
© Copyright 1993, 1996 National Instruments Corporation.
All Rights Reserved.

NI-488.2™

User Manual for Windows

January 1996 Edition

Part Number 370902A-01

National Instruments Corporate Headquarters
6504 Bridge Point Parkway
Austin, TX 78730-5039
(512) 794-0100
Technical support fax: (800) 328-2203

(512) 794-5678

Branch Offices:
Australia 03 9 879 9422, Austria 0662 45 79 90 0, Belgium 02 757 00 20,
Canada (Ontario) 519 622 9310, Canada (Québec) 514 694 8521,
Denmark 45 76 26 00, Finland 90 527 2321, France 1 48 14 24 24,
Germany 089 741 31 30, Hong Kong 2645 3186, Italy 02 48301892,
Japan 03 5472 2970, Korea 02 596 7456, Mexico 95 800 010 0793,
Netherlands 0348 433466, Norway 32 84 84 00, Singapore 2265886,
Spain 91 640 0085, Sweden 08 730 49 70, Switzerland 056 200 51 51,
Taiwan 02 377 1200, U.K. 01635 523545

Limited Warranty

The media on which you receive National Instruments software are warranted not to fail
to execute programming instructions, due to defects in materials and workmanship, for a
period of 90 days from date of shipment, as evidenced by receipts or other
documentation. National Instruments will, at its option, repair or replace software media
that do not execute programming instructions if National Instruments receives notice of
such defects during the warranty period. National Instruments does not warrant that the
operation of the software shall be uninterrupted or error free.

A Return Material Authorization (RMA) number must be obtained from the factory and
clearly marked on the outside of the package before any equipment will be accepted for
warranty work. National Instruments will pay the shipping costs of returning to the
owner parts which are covered by warranty.

National Instruments believes that the information in this manual is accurate. The
document has been carefully reviewed for technical accuracy. In the event that technical
or typographical errors exist, National Instruments reserves the right to make changes to
subsequent editions of this document without prior notice to holders of this edition. The
reader should consult National Instruments if errors are suspected. In no event shall
National Instruments be liable for any damages arising out of or related to this document
or the information contained in it.

EXCEPT AS SPECIFIED HEREIN, NATIONAL INSTRUMENTS MAKES NO
WARRANTIES, EXPRESS OR IMPLIED, AND SPECIFICALLY DISCLAIMS ANY
WARRANTY OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.
CUSTOMER'S RIGHT TO RECOVER DAMAGES CAUSED BY FAULT OR NEGLIGENCE
ON THE PART OF NATIONAL INSTRUMENTS SHALL BE LIMITED TO THE AMOUNT
THERETOFORE PAID BY THE CUSTOMER. NATIONAL INSTRUMENTS WILL NOT BE
LIABLE FOR DAMAGES RESULTING FROM LOSS OF DATA, PROFITS, USE OF
PRODUCTS, OR INCIDENTAL OR CONSEQUENTIAL DAMAGES, EVEN IF ADVISED OF
THE POSSIBILITY THEREOF. This limitation of the liability of National Instruments will
apply regardless of the form of action, whether in contract or tort, including negligence.
Any action against National Instruments must be brought within one year after the cause
of action accrues. National Instruments shall not be liable for any delay in performance
due to causes beyond its reasonable control. The warranty provided herein does not
cover damages, defects, malfunctions, or service failures caused by owner's failure to
follow the National Instruments installation, operation, or maintenance instructions;
owner's modification of the product; owner's abuse, misuse, or negligent acts; and power
failure or surges, fire, flood, accident, actions of third parties, or other events outside
reasonable control.

Copyright

Under the copyright laws, this publication may not be reproduced or transmitted in any
form, electronic or mechanical, including photocopying, recording, storing in an
information retrieval system, or translating, in whole or in part, without the prior written
consent of National Instruments Corporation.

Trademarks

NI-488®, NI-488.2™, and TNT4882C™ are trademarks of National Instruments
Corporation.

Product and company names listed are trademarks or trade names of their respective
companies.

WARNING REGARDING MEDICAL AND CLINICAL
USE OF NATIONAL INSTRUMENTS PRODUCTS

National Instruments products are not designed with components and testing intended to
ensure a level of reliability suitable for use in treatment and diagnosis of humans.
Applications of National Instruments products involving medical or clinical treatment can
create a potential for accidental injury caused by product failure, or by errors on the part
of the user or application designer. Any use or application of National Instruments
products for or involving medical or clinical treatment must be performed by properly
trained and qualified medical personnel, and all traditional medical safeguards,
equipment, and procedures that are appropriate in the particular situation to prevent
serious injury or death should always continue to be used when National Instruments
products are being used. National Instruments products are NOT intended to be a
substitute for any form of established process, procedure, or equipment used to monitor
or safeguard human health and safety in medical or clinical treatment.

© National Instruments Corp. v NI-488.2 User Manual for Windows

Contents

About This Manual ... xiii
How to Use This Manual Set ... xiii
Organization of This Manual ... xiv
Conventions Used in This Manual... xv
Related Documentation ... xvi
Customer Communication ... xvi

Chapter One
Introduction .. 1-1

GPIB Overview ... 1-1
Talkers, Listeners, and Controllers ... 1-1
Controller-In-Charge and System Controller 1-1
GPIB Addressing... 1-2
Sending Messages Across the GPIB ... 1-2

Data Lines ... 1-2
Handshake Lines... 1-3
Interface Management Lines... 1-3

Setting Up and Configuring Your System... 1-4
Controlling More Than One Board..................................... 1-5

Configuration Requirements ... 1-5
The NI-488.2 Software Package .. 1-6

NI-488.2 Driver and Driver Utilities ... 1-6
C Language Files ... 1-7
Visual Basic Language Files ... 1-7
Win 32s Files ... 1-8
Sample Application Files .. 1-8

How the NI-488.2 Software Works with Windows... 1-8
Unloading and Reloading the NI-488.2 Driver ... 1-9

Chapter 2
Application Examples ... 2-1

Example 1: Basic Communication ... 2-2
Example 2: Clearing and Triggering Devices... 2-4
Example 3: Asynchronous I/O.. 2-6
Example 4: End-of-String Mode... 2-8
Example 5: Service Requests .. 2-10
Example 6: Basic Communication with IEEE 488.2-Compliant Devices 2-14
Example 7: Serial Polls Using NI-488.2 Routines ... 2-16
Example 8: Parallel Polls .. 2-18
Example 9: Non-Controller Example ... 2-20

Contents

NI-488.2 User Manual for Windows vi © National Instruments Corp.

Chapter 3
Developing Your Application .. 3-1

Choosing How to Access the NI-488.2 DLL... 3-1
Choosing Between NI-488 Functions and NI-488.2 Routines 3-1

Using NI-488 Functions: One Device for Each Board..................... 3-2
NI-488 Device Functions .. 3-2
NI-488 Board Functions ... 3-2

Using NI-488.2 Routines: Multiple Boards and/or Multiple
Devices .. 3-3

Checking Status with Global Variables ... 3-3
Status Word – ibsta ... 3-3
Error Variable – iberr .. 3-5
Count Variables – ibcnt and ibcntl .. 3-5

Using wibic to Communicate with Devices... 3-5
Writing Your NI-488 Application ... 3-6

Items to Include ... 3-6
NI-488 Program Shell ... 3-7
General Program Steps and Examples .. 3-8

Step 1. Open a Device.. 3-8
Step 2. Clear the Device... 3-8
Step 3. Configure the Device ... 3-9
Step 4. Trigger the Device ... 3-9
Step 5. Wait for the Measurement 3-9
Step 6. Read the Measurement ... 3-10
Step 7. Process the Data... 3-10
Step 8. Place the Device Offline .. 3-10

Writing Your NI-488.2 Application .. 3-11
Items to Include ... 3-11
NI-488.2 Program Shell... 3-12
General Program Steps and Examples .. 3-13

Step 1. Initialization ... 3-13
Step 2. Find All Listeners .. 3-13
Step 3. Identify the Instrument ... 3-13
Step 4. Initialize the Instrument ... 3-14
Step 5. Configure the Instrument 3-15
Step 6. Trigger the Instrument ... 3-15
Step 7. Wait for the Measurement 3-15
Step 8. Read the Measurement ... 3-16
Step 9. Process the Data... 3-16
Step 10. Place the Board Offline.. 3-16

Compiling, Linking, and Running Your Application 3-17
Microsoft C ... 3-17
Borland C++ .. 3-17
Visual Basic ... 3-18
Direct Entry with C ... 3-18

Method 1. List Functions in the
 Module Definition File..................................... 3-19

Contents

© National Instruments Corp. vii NI-488.2 User Manual for Windows

Method 2. Generate an Import Library
 Using implib... 3-20

Method 3. Use LoadLibrary and GetProcAddress 3-20
Direct Entry with Visual Basic.. 3-23

Chapter 4
Debugging Your Application ... 4-1

Running wibtest ... 4-1
Presence Test of Driver ... 4-1
Presence Test of Board.. 4-1
GPIB Cables Connected .. 4-2

Running GPIBInfo... 4-2
Debugging with the Global Status Variables ... 4-3
Debugging with wibic.. 4-4
Debugging with GPIB Spy .. 4-4
GPIB Error Codes .. 4-4
Configuration Errors .. 4-5
Timing Errors ... 4-6
Communication Errors ... 4-6

Repeat Addressing... 4-6
Termination Method.. 4-6

Common Questions ... 4-7

Chapter 5
wibic–Windows Interface Bus Interactive Control Utility 5-1

Overview.. 5-1
Example Using NI-488 Functions ... 5-1
wibic Syntax... 5-4

Number Syntax.. 5-4
String Syntax ... 5-5
Address Syntax.. 5-5
wibic Syntax for NI-488 Functions ... 5-5
wibic Syntax for NI-488.2 Routines ... 5-8

Status Word ... 5-9
Error Information... 5-9
Count .. 5-10
Common NI-488 Functions ... 5-10

ibfind ... 5-10
ibdev .. 5-10
ibwrt... 5-12
ibrd... 5-12

Common NI-488.2 Routines in wibic .. 5-13
Set .. 5-13
Send and SendList ... 5-13
Receive .. 5-13

Auxiliary Functions ... 5-14
Set (Select Device or Board) ... 5-15
Help (Display Help Information) .. 5-15

Contents

NI-488.2 User Manual for Windows viii © National Instruments Corp.

! (Repeat Previous Function)... 5-15
- (Turn OFF Display) and + (Turn ON Display)............................... 5-15
n* (Repeat Function n Times) ... 5-16
$ (Execute Indirect File) .. 5-16
Print (Display the ASCII String) ... 5-17
Buffer (Set Buffer Display Mode)... 5-17

Chapter 6
GPIB Spy ... 6-1

Overview.. 6-1
Starting GPIB Spy ... 6-1
Exiting GPIB Spy .. 6-2
Viewing Call Details .. 6-2
GPIB Spy Configuration Options .. 6-3

Calls to Highlight .. 6-3
Calls To Trap On... 6-3
Buffer History ... 6-3
Set Highlight Color ... 6-3
Store Configuration ... 6-4

GPIB Spy Output Options ... 6-4
To Screen... 6-4
To File ... 6-4
Clear Screen... 6-4

GPIB Spy Help .. 6-5
Performance Considerations .. 6-5

Chapter 7
GPIB Programming Techniques ... 7-1

Termination of Data Transfers ... 7-1
High-Speed Data Transfers (HS488)... 7-2

Enabling HS488... 7-2
System Configuration Effects on HS488 .. 7-3

Waiting for GPIB Conditions .. 7-3
Device-Level Calls and Bus Management... 7-3
Talker/Listener Applications ... 7-4

Waiting for Messages from the Controller .. 7-4
Using the Event Queue.. 7-5
Requesting Service .. 7-5

Serial Polling ... 7-5
Service Requests from IEEE 488 Devices .. 7-5
Service Requests from IEEE 488.2 Devices 7-6
Automatic Serial Polling ... 7-6

Stuck SRQ State .. 7-6
Autopolling and Interrupts .. 7-7

SRQ and Serial Polling with NI-488 Device Functions.................... 7-7
SRQ and Serial Polling with NI-488.2 Routines............................... 7-8

Example 1: Using FindRQS... 7-9
Example 2: Using AllSpoll .. 7-9

Contents

© National Instruments Corp. ix NI-488.2 User Manual for Windows

Parallel Polling... 7-10
Implementing a Parallel Poll ... 7-10

Parallel Polling with NI-488 Functions 7-10
Parallel Polling with NI-488.2 Routines............................. 7-12

Chapter 8
wibconf–Windows Interface Bus Configuration Utility 8-1

Overview.. 8-1
Starting wibconf... 8-1
Upper and Lower Levels of wibconf ... 8-2

Upper Level Device Map .. 8-3
Device Maps of the Boards... 8-4
Help... 8-4
Rename ... 8-4
(Dis)connect .. 8-4
Edit .. 8-5
Exit .. 8-5

Lower Level Device/Board Characteristics....................................... 8-5
Change Characteristics .. 8-6
Change Board or Device... 8-6
Help... 8-6
Reset Value ... 8-6
Return to Map ... 8-6

Board and Device Configuration Options ... 8-7
Primary GPIB Address .. 8-7
Secondary GPIB Address .. 8-7
Timeout Setting ... 8-7
Serial Poll Timeouts (Device Characteristic Only)........................... 8-8
Terminate Read on EOS.. 8-8
Set EOI with EOS on Writes ... 8-8
Type of Compare on EOS ... 8-8
EOS Byte... 8-8
Send EOI at End of Write ... 8-9
System Controller (Board Characteristic Only) 8-9
Assert REN when SC (Board Characteristic Only)........................... 8-9
Enable Auto Serial Polling (Board Characteristic Only) 8-9
Enable CIC Protocol (Board Characteristic Only) 8-9
Bus Timing (Board Characteristic Only) .. 8-10
Cable Length for High Speed (Board Characteristic Only) 8-10
Parallel Poll Duration (Board Characteristic Only)........................... 8-10
Use This GPIB Interface (Board Characteristic Only)...................... 8-10
Base I/O Address (Board Description Only)..................................... 8-10
DMA Channel (Board Characteristic Only) 8-11
Interrupt Jumper Setting (Board Characteristic Only) 8-11
Serial Poll Timeout (Device Characteristic Only)............................. 8-11
Enable Repeat Addressing (Device Characteristic Only) 8-11
GPIB-PCII/IIA Mode Switch .. 8-11

Default Configurations in wibconf .. 8-12

Contents

NI-488.2 User Manual for Windows x © National Instruments Corp.

Exiting wibconf ... 8-12
Checking for Errors ... 8-13

wibconf Batch Mode.. 8-13

Appendix A
Status Word Conditions .. A-1

Appendix B
Error Codes and Solutions ... B-1

Appendix C
Customer Communication ... C-1
Glossary ... Glossary-1

Index ... Index-1

Figures

Figure 1-1. GPIB Address Bits ... 1-2
Figure 1-2. Linear and Star System Configuration ... 1-4
Figure 1-3. Example of Multiboard System Setup ... 1-5
Figure 1-4. How the NI-488.2 Software Works with Windows 1-8

Figure 2-1. Program Flowchart for Example 1 ... 2-3
Figure 2-2. Program Flowchart for Example 2 ... 2-5
Figure 2-3. Program Flowchart for Example 3 ... 2-7
Figure 2-4. Program Flowchart for Example 4 ... 2-9
Figure 2-5. Program Flowchart for Example 5 ... 2-12
Figure 2-6. Program Flowchart for Example 6 ... 2-15
Figure 2-7. Program Flowchart for Example 7 ... 2-17
Figure 2-8. Program Flowchart for Example 8 ... 2-19
Figure 2-9. Program Flowchart for Example 9 ... 2-21

Figure 3-1. General Program Shell Using NI-488 Device Functions 3-7
Figure 3-2. General Program Shell Using NI-488.2 Routines 3-12

Figure 6-1. Main GPIB Spy Window ... 6-1
Figure 6-2 GPIB Spy Call Details Window for ibwrt ... 6-2

Figure 8-1. Upper Level of wibconf ... 8-3
Figure 8-2. Lower Level of wibconf ... 8-5

Contents

© National Instruments Corp. xi NI-488.2 User Manual for Windows

Tables

Table 1-1. GPIB Handshake Lines ... 1-3
Table 1-2. GPIB Interface Management Lines ... 1-3

Table 3-1. Status Word (ibsta) Layout .. 3-4

Table 4-1. GPIB Error Codes .. 4-5

Table 5-1. Syntax for Device-Level NI-488 Functions in wibic................................... 5-6
Table 5-2. Syntax for Board-Level NI-488 Functions in wibic 5-7
Table 5-3. Syntax for NI-488.2 Routines in wibic .. 5-8
Table 5-4. Auxiliary Functions in wibic ... 5-14

Table 8-1. Options for Starting wibconf ... 8-2
Table 8-2. wibconf Batch Mode Command Pairs ... 8-15

Table A-1. Status Word Bits ... A-1

Table B-1. GPIB Error Codes ... B-1

© National Instruments Corp. xiii NI-488.2 User Manual for Windows

About This Manual

This manual describes the features and functions of the NI-488.2 software for Windows.
The NI-488.2 software is meant to be used with Microsoft Windows version 3.0 or
higher. This manual assumes that you are already familiar with Windows.

How to Use This Manual Set

NI-488.2 User
Manual for Windows

Application
Development
and Examples

Getting Started
Manual

Novice
Users

Installation and
Configuration

NI-488.2 Function
Reference Manual
for DOS/Windows

Experienced
Users

Function
and Routine
Descriptions

Use the getting started manual to install and configure your GPIB hardware and NI-488.2
software for Windows.

Use the NI-488.2 User Manual for Windows to learn the basics of GPIB and how to
develop an application program. The user manual also contains debugging information
and detailed examples.

Use the NI-488.2 Function Reference Manual for DOS/Windows for specific information
about each NI-488 function and NI-488.2 routine such as format, parameters, and
possible errors.

About This Manual

NI-488.2 User Manual for Windows xiv © National Instruments Corp.

Organization of This Manual

This manual is organized as follows:

• Chapter 1, Introduction , gives an overview of GPIB and the NI-488.2 software.

• Chapter 2, Application Examples, contains nine sample applications designed to
illustrate specific GPIB concepts and techniques that can help you write your own
applications. The description of each example includes the programmer's task, a
program flowchart, and numbered steps which correspond to the numbered blocks on
the flowchart.

• Chapter 3, Developing Your Application, explains how to develop a GPIB application
program using NI-488 functions and NI-488.2 routines.

• Chapter 4, Debugging Your Application, describes several ways to debug your
application program.

• Chapter 5, wibic–Windows Interface Bus Interactive Control , introduces you to
wibic , the interactive control program that you can use to communicate with GPIB
devices interactively.

• Chapter 6, GPIB Spy , explains how to use the GPIB Spy utility to monitor and debug
your application program.

• Chapter 7, GPIB Programming Techniques, describes techniques for using some
NI-488 functions and NI-488.2 routines in your application program.

• Chapter 8, wibconf–Windows Interface Bus Configuration Utility , contains a
description of wibconf , the software configuration program you can use to configure
the NI-488.2 software for Windows.

• Appendix A, Status Word Conditions , gives a detailed description of the conditions
reported in the status word, ibsta .

• Appendix B, Error Codes and Solutions, lists a description of each error, some
conditions under which it might occur, and possible solutions.

• Appendix C, Customer Communication, contains forms you can use to request help
from National Instruments or to comment on our products and manuals.

• The Glossary contains an alphabetical list and description of terms used in this manual,
including abbreviations, acronyms, metric prefixes, mnemonics, and symbols.

• The Index contains an alphabetical list of key terms and topics in this manual,
including the page where you can find each one.

About This Manual

© National Instruments Corp. xv NI-488.2 User Manual for Windows

Conventions Used in This Manual

The following conventions are used in this manual.

bold Text in bold denotes windows, menus, menu options, and
dialog box options.

bold italic Bold italic text denotes a note, caution, or warning.

italic Italic text denotes emphasis, cross references, field names, or
an introduction to a key concept.

monospace Text in this font denotes text or characters that you enter from
the keyboard. Sections of code, programming examples, and
syntax examples also appear in this font. This font is also
used for the proper name of disk drives, paths, directories,
device names, variables, and for statements taken from
program code.

bold monospace Bold text in this font denotes the messages and responses that
the computer automatically prints to the screen.

italic monospace Italic text in this font denotes that you must supply the
appropriate words or values in the place of these items.

< > Angle brackets enclose the name of a key on the keyboard–for
example, <PageDown>.

- A hyphen between two or more key names enclosed in angle
brackets denotes that you should simultaneously press the
named keys–for example, <Control-C>.

IEEE 488 and IEEE 488 and IEEE 488.2 are used throughout
IEEE 488.2 this manual to refer to the ANSI/IEEE Standard

488.1-1987 and the ANSI/IEEE Standard
488.2-1992, respectively, which define the GPIB.

NI-488.2 software The term NI-488.2 software is used throughout this manual to
refer to the NI-488.2 software for Windows, unless otherwise
noted.

Abbreviations, acronyms, metric prefixes, mnemonics, symbols, and terms are listed in
the Glossary.

About This Manual

NI-488.2 User Manual for Windows xvi © National Instruments Corp.

Related Documentation

The following documents contain information that you may find helpful as you read this
manual:

• ANSI/IEEE Standard 488.1-1987, IEEE Standard Digital Interface for Programmable
Instrumentation

• ANSI/IEEE Standard 488.2-1992, IEEE Standard Codes, Formats, Protocols, and
Common Commands

• Microsoft Windows User’s Guide

Customer Communication

National Instruments wants to receive your comments on our products and manuals. We
are interested in the applications you develop with our products, and we want to help if
you have problems with them. To make it easy for you to contact us, this manual
contains comment and configuration forms for you to complete. These forms are in
Appendix C, Customer Communication, at the end of this manual.

© National Instruments Corp. 1-1 NI-488.2 User Manual for Windows

Chapter 1
Introduction

This chapter gives an overview of GPIB and the NI-488.2 software.

GPIB Overview

The ANSI/IEEE Standard 488.1-1987, also known as GPIB (General Purpose Interface
Bus), describes a standard interface for communication between instruments and
controllers from various vendors. It contains information about electrical, mechanical,
and functional specifications. The GPIB is a digital, 8-bit parallel communications
interface with data transfer rates of 1 Mbytes/s and above. The bus supports one System
Controller, usually a computer, and up to 14 additional instruments. The ANSI/IEEE
Standard 488.2-1987 extends IEEE 488.1 by defining a bus communication protocol, a
common set of data codes and formats, and a generic set of common device commands.

Talkers, Listeners, and Controllers

GPIB devices can be Talkers, Listeners, or Controllers. A Talker sends out data
messages. Listeners receive data messages. The Controller, usually a computer,
manages the flow of information on the bus. It defines the communication links and
sends GPIB commands to devices.

Some devices are capable of playing more than one role. A digital voltmeter, for
example, can be a Talker and a Listener. If your personal computer has a National
Instruments GPIB interface board and NI-488.2 software installed, it can function as a
Talker, Listener, and Controller.

Controller-In-Charge and System Controller

You can have multiple Controllers on the GPIB, but only one Controller at a time can be
the active Controller, or Controller-In-Charge (CIC). The CIC can either be active or
inactive (Standby) Controller. Control can pass from the current CIC to an idle
Controller, but only the System Controller, usually a GPIB interface board, can make
itself the CIC.

Introduction Chapter 1

NI-488.2 User Manual for Windows 1-2 © National Instruments Corp.

GPIB Addressing

All GPIB devices and boards must be assigned a unique GPIB address. A GPIB address
is made up of two parts: a primary address and an optional secondary address.

The primary address is a number in the range 0 to 30. The GPIB Controller uses this
address to form a talk or listen address that is sent over the GPIB when communicating
with a device.

A talk address is formed by setting bit 6, the TA (Talk Active) bit of the GPIB address.
A listen address is formed by setting bit 5, the LA (Listen Active) bit of the GPIB
address. For example, if a device is at address 1, the Controller sends hex 41 (address 1
with bit 6 set) to make the device a Talker. Because the Controller is usually at primary
address 0, it sends hex 20 (address 0 with bit 5 set) to make itself a Listener. Figure 1-1
shows the configuration of the GPIB address bits.

Bit
Position 7 6 5 4 3 2 1 0

Meaning 0 TA LA GPIB Primary Address (range 0 to 30)

Figure 1-1. GPIB Address Bits

With some devices, you can use secondary addressing. A secondary address is a number
in the range hex 60 to hex 7E. When secondary addressing is in use, the Controller sends
the primary talk or listen address of the device followed by the secondary address of the
device.

Sending Messages Across the GPIB

Devices on the bus communicate by sending messages. Signals and lines transfer these
messages across the GPIB interface, which consists of 16 signal lines and eight ground
return (shield drain) lines. The 16 signal lines are discussed in the following sections.

Data Lines

Eight data lines, DIO1 through DIO8, carry both data and command messages.

Chapter 1 Introduction

© National Instruments Corp. 1-3 NI-488.2 User Manual for Windows

Handshake Lines

Three hardware handshake lines asynchronously control the transfer of message bytes
between devices. This process is a three-wire interlocked handshake, and it guarantees
that devices send and receive message bytes on the data lines without transmission error.
Table 1-1 summarizes the GPIB handshake lines.

Table 1-1. GPIB Handshake Lines

Line Description

NRFD (not ready for data) Listening device is ready/not ready to receive a message
byte. Also used by the Talker to signal high-speed GPIB
transfers.

NDAC (not data accepted) Listening device has/has not accepted a message byte.

DAV (data valid) Talking device indicates signals on data lines are stable
(valid) data.

Interface Management Lines

Five GPIB hardware lines manage the flow of information across the bus. Table 1-2
summarizes the GPIB interface management lines.

Table 1-2. GPIB Interface Management Lines

Line Description

ATN (attention) Controller drives ATN true when it sends commands and
false when it sends data messages.

IFC (interface clear) System Controller drives the IFC line to initialize the bus
and make itself CIC.

REN (remote enable) System Controller drives the REN line to place devices
in remote or local program mode.

SRQ (service request) Any device can drive the SRQ line to asynchronously
request service from the Controller.

EOI (end or identify) Talker uses the EOI line to mark the end of a data
message. Controller uses the EOI line when it conducts
a parallel poll.

Introduction Chapter 1

NI-488.2 User Manual for Windows 1-4 © National Instruments Corp.

Setting Up and Configuring Your System

Devices are usually connected with a cable assembly consisting of a shielded
24-conductor cable with both a plug and receptacle connector at each end. With this
design, you can link devices in a linear configuration, a star configuration, or a
combination of the two. Figure 1-2 shows the linear and star configurations.

Device B

Device C

Device A
Linear

Configuration

Device D

Device CDevice B

Device A

Star
Configuration

Figure 1-2. Linear and Star System Configuration

Chapter 1 Introduction

© National Instruments Corp. 1-5 NI-488.2 User Manual for Windows

Controlling More Than One Board

Multiboard drivers, such as the NI-488.2 driver for Windows, can control more than one
interface board. Figure 1-3 shows an example of a multiboard system configuration.
gpib0 is the access board for the voltmeter, and gpib1 is the access board for the
plotter and printer. The control functions of the devices automatically access their
respective boards.

Printer

Plotter

Digital Voltmeter

gpib0

gpib1

One
GPIB

Another
GPIB

Figure 1-3. Example of Multiboard System Setup

Configuration Requirements

To achieve the high data transfer rate that the GPIB was designed for, you must limit the
physical distance between devices and the number of devices on the bus. The following
restrictions are typical:

• A maximum separation of four meters between any two devices and an average
separation of two meters over the entire bus.

• A maximum total cable length of 20 m.

• A maximum of 15 devices connected to each bus, with at least two-thirds powered on.

Introduction Chapter 1

NI-488.2 User Manual for Windows 1-6 © National Instruments Corp.

For high-speed operation, the following restrictions apply:

• All devices in the system must be powered on.

• Cable lengths as short as possible up to a maximum of 15 m of cable for each system.

• At least one equivalent device load per meter of cable.

If you want to exceed these limitations, you can use bus extenders to increase the cable
length or expander to increase the number of device loads. Extenders and expanders are
available from National Instruments.

The following sections describe the NI-488.2 software, which controls the flow of
communication on the GPIB.

The NI-488.2 Software Package

The following section highlights important elements of the NI-488.2 software for
Windows and describes the function of each element.

NI-488.2 Driver and Driver Utilities

The NI-488.2 software contains the following driver and utility files:

• readme.txt is a documentation file that contains important information about the
NI-488.2 software and a description of any new features. Before you use the
software, read this file for the most recent information.

• setup.exe is a Windows setup executable that installs the NI-488.2 software.

• gpib.dll is a 16-bit dynamic link library that implements the NI-488 and
NI-488.2 functions.

• gpib.ini is the GPIB configuration information file that describes the default
configuration of the NI-488.2 software.

• nivgpibd.386 , the National Instruments virtual GPIB device, allows you to use
DMA to transfer buffers located above 16 MB in memory. The setup program offers
to install this virtual device for you.

• nivdmad.386 is an improved version of the virtual DMA device (vdmad) used by
Windows 3.0 in 386-enhanced mode. The setup program offers to install this virtual
device for you if you are running Windows 3.0.

Chapter 1 Introduction

© National Instruments Corp. 1-7 NI-488.2 User Manual for Windows

• ibdiag.exe is a program that you can use to test the GPIB hardware and ensure
that it is functioning properly.

• wibtest.exe is the Windows NI-488.2 software installation test.

• gpibinfo.exe is a utility you can use to obtain information about your GPIB
hardware and software, such as the version of the NI-488.2 software and the type of
interface board you are using.

• wibic.exe is an interactive control program that you use to communicate with the
GPIB devices interactively using NI-488.2 functions and routines. It helps you to
learn the NI-488.2 routines and to program your instrument or other GPIB devices.

• wibconf.exe is a software configuration program that changes the configuration
parameters of the NI-488.2 software for Windows.

• gpibspy.exe is the GPIB activity monitor program. It is a debugging tool that you
can use to monitor the NI-488.2 calls made by your Windows applications.

C Language Files

The NI-488.2 software contains the following C language files:

• readme.mc is a documentation file that contains information about the C language
interface.

• gpib.lib is the Microsoft C (version 5.1 or higher) and Borland C++ (version 2.0
or higher) language interface library. You must link this library with your application
program so that your program can access the NI-488.2 dynamic link library.

• windecl.h is an include file. It contains NI-488 function and NI-488.2 routine
prototypes and various predefined constants.

Visual Basic Language Files

The distribution disk contains the following language files for Microsoft Visual Basic:

• readme.vb is a documentation file that contains information about the Visual Basic
language interface.

• vbib.bas is the Visual Basic (version 1.0 or higher) language source file which
defines the NI-488 functions and NI-488.2 routines that call the gpib.dll .

• niglobal.bas is the Visual Basic global module that includes certain predefined
constant declarations and declares the global variables.

Introduction Chapter 1

NI-488.2 User Manual for Windows 1-8 © National Instruments Corp.

Win 32s Files

• gpib-32.dll is a 32-bit translation dynamic link library that handles the 32-bit to
16-bit translation.

• gpib-16.dll is a 16-bit translation dynamic link library.

• wibic32.exe is a Win32s version of the wibic application.

Sample Application Files

The NI-488.2 software includes nine sample applications along with source code for each
language supported by the NI-488.2 software. For a detailed description of the sample
application files, refer to Chapter 2, Application Examples.

How the NI-488.2 Software Works with Windows

The NI-488.2 driver is a standard 16-bit Windows DLL, which is loaded when a
Windows GPIB application is executed. The NI-488.2 driver for Windows is unloaded
when the last active GPIB application is exited.

Figure 1-4 shows how the NI-488.2 software works with Windows and your GPIB
hardware.

Windows

GPIB Hardware Interface

OR OR OR

16-bit NI-488.2 DLL

Win16 User
Application

Program that
Uses Direct

Entry

WIBIC
32-bit Utility

for Using
NI-488.2

Commands
Interactively

Win 32s
User

Application
Program

32-bit NI-488.2 Language Interface

OR

16-bit NI-488.2 Language Interface

WIBIC
16-bit Utility

for Using
NI-488.2

Commands
Interactively

Win16
User

Application
Program

Win 32s User
Application

Program that
Uses Direct

Entry

16-bit NI-488.2
Translation DLL

32-bit NI-488.2
Translation DLL

OR

Figure 1-4. How the NI-488.2 Software Works with Windows

Chapter 1 Introduction

© National Instruments Corp. 1-9 NI-488.2 User Manual for Windows

Unloading and Reloading the NI-488.2 Driver

The NI-488.2 driver for Windows is a dynamic link library (DLL), which is loaded and
unloaded automatically. When a Windows application first accesses the NI–488.2 DLL,
it loads the DLL into memory. When the last Windows application using the NI-488.2
DLL has exited, the DLL is unloaded from memory.

The NI-488.2 DLL might use the services of the virtual device driver, nivgpibd.386 .
If you have more than 16 MB of RAM in your computer and you use DMA to read from
and write to your GPIB instrument, then you must have the nivgpibd.386 device
installed. If it is not installed, the EDMA error might be returned.

You can remove the nivgpibd.386 device by editing the system.ini file as
follows:

1. Locate the system.ini file in the Windows directory (usually c:\windows).

2. Find the line in the [386Enh] section that is of the following form:

device = drive:\path\nivgpibd.386

where drive is the drive (usually c) and path is the path where the NI-488.2
software is installed (for example, c:\at-gpibw).

3. Change this command line to a comment by adding a semicolon at the beginning of
the line as follows:

;device = drive:\path\nivgpibd.386

4. Restart Windows so that the change in system.ini can take effect.

© National Instruments Corp. 2-1 NI-488.2 User Manual for Windows

Chapter 2
Application Examples

This chapter contains nine sample applications designed to illustrate specific GPIB
concepts and techniques that can help you write your own applications. The description
of each example includes the programmer's task, a program flowchart, and numbered
steps which correspond to the numbered blocks on the flowchart.

Use this chapter along with your NI-488.2 software, which includes the C and Visual
Basic source code for each of the nine examples. The programs are listed in order of
increasing complexity. If you are new to GPIB programming, you might want to study
the contents and concepts of the first sample, simple.c , before moving on to more
complex examples.

The following example programs are included with your NI-488.2 software:

• simple.c is the source code file for Example 1. It illustrates how you can establish
communication between a host computer and a GPIB device.

• clr_trg.c is the source code file for Example 2. It illustrates how you can clear
and trigger GPIB devices.

• asynch.c is the source code file for Example 3. It illustrates how you can perform
non-GPIB tasks while data is being transferred over the GPIB.

• eos.c is the source code file for Example 4. It illustrates the concept of the end-of-
string (EOS) character.

• rqs.c is the source code file for Example 5. It illustrates how you can communicate
with GPIB devices that use the GPIB SRQ line to request service. This sample is
written using NI-488 functions.

• easy4882.c is the source code file for Example 6. It is an introduction to NI-488.2
routines.

• rqs4882.c is the source code file for Example 7. It uses NI-488.2 routines to
communicate with GPIB devices that use the GPIB SRQ line to request service.

• ppoll.c is the source code file for Example 8. It uses NI-488.2 routines to conduct
parallel polls.

• non_cic.c is the source code file for Example 9. It illustrates how you can use the
NI-488.2 driver in a non-Controller application.

Application Examples Chapter 2

NI-488.2 User Manual for Windows 2-2 © National Instruments Corp.

Example 1: Basic Communication

This example focuses on the basics of establishing communication between a host
computer and a GPIB device.

A technician needs to monitor voltage readings using a GPIB multimeter. His computer
is equipped with an IEEE 488.2 interface board. The NI-488.2 software is installed, and
a GPIB cable runs from the computer to the GPIB port on the multimeter.

The technician is familiar with the multimeter remote programming command set. This
list of commands is specific to his multimeter and is available from the multimeter
manufacturer.

He sets up the computer to direct the multimeter to take measurements and record each
measurement as it occurs. To do this, he has written an application that uses some simple
high-level GPIB commands. The following steps correspond to the program flowchart in
Figure 2-1.

1. The application initializes the GPIB by bringing the interface board in the computer
online.

2. The application sends the multimeter an instruction, setting it up to take voltage
measurements in autorange mode.

3. The application sends the multimeter an instruction to take a voltage measurement.

4. The application tells the multimeter to transmit the data it has acquired to the
computer.

The process of requesting a measurement and reading from the multimeter (Steps 3
and 4) is repeated as long as there are readings to be obtained.

5. As a cleanup step before exiting, the application returns the interface board to its
original state by taking it offline.

Chapter 2 Application Examples

© National Instruments Corp. 2-3 NI-488.2 User Manual for Windows

Computer Multimeter

INIT

Read
Measurement

from Multimeter

Finished Getting
Measurements?

CLEAN UP

Yes

No

ibwrt

ibrd

"VOLTS?"Tell Multimeter to
Take Measurement

"+ 5 volts"

1

2

3

5

Set Up Multimeter
to Take Voltages

ibwrt

"VOLTS DC;AUTO"

4

GPIB Cable

Figure 2-1. Program Flowchart for Example 1

Application Examples Chapter 2

NI-488.2 User Manual for Windows 2-4 © National Instruments Corp.

Example 2: Clearing and Triggering Devices

This example illustrates how you can clear and trigger GPIB devices.

Two freshman physics lab partners are learning how to use a GPIB digital oscilloscope.
They have successfully loaded the NI-488.2 software on a personal computer and
connected their GPIB board to a GPIB digital oscilloscope. Their current lab assignment
is to write a small application to practice using the oscilloscope and its command set
using high-level GPIB commands. The following steps correspond to the program
flowchart in Figure 2-2.

1. The application initializes the GPIB by bringing the interface board in the computer
online.

2. The application sends a GPIB clear command to the oscilloscope. This command
clears the internal registers of the oscilloscope, reinitializing it to default values and
settings.

3. The application sends a command to the oscilloscope telling it to read a waveform
each time it is triggered. Predefining the task in this way decreases the execution
time required. Each trigger of the oscilloscope is now sufficient to get a new run.

4. The application sends a GPIB trigger command to the oscilloscope which causes it to
acquire data.

5. The application queries the oscilloscope for the acquired data. The oscilloscope
sends the data.

6. The application reads the data from the oscilloscope.

7. The application calls an external graphics routine to display the acquired waveform.

Steps 4, 5, 6, and 7 are repeated until all of the desired data has been acquired by the
oscilloscope and received by the computer.

8. As a cleanup step before exiting, the application returns the interface board to its
original state by taking it offline.

Chapter 2 Application Examples

© National Instruments Corp. 2-5 NI-488.2 User Manual for Windows

GPIB Cable

Computer Oscilloscope

INIT

Trigger
Oscilloscope to

Get Reading

Finished
Reading?

CLEAN UP

Yes

No

ibclr

ibtrg

Clear
Command

Request Data
from

Oscilloscope
"CURV?"

Clear
Oscilloscope

ibwrt

Define Task to Be Done
When Oscilloscope is

Triggered

Trigger
Command

1

2

3

4

5

6
Read Data

from
Oscilloscope

 Display
Waveform

Data

7

8

"WAV=TRIG"

ibwrt

ibrd

Figure 2-2. Program Flowchart for Example 2

Application Examples Chapter 2

NI-488.2 User Manual for Windows 2-6 © National Instruments Corp.

Example 3: Asynchronous I/O

This example illustrates how an application conducts data transfers with a GPIB device
and immediately returns to perform other non-GPIB related tasks while GPIB I/O is
occurring in the background. This asynchronous mode of operation is particularly useful
when the requested GPIB activity may take some time to complete.

In this example, a research biologist is trying to obtain CAT scans of a laboratory
animal's liver. She will print out a color copy of each scan as it is acquired. The entire
operation is computer-controlled. The CAT scan machine sends the images it acquires to
a computer that has the NI-488.2 software installed and is connected to a GPIB color
printer . The biologist is familiar with the command set of her color printer, as described
in the color printer's user manual. She acquires and prints images with the aid of an
application program she wrote using high-level GPIB commands. The following steps
correspond to the program flowchart in Figure 2-3.

1. The application initializes the GPIB by bringing the interface board in the computer
online.

2. An image is scanned in.

3. The application sends the GPIB printer a command to print the new image and
immediately returns without waiting for the I/O operation to be completed.

4. The application saves the image obtained to a file.

5. The application inquires as to whether the printing operation has completed by
issuing a GPIB wait command. If the status reported by the wait command indicates
completion (CMPL is in the status returned) and more scans need to be acquired,
Steps 2 through 5 are repeated until the scans have all been acquired. If the status
reported by the wait command in Step 5 does not indicate that printing is finished,
statistical computations are performed on the scan obtained and Step 5 is repeated.

6. As a cleanup step before exiting, the application returns the interface board to its
original state by taking it offline.

Chapter 2 Application Examples

© National Instruments Corp. 2-7 NI-488.2 User Manual for Windows

Computer

INIT

Print Image
Asynchronously

CLEAN UP

Non-GPIB
Activity: Save

to Disk

Color Printer

Print Image

Image
Scan

Non-GPIB Activity:
Compute Statistics

More
Images?

Yes

No

Yes

No

ibwrta

1

2

3

4

5

6

GPIB Cable

Is GPIB
Printing
Done?

ibwait

Figure 2-3. Program Flowchart for Example 3

Application Examples Chapter 2

NI-488.2 User Manual for Windows 2-8 © National Instruments Corp.

Example 4: End-of-String Mode

This example illustrates how to use the end-of-string modes to detect that the GPIB
device has finished sending data.

A journalist is using a GPIB scanner to scan some pictures into his personal computer for
a news story. A GPIB cable runs between the scanner and the computer. He is using an
application written by an intern in the department who has read the scanner's instruction
manual and is familiar with the scanner's programming requirements. The following
steps correspond to the program flowchart in Figure 2-4.

1. The application initializes the GPIB by bringing the interface board in the computer
online.

2. The application sends a GPIB clear message to the scanner, initializing it to its
power-on defaults.

3. The scanner needs to detect a delimiter indicating the end of a command. In this
case, the scanner expects the commands to be terminated with <CR><LF> (carriage
return, \r , and linefeed, \n). The application sets its end-of-string (EOS) byte to
<LF>. The linefeed code indicates to the scanner that no more data is coming, and is
called the end-of-string byte. It flags an end-of-string condition for this particular
GPIB scanner. The same effect could be accomplished by asserting the EOI line
when the command is sent.

4. With the exception of the scan resolution, all the default settings are appropriate for
the task at hand. The application changes the scan resolution by writing the
appropriate command to the scanner.

5. The scanner sends back information describing the status of the change resolution
command. This is a string of bytes terminated by the end-of-string character to tell
the application it is done changing the resolution.

6. The application starts the scan by writing the scan command to the scanner.

7. The application reads the scan data into the computer.

8. As a cleanup step before exiting, the application returns the interface board to its
original state by taking it offline.

Chapter 2 Application Examples

© National Instruments Corp. 2-9 NI-488.2 User Manual for Windows

Read Status

Computer Scanner

INIT

Set EOS
Mode

CLEAN UP

ibclr

ibeos

Change
Scan

Resolution

Reset
Internal
State

"RES:3 \ r \ n"

ibwrt

Read
Data

ibwrt

ibrd

Start Scan

"OK"

"scan \ r \ n"

Scanned
Data

ibrd

1

2

3

4

5

6

7

8

Clear
Command

GPIB Cable

Figure 2-4. Program Flowchart for Example 4

Application Examples Chapter 2

NI-488.2 User Manual for Windows 2-10 © National Instruments Corp.

Example 5: Service Requests

This example illustrates how an application communicates with a GPIB device that uses
the GPIB service request (SRQ) line to indicate that it needs attention.

A graphic arts designer is transferring digital images stored on her computer to a roll of
color film, using a GPIB digital film recorder. A GPIB cable connects the GPIB port on
the film recorder to the IEEE 488.2 interface board installed in her computer. She has
installed the NI-488.2 software on the host computer and is familiar with the
programming instructions for the film recorder, as described in the film recorder's user
manual. She places a fresh roll of film in the camera and launches a simple application
she has written using high-level GPIB commands. With the aid of the application, she
records a few images on film. The following steps correspond to the program flowchart
in Figure 2-5.

1. The application initializes the GPIB by bringing the interface board in the computer
online.

2. The application brings the film recorder to a ready state by issuing a device clear
instruction. The film recorder is now set up for operation using its default values.
(The graphic arts designer has previously established that the default values for the
film recorder are appropriate for the type of film she is using.)

3. The application advances the new roll of film into position so the first image can be
exposed on the first frame of film. This is done by sending the appropriate
instructions as described in the film recorder programming guide.

4. The application waits for the film recorder to signify that it is done loading the film,
by waiting for RQS (request for service). The film recorder asserts the GPIB SRQ
line when it has finished loading the film.

5. As soon as the film recorder asserts the GPIB SRQ line, the application’s wait for the
RQS event completes. The application conducts a serial poll by sending a special
command message to the film recorder that directs it to return a response in the form
of a serial poll status byte. This byte contains information indicating what kind of
service the film recorder is requesting or what condition it is flagging. In this
example, it indicates the completion of a command.

6. A color image transfers to the digital film recorder in three consecutive passes–one
pass each for the red, green and blue components of the image. Sub-steps 6a, 6b,
and 6c are repeated for each of the passes:

6a. The application sends a command to the film recorder directing it to accept data
to create a single pass image. The film recorder asserts the SRQ line as soon as
a pass is completed.

6b. The application waits for RQS.

Chapter 2 Application Examples

© National Instruments Corp. 2-11 NI-488.2 User Manual for Windows

6c. When the SRQ line is asserted, the application serial polls the film recorder to
see if it requested service, as in Step 5.

7. The application issues a command to the film recorder to advance the film by one
frame. The advance occurs successfully unless the end of film is reached.

8. The application waits for RQS, which completes when the film recorder asserts the
SRQ line to signal it is done advancing the film.

9. As soon as the application's wait for RQS completes, the application serial polls the
film recorder to see if it requested service, as in Step 5. The returned serial poll
status byte indicates either of two conditions–the film recorder finished advancing
the film as requested or the end of film was reached and it can no longer advance.
Steps 6 through 9 are repeated as long as film is in the camera and more images need
to be recorded.

10. As a c leanup step before exiting, the application returns the interface board to its
original state by taking it offline.

Application Examples Chapter 2

NI-488.2 User Manual for Windows 2-12 © National Instruments Corp.

GPIB Cable

Computer Digital Film Recorder

INIT

Wait for the
Film Recorder to
Request Service

Finished
Loading

Film?

ibclr

ibwait

"FRM+"

Read
Response from

the Film
Recorder

Response

Advance
Film

Clear Film Recorder Clear Command

ibrsp

1

2

4

3

5

No

ibwrt

YesExit Application
and Repair

Film Recorder

Request
Service

Did You Request
Service ?

Yes

(continues)

Figure 2-5. Program Flowchart for Example 5

Chapter 2 Application Examples

© National Instruments Corp. 2-13 NI-488.2 User Manual for Windows

(Continued)

CLEAN UP

Yes

Wait for Film
Recorder to

Request
Service

Create a
Single Pass

Image

Read Response
From Film
Recorder

ibrsp

Wait for Film
Recorder to

Request
Service

Advance Film

Read Response From
Film Recorder

6

6a

6b

6c

7

8

9

10

Yes

ibwait
These steps
are repeated 3
times, once for
each color
pass

ibwrt

ibwait

Reached
End of
Film?No

Computer Digital Film Recorder

ibrsp

ibwrt

Data for Red, Green,
or Blue Pass

Request
Service

Did You Request
Service?

Yes

Response

 "ADV"

Request
Service

Did You Request
Service?

Yes

Response

Figure 2-5. Program Flowchart for Example 5 (Continued)

Application Examples Chapter 2

NI-488.2 User Manual for Windows 2-14 © National Instruments Corp.

Example 6: Basic Communication with
IEEE 488.2-Compliant Devices

This example is an introduction to communicating with IEEE 488.2-compliant devices.

A test engineer in a metal factory is using IEEE 488.2-compliant tensile testers to
determine the strength of metal rods as they come out of production. There are several
tensile testers and they are all connected to a central computer equipped with an IEEE
488.2 interface board. These machines are fairly voluminous and it is difficult for the
engineer to reach the address switches of each machine. For the purposes of his future
work with these tensile testers, he needs to determine the setting of each GPIB address
switch. He can do so with the aid of a simple application he has written. The following
steps correspond to the program flowchart in Figure 2-6.

1. The application initializes the GPIB by bringing the interface board in the computer
online.

2. The application issues a command to detect the presence of listening devices on the
GPIB and compiles a list of the addresses of all such devices.

3. The application sends an identification query ("*IDN?") to all of the devices
detected on the GPIB in Step 2.

4. The application reads the identification information returned by each of the devices
as it responds to the query in Step 3.

5. As a cleanup step before exiting, the application returns the interface board back to
its original state by taking it offline.

Chapter 2 Application Examples

© National Instruments Corp. 2-15 NI-488.2 User Manual for Windows

Computer Tensile Tester 1

INIT

Tell Device 1
to Identify

Itself

CLEAN UP

FindLstn

Send

 "*IDN?"

Receive

Tensile Tester 2 Tensile Tester 3

Who's
Listening?

Get a List
of Devices
Present on

GPIB

Device 1
is Here

Device 2
is Here

Device 3
is Here

"MUTT 10426"

"MUTT 10528"

1

2

3

4

5

"MUTT 10383"

GPIB Cable GPIB Cable GPIB Cable

Receive

Receive

Read
Response

from
Device 2

Read
Response

from
Device 3

Tell Device
2 to Identify

Itself

Tell Device
3 to Identify

Itself

Send

Send

 "*IDN?"

 "*IDN?"

Read
Response

from
Device 1

3

4

3

4

Figure 2-6. Program Flowchart for Example 6

Application Examples Chapter 2

NI-488.2 User Manual for Windows 2-16 © National Instruments Corp.

Example 7: Serial Polls Using NI-488.2 Routines

This example illustrates how you can take advantage of the NI-488.2 routines to reduce
the complexity of performing serial polls of multiple devices.

A candy manufacturer is using GPIB strain gauges to measure the consistency of the
syrup used to make candy. The plant has four big mixers containing syrup. The syrup
has to reach a certain consistency to make good quality candy. This is measured by strain
gauges that monitor the amount of pressure used to move the mixer arms. When a certain
consistency is reached, the mixture is removed and a new batch of syrup is poured in the
mixer. The GPIB strain gauges are connected to a computer with an IEEE 488.2
interface board and the NI-488.2 software installed. The process is controlled by an
application that uses NI-488.2 routines to communicate with the IEEE 488.2-compliant
strain gauges. The following steps correspond to the program flowchart in Figure 2-7.

1. The application initializes the GPIB by bringing the interface board in the computer
online.

2. The application configures the strain gauges to request service when they have a
significant pressure reading or a mechanical failure occurs. They signal their request
for service by asserting the SRQ line.

3. The application waits for one or more of the strain gauges to indicate that they have a
significant pressure reading. This wait event ends as soon as the SRQ line is
asserted.

4. The application serial polls each of the strain gauges to see if it requested service.

5. Once the application has determined which one of the strain gauges requires service,
it takes a reading from that strain gauge.

6. If the reading matches the desired consistency, a dialog window appears on the
computer screen and prompts the mixer operator to remove the mixture and start a
new batch. Otherwise, a dialog window prompts the operator to service the mixer in
some other way.

Steps 3 through 6 are repeated as long as the mixers are in operation.

7. After the last batch of syrup has been processed, the application returns the interface
board to its original state by taking it offline.

Chapter 2 Application Examples

© National Instruments Corp. 2-17 NI-488.2 User Manual for Windows

Computer Strain
Gauge 1

INIT

CLEAN UP

SendList

WaitSRQ

FindRQS

Strain
Gauge 2

Strain
Gauge 3

Request
Service

Receive

Done for
the

Day?

1

7

GPIB Cable GPIB CableGPIB Cable

Yes

No

Wait for 1 or More
Strain Gauges to
Request Service

3

No
Did You Request

Service?

Did You Request
Service?

Yes

Serial Poll Each
Strain Gauge

Until One
Requesting
Service is
Located

4

Response
Get a Reading

From Strain
Gauge

5

No

Yes

Provide
Whatever
Service is
Required

Does the
Gauge Need

Service?

6

Mixture is Ready.
Display "Remove

Mixture"
Message

"SRQ=HI"

Configure Strain
Gauges to

Request Service
When They

Have a Reading

2

Figure 2-7. Program Flowchart for Example 7

Application Examples Chapter 2

NI-488.2 User Manual for Windows 2-18 © National Instruments Corp.

Example 8: Parallel Polls

This example illustrates how you can use NI-488.2 routines to obtain information from
several IEEE 488.2-compliant devices at once using a procedure called parallel polling.

The process of manufacturing a particular alloy involves bringing three different metals
to specific temperatures before mixing them to form the alloy. Three vats are used, each
containing a different metal. Each is monitored by a GPIB ore monitoring unit. The
monitoring unit consists of a GPIB temperature transducer and a GPIB power supply.
The temperature transducer is used to probe the temperature of each metal. The power
supply is used to start a motor to pour the metal into the mold when it reaches a
predefined temperature. The three monitoring units are connected to the IEEE 488.2
interface board of a computer that has the NI-488.2 software installed. An application
using NI-488.2 routines operates the three monitoring units. The application will obtain
information from the multiple units by conducting a parallel poll, and will then determine
when to pour the metals into the mixture tank. The following steps correspond to the
program flowchart in Figure 2-8.

1. The application initializes the GPIB by bringing the interface board in the computer
online.

2. The application configures the temperature transducer in the first monitoring unit by
choosing which of the eight GPIB data lines the transducer uses to respond when a
parallel poll is conducted. The application also sets the temperature threshold. The
transducer manufacturer has defined the individual status (ist) bit to be true when
the temperature threshold is reached, and the configured status mode of the
transducer is assert the data line. When a parallel poll is conducted, the transducer
asserts its data line if the temperature has exceeded the threshold.

3. The application configures the temperature transducer in the second monitoring unit
for parallel polls.

4. The application configures the temperature transducer in the third monitoring unit for
parallel polls.

5. The application conducts non-GPIB activity while the metals are heated.

6. The application conducts a parallel poll of all three temperature transducers to
determine whether the metals have reached the appropriate temperature. Each
transducer asserts its data line during the configuration step if its temperature
threshold has been reached.

7. If the response to the poll indicates that all three metals are at the appropriate
temperature, the application sends a command to each of the three power supplies,
directing them to power on. Then the motors start and the metals pour into the mold.

If only one or two of the metals is at the appropriate temperature, Steps 5 and 6 are
repeated until the metals can be successfully mixed.

Chapter 2 Application Examples

© National Instruments Corp. 2-19 NI-488.2 User Manual for Windows

8. The application unconfigures all of the transducers so that they no longer participate
in parallel polls.

9. As a cleanup step before exiting, the application returns the interface board to its
original state by taking it offline.

Computer

INIT

CLEAN UP

PPollConfig

Configure
Transducer 3

for Parallel Polls

Non-GPIB
Activity

Parallel Poll
Enable

Start Power
Supplies

No

Temp
Transducer

Yes

1

2

3

4

5

6

7

9

PPollConfig

PPollConfig

 PPoll
Unconfigure8

PPoll

"MIX ON"
SendList

PPollUnconfig

Power
Supply

Configure
Transducer 2

for Parallel Polls

Configure
Transducer 1 for

Parallel Polls

UNIT 1

GPIB
CableGPIB Cable

GPIB
Cable

GPIB
Cable

GPIB
Cable

GPIB
Cable

Are All
Metals
Ready?

Yes

Temp
Transducer

Power
Supply

UNIT 2
Temp

Transducer
Power
Supply

UNIT 3

Parallel Poll
Enable

YesYes

Parallel Poll
Enable

Parallel Poll

Parallel Poll
Disable

Figure 2-8. Program Flowchart for Example 8

Application Examples Chapter 2

NI-488.2 User Manual for Windows 2-20 © National Instruments Corp.

Example 9: Non-Controller Example

This example illustrates how you can use the NI-488.2 software to emulate a GPIB
device that is not the GPIB Controller.

A software engineer has written firmware to emulate a GPIB device for a research project
and is testing it using an application that makes simple GPIB calls. The following steps
correspond to the program flowchart in Figure 2-9.

1. The application brings the device online.

2. The application waits for any of three events to occur: the device to become listen-
addressed, become talk-addressed, or receive a GPIB clear message.

3. As soon as one of the events occurs, the application takes an action based upon the
event that occurred. If the device was cleared, the application resets the internal state
of the device to default values. If the device was talk-addressed, it writes data back
to the Controller. If the device was listen-addressed, it reads in new data from the
Controller.

Chapter 2 Application Examples

© National Instruments Corp. 2-21 NI-488.2 User Manual for Windows

Device Controller

INIT

Wait to be Talk
Addressed,

Listen
Addressed, or

Cleared

Write Out
New Data

No

ibwait

fffffffffff

Is This the
Clear Event?

Is This the
Talk

Addressed
Event?

Reset
Internal
State Yes

Yes

Data

No

Read In
New Data

Data

ibwrt

ibrd

1

2

3

3

3

Figure 2-9. Program Flowchart for Example 9

© National Instruments Corp. 3-1 NI-488.2 User Manual for Windows

Chapter 3
Developing Your Application

This chapter explains how to develop a GPIB application program using NI-488
functions and NI-488.2 routines.

Choosing How to Access the NI-488.2 DLL

Applications can access the NI-488.2 dynamic link library (gpib.dll) either by using
the NI-488.2 language interfaces for C or Visual Basic, or by directly accessing the
gpib.dll . The NI-488.2 language interface is the easiest and fastest method, and it is
adequate for most applications.

If you want to access the gpib.dll from languages other than C and Visual Basic, or if
you have special needs for accessing the gpib.dll , then you must use the direct entry
functions. These functions are identical to the NI-488 and NI-488.2 calls, except for the
following two differences:

• You must preface each function name by the characters DLL . For example, instead of
using the NI-488 function ibwrt , use the direct entry function DLLibwrt .

• The number of arguments taken by each function is increased by three. The last three
parameters are, in order, a pointer to the ibsta variable, a pointer to the iberr
variable, and a pointer to the ibcntl variable. Your application must declare its
own ibsta , iberr , and ibcntl variables to use the direct entry functions.

Choosing Between NI-488 Functions and NI-488.2 Routines

Your NI-488.2 software includes two distinct sets of subroutines to meet your application
needs. For most application programs, the NI-488 functions are sufficient. You should
use the NI-488.2 routines if you have a complex configuration with one or more interface
boards and multiple devices.

The following sections discuss some differences between NI-488 functions and NI-488.2
routines.

Developing Your Application Chapter 3

NI-488.2 User Manual for Windows 3-2 © National Instruments Corp.

Using NI-488 Functions: One Device for Each Board

If your system has only one device attached to each board, the NI-488 functions are
probably sufficient for your programming needs. Some other factors that make the
NI-488 functions more convenient include the following:

• With NI-488 asynchronous I/O functions (ibcmda , ibrda , and ibwrta), you can
initiate an I/O sequence while maintaining control over the CPU for non-GPIB tasks.

• NI-488 functions include built-in file transfer functions (ibrdf and ibwrtf).

• With NI-488 functions, you can control the bus in non-typical ways or communicate
with non-compliant devices.

The NI-488 functions consist of high-level (or device) functions that hide much of the
GPIB management operations and low-level (or board) functions that offer you more
control over the GPIB than NI-488.2 routines. The following sections describe these
different function types.

NI-488 Device Functions

Device functions are high-level functions that automatically execute commands that
handle bus management operations such as reading from and writing to devices or polling
them for status. If you use device functions, you do not need to understand GPIB
protocol or bus management. For information about device-level calls and how they
manage the GPIB, refer to Device-Level Calls and Bus Management, in Chapter 7, GPIB
Programming Techniques.

NI-488 Board Functions

Board functions are low-level functions that perform rudimentary GPIB operations.
Board functions access the interface board directly and require you to handle the
addressing and bus management protocol. In cases when the high-level device functions
might not meet your needs, low-level board functions give you the flexibility and control
to handle situations such as the following:

• Communicating with non-compliant (non-IEEE 488.2) devices

• Altering various low-level board configurations

• Managing the bus in non-typical ways

Chapter 3 Developing Your Application

© National Instruments Corp. 3-3 NI-488.2 User Manual for Windows

The NI-488 board functions are compatible with, and can be interspersed within,
sequences of NI-488.2 routines. When you use board functions within a sequence of
NI-488.2 routines, you do not need a prior call to ibfind to obtain a board descriptor.
You simply substitute the board index as the first parameter of the board function call.
With this flexibility, you can handle non-standard or unusual situations that you cannot
resolve using NI-488.2 routines only.

Using NI-488.2 Routines: Multiple Boards and/or Multiple Devices

When your system includes a board that must access more than one device, use the
NI-488.2 routines. NI-488.2 rout ines can perform the following tasks with a single call:

• Find all of the Listeners on the bus

• Find a device requesting service

• Determine the state of the SRQ line, or wait for SRQ to be asserted

• Address multiple devices to listen

Checking Status with Global Variables

Each NI-488 function and NI-488.2 routine updates the global variables to reflect the
status of the device or board that you are using. The status word (ibsta), the error
variable (iberr), and the count variables (ibcnt and ibcntl) contain useful
information about the performance of your application program. Your program should
check these variables frequently. The following sections describe each of these global
variables and how you can use them in your application program.

Status Word – ibsta

All functions update a global status word, ibsta , which contains information about the
state of the GPIB and the GPIB hardware. Most of the NI-488 functions return the value
stored in ibsta . You can test for conditions reported in ibsta to make decisions
about continued processing, or you can debug your program by checking ibsta after
each call.

ibsta is a 16-bit value. A bit value of one (1) indicates that a certain condition is in
effect. A bit value of zero (0) indicates that the condition is not in effect. Each bit in
ibsta can be set for NI-488 device calls (dev), NI-488 board calls and NI-488.2 calls
(brd), or all (dev, brd).

Developing Your Application Chapter 3

NI-488.2 User Manual for Windows 3-4 © National Instruments Corp.

Table 3-1 shows the condition that each bit position represents, the bit mnemonics, and
the type of calls for which each bit can be set. For a detailed explanation of each of the
status conditions, refer to Appendix A, Status Word Conditions .

Mnemonic
Bit
Pos.

Hex
Value Type Description

ERR 15 8000 dev, brd GPIB error

TIMO 14 4000 dev, brd Time limit exceeded

END 13 2000 dev, brd END or EOS detected

SRQI 12 1000 brd SRQ interrupt received

RQS 11 800 dev Device requesting service

SPOLL 10 400 brd Board has been serial polled by
Controller

EVENT 9 200 brd DCAS, DTAS, or IFC event has occurred

CMPL 8 100 dev, brd I/O completed

LOK 7 80 brd Lockout State

REM 6 40 brd Remote State

CIC 5 20 brd Controller-In-Charge

ATN 4 10 brd Attention is asserted

TACS 3 8 brd Talker

LACS 2 4 brd Listener

DTAS 1 2 brd Device Trigger State

DCAS 0 1 brd Device Clear State

The language header files included on your distribution disk contain the mnemonic
constants for ibsta . You can check a bit position in ibsta by using its numeric value
or its mnemonic constant. For example, bit position 15 (hex 8000) detects a GPIB error.
The mnemonic for this bit is ERR. To check for a GPIB error, use either of the following
statements after each NI-488 function and NI-488.2 routine as shown:

if (ibsta & ERR) gpiberr();

or

if (ibsta & 0x8000) gpiberr();

where gpiberr() is an error handling routine.

Table 3-1. Status Word (ibsta) Layout

Chapter 3 Developing Your Application

© National Instruments Corp. 3-5 NI-488.2 User Manual for Windows

Error Variable – iberr

If the ERR bit is set in the status word (ibsta), a GPIB error has occurred. When an
error occurs, the error type is specified by the value in iberr .

Note: The value in iberr is meaningful as an error type only when the ERR bit is
set, indicating that an error has occurred.

For more information on error codes and solutions refer to Chapter 4, Debugging Your
Application , or Appendix B, Error Codes and Solutions.

Count Variables – ibcnt and ibcntl

The count variables are updated after each read, write, or command function. ibcnt is a
16-bit integer and ibcntl is a 32-bit integer. If you are reading data, the count
variables indicate the number of bytes read. If you are sending data or commands, the
count variables reflect the number of bytes sent.

In your application program, you can use the count variables to null-terminate an ASCII
string of data received from an instrument. For example, if data is received in an array of
characters, you can use ibcntl to null-terminate the array and print the measurement on
the screen as follows:

char rdbuf[512];
ibrd (ud, rdbuf, 20L);
if (!(ibsta & ERR)){

rdbuf[ibcntl] = '\0';
printf ("Read: %s\n", rdbuf);

}
else {

error();
}

ibcntl is the number of bytes received. Data begins in the array at index zero (0);
therefore, ibcntl is the position for the null character that marks the end of the string.

Using wibic to Communicate with Devices

Before you begin writing your application program, you might want to use the wibic
utility. With wibic (Windows Interface Bus Interactive Control), you communicate
with your instruments from the keyboard rather than from an application program. You
can use wibic to learn to communicate with your instruments using the NI-488
functions or NI-488.2 routines. For specific device communication instructions, refer to
the user manual that came with your instrument. For information about using wibic
and for detailed examples, refer to Chapter 5, wibic–Windows Interface Bus Interactive
Control Utility.

After you have learned how to communicate with your devices in wibic , you are ready
to begin writing your application program.

Developing Your Application Chapter 3

NI-488.2 User Manual for Windows 3-6 © National Instruments Corp.

Writing Your NI-488 Application

This section discusses items you should include in your application program, general
program steps, and an NI-488 example. In this manual the example code is presented in
C. The NI-488.2 software includes the source code for C (devsamp.c), Visual Basic
(devsamp.bas), direct entry functions in C (dlldev.c), and direct entry functions in
Visual Basic (dlldev.bas).

The NI-488.2 software also includes the source code for nine application examples,
which are described in Chapter 2, Application Examples.

Items to Include

• Include the appropriate GPIB header file. This file contains prototypes for the NI-488
functions and constants that you can use in your application program.

• Check for errors after each NI-488 function call.

• Declare and define a function to handle GPIB errors. This function takes the device
offline and closes the application. If the function is declared as:

void gpiberr (char * msg); /* function prototype */

then your application invokes it as follows:

if (ibsta & ERR) {
 gpiberr ("GPIB error");
}

Chapter 3 Developing Your Application

© National Instruments Corp. 3-7 NI-488.2 User Manual for Windows

NI-488 Program Shell

Figure 3-1 is a flowchart of the steps to create your application program using device-
level NI-488 functions.

No

Yes

No

No

Closed All
Devices?

Yes

START

Make a Device-Level Call
• Send Data to Device
• Receive Data from Device
• Clear Device
• Serial Poll Device
 and so on

(ibwrt)
(ibrd)

(ibclr)
(ibrsp)

Finished GPIB
Programming?

Close Device (ibonl)

END

Yes

Are All
Devices
Open?

Open Device (ibdev)

Figure 3-1. General Program Shell Using NI-488 Device Functions

Developing Your Application Chapter 3

NI-488.2 User Manual for Windows 3-8 © National Instruments Corp.

General Program Steps and Examples

The following steps demonstrate how to use the NI-488 device functions in your
program. This example configures a digital multimeter, reads 10 voltage measurements,
and computes the average of these measurements.

Step 1. Open a Device

Your first NI-488 function call should be to ibdev to open a device.

ud = ibdev(0, 1, 0 , T10s, 1, 0);

if (ibsta & ERR) {
 gpiberr("ibdev error");
}

The input arguments of the ibdev function are as follows:

 0 - board index for GPIB0

 1 - primary GPIB address of the device

 0 - no secondary GPIB address for the device

T10s - I/O timeout value (10 s)

 1 - send END message with the last byte when writing to device

 0 - disable EOS detection mode

When you call ibdev , the driver automatically initializes the GPIB by sending an
Interface Clear (IFC) message and placing the device in remote programming state.

Step 2. Clear the Device

Clear the device before you configure the device for your application. Clearing the
device resets its internal functions to a default state.

ibclr(ud);
if (ibsta & ERR) {

gpiberr("ibclr error");
}

Chapter 3 Developing Your Application

© National Instruments Corp. 3-9 NI-488.2 User Manual for Windows

Step 3. Configure the Device

After you open and clear the device, it is ready to receive commands. To configure the
instrument, you send device-specific commands using the ibwrt function. Refer to the
instrument user manual for the command bytes that work with your instrument.

ibwrt(ud, "*RST; VAC; AUTO; TRIGGER 2; *SRE 16", 35L);
if (ibsta & ERR) {

gpiberr("ibwrt error");
}

The programming instruction in this example resets the multimeter (*RST). The meter is
instructed to measure the volts alternating current (VAC) using auto-ranging (AUTO), to
wait for a trigger from the GPIB interface board before starting a measurement
(TRIGGER 2), and to assert the SRQ line when the measurement completes and the
multimeter is ready to send the result (*SRE 16).

Step 4. Trigger the Device

If you configure the device to wait for a trigger, you must send a trigger command to the
device before reading the measurement value. Then instruct the device to send the next
triggered reading to its GPIB output buffer.

ibtrg(ud);
if (ibsta & (ERR 1 TIMO)) {
gpiberr("ibtrg error");

}

ibwrt(ud,"VAL1?", 5L);
if (ibsta & ERR) {

gpiberr("ibwrt error");
}

Step 5. Wait for the Measurement

After you trigger the device, the RQS bit is set when the device is ready to send the
measurement. You can detect RQS by using the ibwait function. The second
parameter indicates what you are waiting for. Notice that the ibwait function also
returns when the I/O timeout value is exceeded.

printf("Waiting for RQS...\n");
ibwait (ud, TIMO| RQS);
if (ibsta & (ERR | TIMO)) {

gpiberr("ibwait error");
}

When SRQ has been detected, serial poll the instrument to determine if the measured data
is valid or if a fault condition exists. For IEEE 488.2 instruments, you can find out by
checking the message available (MAV) bit, bit 4 in the status byte that you receive from
the instrument.

Developing Your Application Chapter 3

NI-488.2 User Manual for Windows 3-10 © National Instruments Corp.

ibrsp (ud, &StatusByte);
if (ibsta & ERR) {

gpiberr("ibrsp error");
}

if (!(StatusByte & MAVbit)) {
gpiberr("Improper Status Byte");
printf(" Status Byte = 0x%x\n", StatusByte);

}

Step 6. Read the Measurement

If the data is valid, read the measurement from the instrument. (AsciiToFloat is a
function that takes a null-terminated string as input and outputs the floating point number
it represents.)

ibrd (ud, rdbuf, 10L);
if (ibsta & ERR) {

gpiberr("ibrd error");
}

rdbuf[ibcntl] = '\0';
printf("Read: %s\n", rdbuf);

 /* Output ==> Read: +10.98E-3 */

sum += AsciiToFloat(rdbuf);

Step 7. Process the Data

Repeat steps 4 through 6 in a loop until 10 measurements have been read. Then print the
average of the readings as shown:

printf("The average of the 10 readings is %f\n", sum/10.0);

Step 8. Place the Device Offline

As a final step, take the device offline using the ibonl function.

ibonl (ud, 0);

Chapter 3 Developing Your Application

© National Instruments Corp. 3-11 NI-488.2 User Manual for Windows

Writing Your NI-488.2 Application

This section discusses items you should include in an application program that uses
NI-488.2 routines, general program steps, and an NI-488.2 example. In this manual the
example code is presented in C. The NI-488.2 software includes the source code for C
(samp4882.c), Visual Basic (samp4882.bas), direct entry functions in C
(dll4882.c), and direct entry functions in Visual Basic (dll4882.bas).

The NI-488.2 software also includes the source code for nine example programs, which
are described in Chapter 2, Application Examples.

Items to Include

• Include the appropriate GPIB header file. This file contains prototypes for the
NI-488.2 routines and constants that you can use in your application program.

• Check for errors after each NI-488.2 routine.

• Declare and define a function to handle GPIB errors. This function takes the device
offline and closes the application. If the function is declared as:

void gpiberr (char * msg); /* function prototype */

then your application invokes it as follows:

if (ibsta & ERR) {
 gpiberr ("GPIB error");
}

Developing Your Application Chapter 3

NI-488.2 User Manual for Windows 3-12 © National Instruments Corp.

NI-488.2 Program Shell

Figure 3-2 is a flowchart of the steps to create your application program using NI-488.2
routines.

No

END

Make a High-Level CallMake a Low-Level Call

No

• Send Data to Device (Send)
• Receive Data from Device
 (Receive)
• Clear Device (DevClear)
• Serial Poll Device
 (ReadStatusByte)
 and so on

• Address Devices to Listen (SendSetup)
• Send Data to Addressed Listener
 (SendDataBytes)
• Address Device to Talk (ReceiveSetup)
• Receive Data from Addressed Talker
 (RcvRespMsg)
 and so on

Low-Level High-Level

Yes

Close Board
(ibonl)

Are All Boards
Closed?

Finished GPIB
Programming?

Making
High-Level or

Low-Level Call?

Initialize Specified GPIB
Interface (SendIFC)

START

Yes

Are All Boards
Initialized?

Yes

No

Figure 3-2. General Program Shell Using NI-488.2 Routines

Chapter 3 Developing Your Application

© National Instruments Corp. 3-13 NI-488.2 User Manual for Windows

General Program Steps and Examples

The following steps demonstrate how to use the NI-488.2 routines in your program. This
example configures a digital multimeter, reads 10 voltage measurements, and computes
the average of these measurements.

Step 1. Initialization

Use the SendIFC routine to initialize the bus and the GPIB interface board so that the
GPIB board is Controller-In-Charge (CIC). The only argument of SendIFC is the GPIB
interface board number.

SendIFC(0);
if (ibsta & ERR) {

gpiberr("SendIFC error");
}

Step 2. Find All Listeners

Use the FindLstn routine to create an array of all of the instruments attached to the
GPIB. The first argument is the interface board number, the second argument is the list
of instruments that was created, the third argument is a list of instrument addresses that
the procedure actually found, and the last argument is the maximum number of devices
that the procedure can find (that is, it must stop if it reaches the limit). The end of the list
of addresses must be marked with the NOADDR constant, which is defined in the header
file that you included at the beginning of the program.

for (loop = 0; loop <=30; loop++){
instruments[loop] = loop;

}
instruments[31] = NOADDR;

printf("Finding all Listeners on the bus...\n");

Findlstn(0, instruments, result, 30);
if (ibsta & ERR) {

gpiberr("FindLstn error");
}

Step 3. Identify the Instrument

Send an identification query to each device for identification. For this example, assume
that all of the instruments are IEEE 488.2-compatible and can accept the identification
query, *IDN? . In addition, assume that FindLstn found the GPIB interface board at
primary address 0 (default) and, therefore, you can skip the first entry in the result
array.

Developing Your Application Chapter 3

NI-488.2 User Manual for Windows 3-14 © National Instruments Corp.

for (loop = 1; loop <= num_Listeners; loop++) {
Send(0, result[loop], "*IDN?", 5L, NLend);
if (ibsta & ERR) {

gpiberr("Send error");
}

Receive(0, result[loop], buffer, 10L, STOPend);
 if (ibsta & ERR) {

gpiberr("Receive error");
}

buffer[ibcntl] = '\0';
printf("The instrument at address %d is a %s\n",

result[loop], buffer);
if (strncmp(buffer, "Fluke, 45", 9) == 0) {

fluke = result[loop];
printf("**** Found the Fluke ****\n");
break;

}
}

if (loop > num_Listeners) {
printf("Did not find the Fluke!\n");
ibonl(0,0);
exit(1);

}

The constant NLend signals that the new line character with EOI is automatically
appended to the data to be sent.

The constant STOPend indicates that the read is stopped when EOI is detected.

Step 4. Initialize the Instrument

After you find the multimeter, use the DevClear routine to clear it. The first argument
is the GPIB board number. The second argument is the GPIB address of the multimeter.
Then send the IEEE 488.2 reset command to the meter.

DevClear(0, fluke);
if (ibsta & ERR) {

gpiberr("DevClear error")
}

Send(0, fluke, "*RST", 4L, NLend);
if (ibsta & ERR) {

gpiberr("Send *RST error");
}
sum = 0.0;
for(m =0; m<10; m++){
/* start of loop for Steps 5 through 8 */

Chapter 3 Developing Your Application

© National Instruments Corp. 3-15 NI-488.2 User Manual for Windows

Step 5. Configure the Instrument

After initialization, the instrument is ready to receive instructions. To configure the
multimeter, use the Send routine to send device-specific commands. The first argument
is the number of the access board. The second argument is the GPIB address of the
multimeter. The third argument is a string of bytes to send to the multimeter.

The bytes in this example instruct the meter to measure volts alternating current (VAC)
using auto-ranging (AUTO), to wait for a trigger from the Controller before starting a
measurement (TRIGGER 2), and to assert SRQ when the measurement has been
completed and the meter is ready to send the result (*SRE 16). The fourth argument
represents the number of bytes to be sent. The last argument, NLend , is a constant
defined in the header file which tells Send to append a linefeed character, with EOI
asserted, to the end of the message sent to the multimeter.

Send (0, fluke, "VAC; AUTO; TRIGGER 2; *SRE 16", 29L, NLend);
if (ibsta & ERR) {

gpiberr("Send setup error");
}

Step 6. Trigger the Instrument

In the previous step, the multimeter was instructed to wait for a trigger before conducting
a measurement. Now send a trigger command to the multimeter. You could use the
Trigger routine to accomplish this, but because the Fluke 45 is IEEE 488.2-
compatible, you can just send it the trigger command, *TRG. The VAL1? command
instructs the meter to send the next triggered reading to its output buffer.

Send(0, fluke, "*TRG; VAL1?", 11L, NLend);
if (ibsta & ERR) {

gpiberr("Send trigger error");
}

Step 7. Wait for the Measurement

After the meter is triggered, it takes a measurement and displays it on its front panel and
then asserts SRQ. You can detect the assertion of SRQ using either the TestSRQ or
WaitSRQ routine. If you have a process that you want to execute while you are waiting
for the measurement, use TestSRQ . For this example, you can use the WaitSRQ
routine. The first argument in WaitSRQ is the GPIB board number. The second
argument is a flag returned by WaitSRQ that indicates whether or not SRQ is asserted.

WaitSRQ(0, &SRQasserted);
if (!SRQasserted) {

gpiberr("WaitSRQ error");
}

After you have detected SRQ, use the ReadStatusByte routine to poll the meter and
determine its status. The first argument is the GPIB board number, the second argument

Developing Your Application Chapter 3

NI-488.2 User Manual for Windows 3-16 © National Instruments Corp.

is the GPIB address of the instrument, and the last argument is a variable that
ReadStatusByte uses to store the status byte of the instrument.

ReadStatusByte(0, fluke, &statusByte);
if (ibsta & ERR) {

gpiberr("ReadStatusByte error");
}

After you have obtained the status byte, you must check to see if the meter has a message
to send. You can do this by checking the message available (MAV) bit, bit 4 in the status
byte.

if (!(statusByte & MAVbit) {
gpiberr("Improper Status Byte");
printf("Status Byte = 0x%x\n", statusByte);

}

Step 8. Read the Measurement

Use the Receive function to read the measurement over the GPIB. The first argument
is the GPIB interface board number, and the second argument is the GPIB address of the
multimeter. The third argument is a string into which the Receive function places the
data bytes from the multimeter. The fourth argument represents the number of bytes to
be received. The last argument indicates that the Receive message terminates upon
receiving a byte accompanied with the END message.

Receive(0, fluke, buffer, 10L, STOPend);
if (ibsta & ERR) {

gpiberr("Receive error");
}

buffer[ibcntl] = '\0';
printf (Reading : %s\n", buffer);
sum += AsciiToFloat(buffer);
} /* end of loop started in Step 5 */

Step 9. Process the Data

Repeat Steps 5 through 8 in a loop until 10 measurements have been read. Then print the
average of the readings as shown:

printf (" The average of the 10 readings is : %f\n", sum/10);

Step 10. Place the Board Offline

Before ending your application program, take the board offline using the ibonl
function.

ibonl(0,0);

Chapter 3 Developing Your Application

© National Instruments Corp. 3-17 NI-488.2 User Manual for Windows

Compiling, Linking, and Running Your Application

The following sections describe how to compile, link, and run your application program.
To see examples that show how to include specific lines of code in your program, refer to
the program examples included with your NI-488.2 software.

If you discover errors when you execute the program refer to Chapter 4, Debugging Your
Application . If you want to verify the NI-488 and NI-488.2 calls made by your
application, you can use GPIB Spy, the GPIB applications monitor for Windows
described in Chapter 6, GPIB Spy .

Microsoft C

Before you compile your C application program, make sure that the following line is
included at the beginning of your program:

#include "windecl.h"

After you have written your C application program, you must compile your application
program using one of the following compilers: Microsoft C Version 7.0 with Microsoft
SDK (Software Development Kit) Version 3.1 or Microsoft Visual C++ Version 1.0 (also
known as Microsoft C Version 8.0). Then link your application with the C language
interface, gpib.lib . Use the following command to compile and link a QuickWin C
application named cprog using Microsoft C:

cl /Mq cprog.c gpib.lib

The /Mq option of Microsoft C creates a QuickWin application. To run your application,
choose the Run option from the File menu in the Program Manager window. Enter the
path and name of the compiled program in the dialog box that pops up.

Borland C++

Before you compile your C application program, make sure that the following line is
included at the beginning of your program:

#include "windecl.h"

After you have written your C application program, you must compile your application
program using the Borland C++ (version 2.0 or higher) compiler. Then link your
application with the C language interface, gpib.lib . Use the following command to
compile and link a Windows C application named cprog using Borland C++:

bcc -W cprog.c gpib.lib

The -W option of Borland C++ creates a Windows application. To run your application,
choose the Run option from the File menu in the Program Manager window. Enter the
path and name of the compiled program in the dialog box that pops up.

Developing Your Application Chapter 3

NI-488.2 User Manual for Windows 3-18 © National Instruments Corp.

Visual Basic

With Visual Basic, you access the NI-488 functions as subroutines, using the BASIC
keyword CALL followed by the NI-488 function name (for example CALL ibtrg
(ud%)). You can also access the NI-488 functions using another set of functions, the il
functions (for example result% = iltrg (ud%)). If you are using Visual Basic
and prefer calling functions instead of subroutines, then you can use the il functions.
With some of the ib commands (for example, ibrd) the length of the string buffer is
automatically calculated within the actual subroutine, which eliminates the need to pass
in the length as an extra parameter.

Before you run your Visual Basic application, include the files niglobal.bas and
vbib.bas in your application project file.

If you are using Microsoft Visual Basic 1.0, you must edit niglobal.bas to define
the constants true and false as follows:

global const true = -1
global const false = 0

In Microsoft Visual Basic 2.0 and higher, true and false are reserved words;
therefore, these constants are no longer defined in niglobal .bas .

After you have written your Visual Basic application, choose the Start option from the
Run menu to execute your program.

Direct Entry with C

Before you compile your C application program, make sure that the following lines are
included at the beginning of your program:

#ifdef __cplusplus
extern "C"{
#endif

#include "windecl.h

int ibsta, iberr; /* NI-488.2 global status variables */
long ibcntl;

#ifdef __cplusplus
}
#endif

You must define the global status variables in your application program.

Chapter 3 Developing Your Application

© National Instruments Corp. 3-19 NI-488.2 User Manual for Windows

Sample programs using direct entry are included with the National Instruments driver.
The C sample programs are console-type applications. They illustrate how to use the
function calls the NI-488.2 driver exports. Since most of the popular compilers support
console-type applications as well as GUI applications, you can create console-type
applications without knowing Windows GUI programming. A console-type application
is a Win16 program that uses text-based input and output instead of a graphical interface.
This allows you to quickly create a Win16 application by using simple input and output
functions like printf and scanf .

You must define the direct entry prototypes of the functions used in your application
program. There are three methods of accessing the Dynamic Link Library (DLL)
directly. The NI-488.2 Function Reference Manual for DOS/Windows provides the
format for the first two methods. Refer to it for the C direct entry syntax for NI-488
functions and NI-488.2 routines. The direct entry sample programs use the third method.
The three methods of direct entry are documented in the Microsoft Windows Software
Development Kit (SDK) Guide's online help file. The first method of accessing the DLL
follows.

Method 1. List Functions in the Module Definition File

To use the first method, list the names of the functions in the imports section in the
application's .def file.

You must create a module definition file, such as cprog.def . This file contains an
imports section that lists the direct entry points used by the application program. You
must link the module definition file to your application program.

After you have written your Microsoft C application program, compile your program and
use the /Mq option of Microsoft C to create a QuickWin application. This option is
available starting with Microsoft C/C++ Version 7.0 with the Microsoft Software
Development Kit (SDK) or with Microsoft Visual C++ Version 1.x. The following
command compiles and links a Microsoft QuickWin application named cprog with the
module definition file cprog.def :

cl /Mq cprog.c cprog.def

After you have written your Borland C/C++ application program, compile your program
and use the -W option of Borland C/C++ to create a Windows application. The following
command compiles and links a Borland C/C++ Windows application named cprog with
the module definition file cprog.def :

bcc -W cprog.c cprog.def

To run your application, choose the Run option from the File menu in the
Program Manager window. Enter the path and name of the compiled program in the
dialog box that appears.

The second method of accessing the DLL follows.

Developing Your Application Chapter 3

NI-488.2 User Manual for Windows 3-20 © National Instruments Corp.

Method 2. Generate an Import Library Using implib

To use the second method, link the application to an import library generated from the
DLL using the implib utility.

To generate the import library, type in the following text:

implib gpib.lib c:\windows\system\gpib.dll

where c:\windows\system\ is the path to your Windows System directory. The file
named gpib.lib is the name of the file generated by the implib utility. For more
information about the implib utility program, refer to the Windows online help or other
documentation supplied with your compiler.

After you have written your Microsoft C application program, compile your program and
use the /Mq option of Microsoft C to create a QuickWin application. This option is
available starting with Microsoft C/C++ Version 7.0 with the Microsoft Software
Development Kit (SDK) or with Microsoft Visual C++ Version 1.x. The following
command compiles and links a Microsoft QuickWin application named cprog with the
import library file gpib.lib :

cl /Mq cprog.c gpib.lib

After you have written your Borland C/C++ application program, compile your program
and use the -W option of Borland C/C++ to create a Windows application. The following
command compiles and links a Borland C/C++ Windows application named cprog with
the import library file gpib.lib :

bcc -W cprog.c gpib.lib

To run your application, choose the Run option from the File menu in the
Program Manager window. Enter the path and name of the compiled program in the
dialog box that appears.

The third method of accessing the DLL follows.

Method 3. Use LoadLibrary and GetProcAddress

To use the third method, use the LoadLibrary and GetProcAddress functions to
load the library and retrieve a pointer to the function.

The Direct Entry sample programs use this method. At the beginning of your program,
declare the following global variable for the DLL as follows:

HINSTANCE GpibLib = NULL;

Chapter 3 Developing Your Application

© National Instruments Corp. 3-21 NI-488.2 User Manual for Windows

The prototypes for each function can be found in the NI-488.2 Function Reference
Manual for DOS/Windows . For functions that return an integer value, like ibdev , you
must cast the pointer to the function as follows:

int(_far _pascal *Pname)

where *Pname is the name of the pointer to the function. For functions (that is, the
NI-488.2 calls) that do not return a value, you must cast the pointer to the function as
follows:

void(_far _pascal *Pname)

where *Pname is the name of the pointer to the function. A function is followed by its
list of parameters and pointers to the three global variables, as described in the NI-488.2
Function Reference Manual for DOS/Windows . The following is an example of how to
cast the function pointer and how to set up the parameter list for ibdev and ibonl :

int(_far _pascal *Pibdev)(int BdIndx, int pad, int sad,
int tmo, int eot, int eos, int _far *ibsta,
int _far *iberr, long _far *ibcntl);

int(_far _pascal *Pibonl)(int ud, int v, int _far *ibsta,
int _far *iberr, long _far *ibcntl);

You must load the GPIB.DLL library within your application program. The following
code calls the LoadLibrary function and handles errors:

GpibLib=LoadLibrary("GPIB.DLL");
if (GpibLib <= HINSTANCE_ERROR)
{
return FALSE;
}

Next you must get the address and assign it to the function pointer by using the
GetProcAddress function. This code goes in your application program.

Pibdev=(int (_far _pascal *)(int, int, int, int, int, int,
int _far*, int _far *, long _far *))
GetProcAddress(GpibLib,(LPCSTR)"DLLibdev");

Pibonl=(int (_far _pascal *)(int, int, int _far *, int _far *,
long _far *))GetProcAddress(GpibLib,
(LPCSTR)"DLLibonl");

Developing Your Application Chapter 3

NI-488.2 User Manual for Windows 3-22 © National Instruments Corp.

If GetProcAddress does not return a pointer, you can check to see if an address was
assigned or not, as in the following example:

if ((Pibdev==NULL)||
(Pibonl==NULL))
{

FreeLibrary(GpibLib);
GpibLib=NULL;
return FALSE;

}
else
return TRUE;

The following code shows you how to call functions from within your application
program:

dvm = (*Pibdev) (0, 1, 0, T10s, 1, 0, &ibsta, &iberr,
&ibcntl);

(*Pibonl) (dvm, 0, &ibsta, &iberr, &ibcntl);

Upon completion of your program, you must free the library, as in the following
example:

FreeLibrary(GpibLib);

For more information about the Windows functions like LoadLibrary and
GetProcAddress , refer to the Windows SDK documentation or your compiler's
Windows documentation.

After you have written your Microsoft C application program, compile your program and
use the /Mq option of Microsoft C to create a QuickWin application. This option is
available starting with Microsoft C/C++ Version 7.0 with the Microsoft Software
Development Kit (SDK) or with Microsoft Visual C++ Version 1.x. The following
command compiles and links a Microsoft QuickWin application named cprog :

cl /Mq cprog.c

After you have written your Borland C/C++ application program, compile your program
and use the -W option of Borland C/C++ to create a Windows application. The following
command compiles and links a Borland C/C++ Windows application named cprog :

bcc -W cprog.c

To run your application, choose the Run option from the File menu in the Program
Manager window. Enter the path and name of the compiled program in the dialog box
that appears.

Chapter 3 Developing Your Application

© National Instruments Corp. 3-23 NI-488.2 User Manual for Windows

Direct Entry with Visual Basic

See the Visual Basic section, earlier in this chapter, for information on calling the NI-488
functions with Visual Basic.

Include the file niglobal.bas in your application project file. You must create a file
(for example, dllfunc.bas) that contains the direct entry prototypes of the functions
used in your application program. Include the direct entry file in your application project
file. Refer to the NI-488.2 Function Reference Manual for DOS/Windows for the Visual
Basic direct entry syntax for NI-488 and NI-488.2 functions.

If you are using Microsoft Visual Basic 1.0, you must edit niglobal.bas to define the
constants true and false as follows:

global const true = -1
global const false = 0

In Microsoft Visual Basic 2.0 and higher, true and false are reserved words;
therefore, these constants are no longer defined in niglobal.bas .

After you have written your Visual Basic application, choose the Start option from the
Run menu to execute your program.

© National Instruments Corp. 4-1 NI-488.2 User Manual for Windows

Chapter 4
Debugging Your Application

This chapter describes several ways to debug your application program.

Running wibtest

Presence Test of Driver

The wibtest program tests for the presence of the NI-488.2 driver gpib.dll and the
NI-488.2 configuration information file gpib.ini . If gpib.dll is not in the
Windows directory, a warning box pops up with the following text:

File Error: Cannot find GPIB.DLL

Press the Close button. wibtest displays the following error message when it fails:

<<< No driver present for GPIBx. >>>

To correct the problem, make sure that the file gpib.dll is in the Windows directory
(usually c:\windows). The same error message is displayed if gpib.ini is not
located in the Windows directory. If you are unable to locate gpib.dll or gpib.ini ,
you should reinstall the NI-488.2 software.

Presence Test of Board

The following error message appears if the board gpibx is not installed or if the
software is not configured properly:

<<< No board present for GPIBx. >>>

If this message appears, you could have one of the following situations:

• The Use this GPIB Interface field in wibconf might be set to no for
board gpibx. If you want to use the board, you must set this field to yes .

Before you run your application program, you should run the software diagnostic test,
wibtest , that came with your NI-488.2 software. The wibtest program is an
NI-488.2 application that makes calls to the driver. If wibtest passes, your GPIB
hardware and NI-488.2 software are interacting correctly. The following paragraphs
describe the messages you might receive while running wibtest , and how to resolve
each problem. The term gpibx refers to one of the boards gpib0 , gpib1 , gpib2 , and
gpib3 .

Debugging Your Application Chapter 4

NI-488.2 User Manual for Windows 4-2 © National Instruments Corp.

• The board might not be properly installed and configured. Refer to the getting
started manual for detailed instructions.

• The software and hardware settings do not match. You can run wibconf to check
the current configuration of the software.

GPIB Cables Connected

The following error message appears if a GPIB cable is connected to the board when you
run wibtest :

Call(25) 'ibcmd " "' failed, ibsta (0x134) not what was expected
(0x8130)

Call(25) 'ibcmd " "' failed, expected ibsta (0x100) to have the
ERR bit set.

Disconnect all GPIB cables before trying the test again.

Running GPIBInfo

The GPIBInfo utility program is a simple diagnostic tool you can use to obtain
information about the NI-488.2 software you are using and any GPIB interface boards in
your system. This information helps you determine the capabilities of your NI-488.2
software and is also helpful if you need to call National Instruments for technical support.

If you run GPIBInfo with no specific parameters, the program displays software
information such as the name and version of your GPIB software, the type of GPIB
interface board and functions that you can use with the software, and whether or not you
can use the HS488 high-speed protocol. GPIBInfo also displays information about
each GPIB interface board installed in your system, including the name of the board, its
Controller chip, the hardware settings, the type of functions that the board can use, and
whether or not the board can use the HS488 high-speed communication protocol. The
typical GPIBInfo output is as follows:

GPIBInfo (Sep 29 1993)
Copyright (c) 1993 National Instruments Corp. All rights
reserved.

Software Information:
 The NI-488.2 Software for Windows 3 is loaded.
 You are running Version 2.5 for the AT-GPIB/TNT board.
 It supports both the NI-488 functions and the NI-488.2 routines.
 It supports the HS488 high-speed protocol.

Chapter 4 Debugging Your Application

© National Instruments Corp. 4-3 NI-488.2 User Manual for Windows

Hardware Information:
 GPIB0: an AT-GPIB/TNT board using the TNT4882C chip.

It supports both the NI-488 functions and NI-488.2
routines.
It supports the HS488 high-speed protocol.
It uses base I/O address 0x2C0.
It uses interrupt level 11.
It uses DMA channel 5.

You can also run GPIBInfo by specifying the base I/O address of a GPIB board in your
system. If GPIBInfo finds a board at the given address, it displays information about
that board. This feature of GPIBInfo is useful in determining whether you have a
GPIB board installed at a particular address. If you have a board installed at base I/O
address 2C0 (hex), entering gpibinfo 0x2c0 produces the following output:

GPIBInfo (Sep 29 1993)
Copyright (c) 1993 National Instruments Corp. All rights
reserved.

The board at base I/O address 0x2C0 appears to be an AT-GPIB/TNT.
 It uses the TNT4882C GPIB Controller chip.
 It supports both the NI-488 functions and the NI-488.2 routines.
 It supports the HS488 high-speed protocol.
 The NI-488.2 software is configured to access this board as
 GPIB0.

Debugging with the Global Status Variables

After each function call to your NI-488.2 driver, ibsta , iberr , ibcnt , and ibcntl
are updated before the call returns to your application. You should check for an error
after each GPIB call. Refer to Chapter 3, Developing Your Application, for more
information about how to use these variables within your program to automatically check
for errors.

After you determine which GPIB call is failing and note the corresponding values of the
global variables, refer to Appendix A, Status Word Conditions , and Appendix B, Error
Codes and Solutions. These appendixes will help you interpret the state of the driver.

Debugging Your Application Chapter 4

NI-488.2 User Manual for Windows 4-4 © National Instruments Corp.

Debugging with wibic

If your application does not automatically check for and display errors, you can locate an
error by using wibic . Simply issue the same functions or routines, one at a time as they
appear in your application program. Because wibic returns the status values and error
codes after each call, you should be able to determine which GPIB call is failing. For
more information about wibic , refer to Chapter 5, wibic–Windows Interface Bus
Interactive Control Utility .

After you determine which GPIB call is failing and note the corresponding values of the
global variables, refer to Appendix A, Status Word Conditions , and Appendix B, Error
Codes and Solutions. These appendixes will help you interpret the state of the driver.

Debugging with GPIB Spy

The NI-488.2 software includes GPIB Spy, an applications monitor utility that is useful
as a debugging tool. You can use GPIB Spy to monitor the NI-488 and NI-488.2 calls
made by your Windows application. You can configure GPIB Spy to suspend the
execution of your application and display an information screen any time the error bit is
set in ibsta . For more information about GPIB Spy, refer to Chapter 6, GPIB Spy .

GPIB Error Codes

Table 4-1 lists the GPIB error codes. Remember that the error variable is meaningful
only when the ERR bit in the status variable is set. For a detailed description of each
error and possible solutions, refer to Appendix B, Error Codes and Solutions.

Chapter 4 Debugging Your Application

© National Instruments Corp. 4-5 NI-488.2 User Manual for Windows

Table 4-1. GPIB Error Codes

Error
Mnemonic

iberr
Value Meaning

EDVR 0 Windows error

ECIC 1 Function requires GPIB board to be CIC

ENOL 2 No Listeners on the GPIB

EADR 3 GPIB board not addressed correctly

EARG 4 Invalid argument to function call

ESAC 5 GPIB board not System Controller as required

EABO 6 I/O operation aborted (timeout)

ENEB 7 Nonexistent GPIB board

EDMA 8 DMA error

EOIP 10 Asynchronous I/O in progress

ECAP 11 No capability for operation

EFSO 12 File system error

EBUS 14 GPIB bus error

ESTB 15 Serial poll status byte queue overflow

ESRQ 16 SRQ stuck in ON position

ETAB 20 Table problem

Configuration Errors

Several applications require customized configuration of the GPIB driver. For example,
you might want to terminate reads on a special end-of-string character, or you might
require secondary addressing. In these cases, you can use either the wibconf utility to
permanently reconfigure the driver, or you can programmatically modify the driver while
your application is running by using the NI-488 ibconfig function.

Note : To change settings other than base I/O address, interrupt level, or DMA
channel, National Instruments recommends using ibconfig instead of
running the wibconf utility.

If your application uses ibconfig , it will always work regardless of the previous
configuration of the driver. Refer to the description of ibconfig in the NI-488.2
Function Reference Manual for DOS/Windows for more information.

Debugging Your Application Chapter 4

NI-488.2 User Manual for Windows 4-6 © National Instruments Corp.

To test the configuration of your hardware, you can use the ibdiag program as
described in your getting started manual.

Timing Errors

If your application fails, but the same calls issued in wibic are successful, your program
might be issuing the NI-488.2 calls too quickly for your device to process and respond to
them. This problem can also result in corrupted or incomplete data.

A well behaved IEEE 488 device should hold off handshaking and set the appropriate
transfer rate. If your device is not well behaved, you can test for and resolve the timing
error by single-stepping through your program and inserting finite delays between each
GPIB call. One way to do this is to have your device communicate its status whenever
possible. Although this method is not possible with many devices, it is usually the best
option. Your delays will be controlled by the device and your application can adjust
itself and work independently on any platform. Other delay mechanisms will probably
cause varying delay times on different platforms.

Communication Errors

Repeat Addressing

Some devices require GPIB addressing before any GPIB activity. Devices adhering to
the IEEE 488.2 standard should remain in their current state until specific commands are
sent across the GPIB to change their state. You might need to configure your NI-488.2
driver to perform repeat addressing if your device does not remain in its currently
addressed state. Refer to Chapter 8, wibconf–Windows Interface Bus Configuration
Utility , or to the description of ibconfig (option IbcREADDR) in the NI-488.2
Function Reference Manual for DOS/Windows for more information about reconfiguring
your software.

Termination Method

You should be aware of the data termination method that your device uses. By default,
your NI-488.2 software is configured to send EOI on writes and terminate reads on EOI
or a specific byte count. If you send a command string to your device and it does not
respond, it might be because it does not recognize the end of the command. You might
need to send a termination message such as <CR> <LF> after a write command as
follows:

ibwrt(dev,”COMMAND\x0A\x0D”,9);

Chapter 4 Debugging Your Application

© National Instruments Corp. 4-7 NI-488.2 User Manual for Windows

Common Questions

Can I have the DOS and Windows drivers installed at the same time?

Yes, there is nothing wrong with installing both. However, it is better not to access them
at the same time.

What do I do if ibdiag or wibtest fail with an error?

Refer to the Running wibtest section of this chapter and to the section about ibdiag in
your getting started manual for specific information about what might cause these tests to
fail.

How do I communicate with my instrument over the GPIB?

Refer to the documentation that came from the instrument manufacturer. The command
sequences you use are totally dependent on the specific instrument. The documentation
for each instrument should include the GPIB commands you need to communicate with
it. In most cases, NI-488 device-level calls are sufficient for communicating with
instruments. Refer to Chapter 3, Developing Your Application, for more information.

Can I use the NI-488 and NI-488.2 calls together in the same application?

Yes, you can mix NI-488 functions and NI-488.2 routines.

What can I do to check for errors in my GPIB application?

Examine the value of ibsta after each NI-488 or NI-488.2 call. If a call fails, the ERR
bit of ibsta is set and an error code is stored in ibcntl . For more information about
global status variables, refer to Chapter 3, Developing Your Application.

How do I use wibic?

You can use wibic to practice communication with your instrument, troubleshoot
problems, and develop your application program. For instructions, refer to Chapter 5,
wibic–Windows Interface Bus Interactive Control Utility .

Debugging Your Application Chapter 4

NI-488.2 User Manual for Windows 4-8 © National Instruments Corp.

What should I type into the pop-up window that appears when I start wibconf?

This pop-up window is prompting you for the drive and path where the gpib.ini file is
located. If Windows is installed in the default directory (c:\windows), just press
<Return>. If Windows is not installed in the default directory, enter the path and
directory where Windows is installed so that wibconf can find the correct gpib.ini
file to modify, for example c:\win31\gpib.ini .

How can I determine which type of GPIB board I have installed?

Run the GPIBInfo utility. If you run GPIBInfo without specifying any parameters, it
returns information about the GPIB boards currently configured for use in your system.
If you know the base I/O address of a GPIB interface board, you can enter it as a
parameter for specific information. For example, gpibinfo 2C0 returns information
about the GPIB board at base I/O address 2C0.

How can I determine which version of the NI-488.2 software I have installed?

Run the GPIBInfo utility. If you run GPIBInfo without specifying any parameters, it
provides information about the version of the NI-488.2 software currently installed.

Why can't I launch Windows after installing Windows 3.1 on top of my
Windows 3.0 installation?

If the system.ini file contains conflicting information about which virtual devices to
load, Windows fails to start. In this case, the system.ini file is probably trying to
load two virtual DMA devices. The system.ini file should include the lines to load
only one virtual DMA device. You can either delete unwanted lines or change them to
comment lines by adding a semicolon at the beginning of the line.

The virtual DMA device is loaded in the [386Enh] section of the system.ini file.
The correct one to use with Windows 3.1 is loaded by the following line:

device=*vdmad

The correct one to use with Windows 3.0 is loaded by the following line:

device=drive:\path\nivdmad.386

where drive and path describe the location of the nivdmad.386 file on your hard
disk (for example c:\at-gpibw).

Chapter 4 Debugging Your Application

© National Instruments Corp. 4-9 NI-488.2 User Manual for Windows

What information should I have before I call National Instruments?

When you call National Instruments, you should have the results of the diagnostic tests
ibdiag and wibtest along with the output from the GPIBInfo utility. Also, make
sure you have filled out the technical support form in Appendix C, Customer
Communication .

© National Instruments Corp. 5-1 NI-488.2 User Manual for Windows

Chapter 5
wibic–Windows Interface Bus Interactive
Control Utility

This chapter introduces you to wibic , the interactive control program that you can use
to communicate with GPIB devices interactively.

Overview

With the wibic program, you communicate with the GPIB devices through functions
you enter at the keyboard. For specific information about how to communicate with your
particular device, refer to the manual that came with the device. You can use wibic to
practice communicating with the instrument, troubleshoot problems, and develop your
application program.

One way wibic helps you to learn about your instrument and to troubleshoot problems
is by displaying the following information on your screen whenever you enter a
command:

• The results of the status word (ibsta) in hexadecimal notation

• The mnemonic constant of each bit set in ibsta

• The mnemonic value of the error variable (iberr) if an error exists (the ERR bit is
set in ibsta)

• The count value for each read, write, or command function

• The data received from your instrument

Example Using NI-488 Functions

This section shows how you might use wibic to test a sequence of NI-488 device
function calls. You do not need to remember the parameters that each function takes. If
you enter the function name only, wibic prompts you for the necessary parameters.

wibic–Windows Interface Bus Interactive Control Utility Chapter 5

NI-488.2 User Manual for Windows 5-2 © National Instruments Corp.

1. To run wibic , double-click on the wibic icon in the GPIB group in the Program
Manager . A window appears with the following information displayed:

National Instruments
IEEE 488 Interface Bus Interactive Control Program (WIBIC)
Copyright (c) 1993 National Instruments Corp. Version 3.0 (Win16)
Version Date: May 28 1993 Version Time: 09:42:25
All rights reserved

Type 'help' for help or 'q' to quit

:

2. Use ibdev to find the device name which is assigned to your device in the
wibconf program. The following example shows how you could use ibdev to
open a device, assign it to access board gpib0 , choose a primary address of 6 with
no secondary address, set a timeout of 10 s, enable the END message, and disable the
EOS mode:

:ibdev
enter board index: 0
enter primary address: 6
enter secondary address: 0
enter timeout: 13
enter 'EOI on last byte' flag: 1
enter end-of-string mode/byte: 0

id = 32256

ud0:

You could also input all the same information with the ibdev command as follows:

:ibdev 0 6 0 13 1 0
id = 32256

ud0:

3. Clear the device as follows:

ud0: ibclr
[0100] (cmpl)

Chapter 5 wibic–Windows Interface Bus Interactive Control Utility

© National Instruments Corp. 5-3 NI-488.2 User Manual for Windows

4. Write the function, range, and trigger source instructions to your device. Refer to the
instrument's user manual for the command bytes that work with your instrument.

ud0: ibwrt
enter string: "*RST; VAC; AUTO; TRIGGER 2; *SRE 16"

[0100] (cmpl)
count: 35

or

ud0: ibwrt "*RST; VAC; AUTO; TRIGGER 2; *SRE 16"
[0100] (cmpl)
count: 35

5. Trigger the device as follows:

ud0: ibtrg
[0100] (cmpl)

6. Wait for a timeout or for your device to request service. If the current timeout limit
is too short, use ibtmo to change it. Use the ibwait command as follows:

ud0: ibwait
enter wait mask: TIMO RQS

[0900] (rqs cmpl)

or

ud0: ibwait TIMO RQS
[0900] (rqs cmpl)

7. Read the serial poll status byte. This serial poll status byte varies depending on the
device used.

ud0: ibrsp
[0100] (cmpl)
Poll: 0x40 (decimal : 64)

wibic–Windows Interface Bus Interactive Control Utility Chapter 5

NI-488.2 User Manual for Windows 5-4 © National Instruments Corp.

8. Use the read command to display the data on the screen both in hex values and their
ASCII equivalents.

ud0: ibrd
enter byte count: 18

[0100] (cmpl)
count: 18
4e 44 43 56 20 30 30 30 N D C V 0 0 0
2e 30 30 34 37 45 2b 30 . 0 0 4 7 E + 0
0a 0a . .

or

ud0: ibrd 18
[0100] (cmpl)
count: 18
4e 44 43 56 20 30 30 30 N D C V 0 0 0
2e 30 30 34 37 45 2b 30 . 0 0 4 7 E + 0
0a 0a . .

9. Place the device offline as follows:

ud0: ibonl
enter value: 0

[0100] (cmpl)

or

ud0: ibonl 0
[0100] (cmpl)

10. Terminate the wibic program by entering q at the prompt.

wibic Syntax

When you enter commands in wibic , you can either include the parameters, or the
program prompts you for values. Some commands require numbers as input values.
Others might require you to input a string.

Number Syntax

You can enter numbers as hexadecimal, octal, or decimal integer.

Hexadecimal numbers–You must precede hex numbers by zero and x (for example, 0xD).

Octal numbers–You must precede octal numbers by zero only (for example, 015).

Decimal numbers–Enter the number only.

Chapter 5 wibic–Windows Interface Bus Interactive Control Utility

© National Instruments Corp. 5-5 NI-488.2 User Manual for Windows

String Syntax

You can enter strings in the following formats.

ASCII character sequence–You must enclose the entire sequence in quotation marks.

Octal bytes–You must use a backslash character followed by the octal value. For
example, octal 40 is represented by \40 .

Hex bytes–You must use a backslash character and an x followed by the hex value. For
example, hex 40 is represented by \x40 .

Special Symbols–Some instruments require special termination or end-of-string (EOS)
characters that indicate to the device that a transmission has ended. The two most
common EOS characters are \r and \n . \r represents a carriage return character and
\n represents a linefeed character. You can use these special characters to insert the
carriage return and linefeed characters into a string, as in "F3R5T1\r\n" .

Address Syntax

Many of the NI-488.2 routines have an address or address list parameter. An address is a
16-bit representation of the GPIB address of a device. The primary address is stored in
the low byte and the secondary address, if any, is stored in the high byte. For example, a
device at primary address 6 and secondary address 0x67 has an address of 0x6706. A
NULL address is represented as 0xffff.

wibic Syntax for NI-488 Functions

Table 5-1 and Table 5-2 summarize the syntax of NI-488 functions in wibic .
v represents a number that you input. string represents a string that you input. For
more information about the function parameters, use the wibic help feature or refer to
the NI-488.2 Function Reference Manual for DOS/Windows .

wibic–Windows Interface Bus Interactive Control Utility Chapter 5

NI-488.2 User Manual for Windows 5-6 © National Instruments Corp.

Table 5-1. Syntax for Device-Level NI-488 Functions in wibic

Syntax Description
ibask mn Return configuration information where mn is a mnemonic for a

configuration parameter or equivalent integer value
ibbna brdname Change access board of device where brdname is symbolic

name of new board
ibclr Clear specified device
ibconfig mn v Alter configurable parameters where mn is mnemonic for a

configuration parameter or equivalent integer value
ibdev v v v v v v Open an unused device

ibdev parameters are board id , pad , sad , tmo , eos , eot
ibeos v Change/disable EOS message
ibeot v Enable/disable END message
ibln v v Check for presence of device on the GPIB at pad , sad
ibloc Go to local
ibonl v Place device online or offline
ibpad v Change primary address
ibpct Pass control
ibppc v Parallel poll configure
ibrd v Read data where v is the bytes to read
ibrda v Read data asynchronously where v is the bytes to read
ibrdf flname Read data to file where flname is pathname of file to read
ibrpp Conduct a parallel poll
ibrsp Return serial poll byte
ibsad v Change secondary address
ibstop Abort asynchronous operation
ibtmo v Change/disable time limit
ibtrg Trigger selected device
ibwait mask Wait for selected event where mask is a hex, octal, or decimal

integer or a mask bit mnemonic
ibwrt string Write data
ibwrta string Write data asynchronously
ibwrtf flname Write data from a file where flname is pathname of file to write

Chapter 5 wibic–Windows Interface Bus Interactive Control Utility

© National Instruments Corp. 5-7 NI-488.2 User Manual for Windows

Table 5-2. Syntax for Board-Level NI-488 Functions in wibic

Syntax Description
ibask mn Return configuration information where mn is a mnemonic for a

configuration parameter or equivalent integer value
ibcac v Become Active Controller
ibcmd string Send commands
ibcmda string Send commands asynchronously
ibconfig mn v Alter configurable parameters where mn is mnemonic for a

configuration parameter or equivalent integer value
ibdma v Enable/disable DMA
ibeos v Change/disable EOS message
ibeot v Enable/disable END message
ibevent Return the oldest recorded event
ibfind udname Return unit descriptor where udname is the symbolic name of a

board (for example, or gpib0)
ibgts v Go from Active Controller to standby
ibist v Set/clear ist
iblines Read the state of all GPIB control lines
ibln v v Check for presence of device on the GPIB at pad , sad
ibloc Go to local
ibonl v Place device online or offline
ibpad v Change primary address
ibppc v Parallel poll configure
ibrd v Read data where v is the bytes to read
ibrda v Read data asynchronously where v is the bytes to read
ibrdf flname Read data to file where flname is pathname of file to read
ibrpp Conduct a parallel poll
ibrsc v Request/release system control
ibrsv v Request service
ibsad v Change secondary address
ibsic Send interface clear
ibsre v Set/clear remote enable line
ibstop Abort asynchronous operation
ibtmo v Change/disable time limit
ibwait mask Wait for selected event where mask is a hex, octal, or decimal

integer or a mask bit mnemonic
ibwrt string Write data
ibwrta string Write data asynchronously
ibwrtf flname Write data from a file where flname is pathname of file to write

wibic–Windows Interface Bus Interactive Control Utility Chapter 5

NI-488.2 User Manual for Windows 5-8 © National Instruments Corp.

wibic Syntax for NI-488.2 Routines

Table 5-3 summarizes the syntax of NI-488.2 routines in wibic . v represents a number
and string represents a string. address represents an address, and addrlist
represents a list of addresses separated by commas. For more information about the
routine parameters, use the wibic help feature or refer to the NI-488.2 Function
Reference Manual for DOS /Windows .

Table 5-3. Syntax for NI-488.2 Routines in wibic

Routine Syntax Description

AllSpoll addrlist Serial poll multiple devices
DevClear address Clear a device
DevClearList addrlist Clear multiple devices
EnableLocal addrlist Enable local control
EnableRemote addrlist Enable remote control
FindLstn padlist v Find all Listeners
FindRQS addrlist Find device asserting SRQ
PassControl address Pass control to a device
PPoll Parallel poll devices
PPollConfig address v v Configure device for parallel poll
PPollUnconfig addrlist Unconfigure device for parallel poll
RcvRespMsg v v Receive response message
ReadStatusByte address Serial poll a device
Receive address v v Receive data from a device
ReceiveSetup address Receive setup
ResetSys addrlist Reset multiple devices
Send address string v Send data to a device
SendCmds string Send command bytes
SendDataBytes buffer v Send data bytes
SendIFC Send interface clear
SendList addrlist string v Send data to multiple devices
SendLLO Put devices in local lockout
SendSetup addrlist Send setup
Set 488.2 v Enter 488.2 mode for board v

(continues)

Chapter 5 wibic–Windows Interface Bus Interactive Control Utility

© National Instruments Corp. 5-9 NI-488.2 User Manual for Windows

Table 5-3. Syntax for NI-488.2 Routines in wibic (Continued)

Routine Syntax Description

SetRWLS addrlist Put devices in remote with lockout state
TestSys addrlist Causes multiple devices to perform self tests
TestSRQ Test for service request
Trigger address Trigger a device
TriggerList addrlist Trigger multiple devices
WaitSRQ Wait for service request

Status Word

In wibic , all NI-488 functions (except ibfind and ibdev) and NI-488.2 routines
return the status word ibsta in two forms: a hex value in square brackets and a list of
mnemonics in parentheses. In the following example, the status word is on the second
line. It shows that the device function write operation completed successfully:

ud0: ibwrt "f2t3x"
[0100] (cmpl)
count: 5

ud0:

For more information about the status word, refer to Chapter 3, Developing Your
Application .

Error Information

If an NI-488 function or NI-488.2 routine completes with an error, wibic displays the
relevant error mnemonic. In the following example, the error condition EBUS has
occurred during a data transfer.

ud0: ibwrt "f2t3x"
[8100] (err cmpl)
error: EBUS
count: 1

ud0:

In this example, the addressing command bytes could not be transmitted to the device.
This indicates that either dev1 is powered off, or the GPIB cable is disconnected.

wibic–Windows Interface Bus Interactive Control Utility Chapter 5

NI-488.2 User Manual for Windows 5-10 © National Instruments Corp.

For a detailed list of the error codes and their meanings, refer to Chapter 4, Debugging
Your Application .

Count

When an I/O function completes, wibic displays the actual number of bytes sent or
received, regardless of the existence of an error condition.

If one of the addresses in an address list of an NI-488.2 routine is invalid, then the error is
EARG and wibic displays the index of the invalid address as the count.

The count has a different meaning depending on which NI-488 function or NI-488.2
routine is called. Refer to the function descriptions in the NI-488.2 Function Reference
Manual for DOS/Windows for the correct interpretation of the count return.

Common NI-488 Functions

ibfind

Use the ibfind function to open a board. The following example opens gpib0 .

:ibfind gpib0
id = 32000

gpib0:

id is the unit descriptor of the board. The prompt gpib0 indicates that the board is
open.

Any name you use with the ibfind function must be a valid symbolic name in the
driver. gpib0 is the default name found in the driver. For more information about valid
names, refer to Chapter 8, wibconf–Windows Interface Bus Configuration Utility .

ibdev

The ibdev command initializes a device descriptor with the input information.

With ibdev , you specify the following values:

• Access board for the device

• Primary address

• Secondary address

Chapter 5 wibic–Windows Interface Bus Interactive Control Utility

© National Instruments Corp. 5-11 NI-488.2 User Manual for Windows

• Timeout setting

• EOT mode

• EOS mode

The following example shows ibdev opening an available device and assigning it to
access gpib0 (board = 0) with a primary address of 6 (pad = 6), a secondary address
of hex 67 (sad = 0x67), a timeout of 10 s (tmo=13), the END message enabled
(eot =1), and the EOS mode disabled (eos= 0).

:ibdev 0 6 0x67 13 1 0
id = 32256

ud0:

If you use ibdev without specifying parameters, wibic prompts you for the input
parameters as shown in the following example:

:ibdev
enter board index: 0
enter primary address: 6
enter secondary address: 0x67
enter timeout: 13
enter ‘EOI on last byte’ flag: 1
enter end-of-string mode/byte: 0

id = 32256

ud0:

Three distinct errors can occur with the ibdev call:

• EDVR–No device is available, the board index entered refers to a nonexistent board
(that is, not 0, 1, 2, or 3) or Windows cannot locate the gpib.dll file and/or
gpib.ini file. The following example illustrates an EDVR error.

:ibdev 4 6 0x67 7 1 0
id = -1
[8000] (err)
error: EDVR (2)

:

• ENEB–The board index entered refers to a known board (such as 0), but the driver
cannot find the board. In this case, run wibconf to verify that the base address of
the board is set correctly and that the Use This GPIB Interface field is set to
yes .

wibic–Windows Interface Bus Interactive Control Utility Chapter 5

NI-488.2 User Manual for Windows 5-12 © National Instruments Corp.

• EARG–One of the last five parameters is an invalid value. The ibdev call returns
with a new prompt and the EARG error (invalid function argument). If the ibdev
call returns with an EARG error, you must identify which parameter is incorrect and
use the appropriate command to correct it. In the following example, pad has an
invalid value. You can correct it with an ibpad call as shown:

:ibdev 0 66 0x67 7 1 0
id = 32256
[8100] (err cmpl)
error: EARG

ud0: ibpad 6
previous value: 16

ibwrt

The ibwrt command sends data from one GPIB device to another. For example, to
send the six character data string F3R5T1 from the computer to a device, you enter the
following string at the prompt as shown in the following example:

ud0: ibwrt "F3R5T1"
[0100] (cmpl)
count: 6

The returned status word contains the cmpl bit, which indicates a successful I/O
completion. The byte count 6 indicates that all six characters were sent from the
computer and received by the device.

ibrd

The ibrd command causes a GPIB device to receive data from another GPIB device.
The following example acquires data from the device and displays it on the screen in hex
format and in its ASCII equivalent, along with the status word and byte count.

ud0: ibrd 20
[2100] (end cmpl)
count: 18
4e 44 43 56 28 30 30 30 N D C V 9 0 0 0
2e 30 30 34 37 45 2b 30 . 0 0 4 7 E + 0
0d 0a . .

Chapter 5 wibic–Windows Interface Bus Interactive Control Utility

© National Instruments Corp. 5-13 NI-488.2 User Manual for Windows

Common NI-488.2 Routines in wibic

Set

You must use the set command before you can use NI-488.2 routines in wibic . The
syntax for this form of the set command is as follows:

set 488.2 n

where n represents a board number (for example, n=0 for gpib0).

The 488.2 prompt indicates that you are in NI-488.2 mode on board n . The following
example shows how to enter into 488.2 mode on board gpib0 .

set 488.2 0

488.2 (0):

Send and SendList

The Send routine sends data to a single GPIB device. You can use the SendList
command to send data to multiple GPIB devices. For example, suppose you want to send
the five character string *IDN? followed by the new line character with EOI. You want
to send the message from the computer to the devices at primary address 2 and 17. To do
this, enter the SendList command at the 488.2 (0) prompt as shown in the
following example:

488.2 (0): SendList 2, 17 “*IDN?” NLend
[0128] (cmpl cic tacs)
count: 6

The returned status word contains the cmpl bit, which indicates a successful I/O
completion. The byte count 6 indicates that six characters, including the added new line,
were sent from the computer and received by both devices.

Receive

The Receive routine causes the GPIB board to receive data from another GPIB device.
The following example acquires 10 data bytes from the device at primary address 5. It
stops receiving data when 10 characters have been received or when the END message is
received. The acquired data is then displayed in hex format along with its ASCII
equivalent. The wibic program also displays the status word and the count of
transferred bytes.

wibic–Windows Interface Bus Interactive Control Utility Chapter 5

NI-488.2 User Manual for Windows 5-14 © National Instruments Corp.

488.2 (0): Receive 5 10 STOPend
[2124] (end cmpl cic lacs)
count: 5
48 65 6c 6c 6f Hello

Auxiliary Functions

Table 5-4 summarizes the auxiliary functions that you can use in wibic .

Table 5-4. Auxiliary Functions in wibic

Function Description
set udname Select active device or board where udname is the symbolic

name of the new device or board (for example, dev1 or gpib0).
Call ibfind or ibdev initially to open each device or board.

help [option] Display help information where option is any NI-488 or
NI-488.2 call. If you do not enter an option , a menu of options
appears.

! Repeat previous function.

- Turn display off.

+ Turn display on.

n* function Execute function n times where function represents the
correct wibic function syntax.

n* ! Execute previous function n times.

$ filename Execute indirect file where filename is the pathname of a file
that contains wibic functions to be executed.

print string Display string on screen where string is an ASCII character
sequence, octal bytes, hex bytes, or special symbols.

buffer option Set the type of display used for buffers. Valid options are full ,
brief , ascii , and off . The default is full .

e Exit or quit.

q Exit or quit.

Chapter 5 wibic–Windows Interface Bus Interactive Control Utility

© National Instruments Corp. 5-15 NI-488.2 User Manual for Windows

Set (Select Device or Board)

You can use the set command to select 488.2 mode or to communicate with a different
device. The following example switches communication from using NI-488.2 routines
for gpib0 to using a unit descriptor (ud0) previously acquired by an ibdev call.

488.2 (0): set ud0

ud0:

Help (Display Help Information)

The help feature displays a menu of topics to choose from. Each topic lists relevant
functions and other information. You can access help for a specific NI-488 function or
NI-488.2 routine by typing help followed by the call name (for example, help
ibwrt). Help describes the function syntax for all NI-488 functions and NI-488.2
routines.

! (Repeat Previous Function)

The ! function repeats the most recent function executed. The following example issues
an ibsic command and then repeats that same command.

gpib0: ibsic
[0130] (cmpl cic atn)

gpib0: !
[0130] (cmpl cic atn)

- (Turn Display Off) and + (Turn Display On)

The - function turns off all screen output except for the prompt. This function is useful
when you want to repeat any I/O function quickly without waiting for screen output to be
displayed.

The + function turns the screen output on.

In the following example 24 consecutive letters of the alphabet are read from a device
using three ibrd calls.

ud0: ibrd 8
[2100] (end cmpl)
count: 8
61 62 63 64 65 66 67 68 a b c d e f g h

ud0: -

wibic–Windows Interface Bus Interactive Control Utility Chapter 5

NI-488.2 User Manual for Windows 5-16 © National Instruments Corp.

ud0: ibrd 8

ud0: +

ud0: ibrd 8
[2100] (end cmpl)
count: 8
71 72 73 74 75 76 77 78 q r s t u v w x

n* (Repeat Function n Times)

The n* function repeats the execution of the specified function n times, where n is an
integer. In the following example, the message Hello is sent five times to the device
described by ud0 .

ud0 : 5*ibwrt "Hello"

In the following example, the word Hello is sent five times, 20 times, and then 10 more
times.

ud0: 5*ibwrt "Hello"
ud0: 20* !
ud0: 10* !

Notice that the multiplier (*) does not become part of the function name; that is, ibwrt
"Hello" is repeated 20 times, not 5* ibwrt "Hello" .

$ (Execute Indirect File)

The $ function reads a specified file and executes the wibic functions listed in that file,
in sequence, as if they were entered in that order from the keyboard. The following
example executes the wibic functions listed in the file userfile .

gpib0: $ userfile

The following example repeats the operation three times.

gpib0: 3*$ userfile

The display mode that is in effect before this function was executed can be changed by
functions in the indirect file.

Chapter 5 wibic–Windows Interface Bus Interactive Control Utility

© National Instruments Corp. 5-17 NI-488.2 User Manual for Windows

Print (Display the ASCII String)

You can use the print function to echo a string to the screen. The following example
shows how you can use ASCII or hex with the print command.

dev1: print "hello"
hello

dev1: print "and\r\n\x67\x6f\x6f\x64\x62\x79\x65"
and
goodbye

You can also use print to display comments from indirect files. The print string
appears even if the display is suppressed with the - function.

Buffer (Set Buffer Display Mode)

You can set the type of display used for buffers to control how much of the buffer is
displayed. full displays the entire buffer, brief displays the first and last eight bytes
of the buffer, ascii displays the entire buffer in ASCII mode, and off displays none of
the buffer.

© National Instruments Corp. 6-1 NI-488.2 User Manual for Windows

Chapter 6
GPIB Spy

This chapter explains how to use the GPIB Spy utility to monitor and debug your
application program.

Overview

GPIB Spy is a GPIB application monitor utility for Windows applications. It monitors
the NI-488 and NI-488.2 calls made to the NI-488.2 driver for Windows, and records and
displays information about the calls. You can use the GPIB Spy application to locate and
analyze errors in your application or in the configuration of the NI-488.2 software.

Starting GPIB Spy

Start GPIB Spy by double-clicking on the GPIB Spy icon in the GPIB group in the
Program Manager . This activates GPIB Spy and brings up the main GPIB Spy
window. All NI-488 and NI-488.2 calls made while GPIB Spy is active are recorded in
the main GPIB Spy window. GPIB Spy can be turned on and off by choosing SpyOn
from the Spy menu. When GPIB Spy is on, the caption on the main GPIB Spy window
is "GPIB Spy (recording)." When GPIB Spy is off, the caption is "GPIB Spy."

Figure 6-1 shows the main GPIB Spy window with several NI-488 calls recorded in it.

Figure 6-1. Main GPIB Spy Window

GPIB Spy Chapter 6

NI-488.2 User Manual for Windows 6-2 © National Instruments Corp.

Exiting GPIB Spy

Exit GPIB Spy by choosing Exit from the Spy menu.

Caution: When you exit GPIB Spy, all of the recorded information is lost. See the
section in this chapter entitled GPIB Spy Output Options if you want to avoid
losing the information.

Viewing Call Details

To see detailed information about calls recorded in GPIB Spy, use the Call Details
window. You can activate the Call Details window in two different ways. If you
double-click on any recorded call in the main GPIB Spy window, the call details for that
particular call are displayed in the Call Details window. You can also select the View
Details option from the Spy menu, which makes the Call Details window the top-level
window.

You can use the Call Details window in two ways. If you check the Continuously item
in the View menu, the Call Details window is updated as each new GPIB is recorded and
you cannot scroll through the details for each recorded call. If you uncheck the
Continuously item in the View menu, you can use the <Page Up> or <Page Down> keys
to scroll through the call details of all recorded calls. If a call to the driver produces a
GPIB error condition, the corresponding Call Details window displays an iberr Help
button. Clicking on this button launches an interactive help utility which helps you
identify and correct the problem.

Figure 6-2 shows the GPIB Spy Call Details window for the NI-488 function, ibwrt .

Figure 6-2. GPIB Spy Call Details Window for ibwrt

Chapter 6 GPIB Spy

© National Instruments Corp. 6-3 NI-488.2 User Manual for Windows

GPIB Spy Configuration Options

Calls To Highlight

You can choose for GPIB Spy to highlight certain calls based on bits set in ibsta . If
you want to modify this option then select the Calls to Highlight menu item from the
Configure menu. Use the dialog box to select which ibsta bits should cause a
recorded call to be highlighted in the main GPIB Spy window. The default configuration
of GPIB Spy is to highlight NI-488 and NI-488.2 calls which return with the ERR bit set
in ibsta .

Calls To Trap On

You can configure GPIB Spy to suspend the execution of an application when one of the
selected trap bits is set in ibsta for the NI-488 or NI-488.2 call that is completing. If
you want to modify this option, select the Calls to Trap On menu item from the
Configure menu. When a call causes a trap to occur, a dialog box pops up and gives a
brief description of the trapped call. A dialog box causes all Windows applications
currently running to be suspended until you click on the OK button. By default, GPIB
Spy does not trap on any calls.

Buffer History

When GPIB Spy records a call such as ibrd , ibwrt , or Send , that includes a buffer of
data, the Call Details window shows you the contents of the buffer. The default
configuration of GPIB Spy is to store each I/O buffer in a brief format. If you want to
modify this option then select the Buffer History menu item from the Configure menu.
The buffer history has three settings: brief , full, and none . These settings determine how
much of the buffer to save for the NI-488 or NI-488.2 call being recorded. Once a call is
recorded, you cannot modify its buffer history. The brief buffer setting saves up to
64 bytes of buffer information. If the buffer is longer than 64 bytes, only the first
32 bytes and last 32 bytes of the buffer are saved. The none buffer setting saves no
buffer information. The full buffer setting saves the entire I/O buffer. Note that the full
buffer setting is likely to degrade the performance of your application and the whole
windows system, especially if the application is transferring large GPIB buffers.

Set Highlight Color

You can use this option to configure the highlight color which is used to highlight
information in the GPIB Spy windows. To change the highlight color, select the Set
Highlight Color menu item from the Configure menu. This causes the standard
Windows color selection dialog box to pop up. Choose a new color and click on OK .
The default highlight color is red.

GPIB Spy Chapter 6

NI-488.2 User Manual for Windows 6-4 © National Instruments Corp.

Store Configuration

You can use this option to make the current GPIB Spy configuration the default GPIB
Spy configuration. If you want to set the default GPIB Spy configuration, select the
Store Configuration menu item from the Configure menu.

GPIB Spy Output Options

To Screen

You can use this option to select the number of NI-488 and NI-488.2 calls that are
displayed in GPIB Spy. By default GPIB Spy displays 100 calls. Only the most recent
information is stored so that when the number of recorded calls exceeds the limit the
oldest information is discarded. To change the number of calls displayed, select the
To Screen menu item from the Output menu. Then enter the new number and click OK
to save the change.

To File

You can use this option to specify an output file in which to save the information
currently recorded in GPIB Spy. To save the information to a file, select the To File
menu item from the Output menu. This causes the standard Windows file selection
dialog box to pop up. Select a drive, directory and file name in which to save the
information. When you click OK , the information recorded in GPIB Spy is saved to the
specified file.

Check the Update Continuously check box in the dialog box if you want the GPIB Spy
information to be saved as soon as it is recorded. The output file is opened, written, and
closed as each NI-488 or NI-488.2 call is recorded. This option is useful if you are trying
to debug a Windows application that causes the system to crash before you get an
opportunity to close GPIB Spy. Use this option only if you need to because it is likely to
slow down all Windows applications. In addition, if you are low on disk space, choosing
this option could cause you to run out of disk space. To turn off the continuous update
feature, unselect the Update Continuously check box in the file selection dialog box.

Clear Screen

This option clears the display and the information stored in GPIB Spy. You cannot
retrieve information that has been cleared.

Chapter 6 GPIB Spy

© National Instruments Corp. 6-5 NI-488.2 User Manual for Windows

GPIB Spy Help

You can access online help for GPIB Spy by selecting the GPIB Spy Help menu item
from the Help menu. All of the information covered in this chapter is available through
the online help. The online help contains a thorough description of each of the features
of GPIB Spy, as well as information to help you develop your Windows GPIB
application.

Performance Considerations

Keep in mind that GPIB Spy can slow down the performance of your GPIB application
and the whole windows system operating environment. If you record full I/O buffers,
update to an output file continuously, or configure GPIB Spy to record the information on
a large number of GPIB calls, it might have a significant effect on performance. For this
reason, use GPIB Spy only while you are debugging your application or in situations in
which performance is not critical.

© National Instruments Corp. 7-1 NI-488.2 User Manual for Windows

Chapter 7
GPIB Programming Techniques

This chapter describes techniques for using some NI-488 functions and NI-488.2 routines
in your application program.

For more detailed information about each function or routine, refer to the NI-488.2
Function Reference Manual for DOS/Windows .

Termination of Data Transfers

GPIB data transfers are terminated either when the GPIB EOI line is asserted with the
last byte of a transfer or when a preconfigured end-of-string (EOS) character is
transmitted. By default, the NI-488.2 driver asserts EOI with the last byte of writes and
the EOS modes are disabled.

You can use the ibeot function to enable or disable the end of transmission (EOT)
mode. If EOT mode is enabled, the NI-488.2 driver asserts the GPIB EOI line when the
last byte of a write is sent out on the GPIB. If it is disabled, the EOI line is not asserted
with the last byte of a write.

You can use the ibeos function to enable, disable, or configure the EOS modes. EOS
mode configuration includes the following information:

• A 7-bit or 8-bit EOS byte

• EOS comparison method–This indicates whether the EOS byte has seven or eight
significant bits. For a 7-bit EOS byte, the eighth bit of the EOS byte is ignored.

• EOS write method–If this is enabled, the NI-488.2 driver automatically asserts the
GPIB EOI line when the EOS byte is written to the GPIB. If the buffer passed into an
ibwrt call contains five occurrences of the EOS byte, the EOI line is asserted as
each of the five EOS bytes are written to the GPIB. If an ibwrt buffer does not
contain an occurrence of the EOS byte, the EOI line is not asserted (unless the EOT
mode is enabled, in which case the EOI line is asserted with the last byte of the write).

• EOS read method–If this is enabled, the NI-488.2 driver terminates ibrd , ibrda ,
and ibrdf calls when the EOS byte is detected on the GPIB, when the GPIB EOI
line is asserted, or when the specified count is reached. If the EOS read method is
disabled, ibrd , ibrda , and ibrdf calls terminate only when the GPIB EOI line is
asserted or the specified count has been read.

GPIB Programming Techniques Chapter 7

NI-488.2 User Manual for Windows 7-2 © National Instruments Corp.

You can use the ibconfig function to configure the software to inform you whether or
not the GPIB EOI line was asserted when the EOS byte was read. Use the
IbcEndBitIsNormal option to configure the software to report only the END bit in
ibsta when the GPIB EOI line is asserted. By default, the NI-488.2 driver reports END
in ibsta when either the EOS byte is read in or the EOI line is asserted during a read.

High-Speed Data Transfers (HS488)

National Instruments has designed a high-speed data transfer protocol for IEEE 488
called HS488. This protocol increases performance for GPIB reads and writes up to
8 Mbytes/s, depending on your system.

HS488 is a superset of the IEEE 488 standard; thus, you can mix IEEE 488.1,
IEEE 488.2, and HS488 devices in the same system. If HS488 is enabled, the
TNT4882C hardware implements high-speed transfers automatically when
communicating with HS488 instruments. To determine whether your GPIB interface
board has the TNT4882C hardware, use the GPIBInfo utility. If you attempt to enable
HS488 on a GPIB board that does not have the TNT4882C chip, the error ECAP is
returned.

Enabling HS488

To enable HS488 for your GPIB board, use the ibconfig function (option
IbcHSCableLength). The value passed to ibconfig should specify the number of
meters of cable in your GPIB configuration. If you specify a cable length that is much
smaller than what you actually use, the transferred data could become corrupted. If you
specify a cable length longer than what you actually use, the data is transferred
successfully, but more slowly than if you specified the correct cable length.

In addition to using ibconfig to configure your GPIB board for HS488, the Controller-
In-Charge must send out GPIB command bytes (interface messages) to configure other
devices for HS488 transfers.

If you are using device-level calls, the NI-488.2 software automatically sends the HS488
configuration message to devices. If you enabled the HS488 protocol in wibconf , the
NI-488.2 software sends out the HS488 configuration message when you use ibdev to
bring a device online. If you call ibconfig to change the GPIB cable length, the
NI-488.2 software sends out the HS488 message again the next time you call a device-
level function.

If you are using board-level functions or NI-488.2 routines and you want to configure
devices for high-speed, you must send the HS488 configuration messages using ibcmd
or SendCmds . The HS488 configuration message is made up of two GPIB command
bytes. The first byte, the Configure Enable (CFE) message (hex 1F), places all HS488
devices into their configuration mode. Non-HS488 devices should ignore this message.
The second byte is a GPIB secondary command that indicates the number of meters of

Chapter 7 GPIB Programming Techniques

© National Instruments Corp. 7-3 NI-488.2 User Manual for Windows

cable in your system. It is called the Configure (CFGn) message. Because HS488 can
operate only with cable lengths of 1 to 15 meters, only CFGn values of 1 through 15 (hex
61 through 6F) are valid. If the cable length was configured correctly in wibconf , you
can determine how many meters of cable are in your system by calling ibask (option
IbaHSCableLength) in your application program. For CFE and CFGn messages,
refer to Appendix A, Multiline Interface Messages , in the NI-488.2 Function Reference
Manual for DOS/Windows .

System Configuration Effects on HS488

Maximum data transfer rates can be limited by your host computer and GPIB
system setup. For example, even though the theoretical maximum transfer rate
with HS488 is 8 Mbytes/s, the maximum transfer rate obtainable on PC compatible
computers with an ISA bus is 2 Mbytes/s. The same IEEE 488 cabling constraints
for a 350 ns T1 delay apply to HS488. As you increase the amount of cable in
your GPIB configuration, the maximum data transfer rate using HS488 decreases.
For example, two HS488 devices connected by two meters of cable can transfer
data faster than three HS488 devices connected by four meters of cable.

Waiting for GPIB Conditions

You can use the ibwait function to obtain the current ibsta value or to suspend your
application until a specified condition occurs on the GPIB. If you use ibwait with a
parameter of zero, it immediately updates ibsta and returns. If you want to use
ibwait to wait for one or more events to occur, then pass a wait mask to the function.
The wait mask should always include the TIMO event; otherwise, your application is
suspended indefinitely until one of the wait mask events occurs.

Device-Level Calls and Bus Management

The NI-488 device-level calls are designed to perform all of the GPIB management for
your application program. However, the NI-488.2 driver can handle bus management
only when the GPIB interface board is CIC (Controller-In-Charge). Only the CIC is able
to send command bytes to the devices on the bus to perform device addressing or other
bus management activities. Use one of the following methods to make your GPIB board
the CIC:

• If your GPIB board is configured as the System Controller (default), it automatically
makes itself the CIC by asserting the IFC line the first time you make a device-level
call.

GPIB Programming Techniques Chapter 7

NI-488.2 User Manual for Windows 7-4 © National Instruments Corp.

• If your setup includes more than one Controller, or if your GPIB interface board is not
configured as the System Controller, use the CIC Protocol method. To use the
protocol, issue the ibconfig function (option IbcCICPROT) or use the wibconf
configuration utility to activate the CIC protocol. If the interface board is not CIC and
you make a device-level call with the CIC Protocol enabled, the following sequence
occurs:

1. The GPIB interface board asserts the SRQ line.

2. The current CIC serial polls the board.

3. The interface board returns a response byte of hex 42.

4. The current CIC passes control to the GPIB board.

If the current CIC does not pass control, the NI-488.2 driver returns the ECIC error
code to your application. This error can occur if the current CIC does not understand
the CIC Protocol. If this happens, you could send a device-specific command
requesting control for the GPIB board. Then use a board-level ibwait command to
wait for CIC.

Talker/Listener Applications

Although designed for Controller-In-Charge applications, you can also use the NI-488.2
software in most non-Controller situations. These situations are known as
Talker/Listener applications because the interface board is not the GPIB Controller. A
typical Talker/Listener application waits for commands from the Controller and responds
as appropriate. The following paragraphs describe some programming techniques for
Talker/Listener applications.

Waiting for Messages from the Controller

A Talker/Listener application typically uses ibwait with a mask of 0 to monitor the
status of the interface board. Then, based on the status bits set in ibsta , the application
takes whatever action is appropriate. For example, the application could monitor the
status bits TACS (Talker Active State) and LACS (Listener Active State) to determine
when to send data to or receive data from the Controller. The application could also
monitor the DCAS (Device Clear Active State) and DTAS (Device Trigger Active State)
bits to determine if the Controller has sent the device clear (DCL or SDC) or trigger
(GET) messages to the interface board. If the application detects a device clear from the
Controller, it might reset the internal state of message buffers. If it detects a trigger
message from the Controller, the application might begin an operation such as taking a
voltage reading if the application is actually acting as a voltmeter.

Chapter 7 GPIB Programming Techniques

© National Instruments Corp. 7-5 NI-488.2 User Manual for Windows

Using the Event Queue

Some applications need to know the order in which certain messages are sent by the
Controller. To monitor the ordering of these messages, your application program must
enable the EVENT bit, using ibconfig (option IbcEventQueue). When the
EVENT bit is enabled, the DCAS and DTAS bits are no longer activated. Instead, all
DCAS and DTAS messages are stored in a queue, in the order that they are received.
The event queue also stores interface clear (IFC) messages. When the queue contains
some information, the NI-488.2 software sets the EVENT bit in ibsta . When the
application program detects EVENT, it can call the function ibevent to retrieve the
first event that occurred. Retrieving events from the queue ensures that the application
can respond to device clear, device trigger, and interface clear messages in the correct
order.

Requesting Service

Another type of event that might be important in a Talker/Listener application is the
serial poll. A Talker/Listener application can call ibrsv with a serial poll response byte
when it needs to request service from the Controller. If the application needs to know
when the Controller has read the serial poll response byte, it can enable the SPOLL bit in
ibsta using ibconfig , option IbcSPollBit . The NI-488.2 software sets the
SPOLL bit when the Controller serial polls the board.

Serial Polling

You can use serial polling to obtain specific information from GPIB devices when they
request service. When the GPIB SRQ line is asserted, it signals the Controller that a
service request is pending. The Controller must then determine which device asserted the
SRQ line and respond accordingly. The most common method for SRQ detection and
servicing is the serial poll. This section describes how you can set up your application to
detect and respond to service requests from GPIB devices.

Service Requests from IEEE 488 Devices

IEEE 488 devices request service from the GPIB Controller by asserting the GPIB SRQ
line. When the Controller acknowledges the SRQ, it serial polls each open device on the
bus to determine which device requested service. Any device requesting service returns a
status byte with bit 6 set and then unasserts the SRQ line. Devices not requesting service
return a status byte with bit 6 cleared. Manufacturers of IEEE 488 devices use lower
order bits to communicate the reason for the service request or to summarize the state of
the device.

GPIB Programming Techniques Chapter 7

NI-488.2 User Manual for Windows 7-6 © National Instruments Corp.

Service Requests from IEEE 488.2 Devices

The IEEE 488.2 standard refined the bit assignments in the status byte. In addition to
setting bit 6 when requesting service, IEEE 488.2 devices also use two other bits to
specify their status. Bit 4, the Message Available bit (MAV), is set when the device is
ready to send previously queried data. Bit 5, the Event Status bit (ESB), is set if one or
more of the enabled IEEE 488.2 events occurs. These events include power-on, user
request, command error, execution error, device-dependent error, query error, request
control, and operation complete. The device can assert SRQ when ESB or MAV are set,
or when a manufacturer-defined condition occurs.

Automatic Serial Polling

You can enable automatic serial polling if you want your application to conduct a serial
poll automatically any time the SRQ line is asserted. The autopolling procedure occurs
as follows:

1. To enable autopolling, use the configuration utility, wibconf , or the configuration
function, ibconfig with option IbcAUTOPOLL . (Autopolling is enabled by
default.)

2. When the SRQ line is asserted, the driver automatically serial polls the open devices.

3. Each positive serial poll response (bit 6 or hex 40 is set) is stored in a queue
associated with the device that sent it. The RQS bit of the device status word,
ibsta , is set.

4. The polling continues until SRQ is unasserted or an error condition is detected.

5. To empty the queue, use the ibrsp function. ibrsp returns the first queued
response. Other responses are read in first-in-first-out (FIFO) fashion. If the RQS
bit of the status word is not set when ibrsp is called, a serial poll is conducted and
returns whatever response is received. You should empty the queue as soon as an
automatic serial poll occurs, because responses might be discarded if the queue is
full.

6. If the RQS bit of the status word is still set after ibrsp is called, the response byte
queue contains at least one more response byte. If this happens, you should continue
to call ibrsp until RQS is cleared.

Stuck SRQ State

If autopolling is enabled and the GPIB interface board detects an SRQ, the driver serial
polls all open devices connected to that board. The serial poll continues until either SRQ
unasserts or all the devices have been polled.

Chapter 7 GPIB Programming Techniques

© National Instruments Corp. 7-7 NI-488.2 User Manual for Windows

If no device responds positively to the serial poll, or if SRQ remains in effect because of
a faulty instrument or cable, a stuck SRQ state is in effect. If this happens during an
ibwait for RQS, the driver reports the ESRQ error. If the stuck SRQ state happens, no
further polls are attempted until an ibwait for RQS is made. When ibwait is issued,
the stuck SRQ state is terminated and the driver attempts a new set of serial polls.

Autopolling and Interrupts

If autopolling and interrupts are both enabled, the NI-488.2 software can perform
autopolling after any device-level NI-488 call as long as no GPIB I/O is currently in
progress. This means that an automatic serial poll can occur even when your application
is not making any calls to the NI-488.2 software. Autopolling can also occur when a
device-level ibwait for RQS is in progress. Autopolling is not allowed whenever an
application calls a board-level NI-488 function or any NI-488.2 routine, or the stuck SRQ
(ESRQ) condition occurs.

If autopolling is enabled and interrupts are disabled, you can use autopolling in the
following situations only:

• During a device-level ibwait for RQS

• Immediately after a device-level NI-488 function is completed, before control is
returned to the application program

SRQ and Serial Polling with NI-488 Device Functions

You can use the device-level NI-488 function ibrsp to conduct a serial poll. ibrsp
conducts a single serial poll and returns the serial poll response byte to the application
program. If automatic serial polling is enabled, the application program can use ibwait
to suspend program execution until RQS appears in the status word, ibsta . The
program can then call ibrsp to obtain the serial poll response byte.

The following example illustrates the use of the ibwait and ibrsp functions in a
typical SRQ servicing situation when automatic serial polling is enabled.

#include "decl.h"

char GetSerialPollResponse (int DeviceHandle)
{

char SerialPollResponse = 0;

ibwait (DeviceHandle, TIMO | RQS);

GPIB Programming Techniques Chapter 7

NI-488.2 User Manual for Windows 7-8 © National Instruments Corp.

if (ibsta & RQS) {
printf ("Device asserted SRQ.\n");
/* Use ibrsp to retrieve the serial poll

response. */
ibrsp (DeviceHandle, &SerialPollResponse);

}
return SerialPollResponse;

}

SRQ and Serial Polling with NI-488.2 Routines

The NI-488.2 software includes a set of NI-488.2 routines that you can use to conduct
SRQ servicing and serial polling. Routines pertinent to SRQ servicing and serial polling
are AllSpoll , FindRQS , ReadStatusByte , TestSRQ , and WaitSRQ .

AllSpoll can serial poll multiple devices with a single call. It places the status bytes
from each polled instrument into a predefined array. Then you must check the RQS bit
of each status byte to determine whether that device requested service.

ReadStatusByte is similar to AllSpoll , except that it serial polls only a single
device. It is also analogous to the device-level NI-488 ibrsp function.

FindRQS serial polls a list of devices until it finds a device that is requesting service or
until it has polled all of the specified devices. The routine returns the index and status
byte value of the device requesting service.

TestSRQ determines whether the SRQ line is asserted or unasserted, and returns to the
program immediately.

WaitSRQ is similar to TestSRQ , except that WaitSRQ suspends the application
program until either SRQ is asserted or the timeout period is exceeded.

The following examples use NI-488.2 routines to detect SRQ and then determine which
device requested service. In these examples three devices are present on the GPIB at
addresses 3, 4, and 5, and the GPIB interface is designated as bus index 0. The first
example uses FindRQS to determine which device is requesting service and the second
example uses AllSpoll to serial poll all three devices. Both examples use WaitSRQ
to wait for the GPIB SRQ line to be asserted.

Note : Automatic serial polling is not used in these examples because you cannot use
it with NI-488.2 routines .

Chapter 7 GPIB Programming Techniques

© National Instruments Corp. 7-9 NI-488.2 User Manual for Windows

Example 1: Using FindRQS

This example illustrates the use of FindRQS to determine which device is requesting
service.

void GetASerialPollResponse (char *DevicePad,
char *DeviceResponse)

{
char SerialPollResponse = 0;
int WaitResult;
Addr4882_t Addrlist[4] = {3,4,5,NOADDR};

WaitSRQ (0, &WaitResult);

if (WaitResult) {
printf ("SRQ is asserted.\n");

/* Use FindRQS to find a device that requested service. */

FindRQS (0, AddrList, &SerialPollResponse);
if (!(ibsta & ERR)) {

printf ("Device at pad %x returned byte %x.\n",
AddrList[ibcnt],(int) SerialPollResponse);

*DevicePad = AddrList[ibcnt];
*DeviceResponse = SerialPollResponse;

}
}

return;
}

Example 2: Using AllSpoll

This example illustrates the use of AllSpoll to serial poll three devices.

void GetAllSerialPollResponses (Addr4882_t AddrList[], short
ResponseList[])
{

int WaitResult;

WaitSRQ (0, &WaitResult);

if (WaitResult) {
printf ("SRQ is asserted.\n");

GPIB Programming Techniques Chapter 7

NI-488.2 User Manual for Windows 7-10 © National Instruments Corp.

/* Use Allspoll to serial poll all the devices at once. */

AllSpoll (0, AddrList, ResponseList);
if (!(ibsta & ERR)) {

for (i = 0; AddrList[i] != NOADDR; i++) {
printf ("Device at pad %x returned byte %x.\n",

AddrList[i], ResponseList[i]);
}

}
}

return;
}

Parallel Polling

Although parallel polling is not widely used, it is a useful method for obtaining the status
of more than one device at the same time. The advantage of a parallel poll is that it can
easily check up to eight individual devices at once. In comparison, eight separate serial
polls would be required to check eight devices for their serial poll response bytes.

Implementing a Parallel Poll

You can implement parallel polling with either NI-488 functions or NI-488.2 routines. If
you use NI-488.2 routines to execute parallel polls, you do not need extensive knowledge
of the parallel polling messages. However, you should use the NI-488 functions for
parallel polling when the GPIB board is not the Controller and must configure itself for a
parallel poll and set its own individual status bit (ist).

Parallel Polling with NI-488 Functions

Follow these steps to implement parallel polling using NI-488 functions. Each step
contains example code.

1. Configure the device for parallel polling using the ibppc function, unless the device
can configure itself for parallel polling.

ibppc requires an 8-bit value to designate the data line number, the ist sense, and
whether or not the function configures or unconfigures the device for the parallel
poll. The bit pattern is as follows:

0 1 1 E S D2 D1 D0

E is 1 to disable parallel polling and 0 to enable parallel polling for that particular
device.

Chapter 7 GPIB Programming Techniques

© National Instruments Corp. 7-11 NI-488.2 User Manual for Windows

S is 1 if the device is to assert the assigned data line when ist = 1, and 0 if the
device is to assert the assigned data line when ist = 0.

D2 through D0 determine the number of the assigned data line. The physical line
number is the binary line number plus one. For example, DIO3 has a binary bit
pattern of 010.

The following example code configures a device for parallel polling using NI-488
functions. The device asserts DIO7 if its ist = 0.

In this example, the ibdev command is used to open a device that has a primary
address of 3, has no secondary address, has a timeout of 3 s, asserts EOI with the last
byte of a write operation, and has EOS characters disabled.

#include "decl.h"
char ppr;

dev = ibdev(0,3,0,T3s,1,0);

/* Pass the binary bit pattern, 0110 0110 or hex 66, to
ibppc */

ibppc(dev, 0x66);

If the GPIB interface board configures itself for a parallel poll, you should still use
the ibppc function. Pass the board index or a board unit descriptor value as the
first argument in ibppc . In addition, if the individual status bit (ist) of the board
needs to be changed, use the ibist function.

In the following example, the GPIB board is to configure itself to participate in a
parallel poll. It asserts DIO5 when ist = 1 if a parallel poll is conducted.

ibppc(0, 0x6C);
ibist(0, 1);

2. Conduct the parallel poll using ibrpp and check the response for a certain value.
The following example code performs the parallel poll and compares the response to
hex 10, which corresponds to DIO5. If that bit is set, the ist of the device is 1.

ibrpp(dev, &ppr);
if (ppr & 0x10) printf("ist = 1\n");

3. Unconfigure the device for parallel polling with ibppc . Notice that any value
having the parallel poll disable bit set (bit 4) in the bit pattern disables the
configuration, so you can use any value between hex 70 and 7E.

ibppc(dev, 0x70);

GPIB Programming Techniques Chapter 7

NI-488.2 User Manual for Windows 7-12 © National Instruments Corp.

Parallel Polling with NI-488.2 Routines

Follow these steps to implement parallel polling using NI-488.2 routines. Each step
contains example code.

1. Configure the device for parallel polling using the PPollConfig routine, unless
the device can configure itself for parallel polling. The following example
configures a device at address 3 to assert data line 5 (DIO5) when its ist value is 1.

#include "decl.h"
char response;
Addr4882_t AddressList[2];

/* The following command clears the GPIB. */

SendIFC(0);

/* The value of sense is compared with the ist bit of the
device and determines whether the data line is asserted. */

PPollConfig(0,3,5,1);

2. Conduct the parallel poll using PPoll , store the response, and check the response
for a certain value. In the following example, because DIO5 is asserted by the
device if ist = 1, the program checks bit 4 (hex 10) in the response to determine
the value of ist .

PPoll(0, &response);

/* If response has bit 4 (hex 10) set, the ist bit of the
device at that time is equal to 1. If it does not appear,
the ist bit is equal to 0. Check the bit in the following
statement. */

if (response & 0x10) {
printf("The ist equals 1.\n");

}
else {

printf("The ist equals 0.\n");
}

3. Unconfigure the device for parallel polling using the PPollUnconfig routine as
shown in the following example. In this example, the NOADDR constant must appear
at the end of the array to signal the end of the address list. If NOADDR is the only
value in the array, all devices receive the parallel poll disable message.

AddressList[0] = 3;
AddressList[1] = NOADDR;
PPollUnconfig(0, AddressList);

© National Instruments Corp. 8-1 NI-488.2 User Manual for Windows

Chapter 8
wibconf–Windows Interface Bus
Configuration Utility

This chapter contains a description of wibconf , the software configuration program you
can use to configure the NI-488.2 software for Windows.

Overview

The wibconf utility is a screen-oriented, interactive program you can use to view or
modify the configuration parameters of your GPIB interface boards and the GPIB devices
connected to them. Usually, you use wibconf to modify the hardware settings of your
GPIB interface boards.

The wibconf utility can read in and display configuration parameters for the NI-488.2
driver file on disk. You can then save the changes back to the disk file. wibconf also
has a supplementary batch mode which can be used for configuring in a non-interactive
fashion.

Instead of using wibconf , you can configure your driver programmatically by using the
ibconfig function to alter any of the board or device characteristics while your
program is running. If you use dynamic configuration, you do not need to run wibconf
before you start your application. Also, you can run your application on any computer
with the appropriate NI-488.2 software regardless of its configuration because the
application configures the driver as necessary. Programmatic configuration is the
preferred method of GPIB application development.

Starting wibconf

The simplest way to use wibconf is to double-click on the wibconf icon in your
GPIB group in the Windows Program Manager. Windows pops up a dialog box
labeled Parameters.

By default, wibconf looks for the NI-488.2 software configuration file, gpib.ini , in
the c:\windows directory. If you installed Windows in a directory other than
c:\windows , specify the full path to the gpib.ini file in the Parameters box. For
example, if you installed Windows in the directory d:\win3 , type
d:\win3\gpib.ini in the Parameters dialog box.

If you installed Windows in the default directory, simply press <Return>.

wibconf-Windows Interface Bus Configuration Utility Chapter 8

NI-488.2 User Manual for Windows 8-2 © National Instruments Corp.

Table 8-1 lists the options you can select when you start wibconf .

Table 8-1. Options for Starting wibconf

wibconf Option Action

driver Configure a specific driver.
wibconf configures the given driver configuration file (for
example, wibconf d:\win3\gpib.ini).

-h Help.
This option causes wibconf to display a summary of options.

-b filename Batch mode configuration.
wibconf is run in batch mode using the configuration
information contained in the given file (for example, wibconf
-b gpib.cfg). See the wibconf Batch Mode section later in
this chapter.

-e Expert mode.
This option disables wibconf warning messages when you exit
wibconf . See the Exiting wibconf section later in this chapter.

-m Monochrome mode.
This option causes wibconf to run in monochrome mode even if
you have a color monitor.

-vb Video access through BIOS.
This option causes wibconf to use the system BIOS routines
when writing to the screen. This is slower than the default of
direct screen access, but is more compatible with certain
nonstandard systems.

Upper and Lower Levels of wibconf

wibconf operates at both an upper and a lower level. The upper level consists of the
device map that gives a graphical picture of the GPIB system. The lower level consists
of screens describing the individual boards and devices that make up the system.

Chapter 8 wibconf-Windows Interface Bus Configuration Utility

© National Instruments Corp. 8-3 NI-488.2 User Manual for Windows

Upper-Level Device Map

Figure 8-1 shows the upper level of wibconf.

Figure 8-1. Upper Level of wibconf

As shown in Figure 8-1, the upper-level screen of wibconf displays the names of all
devices controlled by the driver. It also indicates which devices, if any, are accessed
through each interface board. You can move around the map by using the cursor control
keys or the mouse.

The following options are available at the upper level.

• Device maps of the boards

• Help

• Rename

• (Dis)connect

• Edit

• Exit

wibconf-Windows Interface Bus Configuration Utility Chapter 8

NI-488.2 User Manual for Windows 8-4 © National Instruments Corp.

Device Maps of Use <PageUp> or <PageDown> to toggle between the device maps
the Boards for the different GPIB interface boards. These boards are referred

to as access boards. The maps show which devices are assigned to
each board.

Help Use the function key <F1> to access the comprehensive, online
help feature of wibconf . The help information describes the
functions and common terms associated with the upper level of
wibconf .

Rename Use the function key <F4> to rename a device. Move to the device
you want to rename by using the cursor control keys. Press the
<F4> key and enter the new name of the device. The device name
may contain up to eight characters in lowercase or uppercase.

The following restrictions apply when renaming a device:

• Extensions (.xxx) are not allowed

• As specified by DOS, the device name cannot use the following
characters:

. " / \ [] :
| < > + = ; ,

• Do not use the reserved names con or nul for your device

• Do not give GPIB device names the same names as files,
directories, or subdirectories. If you name a GPIB device
pltr and your file system contains the file pltr.dat or a
subdirectory pltr , a conflict results.

• The names of the access boards gpib0 , gpib1 , gpib2 , and
gpib3 are fixed and connot be changed.

(Dis)connect Use the function key <F5> to connect or disconnect a device from
a particular access board. Move the cursor to the device that you
want to connect or disconnect by using the cursor control keys and
then press the <F5> key.

Chapter 8 wibconf-Windows Interface Bus Configuration Utility

© National Instruments Corp. 8-5 NI-488.2 User Manual for Windows

Edit Use the function key <F8> or the <Enter> key to edit or examine
the characteristics of a particular board or device. Move to the
board or device that you want to edit using the cursor control keys
and then press the <F8> key. This step puts you in the lower level
of wibconf and lists the characteristics for the particular board or
device that you want to edit. To exit edit, press the function key
<F9> or <Escape> to return to the upper level.

Exit Use the function key <F9> or <Escape> to exit wibconf. If you
have made changes, wibconf prompts you to save the changes
before exiting. For more information, refer to the Exiting wibconf
section later in this chapter.

Lower-Level Device/Board Characteristics

The lower-level screens of wibconf display the currently defined values for
characteristics of a device or board such as addressing and timeout information, as shown
in Figure 8-2.

Figure 8-2. Lower Level of wibconf

wibconf-Windows Interface Bus Configuration Utility Chapter 8

NI-488.2 User Manual for Windows 8-6 © National Instruments Corp.

You can access the lower-level screens from the map level of wibconf by selecting a
board or device and pressing <F8>. You can use the <Up>, <Down>, <PageUp>, and
<PageDown> cursor keys to select a characteristic. For your convenience, cursor control
keys and function keys are defined at the bottom of your computer screen.

Selecting the configuration settings for each device and board customizes the
communications and other options to be used with that board or device. The access board
uses these settings either when device functions are called to program the device or when
board functions are called to program the board.

The following options are available at the lower level.

• Change Characteristics

• Change Board or Device

• Help

• Reset Value

• Return to Map

Change To change a specific characteristic of a device or a board, move the
Characteristics cursor to, or click the mouse, on the field for that characteristic.

You can also use <PageUp>, <PageDown>, <Home>, or <End> to
select other characteristics of a device or board. When the cursor
is on the characteristic, either use the left/right arrow keys to select
between different options or input the option directly from the
keyboard. Instructions on the right side of the screen inform you
which method is appropriate for the selected characteristic.

Change Board Use <Control-PageUp> and <Control-PageDown> to change to the
or Device next or previous GPIB board or device. For example, if you are

editing dev3 and press <Control-PageUp>, you will then be
editing dev4 .

Help Use the function key <F1> to access the comprehensive, online
help feature of wibconf . The help information describes the
functions and common terms associated with the lower level of
wibconf .

Reset Value Use the function key <F6> to reset a characteristic option to its
previous value.

Return to Map At the lower level, the function key <F9> or <Escape> returns you
to the upper-level device map of wibconf .

Chapter 8 wibconf-Windows Interface Bus Configuration Utility

© National Instruments Corp. 8-7 NI-488.2 User Manual for Windows

Board and Device Configuration Options

To view detailed information about each characteristic, position the cursor in the field for
that characteristic. For information on characteristics specific to a particular driver,
check the getting started manual that came with your interface board. The following
paragraphs describe the options available in wibconf for the NI-488.2 software for
Windows.

Primary GPIB Address

All devices and boards must be assigned a unique primary address in the range hex 00 to
hex 1E (0 to 30 decimal). The default primary address of all GPIB boards is 0.

The GPIB primary address of any device is set within the device, either with hardware
switches or a by software program. The address set within the device must correspond to
the address in the memory-resident driver. In the NI-488.2 driver for Windows, the
default primary addresses of dev1 through dev16 , and dev17 through dev32 , are 1
through 16, respectively. Refer to the device documentation for instructions about setting
the device address. GPIB boards do not have hardware switches to select the GPIB
address.

The primary GPIB address is used to compute the talk and listen addresses of devices and
boards. The NI-488.2 driver automatically forms a listen address by adding hex 20 to the
primary address and a talk address by adding hex 40 to the primary address. For
example, a primary address of hex 10 has a listen address of hex 30 and a talk address of
hex 50.

Secondary GPIB Address

Any device or board using extended addressing must be assigned a secondary address in
the range hex 60 to hex 7E (96 to 126 decimal), or you can select NONE to disable
secondary addressing.

As with primary addressing, the secondary GPIB address of a device is set within that
device, either with hardware switches or by a software program. The address set within
the device must correspond to the address in the memory-resident driver. Refer to the
device documentation for instructions about secondary addressing. The default setting
for this characteristic is NONE for all boards and devices.

Timeout Setting

The timeout value is the approximate length of time that GPIB functions wait for data to
be transferred or commands to be sent. It is also the length of time that the ibwait
function waits for an event before returning, if the TIMO bit is set in the event mask. For
example, if the SRQI bit and TIMO bit in the event mask are passed to the ibwait
function and no SRQ is detected, then the function times out after the timeout period has
elapsed. The default option for this characteristic is 10 s.

wibconf-Windows Interface Bus Configuration Utility Chapter 8

NI-488.2 User Manual for Windows 8-8 © National Instruments Corp.

Serial Poll Timeouts (Device Characteristic Only)

This timeout value controls the length of time the driver waits for a serial poll response
from a device. The IEEE 488.1 specification does not specify the length of time a
Controller should wait for the response byte. The default of 1 s should work for most
devices. If you seem to have problems with serial polls, try using a longer timeout value.

Terminate Read on EOS

Some devices send an EOS byte signaling the last byte of a data message. A yes
response in this field causes the GPIB board to terminate a read operation when it
receives the EOS byte. The default option for this characteristic is no .

Set EOI with EOS on Writes

A yes response in this field causes the GPIB board to assert the EOI line when the EOS
byte is detected on a write operation. The default option for this characteristic is no .

Type of Compare on EOS

This field specifies the type of comparison to be made with the EOS byte. You can state
whether to compare all eight bits or just the seven least significant bits, which are in
ASCII or ISO (International Standards Organization) format. The default option for this
characteristic is 7-bit .

Note : This field is only meaningful if a yes response was given for either the Set
EOI with EOS on Write field or the Terminate Read on EOS field.

EOS Byte

Some devices can be programmed to terminate a read operation when a selected character
is detected. A linefeed character (hex 0A) is a common EOS byte. The default option for
this characteristic is 00H.

Note: The driver does not automatically append an EOS byte to the end of data
strings on write operations. You must explicitly include this byte in your data
string. The EOS byte is used only so that the driver terminates read
operations properly.

Chapter 8 wibconf-Windows Interface Bus Configuration Utility

© National Instruments Corp. 8-9 NI-488.2 User Manual for Windows

Send EOI at End of Write

Some devices, as Listeners, require that the Talker terminate a data message by asserting
the EOI line with the last byte. A yes response causes the GPIB board to assert the EOI
line on the last data byte. The default option for this characteristic is yes .

System Controller (Board Characteristic Only)

This field appears on the board characteristics screen only. The System Controller in a
GPIB system is the device that maintains ultimate control over the bus. In some
situations, such as a network of computers linked by the GPIB, another device may be
System Controller and the GPIB board should be designated as not System Controller. A
no response would designate not System Controller and a yes response would designate
System Controller capability. The GPIB board is usually designated as System
Controller. The default option for this characteristic is yes .

Note : You should not have more than one designated System Controller in any GPIB
system.

Assert REN when SC (Board Characteristic Only)

A yes response to this field causes Remote Enable (REN) to be asserted automatically
whenever the board is placed online, if that the board has System Controller capability.
If you give a no response, an explicit call to ibsre is required to assert REN. The
default option for this characteristic is no .

Enable Auto Serial Polling (Board Characteristic Only)

This option enables or disables automatic serial polls of devices when the GPIB Service
Request (SRQ) line is asserted. Positive poll responses are stored following the polls and
can be read with the ibrsp device function. Normally, this feature does not conflict
with devices that conform to the IEEE 488.1 specification. If a conflict exists with a
device, use a no response for this field to disable this feature. The default option for this
characteristic is yes .

Enable CIC Protocol (Board Characteristic Only)

If a device-level NI-488 function is called after control has been passed to another device,
enabling this protocol causes the board to assert SRQ with a Serial Poll status byte of
hex 42. The current Controller must recognize that the board wants to regain control. If
the current Controller passes control back to the board, the device call proceeds as
intended. If control is not passed within the timeout period, or if the CIC protocol is
disabled, the ECIC error is returned. The default option for this characteristic is no .

wibconf-Windows Interface Bus Configuration Utility Chapter 8

NI-488.2 User Manual for Windows 8-10 © National Instruments Corp.

Bus Timing (Board Characteristic Only)

This field specifies the T1 delay of the source handshake capability for the board. This
delay determines the minimum amount of time, after the data is placed on the bus, that
the board may assert DAV during a write or command operation. If the total length of
the GPIB cable length in the system is less than 15 m, the value of 350 ns is appropriate.

Other factors might affect the choice of the T1 delay, although they are unlikely to affect
your system setup. Refer to the ANSI/IEEE Standard 488.1-1987, Section 5.2, for more
information about these other factors. The default for this option is 500 ns.

Cable Length for High Speed (Board Characteristic Only)

This field specifies the number of meters of GPIB cable you have in your system. If you
use the HS488 high-speed protocol to communicate with HS488-compliant devices, you
must specify the total number of meters of GPIB cable in your system. The System
Controller, when it initializes the GPIB, must send this information to all HS488 devices
so that high-speed transfers occur without errors.

Parallel Poll Duration (Board Characteristic Only)

This field specifies the length of time the driver waits when conducting a parallel poll.
For a normal bus configuration (the Controller and devices on the same bus) use the
default duration of 2 µs. If you are using a GPIB bus extender in transparent parallel poll
mode, you should increase the poll duration to 10 µs so that the bus extender can operate
transparently to your applications.

Use This GPIB Interface (Board Characteristic Only)

If you do not want the driver to try to access a board at the selected base address (because
you do not have a board in the system), select no for this option. When this field is set to
no , the driver returns the EDVR error as soon as a program tries to access the board. By
default, access board gpib0 is enabled, and gpib1 , gpib2 , and gpib3 are disabled.

Base I/O Address (Board Description Only)

This field specifies the I/O address of the GPIB board. It must be set to the same value as
the base I/O address setting for the GPIB board itself. Setting the base I/O address level
is explained in the getting started manual that you received with your GPIB interface
board.

Note : On some systems, this field is read-only and you cannot change it using
wibconf . Refer to your getting started manual for information on how
to change the I/O address.

Chapter 8 wibconf-Windows Interface Bus Configuration Utility

© National Instruments Corp. 8-11 NI-488.2 User Manual for Windows

DMA Channel (Board Characteristic Only)

This field specifies the DMA channel used by the GPIB board. It must be set to the same
value as the DMA channel (arbitration level for Micro Channel systems) setting for the
GPIB board itself. Setting the DMA channel is explained in the getting started manual
that you received with your GPIB interface board.

Note : On some systems, you can only enable or disable the use of DMA with the
wibconf utility. You cannot change the DMA channel setting. Refer to your
getting started manual for information on how to change the DMA channel.

Interrupt Jumper Setting (Board Characteristic Only)

This field specifies the interrupt line used by the GPIB board. It must be set to the same
value as the interrupt level setting for the GPIB board itself. Setting the interrupt level is
explained in the getting started manual that you received with your GPIB board.

Note : On some systems, you can only enable or disable the use of interrupts with the
wibconf utility. You cannot change the IRQ request line. Refer to your
getting started manual for information on how to change the interrupt level.

Enable Repeat Addressing (Device Characteristic Only)

Normally, devices are not addressed each time a read or write operation is performed. If
no is selected, read or write operations do not readdress the selected device if the same
operation was just performed with that device. Avoiding readdressing saves some time
when you have several GPIB operations to perform. But it might be a problem for some
older IEEE 488.1 devices that require their GPIB address to be sent with each I/O
operation. Select yes to enable repeat addressing in such a situation. The default option
for this characteristic is no .

GPIB-PCII/IIA Mode Switch

The driver that is included with the GPIB-PCII and GPIB-PCIIA interface board kits is
the same for each kit and can run with both boards. Use this field to indicate the type of
board that is installed in your system. You can have both a GPIB-PCII and a
GPIB-PCIIA interface board installed in your system at the same time.

wibconf-Windows Interface Bus Configuration Utility Chapter 8

NI-488.2 User Manual for Windows 8-12 © National Instruments Corp.

Default Configurations in wibconf

This section lists the default configuration values of the NI-488.2 driver.

• Thirty-two devices with symbolic names dev1 through dev32 .

• Four access boards with symbolic names gpib0 , gpib1 , gpib2 , and gpib3 . You
cannot change the access board names.

• Access board gpib0 is enabled. gpib1 , gpib2 , and gpib3 are disabled.

• The GPIB addresses of the first 16 devices are the same as the device number. For
example, dev is at address 1. These 16 devices are assigned to the access board
gpib0 .

• The remaining 16 devices (that is, devices 17 through 32) are assigned to the access
board gpib1 . Their GPIB addresses range from 1 through 16, respectively. For
example, dev17 is at address 1.

• Each GPIB interface board is System Controller for its independent bus and has a
GPIB address of 0.

• The END message is sent with the last byte of each data message to a device. No
end-of-string (EOS) character is recognized.

• The timeout value for I/O and wait functions is set for 10 s.

• Each GPIB board and device is set to perform I/O transfers using DMA.

• Automatic serial polling is enabled.

• At the end of each NI-488.2 routine, the NI-488.2 driver leaves the bus in its currently
addressed state (IEEE 488.2 standard).

Exiting wibconf

After you have made all your changes, you can exit wibconf by pressing <F9> or
<Esc>. The program prompts you to save the changes. Select Yes to save the changes,
No to discard the changes, or cancel to remain in wibconf .

Chapter 8 wibconf-Windows Interface Bus Configuration Utility

© National Instruments Corp. 8-13 NI-488.2 User Manual for Windows

Checking for Errors

Unless you started in expert mode, wibconf checks for possible problems before
quitting. It alerts you to situations such as the following:

• GPIB addressing conflict between a device and its access board

• GPIB boards not present in the host machine at the specified address

• Timeouts disabled on a device or board

To disable automatic checking when starting wibconf , use the -e option.

wibconf Batch Mode

The wibconf batch mode offers an alternative method for modifying the configurations
of the NI-488.2 driver. Batch mode can also modify the loaded driver.

In batch mode, the configuration information is contained in a configuration file that you
create. To use the configuration file that you created, enter the following command:

wibconf -b filename

where filename is the name of the configuration file. You must include at least one
space between -b and filename .

The configuration file is a free-form text file consisting of pairs of items. Each item must
be separated by at least one space or new line character. The first item of a pair is a
mnemonic that represents a board or device characteristic or a device map configuration
function (for example, rename , connect , disconnect) to be configured. The
second item of a pair is the value to which the first item (mnemonic) should be set.

Before configuring a board or device, that board or device must be found by the find
name# pair, where name is board or device and # is the index of the GPIB board or
device you are configuring.

When wibconf is run in batch mode, it checks the syntax of the first item in the pair
and the value range of the second item, and it reports any errors as it finds them. If a
value range error is found, the correct range of values is displayed. If any errors are
found, the driver is not configured.

wibconf-Windows Interface Bus Configuration Utility Chapter 8

NI-488.2 User Manual for Windows 8-14 © National Instruments Corp.

The following example is a sample configuration file followed by an explanation of each
entry.

find device1 name plotter
find device2 disconnect
find device3 connect board1
find board0 pad 2 tmo 30sec eos 0x1E sc no
 bin 8-bit tmng 350nsec

This example makes the following changes:

1. Change the name of the first device to plotter .

2. Disconnect the second device.

3. Connect the third device to board 1 (gpib1).

4. Change the configuration of board 0 (gpib0).

• Primary address to 2 (pad 2)

• Timeout setting to 30 s (tmo 30sec)

• EOS byte to hex 1E (eos 0x1E)

• System Controller capability to NO (sc no)

• Type of compare on EOS to 8-bit (bin 8-bit)

• GPIB bus timing to 350 ns (tmng 350nsec)

Table 8-2 contains a list of the valid pairs of items. You can enter number values as
decimal or hexadecimal. Hexadecimal numbers must be preceded with 0x. For
example, decimal 64 would be written as 0x40 . For more information about valid input
values, refer to the relevant function descriptions in the NI-488.2 Function Reference
Manual for DOS/Windows .

Chapter 8 wibconf-Windows Interface Bus Configuration Utility

© National Instruments Corp. 8-15 NI-488.2 User Manual for Windows

Table 8-2. wibconf Batch Mode Command Pairs

First Item
Mnemonic Explanation Second Item

find Find board or device board# or device#

pad Primary GPIB address number

sad Secondary GPIB address number

tmo Timeout settings mnemonic

xeos Set EOI with EOS on write yes or no

bin Type of compare on EOS 7-bit or 8-bit

eot Set EOI with last byte of write yes or no

sc System Controller (board only) yes or no

sre Assert REN when SC (board only) yes or no

spoll Enable auto serial polling (board only) yes or no

tmng Timing (board only) 2msec , 500nsec , or
350nsec

cic_prot CIC protocol (board only) yes or no

int Interrupt setting (board only) number

port Base I/O address (board only) number

dma DMA channel (board only) number

raddr Repeat addressing (device only) yes or no

name Rename a device (device only) device name

connect Connect a device to a board (device only) board#

disconnect Disconnect a device from a board (device
only)

no value

type Switch the current board to PCII or PCIIA
mode

PCII or PCIIA

pplength Parallel poll duration (board only) mnemonic

useboard Use this interface board (board only) yes or no

spolltmo Serial Poll Timeout (device only) mnemonic

© National Instruments Corp. A-1 NI-488.2 User Manual for Windows

Appendix A
Status Word Conditions

This appendix gives a detailed description of the conditions reported in the status word,
ibsta .

For information about how to use ibsta in your application program, refer to Chapter 3,
Developing Your Application.

If a function call returns an ENEB or EDVR error, all status word bits except the ERR bit
are cleared, indicating that it is not possible to obtain the status of the GPIB board.

Each bit in ibsta can be set for device calls (dev), board calls (brd), or both (dev, brd).

The following table lists the status word bits.

Table A-1. Status Word Bits

Mnemonic
Bit
Pos.

Hex
Value Type Description

ERR 15 8000 dev, brd GPIB error

TIMO 14 4000 dev, brd Time limit exceeded

END 13 2000 dev, brd END or EOS detected

SRQI 12 1000 brd SRQ interrupt received

RQS 11 800 dev Device requesting service

SPOLL 10 400 brd Board has been serial polled by
Controller

EVENT 9 200 brd DCAS, DTAS, or IFC event has occurred

CMPL 8 100 dev, brd I/O completed

LOK 7 80 brd Lockout State

REM 6 40 brd Remote State

CIC 5 20 brd Controller-In-Charge

ATN 4 10 brd Attention is asserted

TACS 3 8 brd Talker

LACS 2 4 brd Listener

DTAS 1 2 brd Device Trigger State

DCAS 0 1 brd Device Clear State

Status Word Conditions Appendix A

NI-488.2 User Manual for Windows A-2 © National Instruments Corp.

ERR (dev, brd)

ERR is set in the status word following any call that results in an error. You can
determine the particular error by examining the error variable iberr . Appendix B,
Error Codes and Solutions, describes error codes that are recorded in iberr along with
possible solutions. ERR is cleared following any call that does not result in an error.

TIMO (dev, brd)

TIMO indicates that the timeout period has been exceeded. TIMO is set in the status
word following an ibwait call if the TIMO bit of the ibwait mask parameter is set
and the time limit expires. TIMO is also set following any synchronous I/O functions
(for example, ibcmd , ibrd , ibwrt , Receive , Send , and SendCmds) if a timeout
occurs during one of these calls. TIMO is cleared in all other circumstances.

END (dev, brd)

END indicates either that the GPIB EOI line has been asserted or that the EOS byte has
been received, if the software is configured to terminate a read on an EOS byte. If the
GPIB board is performing a shadow handshake as a result of the ibgts function, any
other function can return a status word with the END bit set if the END condition occurs
before or during that call. END is cleared when any I/O operation is initiated.

Some applications might need to know the exact I/O read termination mode of a read
operation–EOI by itself, the EOS character by itself, or EOI plus the EOS character. You
can use the ibconfig function (option IbcEndBitIsNormal) to enable a mode in
which the END bit is set only when EOI is asserted. In this mode, if the I/O operation
completes because of the EOS character by itself, END is not set. The application should
check the last byte of the received buffer to see if it is the EOS character.

SRQI (brd)

SRQI indicates that a GPIB device is requesting service. SRQI is set whenever the GPIB
board is CIC, the GPIB SRQ line is asserted, and the automatic serial poll capability is
disabled. SRQI is cleared either when the GPIB board ceases to be the CIC or when the
GPIB SRQ line is unasserted.

RQS (dev)

RQS appears in the status word only after a device-level call. It indicates that one or
more serial poll response bytes are waiting in the device’s serial poll response queue.
Automatic serial poll responses are not stored in the response queue unless they have
bit 6 set.

Appendix A Status Word Conditions

© National Instruments Corp. A-3 NI-488.2 User Manual for Windows

An automatic serial poll occurs either as a result of a call to ibwait , or automatically, if
automatic serial polling is enabled. If the serial poll response queue is not empty, ibrsp
returns the oldest byte stored in the queue. To empty the response queue, call ibrsp
repeatedly until RQS is no longer set in the device's status word.

SPOLL (brd)

Use SPOLL in Talker/Listener applications to determine when the Controller has serial
polled the GPIB board. The SPOLL bit is disabled by default. Use the ibconfig
function (option IbcSPollBit) to enable it. When this bit is enabled, it is set after the
board has been polled. SPOLL is cleared on any call immediately after an ibwait call,
if the SPOLL bit was set in the wait mask, or immediately following a call to ibrsv.

EVENT (brd)

Use EVENT in Talker/Listener applications (applications in which the GPIB interface is
not the Controller) to monitor the order of GPIB device clear, group execute trigger, and
send interface clear commands. The usual DCAS and DTAS bits of ibsta might be
insufficient.

The EVENT bit is disabled by default. If you want to use this bit, you must use the
ibconfig function (option IbcEventQueue) to enable it. When you enable this bit,
the DCAS and DTAS bits are disabled. When an event occurs, this bit is set and any I/O
in progress is aborted. The application can then call the ibevent function to determine
which event occurred.

CMPL (dev, brd)

CMPL indicates the condition of I/O operations. It is set whenever an I/O operation is
complete. CMPL is cleared while the I/O operation is in progress.

LOK (brd)

LOK indicates whether the board is in a lockout state. While LOK is set, the
EnableLocal routine or ibloc function is inoperative for that board. LOK is set
whenever the GPIB board detects that the Local Lockout (LLO) message has been sent
either by the GPIB board or by another Controller. LOK is cleared when the System
Controller unasserts the Remote Enable (REN) GPIB line.

Status Word Conditions Appendix A

NI-488.2 User Manual for Windows A-4 © National Instruments Corp.

REM (brd)

REM indicates whether or not the board is in the remote state. REM is set whenever the
Remote Enable (REN) GPIB line is asserted and the GPIB board detects that its listen
address has been sent either by the GPIB board or by another Controller. REM is cleared
in the following situations:

• When REN becomes unasserted

• When the GPIB board as a Listener detects that the Go to Local (GTL) command has
been sent either by the GPIB board or by another Controller

• When the ibloc function is called while the LOK bit is cleared in the status word

CIC (brd)

CIC indicates whether the GPIB board is the Controller-In-Charge. CIC is set when the
SendIFC routine or ibsic function is executed either while the GPIB board is System
Controller or when another Controller passes control to the GPIB board. CIC is cleared
either when the GPIB board detects Interface Clear (IFC) from the System Controller or
when the GPIB board passes control to another device.

ATN (brd)

ATN indicates the state of the GPIB Attention (ATN) line. ATN is set whenever the
GPIB ATN line is asserted, and it is cleared when the ATN line is unasserted.

TACS (brd)

TACS indicates whether the GPIB board is addressed as a Talker. TACS is set whenever
the GPIB board detects that its talk address (and secondary address, if enabled) has been
sent either by the GPIB board itself or by another Controller. TACS is cleared whenever
the GPIB board detects the Untalk (UNT) command, its own listen address, a talk address
other than its own talk address, or Interface Clear (IFC).

LACS (brd)

LACS indicates whether the GPIB board is addressed as a Listener. LACS is set
whenever the GPIB board detects that its listen address (and secondary address, if
enabled) has been sent either by the GPIB board itself or by another Controller. LACS is
also set whenever the GPIB board shadow handshakes as a result of the ibgts function.
LACS is cleared whenever the GPIB board detects the Unlisten (UNL) command, its own
talk address, Interface Clear (IFC), or that the ibgts function has been called without
shadow handshake.

Appendix A Status Word Conditions

© National Instruments Corp. A-5 NI-488.2 User Manual for Windows

DTAS (brd)

DTAS indicates whether the GPIB board has detected a device trigger command. DTAS
is set whenever the GPIB board, as a Listener, detects that the Group Execute Trigger
(GET) command has been sent by another Controller. DTAS is cleared on any call
immediately following an ibwait call, if the DTAS bit is set in the ibwait mask
parameter.

DCAS (brd)

DCAS indicates whether the GPIB board has detected a device clear command. DCAS is
set whenever the GPIB board detects that the Device Clear (DCL) command has been
sent by another Controller, or whenever the GPIB board as a Listener detects that the
Selected Device Clear (SDC) command has been sent by another Controller. DCAS is
cleared on any call immediately following an ibwait call, if the DCAS bit was set in
the ibwait mask parameter. It also occurs on any call immediately following a read or
write.

© National Instruments Corp. B-1 NI-488.2 User Manual for Windows

Appendix B
Error Codes and Solutions

This appendix lists a description of each error, some conditions under which it might
occur, and possible solutions.

The following table lists the GPIB error codes.

Table B-1. GPIB Error Codes

Error
Mnemonic

iberr
Value Meaning

EDVR 0 Windows error

ECIC 1 Function requires GPIB board to be CIC

ENOL 2 No Listeners on the GPIB

EADR 3 GPIB board not addressed correctly

EARG 4 Invalid argument to function call

ESAC 5 GPIB board not System Controller as required

EABO 6 I/O operation aborted (timeout)

ENEB 7 Nonexistent GPIB board

EDMA 8 DMA error

EOIP 10 Asynchronous I/O in progress

ECAP 11 No capability for operation

EFSO 12 File system error

EBUS 14 GPIB bus error

ESTB 15 Serial poll status byte queue overflow

ESRQ 16 SRQ stuck in ON position

ETAB 20 Table problem

EDVR (0)

EDVR is returned in the following cases:

• The board or device name passed to ibfind is not configured in the software. In
this case, the variable ibcntl contains the DOS error code 2, Device Not Found.

Error Codes and Solutions Appendix B

NI-488.2 User Manual for Windows B-2 © National Instruments Corp.

• An invalid unit descriptor is passed to any function call. In this case, the variable
ibcntl contains the DOS error code 6, Invalid handle.

• The driver (gpib.dll) is not installed.

• The driver configuration file gpib.ini is not located in the windows directory. In
this case, the variable ibcntl contains the value -1.

• The driver file gpib.ini is in the windows directory but not compatible with the
driver file gpib.dll that you are using. In this case, the variable ibcntl contains
a negative value other than -1.

Solutions

• Use ibdev to open a device without specifying its symbolic name.

• Use only device or board names that are configured in the utility program wibconf
as parameters to the ibfind function.

• Use the unit descriptor returned from ibfind as the first parameter in subsequent
NI-488 functions. Examine the variable before the failing function to make sure the
function has not been corrupted.

• Make sure the NI-488.2 driver is installed by checking that gpib.dll and
gpib.ini are in the windows directory (usually c:\windows).

ECIC (1)

ECIC is returned when one of the following board functions or routines is called while
the board is not CIC:

• Any device-level NI-488 functions that affect the GPIB

• Any board-level NI-488 functions that issue GPIB command bytes, such as ibcmd ,
ibcmda , ibln , ibrpp

• ibcac , ibgts

• Any of the NI-488.2 routines that issue GPIB command bytes, such as SendCmds ,
PPoll , Send , Receive

Appendix B Error Codes and Solutions

© National Instruments Corp. B-3 NI-488.2 User Manual for Windows

Solutions

• Use ibsic or SendIFC to make the GPIB board become CIC on the GPIB.

• Use ibrsc 1 to make sure your GPIB board is configured as System Controller.

• In multiple CIC situations, always be certain that the CIC bit appears in the status
word ibsta before attempting these calls. If it does not appear, you can perform an
ibwait (for CIC) call to delay further processing until control is passed to the board.

ENOL (2)

ENOL usually occurs when a write operation is attempted with no Listeners addressed.
For a device write, this error indicates that the GPIB address configured for that device in
the software does not match the GPIB address of any device connected to the bus, that
the GPIB cable is not connected to the device, or that the device is not powered on.

ENOL can also occur in situations in which the GPIB board is not the CIC and the
Controller asserts ATN before the write call in progress has ended.

Solutions

• Make sure that the GPIB address of your device matches the GPIB address of the
device to which you want to write data.

• Use the appropriate hex code in ibcmd to address your device.

• Check your cable connections and make sure at least two-thirds of your devices are
powered on.

• Call ibpad (or ibsad , if necessary) to match the configured address to the device
switch settings.

• Reduce the write byte count to that which is expected by the Controller.

EADR (3)

EADR occurs when the GPIB board is CIC and is not properly addressing itself before
read and write functions. This error is usually associated with board-level functions.

EADR is also returned by the function ibgts when the shadow-handshake feature is
requested and the GPIB ATN line is already unasserted. In this case, the shadow
handshake is not possible and the error is returned to notify you of that fact.

Error Codes and Solutions Appendix B

NI-488.2 User Manual for Windows B-4 © National Instruments Corp.

Solutions

• Make sure that the GPIB board is addressed correctly before calling ibrd , ibwrt ,
RcvRespMsg , or SendDataBytes .

• Avoid calling ibgts except immediately after an ibcmd call. ibcmd causes ATN
to be asserted.

EARG (4)

EARG results when an invalid argument is passed to a function call. The following are
some examples:

• ibtmo called with a value not in the range 0 through 17

• ibpad or ibsad called with invalid addresses

• ibppc called with invalid parallel poll configurations

• A board-level NI-488 call made with a valid device descriptor, or a device-level
NI-488 call made with a board descriptor.

• An NI-488.2 routine called with an invalid address.

• PPollConfig called with an invalid data line or sense bit.

Solutions

• Make sure that the parameters passed to the NI-488 function or NI-488.2 routine are
valid.

• Do not use a device descriptor in a board function or vice-versa.

ESAC (5)

ESAC results when ibsic , ibsre , SendIFC , or EnableRemote is called when the
GPIB board does not have System Controller capability.

Solutions

Give the GPIB board System Controller capability by calling ibrsc 1 or by using
wibconf to configure that capability into the software.

Appendix B Error Codes and Solutions

© National Instruments Corp. B-5 NI-488.2 User Manual for Windows

EABO (6)

EABO indicates that an I/O operation has been canceled, usually due to a timeout
condition. Other causes for this error are calling ibstop or receiving the Device Clear
message from the CIC while performing an I/O operation.

Frequently, the I/O is not progressing (the Listener is not continuing to handshake or the
Talker has stopped talking), or the byte count in the call which timed out was more than
the other device was expecting.

Solutions

• Use the correct byte count in input functions or have the Talker use the END message
to signify the end of the transfer.

• Lengthen the timeout period for the I/O operation using ibtmo .

• Make sure that you have configured your device to send data before you request data.

ENEB (7)

ENEB occurs when no GPIB board exists at the I/O address specified in the configuration
program. This happens when the board is not physically plugged into the system, the I/O
address specified during configuration does not match the actual board setting, there is a
system conflict with the base I/O address, or the Use This GPIB Interface field
in wibconf is not set correctly.

Solutions

• Make sure there is a GPIB board in your computer that is properly configured both in
hardware and software using a valid base I/O address.

• Make sure that the Use This GPIB Interface field in wibconf is set to Yes .

EDMA (8)

EDMA is returned when an error occurs using DMA for data transfers. If your computer
has more than 16 MB of RAM and you do not have the National Instruments virtual
GPIB device (nivgpibd.386) installed, the NI-488.2 software returns EDMA if you
are using DMA and the data buffer is located in memory above 16 MB.

Error Codes and Solutions Appendix B

NI-488.2 User Manual for Windows B-6 © National Instruments Corp.

If you are using Windows 3.0 with DMA for data transfers, and you do not have the
National Instruments virtual DMA device (nivdmad.386) installed, the NI-488.2
software returns EDMA if you try to use DMA to transfer data.

Solutions

• Install the appropriate virtual device in the system.ini file in the Windows
directory in the [386Enh] section. The following line installs the virtual GPIB
device:

device = drive:\path\nivgpib.386

where drive and path describe the location of nivgpib.386 on your hard drive.

• By default, only one GPIB board at a time can perform DMA. If you need to perform
DMA transfers on multiple GPIB boards at the same time, add a new section to your
system.ini file, [vgpibd]. In this section add the option
NumBoardsUsingDMA and set it equal to the number of boards that will be
performing DMA. For example, if you want two boards to perform DMA
concurrently, add the following lines to the bottom of your system.ini file:

[vgpibd]
NumBoardsUsingDMA=2

• To install the virtual DMA device, first change the default virtual DMA device line to a
remark line by adding a semicolon. Then add a line to install the National Instruments
virtual DMA device as follows:

;device = *vdmad
device = drive:\path\nivdmad.386

where drive and path describe the location of nivdmad.386 on your hard drive.

Note: You must restart Windows after you modify the system.ini file .

• Alternatively, you can correct the EDMA problem by disabling DMA in the software.
You can use ibdma to disable DMA.

EOIP (10)

EOIP occurs when an asynchronous I/O operation has not finished before some other call
is made. During asynchronous I/O, you can only use ibstop , ibwait , and ibonl or
perform other non-GPIB operations. Once the asynchronous I/O has begun, further GPIB
calls other than ibstop , ibwait , or ibonl are strictly limited. If a call might
interfere with the I/O operation in progress, the driver returns EOIP.

Appendix B Error Codes and Solutions

© National Instruments Corp. B-7 NI-488.2 User Manual for Windows

Solutions

Resynchronize the driver and the application before making any further GPIB calls.
Resynchronization is accomplished by using one of the following three functions:

• ibwait If the returned ibsta contains CMPL then the driver and application
are resynchronized.

• ibstop The I/O is canceled; the driver and application are resynchronized.

• ibonl The I/O is canceled and the interface is reset; the driver and application
are resynchronized.

ECAP (11)

ECAP results when your GPIB board lacks the ability to carry out an operation or when a
particular capability has been disabled in the software and a call is made that requires the
capability.

Solutions

Check the validity of the call, or make sure your GPIB interface board and the driver both
have the needed capability.

EFSO (12)

EFSO results when an ibrdf or ibwrtf call encounters a problem performing a file
operation. Specifically, this error indicates that the function is unable to open, create,
seek, write, or close the file being accessed. The specific DOS error code for this
condition is contained in ibcntl .

Solutions

• Make sure the filename, path, and drive that you specified are correct.

• Make sure that the access mode of the file is correct.

• Make sure there is enough room on the disk to hold the file.

Error Codes and Solutions Appendix B

NI-488.2 User Manual for Windows B-8 © National Instruments Corp.

EBUS (14)

EBUS results when certain GPIB bus errors occur during device functions. All device
functions send command bytes to perform addressing and other bus management.
Devices are expected to accept these command bytes within the time limit specified by
the default configuration or the ibtmo function. EBUS results if a timeout occurred
while sending these command bytes.

Solutions

• Verify that the instrument is operating correctly.

• Check for loose or faulty cabling or several powered-off instruments on the GPIB.

• If the timeout period is too short for the driver to send command bytes, increase the
timeout period.

ESTB (15)

ESTB is reported only by the ibrsp function. ESTB indicates that one or more serial
poll status bytes received from automatic serial polls have been discarded because of a
lack of storage space. Several older status bytes are available; however, the oldest is
being returned by the ibrsp call.

Solutions

• Call ibrsp more frequently to empty the queue.

• Disable autopolling with the ibconfig function or the wibconf utility.

ESRQ (16)

ESRQ occurs only during the ibwait function or the WaitSRQ routine. ESRQ
indicates that a wait for RQS is not possible because the GPIB SRQ line is stuck on. This
situation can be caused by the following events:

• Usually, a device unknown to the software is asserting SRQ. Because the software
does not know of this device, it can never serial poll the device and unassert SRQ.

• A GPIB bus tester or similar equipment might be forcing the SRQ line to be asserted.

• A cable problem might exist involving the SRQ line.

Appendix B Error Codes and Solutions

© National Instruments Corp. B-9 NI-488.2 User Manual for Windows

Although the occurrence of ESRQ warns you of a definite GPIB problem, it does not
affect GPIB operations, except that you cannot depend on the RQS bit while the
condition lasts.

Solutions

Check to see if other devices not used by your application are asserting SRQ. Disconnect
them from the GPIB if necessary.

ETAB (20)

ETAB occurs only during the FindLstn , FindRQS , and ibevent functions. ETAB
indicates that there was some problem with a table used by these functions.

• In the case of FindLstn , ETAB means that the given table did not have enough
room to hold all the addresses of the Listeners found.

• In the case of FindRQS , ETAB means that none of the devices in the given table
were requesting service.

• In the case of ibevent , ETAB means the event queue overflowed and event
information was lost.

Solutions

In the case of FindLstn , increase the size of result arrays. In the case of FindRQS ,
check to see if other devices not used by your application are asserting SRQ. Disconnect
them from the GPIB if necessary. In the case of ETAB returned from ibevent , call
ibevent more often to empty the queue.

© National Instruments Corp. C-1 NI-488.2 User Manual for Windows

Appendix C
Customer Communication

For your convenience, this appendix contains forms to help you gather the information
necessary to help us solve technical problems you might have as well as a form you can
use to comment on the product documentation. Filling out a copy of the Technical
Support Form before contacting National Instruments helps us help you better and faster.

National Instruments provides comprehensive technical assistance around the world. In
the U.S. and Canada, applications engineers are available Monday through Friday from
8:00 a.m. to 6:00 p.m. (central time). In other countries, contact the nearest branch
office. You may fax questions to us at any time.

Corporate Headquarters
(512) 795-8248
Technical support fax: (800) 328-2203

(512) 794-5678

Branch Offices Phone Number Fax Number
Australia 03 9 879 9422 03 9 879 9179
Austria 0662 45 79 90 0 0662 45 79 90 19
Belgium 02 757 00 20 02 757 03 11
Canada (Ontario) 519 622 9310 519 622 9311
Canada (Quebec) 514 694 8521 514 694 4399
Denmark 45 76 26 00 45 76 71 11
Finland 90 527 2321 90 502 2930
France 1 48 14 24 24 1 48 14 24 14
Germany 089 741 31 30 089 714 60 35
Hong Kong 2645 3186 2686 8505
Italy 02 48301892 02 48301915
Japan 03 5472 2970 03 5472 2977
Korea 02 596 7456 02 596 7455
Mexico 95 800 010 0793 5 520 3282
Netherlands 0348 433466 0348 430673
Norway 32 84 84 00 32 84 86 00
Singapore 2265886 2265887
Spain 91 640 0085 91 640 0533
Sweden 08 730 49 70 08 730 43 70
Switzerland 056 200 51 51 056 200 51 55
Taiwan 02 377 1200 02 737 4644
U.K. 01635 523545 01635 523154

Technical Support Form

Photocopy this form and update it each time you make changes to your software or
hardware, and use the completed copy of this form as a reference for your current
configuration. Completing this form accurately before contacting National
Instruments for technical support helps our applications engineers answer your
questions more efficiently.

If you are using any National Instruments hardware or software products related to this
problem, include the configuration forms from their user manuals. Include additional
pages if necessary.

Name

Company

Address

Fax () Phone ()

Computer brand

Model Processor

Operating system

Speed MHz RAM MB

Display adapter

Mouse yes no

Other adapters installed

Hard disk capacity MB Brand

Instruments used

National Instruments hardware product model

Revision

Configuration

(continues)

National Instruments software product

Version

Configuration

The problem is

List any error messages

The following steps will reproduce the problem

Documentation Comment Form

National Instruments encourages you to comment on the documentation supplied with
our products. This information helps us provide quality products to meet your needs.

Title: NI-488.2™ User Manual for Windows

Edition Date: January 1996

Part Number: 370902A-01

Please comment on the completeness, clarity, and organization of the manual.

(continues)

If you find errors in the manual, please record the page numbers and describe the errors.

Thank you for your help.

Name

Title

Company

Address

Phone ()

Mail to: Technical Publications
National Instruments Corporation
6504 Bridge Point Parkway,
Austin, TX 78730-5039

Fax to: Technical Publications
National Instruments Corporation
(512) 794-5678

© National Instruments Corp. Glossary-1 NI-488.2 User Manual for Windows

Glossary

A

acceptor handshake Listeners use this GPIB interface function to receive data, and
all devices use it to receive commands. See source handshake
and handshake .

access board The GPIB board that controls and communicates with the
devices on the bus that are attached to it.

ANSI American National Standards Institute.

ASCII American Standard Code for Information Interchange.

asynchronous An action or event that occurs at an unpredictable time with
respect to the execution of a program.

automatic serial polling A feature of the NI-488.2 software in which serial polls
(autopolling) are executed automatically by the driver whenever a device

asserts the GPIB SRQ line.

B

base I/O address See I/O address .

BIOS Basic Input/Output System.

board-level function A rudimentary function that performs a single operation.

Prefix Meaning Value

n-
µ-
m-
k-
M-

nano-
micro-
milli-
kilo-
mega-

10-9

10-6

10-3

103

106

Glossary

NI-488.2 User Manual for Windows Glossary-2 © National Instruments Corp.

C

CFE Configuration Enable is the GPIB command which precedes
CFGn and is used to place devices into their configuration
mode.

CFGn These GPIB commands (CFG1 through CFG15) follow CFE
and are used to configure all devices for the number of meters
of cable in the system so that HS488 transfers occur without
errors.

CIC See Controller-In-Charge.

Controller-In-Charge The device that manages the GPIB by sending interface
(CIC) messages to other devices.

CPU Central processing unit.

D

DAV (Data Valid) One of the three GPIB handshake lines. See handshake .

DCL Device Clear is the GPIB command used to reset the device or
internal functions of all devices. See SDC .

Device Clear See DCL.

device-level function A function that combines several rudimentary board
operations into one function so that the user does not have to
be concerned with bus management or other GPIB protocol
matters.

DIO1 through DIO8 The GPIB lines that are used to transmit command or data
bytes from one device to another.

DLL Dynamic link library.

DMA High-speed data transfer between the GPIB
(direct memory access) board and memory that is not handled directly by the CPU.

Not available on some systems. See programmed I/O.

driver Device driver software installed within the operating system.

Glossary

© National Instruments Corp. Glossary-3 NI-488.2 User Manual for Windows

E

END or END message A message that signals the end of a data string. END is sent
by asserting the GPIB End or Identify (EOI) line with the last
data byte.

EOI A GPIB line that is used to signal either the last byte of a data
message (END) or the parallel poll Identify (IDY) message.

EOS or EOS byte A 7- or 8-bit end-of-string character that is sent as the last byte
of a data message.

EOT End of transmission.

ESB The Event Status bit is part of the IEEE 488.2-defined status
byte which is received from a device responding to a serial
poll.

G

GET Group Execute Trigger is the GPIB command used to trigger a
device or internal function of an addressed Listener.

Go To Local See GTL.

GPIB General Purpose Interface Bus is the common name for the
communications interface system defined in ANSI/IEEE
Standard 488.1-1987 and ANSI/IEEE Standard 488.2-1987.

GPIB address The address of a device on the GPIB, composed of a primary
address (MLA and MTA) and an optional secondary address
(MSA). The GPIB board has both a GPIB address and an I/O
address.

GPIB board Refers to the National Instruments family of GPIB interface
boards.

Group Executed Trigger See GET .

GTL Go To Local is the GPIB command used to place an addressed
Listener in local (front panel) control mode.

Glossary

NI-488.2 User Manual for Windows Glossary-4 © National Instruments Corp.

H

handshake The mechanism used to transfer bytes from the Source
Handshake function of one device to the Acceptor Handshake
function of another device. The three GPIB lines DAV,
NRFD, and NDAC are used in an interlocked fashion to signal
the phases of the transfer, so that bytes can be sent
asynchronously (for example, without a clock) at the speed of
the slowest device.

For more information about handshaking, refer to the
ANSI/IEEE Standard 488.1-1987.

hex Hexadecimal; a number represented in base 16, for example
decimal 16 = hex 10.

high-level function See device-level function.

Hz Hertz.

I

ibcnt After each NI-488.2 I/O function, this global variable contains
the actual number of bytes transmitted.

iberr A global variable that contains the specific error code
associated with a function call that failed.

ibsta At the end of each function call, this global variable (status
word) contains status information.

IEEE Institute of Electrical and Electronic Engineers.

interface message A broadcast message sent from the Controller to all devices
and used to manage the GPIB.

I/O (Input/Output) In the context of this manual, the transmission of commands
or messages between the computer via the GPIB board and
other devices on the GPIB.

I/O address The address of the GPIB board from the point of view of the
CPU, as opposed to the GPIB address of the GPIB board.
Also called port address or board address.

ist An Individual Status bit of the status byte used in the Parallel
Poll Configure function.

Glossary

© National Instruments Corp. Glossary-5 NI-488.2 User Manual for Windows

K

KB Kilobytes.

L

LAD (Listen Address) See MLA .

language interface Code that enables an application program that uses NI-488
functions or NI-488.2 routines to access the driver.

listen address See MLA .

Listener A GPIB device that receives data messages from a Talker.

low-level function See board-level function.

M

m Meters.

MAV The Message Available bit is part of the IEEE 488.2-defined
status byte which is received from a device responding to a
serial poll.

MB Megabytes of memory.

memory-resident Resident in RAM.

MLA A GPIB command used to address a device to be
(My Listen Address) a Listener. It can be any one of the 31 primary addresses.

MSA My Secondary Address is the GPIB command used to address
(My Secondary Address) a device to be a Listener or a Talker when extended (two byte)

addressing is used. The complete address is a MLA or MTA
address followed by an MSA address. There are 31 secondary
addresses for a total of 961 distinct listen or talk addresses for
devices.

MTA (My Talk Address) A GPIB command used to address a device to be a Talker. It
can be any one of the 31 primary addresses.

multitasking The concurrent processing of more than one program or task.

Glossary

NI-488.2 User Manual for Windows Glossary-6 © National Instruments Corp.

N

NDAC One of the three GPIB handshake lines. See
(Not Data Accepted) handshake .

NRFD One of the three GPIB handshake lines. See
(Not Ready For Data) handshake .

P

parallel poll The process of polling all configured devices at once and
reading a composite poll response. See serial poll .

PIO See programmed I/O.

PPC Parallel Poll Configure is the GPIB command
(Parallel Poll Configure) used to configure an addressed Listener to participate in polls.

PPD Parallel Poll Disable is the GPIB command used
(Parallel Poll Disable) to disable a configured device from participating in polls.

There are 16 PPD commands.

PPE Parallel Poll Enable is the GPIB command used
(Parallel Poll Enable) to enable a configured device to participate in polls and to

assign a DIO response line. There are 16 PPE commands.

PPU Parallel Poll Unconfigure is the GPIB command
(Parallel Poll used to disable any device from participating in
Unconfigure) polls.

programmed I/O Low-speed data transfer between the GPIB board and memory
in which the CPU moves each data byte according to program
instructions. See DMA .

R

RAM Random-access memory.

resynchronize The NI-488.2 software and the user application must
resynchronize after asynchronous I/O operations have
completed.

RQS Request Service.

Glossary

© National Instruments Corp. Glossary-7 NI-488.2 User Manual for Windows

S

s Seconds.

SDC Selected Device Clear is the GPIB command used to reset
internal or device functions of an addressed Listener. See
DCL and IFC.

serial poll The process of polling and reading the status byte of one
device at a time. See parallel poll .

Service Request See SRQ.

source handshake The GPIB interface function that transmits data and
commands. Talkers use this function to send data, and the
Controller uses it to send commands. See acceptor handshake
and handshake .

SPD Serial Poll Disable is the GPIB command used to
(Serial Poll Disable) cancel an SPE command.

SPE Serial Poll Enable is the GPIB command used to
(Serial Poll Enable) enable a specific device to be polled. That device must also be

addressed to talk. See SPD.

SRQ (Service Request) The GPIB line that a device asserts to notify the CIC that the
device needs servicing.

status byte The IEEE 488.2-defined data byte sent by a device when it is
serially polled.

status word See ibsta.

synchronous Refers to the relationship between the NI-488.2 driver
functions and a process when executing driver functions is
predictable; the process is blocked until the driver completes
the function.

System Controller The single designated Controller that can assert control
(become CIC of the GPIB) by sending the Interface Clear
(IFC) message. Other devices can become CIC only by
having control passed to them.

Glossary

NI-488.2 User Manual for Windows Glossary-8 © National Instruments Corp.

T

TAD (Talk Address) See MTA .

Talker A GPIB device that sends data messages to Listeners.

TCT Take Control is the GPIB command used to pass control of the
bus from the current Controller to an addressed Talker.

timeout A feature of the NI-488.2 driver that prevents I/O functions
from hanging indefinitely when there is a problem on the
GPIB.

TLC An integrated circuit that implements most of the GPIB
Talker, Listener, and Controller functions in hardware.

U

ud (unit descriptor) A variable name and first argument of each function call that
contains the unit descriptor of the GPIB interface board or
other GPIB device that is the object of the function.

UNL Unlisten is the GPIB command used to unaddress any active
Listeners.

UNT Untalk is the GPIB command used to unaddress an active
Talker.

W

wibconf The NI-488.2 driver configuration program for Windows.

wibic The Interface Bus Interactive Control program for Windows is
used to communicate with GPIB devices, troubleshoot
problems, and develop your application.

© National Instruments Corp. Index-1 NI-488.2 User Manual for Windows

Index

Symbols

! (repeat previous function) function, wibic, 5-15
$ (execute indirect file) function, wibic, 5-16
+ (turn display on) function, wibic, 5-15
- (turn display off) function, wibic, 5-15

A

Active Controller. See Controller-in-Charge (CIC).
addresses. See GPIB addresses.
AllSpoll routine, 7-8, 7-9 to 7-10
ANSI/IEEE Standard 488.1-1987. See GPIB.
application development. See also debugging.

accessing NI-488.2 DLL, 3-1
application examples

asynchronous I/O, 2-6 to 2-7
basic communication, 2-2 to 2-3
basic communication with IEEE 488.2-compliant devices, 2-14 to 2-15
clearing and triggering devices, 2-4 to 2-5
end-of-string mode, 2-8 to 2-9
non-controller example, 2-20 to 2-21
parallel polls, 2-18 to 2-19
serial polls using NI-488.2 routines, 2-16 to 2-17
service requests, 2-10 to 2-13
source code files, 2-1

choosing between NI-488 functions and NI-488.2 routines, 3-1 to 3-3
compiling, linking, and running applications

Borland C++, 3-17
direct entry with C, 3-22
direct entry with Visual Basic, 3-23
Microsoft C, 3-17
Visual Basic applications, 3-18

global variables for checking status, 3-3 to 3-5
count variables - ibcnt and ibcntl, 3-5
error variable - iberr, 3-5
status word - ibsta, 3-3 to 3-4

NI-488 applications
clearing devices, 3-8
configuring devices, 3-9
flowchart of programming with device-level functions, 3-7
general steps and examples, 3-8 to 3-10
items to include, 3-6

Index

NI-488.2 User Manual for Windows Index-2 © National Instruments Corp.

opening devices, 3-8
placing device offline, 3-10
processing of data, 3-10
program shell (illustration), 3-7
reading measurement, 3-10
triggering devices, 3-9
waiting for measurement, 3-9 to 3-10

NI-488 functions, 3-2 to 3-3
advantages, 3-2
board functions, 3-2 to 3-3
device functions, 3-2
one device per board, 3-2 to 3-3

NI-488.2 applications
configuring instruments, 3-15
finding all Listeners, 3-13
flowchart of programming with routines, 3-12
general steps and examples, 3-13 to 3-16
identifying instruments, 3-13 to 3-14
initialization, 3-13
initializing instruments, 3-14
items to include, 3-11
placing board offline, 3-16
processing of data, 3-16
program shell (illustration), 3-12
reading measurement, 3-16
triggering instruments, 3-15
waiting for measurement, 3-15 to 3-16

NI-488.2 routines, 3-3
wibic for communicating with devices, 3-5

asynchronous I/O application example, 2-6 to 2-7
ATN (attention) line, 1-3
ATN status word condition

bit position, hex value, and type (table), 3-4
description, A-4

automatic serial polling. See serial polling.
auxiliary functions, wibic

! (repeat previous function), 5-15
$ (execute indirect file), 5-16
+ (turn display on), 5-15
- (turn display off), 5-15
buffer (set buffer display mode), 5-17
help (display help information), 5-15
n* (repeat function n times), 5-16
print (display the ASCII string), 5-17
set (select device or board), 5-15
table of functions, 5-14

Index

© National Instruments Corp. Index-3 NI-488.2 User Manual for Windows

B

base I/O address, setting, 8-10
batch mode for wibconf utility, 8-13 to 8-15

command pairs (table), 8-15
configuration file, 8-13 to 8-14

board configuration. See wibconf utility.
board functions. See NI-488 functions.
boards

disabling access to GPIB board, 8-10
testing with wibtest, 4-1 to 4-2

Borland C++. See C language.
buffer command (set buffer display mode), 5-17
buffer history, viewing, 6-3
bus timing, setting, 8-10

C

C language
compiling, linking, and running applications, 3-17
direct entry, 3-18 to 3-22
files available with NI-488.2 software, 1-7

cables
checking with wibtest, 4-2
setting cable length for high-speed data transfers, 8-10

Call Details window, GPIB Spy utility, 6-2
calls

highlighting, 6-3
trapping, 6-3

CIC. See Controller-in-Charge (CIC).
CIC protocol

enabling, 8-9
making GPIB board Controller-in-Charge, 7-3 to 7-4

CIC status word condition
bit position, hex value, and type (table), 3-4
description, A-4

clearing and triggering devices, example, 2-4 to 2-5
CMPL status word condition

bit position, hex value, and type (table), 3-4
description, A-3

communication application examples
basic communication, 2-2 to 2-3

with IEEE 488.2-compliant devices, 2-14 to 2-15
communication errors, 4-6

repeat addressing, 4-6
termination method, 4-6

Index

NI-488.2 User Manual for Windows Index-4 © National Instruments Corp.

compiling, linking, and running applications
Borland C++, 3-17
direct entry with C, 3-18 to 3-22
direct entry with Visual Basic, 3-23
Microsoft C, 3-17
Visual Basic, 3-18

configuration, 1-4 to 1-6. See also GPIB Spy utility; wibconf utility.
controlling more than one board, 1-5
linear and star system configuration (illustration), 1-4
requirements, 1-5 to 1-6

configuration errors, 4-5 to 4-6
configuration file for wibconf batch mode, 8-13 to 8-14
Configure (CFGn) message, 7-2
Configure Enable (CFE) message, 7-2
Controller-in-Charge (CIC)

Active Controller as CIC, 1-1
CIC protocol, 7-3, 8-9
configuring GPIB board as CIC, 7-3 to 7-4, 8-9
System Controller as, 1-1

Controllers
definition, 1-1
emulation of non-controller GPIB, example, 2-20 to 2-21
idle Controller, 1-1
System Controller, 1-1, 8-9

count, in wibic, 5-10
count variables - ibcnt and ibcntl, 3-5
customer communication, xvi , C-1

D

data lines, 1-2
data transfers

high-speed (HS488), 7-2 to 7-3
enabling, 7-2 to 7-3
system configuration effects, 7-3

terminating, 7-1 to 7-2
DAV (data valid) line, 1-3
DCAS status word condition

bit position, hex value, and type (table), 3-4
description, A-5
monitoring for messages from Controller, 7-4

debugging. See also GPIB Spy utility.
common questions, 4-7 to 4-8 to 4-9
communication errors, 4-6

repeat addressing, 4-6
termination method, 4-6

configuration errors, 4-5 to 4-6

Index

© National Instruments Corp. Index-5 NI-488.2 User Manual for Windows

global status variables, 4-3
GPIB error codes (table), 4-4 to 4-5
GPIB Spy utility, 4-4
GPIBInfo utility, 4-2 to 4-3
timing errors, 4-6
wibic utility, 4-4
wibtest diagnostics, 4-1 to 4-2

cable connections, 4-2
presence of board, 4-1 to 4-2
presence of driver, 4-1

default configurations in wibconf, 8-12
DevClear routine, 3-14
device configuration. See wibconf utility.
device functions. See NI-488 functions.
device-level calls and bus management, 7-3 to 7-4
direct access to NI-488.2 dynamic link library

compiling, linking, and running applications
using C language, 3-18 to 3-22
using Visual Basic, 3-23

requirements, 3-1
DMA channel, setting, 8-11
documentation

conventions used in manual, xv
organization of manual, xi
related documentation, xvi
using the manual set, xiii

drivers
driver and driver utilities for NI-488.2 software, 1-6 to 1-7
reconfiguring, 4-5
testing with wibtest, 4-1

DTAS status word condition
bit position, hex value, and type (table), 3-4
description, A-5
monitoring for message from Controller, 7-4

dynamic link library, GPIB. See NI-488.2 DLL.

E

EABO error code
definition (table), 4-5
description, B-5

EADR error code
definition (table), 4-5
description, B-3 to B-4

EARG error code
definition (table), 4-5
description, B-4
wibic example, 5-12

Index

NI-488.2 User Manual for Windows Index-6 © National Instruments Corp.

EBUS error code
definition (table), 4-5
description, B-8

ECAP error code
definition (table), 4-5
description, B-7

ECIC error code
definition (table), 4-5
description, B-2 to B-3

EDMA error code
definition (table), 4-5
description, B-5 to B-6

EDVR error code
definition (table), 4-5
description, B-1 to B-2
wibic example, 5-11

EFSO error code
definition (table), 4-5
description, B-7

end-of-string character. See EOS.
END status word condition

bit position, hex value, and type (table), 3-4
description, A-1 to A-2

ENEB error code
definition (table), 4-5
description, B-5
wibic example, 5-11

ENOL error code
definition (table), 4-5
description, B-3

EOI (end or identify) line
purpose (table), 1-3
send EOI at end of write, 8-9
set EOI with EOS on writes, 8-8
termination of data transfers, 7-1 to 7-2

EOIP error code
definition (table), 4-5
description, B-6 to B-7

EOS
configuring EOS mode, 7-1
end-of-string mode application example, 2-8 to 2-9
set EOI with EOS on writes, 8-8
setting character for EOS byte, 8-8
terminate read on EOS, 8-8
type of compare on EOS, 8-8

ERR status word condition
bit position, hex value, and type (table), 3-4
description, A-1

Index

© National Instruments Corp. Index-7 NI-488.2 User Manual for Windows

error codes and solutions
EABO, B-5
EADR, B-3 to B-4
EARG, B-4
EBUS, B-8
ECAP, B-7
ECIC, B-2 to B-3
EDMA, B-5 to B-6
EDVR, B-1 to B-2
EFSO, B-7
ENEB, B-5
ENOL, B-3
EOIP, B-6 to B-7
ESAC, B-4 to B-5
ESRQ, B-8 to B-9
ESTB, B-8
ETAB, B-9
table of codes, 4-5

error conditions
checking for errors before exiting wibconf, 8-13
communication errors, 4-6

repeat addressing, 4-6
termination method, 4-6

configuration errors, 4-5 to 4-6
timing errors, 4-6
wibic error information, 5-9 to 5-10

error variable - iberr, 3-5
ESAC error code

definition (table), 4-5
description, B-4

ESRQ error code
definition (table), 4-5
description, B-8 to B-9

ESTB error code
definition (table), 4-5
description, B-8

ETAB error code
definition (table), 4-5
description, B-8

EVENT bit, enabling, 7-5
event queue, 7-5
Event Status bit (ESB), 7-6
EVENT status word condition

bit position, hex value, and type (table), 3-4
description, A-3

execute indirect file ($) function, wibic, 5-16

Index

NI-488.2 User Manual for Windows Index-8 © National Instruments Corp.

F

fax technical support, C-1
FindLstn routine, 3-13
FindRQS routine, 7-8, 7-9
functions. See auxiliary functions, wibic; NI-488 functions.

G

General Purpose Interface Bus. See GPIB.
global variables, 3-3 to 3-5

count variables - ibcnt and ibcntl, 3-5
debugging applications, 4-3
error variable - iberr, 3-5
status word - ibsta, 3-3 to 3-4, A-1 to A-5

GPIB
configuration, 1-4 to 1-6. See also wibconf utility.

controlling more than one board, 1-5
linear and star system configuration (illustration), 1-4
requirements, 1-5 to 1-6

definition, 1-1
overview, 1-1
sending messages across, 1-2 to 1-3

data lines, 1-2
handshake lines, 1-3
interface management lines, 1-3

Talkers, Listeners, and Controllers, 1-1
GPIB addresses

address bit configuration (illustration), 1-2
enabling repeat addressing, 8-11
listen address, 1-2
primary, 1-2, 8-7
purpose, 1-2
repeat addressing, 4-6
secondary, 1-2, 8-7
syntax in wibic, 5-4 to 5-5
talk address, 1-2

GPIB/PCII/IIA mode switch, 8-11
GPIB programming techniques

device-level calls and bus management, 7-3 to 7-4
high-speed data transfers, 7-2 to 7-3

enabling HS488, 7-2
system configuration effects, 7-3

parallel polling, 7-10 to 7-12
implementing, 7-10 to 7-12
using NI-488 functions, 7-10 to 7-11
using NI-488.2 routines, 7-12

Index

© National Instruments Corp. Index-9 NI-488.2 User Manual for Windows

serial polling, 7-5 to 7-10
automatic serial polling, 7-6 to 7-7

autopolling and interrupts, 7-7
stuck SRQ state, 7-6 to 7-7

service requests
from IEEE 488 devices, 7-5
from IEEE 488.2 devices, 7-6

SRQ and serial polling
with NI-488 device functions, 7-7 to 7-8
with NI-488.2 routines, 7-8 to 7-10

Talker/Listener applications, 7-4 to 7-5
event queue, 7-5
requesting service, 7-5
waiting for messages from Controller, 7-4

termination of data transfers, 7-1 to 7-2
waiting for GPIB conditions, 7-3

GPIB Spy utility. See also debugging.
configuration options

Buffer History, 6-3
Calls to Highlight, 6-3
Calls to Trap On, 6-3
Set Highlight Color, 6-3
Store Configuration, 6-4

debugging applications, 4-4
exiting, 6-2
Help menu, 6-5
main window (illustration), 6-1
output options

Clear Screen, 6-4
To File, 6-4
To Screen, 6-4

overview, 6-1
performance considerations, 6-5
purpose, 1-7
starting, 6-1
viewing call details, 6-2

gpib.dll file, 1-6. See also NI-488.2 DLL.
GPIBInfo utility

purpose, 1-7
running, 4-2 to 4-3

gpib.ini file, 1-6, B-2

H

handshake lines, 1-3
Help (display help information) function, 5-15

Index

NI-488.2 User Manual for Windows Index-10 © National Instruments Corp.

high-speed data transfers (HS488), 7-2 to 7-3
enabling HS488, 7-2 to 7-3
setting cable length, 8-10
system configuration effects, 7-3

highlight color, setting, 6-3

I

ibask function, 7-3
ibclr function

clearing devices, 3-8
using in wibic, example, 5-2

ibcmd function, 7-2
ibcnt and ibcntl variables. See count variables - ibcnt and ibcntl.
ibconfig function

configuring GPIB board as CIC, 7-3 to 7-4
determining assertion of EOI line, 7-1
enabling autopolling, 7-6
enabling EVENT bit, 7-5
enabling high-speed data transfers, 7-2 to 7-3
reconfiguring GPIB driver, 4-5 to 4-6

ibdev function
conducting parallel polls, 7-11
opening devices, 3-8
using in wibic, 5-10 to 5-11

example, 5-2
ibdiag utility

purpose, 1-7
testing hardware configuration, 4-6

ibeos function, 7-1
ibeot function, 7-1
iberr. See error variable - iberr.
ibevent function, 7-5
ibfind function, 5-10
ibonl function

placing board offline, 3-16
placing device offline, 3-10
using in wibic, example, 5-4

ibppc function
conducting parallel polls, 7-10
unconfiguring device for parallel polling, 7-12

ibrd function
using in wibic, 5-12

example, 5-4
ibrpp function, 7-11

Index

© National Instruments Corp. Index-11 NI-488.2 User Manual for Windows

ibrsp function
conducting serial polls, 7-6, 7-7 to 7-8
using in wibic, example, 5-3

ibsta. See status word - ibsta.
ibtrg function

triggering devices, 3-9
using in wibic, example, 5-3

ibwait function
conducting serial polls, 7-7 to 7-8
Talker/Listener applications, 7-4
terminating stuck SRQ state, 7-6 to 7-7
using in wibic, example, 5-3
waiting for GPIB conditions, 7-3
waiting for measurement, 3-9 to 3-10

ibwrt function
configuring devices, 3-9
using in wibic, 5-12

example, 5-3
*IDN? query, 3-13 to 3-14
IEEE Standard 488.1-1987. See GPIB.
IFC (interface clear) line, 1-3
Interface Bus Interactive Control utility. See wibic utility.
interface management lines, 1-3
interrupt jumper, setting, 8-11
interrupts and autopolling, 7-6 to 7-7

L

LACS status word condition
bit position, hex value, and type (table), 3-4
description, A-4
monitoring for message from Controller, 7-4

linking applications. See compiling, linking, and running applications.
listen address, setting, 1-2
Listeners, 1-1. See also Talker/Listener applications.
LOK status word condition

bit position, hex value, and type (table), 3-4
description, A-3

M

manual. See documentation.
Message Available (MAV) bit, 7-6

Index

NI-488.2 User Manual for Windows Index-12 © National Instruments Corp.

messages, sending across GPIB, 1-2 to 1-3
data lines, 1-2
handshake lines, 1-3
interface management lines, 1-3

Microsoft C. See C language.

N

n* (repeat function n times) function, wibic, 5-16
NDAC (not data accepted) line, 1-3
NI-488 applications, programming

clearing devices, 3-8
configuring devices, 3-9
flowchart of programming with device-level functions, 3-7
general steps and examples, 3-8 to 3-10
items to include, 3-6
opening devices, 3-8
placing device offline, 3-10
processing of data, 3-10
program shell (illustration), 3-7
reading measurement, 3-10
triggering devices, 3-9
waiting for measurement, 3-9 to 3-10

NI-488 functions. See also auxiliary functions, wibic.
one device per board, 3-2 to 3-3
parallel polling, 7-10 to 7-12
programming considerations

advantages of using, 3-2
board functions, 3-2 to 3-3
device functions, 3-2

serial polling, 7-7 to 7-8
using in wibic

examples, 5-1 to 5-4
ibdev, 5-10 to 5-11
ibfind, 5-10
ibrd, 5-12
ibwrt, 5-12
syntax, 5-5 to 5-7

NI-488.2 applications, programming
configuring instruments, 3-15
finding all Listeners, 3-13
flowchart of programming with routines, 3-12
general steps and examples, 3-13 to 3-16
identifying instruments, 3-13 to 3-14
initialization, 3-13
initializing instruments, 3-14
items to include, 3-11

Index

© National Instruments Corp. Index-13 NI-488.2 User Manual for Windows

placing board offline, 3-16
processing of data, 3-16
program shell (illustration), 3-12
reading measurement, 3-16
triggering instruments, 3-15
waiting for measurement, 3-15 to 3-16

NI-488.2 DLL
choosing how to access, 3-1
requirements for direct access, 3-1
unloading or reloading NI-488.2 driver, 1-9

NI-488.2 routines. See also NI-488.2 applications, programming.
parallel polling, 7-12
programming considerations, 3-3
serial polling, 7-8 to 7-10
serial polling examples

using AllSpoll, 7-9 to 7-10
using FindRQS, 7-9

using in wibic
issuing set command before using, 5-13
Receive, 5-13 to 5-14
Send, 5-13
SendList, 5-13

wibic syntax, 5-8 to 5-9
NI-488.2 software, 1-6 to 1-9. See also application development; NI-488 functions;

NI-488.2 routines.
C language files, 1-7
driver and driver utilities, 1-6 to 1-7
interaction with Windows, 1-8
reloading, 1-9
unloading, 1-9
Visual Basic files, 1-7
win 32S files, 1-8

nivdmad.386 device, 1-6
nivgpibd.386 device, 1-6
NRFD (not ready for data) line, 1-3
number syntax in wibic, 5-4

O

output options, GPIB Spy utility, 6-4

Index

NI-488.2 User Manual for Windows Index-14 © National Instruments Corp.

P

parallel polling, 7-10 to 7-12
application example, 2-18 to 2-19
implementing, 7-10 to 7-12
setting duration of, 8-10
using NI-488 functions, 7-10 to 7-11
using NI-488.2 routines, 7-12

PPoll routine, 7-12
PPollConfig routine, 7-12
PPollUnconfig routine, 7-12
primary GPIB address

definition, 1-2
purpose, 8-7
setting, 8-7

print (display the ASCII string) function, wibic, 5-17
problem solving. See debugging.
programming. See application development; debugging; GPIB programming techniques.

R

readme.txt file, 1-6
ReadStatusByte routine, 7-8
Receive routine

reading measurements, 3-16
using in wibic, 5-13 to 5-14

REM status word condition
bit position, hex value, and type (table), 3-4
description, A-4

REN (remote enable) line
purpose (table), 1-3
setting for automatic assertion, 8-9

repeat addressing
communication errors, 4-6
enabling, 8-11

repeat function n times (n*) function, wibic, 5-16
repeat previous function (!) function, wibic, 5-15
requesting service. See service requests.
routines. See NI-488.2 routines.
RQS status word condition

bit position, hex value, and type (table), 3-4
description, A-2 to A-3

running applications. See compiling, linking, and running applications.

Index

© National Instruments Corp. Index-15 NI-488.2 User Manual for Windows

S

secondary GPIB address
definition, 1-2
setting, 8-7

Send routine
configuring instruments, 3-15
using in wibic, 5-13

SendCmds function, 7-2
SendIFC routine, 3-13
SendList routine, 5-12
serial polling, 7-5 to 7-10

application example using NI-488.2 routines, 2-16 to 2-17
automatic serial polling, 7-6 to 7-7

autopolling and interrupts, 7-7
enabling, 8-9
stuck SRQ state, 7-6 to 7-7

service requests
from IEEE 488 devices, 7-5
from IEEE 488.2 devices, 7-6

setting timeout value, 8-8
SRQ and serial polling

with NI-488 device functions, 7-7 to 7-8
with NI-488.2 routines, 7-8 to 7-10

service requests. See also SRQ (service request) line.
application examples, 2-10 to 2-13
serial polling

IEEE 488 devices, 7-5
IEEE 488.2 devices, 7-6

stuck SRQ state, 7-6 to 7-7
Talker/Listener applications, 7-4

set command, 5-13
Set (select device or board) function, 5-15
setting up your system. See configuration.
setup utility, 1-6
software. See NI-488.2 software.
SPOLL status word condition

bit position, hex value, and type (table), 3-4
description, A-3

SRQ (service request) line. See also service requests.
purpose (table), 1-3
serial polling

using NI-488 device functions, 7-7 to 7-8
using NI-488.2 routines, 7-8 to 7-10

stuck SRQ state, 7-6 to 7-7
SRQI status word condition

bit position, hex value, and type (table), 3-4
description, A-2

Index

NI-488.2 User Manual for Windows Index-16 © National Instruments Corp.

status word - ibsta, 3-3 to 3-4
ATN, A-4
CIC, A-4
CMPL, A-3
DCAS, 7-4, A-5
DTAS, 7-4, A-5
END, A-2
ERR, A-2
EVENT, A-3
LACS, 7-4, A-4
layout (table), 3-4
LOK, A-3
programming considerations, 3-3 to 3-4
purpose and use, 3-3 to 3-4
REM, A-4
RQS, A-2 to A-3
SPOLL, A-3
SRQI, A-2
TACS, 7-4, A-4
TIMO, A-2
wibic example, 5-9

string syntax in wibic, 5-5
stuck SRQ state, 7-6 to 7-7
System Controller

as Controller-in-Charge, 1-1
configuring, 8-9

T

TACS status word condition
bit position, hex value, and type (table), 3-4
description, A-4
monitoring for message from Controller, 7-4

talk address, setting, 1-2
Talker/Listener applications, 7-4 to 7-5

event queue, 7-5
requesting service, 7-5
waiting for messages from Controller, 7-4

Talkers, 1-1
technical support, C-1
terminate read on EOS, 8-8
termination methods, errors caused by, 4-6
termination of data transfers, 7-1 to 7-2
TestSRQ routine, 7-8
timeout value, setting, 8-7

serial poll timeouts, 8-8
timing errors, 4-6

Index

© National Instruments Corp. Index-17 NI-488.2 User Manual for Windows

TIMO status word condition
bit position, hex value, and type (table), 3-4
description, A-2

TNT4882C hardware, 7-2
*TRG command, 3-15
triggering devices, example, 2-4 to 2-5
troubleshooting. See debugging; wibic utility.
turn display off (-) function, wibic, 5-15
turn display on (+) function, wibic, 5-15

V

Visual Basic
compiling, linking, and running applications, 3-18
direct entry, 3-23
files available with NI-488.2 software, 1-7

W

wait function. See ibwait function.
WaitSRQ routine

conducting serial polls, 7-8
waiting for measurement, 3-15 to 3-16

wibconf utility
batch mode, 8-13 to 8-15

command pairs (table), 8-15
configuration file, 8-13 to 8-14

configuration options, 8-7 to 8-11
assert REN when SC, 8-9
base I/O address, 8-10
bus timing, 8-10
cable length for high speed, 8-10
DMA channel, 8-11
enable auto serial polling, 8-9
enable CIC protocol, 8-9
enable repeat addressing, 8-11
EOS byte, 8-8
GPIB-PCII/IIA mode switch, 8-11
interrupt jumper setting, 8-11
parallel poll duration, 8-10
primary GPIB address, 8-7
secondary GPIB address, 8-7
send EOI at end of write, 8-9
serial poll timeout, 8-8
set EOI with EOS on writes, 8-8
System Controller, 8-9

Index

NI-488.2 User Manual for Windows Index-18 © National Instruments Corp.

terminate read on EOS, 8-8
timeout setting, 8-7
type of compare on EOS, 8-8
use this GPIB interface, 8-10

default configurations, 8-12
exiting (<F9> or <Escape>), 8-12 to 8-13

checking for errors, 8-13
lower level device/board characteristics, 8-5 to 8-6

changing board or device (<Control-PageUp> and <Control-PageDown>), 8-6
changing characteristics (<PageUp>, <PageDown>, <Home>, or <End>), 8-6
Help option (<F1>), 8-6
Reset Value (<F6>), 8-6
Return to Map (<F9> of <Escape>), 8-6
screen illustration, 8-5

options for starting (table), 8-2
overview, 8-1
purpose, 1-7
reconfiguring GPIB driver, 4-5 to 4-6
starting, 8-1 to 8-2
upper level device map, 8-3 to 8-5
upper level device map options

device maps of boards, 8-4
(Dis)connect (<F5>), 8-4
Edit (<F8>), 8-5
Exit (<F9> or <Escape>), 8-5
Help (<F1>), 8-4
Rename (<F4>), 8-4
screen illustration, 8-3

wibic utility
auxiliary functions

! (repeat previous function), 5-15
$ (execute indirect file), 5-16
+ (turn display on), 5-15
- (turn display off), 5-15
buffer (set buffer display mode), 5-17
help (display help information), 5-15
n* (repeat function n times), 5-16
print (display the ASCII string), 5-17
set (select device or board), 5-15
table of functions, 5-14

checking for display errors, 4-4
communicating with devices, 3-5
count, 5-10
debugging applications, 4-4
error information, 5-9 to 5-10

Index

© National Instruments Corp. Index-19 NI-488.2 User Manual for Windows

NI-488 functions
examples, 5-1 to 5-4
ibdev, 5-10 to 5-12
ibfind, 5-10
ibrd, 5-12
ibwrt, 5-12

NI-488.2 routines
issuing set command before using, 5-13
Receive, 5-13 to 5-14
Send, 5-13
SendList, 5-13

overview, 5-1
programming considerations, 3-5
purpose, 1-7
status word, 5-9
syntax, 5-4 to 5-9

addresses, 5-5
board-level functions (table), 5-7
device-level functions (table), 5-6
NI-488 functions, 5-5 to 5-7
NI-488.2 routines, 5-8 to 5-9
numbers, 5-4
strings, 5-5

wibtest utility
diagnostic messages, 4-1 to 4-2

cable connections, 4-2
presence of board, 4-1 to 4-2
presence of driver, 4-1

purpose, 1-7
win 32S files, 1-8
Windows interaction with NI-488.2 software, 1-8
Windows Interface Bus Interactive Control utility. See wibic utility.

	NI-488.2 User Manual for Windows
	Limited Warranty
	Copyright
	Trademarks
	WARNING REGARDING MEDICAL AND CLINICAL USE OF NATIONAL INSTRUMENTS PRODUCTS

	Contents
	About This Manual
	How to Use This Manual Set
	Organization of This Manual
	Conventions Used in This Manual
	Related Documentation
	Customer Communication

	Chapter 1 Introduction
	GPIB Overview
	Talkers,Listeners,and Controllers
	Controller-In-Charge and System Controller
	GPIB Addressing
	Sending Messages Across the GPIB
	Data Lines
	Handshake Lines
	Interface Management Lines

	Setting Up and Configuring Your System
	Controlling More Than One Board

	Configuration Requirements

	The NI-488.2 Software Package
	NI-488.2 Driver and Driver Utilities
	C Language Files
	Visual Basic Language Files
	Win 32s Files
	Sample Application Files

	How the NI-488.2 Software Works with Windows
	Unloading and Reloading the NI-488.2 Driver

	Chapter 2 Application Examples
	Example 1:Basic Communication
	Example 2:Clearing and Triggering Devices
	Example 3:Asynchronous I/O
	Example 4:End-of-String Mode
	Example 5:Service Requests
	Example 6:Basic Communication with IEEE 488.2-Compliant Devices
	Example 7:Serial Polls Using NI-488.2 Routines
	Example 8:Parallel Polls
	Example 9:Non-Controller Example

	Chapter 3 Developing Your Application
	Choosing How to Access the NI-488.2 DLL
	Choosing Between NI-488 Functions and NI-488.2 Routines
	Using NI-488 Functions:One Device for Each Board
	NI-488 Device Functions
	NI-488 Board Functions

	Using NI-488.2 Routines:Multiple Boards and/or Multiple Devices

	Checking Status with Global Variables
	Status Word – ibsta
	Error Variable –iberr
	Count Variables –ibcnt and ibcntl

	Using wibic to Communicate with Devices
	Writing Your NI-488 Application
	Items to Include
	NI-488 Program Shell
	General Program Steps and Examples
	Step 1.Open a Device
	Step 2.Clear the Device
	Step 3.Configure the Device
	Step 4.Trigger the Device
	Step 5.Wait for the Measurement
	Step 6.Read the Measurement
	Step 7.Process the Data
	Step 8.Place the Device Offline

	Writing Your NI-488.2 Application
	Items to Include
	NI-488.2 Program Shell
	General Program Steps and Examples
	Step 1.Initialization
	Step 2.Find All Listeners
	Step 3.Identify the Instrument
	Step 4.Initialize the Instrument
	Step 5.Configure the Instrument
	Step 6.Trigger the Instrument
	Step 7.Wait for the Measurement
	Step 8.Read the Measurement
	Step 9.Process the Data
	Step 10.Place the Board Offline

	Compiling,Linking,and Running Your Application
	Microsoft C
	Borland C++
	Visual Basic
	Direct Entry with C
	Method 1.List Functions in the Module Definition File
	Method 2.Generate an Import Library Using implib
	Method 3.Use LoadLibrary and GetProcAddress

	Direct Entry with Visual Basic

	Chapter 4 Debugging Your Application
	Running wibtest
	Presence Test of Driver
	Presence Test of Board
	GPIB Cables Connected

	Running GPIBInfo
	Debugging with the Global Status Variables
	Debugging with wibic
	Debugging with GPIB Spy
	GPIB Error Codes
	Configuration Errors
	Timing Errors
	Communication Errors
	Repeat Addressing
	Termination Method

	Common Questions

	Chapter 5 wibic –Windows Interface Bus Interactive Control Utility
	Overview
	Example Using NI-488 Functions
	wibic Syntax
	Number Syntax
	String Syntax
	Address Syntax
	wibic Syntax for NI-488 Functions
	wibic Syntax for NI-488.2 Routines

	Status Word
	Error Information
	Count
	Common NI-488 Functions
	ibfind
	ibdev
	ibwrt
	ibrd

	Common NI-488.2 Routines in wibic
	Set
	Send and SendList
	Receive

	Auxiliary Functions
	Set (Select Device or Board)
	Help (Display Help Information)
	!(Repeat Previous Function)
	-(Turn Display Off)and +(Turn Display On)
	n*(Repeat Function n Times)
	$(Execute Indirect File)
	Print (Display the ASCII String)
	Buffer (Set Buffer Display Mode)

	Chapter 6 GPIB Spy
	Overview
	Starting GPIB Spy
	Exiting GPIB Spy
	Viewing Call Details
	GPIB Spy Configuration Options
	Calls To Highlight
	Calls To Trap On
	Buffer History
	Set Highlight Color
	Store Configuration

	GPIB Spy Output Options
	To Screen
	To File
	Clear Screen

	GPIB Spy Help
	Performance Considerations

	Chapter 7 GPIB Programming Techniques
	Termination of Data Transfers
	High-Speed Data Transfers (HS488)
	Enabling HS488
	System Configuration Effects on HS488

	Waiting for GPIB Conditions
	Device-Level Calls and Bus Management
	Talker/Listener Applications
	Waiting for Messages from the Controller
	Using the Event Queue
	Requesting Service

	Serial Polling
	Service Requests from IEEE 488 Devices
	Service Requests from IEEE 488.2 Devices
	Automatic Serial Polling
	Stuck SRQ State
	Autopolling and Interrupts

	SRQ and Serial Polling with NI-488 Device Functions
	SRQ and Serial Polling with NI-488.2 Routines
	Example 1:Using FindRQS
	Example 2:Using AllSpoll

	Parallel Polling
	Implementing a Parallel Poll
	Parallel Polling with NI-488 Functions
	Parallel Polling with NI-488.2 Routines

	Chapter 8 wibconf –Windows Interface Bus Configuration Utility
	Overview
	Starting wibconf
	Upper and Lower Levels of wibconf
	Upper-Level Device Map
	Lower-Level Device/Board Characteristics

	Board and Device Configuration Options
	Primary GPIB Address
	Secondary GPIB Address
	Timeout Setting
	Serial Poll Timeouts (Device Characteristic Only)
	Terminate Read on EOS
	Set EOI with EOS on Writes
	Type of Compare on EOS
	EOS Byte
	Send EOI at End of Write
	System Controller (Board Characteristic Only)
	Assert REN when SC (Board Characteristic Only)
	Enable Auto Serial Polling (Board Characteristic Only)
	Enable CIC Protocol (Board Characteristic Only)
	Bus Timing (Board Characteristic Only)
	Cable Length for High Speed (Board Characteristic Only)
	Parallel Poll Duration (Board Characteristic Only)
	Use This GPIB Interface (Board Characteristic Only)
	Base I/O Address (Board Description Only)
	DMA Channel (Board Characteristic Only)
	Interrupt Jumper Setting (Board Characteristic Only)
	Enable Repeat Addressing (Device Characteristic Only)
	GPIB-PCII/IIA Mode Switch

	Default Configurations in wibconf
	Exiting wibconf
	Checking for Errors

	wibconf Batch Mode

	Appendix A Status Word Conditions
	Appendix B Error Codes and Solutions
	Appendix C Customer Communication
	Glossary
	Index
	Figures
	Figure 1-1.GPIB Address Bits
	Figure 1-2.Linear and Star System Configuration
	Figure 1-3.Example of Multiboard System Setup
	Figure 1-4.How the NI-488.2 Software Works with Windows
	Figure 2-1.Program Flowchart for Example 1
	Figure 2-2.Program Flowchart for Example 2
	Figure 2-3.Program Flowchart for Example 3
	Figure 2-4.Program Flowchart for Example 4
	Figure 2-5.Program Flowchart for Example 5
	Figure 2-5.Program Flowchart for Example 5 (Continued)
	Figure 2-6.Program Flowchart for Example 6
	Figure 2-7.Program Flowchart for Example 7
	Figure 2-8.Program Flowchart for Example 8
	Figure 2-9.Program Flowchart for Example 9
	Figure 3-1.General Program Shell Using NI-488 Device Functions
	Figure 3-2.General Program Shell Using NI-488.2 Routines
	Figure 6-1.Main GPIB Spy Window
	Figure 6-2.GPIB Spy Call Details Window for ibwrt
	Figure 8-1. Upper Level of wibconf
	Figure 8-2. Lower Level of wibconf

	Tables
	Table 1-1.GPIB Handshake Lines
	Table 1-2.GPIB Interface Management Lines
	Table 3-1.Status Word (ibsta)Layout
	Table 4-1.GPIB Error Codes
	Table 5-1.Syntax for Device-Level NI-488 Functions in wibic
	Table 5-2.Syntax for Board-Level NI-488 Functions in wibic
	Table 5-3.Syntax for NI-488.2 Routines in wibic
	Table 5-4.Auxiliary Functions in wibic
	Table 8-1.Options for Starting wibconf
	Table 8-2.wibconf Batch Mode Command Pairs
	Table A-1.Status Word Bits
	Table B-1.GPIB Error Codes

