anteriore si trova dietro la sbarra di corrente.

11.4 Sostituzione di componenti

/!\AVVERTENZA

Durante il trasporto degli apparecchi osservare quanto segue:

- Il peso maggiore degli apparecchi è concentrato sul lato superiore.
- Il peso elevato degli apparecchi richiede in ogni caso una particolare cautela e l'intervento di personale esperto.
- Un sollevamento e un trasporto improprio degli apparecchi possono provocare lesioni fisiche gravi o addirittura mortali e notevoli danni materiali.

/!\AVVERTENZA

Gli apparecchi in armadio funzionano con tensioni elevate.

Eseguire tutte le operazioni di collegamento in assenza di tensione!

Tutti gli interventi sull'apparecchio possono essere eseguiti unicamente da personale qualificato. La mancata osservanza di questa avvertenza può provocare la morte, lesioni gravi o ingenti danni materiali.

Gli interventi sull'apparecchio aperto vanno eseguiti con estrema cautela, dato che potrebbero essere presenti tensioni di alimentazione esterne. Anche a motore fermo sui morsetti di alimentazione e sui morsetti di comando potrebbe essere presente della tensione.

Sui condensatori del circuito intermedio può essere presente una tensione pericolosa fino a 5 min. dopo la disinserzione. Per questo motivo l'apertura dell'apparecchio è consentita solo dopo che è trascorso un determinato intervallo di attesa.

11.4.1 Sostituzione dei filtri

I filtri devono essere verificati a cadenze regolari. Se la sporcizia è così intensa da non garantire più un regolare afflusso d'aria, devono essere sostituiti i filtri.

Nota

La sostituzione dei filtri viene effettuata solo per l'opzione M23, M43 o M54.

Se non vengono sostituiti i filtri sporchi si può verificare una disinserzione termica anticipata dell'azionamento.

11.4.2 Sostituzione del Powerblock, grandezza costruttiva FX

Sostituzione del Powerblock

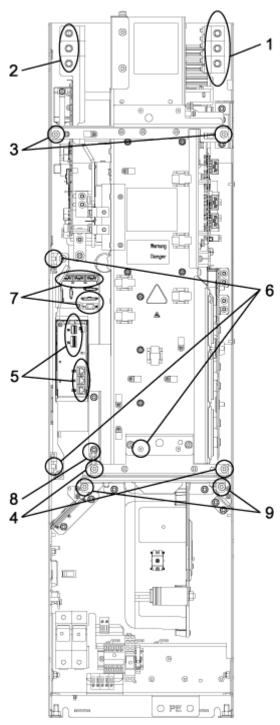


Figura 11-4 Sostituzione del Powerblock, grandezza costruttiva FX

- Disinserire la tensione dell'apparecchio.
- Liberare l'accesso al Powerblock
- Rimuovere la copertura protettiva

Smontaggio

La numerazione delle operazioni di smontaggio corrisponde a quella riportata nella figura.

- 1. Svitare il collegamento con l'uscita del motore (3 viti).
- 2. Svitare il collegamento con l'alimentazione di rete (4 viti).
- 3. Rimuovere le viti di arresto superiori (2 viti).
- 4. Rimuovere le viti di arresto inferiori (2 viti).
- 5. Rimuovere i cavi DRIVE-CLiQ e i collegamenti con la CU320 (5 connettori).
- 6. Rimuovere i fissaggi della CU320 (1 vite e 2 dadi), eventualmente rimuovere il connettore PROFIBUS e il collegamento con il pannello operativo (-X140 sulla CU320) e smontare la CU320.
- 7. Scollegare i connettori delle fibre ottiche e dei cavi di segnale (5 connettori).
- 8. Scollegare il connettore per la termocoppia.
- 9. Svitare le 2 viti di fissaggio del ventilatore e bloccare il telaio di montaggio del Powerblock in questa posizione.

A questo punto è possibile estrarre il Powerblock.

CAUTELA

Estraendo il Powerblock occorre fare attenzione a non danneggiare i cavi di segnale.

Rimontaggio

Per il rimontaggio eseguire in senso inverso le stesse operazioni dello smontaggio.

CAUTELA

Rispettare le coppie di serraggio della tabella "Coppie di serraggio per il collegamento di parti conduttive".

Inserire con cautela i connettori, quindi verificare che i collegamenti siano saldi.

11.4.3 Sostituzione del Powerblock, grandezza costruttiva GX

Sostituzione del Powerblock

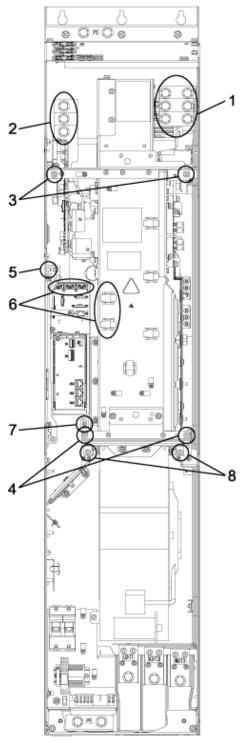


Figura 11-5 Sostituzione del Powerblock, grandezza costruttiva GX

- Disinserire la tensione dell'apparecchio.
- Liberare l'accesso al Powerblock
- Rimuovere la copertura protettiva

Smontaggio

La numerazione delle operazioni di smontaggio corrisponde a quella riportata nella figura.

- 1. Svitare il collegamento con l'uscita del motore (3 viti).
- 2. Svitare il collegamento con l'alimentazione di rete (3 viti).
- 3. Rimuovere le viti di arresto superiori (2 viti).
- 4. Rimuovere le viti di arresto inferiori (2 viti).
- 5. Rimuovere il supporto della CU320 (1 dado), eventualmente rimuovere il connettore PROFIBUS e il collegamento con il pannello operativo (-X140 sulla CU320) ed estrarre delicatamente la CU320.
- 6. Scollegare i connettori delle fibre ottiche (5 connettori) e aprire i connettori dei cavi di segnale (2 connettori).
- 7. Scollegare il connettore per la termocoppia.
- 8. Svitare le 2 viti di fissaggio del ventilatore e bloccare il telaio di montaggio del Powerblock in questa posizione.

A questo punto è possibile estrarre il Powerblock.

CAUTELA

Estraendo il Powerblock occorre fare attenzione a non danneggiare i cavi di segnale.

Rimontaggio

Per il rimontaggio eseguire in senso inverso le stesse operazioni dello smontaggio.

CAUTELA

Rispettare le coppie di serraggio della tabella "Coppie di serraggio per il collegamento di parti conduttive".

Inserire con cautela i connettori, quindi verificare che i collegamenti siano saldi.

11.4.4 Sostituzione del Powerblock, grandezza costruttiva HX

Sostituzione del Powerblock di sinistra

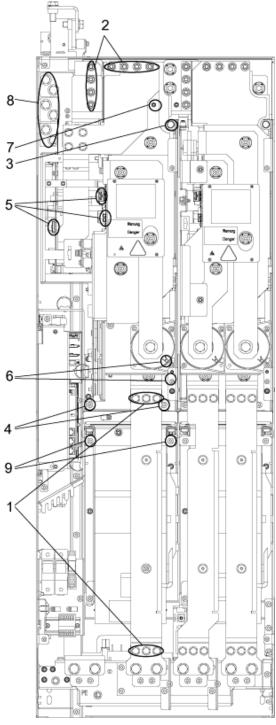


Figura 11-6 Sostituzione del Powerblock di sinistra, grandezza costruttiva HX

- Disinserire la tensione dell'apparecchio.
- Liberare l'accesso al Powerblock
- Rimuovere la copertura protettiva

Smontaggio

La numerazione delle operazioni di smontaggio corrisponde a quella riportata nella figura.

- 1. Smontare la barra collettrice (6 viti)
- 2. Svitare il collegamento con il circuito intermedio (8 dadi)
- 3. Rimuovere la vite di arresto superiore (1 vite)
- 4. Rimuovere le viti di arresto inferiori (2 viti)
- 5. Scollegare i connettori delle fibre ottiche e dei cavi di segnale (3 connettori)
- 6. Rimuovere il collegamento del convertitore di corrente e il relativo collegamento PE (1 connettore)
- 7. Rimuovere il rilevamento del circuito di misura (1 dado)
- 8. Rimuovere le connessioni di potenza (6 viti)
- 9. Svitare 2 viti di arresto del ventilatore e fissare in questa posizione l'attrezzo per lo smontaggio del Powerblock.

A questo punto è possibile estrarre il Powerblock.

CAUTELA

Estraendo il Powerblock occorre fare attenzione a non danneggiare i cavi di segnale.

Rimontaggio

Per il rimontaggio eseguire in senso inverso le stesse operazioni dello smontaggio.

CAUTELA

Rispettare le coppie di serraggio della tabella "Coppie di serraggio per il collegamento di parti conduttive".

Inserire con cautela i connettori, quindi verificare che i collegamenti siano saldi.

Sostituzione del Powerblock di destra

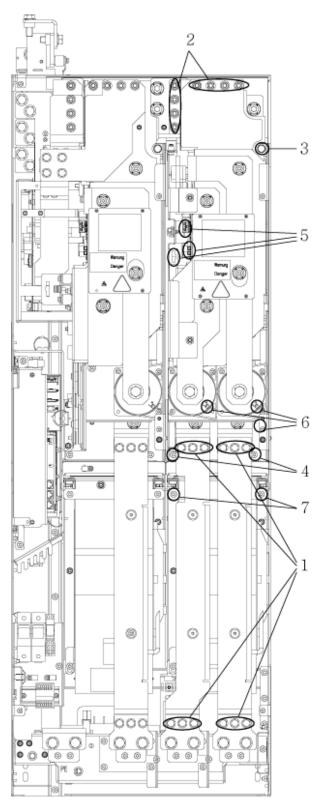


Figura 11-7 Sostituzione del Powerblock di destra, grandezza costruttiva HX

- Disinserire la tensione dell'apparecchio.
- Liberare l'accesso al Powerblock
- Rimuovere la copertura protettiva

Smontaggio

La numerazione delle operazioni di smontaggio corrisponde a quella riportata nella figura.

- 1. Smontare le barre collettrici (12 viti)
- 2. Svitare il collegamento con il circuito intermedio (8 dadi)
- 3. Rimuovere la vite di arresto superiore (1 vite)
- 4. Rimuovere le viti di arresto inferiori (2 viti)
- 5. Scollegare i connettori delle fibre ottiche e dei cavi di segnale (3 connettori)
- 6. Rimuovere il collegamento del convertitore di corrente e il relativo collegamento PE (2 connettore)
- 7. Svitare 2 viti di arresto del ventilatore e fissare in questa posizione l'attrezzo per lo smontaggio del Powerblock.

A questo punto è possibile estrarre il Powerblock.

CAUTELA

Estraendo il Powerblock occorre fare attenzione a non danneggiare i cavi di segnale.

Rimontaggio

Per il rimontaggio eseguire in senso inverso le stesse operazioni dello smontaggio.

CAUTELA

Rispettare le coppie di serraggio della tabella "Coppie di serraggio per il collegamento di parti conduttive".

Inserire con cautela i connettori, quindi verificare che i collegamenti siano saldi.

11.4.5 Sostituzione del Powerblock, grandezza costruttiva JX

Sostituzione del Powerblock di sinistra

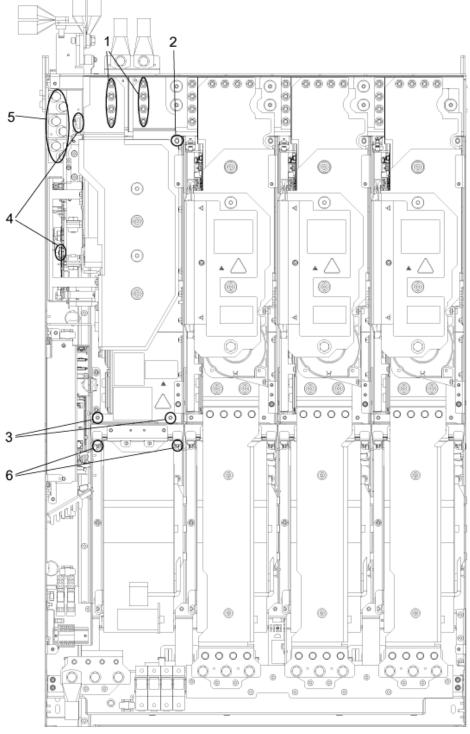


Figura 11-8 Sostituzione del Powerblock, grandezza costruttiva JX, Powerblock di sinistra

- Disinserire la tensione dell'apparecchio.
- Liberare l'accesso al Powerblock
- Rimuovere la copertura protettiva

Smontaggio

La numerazione delle operazioni di smontaggio corrisponde a quella riportata nella figura.

- 1. Svitare il collegamento con il circuito intermedio (8 dadi)
- 2. Rimuovere la vite di arresto superiore (1 vite)
- 3. Rimuovere le viti di arresto inferiori (2 viti)
- 4. Scollegare i connettori delle fibre ottiche e dei cavi di segnale (2 connettori)
- 5. Rimuovere le connessioni di potenza (6 viti)
- 6. Svitare 2 viti di arresto del ventilatore e fissare in questa posizione l'attrezzo per lo smontaggio del Powerblock.

A questo punto è possibile estrarre il Powerblock.

CAUTELA

Estraendo il Powerblock occorre fare attenzione a non danneggiare i cavi di segnale.

Rimontaggio

Per il rimontaggio eseguire in senso inverso le stesse operazioni dello smontaggio.

CAUTELA

Rispettare le coppie di serraggio della tabella "Coppie di serraggio per il collegamento di parti conduttive".

Inserire con cautela i connettori, quindi verificare che i collegamenti siano saldi.

Sostituzione del Powerblock di destra

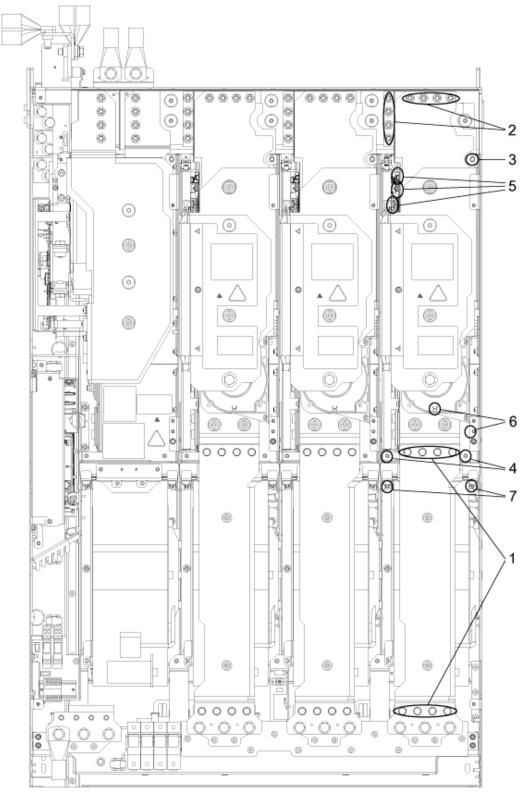


Figura 11-9 Sostituzione del Powerblock di destra, grandezza costruttiva JX

- Disinserire la tensione dell'apparecchio.
- Liberare l'accesso al Powerblock
- Rimuovere la copertura protettiva

Smontaggio

La numerazione delle operazioni di smontaggio corrisponde a quella riportata nella figura.

- 1. Smontare la barra collettrice (8 viti)
- 2. Svitare il collegamento con il circuito intermedio (8 dadi)
- 3. Rimuovere la vite di arresto superiore (1 vite)
- 4. Rimuovere le viti di arresto inferiori (2 viti)
- 5. Scollegare i connettori delle fibre ottiche e dei cavi di segnale (2 connettori)
- 6. Rimuovere il collegamento del convertitore di corrente e il relativo collegamento PE (1 connettore)
- 7. Svitare 2 viti di arresto del ventilatore e fissare in questa posizione l'attrezzo per lo smontaggio del Powerblock.

A questo punto è possibile estrarre il Powerblock.

CAUTELA

Estraendo il Powerblock occorre fare attenzione a non danneggiare i cavi di segnale.

Rimontaggio

Per il rimontaggio eseguire in senso inverso le stesse operazioni dello smontaggio.

CAUTELA

Rispettare le coppie di serraggio della tabella "Coppie di serraggio per il collegamento di parti conduttive".

Inserire con cautela i connettori, quindi verificare che i collegamenti siano saldi.

11.4.6 Sostituzione della Control Interface Board, grandezza costruttiva FX

Sostituzione della Control Interface Board

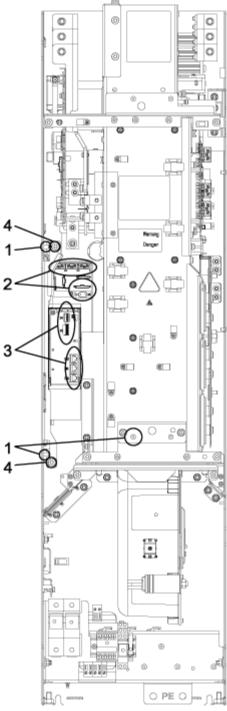


Figura 11-10 Sostituzione della Control Interface Board, grandezza costruttiva FX

- Disinserire la tensione dell'apparecchio.
- Liberare l'accesso
- Rimuovere la copertura protettiva

Smontaggio

La numerazione delle operazioni di smontaggio corrisponde a quella riportata nella figura.

- Rimuovere i fissaggi della CU320 (1 vite e 2 dadi), eventualmente rimuovere il connettore PROFIBUS e il collegamento con il pannello operativo (-X140 sulla CU320) e smontare la CU320.
- 2. Scollegare i connettori delle fibre ottiche e dei cavi di segnale (5 connettori).
- 3. Rimuovere i cavi DRIVE-CLiQ e i collegamenti con la CU320 (5 connettori).
- Rimuovere le viti di fissaggio del cassetto dell'elettronica (2 viti).
 Nell'estrazione del cassetto dell'elettronica occorre rimuovere in successione altri 5 connettori (2 in alto, 3 in basso).

CAUTELA

Nell'estrazione occorre fare attenzione a non danneggiare i cavi di segnale.

A questo punto è possibile estrarre la Control Interface Board dal cassetto dell'elettronica.

CAUTELA

Quando si svita il connettore del cavo piatto si deve fare attenzione ad attivare delicatamente la levetta di arresto (ad es. con un cacciavite), dato che altrimenti si rischia di danneggiarla.

Rimontaggio

Per il rimontaggio eseguire in senso inverso le stesse operazioni dello smontaggio.

CAUTELA

Rispettare le coppie di serraggio della tabella "Coppie di serraggio per il collegamento di parti conduttive".

Inserire con cautela i connettori, quindi verificare che i collegamenti siano saldi.

Nei connettori con dispositivo di arresto occorre accertarsi che la levetta di arresto sia innestata dopo il collegamento.

11.4.7 Sostituzione della Control Interface Board, grandezza costruttiva GX

Sostituzione della Control Interface Board

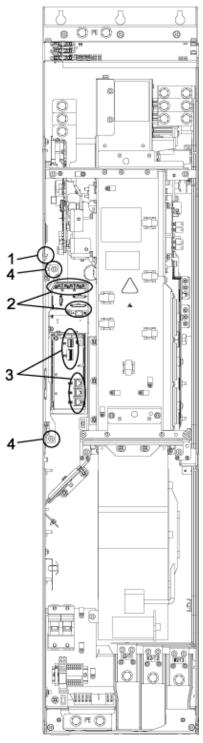


Figura 11-11 Sostituzione della Control Interface Board, grandezza costruttiva GX

- Disinserire la tensione dell'apparecchio.
- Liberare l'accesso
- Rimuovere la copertura protettiva

Smontaggio

La numerazione delle operazioni di smontaggio corrisponde a quella riportata nella figura.

- 1. Rimuovere il supporto della CU320 (1 dado), eventualmente rimuovere il connettore PROFIBUS e il collegamento con il pannello operativo (-X140 sulla CU320) ed estrarre delicatamente la CU320.
- 2. Scollegare i connettori delle fibre ottiche e dei cavi di segnale (5 connettori).
- 3. Rimuovere i cavi DRIVE-CLiQ e i collegamenti con la CU320 (5 connettori).
- 4. Rimuovere le viti di fissaggio del cassetto dell'elettronica (2 viti). Nell'estrazione del cassetto dell'elettronica occorre rimuovere in successione altri 5 connettori (2 in alto, 3 in basso).

CAUTELA

Nell'estrazione occorre fare attenzione a non danneggiare i cavi di segnale.

A questo punto è possibile estrarre la Control Interface Board dal cassetto dell'elettronica.

CAUTELA

Quando si svita il connettore del cavo piatto si deve fare attenzione ad attivare delicatamente la levetta di arresto (ad es. con un cacciavite), dato che altrimenti si rischia di danneggiarla.

Rimontaggio

Per il rimontaggio eseguire in senso inverso le stesse operazioni dello smontaggio.

CAUTELA

Rispettare le coppie di serraggio della tabella "Coppie di serraggio per il collegamento di parti conduttive".

Inserire con cautela i connettori, quindi verificare che i collegamenti siano saldi.

Nei connettori con dispositivo di arresto occorre accertarsi che la levetta di arresto sia innestata dopo il collegamento.

11.4.8 Sostituzione della Control Interface Board, grandezza costruttiva HX

Sostituzione della Control Interface Board

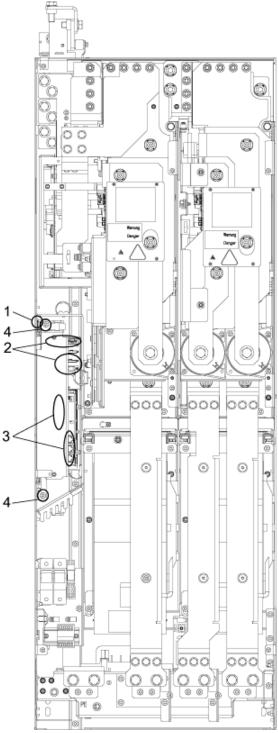


Figura 11-12 Sostituzione della Control Interface Board, grandezza costruttiva HX

- Disinserire la tensione dell'apparecchio.
- Liberare l'accesso
- Rimuovere la copertura protettiva

Smontaggio

La numerazione delle operazioni di smontaggio corrisponde a quella riportata nella figura.

- 1. Rimuovere il supporto della CU320 (1 dado), eventualmente rimuovere il connettore PROFIBUS e il collegamento con il pannello operativo (-X140 sulla CU320) ed estrarre delicatamente la CU320.
- 2. Scollegare i connettori delle fibre ottiche e dei cavi di segnale (5 connettori).
- 3. Rimuovere i cavi DRIVE-CLiQ e i collegamenti con la CU320 (5 connettori).
- 4. Rimuovere le viti di fissaggio del cassetto dell'elettronica (2 viti). Nell'estrazione del cassetto dell'elettronica occorre rimuovere in successione altri 5 connettori (2 in alto, 3 in basso).

CAUTELA

Nell'estrazione occorre fare attenzione a non danneggiare i cavi di segnale.

A questo punto è possibile estrarre la Control Interface Board dal cassetto dell'elettronica.

CAUTELA

Quando si svita il connettore del cavo piatto si deve fare attenzione ad attivare delicatamente la levetta di arresto (ad es. con un cacciavite), dato che altrimenti si rischia di danneggiarla.

Rimontaggio

Per il rimontaggio eseguire in senso inverso le stesse operazioni dello smontaggio.

CAUTELA

Rispettare le coppie di serraggio della tabella "Coppie di serraggio per il collegamento di parti conduttive".

Inserire con cautela i connettori, quindi verificare che i collegamenti siano saldi.

Nei connettori con dispositivo di arresto occorre accertarsi che la levetta di arresto sia innestata dopo il collegamento.

11.4.9 Sostituzione della Control Interface Board, grandezza costruttiva JX

Sostituzione della Control Interface Board

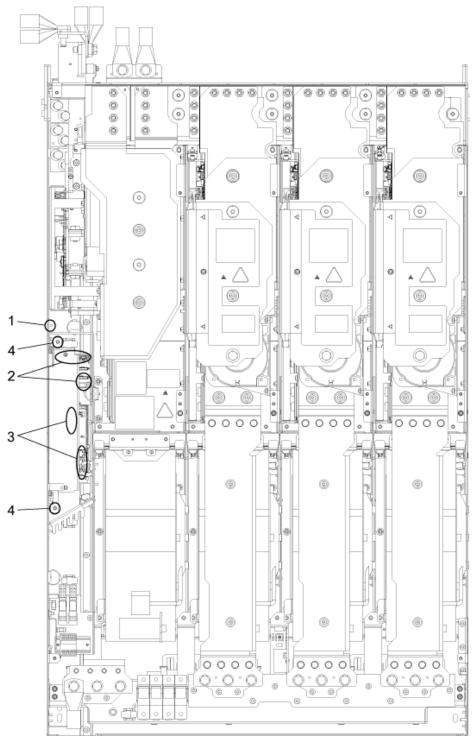


Figura 11-13 Sostituzione della Control Interface Board, grandezza costruttiva JX

- Disinserire la tensione dell'apparecchio.
- Liberare l'accesso
- Rimuovere la copertura protettiva

Smontaggio

La numerazione delle operazioni di smontaggio corrisponde a quella riportata nella figura.

- 1. Rimuovere il supporto della CU320 (1 dado), eventualmente rimuovere il connettore PROFIBUS e il collegamento con il pannello operativo (-X140 sulla CU320) ed estrarre delicatamente la CU320.
- 2. Scollegare i connettori delle fibre ottiche e dei cavi di segnale (5 connettori).
- 3. Rimuovere i cavi DRIVE-CLiQ e i collegamenti con la CU320 (5 connettori).
- 4. Rimuovere le viti di fissaggio del cassetto dell'elettronica (2 viti). Nell'estrazione del cassetto dell'elettronica occorre rimuovere in successione altri 5 connettori (2 in alto, 3 in basso).

CAUTELA

Nell'estrazione occorre fare attenzione a non danneggiare i cavi di segnale.

A questo punto è possibile estrarre la Control Interface Board dal cassetto dell'elettronica.

CAUTELA

Quando si svita il connettore del cavo piatto si deve fare attenzione ad attivare delicatamente la levetta di arresto (ad es. con un cacciavite), dato che altrimenti si rischia di danneggiarla.

Rimontaggio

Per il rimontaggio eseguire in senso inverso le stesse operazioni dello smontaggio.

CAUTELA

Rispettare le coppie di serraggio della tabella "Coppie di serraggio per il collegamento di parti conduttive".

Inserire con cautela i connettori, quindi verificare che i collegamenti siano saldi.

Nei connettori con dispositivo di arresto occorre accertarsi che la levetta di arresto sia innestata dopo il collegamento.

11.4.10 Sostituzione del ventilatore, grandezza costruttiva FX

Sostituzione del ventilatore

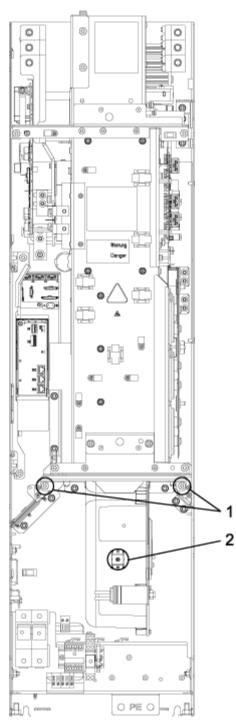


Figura 11-14 Sostituzione del ventilatore, grandezza costruttiva FX

La durata tipica dei ventilatori degli apparecchi è di 50.000 ore. La durata effettiva dipende comunque da ulteriori grandezze, quali ad es. la temperatura ambiente e il grado di protezione dell'armadio e in determinati casi può pertanto discostarsi da questo valore.

I ventilatori devono essere sostituiti nei tempi corretti per garantire la disponibilità dell'apparecchio.

Operazioni preliminari

- Disinserire la tensione dell'apparecchio.
- Liberare l'accesso
- Rimuovere la copertura protettiva

Smontaggio

La numerazione delle operazioni di smontaggio corrisponde a quella riportata nella figura.

- 1. Rimuovere le viti di arresto per il ventilatore (2 viti).
- 2. Scollegare le linee di alimentazione (1 x "L", 1 x "N").

A questo punto è possibile estrarre delicatamente il ventilatore.

CAUTELA

Nell'estrazione occorre fare attenzione a non danneggiare i cavi di segnale.

Rimontaggio

Per il rimontaggio eseguire in senso inverso le stesse operazioni dello smontaggio.

CAUTELA

Rispettare le coppie di serraggio della tabella "Coppie di serraggio per il collegamento di parti conduttive".

Inserire con cautela i connettori, quindi verificare che i collegamenti siano saldi.

11.4.11 Sostituzione del ventilatore, grandezza costruttiva GX

Sostituzione del ventilatore

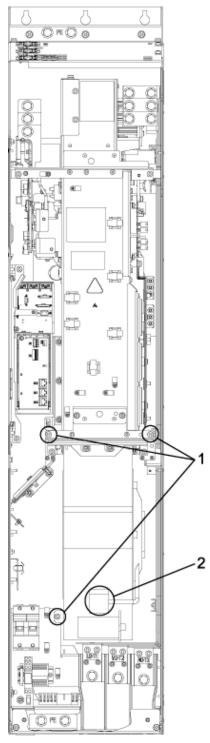


Figura 11-15 Sostituzione del ventilatore, grandezza costruttiva GX

La durata tipica dei ventilatori degli apparecchi è di 50.000 ore. La durata effettiva dipende comunque da ulteriori grandezze, quali ad es. la temperatura ambiente e il grado di protezione dell'armadio e in determinati casi può pertanto discostarsi da questo valore.

I ventilatori devono essere sostituiti nei tempi corretti per garantire la disponibilità dell'apparecchio.

Operazioni preliminari

- Disinserire la tensione dell'apparecchio.
- Liberare l'accesso
- Rimuovere la copertura protettiva

Smontaggio

La numerazione delle operazioni di smontaggio corrisponde a quella riportata nella figura.

- 1. Rimuovere le viti di arresto per il ventilatore (3 viti).
- 2. Scollegare le linee di alimentazione (1 x "L", 1 x "N").

A questo punto è possibile estrarre delicatamente il ventilatore.

CAUTELA

Nell'estrazione occorre fare attenzione a non danneggiare i cavi di segnale.

Rimontaggio

Per il rimontaggio eseguire in senso inverso le stesse operazioni dello smontaggio.

CAUTELA

Rispettare le coppie di serraggio della tabella "Coppie di serraggio per il collegamento di parti conduttive".

Inserire con cautela i connettori, quindi verificare che i collegamenti siano saldi.

11.4.12 Sostituzione del ventilatore, grandezza costruttiva HX

Sostituzione del ventilatore, Powerblock di sinistra

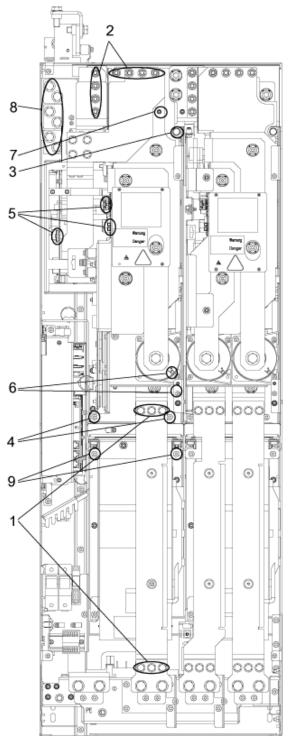


Figura 11-16 Sostituzione del ventilatore del Powerblock di sinistra, grandezza costruttiva HX

La durata tipica dei ventilatori degli apparecchi è di 50.000 ore. La durata effettiva dipende comunque da ulteriori grandezze, quali ad es. la temperatura ambiente e il grado di protezione dell'armadio e in determinati casi può pertanto discostarsi da questo valore.

I ventilatori devono essere sostituiti nei tempi corretti per garantire la disponibilità dell'apparecchio.

Operazioni preliminari

- Disinserire la tensione dell'apparecchio
- Liberare l'accesso
- Rimuovere la copertura protettiva

Smontaggio

La numerazione delle operazioni di smontaggio corrisponde a quella riportata nella figura.

- 1. Rimuovere la barra di rame (6 viti).
- 2. Rimuovere le viti di arresto per il ventilatore (3 viti).
- 3. Scollegare le linee di alimentazione (1 x "L", 1 x "N").

A questo punto è possibile estrarre delicatamente il ventilatore.

CAUTELA

Nell'estrazione occorre fare attenzione a non danneggiare i cavi di segnale.

Rimontaggio

Per il rimontaggio eseguire in senso inverso le stesse operazioni dello smontaggio.

CAUTELA

Rispettare le coppie di serraggio della tabella "Coppie di serraggio per il collegamento di parti conduttive".

Inserire con cautela i connettori, quindi verificare che i collegamenti siano saldi.

Sostituzione del ventilatore, Powerblock di destra

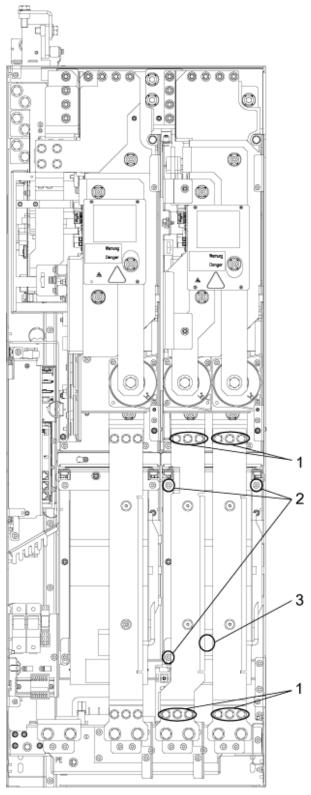


Figura 11-17 Sostituzione del ventilatore del Powerblock di destra, grandezza costruttiva HX

La durata tipica dei ventilatori degli apparecchi è di 50.000 ore. La durata effettiva dipende comunque da ulteriori grandezze, quali ad es. la temperatura ambiente e il grado di protezione dell'armadio e in determinati casi può pertanto discostarsi da questo valore.

I ventilatori devono essere sostituiti nei tempi corretti per garantire la disponibilità dell'apparecchio.

Operazioni preliminari

- Disinserire la tensione dell'apparecchio
- Liberare l'accesso
- Rimuovere la copertura protettiva

Smontaggio

La numerazione delle operazioni di smontaggio corrisponde a quella riportata nella figura.

- 1. Rimuovere la barra di rame (12 viti).
- 2. Rimuovere le viti di arresto per il ventilatore (3 viti).
- 3. Scollegare le linee di alimentazione (1 x "L", 1 x "N").

A questo punto è possibile estrarre delicatamente il ventilatore.

CAUTELA

Nell'estrazione occorre fare attenzione a non danneggiare i cavi di segnale.

Rimontaggio

Per il rimontaggio eseguire in senso inverso le stesse operazioni dello smontaggio.

CAUTELA

Rispettare le coppie di serraggio della tabella "Coppie di serraggio per il collegamento di parti conduttive".

Inserire con cautela i connettori, quindi verificare che i collegamenti siano saldi.

11.4.13 Sostituzione del ventilatore, grandezza costruttiva JX

Sostituzione del ventilatore, Powerblock di sinistra

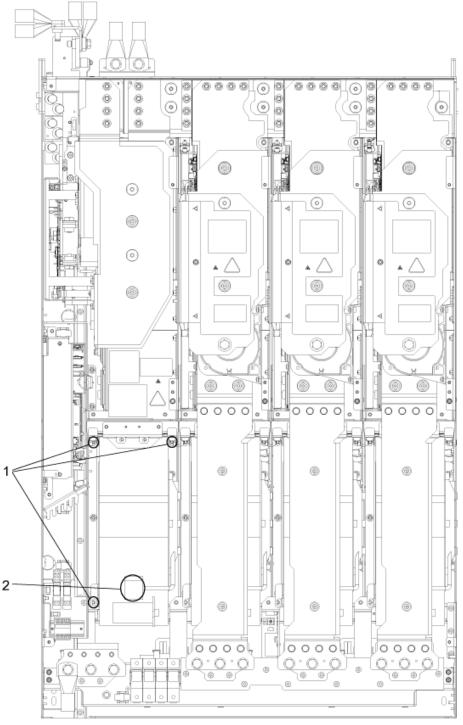


Figura 11-18 Sostituzione del ventilatore del Powerblock di sinistra, grandezza costruttiva JX

La durata tipica dei ventilatori degli apparecchi è di 50.000 ore. La durata effettiva dipende comunque da ulteriori grandezze, quali ad es. la temperatura ambiente e il grado di protezione dell'armadio e in determinati casi può pertanto discostarsi da questo valore.

I ventilatori devono essere sostituiti nei tempi corretti per garantire la disponibilità dell'apparecchio.

Operazioni preliminari

- Disinserire la tensione dell'apparecchio
- Liberare l'accesso
- Rimuovere la copertura protettiva

Smontaggio

La numerazione delle operazioni di smontaggio corrisponde a quella riportata nella figura.

- 1. Rimuovere la barra di rame (6 viti).
- 2. Rimuovere le viti di arresto per il ventilatore (3 viti).
- 3. Scollegare le linee di alimentazione (1 x "L", 1 x "N").

A questo punto è possibile estrarre delicatamente il ventilatore.

CAUTELA

Nell'estrazione occorre fare attenzione a non danneggiare i cavi di segnale.

Rimontaggio

Per il rimontaggio eseguire in senso inverso le stesse operazioni dello smontaggio.

CAUTELA

Rispettare le coppie di serraggio della tabella "Coppie di serraggio per il collegamento di parti conduttive".

Inserire con cautela i connettori, quindi verificare che i collegamenti siano saldi.

Sostituzione del ventilatore, Powerblock di destra

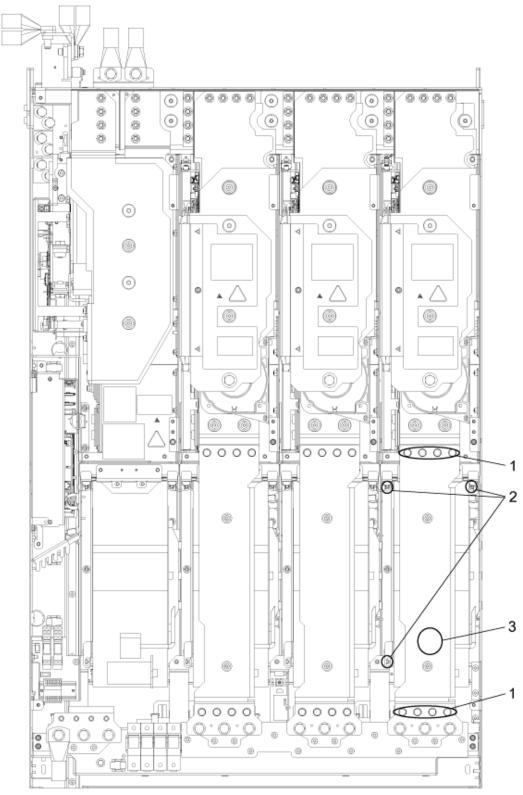


Figura 11-19 Sostituzione del ventilatore del Powerblock di destra, grandezza costruttiva JX

La durata tipica dei ventilatori degli apparecchi è di 50.000 ore. La durata effettiva dipende comunque da ulteriori grandezze, quali ad es. la temperatura ambiente e il grado di protezione dell'armadio e in determinati casi può pertanto discostarsi da questo valore.

I ventilatori devono essere sostituiti nei tempi corretti per garantire la disponibilità dell'apparecchio.

Operazioni preliminari

- Disinserire la tensione dell'apparecchio
- Liberare l'accesso
- Rimuovere la copertura protettiva

Smontaggio

La numerazione delle operazioni di smontaggio corrisponde a quella riportata nella figura.

- 1. Rimuovere la barra di rame (8 viti).
- 2. Rimuovere le viti di arresto per il ventilatore (3 viti).
- 3. Scollegare le linee di alimentazione (1 x "L", 1 x "N").

A questo punto è possibile estrarre delicatamente il ventilatore.

CAUTELA

Nell'estrazione occorre fare attenzione a non danneggiare i cavi di segnale.

Rimontaggio

Per il rimontaggio eseguire in senso inverso le stesse operazioni dello smontaggio.

CAUTELA

Rispettare le coppie di serraggio della tabella "Coppie di serraggio per il collegamento di parti conduttive".

Inserire con cautela i connettori, quindi verificare che i collegamenti siano saldi.

11.4.14 Sostituzione dei fusibili del ventilatore (-U1 -F10 / -U1 -F11)

I numeri d'ordinazione per i fusibili del ventilatore sono riportati nella lista delle parti di ricambio.

/!\AVVERTENZA

Prima di sostituire il fusibile, assicurarsi che la causa dell'errore sia stata eliminata.

11.4.15 Sostituzione dei fusibili per l'alimentazione ausiliaria (-A1 -F11 / -A1 -F12)

I numeri di ordinazione per i fusibili dell'alimentazione ausiliaria sono riportati nella lista delle parti di ricambio.

/!\AVVERTENZA

Prestare attenzione ai seguenti punti:

- disinserire innanzitutto la tensione di alimentazione ausiliaria
- eliminare quindi la causa dell'anomalia
- sostituire infine il fusibile.

11.4.16 Sostituzione del fusibile -A1 -F21

- 1. Aprire l'armadio dell'apparecchio
- 2. Smontare il fusibile guasto
- 3. Inserire il fusibile di ricambio e chiudere il portafusibile
- 4. Chiudere l'armadio.

I numeri d'ordinazione dei fusibili sono riportati nella lista delle parti di ricambio.

/!\AVVERTENZA

Prestare attenzione ai seguenti punti:

- disinserire innanzitutto la tensione di alimentazione ausiliaria
- eliminare quindi la causa dell'anomalia
- sostituire infine il fusibile.

11.4.17 Sostituzione del pannello operativo dell'apparecchio

- 1. Disinserire la tensione dell'apparecchio
- 2. Aprire l'armadio dell'apparecchio
- 3. Svitare il cavo di alimentazione e di comunicazione dal pannello operativo
- 4. Svitare le viti di fissaggio del pannello operativo
- 5. Smontare il pannello operativo
- 6. Montare il nuovo pannello operativo
- 7. Eseguire le attività rimanenti in sequenza inversa

11.4.18 Sostituzione della batteria tampone del pannello operativo dell'apparecchio in armadio

Tabella 11-2 Dati tecnici della batteria tampone

Tipo	Batteria al litio CR2032 da 3 V
Produttore	Maxell, Sony, Panasonic
Capacità nominale	220 mAh
Massima corrente di carica	10 mA (nel pannello operativo limitata a <2 mA)
Autoscarica a 20 °C	1 %/anno
Durata (in modalità backup)	> 1 anno a 70 °C; >1,5 anni a 20 °C
Durata (in funzionamento)	> 2 anni

Sostituzione

- 1. Disinserire la tensione dell'apparecchio
- 2. Aprire l'armadio dell'apparecchio
- 3. Svitare il cavo di alimentazione DC 24 V e il cavo di comunicazione dal pannello operativo.
- 4. Aprire il coperchio del vano batteria.
- 5. Togliere la vecchia batteria.
- 6. Inserire la nuova batteria.
- 7. Chiudere il coperchio del vano batteria.
- 8. Collegare nuovamente il cavo di alimentazione DC 24 V ed il cavo di comunicazione.
- 9. Chiudere l'armadio.

Per evitare la perdita di dati, la batteria deve essere sostituita entro un minuto.

11.4 Sostituzione di componenti

Figura 11-20 Sostituzione della batteria tampone nel pannello operativo dell'apparecchio in armadio

11.5 Forming dei condensatori del circuito intermedio

Descrizione

Dopo un periodo di funzionamento dell'apparecchio superiore ai due anni deve essere eseguito un nuovo forming dei condensatori del circuito intermedio. Se questo non avviene, l'apparecchio può guastarsi all'inserzione della tensione di rete.

Se la messa in servizio viene eseguita entro due anni dalla costruzione, non è necessario un nuovo forming dei condensatori del circuito intermedio. La data di costruzione può essere ricavata dal numero di fabbrica sulla targhetta identificativa; vedere appendice "Panoramica apparecchio".

Nota

È importante che il tempo di immagazzinaggio venga calcolato a partire dalla data di costruzione e non da quella della fornitura.

Procedura

Il forming dei condensatori del circuito intermedio avviene applicando la tensione nominale per almeno 30 minuti alla temperatura ambiente in funzionamento senza carico.

- Funzionamento via PROFIBUS
 - Impostare il bit 3 della parola di comando 1 (abilitazione al funzionamento) su "0" fisso.
 - Attivare il convertitore tramite il segnale ON (bit 0 della parola di comando). Tutti gli altri bit devono essere impostati in modo da consentire il funzionamento del convertitore.
 - Una volta trascorso il tempo di attesa, disinserire il convertitore e ripristinare l'impostazione originale di PROFIBUS.
- Funzionamento via morsettiera:
 - Impostare p0852 su "0" (l'impostazione di fabbrica è "1").
 - Attivare il convertitore (tramite l'ingresso digitale 0 della morsettiera utente).
 - Una volta trascorso il tempo di attesa, disinserire il convertitore e ripristinare p0852 all'impostazione originale.

Nota

In modalità LOCAL mediante AOP30, è impossibile eseguire il forming.

11.6 Segnalazioni dopo la sostituzione di componenti DRIVE-CLiQ

Generalmente dopo la sostituzione di componenti DRIVE-CLiQ (Control Interface Board, TM31, SMCxx) con parti di ricambio non si ha alcuna segnalazione al momento dell'inserzione dato che un componente identico viene riconosciuto e accettato come parte di ricambio all'avviamento.

Se comparisse comunque un messaggio di errore della categoria "Errore di topologia", può essersi verificato uno dei seguenti errori durante la sostituzione:

- È stata installata una Control Interface Board con dati del firmware diversi.
- Nel collegamento dei cavi DRIVE-CLiQ sono stati invertiti dei connettori.

Aggiornamento automatico del firmware

A partire dalla versione del firmware 2.5 può verificarsi, dopo l'inserzione dell'elettronica, l'aggiornamento automatico del firmware dei componenti DRIVE-CLiQ sostituiti.

- Durante l'aggiornamento automatico del firmware, il LED "RDY" della Control Unit lampeggia lentamente di luce arancione (0,5 Hz) e uno dei LED del componente DRIVE-CLiQ interessato lampeggia lentamente di luce verde-rossa (0,5 Hz).
- Al termine dell'aggiornamento automatico del firmware, il LED "RDY" della Control Unit lampeggia rapidamente di luce arancione (2 Hz) e un LED del componente DRIVE-CLiQ interessato lampeggia rapidamente di luce verde-rossa (2 Hz).
- Dopo la conclusione dell'aggiornamento automatico del firmware occorre eseguire un POWER ON (spegnimento e accensione dell'apparecchio).

11.7 Aggiornamento del firmware dell'apparecchio

L'aggiornamento del firmware dell'apparecchio, ad es. inserendo una nuova scheda Compact Flash con una nuova versione di firmware, può richiedere in determinate situazioni anche l'aggiornamento di componenti DRIVE-CLiQ esistenti.

L'aggiornamento del firmware dei componenti DRIVE-CLiQ avviene automaticamente tramite l'aggiornamento del firmware, se il sistema ne riconosce la necessità.

Procedura di aggiornamento automatico del firmware

- 1. Durante l'aggiornamento automatico del firmware, il LED "RDY" della Control Unit CU320 lampeggia lentamente di luce arancione (0,5 Hz).
- 2. A seconda delle necessità, l'aggiornamento del firmware viene effettuato secondo l'ordine dei componenti DRIVE-CLiQ, mentre un LED del componente interessato lampeggia lentamente di luce verde-rossa (0,5 Hz).
- 3. Quando gli aggiornamenti del firmware di un singolo componente DRIVE-CLiQ è terminato, il LED del componente lampeggia rapidamente di luce verde-rossa (2 Hz).
- 4. Al termine dell'aggiornamento completo del firmware, il LED della Control Unit CU320 lampeggia rapidamente di luce arancione (2 Hz).
- 5. Dopo la conclusione dell'aggiornamento automatico del firmware occorre eseguire un POWER ON (spegnimento e accensione dell'apparecchio).

Nota

L'alimentazione dei componenti non deve essere interrotta durante l'aggiornamento.

CAUTELA

L'installazione di un nuovo firmware dovrebbe essere eseguita soltanto in caso di anomalie dell'apparecchio.

Non si può escludere che si verifichino problemi in seguito ad un aggiornamento.

11.8 Caricamento dal PC del nuovo firmware del pannello operativo

Descrizione

In alcuni casi è necessario caricare un firmware nell'AOP quando sono richieste migliorie o correzioni di errori relative alla funzionalità dell'AOP.

Se dopo l'inserzione dell'azionamento viene rilevata una versione più recente del firmware sulla scheda CompactFlash, l'AOP30 chiede se si desidera caricare un nuovo firmware. Rispondere "SI".

In questo modo il firmware viene caricato nel pannello operativo e viene visualizzata la seguente finestra di dialogo.

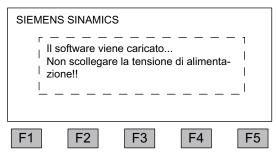


Figura 11-21 Finestra di dialogo di caricamento del firmware

Se il caricamento del firmware dovesse fallire, lo si può eseguire manualmente.

Il programma di caricamento LOAD_AOP30 e il file del firmware si trovano sul CD.

Procedura di caricamento del firmware

- 1. Creare il collegamento RS232 dal PC all'AOP30
- 2. Inserire la tensione di alimentazione DC 24 V
- 3. Avviare il programma LOAD_AOP30 sul PC
- 4. Selezionare l'interfaccia utilizzata sul PC (COM1, COM2)
- 5. Selezionare ed aprire il firmware (AOP30.H86)
- 6. Inserire l'alimentazione dell'AOP30 con il tasto rosso (O) premuto secondo le indicazioni nella finestra di stato del programma.
- 7. La procedura di caricamento viene avviata automaticamente.
- 8. Eseguire un POWER ON (disinserire e reinserire la tensione di alimentazione).

Dati tecnici 12

12.1 Contenuto del capitolo

Questo capitolo descrive:

- Dati tecnici generali e specifici degli apparecchi.
- Indicazioni relative alle limitazioni di impiego degli apparecchi in condizioni ambientali sfavorevoli (riduzione della potenza).

12.2 Dati generali

Tabella 12-1 Dati tecnici generali

Dati elettrici								
Frequenza di rete	47 Hz 63 Hz							
Frequenza di uscita	0 Hz 300 Hz							
Fattore di potenza di rete - oscillazione di base - totale	≥ 0,98 0,93 0,96							
Rendimento del convertitore	> 98 %	> 98 %						
Commutazioni in ingresso	1 volta ogni 3 minuti							
Dati meccanici								
Grado di protezione	IP20 (opzionali i gradi di prote	zione più elevati fino a IP54)						
Classe di protezione	secondo EN 50178 parte 1							
Tipo di raffreddamento	Raffreddamento forzato ad ari	а						
Livello di pressione acustica	≤ 75 dB(A) ad una frequenza ≤ 78 dB(A) ad una frequenza							
Protezione da contatto diretto	BGV A 3							
Sistema armadio	Rittal TS 8, porte con chiusura	a a doppia chiave						
Verniciatura	RAL 7035 (vano interno)							
Conformità alle norme								
Norme	EN 60 146-1, EN 61 800-2, Ef	N 61 800-3, EN 50 178, EN 60 2	204-1, EN 60 529					
Marcatura CE	Secondo la direttiva EMC n. 8	9/336/CEE e la direttiva sulla ba	assa tensione n. 73/23/CEE					
Soppressione radiodisturbi	Secondo la normativa EMC su categoria C3 (categoria C2 op	ui prodotti per azionamenti a vel zionale (L00)) 1)	locità variabile EN 61 800-3,					
Condizioni ambientali								
	In esercizio	Magazzinaggio	Trasporto					
Temperatura ambiente	0 °C +40 °C fino a + 50 °C con derating	-25 °C +55 °C	-25 °C +70 °C a partire da –40 °C per 24 ore					
Umidità relativa dell'aria (condensa non ammessa)	5 % 95 %	5 % 95 %	5 % 95 % con 40 °C					
corrispondente alla classe		1K4 secondo IEC 60 721-3-1	2K3 secondo IEC 60 721-3-2					
Altitudine d'installazione	Fino a 2000 m s.l.m. senza rid > 2000 m s.l.m. con riduzione	luzione della potenza, della potenza (vedere il capitolo	o "Dati di derating")					
Resistenza meccanica		,						
Sollecitazioni da vibrazioni Deviazione	0,075 mm da 10 Hz 58 Hz 10 m/s² da > 58 Hz 200	1,5 mm da 5 Hz 9 Hz	3,1 mm da 5 Hz 9 Hz					
- accelerazione	Hz	5 m/s² da > 9 Hz 200 Hz	10 m/s² da > 9 Hz 200 Hz					
Sollecitazione da urti: - accelerazione	100 m/s² con 11 ms	40 m/s² con 22 ms	100 m/s² con 11 ms					

¹⁾ Vale per le lunghezze del conduttore fino a 100 m.

12.2.1 Dati di derating

Derating di corrente in base all'altitudine di installazione e alla temperatura ambiente

Se gli apparecchi in armadio vengono impiegati ad altitudini >2000 m s.l.m., la corrente di uscita massima ammessa può essere dedotta dalla seguente tabella. Tra l'altitudine di montaggio e la temperatura ambiente ha luogo una compensazione. Va inoltre tenuto presente il grado di protezione scelto per l'apparecchio.

Tabella 12-2 Derating della corrente in funzione della temperatura ambiente (temperatura dell'aria in ingresso nell'apparecchio in armadio) e altitudine di montaggio per gli apparecchi in armadio con grado di protezione IP20 / IP21/ IP23 / IP43

Altitudine di	Temperatura ambiente in °C							
installazione s.l.m. in m	20	25	30	35	40	45	50	
0 2000		100 %					87,0 %	
fino a 2500		100) %		96,3 %	91,4 %	83,7 %	
fino a 3000		100 % 96,2 %			92,5 %	87,9 %	80,5 %	
fino a 3500	100 % 96,7 %			92,3 %	88,8 %	84,3 %	77,3 %	
fino a 4000	100 %	97,8 %	92,7 %	88,4 %	85,0 %	80,8 %	74,0 %	

Tabella 12-3 Derating di corrente in base alla temperatura ambiente (temperatura di aerazione all'entrata dell'aria dell'apparecchio in armadio) e all'altitudine di montaggio e per apparecchi con grado di protezione IP54

Altitudine di	Temperatura ambiente in °C							
installazione s.l.m. in m	20	25	30	35	40	45	50	
0 2000		100 %				87,5 %	80,0 %	
fino a 2500		100 %		96,3 %	91,4 %	84,2 %	77,0 %	
fino a 3000	100	0 %	96,2 %	92,5 %	87,9 %	81,0 %	74,1 %	
fino a 3500	100 %	96,7 %	92,3 %	88,8 %	84,3 %	77,7 %	71,1 %	
fino a 4000	97,8 %	92,7 %	88,4 %	85,0 %	80,8 %	74,7 %	68,0 %	

Derating di tensione in base all'altitudine di montaggio

Oltre al derating di corrente, per le altitudini di montaggio >2000 m s.l.m. va tenuto in considerazione anche il derating di tensione.

Tabella 12-4 Derating di tensione in base all'altitudine di installazione, 3 AC 380 V – 480 V

Altitudine di installazione	Tensione di ingresso nominale del convertitore					
s.l.m. in m	380 V	380 V 400 V 420 V 440 V				480 V
0 2000			100	%		
fino a 2250			100 %			96 %
fino a 2500		100	98 %	94 %		
fino a 2750		100 %		98 %	94 %	90 %
fino a 3000		100 %		95 %	91 %	88 %
fino a 3250	100) %	97 %	93 %	89 %	85 %
fino a 3500	100 %	98 %	93 %	89 %	85 %	82 %
fino a 3750	100 %	95 %	91 %	87 %	83 %	79 %
fino a 4000	96 %	92 %	87 %	83 %	80 %	76 %

Tabella 12-5 Derating di tensione in base all'altitudine di installazione, 3 AC 500 V – 600 V

Altitudine di installazione	Tensione di ingresso nominale del convertitore				
s.l.m. in m	500 V	525 V	575 V	600 V	
0 2000		10	0 %		
fino a 2250		10	0 %		
fino a 2500		10	0 %		
fino a 2750		10	0 %		
fino a 3000		10	0 %		
fino a 3250		100 %		98 %	
fino a 3500	100	100 % 98 %			
fino a 3750	100 % 94 %			91 %	
fino a 4000	100	%	91 %	87 %	

Tabella 12-6 Derating di tensione in base all'altitudine di installazione, 3 AC 660 V – 690 V

Altitudine di installazione	Tensione di ingresso nominale del convertitore					
s.l.m. in m	660 V	690 V				
0 2000	100 %					
fino a 2250	100 %	96 %				
fino a 2500	98 %	94 %				
fino a 2750	94 %	90 %				
fino a 3000	91 %	88 %				
fino a 3250	89 %	85 %				
fino a 3500	85 %	82 %				
fino a 3750						
fino a 4000	- -	-				

Derating di corrente in funzione della frequenza impulsi

Se si aumenta la frequenza impulsi occorre considerare un fattore di derating della corrente di uscita. Questo fattore di derating deve essere applicato alle correnti indicate nei dati tecnici.

Tabella 12-7 Fattore di derating della corrente di uscita in relazione alla frequenza impulsi nel caso di apparecchiature con frequenza impulsi nominale di 2 kHz

N. di ordinazione 6SL3710	Potenza [kW]	Corrente di uscita a 2 kHz [A]	Fattore di derating a 4 kHz				
Tensione di allacciamento 3 AC 380 – 480 V							
1GE32-1_A0	110	210	82 %				
1GE32-6_A0	132	260	83 %				
1GE33-1_A0	160	310	88 %				
1GE33-8_A0	200	380	87 %				
1GE35-0_A0	250	490	78 %				

Tabella 12-8 Fattore di derating della corrente di uscita in relazione alla frequenza impulsi nel caso di apparecchiature con frequenza impulsi nominale di 1,25 kHz

N. di ordinazione 6SL3710	Potenza [kW]	Corrente di uscita a 1,25 kHz [A]	Fattore di derating a 2,5 kHz	Fattore di derating a 5 kHz			
Tensione di allacciamento 3 AC 380 – 480 V							
1GE36-1_A0	315	605	72 %	60 %			
1GE37-5_A0	400	745	72 %	60 %			
1GE38-4_A0	450	840	79 %	60 %			
1GE41-0_A0	560	985	87 %	60 %			
2GE41-1AA0	630	1120	72 %	60 %			
2GE41-4AA0	710	1380	72 %	60 %			
2GE41-6AA0	900	1560	79 %	60 %			
	To	ensione di allacciamento 3 AC 500	0 – 600 V				
1GF31-8_A0	110	175	87 %	60 %			
1GF32-2_A0	132	215	87 %	60 %			
1GF32-6_A0	160	260	88 %	60 %			
1GF33-3_A0	200	330	82 %	55 %			
1GF34-1_A0	250	410	82 %	55 %			
1GF34-7_A0	315	465	87 %	55 %			
1GF35-8_A0	400	575	85 %	55 %			
1GF37-4_A0	500	735	79 %	55 %			
1GF38-1_A0	560	810	72 %	55 %			
2GF38-6AA0	630	860	87 %	55 %			
2GF41-1AA0	710	1070	85 %	55 %			
2GF41-4AA0	1000	1360	79 %	55 %			

N. di ordinazione 6SL3710	Potenza [kW]	Corrente di uscita a 1,25 kHz [A]	Fattore di derating a 2,5 kHz	Fattore di derating a 5 kHz			
Tensione di allacciamento 3 AC 660 – 690 V							
1GH28-5_A0	75	85	89 %	60 %			
1GH31-0_A0	90	100	88 %	60 %			
1GH31-2_A0	110	120	88 %	60 %			
1GH31-5_A0	132	150	84 %	55 %			
1GH31-8_A0	160	175	87 %	60 %			
1GH32-2_A0	200	215	87 %	60 %			
1GH32-6_A0	250	260	88 %	60 %			
1GH33-3_A0	315	330	82 %	55 %			
1GH34-1_A0	400	410	82 %	55 %			
1GH34-7_A0	450	465	87 %	55 %			
1GH35-8_A0	560	575	85 %	55 %			
1GH37-4_A0	710	735	79 %	55 %			
1GH38-1_A0	800	810	72 %	55 %			
2GH41-1AA0	1000	1070	85 %	55 %			
2GH41-4AA0	1350	1360	79 %	55 %			
2GH41-5AA0	1500	1500	72 %	55 %			

Per frequenze di impulso comprese tra i valori fissi, è possibile determinare i fattori di derating mediante interpolazione lineare.

Si applica la formula seguente:
$$Y_2 = Y_0 + \frac{Y_1 - Y_0}{X_1 - X_0}(X_2 - X_0)$$

Esempio:

Si cerca il fattore di derating con X₂ = 2 kHz per 6SL3710-1GE41-0_A0.

$$X_0 = 1,25 \text{ kHz}, Y_0 = 100 \%, X_1 = 2,5 \text{ kHz}, Y_1 = 87 \%, X_2 = 2 \text{ kHz}, Y_2 = ??$$

$$Y_2 = 100 \% + \frac{87 \% - 100 \%}{2.5 \text{ kHz} - 1.25 \text{ kHz}} (2 \text{ kHz} - 1.25 \text{ kHz}) =$$

100 % +
$$\frac{-13 \%}{1,25 \text{ kHz}}$$
 (0,75 kHz) = 100 % - 7,8 % = $\frac{92,2 \%}{1,25 \text{ kHz}}$

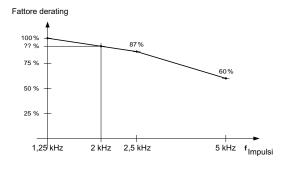


Figura 12-1 Calcolo dei fattori di derating tramite interpolazione lineare

12.2.2 Sovraccaricabilità

I convertitori presentano una riserva di sovraccarico, utile ad es. per superare le coppie di scollamento.

Per gli azionamenti con richieste di sovraccarico occorre quindi prevedere la corrente di carico di base corrispondente al carico richiesto.

I sovraccarichi presuppongono che prima e dopo il sovraccarico l'apparecchio funzioni con la sua corrente di carico di base, con una durata del ciclo di 300 s.

Sovraccarico contenuto

La corrente di carico base per sovraccarico ridotto I_L si basa sul ciclo 110 % per 60 s oppure 150 % per 10 s.

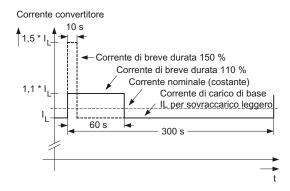


Figura 12-2 Sovraccarico contenuto

Sovraccarico elevato

La corrente di carico di base per sovraccarico forte $l_{\textrm{H}}$ si basa sul ciclo 150 % per 60 s oppure 160 % per 10 s.

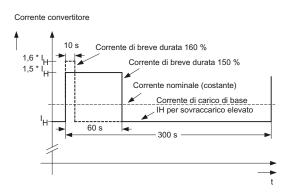


Figura 12-3 Sovraccarico elevato

12.3 Dati tecnici

12.3 Dati tecnici

Nota

Le indicazioni di corrente, tensione e potenza contenute in questa tabella, sono valori nominali.

La protezione dei cavi verso l'apparecchio avviene tramite fusibili con caratteristica gL. Le sezioni di collegamento si riferiscono a cavi in rame con tre conduttori orizzontali posati in aria ad una temperatura ambiente di 30 °C (86 °F) (secondo DIN VDE 0298 parte 2 / gruppo 5) e con la protezione dei conduttori raccomandata secondo DIN VDE 0100 parte 430. AWG (American Wire Gauge): Misura dei conduttori americana per sezioni fino a 120 mm²; MCM (Mille Circular Mil): Misura dei conduttori americana per sezioni da 120 mm².

12.3.1 Apparecchi in armadio esecuzione A, 3 AC 380 V - 480 V

Tabella 12-9 Esecuzione A, 3 AC 380 V - 480 V, parte 1

Categoria	Unità			
N. d'ordinazione 6SL3710-		1GE32-1AA0	1GE32-6AA0	1GE33-1AA0
Potenza nominale motore				
a 400 V, 50 Hz	kW	110	132	160
a 460 V, 60 Hz	hp	150	200	250
Tensione d'ingresso nominale	V	3 AC 380	V 480 V ±10 % (-15	% < 1 min)
Corrente nominale d'ingresso 1)	Α	239	294	348
Corrente di uscita nominale	Α	210	260	310
Corrente di carico di base I _L ²⁾	Α	205	250	302
Corrente di carico di base IH3)	Α	178	233	277
Frequenza di uscita max. 4)	Hz	160	160	160
Potenza dissipata	kW	2,9	3,8	4,4
Aria di raffreddamento necessaria	m³/s	0,17	0,23	0,36
Livello di pressione acustica a 50/60 Hz	dB(A)	67/68	69/73	69/73
Collegamento alla rete	, ,			
raccomandato: DIN VDE 5)	mm ²	2 x 70	2 x 95	2 x 120
max.: DIN VDE	mm ²	4 x 240	4 x 240	4 x 240
AWG / MCM		4 x (500)	4 x (500)	4 x (500)
Vite di fissaggio		M12 (2 fori)	M12 (2 fori)	M12 (2 fori)
Collegamento del motore				
raccomandato: DIN VDE 5)	mm ²	2 x 50	2 x 70	2 x 95
max.: DIN VDE	mm ²	2 x 150	2 x 150	2 x 150
AWG / MCM		2 x (300)	2 x (300)	2 x (300)
Vite di fissaggio		M12 (2 fori)	M12 (2 fori)	M12 (2 fori)
Collegamento conduttore di protezione				
Vite di fissaggio		M12 (2 fori)	M12 (2 fori)	M12 (2 fori)
Peso (esecuzione standard) ca.	kg	320	320	390
Grandezza costruttiva Powerblock		FX	FX	GX
Dimensioni (esecuzione standard)				
larghezza x altezza x profondità	mm	800 x 2000 x 600	800 x 2000 x 600	800 x 2000 x 600
Fusibile raccomandato				
Protezione conduttori				
(se è montata l'opzione L26)		3NA3252	3NA3254	3NA3365
Corrente nominale	Α	315	355	500
Grandezza costruttiva secondo DIN 43620-1		2	2	3
Protezione conduttori e semiconduttori		3NE1230-2	3NE1331-2	3NE1334-2
(se è montata l'opzione L26) Corrente nominale	Α	315	350	500
Grandezza costruttiva secondo DIN 43620-1	^	1	2	2
1)	<u> </u>		· 140 D00	<u> -</u>

¹⁾ Le correnti implicano 10 A per le utenze ausiliarie esterne, come ad es. per l'opzione L19 o B03.

 $^{^{2)}}$ La corrente di carico di base I_L si basa su un ciclo di carico del 110 % per 60 s oppure del 150 % per 10 s con una durata del ciclo di 300 s (vedere il capitolo "Sovraccaricabilità").

³⁾ La corrente di carico di base I_H si basa su un ciclo di carico del 150 % per 60 s oppure del 160 % per 10 s con una durata del ciclo di 300 s (vedere il capitolo "Sovraccaricabilità").

⁴⁾ Frequenza di uscita massima alla frequenza impulsi preimpostata in fabbrica (aumento della frequenza di uscita, vedere il capitolo "Funzioni, funzioni di sorveglianza e funzioni di protezione / Aumento della frequenza di uscita", dati di derating, vedere il capitolo "Dati di derating").

⁵⁾ Le raccomandazioni per il mercato americano in AWG o MCM si devono desumere dalle corrispondenti norme NEC (National Electrical Code) o rispettivamente CEC (Canadian Electrical Code).

Tabella 12-10 Esecuzione A, 3 AC 380 V - 480 V, parte 2

Categoria	Unità			
N. d'ordinazione 6SL3710-		1GE33-8AA0	1GE35-0AA0	1GE36-1AA0
Potenza nominale motore a 400 V, 50 Hz a 460 V, 60 Hz	kW hp	200 300	250 400	315 500
Tensione d'ingresso nominale	V		V 480 V ±10 % (-15	
Corrente nominale d'ingresso 1)	A	405	519	639
Corrente di uscita nominale	Α	380	490	605
Corrente di carico di base lu²)	Α	370	477	590
Corrente di carico di base IH ³⁾	Α	340	438	460
Frequenza di uscita max. 4)	Hz	160	160	100
Potenza dissipata	kW	5,3	6,4	8,2
Aria di raffreddamento necessaria	m³/s	0,36	0,36	0,78
Livello di pressione acustica a 50/60 Hz	dB(A)	69/73	69/73	70/73
Collegamento alla rete	, ,			
raccomandato: DIN VDE 5)	mm ²	2 x 120	2 x 185	2 x 240
max.: DIN VDE	mm ²	4 x 240	4 x 240	4 x 240
AWG / MCM		4 x (500)	4 x (500)	4 x (500)
Vite di fissaggio		M12 (2 fori)	M12 (2 fori)	M12 (2 fori)
Collegamento del motore				
raccomandato: DIN VDE 5)	mm ²	2 x 95	2 x 150	2 x 185
max.: DIN VDE	mm ²	2 x 150	2 x 240	4 x 240
AWG / MCM		2 x (300)	2 x (500)	4 x (500)
Vite di fissaggio		M12 (2 fori)	M12 (2 fori)	M12 (2 fori)
Collegamento conduttore di protezione				
Vite di fissaggio		M12 (2 fori)	M12 (2 fori)	M12 (2 fori)
Peso (esecuzione standard) ca.	kg	480	480	860
Grandezza costruttiva Powerblock		GX	GX	HX
Dimensioni (esecuzione standard)		4000 0000 000	4000 0000 000	4000 0000 000
larghezza x altezza x profondità	mm	1000 x 2000 x 600	1000 x 2000 x 600	1200 x 2000 x 600
Fusibile raccomandato				
Protezione conduttori		3NA3365	3NA3372	3NA3475
(se è montata l'opzione L26) Corrente nominale	Α	500	630	800
Grandezza costruttiva secondo DIN 43620-1		3	3	4
Protezione conduttori e semiconduttori				
(se è montata l'opzione L26)	1	3NE1334-2	3NE1436-2	3NE1438-2
Corrente nominale	Α	500	630	800
Grandezza costruttiva secondo DIN 43620-1		2	3	3

¹⁾ Le correnti implicano 10 A per le utenze ausiliarie esterne, come ad es. per l'opzione L19 o B03.

²⁾ La corrente di carico di base l∟ si basa su un ciclo di carico del 110 % per 60 s oppure del 150 % per 10 s con una durata del ciclo di 300 s (vedere il capitolo "Sovraccaricabilità").

 $^{^{3)}}$ La corrente di carico di base I_H si basa su un ciclo di carico del 150 % per 60 s oppure del 160 % per 10 s con una durata del ciclo di 300 s (vedere il capitolo "Sovraccaricabilità").

⁴⁾ Frequenza di uscita massima alla frequenza impulsi preimpostata in fabbrica (aumento della frequenza di uscita, vedere il capitolo "Funzioni, funzioni di sorveglianza e funzioni di protezione / Aumento della frequenza di uscita", dati di derating, vedere il capitolo "Dati di derating").

⁵⁾ Le raccomandazioni per il mercato americano in AWG o MCM si devono desumere dalle corrispondenti norme NEC (National Electrical Code) o rispettivamente CEC (Canadian Electrical Code).

Tabella 12-11 Esecuzione A, 3 AC 380 V - 480 V, parte 3

Categoria	Unità			
N. d'ordinazione 6SL3710-		1GE37-5AA0	1GE38-4AA0	1GE41-0AA0
Potenza nominale motore a 400 V, 50 Hz	kW	400	450	560
a 460 V, 60 Hz	hp	600	700	800
Tensione d'ingresso nominale	٧		V 480 V ±10 % (-15	·
Corrente nominale d'ingresso 1)	Α	785	883	1034
Corrente di uscita nominale	Α	745	840	985
Corrente di carico di base I _L ²⁾	Α	725	820	960
Corrente di carico di base I _H ³⁾	Α	570	700	860
Frequenza di uscita max. 4)	Hz	100	100	100
Potenza dissipata	kW	9,6	10,1	14,4
Aria di raffreddamento necessaria	m³/s	0,78	0,78	1,48
Livello di pressione acustica a 50/60 Hz	dB(A)	70/73	70/73	72/75
Collegamento alla rete				
raccomandato: DIN VDE 5)	mm ²	2 x 300	4 x 150	4 x 185
max.: DIN VDE	mm ²	4 x 240	8 x 240	8 x 240
AWG / MCM		4 x (500)	8 x (500)	8 x (500)
Vite di fissaggio		M12 (2 fori)	M12 (4 fori)	M12 (4 fori)
Collegamento del motore				
raccomandato: DIN VDE 5)	mm ²	3 x 150	3 x 185	4 x 185
max.: DIN VDE	mm ²	4 x 240	4 x 240	6 x 240
AWG / MCM		4 x (500)	4 x (500)	6 x (500)
Vite di fissaggio		M12 (2 fori)	M12 (2 fori)	M12 (3 fori)
Collegamento conduttore di protezione				
Vite di fissaggio		M12 (10 fori)	M12 (16 fori)	M12 (18 fori)
Peso (esecuzione standard) ca.	kg	865	1075	1360
Grandezza costruttiva Powerblock		HX	HX	JX
Dimensioni (esecuzione standard) larghezza x altezza x profondità	mm	1200 x 2000 x 600	1200 x 2000 x 600	1600 x 2000 x 600
Fusibile raccomandato				
Protezione conduttori (se è montata l'opzione L26) Corrente nominale Grandezza costruttiva secondo DIN 43620-1	A	3NA3475 800 4	Interruttore automatico	Interruttore automatico
Protezione conduttori e semiconduttori (se è montata l'opzione L26) Corrente nominale Grandezza costruttiva secondo DIN 43620-1	A	3NE1448-2 850 3	Interruttore automatico	Interruttore automatico

¹⁾ Le correnti implicano 10 A per le utenze ausiliarie esterne, come ad es. per l'opzione L19 o B03.

 $^{^{2)}}$ La corrente di carico di base I_L si basa su un ciclo di carico del 110 % per 60 s oppure del 150 % per 10 s con una durata del ciclo di 300 s (vedere il capitolo "Sovraccaricabilità").

 $^{^{3)}}$ La corrente di carico di base I_H si basa su un ciclo di carico del 150 % per 60 s oppure del 160 % per 10 s con una durata del ciclo di 300 s (vedere il capitolo "Sovraccaricabilità").

⁴⁾ Frequenza di uscita massima alla frequenza impulsi preimpostata in fabbrica (aumento della frequenza di uscita, vedere il capitolo "Funzioni, funzioni di sorveglianza e funzioni di protezione / Aumento della frequenza di uscita", dati di derating, vedere il capitolo "Dati di derating").

⁵⁾ Le raccomandazioni per il mercato americano in AWG o MCM si devono desumere dalle corrispondenti norme NEC (National Electrical Code) o rispettivamente CEC (Canadian Electrical Code).

Tabella 12-12 Esecuzione A, 3 AC 380 V - 480 V, parte 4

Categoria	Unità			
N. d'ordinazione 6SL3710-		2GE41-1AA0	2GE41-4AA0	2GE41-6AA0
Potenza nominale motore a 400 V, 50 Hz a 460 V, 60 Hz	kW hp	630 900	710 1000	900 1250
Tensione d'ingresso nominale	V	3 AC 380	V 480 V ±10 % (-15	% < 1 min)
Corrente nominale d'ingresso 1)	Α	1174	1444	1624
Corrente di uscita nominale	Α	1120	1380	1560
Corrente di carico di base I _L ²⁾	Α	1092	1340	1516
Corrente di carico di base I _H ³⁾	Α	850	1054	1294
Frequenza di uscita max. 4)	Hz	100	100	100
Potenza dissipata	kW	16,4	19,2	20,2
Aria di raffreddamento necessaria	m³/s	1,56	1,56	1,56
Livello di pressione acustica a 50/60 Hz	dB(A)	73/76	73/76	73/76
Collegamento alla rete		Per ogni armadio:	Per ogni armadio:	Per ogni armadio:
raccomandato: DIN VDE 5)	mm²	2 x 240	2 x 300	4 x 150
max.: DIN VDE AWG / MCM	mm ²	4 x 240 4 x (500)	4 x 240 4 x (500)	8 x 240 8 x (500)
Vite di fissaggio		M12 (2 fori)	M12 (2 fori)	M12 (4 fori)
Collegamento del motore		Per ogni armadio:	Per ogni armadio:	Per ogni armadio:
raccomandato: DIN VDE 5)	mm ²	2 x 185	3 x 150	3 x 185
max.: DIN VDE	mm ²	4 x 240	4 x 240	4 x 240
AWG / MCM		4 x (500)	4 x (500)	4 x (500)
Vite di fissaggio		M12 (2 fori)	M12 (2 fori)	M12 (2 fori)
Collegamento conduttore di protezione		Per ogni armadio:	Per ogni armadio:	Per ogni armadio:
Vite di fissaggio		M12 (2 fori)	M12 (10 fori)	M12 (16 fori)
Peso (esecuzione standard) ca.	kg	1700	1710	2130
Grandezza costruttiva Powerblock		HX	HX	HX
Dimensioni (esecuzione standard) larghezza x altezza x profondità	mm	2400 x 2000 x 600	2400 x 2000 x 600	2400 x 2000 x 600
Fusibile raccomandato				
Protezione conduttori (se è montata l'opzione L26) Corrente nominale Grandezza costruttiva secondo DIN 43620-1	A	Per ogni armadio: 3NA3475 800 4	Per ogni armadio: 3NA3475 800 4	Per ogni armadio: interruttore automatico
Protezione conduttori e semiconduttori (se è montata l'opzione L26) Corrente nominale Grandezza costruttiva secondo DIN 43620-1	А	Per ogni armadio: 3NE1438-2 800 3	Per ogni armadio: 3NE1448-2 850 3	Per ogni armadio: interruttore automatico

¹⁾ Le correnti implicano 10 A per le utenze ausiliarie esterne, come ad es. per l'opzione L19 o B03.

²⁾ La corrente di carico di base l∟ si basa su un ciclo di carico del 110 % per 60 s oppure del 150 % per 10 s con una durata del ciclo di 300 s (vedere il capitolo "Sovraccaricabilità").

 $^{^{3)}}$ La corrente di carico di base I_H si basa su un ciclo di carico del 150 % per 60 s oppure del 160 % per 10 s con una durata del ciclo di 300 s (vedere il capitolo "Sovraccaricabilità").

⁴⁾ Frequenza di uscita massima alla frequenza impulsi preimpostata in fabbrica (aumento della frequenza di uscita, vedere il capitolo "Funzioni, funzioni di sorveglianza e funzioni di protezione / Aumento della frequenza di uscita", dati di derating, vedere il capitolo "Dati di derating").

⁵⁾ Le raccomandazioni per il mercato americano in AWG o MCM si devono desumere dalle corrispondenti norme NEC (National Electrical Code) o rispettivamente CEC (Canadian Electrical Code).

12.3.2 Apparecchi in armadio esecuzione C, 3 AC 380 V - 480 V

Tabella 12-13 Esecuzione C, 3 AC 380 V - 480 V, parte 1

Categoria	Unità			
N. d'ordinazione 6SL3710-		1GE32-1CA0	1GE32-6CA0	1GE33-1CA0
Potenza nominale motore				
a 400 V, 50 Hz	kW	110	132	160
a 460 V, 60 Hz	hp	150	200	250
Tensione d'ingresso nominale	V	3 AC 38	30 V 480 V ±10 % (-15	5 % < 1 min)
Corrente nominale d'ingresso 1)	Α	239	294	348
Corrente di uscita nominale	Α	210	260	310
Corrente di carico di base IL2)	Α	205	250	302
Corrente di carico di base I _H ³⁾	Α	178	233	277
Frequenza di uscita max. 4)	Hz	100	100	100
Potenza dissipata	kW	2,9	3,8	4,4
Aria di raffreddamento necessaria	m³/s	0,17	0,23	0,36
Livello di pressione acustica a 50/60 Hz	dB(A)	67/68	69/73	69/73
Collegamento alla rete				
raccomandato: DIN VDE 5)	mm ²	2 x 70	2 x 95	2 x 120
max.: DIN VDE	mm ²	2 x 240	2 x 240	2 x 240
AWG / MCM		2 x (500)	2 x (500)	2 x (500)
Vite di fissaggio		M12 (1 foro)	M12 (1 foro)	M12 (1 foro)
Collegamento del motore				
raccomandato: DIN VDE 5)	mm ²	2 x 50	2 x 70	2 x 95
max.: DIN VDE	mm ²	2 x 150	2 x 150	2 x 150
AWG / MCM		2 x (300)	2 x (300)	2 x (300)
Vite di fissaggio		M12 (1 foro)	M12 (1 foro)	M12 (1 foro)
Collegamento conduttore di protezione				
Vite di fissaggio		M12 (2 fori)	M12 (2 fori)	M12 (2 fori)
Peso (esecuzione standard) ca.	kg	225	225	300
Grandezza costruttiva Powerblock		FX	FX	GX
Dimensioni (esecuzione standard)				
larghezza x altezza x profondità	mm	400 x 2000 x 600	400 x 2000 x 600	400 x 2000 x 600
Fusibile raccomandato				
Protezione conduttori e semiconduttori		3NE1230-2	3NE1331-2	3NE1334-2
Corrente nominale	Α	315	350	500
Grandezza costruttiva secondo DIN		1	2	2
43620-1				

¹⁾ Le correnti implicano 10 A per le utenze ausiliarie esterne, come ad es. per l'opzione L19 o B03.

 $^{^{2)}}$ La corrente di carico di base I_L si basa su un ciclo di carico del 110 % per 60 s oppure del 150 % per 10 s con una durata del ciclo di 300 s (vedere il capitolo "Sovraccaricabilità").

 $^{^{3)}}$ La corrente di carico di base I_H si basa su un ciclo di carico del 150 % per 60 s oppure del 160 % per 10 s con una durata del ciclo di 300 s (vedere il capitolo "Sovraccaricabilità").

⁴⁾ Frequenza di uscita massima alla frequenza impulsi preimpostata in fabbrica (aumento della frequenza di uscita, vedere il capitolo "Funzioni, funzioni di sorveglianza e funzioni di protezione / Aumento della frequenza di uscita", dati di derating, vedere il capitolo "Dati di derating").

⁵⁾ Le raccomandazioni per il mercato americano in AWG o MCM si devono desumere dalle corrispondenti norme NEC (National Electrical Code) o rispettivamente CEC (Canadian Electrical Code).

Tabella 12-14 Esecuzione C, 3 AC 380 V - 480 V, parte 2

Categoria	Unità			
N. d'ordinazione 6SL3710-		1GE33-8CA0	1GE35-0CA0	1GE36-1CA0
Potenza nominale motore				
a 400 V, 50 Hz	kW	200	250	315
a 460 V, 60 Hz	hp	300	400	500
Tensione d'ingresso nominale	V	3 AC 380	V 480 V ±10 % (-15 °	% < 1 min)
Corrente nominale d'ingresso 1)	Α	405	519	639
Corrente di uscita nominale	Α	380	490	605
Corrente di carico di base IL ²⁾	Α	370	477	590
Corrente di carico di base IH3)	Α	340	438	460
Frequenza di uscita max. 4)	Hz	100	100	100
Potenza dissipata	kW	5,3	6,4	8,2
Aria di raffreddamento necessaria	m³/s	0,36	0,36	0,78
Livello di pressione acustica a 50/60	dB(A)	69/73	69/73	70/73
Hz				
Collegamento alla rete				
raccomandato: DIN VDE 5)	mm ²	2 x 120	2 x 185	2 x 240
max.: DIN VDE	mm ²	2 x 240	2 x 240	8 x 240
AWG / MCM		2 x (500)	2 x (500)	8 x (500)
Vite di fissaggio		M12 (1 foro)	M12 (1 foro)	M12 (4 fori)
Collegamento del motore	0	0.05	0 450	0 405
raccomandato: DIN VDE 5)	mm ²	2 x 95	2 x 150	2 x 185
max.: DIN VDE AWG / MCM	mm ²	2 x 150 2 x (300)	2 x 240 2 x (500)	8 x 240 8 x (500)
Vite di fissaggio		M12 (1 foro)	M12 (1 foro)	M12 (4 fori)
		10112 (1 1010)	10112 (11010)	10112 (4 1011)
Collegamento conduttore di protezione		M40 (0 fami)	M40 (0 fami)	M40 (0 for:)
Vite di fissaggio		M12 (2 fori)	M12 (2 fori)	M12 (2 fori)
Peso (esecuzione standard) ca.	kg	300	300	670
Grandezza costruttiva Powerblock		GX	GX	HX
Dimensioni (esecuzione standard)				
larghezza x altezza x profondità	mm	400 x 2000 x 600	400 x 2000 x 600	600 x 2000 x 600
Fusibile raccomandato				
Protezione conduttori e		3NE1334-2	3NE1436-2	3NE1438-2
semiconduttori	Α	500	630	800
Corrente nominale		2	3	3
Grandezza costruttiva secondo DIN				
43620-1				

¹⁾ Le correnti implicano 10 A per le utenze ausiliarie esterne, come ad es. per l'opzione L19 o B03.

 $^{^{2)}}$ La corrente di carico di base I_L si basa su un ciclo di carico del 110 % per 60 s oppure del 150 % per 10 s con una durata del ciclo di 300 s (vedere il capitolo "Sovraccaricabilità").

³⁾ La corrente di carico di base I_H si basa su un ciclo di carico del 150 % per 60 s oppure del 160 % per 10 s con una durata del ciclo di 300 s (vedere il capitolo "Sovraccaricabilità").

⁴⁾ Frequenza di uscita massima alla frequenza impulsi preimpostata in fabbrica (aumento della frequenza di uscita, vedere il capitolo "Funzioni, funzioni di sorveglianza e funzioni di protezione / Aumento della frequenza di uscita", dati di derating, vedere il capitolo "Dati di derating").

⁵⁾ Le raccomandazioni per il mercato americano in AWG o MCM si devono desumere dalle corrispondenti norme NEC (National Electrical Code) o rispettivamente CEC (Canadian Electrical Code).

Tabella 12-15 Esecuzione C, 3 AC 380 V - 480 V, parte 3

Categoria	Unità			
N. d'ordinazione 6SL3710-		1GE37-5CA0	1GE38-4CA0	1GE41-0CA0
Potenza nominale motore a 400 V, 50 Hz a 460 V, 60 Hz	kW hp	400 600	450 700	560 800
Tensione d'ingresso nominale	V	3 AC 38	80 V 480 V ±10 % (-15	% < 1 min)
Corrente nominale d'ingresso 1)	Α	785	883	1034
Corrente di uscita nominale	Α	745	840	985
Corrente di carico di base IL ²⁾	Α	725	820	960
Corrente di carico di base I _H 3)	Α	570	700	860
Frequenza di uscita max. 4)	Hz	100	100	100
Potenza dissipata	kW	9,6	10,1	14,4
Aria di raffreddamento necessaria	m ³ /s	0,78	0,78	1,48
Livello di pressione acustica a 50/60 Hz	dB(A)	70/73	70/73	72/75
Collegamento alla rete				
raccomandato: DIN VDE 5)	mm ²	2 x 300	4 x 150	4 x 185
max.: DIN VDE	mm ²	8 x 240	8 x 240	8 x 240
AWG / MCM		8 x (500)	8 x (500)	8 x (500)
Vite di fissaggio		M12 (4 fori)	M12 (4 fori)	M12 (4 fori)
Collegamento del motore				
raccomandato: DIN VDE 5)	mm ²	3 x 150	3 x 185	4 x 185
max.: DIN VDE	mm ²	8 x 240	8 x 240	8 x 240
AWG / MCM		8 x (500)	8 x (500)	8 x (500)
Vite di fissaggio		M12 (4 fori)	M12 (4 fori)	M12 (4 fori)
Collegamento conduttore di protezione		N440 (0.5 °)	N440 (0.5 °)	M40 (40 5 °)
Vite di fissaggio		M12 (8 fori)	M12 (8 fori)	M12 (10 fori)
Peso (esecuzione standard) ca.	kg	670	670	980
Grandezza costruttiva Powerblock	Ng	HX	HX	JX
Dimensioni (esecuzione standard)		1100	117	
larghezza x altezza x profondità	mm	600 x 2000 x 600	600 x 2000 x 600	1000 x 2000 x 600
Fusibile raccomandato				
Protezione conduttori e		3NE1448-2	Interruttore	Interruttore
semiconduttori	Α	850	automatico	automatico
Corrente nominale		3		
Grandezza costruttiva secondo DIN 43620-1				

¹⁾ Le correnti implicano 10 A per le utenze ausiliarie esterne, come ad es. per l'opzione L19 o B03.

 $^{^{2)}}$ La corrente di carico di base I_L si basa su un ciclo di carico del 110 % per 60 s oppure del 150 % per 10 s con una durata del ciclo di 300 s (vedere il capitolo "Sovraccaricabilità").

³⁾ La corrente di carico di base I_H si basa su un ciclo di carico del 150 % per 60 s oppure del 160 % per 10 s con una durata del ciclo di 300 s (vedere il capitolo "Sovraccaricabilità").

⁴⁾ Frequenza di uscita massima alla frequenza impulsi preimpostata in fabbrica (aumento della frequenza di uscita, vedere il capitolo "Funzioni, funzioni di sorveglianza e funzioni di protezione / Aumento della frequenza di uscita", dati di derating, vedere il capitolo "Dati di derating").

⁵⁾ Le raccomandazioni per il mercato americano in AWG o MCM si devono desumere dalle corrispondenti norme NEC (National Electrical Code) o rispettivamente CEC (Canadian Electrical Code).

12.3.3 Apparecchi in armadio esecuzione A, 3 AC 500 V - 600 V

Tabella 12-16 Esecuzione A, 3 AC 500 V - 600 V, parte 1

Categoria	Unità			
N. d'ordinazione 6SL3710-		1GF31-8AA0	1GF32-2AA0	1GF32-6AA0
Potenza nominale del motore	kW	110	132	160
Tensione d'ingresso nominale	V	3 AC 500	V 600 V ±10 % (-15	% < 1 min)
Corrente nominale d'ingresso 1)	Α	201	234	280
Corrente di uscita nominale	Α	175	215	260
Corrente di carico di base I _L ²⁾	Α	170	208	250
Corrente di carico di base I _H ³⁾	Α	157	192	233
Frequenza di uscita max. 4)	Hz	100	100	100
Potenza dissipata	kW	3,5	3,9	4,4
Aria di raffreddamento necessaria	m³/s	0,36	0,36	0,36
Livello di pressione acustica a 50/60 Hz	dB(A)	69/73	68/73	69/73
Collegamento alla rete				
raccomandato: DIN VDE 5)	mm²	120	2 x 70	2 x 95
max.: DIN VDE	mm ²	4 x 240	4 x 240	4 x 240
AWG / MCM		4 x (500)	4 x (500)	4 x (500)
Vite di fissaggio		M12 (2 fori)	M12 (2 fori)	M12 (2 fori)
Collegamento del motore				
raccomandato: DIN VDE 5)	mm ²	95	120	2 x 70
max.: DIN VDE	mm ²	2 x 150	2 x 150	2 x 185
AWG / MCM		2 x (300)	2 x (300)	2 x (350)
Vite di fissaggio		M12 (2 fori)	M12 (2 fori)	M12 (2 fori)
Collegamento conduttore di protezione				
Vite di fissaggio		M12 (2 fori)	M12 (2 fori)	M12 (2 fori)
Peso (esecuzione standard) ca.	kg	390	390	390
Grandezza costruttiva Powerblock		GX	GX	GX
Dimensioni (esecuzione standard) larghezza x altezza x profondità	mm	800 x 2000 x 600	800 x 2000 x 600	800 x 2000 x 600
Fusibile raccomandato				
Protezione conduttori (se è montata l'opzione L26) Corrente nominale Grandezza costruttiva secondo DIN 43620-1	A	3NA3244-6 250 2	3NA3252-6 315 2	3NA3354-6 355 3
Protezione conduttori e semiconduttori (se è montata l'opzione L26) Corrente nominale Grandezza costruttiva secondo DIN 43620-1	А	3NE1227-2 250 1	3NE1230-2 315 1	3NE1331-2 350 2

¹⁾ Le correnti implicano 10 A per le utenze ausiliarie esterne, come ad es. per l'opzione L19 o B03.

 $^{^{2)}}$ La corrente di carico di base I_L si basa su un ciclo di carico del 110 % per 60 s oppure del 150 % per 10 s con una durata del ciclo di 300 s (vedere il capitolo "Sovraccaricabilità").

³⁾ La corrente di carico di base I_H si basa su un ciclo di carico del 150 % per 60 s oppure del 160 % per 10 s con una durata del ciclo di 300 s (vedere il capitolo "Sovraccaricabilità").

⁴⁾ Frequenza di uscita massima alla frequenza impulsi preimpostata in fabbrica (aumento della frequenza di uscita, vedere il capitolo "Funzioni, funzioni di sorveglianza e funzioni di protezione / Aumento della frequenza di uscita", dati di derating, vedere il capitolo "Dati di derating").

⁵⁾ Le raccomandazioni per il mercato americano in AWG o MCM si devono desumere dalle corrispondenti norme NEC (National Electrical Code) o rispettivamente CEC (Canadian Electrical Code).

Tabella 12-17 Esecuzione A, 3 AC 500 V - 600 V, parte 2

Categoria	Unità			
N. d'ordinazione 6SL3710-		1GF33-3AA0	1GF34-1AA0	1GF34-7AA0
Potenza nominale del motore	kW	200	250	315
Tensione d'ingresso nominale	V	3 AC 5	00 V 600 V ±10 % (-1	5 % < 1 min)
Corrente nominale d'ingresso 1)	Α	353	436	493
Corrente di uscita nominale	Α	330	410	465
Corrente di carico di base I _L ²⁾	Α	320	400	452
Corrente di carico di base IH3)	Α	280	367	416
Frequenza di uscita max. 4)	Hz	100	100	100
Potenza dissipata	kW	5,4	6,9	7,8
Aria di raffreddamento necessaria	m³/s	0,36	0,78	0,78
Livello di pressione acustica a 50/60 Hz	dB(A)	69/73	72/75	72/75
Collegamento alla rete				
raccomandato: DIN VDE 5)	mm ²	2 x 120	2 x 185	2 x 185
max.: DIN VDE	mm ²	4 x 240	4 x 240	4 x 240
AWG / MCM		4 x (500)	4 x (500)	4 x (500)
Vite di fissaggio		M12 (2 fori)	M12 (2 fori)	M12 (2 fori)
Collegamento del motore				
raccomandato: DIN VDE 5)	mm ²	2 x 95	2 x 120	2 x 150
max.: DIN VDE	mm ²	2 x 240	4 x 240	4 x 240
AWG / MCM		2 x (500)	4 x (500)	4 x (500)
Vite di fissaggio		M12 (2 fori)	M12 (2 fori)	M12 (2 fori)
Collegamento conduttore di protezione				
Vite di fissaggio		M12 (2 fori)	M12 (2 fori)	M12 (2 fori)
Peso (esecuzione standard) ca.	kg	390	860	860
Grandezza costruttiva Powerblock		GX	HX	HX
Dimensioni (esecuzione standard)			4000 0000 000	4000 0000 000
larghezza x altezza x profondità	mm	800 x 2000 x 600	1200 x 2000 x 600	1200 x 2000 x 600
Fusibile raccomandato				
Protezione conduttori (se è montata l'opzione L26)		3NA3365-6	3NA3365-6	3NA3352-6
Corrente nominale	Α	500	500	2 x 315
Grandezza costruttiva secondo DIN 43620-1	' '	3	3	3
Protezione conduttori e semiconduttori				
(se è montata l'opzione L26)		3NE1334-2	3NE1334-2	3NE1435-2
Corrente nominale	Α	500	500	560
Grandezza costruttiva secondo DIN 43620-1		2	2	3

¹⁾ Le correnti implicano 10 A per le utenze ausiliarie esterne, come ad es. per l'opzione L19 o B03.

 $^{^{2)}}$ La corrente di carico di base I_L si basa su un ciclo di carico del 110 % per 60 s oppure del 150 % per 10 s con una durata del ciclo di 300 s (vedere il capitolo "Sovraccaricabilità").

 $^{^{3)}}$ La corrente di carico di base I_H si basa su un ciclo di carico del 150 % per 60 s oppure del 160 % per 10 s con una durata del ciclo di 300 s (vedere il capitolo "Sovraccaricabilità").

⁴⁾ Frequenza di uscita massima alla frequenza impulsi preimpostata in fabbrica (aumento della frequenza di uscita, vedere il capitolo "Funzioni, funzioni di sorveglianza e funzioni di protezione / Aumento della frequenza di uscita", dati di derating, vedere il capitolo "Dati di derating").

⁵⁾ Le raccomandazioni per il mercato americano in AWG o MCM si devono desumere dalle corrispondenti norme NEC (National Electrical Code) o rispettivamente CEC (Canadian Electrical Code).

Tabella 12-18 Esecuzione A, 3 AC 500 V - 600 V, parte 3

Categoria	Unità			
N. d'ordinazione 6SL3710-		1GF35-8AA0	1GF37-4AA0	1GF38-1AA0
Potenza nominale del motore	kW	400	500	560
Tensione d'ingresso nominale	V	3 AC 500	V 600 V ±10 % (-15	% < 1 min)
Corrente nominale d'ingresso 1)	Α	608	774	852
Corrente di uscita nominale	Α	575	735	810
Corrente di carico di base I _L ²⁾	Α	560	710	790
Corrente di carico di base IH3)	Α	514	657	724
Frequenza di uscita max. 4)	Hz	100	100	100
Potenza dissipata	kW	8,7	12,7	14,1
Aria di raffreddamento necessaria	m³/s	0,78	1,48	1,48
Livello di pressione acustica a 50/60 Hz	dB(A)	72/75	72/75	72/75
Collegamento alla rete				
raccomandato: DIN VDE 5)	mm²	2 x 240	3 x 185	4 x 150
max.: DIN VDE	mm²	4 x 240	8 x 240	8 x 240
AWG / MCM		4 x (500)	8 x (500)	8 x (500)
Vite di fissaggio		M12 (2 fori)	M12 (4 fori)	M12 (4 fori)
Collegamento del motore				
raccomandato: DIN VDE 5)	mm ²	2 x 185	3 x 150	3 x 185
max.: DIN VDE	mm ²	4 x 240	6 x 240	6 x 240
AWG / MCM		4 x (500)	6 x (500)	6 x (500)
Vite di fissaggio		M12 (2 fori)	M12 (3 fori)	M12 (3 fori)
Collegamento conduttore di protezione				
Vite di fissaggio		M12 (2 fori)	M12 (18 fori)	M12 (18 fori)
Peso (esecuzione standard) ca.	kg	860	1320	1360
Grandezza costruttiva Powerblock		HX	JX	JX
Dimensioni (esecuzione standard)				
larghezza x altezza x profondità	mm	1200 x 2000 x 600	1600 x 2000 x 600	1600 x 2000 x 600
Fusibile raccomandato				
Protezione conduttori				
(se è montata l'opzione L26)		3NA3354-6	3NA3365-6	Interruttore
Corrente nominale	Α	2 x 355	2 x 500	automatico
Grandezza costruttiva secondo DIN 43620-1		3	3	
Protezione conduttori e semiconduttori		ONE 4 4 4 7 O	ONE 4 4 4 0 0	1-1
(se è montata l'opzione L26) Corrente nominale	_	3NE1447-2 670	3NE1448-2	Interruttore
Grandezza costruttiva secondo DIN 43620-1	Α	3	850	automatico
dianaezza costitutiva secondo Din 43020-1			Ui 1.40 - D00	1

¹⁾ Le correnti implicano 10 A per le utenze ausiliarie esterne, come ad es. per l'opzione L19 o B03.

²⁾ La corrente di carico di base l∟ si basa su un ciclo di carico del 110 % per 60 s oppure del 150 % per 10 s con una durata del ciclo di 300 s (vedere il capitolo "Sovraccaricabilità").

 $^{^{3)}}$ La corrente di carico di base I_H si basa su un ciclo di carico del 150 % per 60 s oppure del 160 % per 10 s con una durata del ciclo di 300 s (vedere il capitolo "Sovraccaricabilità").

⁴⁾ Frequenza di uscita massima alla frequenza impulsi preimpostata in fabbrica (aumento della frequenza di uscita, vedere il capitolo "Funzioni, funzioni di sorveglianza e funzioni di protezione / Aumento della frequenza di uscita", dati di derating, vedere il capitolo "Dati di derating").

⁵⁾ Le raccomandazioni per il mercato americano in AWG o MCM si devono desumere dalle corrispondenti norme NEC (National Electrical Code) o rispettivamente CEC (Canadian Electrical Code).

Tabella 12-19 Esecuzione A, 3 AC 500 V - 600 V, parte 4

Categoria	Unità			
N. d'ordinazione 6SL3710-		2GF38-6AA0	2GF41-1AA0	2GF41-4AA0
Potenza nominale del motore	kW	630	710	1000
Tensione d'ingresso nominale	V	3 AC 500	V 600 V ±10 % (-15	% < 1 min)
Corrente nominale d'ingresso 1)	Α	904	1116	1424
Corrente di uscita nominale	Α	860	1070	1360
Corrente di carico di base I _L ²⁾	Α	836	1036	1314
Corrente di carico di base I _H ³⁾	Α	770	950	1216
Frequenza di uscita max. 4)	Hz	100	100	100
Potenza dissipata	kW	15,6	17,4	25,4
Aria di raffreddamento necessaria	m³/s	1,56	1,56	2,96
Livello di pressione acustica a 50/60 Hz	dB(A)	75/78	75/78	75/78
Collegamento alla rete		Per ogni armadio:	Per ogni armadio:	Per ogni armadio:
raccomandato: DIN VDE 5)	mm ²	2 x 185	2 x 240	3 x 185
max.: DIN VDE	mm ²	4 x 240	4 x 240	8 x 240
AWG / MCM		4 x (500)	4 x (500)	8 x (500)
Vite di fissaggio		M12 (2 fori)	M12 (2 fori)	M12 (4 fori)
Collegamento del motore		Per ogni armadio:	Per ogni armadio:	Per ogni armadio:
raccomandato: DIN VDE 5)	mm ²	2 x 150	2 x 185	3 x 150
max.: DIN VDE	mm ²	4 x 240	4 x 240	6 x 240
AWG / MCM		4 x (500)	4 x (500)	6 x (500)
Vite di fissaggio		M12 (2 fori)	M12 (2 fori)	M12 (3 fori)
Collegamento conduttore di protezione		Per ogni armadio:	Per ogni armadio:	Per ogni armadio:
Vite di fissaggio		M12 (2 fori)	M12 (2 fori)	M12 (18 fori)
Peso (esecuzione standard) ca.	kg	1700	1700	2620
Grandezza costruttiva Powerblock		HX	HX	JX
Dimensioni (esecuzione standard)				
larghezza x altezza x profondità	mm	2400 x 2000 x 600	2400 x 2000 x 600	3200 x 2000 x 600
Fusibile raccomandato				
Protezione conduttori		Per ogni armadio:	Per ogni armadio:	Per ogni armadio:
(se è montata l'opzione L26)		3NA3352-6	3NA3354-6	3NA3365-6
Corrente nominale	Α	2 x 315	2 x 355 3	2 x 500 3
Grandezza costruttiva secondo DIN 43620-1		~	,	~
Protezione conduttori e semiconduttori (se è montata l'opzione L26)		Per ogni armadio: 3NE1435-2	Per ogni armadio: 3NE1447-2	Per ogni armadio: 3NE1448-2
Corrente nominale	Α	560	670	850
Grandezza costruttiva secondo DIN 43620-1	[]	3	3	3

¹⁾ Le correnti implicano 10 A per le utenze ausiliarie esterne, come ad es. per l'opzione L19 o B03.

²⁾ La corrente di carico di base l_L si basa su un ciclo di carico del 110 % per 60 s oppure del 150 % per 10 s con una durata del ciclo di 300 s (vedere il capitolo "Sovraccaricabilità").

³⁾ La corrente di carico di base I_H si basa su un ciclo di carico del 150 % per 60 s oppure del 160 % per 10 s con una durata del ciclo di 300 s (vedere il capitolo "Sovraccaricabilità").

⁴⁾ Frequenza di uscita massima alla frequenza impulsi preimpostata in fabbrica (aumento della frequenza di uscita, vedere il capitolo "Funzioni, funzioni di sorveglianza e funzioni di protezione / Aumento della frequenza di uscita", dati di derating, vedere il capitolo "Dati di derating").

⁵⁾ Le raccomandazioni per il mercato americano in AWG o MCM si devono desumere dalle corrispondenti norme NEC (National Electrical Code) o rispettivamente CEC (Canadian Electrical Code).

12.3.4 Apparecchi in armadio esecuzione C, 3 AC 500 V - 600 V

Tabella 12-20 Esecuzione C, 3 AC 500 V - 600 V, parte 1

Categoria	Unità			
N. d'ordinazione 6SL3710-		1GF31-8CA0	1GF32-2CA0	1GF32-6CA0
Potenza nominale del motore	kW	110	132	160
Tensione d'ingresso nominale	V	3 AC 500	V 600 V ±10 % (-15 °	% < 1 min)
Corrente nominale d'ingresso 1)	Α	201	234	280
Corrente di uscita nominale	Α	175	215	260
Corrente di carico di base IL2)	Α	170	208	250
Corrente di carico di base I _H ³⁾	Α	157	192	233
Frequenza di uscita max. 4)	Hz	100	100	100
Potenza dissipata	kW	3,5	3,9	4,4
Aria di raffreddamento necessaria	m³/s	0,36	0,36	0,36
Livello di pressione acustica a 50/60 Hz	dB(A)	69/73	69/73	69/73
Collegamento alla rete				
raccomandato: DIN VDE 5)	mm ²	120	2 x 70	2 x 95
max.: DIN VDE	mm ²	2 x 240	2 x 240	2 x 240
AWG / MCM		2 x (500)	2 x (500)	2 x (500)
Vite di fissaggio		M12 (1 foro)	M12 (1 foro)	M12 (1 foro)
Collegamento del motore				
raccomandato: DIN VDE 5)	mm ²	95	120	2 x 70
max.: DIN VDE AWG / MCM	mm ²	2 x 150 2 x (300)	2 x 150 2 x (300)	2 x 240 2 x (500)
		M12 (1 foro)	M12 (1 foro)	M12 (1 foro)
Vite di fissaggio		W12 (1 1010)	10112 (11010)	W12 (1 1010)
Collegamento conduttore di protezione Vite di fissaggio		M12 (2 fori)	M12 (2 fori)	M12 (2 fori)
Peso (esecuzione standard) ca.	kg	300	300	300
Grandezza costruttiva Powerblock	Ng	GX	GX	GX
Dimensioni (esecuzione standard)		GA.	GA.	GA.
larghezza x altezza x profondità	mm	400 x 2000 x 600	400 x 2000 x 600	400 x 2000 x 600
Fusibile raccomandato				
Protezione conduttori e semiconduttori		3NE1227-2	3NE1230-2	3NE1331-2
Corrente nominale	Α	250	315	350
Grandezza costruttiva secondo DIN 43620-1		1	1	2

¹⁾ Le correnti implicano 10 A per le utenze ausiliarie esterne, come ad es. per l'opzione L19 o B03.

 $^{^{2)}}$ La corrente di carico di base I_L si basa su un ciclo di carico del 110 % per 60 s oppure del 150 % per 10 s con una durata del ciclo di 300 s (vedere il capitolo "Sovraccaricabilità").

 $^{^{3)}}$ La corrente di carico di base I_H si basa su un ciclo di carico del 150 % per 60 s oppure del 160 % per 10 s con una durata del ciclo di 300 s (vedere il capitolo "Sovraccaricabilità").

⁴⁾ Frequenza di uscita massima alla frequenza impulsi preimpostata in fabbrica (aumento della frequenza di uscita, vedere il capitolo "Funzioni, funzioni di sorveglianza e funzioni di protezione / Aumento della frequenza di uscita", dati di derating, vedere il capitolo "Dati di derating").

⁵⁾ Le raccomandazioni per il mercato americano in AWG o MCM si devono desumere dalle corrispondenti norme NEC (National Electrical Code) o rispettivamente CEC (Canadian Electrical Code).

Tabella 12-21 Esecuzione C, 3 AC 500 V - 600 V, parte 2

Categoria	Unità					
N. d'ordinazione 6SL3710-		1GF33-3CA0	1GF34-1CA0	1GF34-7CA0		
Potenza nominale del motore	kW	200	250	315		
Tensione d'ingresso nominale	V	3 AC 500	3 AC 500 V 600 V ±10 % (-15 % < 1 min)			
Corrente nominale d'ingresso 1)	Α	353	436	493		
Corrente di uscita nominale	Α	330	410	465		
Corrente di carico di base I _L ²⁾	Α	320	400	452		
Corrente di carico di base I _H ³⁾	Α	280	367	416		
Frequenza di uscita max. 4)	Hz	100	100	100		
Potenza dissipata	kW	5,4	6,9	7,8		
Aria di raffreddamento necessaria	m³/s	0,36	0,78	0,78		
Livello di pressione acustica a 50/60 Hz	dB(A)	69/73	72/75	72/75		
Collegamento alla rete						
raccomandato: DIN VDE 5)	mm ²	2 x 120	2 x 185	2 x 185		
max.: DIN VDE AWG / MCM	mm²	2 x 240 2 x (500)	4 x 240 4 x (500)	4 x 240 4 x (500)		
Vite di fissaggio		M12 (1 foro)	M12 (2 fori)	M12 (2 fori)		
Collegamento del motore						
raccomandato: DIN VDE 5)	mm²	2 x 95	2 x 120	2 x 150		
max.: DIN VDE AWG / MCM	mm²	2 x 240 2 x (500)	4 x 240 4 x (500)	4 x 240 4 x (500)		
Vite di fissaggio		M12 (1 foro)	M12 (2 fori)	M12 (2 fori)		
Collegamento conduttore di protezione						
Vite di fissaggio		M12 (2 fori)	M12 (2 fori)	M12 (2 fori)		
Peso (esecuzione standard) ca.	kg	300	670	670		
Grandezza costruttiva Powerblock		GX	HX	HX		
Dimensioni (esecuzione standard) larghezza x altezza x profondità	mm	400 x 2000 x 600	600 x 2000 x 600	600 x 2000 x 600		
Fusibile raccomandato						
Protezione conduttori e semiconduttori Corrente nominale Grandezza costruttiva secondo DIN 43620-1	A	3NE1334-2 500 2	3NE1334-2 500 2	3NE1435-2 560 3		

¹⁾ Le correnti implicano 10 A per le utenze ausiliarie esterne, come ad es. per l'opzione L19 o B03.

²⁾ La corrente di carico di base l∟ si basa su un ciclo di carico del 110 % per 60 s oppure del 150 % per 10 s con una durata del ciclo di 300 s (vedere il capitolo "Sovraccaricabilità").

³⁾ La corrente di carico di base I_H si basa su un ciclo di carico del 150 % per 60 s oppure del 160 % per 10 s con una durata del ciclo di 300 s (vedere il capitolo "Sovraccaricabilità").

⁴⁾ Frequenza di uscita massima alla frequenza impulsi preimpostata in fabbrica (aumento della frequenza di uscita, vedere il capitolo "Funzioni, funzioni di sorveglianza e funzioni di protezione / Aumento della frequenza di uscita", dati di derating, vedere il capitolo "Dati di derating").

⁵⁾ Le raccomandazioni per il mercato americano in AWG o MCM si devono desumere dalle corrispondenti norme NEC (National Electrical Code) o rispettivamente CEC (Canadian Electrical Code).

Tabella 12-22 Esecuzione C, 3 AC 500 V - 600 V, parte 3

Categoria	Unità					
N. d'ordinazione 6SL3710-		1GF35-8CA0	1GF37-4CA0	1GF38-1CA0		
Potenza nominale del motore	kW	400	500	560		
Tensione d'ingresso nominale	V	3 AC 500	3 AC 500 V 600 V ±10 % (-15 % < 1 min)			
Corrente nominale d'ingresso 1)	Α	608	774	852		
Corrente di uscita nominale	Α	575	735	810		
Corrente di carico di base I _L ²⁾	Α	560	710	790		
Corrente di carico di base I _H ³⁾	Α	514	657	724		
Frequenza di uscita max. 4)	Hz	100	100	100		
Potenza dissipata	kW	8,7	12,7	14,1		
Aria di raffreddamento necessaria	m³/s	0,78	1,48	1,48		
Livello di pressione acustica a 50/60 Hz	dB(A)	72/75	72/75	72/75		
Collegamento alla rete						
raccomandato: DIN VDE 5)	mm²	2 x 240	3 x 185	4 x 150		
max.: DIN VDE AWG / MCM	mm ²	4 x 240 4 x (500)	8 x 240 8 x (500)	8 x 240 8 x (500)		
Vite di fissaggio		M12 (2 fori)	M12 (4 fori)	M12 (4 fori)		
Collegamento del motore						
raccomandato: DIN VDE 5)	mm²	2 x 185	3 x 150	3 x 185		
max.: DIN VDE AWG / MCM	mm ²	4 x 240 4 x (500)	6 x 240 6 x (500)	6 x 240 6 x (500)		
Vite di fissaggio		M12 (2 fori)	M12 (3 fori)	M12 (3 fori)		
Collegamento conduttore di protezione						
Vite di fissaggio		M12 (2 fori)	M12 (18 fori)	M12 (18 fori)		
Peso (esecuzione standard) ca.	kg	670	940	980		
Grandezza costruttiva Powerblock		HX	JX	JX		
Dimensioni (esecuzione standard) larghezza x altezza x profondità	mm	600 x 2000 x 600	1000 x 2000 x 600	1000 x 2000 x 600		
Fusibile raccomandato						
Protezione conduttori e semiconduttori Corrente nominale Grandezza costruttiva secondo DIN 43620-1	А	3NE1447-2 670 3	3NE1448-2 850 3	Interruttore automatico		

¹⁾ Le correnti implicano 10 A per le utenze ausiliarie esterne, come ad es. per l'opzione L19 o B03.

²⁾ La corrente di carico di base I_L si basa su un ciclo di carico del 110 % per 60 s oppure del 150 % per 10 s con una durata del ciclo di 300 s (vedere il capitolo "Sovraccaricabilità").

 $^{^{3)}}$ La corrente di carico di base I_H si basa su un ciclo di carico del 150 % per 60 s oppure del 160 % per 10 s con una durata del ciclo di 300 s (vedere il capitolo "Sovraccaricabilità").

⁴⁾ Frequenza di uscita massima alla frequenza impulsi preimpostata in fabbrica (aumento della frequenza di uscita, vedere il capitolo "Funzioni, funzioni di sorveglianza e funzioni di protezione / Aumento della frequenza di uscita", dati di derating, vedere il capitolo "Dati di derating").

⁵⁾ Le raccomandazioni per il mercato americano in AWG o MCM si devono desumere dalle corrispondenti norme NEC (National Electrical Code) o rispettivamente CEC (Canadian Electrical Code).

12.3.5 Apparecchi in armadio esecuzione A, 3 AC 660 V - 690 V

Tabella 12-23 Esecuzione A, 3 AC 660 V - 690 V, parte 1

Categoria	Unità			
N. d'ordinazione 6SL3710-		1GE28-5AA0	1GH31-0AA0	1GH31-2AA0
Potenza nominale del motore	kW	75	90	110
Tensione d'ingresso nominale	V	3 AC 660	V 690 V ±10 % (-15	% < 1 min)
Corrente nominale d'ingresso 1)	Α	103	119	141
Corrente di uscita nominale	Α	85	100	120
Corrente di carico di base IL ²⁾	Α	80	95	115
Corrente di carico di base IH3)	Α	76	89	107
Frequenza di uscita max. 4)	Hz	100	100	100
Potenza dissipata	kW	1,7	2,1	2,7
Aria di raffreddamento necessaria	m³/s	0,17	0,17	0,17
Livello di pressione acustica a 50/60 Hz	dB(A)	67/68	67/68	67/68
Collegamento alla rete				
raccomandato: DIN VDE 5)	mm ²	50	50	70
max.: DIN VDE	mm ²	4 x 240	4 x 240	4 x 240
AWG / MCM		4 x (500)	4 x (500)	4 x (500)
Vite di fissaggio		M12 (2 fori)	M12 (2 fori)	M12 (2 fori)
Collegamento del motore				
raccomandato: DIN VDE 5)	mm ²	35	50	70
max.: DIN VDE	mm ²	2 x 70	2 x 150	2 x 150
AWG / MCM		2 x (2/0)	2 x (300)	2 x (300)
Vite di fissaggio		M12 (2 fori)	M12 (2 fori)	M12 (2 fori)
Collegamento conduttore di protezione				
Vite di fissaggio		M12 (2 fori)	M12 (2 fori)	M12 (2 fori)
Peso (esecuzione standard) ca.	kg	320	320	320
Grandezza costruttiva Powerblock		FX	FX	FX
Dimensioni (esecuzione standard)				
larghezza x altezza x profondità	mm	800 x 2000 x 600	800 x 2000 x 600	800 x 2000 x 600
Fusibile raccomandato				
Protezione conduttori				
(se è montata l'opzione L26)	_	3NA3132-6	3NA3132-6	3NA3136-6
Corrente nominale Grandezza costruttiva secondo DIN 43620-1	Α	125	125 1	160
		l l	'	1
Protezione conduttori e semiconduttori (se è montata l'opzione L26)	1	3NE1022-2	3NE1022-2	3NE1224-2
Corrente nominale	Α	125	125	160
Grandezza costruttiva secondo DIN 43620-1	[]	00	00	1

¹⁾ Le correnti implicano 10 A per le utenze ausiliarie esterne, come ad es. per l'opzione L19 o B03.

 $^{^{2)}}$ La corrente di carico di base I_L si basa su un ciclo di carico del 110 % per 60 s oppure del 150 % per 10 s con una durata del ciclo di 300 s (vedere il capitolo "Sovraccaricabilità").

³⁾ La corrente di carico di base I_H si basa su un ciclo di carico del 150 % per 60 s oppure del 160 % per 10 s con una durata del ciclo di 300 s (vedere il capitolo "Sovraccaricabilità").

⁴⁾ Frequenza di uscita massima alla frequenza impulsi preimpostata in fabbrica (aumento della frequenza di uscita, vedere il capitolo "Funzioni, funzioni di sorveglianza e funzioni di protezione / Aumento della frequenza di uscita", dati di derating, vedere il capitolo "Dati di derating").

⁵⁾ Le raccomandazioni per il mercato americano in AWG o MCM si devono desumere dalle corrispondenti norme NEC (National Electrical Code) o rispettivamente CEC (Canadian Electrical Code).

Tabella 12-24 Esecuzione A, 3 AC 660 V - 690 V, parte 2

Categoria	Unità			
N. d'ordinazione 6SL3710-		1GH31-5AA0	1GH31-8AA0	1GH32-2AA0
Potenza nominale del motore	kW	132	160	200
Tensione d'ingresso nominale	V	3 AC 660	V 690 V ±10 % (-15	% < 1 min)
Corrente nominale d'ingresso 1)	Α	168	201	234
Corrente di uscita nominale	Α	150	175	215
Corrente di carico di base I _L ²⁾	Α	142	170	208
Corrente di carico di base I _H 3)	Α	134	157	192
Frequenza di uscita max. 4)	Hz	100	100	100
Potenza dissipata	kW	2,8	3,8	4,2
Aria di raffreddamento necessaria	m³/s	0,17	0,36	0,36
Livello di pressione acustica a 50/60 Hz	dB(A)	67/68	69/73	69/73
Collegamento alla rete				
raccomandato: DIN VDE 5)	mm ²	95	120	2 x 70
max.: DIN VDE	mm ²	4 x 240	4 x 240	4 x 240
AWG / MCM		4 x (500)	4 x (500)	4 x (500)
Vite di fissaggio		M12 (2 fori)	M12 (2 fori)	M12 (2 fori)
Collegamento del motore				
raccomandato: DIN VDE 5)	mm ²	70	95	120
max.: DIN VDE	mm ²	2 x 150	2 x 150	2 x 150
AWG / MCM		2 x (300)	2 x (300)	2 x (300)
Vite di fissaggio		M12 (2 fori)	M12 (2 fori)	M12 (2 fori)
Collegamento conduttore di protezione				
Vite di fissaggio		M12 (2 fori)	M12 (2 fori)	M12 (2 fori)
Peso (esecuzione standard) ca.	kg	320	390	390
Grandezza costruttiva Powerblock		FX	GX	GX
Dimensioni (esecuzione standard)				
larghezza x altezza x profondità	mm	800 x 2000 x 600	800 x 2000 x 600	800 x 2000 x 600
Fusibile raccomandato				
Protezione conduttori				
(se è montata l'opzione L26)	١.	3NA3240-6	3NA3244-6	3NA3252-6
Corrente nominale	Α	200	250	315
Grandezza costruttiva secondo DIN 43620-1		2	2	2
Protezione conduttori e semiconduttori		2NE4225 2	3NE1227-2	3NE1230-2
(se è montata l'opzione L26) Corrente nominale	Α	3NE1225-2 200	250	315
Grandezza costruttiva secondo DIN 43620-1	[^	1	1	1
1) La compati insulia de 40 A monto et a monto	<u> </u>	1		1.

¹⁾ Le correnti implicano 10 A per le utenze ausiliarie esterne, come ad es. per l'opzione L19 o B03.

²⁾ La corrente di carico di base l∟ si basa su un ciclo di carico del 110 % per 60 s oppure del 150 % per 10 s con una durata del ciclo di 300 s (vedere il capitolo "Sovraccaricabilità").

 $^{^{3)}}$ La corrente di carico di base I_H si basa su un ciclo di carico del 150 % per 60 s oppure del 160 % per 10 s con una durata del ciclo di 300 s (vedere il capitolo "Sovraccaricabilità").

⁴⁾ Frequenza di uscita massima alla frequenza impulsi preimpostata in fabbrica (aumento della frequenza di uscita, vedere il capitolo "Funzioni, funzioni di sorveglianza e funzioni di protezione / Aumento della frequenza di uscita", dati di derating, vedere il capitolo "Dati di derating").

⁵⁾ Le raccomandazioni per il mercato americano in AWG o MCM si devono desumere dalle corrispondenti norme NEC (National Electrical Code) o rispettivamente CEC (Canadian Electrical Code).

Tabella 12-25 Esecuzione A, 3 AC 660 V - 690 V, parte 3

Categoria	Unità			
N. d'ordinazione 6SL3710-		1GH32-6AA0	1GH33-3AA0	1GH34-1AA0
Potenza nominale del motore	kW	250	315	400
Tensione d'ingresso nominale	V	3 AC 660	V 690 V ±10 % (-15	% < 1 min)
Corrente nominale d'ingresso 1)	Α	280	353	436
Corrente di uscita nominale	Α	260	330	410
Corrente di carico di base I _L ²⁾	Α	250	320	400
Corrente di carico di base I _H ³⁾	Α	233	280	367
Frequenza di uscita max. 4)	Hz	100	100	100
Potenza dissipata	kW	5,0	6,1	8,1
Aria di raffreddamento necessaria	m³/s	0,36	0,36	0,78
Livello di pressione acustica a 50/60 Hz	dB(A)	69/73	69/73	72/75
Collegamento alla rete				
raccomandato: DIN VDE 5)	mm ²	2 x 95	2 x 120	2 x 185
max.: DIN VDE	mm ²	4 x 240	4 x 240	4 x 240
AWG / MCM		4 x (500)	4 x (500)	4 x (500)
Vite di fissaggio		M12 (2 fori)	M12 (2 fori)	M12 (2 fori)
Collegamento del motore				
raccomandato: DIN VDE 5)	mm ²	2 x 70	2 x 95	2 x 120
max.: DIN VDE	mm ²	2 x 185	2 x 240	4 x 240
AWG / MCM		2 x (350)	2 x (500)	4 x (500)
Vite di fissaggio		M12 (2 fori)	M12 (2 fori)	M12 (2 fori)
Collegamento conduttore di protezione				
Vite di fissaggio		M12 (2 fori)	M12 (2 fori)	M12 (2 fori)
Peso (esecuzione standard) ca.	kg	390	390	860
Grandezza costruttiva Powerblock		GX	GX	HX
Dimensioni (esecuzione standard)				
larghezza x altezza x profondità	mm	800 x 2000 x 600	800 x 2000 x 600	1200 x 2000 x 600
Fusibile raccomandato				
Protezione conduttori				
(se è montata l'opzione L26)		3NA3354-6	3NA3365-6	3NA3365-6
Corrente nominale	Α	355	500	500
Grandezza costruttiva secondo DIN 43620-1		3	3	3
Protezione conduttori e semiconduttori		ONE 4004 0	01/54004.0	0154004.3
(se è montata l'opzione L26)	_	3NE1331-2	3NE1334-2	3NE1334-2
Corrente nominale	Α	350	500	500
Grandezza costruttiva secondo DIN 43620-1		2	4	4

¹⁾ Le correnti implicano 10 A per le utenze ausiliarie esterne, come ad es. per l'opzione L19 o B03.

²⁾ La corrente di carico di base l∟ si basa su un ciclo di carico del 110 % per 60 s oppure del 150 % per 10 s con una durata del ciclo di 300 s (vedere il capitolo "Sovraccaricabilità").

 $^{^{3)}}$ La corrente di carico di base I_H si basa su un ciclo di carico del 150 % per 60 s oppure del 160 % per 10 s con una durata del ciclo di 300 s (vedere il capitolo "Sovraccaricabilità").

⁴⁾ Frequenza di uscita massima alla frequenza impulsi preimpostata in fabbrica (aumento della frequenza di uscita, vedere il capitolo "Funzioni, funzioni di sorveglianza e funzioni di protezione / Aumento della frequenza di uscita", dati di derating, vedere il capitolo "Dati di derating").

⁵⁾ Le raccomandazioni per il mercato americano in AWG o MCM si devono desumere dalle corrispondenti norme NEC (National Electrical Code) o rispettivamente CEC (Canadian Electrical Code).

Tabella 12-26 Esecuzione A, 3 AC 660 V - 690 V, parte 4

Categoria	Unità			
N. d'ordinazione 6SL3710-		1GH34-7AA0	1GH35-8AA0	1GH37-4AA0
Potenza nominale del motore	kW	450	560	710
Tensione d'ingresso nominale	V	3 AC 660	V 690 V ±10 % (-15	% < 1 min)
Corrente nominale d'ingresso 1)	Α	493	608	774
Corrente di uscita nominale	Α	465	575	735
Corrente di carico di base I _L ²⁾	Α	452	560	710
Corrente di carico di base I _H ³⁾	Α	416	514	657
Frequenza di uscita max. 4)	Hz	100	100	100
Potenza dissipata	kW	9,1	10,8	13,5
Aria di raffreddamento necessaria	m³/s	0,78	0,78	1,48
Livello di pressione acustica a 50/60 Hz	dB(A)	72/75	72/75	72/75
Collegamento alla rete				
raccomandato: DIN VDE 5)	mm²	2 x 185	2 x 240	3 x 185
max.: DIN VDE	mm ²	4 x 240	4 x 240	8 x 240
AWG / MCM		4 x (500)	4 x (500)	8 x (500)
Vite di fissaggio		M12 (2 fori)	M12 (2 fori)	M12 (4 fori)
Collegamento del motore				
raccomandato: DIN VDE 5)	mm ²	2 x 150	2 x 185	3 x 150
max.: DIN VDE	mm ²	4 x 240	4 x 240	6 x 240
AWG / MCM		4 x (500)	4 x (500)	6 x (500)
Vite di fissaggio		M12 (2 fori)	M12 (2 fori)	M12 (3 fori)
Collegamento conduttore di protezione				
Vite di fissaggio		M12 (2 fori)	M12 (2 fori)	M12 (18 fori)
Peso (esecuzione standard) ca.	kg	860	860	1320
Grandezza costruttiva Powerblock		HX	HX	JX
Dimensioni (esecuzione standard)				
larghezza x altezza x profondità	mm	1200 x 2000 x 600	1200 x 2000 x 600	1600 x 2000 x 600
Fusibile raccomandato				
Protezione conduttori				
(se è montata l'opzione L26)		3NA3352-6	3NA3354-6	3NA3365-6
Corrente nominale	Α	2 x 315	2 x 355	2 x 500
Grandezza costruttiva secondo DIN 43620-1		3	3	3
Protezione conduttori e semiconduttori		2NE1425 2	3NE1447-2	2NE1440 2
(se è montata l'opzione L26) Corrente nominale	Α	3NE1435-2 560	670	3NE1448-2 850
Grandezza costruttiva secondo DIN 43620-1	^	3	3	3
5141145224 6661141114 66661146 B/14 46626 1	1	1~	1~	ı -

¹⁾ Le correnti implicano 10 A per le utenze ausiliarie esterne, come ad es. per l'opzione L19 o B03.

²⁾ La corrente di carico di base l∟ si basa su un ciclo di carico del 110 % per 60 s oppure del 150 % per 10 s con una durata del ciclo di 300 s (vedere il capitolo "Sovraccaricabilità").

 $^{^{3)}}$ La corrente di carico di base I_H si basa su un ciclo di carico del 150 % per 60 s oppure del 160 % per 10 s con una durata del ciclo di 300 s (vedere il capitolo "Sovraccaricabilità").

⁴⁾ Frequenza di uscita massima alla frequenza impulsi preimpostata in fabbrica (aumento della frequenza di uscita, vedere il capitolo "Funzioni, funzioni di sorveglianza e funzioni di protezione / Aumento della frequenza di uscita", dati di derating, vedere il capitolo "Dati di derating").

⁵⁾ Le raccomandazioni per il mercato americano in AWG o MCM si devono desumere dalle corrispondenti norme NEC (National Electrical Code) o rispettivamente CEC (Canadian Electrical Code).

Tabella 12-27 Esecuzione A, 3 AC 660 V - 690 V, parte 5

Categoria	Unità			
N. d'ordinazione 6SL3710-		1GH38-1AA0	2GH41-1AA0	2GH41-4AA0
Potenza nominale del motore	kW	800	1000	1350
Tensione d'ingresso nominale	V	3 AC 660	V 690 V ±10 % (-15	% < 1 min)
Corrente nominale d'ingresso 1)	Α	852	1116	1424
Corrente di uscita nominale	Α	810	1070	1360
Corrente di carico di base I _L ²⁾	Α	790	1036	1314
Corrente di carico di base I _H ³⁾	Α	724	950	1216
Frequenza di uscita max. 4)	Hz	100	100	100
Potenza dissipata	kW	14,7	21,6	27,0
Aria di raffreddamento necessaria	m³/s	1,48	1,56	2,96
Livello di pressione acustica a 50/60 Hz	dB(A)	72/75	75/78	75/78
Collegamento alla rete			Per ogni armadio:	Per ogni armadio:
raccomandato: DIN VDE 5)	mm ²	4 x 150	2 x 240	3 x 185
max.: DIN VDE	mm ²	8 x 240	4 x 240	8 x 240
AWG / MCM		8 x (500)	4 x (500)	8 x (500)
Vite di fissaggio		M12 (4 fori)	M12 (2 fori)	M12 (4 fori)
Collegamento del motore			Per ogni armadio:	Per ogni armadio:
raccomandato: DIN VDE 5)	mm ²	3 x 185	2 x 185	3 x 150
max.: DIN VDE	mm ²	6 x 240	4 x 240	6 x 240
AWG / MCM		6 x (500)	4 x (500)	6 x (500)
Vite di fissaggio		M12 (3 fori)	M12 (2 fori)	M12 (3 fori)
Collegamento conduttore di protezione			Per ogni armadio:	Per ogni armadio:
Vite di fissaggio		M12 (18 fori)	M12 (2 fori)	M12 (18 fori)
Peso (esecuzione standard) ca.	kg	1360	1700	2620
Grandezza costruttiva Powerblock		JX	HX	JX
Dimensioni (esecuzione standard)				
larghezza x altezza x profondità	mm	1600 x 2000 x 600	2400 x 2000 x 600	3200 x 2000 x 600
Fusibile raccomandato				
Protezione conduttori			Per ogni armadio:	Per ogni armadio:
(se è montata l'opzione L26)		Interruttore	3NA3354-6	3NA3365-6
Corrente nominale Grandezza costruttiva secondo DIN 43620-1	Α	automatico	2 x 355 3	2 x 500 3
Protezione conduttori e semiconduttori			Per ogni armadio:	Per ogni armadio:
(se è montata l'opzione L26)		Interruttore	3NE1447-2	3NE1448-2
Corrente nominale	Α	automatico	670	850
Grandezza costruttiva secondo DIN 43620-1			3	3

¹⁾ Le correnti implicano 10 A per le utenze ausiliarie esterne, come ad es. per l'opzione L19 o B03.

²⁾ La corrente di carico di base l_L si basa su un ciclo di carico del 110 % per 60 s oppure del 150 % per 10 s con una durata del ciclo di 300 s (vedere il capitolo "Sovraccaricabilità").

 $^{^{3)}}$ La corrente di carico di base I_H si basa su un ciclo di carico del 150 % per 60 s oppure del 160 % per 10 s con una durata del ciclo di 300 s (vedere il capitolo "Sovraccaricabilità").

⁴⁾ Frequenza di uscita massima alla frequenza impulsi preimpostata in fabbrica (aumento della frequenza di uscita, vedere il capitolo "Funzioni, funzioni di sorveglianza e funzioni di protezione / Aumento della frequenza di uscita", dati di derating, vedere il capitolo "Dati di derating").

⁵⁾ Le raccomandazioni per il mercato americano in AWG o MCM si devono desumere dalle corrispondenti norme NEC (National Electrical Code) o rispettivamente CEC (Canadian Electrical Code).

Tabella 12-28 Esecuzione A, 3 AC 660 V - 690 V, parte 6

Categoria	Unità			
N. d'ordinazione 6SL3710-		2GH41-5AA0		
Potenza nominale del motore	kW	1500		
Tensione d'ingresso nominale	V	3 AC 660	V 690 V ±10 % (-15 °	% < 1 min)
Corrente nominale d'ingresso 1)	Α	1568		
Corrente di uscita nominale	Α	1500		
Corrente di carico di base I _L ²⁾	Α	1462		
Corrente di carico di base I _H ³⁾	Α	1340		
Frequenza di uscita max. 4)	Hz	100		
Potenza dissipata	kW	29,4		
Aria di raffreddamento necessaria	m³/s	2,96		
Livello di pressione acustica a 50/60 Hz	dB(A)	75/78		
Collegamento alla rete		Per ogni armadio:		
raccomandato: DIN VDE 5)	mm ²	4 x 150		
max.: DIN VDE	mm ²	8 x 240		
AWG / MCM		8 x (500)		
Vite di fissaggio		M12 (4 fori)		
Collegamento del motore		Per ogni armadio:		
raccomandato: DIN VDE 5)	mm ²	3 x 185		
max.: DIN VDE	mm ²	6 x 240		
AWG / MCM		6 x (500)		
Vite di fissaggio		M12 (3 fori)		
Collegamento conduttore di protezione		Per ogni armadio:		
Vite di fissaggio		M12 (18 fori)		
Peso (esecuzione standard) ca.	kg	2700		
Grandezza costruttiva Powerblock		JX		
Dimensioni (esecuzione standard)				
larghezza x altezza x profondità	mm	3200 x 2000 x 600		
Fusibile raccomandato				
Protezione conduttori		Per ogni armadio:		
(se è montata l'opzione L26)	_	interruttore		
Corrente nominale Grandezza costruttiva secondo DIN 43620-1	Α	automatico		
Protezione conduttori e semiconduttori (se è montata l'opzione L26)	1	Per ogni armadio:		
Corrente nominale	Α	interruttore		
Grandezza costruttiva secondo DIN 43620-1	[``	automatico		

¹⁾ Le correnti implicano 10 A per le utenze ausiliarie esterne, come ad es. per l'opzione L19 o B03.

²⁾ La corrente di carico di base l∟ si basa su un ciclo di carico del 110 % per 60 s oppure del 150 % per 10 s con una durata del ciclo di 300 s (vedere il capitolo "Sovraccaricabilità").

 $^{^{3)}}$ La corrente di carico di base I_H si basa su un ciclo di carico del 150 % per 60 s oppure del 160 % per 10 s con una durata del ciclo di 300 s (vedere il capitolo "Sovraccaricabilità").

⁴⁾ Frequenza di uscita massima alla frequenza impulsi preimpostata in fabbrica (aumento della frequenza di uscita, vedere il capitolo "Funzioni, funzioni di sorveglianza e funzioni di protezione / Aumento della frequenza di uscita", dati di derating, vedere il capitolo "Dati di derating").

⁵⁾ Le raccomandazioni per il mercato americano in AWG o MCM si devono desumere dalle corrispondenti norme NEC (National Electrical Code) o rispettivamente CEC (Canadian Electrical Code).

12.3.6 Apparecchi in armadio esecuzione C, 3 AC 660 V - 690 V

Tabella 12-29 Esecuzione C, 3 AC 660 V - 690 V, parte 1

Categoria	Unità			
N. d'ordinazione 6SL3710-		1GE28-5CA0	1GH31-0CA0	1GH31-2CA0
Potenza nominale del motore	kW	75	90	110
Tensione d'ingresso nominale	V	3 AC 60	60 V 690 V ±10 % (-1	5 % < 1 min)
Corrente nominale d'ingresso 1)	Α	103	119	141
Corrente di uscita nominale	Α	85	100	120
Corrente di carico di base I _L ²⁾	Α	80	95	115
Corrente di carico di base I _H 3)	Α	76	89	107
Frequenza di uscita max. 4)	Hz	100	100	100
Potenza dissipata	kW	1,7	2,1	2,7
Aria di raffreddamento necessaria	m³/s	0,17	0,17	0,17
Livello di pressione acustica a 50/60 Hz	dB(A)	67/68	67/68	67/68
Collegamento alla rete				
raccomandato: DIN VDE 5)	mm ²	50	50	70
max.: DIN VDE	mm ²	2 x 240	2 x 240	2 x 240
AWG / MCM		2 x (500)	2 x (500)	2 x (500)
Vite di fissaggio		M12 (1 foro)	M12 (1 foro)	M12 (1 foro)
Collegamento del motore				
raccomandato: DIN VDE 5)	mm ²	35	50	70
max.: DIN VDE	mm ²	2 x 70	2 x 150	2 x 150
AWG / MCM		2 x (2/0)	2 x (300)	2 x (300)
Vite di fissaggio		M12 (1 foro)	M12 (1 foro)	M12 (1 foro)
Collegamento conduttore di				
protezione		M12 (2 fori)	M12 (2 fori)	M12 (2 fori)
Vite di fissaggio		005	005	005
Peso (esecuzione standard) ca.	kg	225	225	225
Grandezza costruttiva Powerblock		FX	FX	FX
Dimensioni (esecuzione standard) larghezza x altezza x profondità	mm	400 x 2000 x 600	400 x 2000 x 600	400 x 2000 x 600
Fusibile raccomandato				
Protezione conduttori e		3NE1022-2	3NE1022-2	3NE1224-2
semiconduttori	Α	125	125	160
Corrente nominale Grandezza costruttiva secondo DIN		00	00	1
43620-1				

¹⁾ Le correnti implicano 10 A per le utenze ausiliarie esterne, come ad es. per l'opzione L19 o B03.

 $^{^{2)}}$ La corrente di carico di base I_L si basa su un ciclo di carico del 110 % per 60 s oppure del 150 % per 10 s con una durata del ciclo di 300 s (vedere il capitolo "Sovraccaricabilità").

 $^{^{3)}}$ La corrente di carico di base I_H si basa su un ciclo di carico del 150 % per 60 s oppure del 160 % per 10 s con una durata del ciclo di 300 s (vedere il capitolo "Sovraccaricabilità").

⁴⁾ Frequenza di uscita massima alla frequenza impulsi preimpostata in fabbrica (aumento della frequenza di uscita, vedere il capitolo "Funzioni, funzioni di sorveglianza e funzioni di protezione / Aumento della frequenza di uscita", dati di derating, vedere il capitolo "Dati di derating").

⁵⁾ Le raccomandazioni per il mercato americano in AWG o MCM si devono desumere dalle corrispondenti norme NEC (National Electrical Code) o rispettivamente CEC (Canadian Electrical Code).

Tabella 12-30 Esecuzione C, 3 AC 660 V - 690 V, parte 2

Categoria	Unità					
N. d'ordinazione 6SL3710-		1GH31-5CA0	1GH31-8CA0	1GH32-2CA0		
Potenza nominale del motore	kW	132	160	200		
Tensione d'ingresso nominale	V	3 AC 660	3 AC 660 V 690 V ±10 % (-15 % < 1 min)			
Corrente nominale d'ingresso 1)	Α	168	201	234		
Corrente di uscita nominale	Α	150	175	215		
Corrente di carico di base I _L ²⁾	Α	142	170	208		
Corrente di carico di base I _H ³⁾	Α	134	157	192		
Frequenza di uscita max. 4)	Hz	100	100	100		
Potenza dissipata	kW	2,8	3,8	4,2		
Aria di raffreddamento necessaria	m³/s	0,17	0,36	0,36		
Livello di pressione acustica a 50/60 Hz	dB(A)	67/68	69/73	69/73		
Collegamento alla rete						
raccomandato: DIN VDE 5)	mm ²	95	120	2 x 70		
max.: DIN VDE AWG / MCM	mm²	2 x 240 2 x (500)	2 x 240 2 x (500)	2 x 240 2 x (500)		
Vite di fissaggio		M12 (1 foro)	M12 (1 foro)	M12 (1 foro)		
Collegamento del motore						
raccomandato: DIN VDE 5)	mm ²	70	95	120		
max.: DIN VDE AWG / MCM	mm ²	2 x 150 2 x (300)	2 x 150 2 x (300)	2 x 150 2 x (300)		
Vite di fissaggio		M12 (1 foro)	M12 (1 foro)	M12 (1 foro)		
Collegamento conduttore di protezione Vite di fissaggio		M12 (2 fori)	M12 (2 fori)	M12 (2 fori)		
Peso (esecuzione standard) ca.	kg	225	300	300		
Grandezza costruttiva Powerblock		FX	GX	GX		
Dimensioni (esecuzione standard) larghezza x altezza x profondità	mm	400 x 2000 x 600	400 x 2000 x 600	400 x 2000 x 600		
Fusibile raccomandato						
Protezione conduttori e semiconduttori Corrente nominale Grandezza costruttiva secondo DIN 43620-1	А	3NE1225-2 200 1	3NE1227-2 250 1	3NE1230-2 315 1		

¹⁾ Le correnti implicano 10 A per le utenze ausiliarie esterne, come ad es. per l'opzione L19 o B03.

 $^{^{2)}}$ La corrente di carico di base I_L si basa su un ciclo di carico del 110 % per 60 s oppure del 150 % per 10 s con una durata del ciclo di 300 s (vedere il capitolo "Sovraccaricabilità").

³⁾ La corrente di carico di base I_H si basa su un ciclo di carico del 150 % per 60 s oppure del 160 % per 10 s con una durata del ciclo di 300 s (vedere il capitolo "Sovraccaricabilità").

⁴⁾ Frequenza di uscita massima alla frequenza impulsi preimpostata in fabbrica (aumento della frequenza di uscita, vedere il capitolo "Funzioni, funzioni di sorveglianza e funzioni di protezione / Aumento della frequenza di uscita", dati di derating, vedere il capitolo "Dati di derating").

⁵⁾ Le raccomandazioni per il mercato americano in AWG o MCM si devono desumere dalle corrispondenti norme NEC (National Electrical Code) o rispettivamente CEC (Canadian Electrical Code).

Tabella 12-31 Esecuzione C, 3 AC 660 V - 690 V, parte 3

Categoria	Unità			
N. d'ordinazione 6SL3710-		1GH32-6CA0	1GH33-3CA0	1GH34-1CA0
Potenza nominale del motore	kW	250	315	400
Tensione d'ingresso nominale	V	3 AC 66	0 V 690 V ±10 % (-15	% < 1 min)
Corrente nominale d'ingresso 1)	Α	280	353	436
Corrente di uscita nominale	Α	260	330	410
Corrente di carico di base I _L ²⁾	Α	250	320	400
Corrente di carico di base I _H 3)	Α	233	280	367
Frequenza di uscita max. 4)	Hz	100	100	100
Potenza dissipata	kW	5,0	6,1	8,1
Aria di raffreddamento necessaria	m³/s	0,36	0,36	0,78
Livello di pressione acustica a 50/60 Hz	dB(A)	69/73	69/73	72/75
Collegamento alla rete				
raccomandato: DIN VDE 5)	mm²	2 x 95	2 x 120	2 x 185
max.: DIN VDE AWG / MCM	mm²	2 x 240 2 x (500)	2 x 240 2 x (500)	4 x 240 4 x (500)
Vite di fissaggio		M12 (1 foro)	M12 (1 foro)	M12 (2 fori)
Collegamento del motore				
raccomandato: DIN VDE 5)	mm²	2 x 70	2 x 95	2 x 120
max.: DIN VDE AWG / MCM	mm ²	2 x 185 2 x (350)	2 x 240 2 x (500)	4 x 240 4 x (500)
Vite di fissaggio		M12 (1 foro)	M12 (1 foro)	M12 (2 fori)
Collegamento conduttore di protezione Vite di fissaggio		M12 (2 fori)	M12 (2 fori)	M12 (2 fori)
Peso (esecuzione standard) ca.	kg	300	300	670
Grandezza costruttiva Powerblock		GX	GX	HX
Dimensioni (esecuzione standard) larghezza x altezza x profondità	mm	400 x 2000 x 600	400 x 2000 x 600	600 x 2000 x 600
Fusibile raccomandato				
Protezione conduttori e semiconduttori Corrente nominale Grandezza costruttiva secondo DIN 43620-1	A	3NE1331-2 350 2	3NE1334-2 500 2	3NE1334-2 500 2

¹⁾ Le correnti implicano 10 A per le utenze ausiliarie esterne, come ad es. per l'opzione L19 o B03.

 $^{^{2)}}$ La corrente di carico di base I_L si basa su un ciclo di carico del 110 % per 60 s oppure del 150 % per 10 s con una durata del ciclo di 300 s (vedere il capitolo "Sovraccaricabilità").

 $^{^{3)}}$ La corrente di carico di base I_H si basa su un ciclo di carico del 150 % per 60 s oppure del 160 % per 10 s con una durata del ciclo di 300 s (vedere il capitolo "Sovraccaricabilità").

⁴⁾ Frequenza di uscita massima alla frequenza impulsi preimpostata in fabbrica (aumento della frequenza di uscita, vedere il capitolo "Funzioni, funzioni di sorveglianza e funzioni di protezione / Aumento della frequenza di uscita", dati di derating, vedere il capitolo "Dati di derating").

⁵⁾ Le raccomandazioni per il mercato americano in AWG o MCM si devono desumere dalle corrispondenti norme NEC (National Electrical Code) o rispettivamente CEC (Canadian Electrical Code).

Tabella 12-32 Esecuzione C, 3 AC 660 V - 690 V, parte 4

Categoria	Unità			
N. d'ordinazione 6SL3710-		1GH34-7CA0	1GH35-8CA0	1GH37-4CA0
Potenza nominale del motore	kW	450	560	710
Tensione d'ingresso nominale	V	3 AC 66	0 V 690 V ±10 % (-15 °	% < 1 min)
Corrente nominale d'ingresso 1)	Α	493	608	774
Corrente di uscita nominale	Α	465	575	735
Corrente di carico di base I _L ²⁾	Α	452	560	710
Corrente di carico di base I _H 3)	Α	416	514	657
Frequenza di uscita max. 4)	Hz	100	100	100
Potenza dissipata	kW	9,1	10,8	13,5
Aria di raffreddamento necessaria	m³/s	0,78	0,78	1,48
Livello di pressione acustica a 50/60 Hz	dB(A)	72/75	72/75	72/75
Collegamento alla rete				
raccomandato: DIN VDE 5)	mm ²	2 x 185	2 x 240	3 x 185
max.: DIN VDE AWG / MCM	mm ²	4 x 240 4 x (500)	4 x 240 4 x (500)	8 x 240 8 x (500)
Vite di fissaggio		M12 (2 fori)	M12 (2 fori)	M12 (4 fori)
Collegamento del motore				
raccomandato: DIN VDE 5)	mm ²	2 x 150	2 x 185	3 x 150
max.: DIN VDE AWG / MCM	mm ²	4 x 240 4 x (500)	4 x 240 4 x (500)	6 x 240 6 x (500)
Vite di fissaggio		M12 (2 fori)	M12 (2 fori)	M12 (3 fori)
Collegamento conduttore di protezione Vite di fissaggio		M12 (2 fori)	M12 (2 fori)	M12 (18 fori)
Peso (esecuzione standard) ca.	kg	670	670	940
Grandezza costruttiva Powerblock		НХ	HX	JX
Dimensioni (esecuzione standard) larghezza x altezza x profondità	mm	600 x 2000 x 600	600 x 2000 x 600	1000 x 2000 x 600
Fusibile raccomandato				
Protezione conduttori e semiconduttori Corrente nominale Grandezza costruttiva secondo DIN 43620-1	А	3NE1435-2 560 3	3NE1447-2 670 3	3NE1448-2 850 3

¹⁾ Le correnti implicano 10 A per le utenze ausiliarie esterne, come ad es. per l'opzione L19 o B03.

 $^{^{2)}}$ La corrente di carico di base I_L si basa su un ciclo di carico del 110 % per 60 s oppure del 150 % per 10 s con una durata del ciclo di 300 s (vedere il capitolo "Sovraccaricabilità").

³⁾ La corrente di carico di base I_H si basa su un ciclo di carico del 150 % per 60 s oppure del 160 % per 10 s con una durata del ciclo di 300 s (vedere il capitolo "Sovraccaricabilità").

⁴⁾ Frequenza di uscita massima alla frequenza impulsi preimpostata in fabbrica (aumento della frequenza di uscita, vedere il capitolo "Funzioni, funzioni di sorveglianza e funzioni di protezione / Aumento della frequenza di uscita", dati di derating, vedere il capitolo "Dati di derating").

⁵⁾ Le raccomandazioni per il mercato americano in AWG o MCM si devono desumere dalle corrispondenti norme NEC (National Electrical Code) o rispettivamente CEC (Canadian Electrical Code).

Tabella 12-33 Esecuzione C, 3 AC 660 V - 690 V, parte 5

Categoria	Unità	
N. d'ordinazione 6SL3710-		1GH38-1CA0
Potenza nominale del motore	kW	800
Tensione d'ingresso nominale	V	3 AC 660 V 690 V ±10 % (-15 % < 1 min)
Corrente nominale d'ingresso 1)	Α	852
Corrente di uscita nominale	Α	810
Corrente di carico di base I _L 2)	Α	790
Corrente di carico di base I _H ³⁾	Α	724
Frequenza di uscita max. 4)	Hz	100
Potenza dissipata	kW	14,7
Aria di raffreddamento necessaria	m ³ /s	1,48
Livello di pressione acustica a 50/60 Hz	dB(A)	72/75
Collegamento alla rete		
raccomandato: DIN VDE 5)	mm ²	4 x 150
max.: DIN VDE AWG / MCM	mm ²	8 x 240 8 x (500)
Vite di fissaggio		M12 (4 fori)
Collegamento del motore		
raccomandato: DIN VDE 5)	mm²	3 x 185
max.: DIN VDE AWG / MCM	mm ²	6 x 240 6 x (500)
Vite di fissaggio		M12 (3 fori)
Collegamento conduttore di protezione Vite di fissaggio		M12 (18 fori)
Peso (esecuzione standard) ca.	kg	980
Grandezza costruttiva Powerblock		JX
Dimensioni (esecuzione standard) larghezza x altezza x profondità	mm	1000 x 2000 x 600
Fusibile raccomandato		
Protezione conduttori e semiconduttori Corrente nominale Grandezza costruttiva secondo DIN 43620-1	A	Interruttore automatico

¹⁾ Le correnti implicano 10 A per le utenze ausiliarie esterne, come ad es. per l'opzione L19 o B03.

 $^{^{2)}}$ La corrente di carico di base I_L si basa su un ciclo di carico del 110 % per 60 s oppure del 150 % per 10 s con una durata del ciclo di 300 s (vedere il capitolo "Sovraccaricabilità").

 $^{^{3)}}$ La corrente di carico di base I_H si basa su un ciclo di carico del 150 % per 60 s oppure del 160 % per 10 s con una durata del ciclo di 300 s (vedere il capitolo "Sovraccaricabilità").

⁴⁾ Frequenza di uscita massima alla frequenza impulsi preimpostata in fabbrica (aumento della frequenza di uscita, vedere il capitolo "Funzioni, funzioni di sorveglianza e funzioni di protezione / Aumento della frequenza di uscita", dati di derating, vedere il capitolo "Dati di derating").

⁵⁾ Le raccomandazioni per il mercato americano in AWG o MCM si devono desumere dalle corrispondenti norme NEC (National Electrical Code) o rispettivamente CEC (Canadian Electrical Code).

12.3 Dati tecnici

Appendice

A.1 Indice delle abbreviazioni

Α

A... Avvertenza

AC Corrente alternata
AI Ingresso analogico
AO Uscita analogica

AOP Advanced Operator Panel – pannello operativo con visualizzazione del

testo in chiaro

В

BI Ingresso binettore
BICO Binettore / connettore

BO Uscita binettore

С

C Capacità

CAN Sistema di bus seriale
CB Unità di comunicazione
CDS Record di dati di comando

CI Ingresso connettore

COM Contatto intermedio di un contatto di commutazione

CU Control Unit

D

DC Corrente continua

DDS Record di dati di azionamento

DI Ingresso digitale

DI/DO Ingresso/uscita digitale bidirezionale

DO Uscita digitale

Ε

ESD Componenti a rischio elettrostatico EMC Compatibilità elettromagnetica

EN Norma europea

F

F ... Anomalia

FAQ Domande frequenti

FW Firmware

A.1 Indice delle abbreviazioni

Н

HLG Generatore di rampa

HW Hardware

1

I/O Ingresso/uscita

IEC Normativa internazionale per l'elettrotecnica

IGBT Transistor bipolare con elettrodo di comando isolato

J

JOG Funzionamento a impulsi

L

L Induttanza
LED Diodo luminoso

М

M Massa

MDS Record di dati motore

N

NC Contatto NC (normalmente chiuso)

NEMA Comitato normative USA (United States of America)

NO Contatto NA (normalmente aperto)

Ρ

p ... Parametro di impostazionePDS Record di dati parte di potenza

PE Terra di protezione PROFIBUS Bus dati seriale

PTC Coefficiente di temperatura positivo

R

r ... Parametro di supervisione (solo lettura)

RAM Memoria di lettura e scrittura

RS232 Interfaccia seriale

RS485 Norma. Descrive le caratteristiche fisiche di un'interfaccia seriale

digitale.

S

SI Safety Integrated

STW Parola di comando PROFIdrive

SW Software

Т

TIA Totally Integrated Automation

TM Terminal Module

U

UL Underwriters Laboratories Inc.

V

Vdc Tensione del circuito intermedio

Z

ZSW Parola di stato PROFIdrive

Macro parametri p0015 = apparecchio in armadio G150

Con questa macro si effettuano le preimpostazioni per il funzionamento dell'apparecchio in armadio.

Tabella A-1 Macro parametri p0015 = apparecchio in armadio G150

Ricevitore			Sorgente			
Parametro	Descrizione	DO	Parametro	Descrizione	DO	
p0400[0]	Selezione tipo encoder	Vector	9999	Altro	Vector	
p0404[0]	Configurazione encoder	Vector	200008h		Vector	
p0405[0]	Encoder di segnali rettangolare, traccia A/B	Vector	9h	Bipolare, come traccia A/B	Vector	
p0408[0]	Numero tacche encoder	Vector	1024	1024 tacche per ogni ambiente	Vector	
p0420[0]	Collegamento encoder	Vector	0x2	Collegamento encoder = morsetto	Vector	
p0500	Applicazione tecnologica	Vector	1	Pompe, ventilatori	Vector	
p0600	Sensore della temperatura motore per sorveglianza	Vector	0	Nessun sensore	Vector	
p0601	Sensore della temperatura motore, tipo di sensore	Vector	0	Nessun sensore	Vector	
p0603[0]	CI: Temperatura motore	Vector	r4105	Sensore su TM31	TM31	
p0603[1]	CI: Temperatura motore	Vector				
p0604	Temperatura del motore, soglia di avviso	Vector	120	(impostazione di fabbrica)	Vector	
p0605	Sovratemperatura motore, soglia di anomalia	Vector	155	(impostazione di fabbrica)	Vector	
p0606	Temperatura motore, temporizzatore	Vector	0	(impostazione di fabbrica)	Vector	
p0610	Sovratemperatura motore, reazione in caso di superamento	Vector	1	Visualizzazione anomalia, con avviso Imax Red.	Vector	
p0700[0]	Preimpostazione ingresso binettore	Vector	70006	Morsetti TM31	Vector	
p0864	Funzionamento alimentatore	Vector	1			
p1000[0]	Preimpostazione ingresso connettore	Vector	10002	TM31_AI0	Vector	
p1001	CO: Valore di riferimento fisso del numero di giri 1	Vector	300 1/min		Vector	
p1002	CO: Valore di riferimento fisso del numero di giri 2	Vector	600 1/min		Vector	
p1003	CO: Valore di riferimento fisso del numero di giri 3	Vector	1500 1/min		Vector	
p1083	CO: Limite di numero di giri, senso di rotazione positivo	Vector	6000 1/min		Vector	
p1086	CO: Limite di numero di giri, senso di rotazione negativo	Vector	-6000 1/min		Vector	
p1115	Selezione generatore di rampa	Vector	1	Generatore di rampa esteso	Vector	
p1120	Generatore di rampa, tempo di accelerazione	Vector	20 s		Vector	
p1121	Generatore di rampa, tempo di decelerazione	Vector	30 s		Vector	
p1135	OFF3 Tempo di decelerazione	Vector	10 s		Vector	
p1200	Avvio al volo, modo operativo	Vector	0	Avvio al volo non attivo	Vector	
p1240	Configurazione del regolatore Vdc	Vector	1	Regolatore Vdc-max abilitato	Vector	
p1280	Regolatore Vdc, configurazione (V/f)	Vector	1	Regolatore Vdc-max abilitato	Vector	
p1300	Modalità operativa di controllo/regolazione	Vector	20	Regolazione velocità senza encoder	Vector	
p1911	Numero di fasi da identificare	Vector	3	3 fasi	Vector	
p2051[0]	CI: PROFIBUS Invio PZD formato parola	Vector	r2089[0]	ZSW1	Vector	

Ricevitore				Sorgente	
Parametro	Descrizione	DO	Parametro	Descrizione	DO
p2051[1]	CI: PROFIBUS Invio PZD formato	Vector	r0063	n attuale	Vector
p=00.[.]	parola				1 00101
p2051[2]	CI: PROFIBUS Invio PZD formato	Vector	r0068	I attuale	Vector
	parola				
p2051[3]	CI: PROFIBUS Invio PZD formato	Vector	r0080	M attuale	Vector
0054543	parola		2222	D # 1	
p2051[4]	CI: PROFIBUS Invio PZD formato	Vector	r0082	P attuale	Vector
p2051[5]	parola CI: PROFIBUS Invio PZD formato	Vector	r2131	FAULT	Vector
p2031[3]	parola	Vector	12131	FAOLI	Vector
p2080[0]	BI: PROFIBUS invio ZSW1	Vector	r0899[0]	Pronto all'inserzione	Vector
p2080[1]	BI: PROFIBUS invio ZSW1	Vector	r0899[1]	Pronto al funzionamento	Vector
p2080[2]	BI: PROFIBUS invio ZSW1	Vector	r0899[2]	In esercizio	Vector
p2080[3]	BI: PROFIBUS invio ZSW1	Vector	r2139[3]	Anomalia	Vector
p2080[4]	BI: PROFIBUS invio ZSW1	Vector	r0899[4]	Nessun OFF2	Vector
p2080[5]	BI: PROFIBUS invio ZSW1	Vector	r0899[5]	Nessun OFF3	Vector
p2080[6]	BI: PROFIBUS invio ZSW1	Vector	r0899[6]	Blocco inserzione	Vector
p2080[7]	BI: PROFIBUS invio ZSW1	Vector	r2139[7]	Avviso attivo	Vector
p2080[8]	BI: PROFIBUS invio ZSW1	Vector	r2197[7]	Nessuno scostamento valore di	Vector
p2000[0]	Bill the iBee invie zevi i	100.0.	12107[7]	riferimento-attuale	7 00101
p2080[9]	BI: PROFIBUS invio ZSW1	Vector	r0899[9]	Gestione richiesta	Vector
p2080[10]	BI: PROFIBUS invio ZSW1	Vector	r2199[1]	Raggiunto il valore di confronto	Vector
p2080[11]	BI: PROFIBUS invio ZSW1	Vector	r1407[7]	Limitazione M/I/P non attiva	Vector
p2080[12]	BI: PROFIBUS invio ZSW1	Vector	0		Vector
p2080[13]	BI: PROFIBUS invio ZSW1	Vector	r2129[14]	Nessun avviso surriscaldamento	Vector
				motore	
p2080[14]	BI: PROFIBUS invio ZSW1	Vector	r2197[3]	Rotazione destrorsa	Vector
p2080[15]	BI: PROFIBUS invio ZSW1	Vector	r2129[15]	Nessun avviso surriscaldamento	Vector
				parte di potenza	
p2088	Inversione parola di stato PROFIBUS	Vector	B800h		Vector
	bit per bit				
p2128[14]	Selezione codice di anomalia/avviso	Vector	7910	Avviso di surriscaldamento motore	Vector
- 0400[45]	per trigger	\/t	5000	A	\/t
p2128[15]	Selezione codice di anomalia/avviso per trigger	Vector	5000	Avviso sovraccarico termico parte di potenza	Vector
p2153	Costante di tempo filtro valore numero	Vector	20 ms	poteriza	Vector
p2 133	di giri attuale	VECIOI	20 1113		Vector
p4053[0]	Ingressi analogici, costante di tempo	TM31	0 ms		TM31
p .000[0]	di livellamento (TM31)				
p4053[1]	Ingressi analogici, costante di tempo	TM31			TM31
	di livellamento (TM31)				
p4056[0]	Tipo ingressi analogici	TM31	2	Corrente 020 mA	TM31
p4058[1]	Tipo ingressi analogici	TM31	2	Corrente 020 mA	TM31
p4076 [0]	Tipo uscite analogiche	TM31	0	Corrente 020 mA	TM31
p4076 [1]	Tipo uscite analogiche	TM31	0	Corrente 020 mA	TM31
p4071[0]	Segnale uscita analogica 0	TM31	r0063	Valore attuale del numero di giri	TM31
				livellato	
p4071[1]	Segnale uscita analogica 1	TM31	r0068	Valore attuale di corrente	TM31
p4100	Tipo di sensore termico	TM31	0	(impostazione di fabbrica)	TM31
p4102[0]	Rilevamento temperatura soglia	TM31	251 °C	Viene generato un messaggio	TM31
- 4400F41	anomalia/avviso	TNACA	054.00	Viene generate us	TNACA
p4102[1]	Rilevamento temperatura soglia anomalia/avviso	TM31	251 °C	Viene generato un messaggio	TM31
p7003	Sistema di avvolgimento	Vector	1	Sistemi di avvolgimento separati	Vector
p1003	Olorenia di avvolgiillelilo	VECTO	'	Olorenii ui avvoigimento separati	v ector

Macro dei parametri p0700 = 5: PROFIdrive (70005)

Con questa macro viene impostata come sorgente dei comandi l'interfaccia PROFIdrive.

Tabella A-2 Macro dei parametri p0700 = 5: PROFIdrive

Ricevitore			Sorgente			
Parametri	Descrizione	DO	Parametri	Descrizione	DO	
p0840[0]	ON/OFF1	Vector	r2090.0	PZD 1 bit 0	Vector	
p0844[0]	Nessun OFF2_1	Vector	r2090.1	PZD 1 bit 1	Vector	
p0845[0]	Nessun OFF2_2	Vector	r0722.3	CU DI3	CU	
p0848[0]	Nessun OFF3_1	Vector	r2090.2	PZD 1 bit 2	Vector	
p0849[0]	Nessun OFF3_2	Vector	r0722.2	CU DI2	CU	
p0806	Blocco modo LOCALE	Vector	0			
p0810	Commutazione CDS bit 0	Vector	0			
p0852	Abilitazione funzionamento	Vector	r2090.3	PZD 1 bit 3	Vector	
p0854	Gestione richiesta	Vector	r2090.10	PZD 1 bit 10	Vector	
p0922	PROFIdrive Selezione telegramma dato di processo (PZD)	Vector	999	Progettazione telegrammi libera		
p1020	FSW bit 0	Vector	0			
p1021	FSW bit 1	Vector	0			
p1035	MOP più alto	Vector	r2090.13	PZD 1 bit 13	Vector	
p1036	MOP più basso	Vector	r2090.14	PZD 1 bit 14	Vector	
p1055	Funzionamento a impulsi bit 0	Vector	0			
p1056	Funzionamento a impulsi bit 1	Vector	0			
p1113	Inversione del senso di rotazione	Vector	r2090.11	PZD 1 bit 11	Vector	
p1140	Abilitazione generatore di rampa	Vector	r2090.4	PZD 1 bit 4	Vector	
p1141	Avvia generatore di rampa	Vector	r2090.5	PZD 1 bit 5	Vector	
p1142	Abilitazione n rif	Vector	r2090.6	PZD 1 bit 6	Vector	
p2103	Conferma anomalia_1	Vector	r2090.7	PZD 1 bit 7	Vector	
p2104	Conferma anomalia_2	Vector	r4022.3	TM31 DI3	TM31	
p2106	Anomalia esterna_1	Vector	r0722.1	CU DI1	CU	
p2107	Anomalia esterna_2	Vector	1			
p2112	Avviso esterno_1	Vector	r0722.0	CU DI0	CU	
p2116	Avviso esterno_2	Vector	1			
p0738	DI/DO8	CU	1	+24 V	CU	
p0748[8]	Inversione DI/DO8	CU	0	Non invertito		
p0728[8]	Impostazione ingresso o uscita DI/DO8	CU	1	Uscita	CU	
p0739	DI/DO9	CU	1	+24 V	CU	
p0748[9]	Inversione DI/DO9	CU	0	Non invertito		
p0728[9]	Impostazione ingresso o uscita DI/DO9	CU	1	Uscita	CU	
p0740	DI/DO10	CU	1	+24 V	CU	
p0748[10]	Inversione DI/DO10	CU	0	Non invertito		

Ricevitore			Sorgente			
Parametri	Descrizione	DO	Parametri	Descrizione	DO	
p0728[10]	Impostazione ingresso o uscita DI/DO10	CU	1	Uscita	CU	
p0741	DI/DO11	CU	1	+24 V	CU	
p0748[11]	Inversione DI/DO11	CU	0	Non invertito		
p0728[11]	Impostazione ingresso o uscita DI/DO11	CU	1	Uscita	CU	
p0742	DI/DO12	CU	1	+24 V	CU	
p0748[12]	Inversione DI/DO12	CU	0	Non invertito		
p0728[12]	Impostazione ingresso o uscita DI/DO12	CU	1	Uscita	CU	
p0743	DI/DO13	CU	r0899.6	Blocco inserzione	Vector	
p0748[13]	Inversione DI/DO13	CU	1	Invertito		
p0728[13]	Impostazione ingresso o uscita DI/DO13	CU	1	Uscita	CU	
p0744	DI/DO14	CU	1	+24 V	CU	
p0748[14]	Inversione DI/DO14	CU	0	Non invertito		
p0728[14]	Impostazione ingresso o uscita DI/DO14	CU	1	Uscita	CU	
p0745	DI/DO15	CU	r2138.7	Tacitazione anomalia	Vector	
p0748[15]	Inversione DI/DO15	CU	0	Non invertito		
p0728[15]	Impostazione ingresso o uscita DI/DO15	CU	1	Uscita	CU	
p2103	Tacitazione anomalia 1	TM31	r2090.7	PZD 1 bit 7	Vector	
p2104	Tacitazione anomalia 2	TM31	r4022.3	TM31 DI3	TM31	
p4030	DO0	TM31	r0899.11	Impulso abilitato	Vector	
p4031	DO1	TM31	r2139.3	Anomalia	Vector	
p4038	DO8	TM31	r0899.0	Pronto all'inserzione	Vector	
p4028.8	Impostazione ingresso o uscita DI/DO8	TM31	1	Uscita	TM31	
p4039	DO9	TM31	0			
p4028.9	Impostazione ingresso o uscita DI/DO9	TM31	0			
p4040	DO10	TM31	0			
p4028.10	Impostazione ingresso o uscita DI/DO10	TM31	0			
p4041	DO11	TM31	0			
p4028.11	Impostazione ingresso o uscita DI/DO11	TM31	0			
p2103	Tacitazione anomalia 1	A_INF	r2090.7	PZD 1 bit 7	Vector	
p2104	Tacitazione anomalia 2	A_INF	r4022.3	TM31 DI3	TM31	

Macro dei parametri p0700 = 6: Morsettiera TM31 (70006)

Con questa macro viene impostata come sorgente dei comandi la morsettiera utente TM31.

Tabella A-3 Macro dei parametri p0700 = 6: Morsettiera utente TM31

Ricevitore			Sorgente			
Parametri Descrizione		DO	Parametri	Parametri Descrizione		
p0840[0]	ON/OFF1	Vector	r4022.0	TM31 DI0	TM31	
p0844[0]	Nessun OFF2_1	Vector	1			
p0845[0]	Nessun OFF2_2	Vector	r0722.3	CU DI3	CU	
p0848[0]	Nessun OFF3_1	Vector	1			
p0849[0]	Nessun OFF3_2	Vector	r0722.2	CU DI2	CU	
p0806	Blocco modo LOCALE	Vector	0			
p0810	Commutazione CDS bit 0	Vector	0			
p0852	Abilitazione funzionamento	Vector	r4022.4	TM31 DI4	TM31	
00854	Gestione richiesta	Vector	1			
p0922	PROFIdrive Selezione telegramma dato di processo (PZD)	Vector	999	Progettazione telegrammi libera		
o1020	FSW bit 0	Vector	r4022.1	TM31 DI1	TM31	
o1021	FSW bit 1	Vector	r4022.2	TM31 DI2	TM31	
p1035	MOP più alto	Vector	r4022.1	TM31 DI1	TM31	
p1036	MOP più basso	Vector	r4022.2	TM31 DI2	TM31	
o1055	Funzionamento a impulsi bit 0	Vector	0			
o1056	Funzionamento a impulsi bit 1	Vector	0			
o1113	Inversione del senso di rotazione	Vector	0			
o1140	Abilitazione generatore di rampa	Vector	1			
p1141	Avvia generatore di rampa	Vector	1			
o1142	Abilitazione n rif	Vector	1			
p2103	Conferma anomalia_1	Vector	0			
p2104	Conferma anomalia_2	Vector	r4022.3	TM31 DI3	TM31	
p2106	Anomalia esterna_1	Vector	r0722.1	CU DI1	CU	
p2107	Anomalia esterna_2	Vector	1			
p2112	Avviso esterno_1	Vector	r0722.0	CU DI0	CU	
p2116	Avviso esterno_2	Vector	1			
p0738	DI/DO8	CU	1	+24 V	CU	
p0748[8]	Inversione DI/DO8	CU	0	Non invertito		
p0728[8]	Impostazione ingresso o uscita DI/DO8	CU	1	Uscita	CU	
p0739	DI/DO9	CU	1	+24 V	CU	
p0748[9]	Inversione DI/DO9	CU	0	Non invertito		
00728[9]	Impostazione ingresso o uscita DI/DO9	CU	1	Uscita	CU	
p0740	DI/DO10	CU	1	+24 V	CU	
p0748[10]	Inversione DI/DO10	CU	0	Non invertito		

Ricevitore			Sorgente			
Parametri	Descrizione	DO	Parametri	Descrizione	DO	
p0728[10]	Impostazione ingresso o uscita DI/DO10	CU	1	Uscita	CU	
p0741	DI/DO11	CU	1	+24 V	CU	
p0748[11]	Inversione DI/DO11	CU	0	Non invertito		
p0728[11]	Impostazione ingresso o uscita DI/DO11	CU	1	Uscita	CU	
p0742	DI/DO12	CU	1	+24 V	CU	
p0748[12]	Inversione DI/DO12	CU	0	Non invertito		
p0728[12]	Impostazione ingresso o uscita DI/DO12	CU	1	Uscita	CU	
p0743	DI/DO13	CU	r0899.6	Blocco inserzione	Vector	
p0748[13]	Inversione DI/DO13	CU	1	Invertito		
p0728[13]	Impostazione ingresso o uscita DI/DO13	CU	1	Uscita	CU	
p0744	DI/DO14	CU	1	+24 V	CU	
p0748[14]	Inversione DI/DO14	CU	0	Non invertito		
p0728[14]	Impostazione ingresso o uscita DI/DO14	CU	1	Uscita	CU	
p0745	DI/DO15	CU	r2138.7	Tacitazione anomalia	Vector	
p0748[15]	Inversione DI/DO15	CU	0	Non invertito		
p0728[15]	Impostazione ingresso o uscita DI/DO15	CU	1	Uscita	CU	
p2103	Tacitazione anomalia 1	TM31				
p2104	Tacitazione anomalia 2	TM31	r4022.3	TM31 DI3	TM31	
p4030	DO0	TM31	r0899.11	Impulso abilitato	Vector	
p4031	DO1	TM31	r2139.3	Anomalia	Vector	
p4038	DO8	TM31	r0899.0	Pronto all'inserzione	Vector	
p4028.8	Impostazione ingresso o uscita DI/DO8	TM31	1	Uscita	TM31	
p4039	DO9	TM31		Impostazione di fabbrica		
p4028.9	Impostazione ingresso o uscita DI/DO9	TM31		Impostazione di fabbrica		
p4040	DO10	TM31		Impostazione di fabbrica		
p4028.10	Impostazione ingresso o uscita DI/DO10	TM31		Impostazione di fabbrica		
p4041	DO11	TM31		Impostazione di fabbrica		
p4028.11	Impostazione ingresso o uscita DI/DO11	TM31		Impostazione di fabbrica		
p2103	Tacitazione anomalia 1	A_INF	0			
p2104	Tacitazione anomalia 2	A_INF	r4022.3	TM31 DI3	TM31	

Macro dei parametri p0700 = 7: NAMUR (70007)

Con questa macro viene impostata come sorgente dei comandi la morsettiera NAMUR.

Tabella A-4 Macro dei parametri p0700 = 7: NAMUR

Ricevitore			Sorgente			
Parametri	Descrizione	DO	Parametri	Descrizione	DO	
p0840[0]	ON/OFF1	Vector	r4022.0	TM31 DI0	TM31	
p0844[0]	Nessun OFF2_1	Vector	r4022.4	TM31 DI4	TM31	
p0845[0]	Nessun OFF2_2	Vector	r0722.3	CU DI3	CU	
p0848[0]	Nessun OFF3_1	Vector	r4022.5	TM31 DI5	TM31	
p0849[0]	Nessun OFF3_2	Vector	1			
p0806	Blocco modo LOCALE	Vector	0			
p0810	Commutazione CDS bit 0	Vector	0			
p0852	Abilitazione funzionamento	Vector	1			
p0854	Gestione richiesta	Vector	1			
p0922	PROFIdrive Selezione telegramma dato di processo (PZD)	Vector	999	Progettazione telegrammi libera		
p1020	FSW bit 0	Vector	r4022.1	TM31 DI1	TM31	
p1021	FSW bit 1	Vector	r4022.2	TM31 DI2	TM31	
p1035	MOP più alto	Vector	r4022.1	TM31 DI1	TM31	
p1036	MOP più basso	Vector	r4022.2	TM31 DI2	TM31	
p1055	Funzionamento a impulsi bit 0	Vector	0			
p1056	Funzionamento a impulsi bit 1	Vector	0			
p1113	Inversione del senso di rotazione	Vector	r4022.6	TM31 DI6	TM31	
p1140	Abilitazione generatore di rampa	Vector	1			
p1141	Avvia generatore di rampa	Vector	1			
p1142	Abilitazione n rif	Vector	1			
p2103	Conferma anomalia_1	Vector	0			
p2104	Conferma anomalia_2	Vector	r4022.3	TM31 DI3	TM31	
p2106	Anomalia esterna_1	Vector	r0722.1	CU DI1	CU	
p2107	Anomalia esterna_2	Vector	1			
p2112	Avviso esterno_1	Vector	r0722.0	CU DI0	CU	
p2116	Avviso esterno_2	Vector	1			
p0738	DI/DO8	CU	1	+24 V	CU	
p0748[8]	Inversione DI/DO8	CU	0	Non invertito		
p0728[8]	Impostazione ingresso o uscita DI/DO8	CU	1	Uscita	CU	
p0739	DI/DO9	CU	1	+24 V	CU	
p0748[9]	Inversione DI/DO9	CU	0	Non invertito		
p0728[9]	Impostazione ingresso o uscita DI/DO9	CU	1	Uscita	CU	
p0740	DI/DO10	CU	1	+24 V	CU	
p0748[10]	Inversione DI/DO10	CU	0	Non invertito		

Ricevitore			Sorgente			
Parametri	Descrizione	DO	Parametri	Descrizione	DO	
p0728[10]	Impostazione ingresso o uscita DI/DO10	CU	1	Uscita	CU	
p0741	DI/DO11	CU	1	+24 V	CU	
p0748[11]	Inversione DI/DO11	CU	0	Non invertito		
p0728[11]	Impostazione ingresso o uscita DI/DO11	CU	1	Uscita	CU	
p0742	DI/DO12	CU	1	+24 V	CU	
p0748[12]	Inversione DI/DO12	CU	0	Non invertito		
p0728[12]	Impostazione ingresso o uscita DI/DO12	CU	1	Uscita	CU	
p0743	DI/DO13	CU	r0899.6	Blocco inserzione	Vector	
p0748[13]	Inversione DI/DO13	CU	1	Invertito		
p0728[13]	Impostazione ingresso o uscita DI/DO13	CU	1	Uscita	CU	
p0744	DI/DO14	CU	1	+24 V	CU	
p0748[14]	Inversione DI/DO14	CU	0	Non invertito		
p0728[14]	Impostazione ingresso o uscita DI/DO14	CU	1	Uscita	CU	
p0745	DI/DO15	CU	r2138.7	Tacitazione anomalia	Vector	
p0748[15]	Inversione DI/DO15	CU	0	Non invertito		
p0728[15]	Impostazione ingresso o uscita DI/DO15	CU	1	Uscita	CU	
p2103	Tacitazione anomalia 1	TM31				
p2104	Tacitazione anomalia 2	TM31	r4022.3	TM31 DI3	TM31	
p4030	DO0	TM31	r0899.11	Impulso abilitato	Vector	
p4031	DO1	TM31	r2139.3	Anomalia	Vector	
p4038	DO8	TM31	r0899.0	Pronto all'inserzione	Vector	
p4028.8	Impostazione ingresso o uscita DI/DO8	TM31	1	Uscita	TM31	
p4039	DO9	TM31		Impostazione di fabbrica		
p4028.9	Impostazione ingresso o uscita DI/DO9	TM31		Impostazione di fabbrica		
p4040	DO10	TM31		Impostazione di fabbrica		
p4028.10	Impostazione ingresso o uscita DI/DO10	TM31		Impostazione di fabbrica		
p4041	DO11	TM31		Impostazione di fabbrica		
p4028.11	Impostazione ingresso o uscita DI/DO11	TM31		Impostazione di fabbrica		
p2103	Tacitazione anomalia 1	A_INF	0			
p2104	Tacitazione anomalia 2	A_INF	r4022.3	TM31 DI3	TM31	

Macro dei parametri p0700 = 10: PROFIdrive NAMUR (70007)

Con questa macro viene impostata come sorgente dei comandi l'interfaccia PROFIdrive NAMUR.

Tabella A-5 Macro dei parametri p0700 = 10: PROFIdrive NAMUR

Ricevitore			Sorgente			
Parametri	Descrizione	DO	Parametri	Descrizione	DO	
p0840[0]	ON/OFF1	Vector		p0922		
p0844[0]	Nessun OFF2_1	Vector		p0922		
p0845[0]	Nessun OFF2_2	Vector	r0722.3	CU DI3	CU	
p0848[0]	Nessun OFF3_1	Vector		p0922		
p0849[0]	Nessun OFF3_2	Vector	1			
p0806	Blocco modo LOCALE	Vector				
p0810	Commutazione CDS bit 0	Vector				
p0852	Abilitazione funzionamento	Vector	1	p0922		
p0854	Gestione richiesta	Vector	1	p0922		
p0922	PROFIdrive Selezione telegramma dato di processo (PZD)	Vector	20	PROFIdrive NAMUR		
p1020	FSW bit 0	Vector				
p1021	FSW bit 1	Vector				
p1035	MOP più alto	Vector				
p1036	MOP più basso	Vector				
p1055	Funzionamento a impulsi bit 0	Vector				
p1056	Funzionamento a impulsi bit 1	Vector				
p1113	Inversione del senso di rotazione	Vector		p0922		
p1140	Abilitazione generatore di rampa	Vector	1	p0922		
p1141	Avvia generatore di rampa	Vector	1	p0922		
p1142	Abilitazione n rif	Vector	1	p0922		
p2103	Conferma anomalia_1	Vector	0	p0922		
p2104	Conferma anomalia_2	Vector	0			
p2106	Anomalia esterna_1	Vector	r0722.1	CU DI1	CU	
p2107	Anomalia esterna_2	Vector	1			
p2112	Avviso esterno_1	Vector	r0722.0	CU DI0	CU	
p2116	Avviso esterno_2	Vector	1			
p0738	DI/DO8	CU	1	+24 V	CU	
p0748[8]	Inversione DI/DO8	CU	0	Non invertito		
p0728[8]	Impostazione ingresso o uscita DI/DO8	CU	1	Uscita	CU	
p0739	DI/DO9	CU	1	+24 V	CU	
p0748[9]	Inversione DI/DO9	CU	0	Non invertito		
p0728[9]	Impostazione ingresso o uscita DI/DO9	CU	1	Uscita	CU	
p0740	DI/DO10	CU	1	+24 V	CU	
p0748[10]	Inversione DI/DO10	CU	0	Non invertito		

Ricevitore		Sorgente			
Parametri	Descrizione	DO	Parametri	Descrizione	DO
p0728[10]	Impostazione ingresso o uscita DI/DO10	CU	1	Uscita	CU
p0741	DI/DO11	CU	1	+24 V	CU
p0748[11]	Inversione DI/DO11	CU	0	Non invertito	
p0728[11]	Impostazione ingresso o uscita DI/DO11	CU	1	Uscita	CU
p0742	DI/DO12	CU	1	+24 V	CU
p0748[12]	Inversione DI/DO12	CU	0	Non invertito	
p0728[12]	Impostazione ingresso o uscita DI/DO12	CU	1	Uscita	CU
p0743	DI/DO13	CU	r0899.6	Blocco inserzione	Vector
p0748[13]	Inversione DI/DO13	CU	1	Invertito	
p0728[13]	Impostazione ingresso o uscita DI/DO13	CU	1	Uscita	CU
p0744	DI/DO14	CU	1	+24 V	CU
p0748[14]	Inversione DI/DO14	CU	0	Non invertito	
p0728[14]	Impostazione ingresso o uscita DI/DO14	CU	1	Uscita	CU
p0745	DI/DO15	CU	r2138.7	Tacitazione anomalia	Vector
p0748[15]	Inversione DI/DO15	CU	0	Non invertito	
p0728[15]	Impostazione ingresso o uscita DI/DO15	CU	1	Uscita	CU
p2103	Tacitazione anomalia 1	TM31			
p2104	Tacitazione anomalia 2	TM31			
p4030	DO0	TM31			
p4031	DO1	TM31			
p4038	DO8	TM31		Impostazione di fabbrica	
p4028.8	Impostazione ingresso o uscita DI/DO8	TM31		Impostazione di fabbrica	
p4039	DO9	TM31		Impostazione di fabbrica	
p4028.9	Impostazione ingresso o uscita DI/DO9	TM31		Impostazione di fabbrica	
p4040	DO10	TM31		Impostazione di fabbrica	
p4028.10	Impostazione ingresso o uscita DI/DO10	TM31		Impostazione di fabbrica	
p4041	DO11	TM31		Impostazione di fabbrica	
p4028.11	Impostazione ingresso o uscita DI/DO11	TM31		Impostazione di fabbrica	
p2103	Tacitazione anomalia 1	A_INF	0		
p2104	Tacitazione anomalia 2	A_INF	r4022.3	TM31 DI3	TM31

Macro dei parametri p1000 = 1: PROFIdrive (100001)

Con questa macro si imposta la sorgente del riferimento via PROFIdrive.

Tabella A-6 Macro dei parametri p1000 = 1: PROFIdrive

Ricevitore			Sorgente		
Parametri	Descrizione	DO	Parametri	Descrizione	DO
p1070	Valore di riferimento principale	Vector	r2050[1]	PROFIdrive PZD2	Vector
p1071	Scalatura valore di riferimento principale	Vector	1	100 %	Vector
p1075	Valore di riferimento aggiuntivo	Vector	0		Vector
p1076	Scalatura valore di riferimento aggiuntivo	Vector	1	100 %	Vector

Macro dei parametri p1000 = 2: Morsetti TM31 (100002)

Con questa macro viene preimpostato come sorgente del riferimento l'ingresso analogico 0 della morsettiera utente TM31.

Tabella A-7 Macro dei parametri p1000 = 2: Morsetti TM31

Ricevitore			Sorgente		
Parametro	Descrizione	DO	Parametro	Descrizione	DO
p1070	Valore di riferimento principale	Vector	r4055	AI0 TM31	TM31
p1071	Scalatura valore di riferimento principale	Vector	1	100 %	TM31
p1075	Valore di riferimento aggiuntivo	Vector	0		TM31
p1076	Scalatura valore di riferimento aggiuntivo	Vector	1	100 %	TM31

Macro dei parametri p1000 = 3: Potenziometro motore (100003)

Con questa macro si imposta come sorgente del riferimento il potenziometro motore.

Tabella A-8 Macro dei parametri p1000 = 3: Potenziometro motore

Ricevitore			Sorgente		
Parametro	Descrizione	DO	Parametro	Descrizione	DO
p1070	Valore di riferimento principale	Vector	r1050	Potenziometro motore	Vector
p1071	Scalatura valore di riferimento principale	Vector	1	100 %	Vector
p1075	Valore di riferimento aggiuntivo	Vector	0		Vector
p1076	Scalatura valore di riferimento aggiuntivo	Vector	1	100 %	Vector

Macro dei parametri p1000 = 4: Valore di riferimento fisso (100004)

Con questa macro si imposta come sorgente del riferimento il valore di riferimento fisso.

Tabella A-9 Macro dei parametri p1000 = 4: Valore di riferimento fisso

Ricevitore			Sorgente		
Parametro	Descrizione	DO	Parametro	Descrizione	DO
p1070	Valore di riferimento principale	Vector	r1024	Riferimento fisso attivo	Vector
p1071	Scalatura valore di riferimento principale	Vector	1	100 %	Vector
p1075	Valore di riferimento aggiuntivo	Vector	0		Vector
p1076	Scalatura valore di riferimento aggiuntivo	Vector	1	100 %	Vector

INDICE

•	Bypass Con sincronizzazione e sovrapposizione, 334
A	Con sincronizzazione senza sovrapposizione, 336
A7850 - Avviso esterno 1, 364	Senza sincronizzazione, 338
Adattamento del regolatore di velocità, 281	
Addizione del valore di riferimento, 258	С
Aggiornamento firmware, 413	
Alimentazione 24 V DC con isolamento sicuro per	Campo di impiego, 20
NAMUR (opzione B02), 115	Canale del valore di riferimento, 258
Alimentazione ausiliaria, 68	Caratteristica di attrito, 318
AC 230 V, 69	Caratteristiche, 20
DC 24 V, 69	Caricamento del firmware (pannello operativo), 414
Alimentazione esterna, 68	CBE20, 100
Anomalia esterna 1, 365	CDS
Anomalia esterna 2, 365 Anomalia esterna 3, 365	Copia, 181
Anomalie, 364	CDS (Command Data Set), 177 Certificazione di fabbrica, 15
Anomalie e avvisi, 364	Certificazioni, 15
Anomalie e avvisi, 304 Anomalie e avvisi, 233	Collegamenti dei segnali, 70
AOP30, 157	Collegamenti di potenza, 61
Arresto d'emergenza categoria 0 (opzione L57), 87	Collegamento dei cavi del motore e dei cavi di
Arresto d'emergenza categoria 1 (opzione L59), 88	rete, 62
Arresto d'emergenza categoria 1 (opzione L60), 89	Collegamento della schermatura, 70
Attacco del collegamento del circuito intermedio, 59	Collegamento della topologia DRIVE-CLiQ, 60
Attrezzi, 40, 52, 371	Collegamento dell'alimentazione di tensione e dei cavi
Aumento della frequenza di uscita, 320	dei segnali, 59
Aumento di tensione, 267	Collegamento delle sbarre PE, 58
all'accelerazione, 269	Collegamento elettrico di unità di trasporto fornite
Permanente, 268	separatamente, 58
Avvio al volo, 313	Collegamento meccanico di unità trasportate
Con encoder, 315	separatamente, 41
Senza encoder, 314	Collegamento per utenze ausiliarie esterne (opzione
Avvisi, 364	L19), 81
Avviso esterno 1, 364	Collegamento PROFIBUS, 200
	Comando freni esteso, 341
_	Command Data Set, 177
В	Communication Board Ethernet CBE20 (opzione
B00, 113	G33), 100
B02, 115	Commutazione della lingua, 228
B03, 115	Commutazione delle unità, 326
Batteria tampone del pannello operativo,	Commutazione motore, 316
sostituzione, 409	Commutazione sinistrorso/destrorso, 229
Blocco modo Local AOP, 231	Compatibilità elettromagnetica
Bufferizzazione cinetica, 307	Installazione in conformità EMC, 56
	Introduzione, 54

Sicurezza di esercizio e immunità ai disturbi, 54 Compatibilità elettromagnetica EMC Emissione di disturbi, 54 Compensazione dello scorrimento, 270 Comportamento di derating in presenza di elevata frequenza impulsi, 328 Conferma errore tramite AOP, 231 Contatore ore di esercizio, 323 Contattore principale (opzione L13), 79 Control Interface Board Grandezza costruttiva FX, sostituzione, 388 Grandezza costruttiva GX, sostituzione, 390 Grandezza costruttiva HX, sostituzione, 392 Grandezza costruttiva JX, sostituzione, 394 Controllo tramite PROFIBUS, 203	E EDS (Encoder Data Set), 179 Encoder Data Set, 179 Errori di parametrizzazione, 235 Esecuzione A, struttura, 22 Esecuzione C, struttura, 25 Espansione morsettiera utente (opzione G61), 108 F F7860 – Anomalia esterna 1, 365 F7861 – Anomalia esterna 2, 365 F7862 – Anomalia esterna 3, 365 Filtri, sostituzione, 375
Controllo V/f, 264	Filtro du/dt con Voltage Peak Limiter (opzione L10), 77
	Filtro sinusoidale (opzione L15), 79
D	Firmware dell'apparecchio, aggiornamento, 413 Forming dei condensatori del circuito intermedio, 411
	Funzionamento in rete non collegata a terra, 67
Data di produzione, 30	Funzionamento online con STARTER, 236
Dati di derating, 417 Derating di corrente in base all'altitudine di	Funzione bypass, 333
installazione e alla temperatura ambiente, 417	Funzioni di protezione, 345
Derating di corrente in funzione della frequenza	Funzioni di sorveglianza, 345
impulsi, 419	Funzioni di sorveglianza estese, 343 Fusibile
Derating di tensione in base all'altitudine di	-A1 -F21, 408
montaggio, 418	Alimentazione ausiliaria (-A1 -F11 / -A1 -F12), 408
Dati tecnici, 422 Esecuzione A, 3 AC 380 V – 480 V, 423	Ventilatore -U1 -F10 / -U1 -F11, 408
Esecuzione A, 3 AC 500 V – 600 V, 430	
Esecuzione A, 3 AC 660 V – 690 V, 437	G
Esecuzione C, 3 AC 380 V – 480 V, 427	
Esecuzione C, 3 AC 500 V – 600 V, 434	G33, 100
Esecuzione C, 3 AC 660 V – 690 V, 443	G61, 108
Generalità, 416 DDS	Generatore di rampa, 262
Copia, 181	Giri escludibili, 260
DDS (Drive Data Set), 178	
Diagnostica, 354	1
LED, 355	Identificazione motore, 299
Parametro, 360	Illuminazione armadio con presa di servizio (opzione
Dichiarazione CE del costruttore, 15	L50), 85
Dichiarazione di conformità CE, 15 Disimballaggio, 40	Immagazzinaggio, 37
Dispositivo di protezione del motore a termistore	Impostazione degli indirizzi PROFIBUS, 203
(opzione L83/L84), 96	Impostazione di fabbrica, 169
Drive Data Set, 178	Ingressi analogici, 74, 195 Ingressi digitali, 73, 74
Drive Objects, 175	Ingressi/uscite digitali, 76
	Ingresso binettore (BI), 183
	Ingresso connettore (CI), 183 Installazione, 21

Montaggio nel luogo di installazione, 41	M23, 44
Sollevamento dal pallet di trasporto, 41	M43, 44
Installazione elettrica	M54, 44
Lista di controllo, 48	M78, 45
Installazione meccanica	Manutenzione, 370
Lista di controllo, 39	Manutenzione e riparazione, 369
Interfaccia Ethernet, 101	Manutenzione preventiva, 371
Interruttore automatico (opzione L26), 83	MDS
Interruttore principale incl. fusibili (opzione L26), 83	Copia, 181
Inversione del senso di rotazione, 259	MDS (Motor Data Set), 180
Inversione di direzione, 325	Memorizzazione permanente dei parametri, 234
	Menu
	Impostazione della data, 226
K	Menu
K50, 102	Definisci pagina operativa, 223
K82, 109	Identificazione motore, 222
K82, modulo morsetti per il comando di "Safe Torque	Impostazioni AOP30, 222
Off" e "Safe Stop 1", 109	Impostazioni del display, 223
on e cale ctop i , ioo	Impostazioni di comando, 222
	Memoria anomalie/Memoria avvisi, 221
L	Messa in servizio completa, 222
	Messa in servizio dell'apparecchio, 222
L10, 77	Messa in servizio dell'azionamento, 222
L13, 79	Messa in servizio di base, 222
L15, 79	Messa in servizio/Service, 222
L19, 81	Pagina operativa, 219
L26, 83	Parametrizzazione, 219
L45, 84	Reset tempo funz. ventil., 222
L50, 85	Struttura, 218
L55, 86	Menu
L57, 87	Impostazione dell'ora, 226
L59, 88	Menu Sarrasta data 226
L60, 89	Formato data, 226
L61, 90 L62, 90	Menu Pipriotino impostazioni AOP 226
L83, 96	Ripristino impostazioni AOP, 226 Menu
L84, 96	Versione del software, 227
L86, 97	Menu
L87, 99	Versione della banca dati, 227
Limitazione del numero di giri, 261	Menu
Limitazione di coppia, 287	Diagnostica AOP30, 227
Lista di controllo	Menu
Installazione elettrica, 48	Stato della batteria, 227
Installazione meccanica, 39	Menu
Lunghezze cavi, 61	Test della tastiera, 227
Lunghezze minime dei cavi, 62	Menu
Luogo di installazione, 40	Test dei LED, 227
	Menu
	Language/Sprache/Langue/Idioma/Lingua, 228
M	Messa in servizio di base
M13 45	Identificazione motore, 165
M13, 45 M21, 43	Immissione dei dati del motore, 161
IVIZ I, TO	

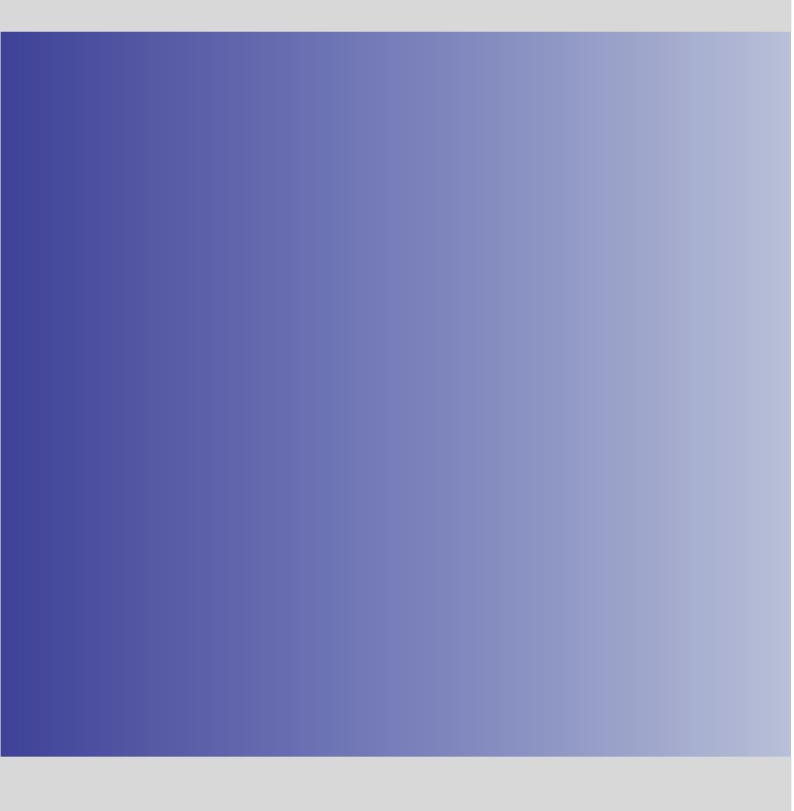
Immissione dei dati dell'encoder, 162	Parola di stato 1, 211, 213
Immissione dei parametri di base, 164	Potenziometro motore, 197
Impostazioni per apparecchi in armadio di potenza	Powerblock
elevata, 166	Fori per il sollevamento tramite gru, 373
Selezione del tipo di motore, 161	Grandezza costruttiva FX, sostituzione, 376
Misura in rotazione, 303	Grandezza costruttiva GX, sostituzione, 378
Misura in stato di fermo, 300	Grandezza costruttiva HX, sostituzione, 380
Modalità simulazione, 324	Grandezza costruttiva JX, sostituzione, 384
Modello di riferimento, 280	Precomando del regolatore di velocità, 277
Modulo di controllo carico, 343	Preparativi
Modulo encoder SMC30 per il rilevamento del numero	Installazione meccanica, 40
di giri attuale del motore (opzione K50), 102	Principi del sistema di azionamento, 173
Montaggio	Principi fondamentali
Alimentazione dall'alto, 45	Classificazione dei parametri, 174
Calotta per aumento del grado di protezione a IP23	Copia di record di dati del motore (MDS), 181
/ IP43 / IP54, 44	Copia di record di dati di comando (CDS), 181
Collegamento al motore dall'alto, 45	Copia di un record di dati dell'azionamento
Sgocciolatoi e calotte, 42	(DDS), 181
Sgocciolatoio per l'aumento del grado di protezione	Ingresso binettore (BI), 183
a IP21, 43	Ingresso connettore (CI), 183
Morsetti di uscita, 291	Interconnessione di segnali, 183
Morsettiera NAMUR (opzione B00), 113	Oggetti di azionamento, 175
Morsettiera utente, 70	Parametri, 173
Motor Data Set, 180	Record dati dell'encoder (EDS), 179
	· · · · · · · · · · · · · · · · · · ·
Motori sincroni ad eccitazione permanente, 288	Record di dati, 177
	Record di dati del motore (MDS), 180
NI.	Record di dati dell'azionamento (DDS), 178
N	Record di dati di comando (CDS), 177
NAMUR	Tecnica BICO, 182
Alimentazione 24 V DC con isolamento sicuro	Tipi di parametri, 173
(opzione B02), 115	Uscita binettore (BO), 183
Uscita separata per utenze ausiliarie esterne	Uscita connettore (CO), 183
(opzione B03), 115	Principio circuitale, 26
NAMUR Barra bit di segnalazione, 215	PROFIBUS, 200
Numero di giri minimo, 260	Connettori, 201
	Impostazione degli indirizzi PROFIBUS, 203
	Resistenza terminale di chiusura bus, 201
0	PROFINET IO, 242
	Classi RT, 248
Oggetti di azionamento (Drive Objects), 175	Device OM, 252
Ottimizzazione automatica del regolatore di	GSDML V1.0, 250
velocità, 299	GSDML v2.0, 251
Ottimizzazione del regolatore di velocità, 303	Indirizzi, 244
Ottimizzazione del rendimento, 305	IRT, 253
	IRTflex, 254
	IRTtop, 255
P	RT, 250
Paging operative 210	RT e IRT, 242
Pagina operativa, 219	Protezione contro il blocco, 348
Pannello operativo, 157	Protezione contro lo stallo, 349
Panoramica, 217	Protezione delle parti di potenza, 345
Pannello operativo dell'apparecchio, sostituzione, 409	Protezione termica del motore, 350
Parola di comando 1, 207, 208	

D. II. 1. 070	DDOELL' NAMUD 400
Pulizia, 370	PROFIdrive NAMUR, 193
Pulsante di arresto d'emergenza (opzione L45), 84	Sorgenti del valore di riferimento, 195
	Generalità, 172
	Ingressi analogici, 195
Q	Potenziometro motore, 197
Qualità, 21	Valori di riferimento fissi per numero di giri, 198
Qualita, 21	Sorveglianza dell'isolamento (opzione L87), 99
	Sorveglianze termiche, 346
R	Sostituzione
N .	Aggiornamento automatico del firmware, 412
Reazioni al sovraccarico, 346	Batteria tampone del pannello operativo, 409
Record di dati, 177	Control Interface Board, grandezza costruttiva
Regolatore di tecnologia, 330	FX, 388
Regolatore di velocità, 275	Control Interface Board, grandezza costruttiva
Regolazione della coppia, 284	GX, 390
Regolazione Vdc, 306	Control Interface Board, grandezza costruttiva
Regolazione Vdc minima, 307	HX, 392
Regolazione Vdc_max, 309	Control Interface Board, grandezza costruttiva
Regolazione vettoriale	. •
	JX, 394
Con encoder, 274	Filtri, 375
Senza encoder, 272	Fori per il sollevamento tramite gru, 373
Regolazione vettoriale di numero di giri/coppia	Messaggi di errore, 412
con/senza encoder, 271	Pannello operativo, 409
Reinserzione automatica, 310	Powerblock, grandezza costruttiva FX, 376
Reset parametri, 169	Powerblock, grandezza costruttiva GX, 378
Ripristino dei parametri tramite AOP30, 169	Powerblock, grandezza costruttiva HX, 380
Ripristino dei parametri tramite STARTER, 169	Powerblock, grandezza costruttiva JX, 384
Rete IT, 67	Telaio di montaggio, 372
Rete non collegata a terra, 67	Ventilatore, grandezza costruttiva FX, 396
Riduzione della potenza, 417	Ventilatore, grandezza costruttiva GX, 398
Riscaldamento anticondensa in armadio (opzione	Ventilatore, grandezza costruttiva HX, 400
L55), 86	Ventilatore, grandezza costruttiva JX, 404
Rischi residui, 18	Sostituzione di componenti, 375
Runtime, 323	Sovraccaricabilità, 421
	Sovraccarico contenuto, 421
	Sovraccarico elevato, 421
S	STARTER, 118
05 0	Avvio del progetto dell'azionamento, 153
S5 - Convertitore tensione/corrente Al0, Al1, 75	Collegamento mediante interfaccia seriale, 154
Scollegamento del condensatore antidisturbi, 67	Creazione di un progetto, 120
Selezione di telegrammi definita dall'utente, 205	Funzionamento online tramite PROFINET, 236
Sensore di temperatura, 75	Installazione, 118
Service, 21	Interfaccia operativa, 119
Service e supporto, 366	Messa in servizio, 120
Sezioni di collegamento, 61	Statica, 283
Sigle delle opzioni, 32	otatioa, 200
SMC30, 102	
SMC30, esempi di collegamento, 107	T
Sorgenti dei comandi	1
Generalità, 172	Targhetta, 30
Morsetti TM31, 189	Data di produzione, 30
NAMUR, 191	Dati, 31
PROFIdrive, 187	Targhetta dei dati tecnici

Sigle delle opzioni, 32 Tasto blocco di comando / blocco parametrizzazione, 232 Tasto di decremento, 230 Tasto di incremento, 230 Tasto LOCAL/REMOTE, 228 Tasto OFF, 229 Tasto ON, 229 Tecnica BICO, 182 Interconnessione di segnali, 183 Telaio di montaggio, 372 Telegrammi e dati di processo, 205 Tensione ausiliaria, 75 Tensione del ventilatore, adattamento, 64 Tensione di alimentazione interna, 66 Timeout sorveglianza, 231 TM31, 70 TM31, panoramica dei collegamenti, 72 TM31, vista frontale, 71 Trasporto, 36

Grandezza costruttiva JX, sostituzione, 404

X


X1400, 101 X520, 73 SMC30, 105 X521, 74 SMC30, 106 X522, 75 X530, 74 X531 SMC30, 106 X540, 75 X541, 76 X542, 76

U

Unità di frenatura 25 kW (opzione L61), 90 Unità di frenatura 50 kW (opzione L62), 90 Unità di rilevamento per PT100 (opzione L86), 97 Unità di trasporto Attacco del collegamento del circuito intermedio, 59 Collegamento dei cavi dei segnali, 59 Collegamento della topologia DRIVE-CLiQ, 60 Collegamento dell'alimentazione di tensione, 59 Collegamento delle sbarre PE, 58 Collegamento elettrico, 58 Collegamento meccanico, 41 Uscita binettore (BO), 183 Uscita connettore (CO), 183 Uscita separata per utenze ausiliarie esterne per NAMUR (opzione B03), 115 Uscite a relè, 76 Uscite analogiche, 75, 292 Uscite digitali, 295

٧

Valore di riferimento AOP, 230
Valori di riferimento fissi, 198
Valori di riferimento fissi per numero di giri, 198
Ventilatore
Grandezza costruttiva FX, sostituzione, 396
Grandezza costruttiva GX, sostituzione, 398
Grandezza costruttiva HX, sostituzione, 400

Siemens AG

A5E00189856A

Automation and Drives Large Drives Postfach 4743 90025 NÜRNBERG GERMANY www.ad.siemens.com