Istruzioni d'uso

Sensore radiometrico per la misura di densità

MINITRAC 31

4 ... 20 mA/HART - quadrifilare Con qualifica SIL

Document ID: 43389

Sommario

1	II coi	ntenuto di questo documento				
	1.1 1.2 1.3	Funzione	. 4			
2	Crite	ri di sicurezza				
	2.1 2.2 2.3 2.4 2.5 2.6	Personale autorizzato	4			
	2.7	Salvaguardia ambientale				
3	Door	crizione del prodotto				
3	3.1	Struttura	7			
	3.1	Metodo di funzionamento				
	3.3	Limitazioni del sistema				
	3.4	Imballaggio, trasporto e stoccaggio				
	3.5	Accessori e parti di ricambio	11			
	3.6	Contenitore di protezione adeguato	11			
4	Montaggio					
	4.1	Avvertenze generali				
	4.2	Indicazioni di montaggio	14			
5	Colle	egamento all'alimentazione in tensione				
•	5.1	Preparazione del collegamento	17			
	5.2	Allacciamento - rilevamento della soglia di livello	20			
	5.3	Allacciamento - misura di livello				
6	Sicu	rezza funzionale (SIL)				
	6.1	Obiettivo	24			
	6.2	Qualifica SIL				
	6.3	Campo d'impiego				
	6.4	Sicurezza della parametrizzazione	25			
7	Mess	sa in servizio con il tastierino di taratura con display				
	7.1	Installare il tastierino di taratura con display	27			
	7.2	Sistema operativo				
	7.3	Parametrizzazione - misura di livello				
	7.4	Parametrizzazione/Rilevamento della soglia di livello				
	7.5	Protezione dei dati di parametrizzazione	53			
8		sa in servizio con PACTware				
	8.1	Collegamento del PC				
	8.2 8.3	Parametrizzazione con PACTware				
	0.3	riolezione dei dali di parametrizzazione	סכ			
9	Diagnostica e service					
	9.1	Manutenzione				
	9.2	Segnalazioni di stato				
	9.3	Eliminazione di disturbi	ο1			

	9.4	Sostituzione dell'unità l'elettronica	. 63
	9.5	Aggiornamento del software	. 63
		Come procedere in caso di riparazione	
10	Smoi	ntaggio	
	10.1	Sequenza di smontaggio	. 65
		Smaltimento	
11	Appe	ndice	
	11.1	Dati tecnici	. 66
	11.2	Dimensioni	. 70

3389-IT-131230

Normative di sicurezza per luoghi Ex

Per le applicazioni Ex attenersi alle normative di sicurezza specifiche di questo impiego, che sono parte integrante di questo manuale e accompagnano tutti gli apparecchi omologati Ex.

Finito di stampare: 2013-11-11

1 Il contenuto di questo documento

1.1 Funzione

Queste -Istruzioni d'uso- forniscono le informazioni necessarie al montaggio, al collegamento e alla messa in servizio, nonché importanti indicazioni relative alla manutenzione e all'eliminazione di disturbi. Leggerle perciò prima della messa in servizio e conservarle come parte integrante dell'apparecchio, in un luogo facilmente raggiungibile, accanto allo strumento.

1.2 Documento destinato ai tecnici

Queste -Istruzioni d'uso- sono destinate a personale qualificato, che deve prenderne visione e applicarle.

1.3 Significato dei simboli

Informazioni, consigli, indicazioni

Questo simbolo identifica utili informazioni ausiliarie.

Attenzione: l'inosservanza di questo avviso di pericolo può provocare disturbi o errori di misura.

Avvertenza: l'inosservanza di questo avvertimento di pericolo può provocare danni alle persone e/o all'apparecchio.

Pericolo: l'inosservanza di questo avviso di pericolo può provocare gravi lesioni alle persone e/o danni all'apparecchio.

Applicazioni Ex

Questo simbolo identifica le particolari istruzioni per gli impieghi Ex.

Elenco

Questo punto identifica le singole operazioni di un elenco, non soggette ad una sequenza obbligatoria.

→ Passo operativo

Questa freccia indica un singolo passo operativo.

1 Sequenza operativa

I numeri posti davanti ai passi operativi identificano la sequenza delle singole operazioni.

Smaltimento di batterie

Questo simbolo contrassegna particolari avvertenze per lo smaltimento di batterie e accumulatori.

2 Criteri di sicurezza

2.1 Personale autorizzato

Tutte le operazioni descritte in queste -Istruzioni d'uso- devono essere eseguite unicamente da personale qualificato e autorizzato dal gestore dell'impianto.

Per l'uso dell'apparecchio indossare sempre l'equipaggiamento di protezione personale necessario.

2.2 Uso conforme alla destinazione e alle normative

Il MINITRAC 31 è un sensore per la misura di livello e il rilevamento della soglia di livello.

Informazioni dettagliare relative al campo di impiego sono contenute nel capitolo "Descrizione del prodotto".

La sicurezza operativa dell'apparecchio è garantita solo da un uso conforme alle normative, secondo le -Istruzioni d'uso- ed eventuali istruzioni aggiuntive.

2.3 Avvertenza relativa all'uso improprio

Un uso di questo apparecchio non appropriato o non conforme alle normative può provocare rischi funzionali dell'apparecchio, possono per es. verificarsi situazioni di troppo-pieno nel serbatoio o danni a componenti del sistema, causati da montaggio o installazione errati.

2.4 Avvertenze di sicurezza generali

L'apparecchio corrisponde al suo livello tecnologico solo se si rispettano la IEC 61508 e le normali prescrizioni e direttive. Deve essere usato solo in condizioni tecniche perfette e sicure. Il funzionamento esente da disturbi è responsabilità del gestore.

È inoltre compito del gestore garantire, per tutta la durata del funzionamneto, che le necessarie misure di sicurezza corrispondano allo stato attuale delle norme in vigore e rispettino le nuove disposizioni.

L'utente deve inoltre rispettare le normative di sicurezza di queste istruzioni d'uso, il relativo Safety Manual, gli standard nazionali d'installazione, nonché le vigenti disposizioni di sicurezza e di protezione contro gli infortuni.

Interventi non in linea con queste -Istruzioni d'uso- devono essere effettuati solo da personale autorizzato dal costruttore, per ragioni di sicurezza e di garanzia. Sono categoricamente vietate trasformazioni o modifiche arbitrarie.

Occorre inoltre tener conto dei contrassegni e degli avvisi di sicurezza apposti sull'apparecchio.

2.5 Conformità CE

L'apparecchio soddisfa i requisiti di legge della relativa direttiva CE. Con l'apposizione del simbolo CE VEGA conferma il successo dell'avvenuto collaudo.

Solo per apparecchi di classe A

L'apparecchio è uno strumento di classe A ed è destinato all'impiego in ambiente industriale. In caso di impiego in un ambiente diverso, per es. nel settore abitativo, l'utente è tenuto a garantire la compatibilità elettromagnetica. Eventualmente vanno attuate misure di schermatura contro grandezze perturbatrici sulle linee di alimentazione e irradiate.

La dichiarazione di conformità CE può essere scaricata dal nostro sito www.vega.com.

2.6 Raccomandazioni NAMUR

La NAMUR è l'Associazione d'interesse per la tecnica di controllo di processo nell'industria chimica e farmaceutica in Germania. Le raccomandazioni NAMUR valgono come standard per la strumentazione di campo.

L'apparecchio soddisfa i requisiti stabiliti dalle seguenti raccomandazioni NAMUR:

- NE 21 compatibilità elettromagnetica di strumenti
- NE 43 livello segnale per l'informazione di guasto di convertitori di misura
- NE 53 compatibilità di apparecchi di campo e componenti d'indicazione e di calibrazione
- NE 107 autosorveglianza e diagnostica di apparecchi di campo

Per ulteriori informazioni consultare il sito www.namur.de.

2.7 Salvaguardia ambientale

La protezione delle risorse naturali è un compito di assoluta attualità. Abbiamo perciò introdotto un sistema di gestione ambientale, allo scopo di migliorare costantemente la difesa dell'ambiente aziendale. Questo sistema è certificato secondo DIN EN ISO 14001.

Aiutateci a rispettare queste esigenze e attenetevi alle indicazioni di queste -lstruzioni d'uso- per la salvaguardia ambientale:

- Capitolo "Imballaggio, trasporto e stoccaggio"
- Capitolo "Smaltimento"

3 Descrizione del prodotto

3.1 Struttura

Targhetta d'identificazione

La targhetta d'identificazione contiene i principali dati relativi all'identificazione e all'impiego dell'apparecchio:

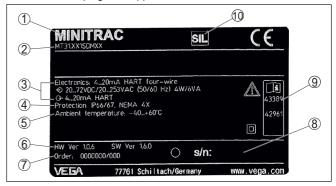


Figura 1: Struttura della targhetta d'identificazione (esempio)

- 1 Tipo di apparecchio
- 2 Codice del prodotto
- 3 Flettronica
- 4 Grado di protezione
- 5 Temperatura ambiente
- 6 Versione hardware e software
- 7 Numero d'ordine
- 8 Numero di serie dell'apparecchio
- 9 Numero ID documentazione apparecchio

Numero di serie

La targhetta d'identificazione contiene il numero di serie dell'apparecchio, tramite il quale sulla nostra homepage è possibile trovare i seguenti dati:

- codice prodotto dell'apparecchio (HTML)
- data di fornitura (HTML)
- caratteristiche dell'apparecchio specifiche della commessa (HTML)
- istruzioni d'uso valide al momento della fornitura (PDF)
- dati del sensore specifici della commessa per una sostituzione dell'elettronica (XML)
- certificato di prova trasduttore di pressione (PDF)

Per accedere alle informazioni sulla nostra homepage <u>www.vega.com</u>, selezionare "VEGA Tools" e "Ricerca apparecchio".

In alternativa è possibile trovare i dati tramite smartphone:

- scaricare l'app per smartphone "VEGA Tools" da "Apple App Store" oppure da "Google Play Store"
- scansionare il codice Data Matrix riportato sulla targhetta d'identificazione dell'apparecchio, oppure
- immettere manualmente nell'app il numero di serie

Campo di applicazione di queste Istruzioni d'uso

Queste -Istruzioni d'uso- valgono per le seguenti esecuzioni di apparecchi:

- Hardware da 1.0.6
- Software da 1.6.0
- Stato di modifica unità elettronica da -07

Esecuzioni dell'elettronica

L'apparecchio è fornito con differenti esecuzioni dell'elettronica. L'esecuzione è riconoscibile dal codice del prodotto sulla targhetta d'identificazione:

• Elettronica standard tipo PT30E-XX

Materiale fornito

La fornitura comprende:

- sensore radiometrico
- Documentazione
 - Queste -Istruzioni d'uso-
 - Safety Manual (SIL) PROTRAC serie 30 (ID documento 42961)
 - Istruzioni d'uso "Tastierino di taratura con display" (opzionale)
 - "Normative di sicurezza" specifiche Ex (per esecuzioni Ex)
 - Eventuali ulteriori certificazioni

3.2 Metodo di funzionamento

Campo d'impiego

L'apparecchio è adatto ad applicazioni su liquidi in serbatoi anche in condizioni di processo difficili, in quasi tutti i settori industriali.

Il rilevamento del valore di misura avviene senza contatto attraverso la parete del serbatoio. Non sono necessari né un attacco di processo né un'apertura nel serbatoio, per cui l'apparecchio è ideale per l'installazione in sistemi esistenti.

L'apparecchio si presta a una grande varietà di applicazioni. Accanto al rilevamento della soglia di livello, il MINITRAC 31 è anche in grado di identificare quantità residue.

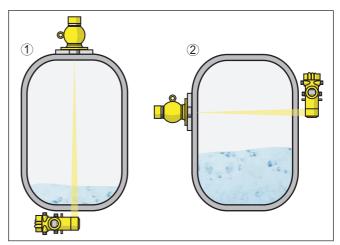


Figura 2: MINITRAC 31 - Possibilità d'impiego

- 1 Misura di livello identificazione di quantità residue
- 2 Rilevamento della soglia di livello

Principio di funzionamento

Per la misura radiometrica si impiega un isotopo cesio 137 o cobalto 60 che emette radiazioni gamma focalizzate. Queste radiazioni subiscono un'attenuazione penetrando attraverso la parete del serbatoio e il prodotto. Il rilevatore Nal situato dalla parte opposta rileva l'irraggiamento in arrivo, la cui intensità dipende dalla densità del prodotto da misurare. Il principio di misura si è rivelato efficace in presenza di condizioni di processo estreme, poiché la misura avviene senza contatto attraverso la parete del serbatojo. Il sistema di misura garantisce massima sicurezza, affidabilità e disponibilità dell'impianto, indipendentemente dal prodotto e dalle sue caratteristiche

3.3 Limitazioni del sistema

Vi sono diversi fattori legati al principio di misura che possono influenzare il risultato di misura. Tenere conto di guesti fattori per sfruttare al massimo le prestazioni dell'apparecchio in termini si sicurezza di misura e riproducibilità.

Attività della sorgente di radiazioni

L'isotopo radioattivo impiegato e la sua attività vanno scelti in base alle caratteristiche del serbatoio e del prodotto. L'attività radioattiva necessaria va calcolata sulla base dei dati dell'impianto.

Per ottenere una configurazione ottimale della misura e dell'isotopo utilizzato, è consigliabile ricorrere al nostro servizio di progettazione. Ciò vale in particolare per le applicazioni SIL.

A causa delle caratteristiche fisiche delle radiazioni radioattive, la frequenza degli impulsi è soggetta a leggere oscillazioni. Per ottenere un valore di misura stabile, predisporre un'adequata attenuazione.

processo

Non linearità del valore di La correlazione tra il livello e la freguenza degli impulsi misurata dal sensore non è lineare.

Creare una tabella di linearizzazione al fine di ottenere un segnale di livello lineare. Per ottenere risultati di misura il più lineari possibili, nel creare la tabella di linearizzazione prestare attenzione a immettere esattamente il livello effettivo dei punti di misura.

Radiazioni esterne

Sorgenti di radiazioni esterne possono influenzare il valore di misura (per es. controlli del cordone di saldatura). Per le applicazioni rilevanti per la sicurezza, la funzione di sicurezza va considerata non data per la durata dell'influsso di radiazioni esterne.

Eventualmente è necessario attuare delle misure per mantenere la funzione di sicurezza.

Escursione di misura

In fase di progettazione prestare attenzione che per l'applicazione prevista si raggiunga una differenza della frequenza degli impulsi con serbatoio vuoto e pieno possibilmente elevata. Ciò vale in particolare per prodotti con scarsa densità o in serbatoi con diametro estremamente ridotto.

3.4 Imballaggio, trasporto e stoccaggio

Imballaggio

Durante il trasporto l'apparecchio è protetto dall'imballaggio. Un controllo in base a ISO 4180 garantisce il rispetto di tutte le esigenze di trasporto previste.

L'imballaggio degli apparecchi standard è di cartone ecologico e riciclabile. Per le esecuzioni speciali si aggiunge polietilene espanso o sotto forma di pellicola. Smaltire il materiale dell'imballaggio tramite aziende di riciclaggio specializzate.

Trasporto

Per il trasporto è necessario attenersi alle indicazioni relative all'imballaggio di trasporto. Il mancato rispetto può causare danni all'apparecchio.

Ispezione di trasporto

Al ricevimento della merce è necessario verificare immediatamente l'integrità della spedizione ed eventuali danni di trasporto. I danni di trasporto constatati o difetti nascosti devono essere trattati di consequenza.

Stoccaggio

I colli devono restare chiusi fino al momento del montaggio, rispettando i contrassegni di posizionamento e di stoccaggio applicati esternamente.

Salvo indicazioni diverse, riporre i colli rispettando le seguenti condizioni:

- Non collocarli all'aperto
- Depositarli in un luogo asciutto e privo di polvere
- Non esporli ad agenti aggressivi
- Proteggerli dall'irradiazione solare
- Evitare urti meccanici

Temperatura di trasporto e di stoccaggio

- Temperatura di stoccaggio e di trasporto vedi "Appendice Dati tecnici Condizioni ambientali"
- Umidità relativa dell'aria 20 ... 85%

PLICSCOM

3.5 Accessori e parti di ricambio

Il tastierino di taratura con display PLICSCOM serve per la visualizzazione del valore di misura, la calibrazione e la diagnostica. Può essere inserito e rimosso in qualsiasi momento nel/dal sensore ovv. nella/dalla unità d'indicazione e calibrazione esterna.

Ulteriori informazioni sono contenute nelle -Istruzioni d'uso- "Tastierino di taratura con display PLICSCOM" (ID documento 27835).

VEGACONNECT

L'adattatore d'interfaccia VEGACONNECT permette di collegare all'interfaccia USB di un PC apparecchi interfacciabili. Per la parametrizzazione di questi apparecchi è necessario il software di servizio PACTware con VEGA-DTM.

Ulteriori informazioni sono contenute nelle -lstruzioni d'uso- "Adattatore d'interfaccia VEGACONNECT" (ID documento 32628).

VEGADIS 81

Il VEGADIS 81 è un'unità esterna di visualizzazione e di servizio per sensori plics® VEGA.

Per i sensori con custodia a due camere è necessario anche l'adattatore d'interfaccia "DISADAPT" per il VEGADIS 81.

Ulteriori informazioni sono contenute nelle -Istruzioni d'uso- "VEGA-DIS 81" (ID documento 43814).

Unità di visualizzazione esterna

Il VEGADIS 62 è idoneo alla visualizzazione di valori di misura di sensori. Viene collegato al circuito di segnale 4 ... 20 mA/HART.

Ulteriori informazioni sono contenute nelle -Istruzioni d'uso- "VEGA-DIS 62" (ID documento 36469).

Unità elettronica

L'unità elettronica PT30E.XX è un componente sostituibile per sensori radiometrici MINITRAC 31.

L'unità elettronica può essere sostituita solamente da un tecnico dell'assistenza VFGA.

Accessori per il montaggio

Per il montaggio del MINITRAC 31 sono disponibili sostegni e speciali accessori. In proposito rivolgersi al reparto distribuzione.

3.6 Contenitore di protezione adeguato

La misura radiometrica richiede l'impiego di un isotopo radioattivo conservato in un contenitore di protezione adeguato.

L'uso di materiale radioattivo è regolamentato per legge. Sono determinanti le disposizioni in materia in vigore nel paese in cui si utilizza l'impianto.

In Germania, per es., vale l'attuale Ordinanza sulla radioprotezione (Strahlenschutzverordnung - StrlSchV) sulla base della legge sull'energia nucleare (Atomschutzgesetz - AtG).

Per la misura radiometrica sono rilevanti soprattutto i punti elencati qui di seguito.

Autorizzazione

L'impiego di un impianto basato sull'utilizzo di radiazioni gamma necessita di un'autorizzazione, ossia di un permesso rilasciato dalle

autorità competenti su richiesta (in Germania, per es. dall'Ufficio regionale per la protezione ambientale ecc.).

Informazioni dettagliate sono contenute nelle -Istruzioni d'uso- del contenitore di protezione.

Indicazioni generali in materia di protezione contro le radiazioni

La manipolazione di preparati radioattivi deve avvenire evitando qualsiasi inutile esposizione alle radiazioni. L'esposizione inevitabile va ridotta al minimo possibile. A tale proposito attenersi ai tre principi seguenti:

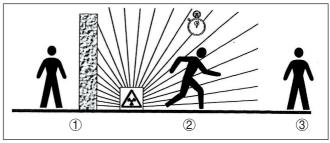


Figura 3: Provvedimenti per la protezione da fonti radioattive

- 1 Schermatura
- 2 Tempo
- 3 Distanza

Schermatura: garantire la miglior schermatura possibile tra la sorgente di radiazioni e voi stessi ovv. tutte le altre persone. Il contenitore di protezione (per es. VEGASOURCE), nonché tutti i materiali ad elevata densità (per es. piombo, ferro, calcestruzzo ecc.), assicurano una schermatura efficace.

Tempo: trattenersi il più brevemente possibile nell'area esposta alle radiazioni.

Distanza: rimanere il più lontano possibile dalla sorgente di radiazione. L'intensità di dose delle radiazioni diminuisce quadraticamente con l'aumentare della distanza dalla sorgente di radiazione.

Incaricato della radioprotezione

Il gestore dell'impianto deve nominare un incaricato della radioprotezione in possesso delle cognizioni e della formazione necessarie. L'incaricato è responsabile del rispetto dell'ordinanza sulla radioprotezione e dei relativi provvedimenti.

Zona controllata

Le zone controllate sono zone all'interno delle quali l'intensità di dose ambientale supera un determinato valore. In queste zone controllate possono operare solamente persone sottoposte ad una sorveglianza ufficiale del dosaggio di radiazioni. I valori limiti relativi alla zona controllata sono stabiliti per legge (in Germania, per es. nell'Ordinanza sulla radioprotezione).

Siamo volentieri a disposizione per ulteriori informazioni in materia di radioprotezione e normative in vigore in altri paesi.

4 Montaggio

4.1 Avvertenze generali

Disinserzione della sorgente di radiazioni

Il contenitore di protezione è parte integrante del sistema di misura. Nel caso in cui il contenitore di protezione contenga già un isotopo attivo, esso va assicurato prima di procedere al montaggio.

Prima dell'inizio dei lavori di montaggio assicurarsi che la sorgente di radiazioni sia chiusa in maniera affidabile e assicurare il contenitore di protezione con un lucchetto per impedire un'apertura involontaria.

Protezione dall'umidità

Proteggere l'apparecchio dalle infiltrazioni di umidità attuando le seguenti misure:

- utilizzare il cavo consigliato (v. capitolo "Collegamento all'alimentazione in tensione")
- serrare bene il pressacavo
- Ruotare la custodia in modo che il pressacavo sia rivolto verso il
- condurre verso il basso il cavo di collegamento prima del pressacavo

Questo vale soprattutto:

- in caso di montaggio all'aperto
- in ambienti nei quali è prevedibile la presenza di umidità (per es. in seguito a processi di pulizia)
- su serbatoi refrigerati o riscaldati

processo

Idoneità alle condizioni di Assicurarsi che tutti i componenti dell'apparecchio coinvolti nel processo siano adeguati alle effettive condizioni di processo.

Tra questi rientrano in particolare:

- Componente attivo di misura
- Attacco di processo
- Guarnizione di processo

Tra le condizioni di processo rientrano in particolare:

- Pressione di processo
- Temperatura di processo
- Caratteristiche chimiche dei prodotti
- Abrasione e influssi meccanici

I dati relativi alle condizioni di processo sono indicati nel capitolo "Dati tecnici" e sulla targhetta d'identificazione.

Cappuccio di protezione

Nelle custodie degli apparecchi con filetti NPT autosigillanti, i collegamenti a vite dei cavi non possono essere avvitati in laboratorio. Per tale ragione, per il trasporto le aperture delle entrate dei cavi sono chiuse con cappucci di protezione rossi.

Prima della messa in servizio, questi cappucci di protezione vanno sostituiti con pressacavi omologati o eventualmente con tappi ciechi idonei.

I pressacavi e i tappi ciechi adeguati sono forniti in dotazione insieme all'apparecchio.

4.2 Indicazioni di montaggio

Posizione di montaggi

Avviso:

Nell'ambito della progettazione, i nostri specialisti analizzeranno le carattristiche del punto di misura al fine di dimensionare adeguatamente la sorgente di radiazioni (isotopo).

Il cliente riceve un documento "Source-Sizing" relativo al punto di misura con l'indicazione dell'attività della fonte necessaria e tutte le informazioni importanti per il montaggio.

Oltre alle seguenti istruzioni per il montaggio si deve prestare attenzione anche istruzioni contenute nel documento "Source-Sizing".

In mancanza di indicazioni diverse nel documento "Source-Sizing", valgono le seguenti istruzioni per il montaggio.

Maggiori informazioni sulle barriere e sul montaggio del relativo contenitore di protezione sono contenute nelle -lstruzioni d'uso- del contenitore di protezione, per es. VEGASOURCE.

Il MINITRAC 31 può essere montato in qualsiasi posizione. Se è stato ordinato un apparecchio con un manto di piombo per la protezione da radiazioni ambientali (opzionale), il sensore è protetto lateralmente da radiazioni esterne. In questo caso le radiazioni possono penetrare solo frontalmente.

Fissare i sensori in modo da escludere la possibilità che cadano dal sostegno.

Orientare l'angolo di diffusione dei raggi del contenitore di protezione sul MINITRAC 31.

Montare il contenitore di protezione il più vicino possibile al serbatoio. Se dovessero rimanere degli interstizi, vanno applicate barriere e grate protettive per impedire l'accesso alla zona pericolosa.

Rilevamento della soglia di livello

Per il rilevamento della soglia di livello normalmente il sensore viene montato orizzontalmente all'altezza della soglia di livello desiderata. Prestare attenzione che in questa posizione nel serbatoio non vi siano controventature o nervature di rinforzo.

Orientare l'angolo di diffusione dei raggi del contenitore di protezione esattamente sul campo di misura del MINITRAC 31.

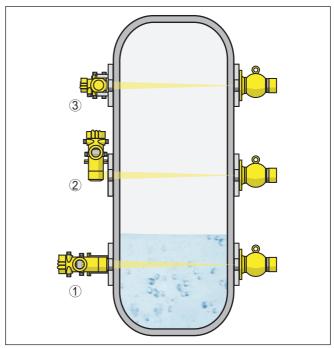


Figura 4: Posizione di montaggio - rilevamento della soglia di livello

- 1 Montaggio orizzontale
- 2 Montaggio verticale
- 3 Montaggio orizzontale, trasversalmente rispetto al serbatoio

Misura di livello - identificazione di quantità residue

Il MINITRAC 31 può essere utilizzato per l'identificazione di quantità residue, per es. in serbatoi di stoccaggio per liquidi di grande valore. A tal fine l'apparecchio va montato nel punto più basso del serbatoio.

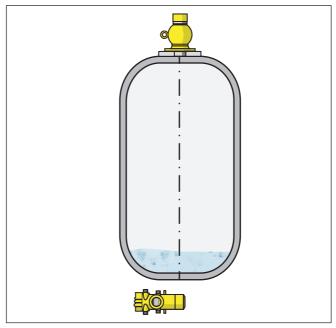


Figura 5: Misura di livello - identificazione di quantità residue in un serbatoio di stoccaggio

Protezione dal calore

Nel caso in cui si superi la massima temperatura ambiente è necessario predisporre misure adeguate per proteggere l'apparecchio dal surriscaldamento.

È possibile per esempio proteggere l'apparecchio dal calore tramite un adeguato isolamento, oppure montarlo ad una distanza maggiore dalla fonte di calore.

Le misure necessarie vanno predisposte già in fase di progettazione. Nel caso in cui si desideri predisporle a posteriori, è opportuno consultare i nostri specialisti per non rischiare di compromettere la precisione dell'applicazione.

Se queste misure non sono sufficienti per garantire il rispetto della massima temperatura ambiente ammessa, per il MINITRAC 31 è disponibile un raffreddamento ad acqua.

Anche il raffreddamento ad acqua va incluso nel calcolo del punto di misura, perciò è opportuno consultare i nostri specialisti per la sua progettazione.

5 Collegamento all'alimentazione in tensione

5.1 Preparazione del collegamento

Normative di sicurezza

Rispettare le seguenti normative di sicurezza:

- Eseguire il collegamento unicamente in assenza di tensione
- Se si temono sovratensioni, occorre installare scaricatori di sovratensione

Alimentazione in tensione tramite tensione di rete

In questo caso l'appprecchio è costruito nella classe di protezione I. Per garantire questa classe di protezione è assolutamente necessario collegare il conduttore di protezione al morsetto di terra interno. Rispettare a questo scopo le disposizioni generali d'installazione.

Se sussiste l'esigenza di una separazione sicura, l'alimentazione in tensione e l'uscita in corrente passeranno attraverso cavi di collegamento separati. Il campo dell'alimentazione può cambiare in base all'esecuzione dell'apparecchio.

I dati relativi all'alimentazione in tensione sono contenuti nel capitolo "Dati tecnici"

Scegliere il cavo di collegamento

Per la tensione d'alimentazione è necessario usare un cavo d'installazione omologato con conduttore di PE.

Il collegamento dell'uscita in corrente 4 ... 20 mA si esegue con un normale cavo bifilare senza schermo. Il cavo schermato deve essere usato se si prevedono induzioni elettromagnetiche superiori ai valori di prova della EN 61326-1 per settori industriali.

Utilizzare un cavo a sezione circolare. Un diametro esterno del cavo di 6 ... 12 mm (0.24 ... 0.47 in) garantisce la tenuta del collegamento a vite del cavo. In caso di impiego di cavi di diametro o sezione diversi cambiare la guarnizione o utilizzare un collegamento a vite adeguato. I collegamenti a vite dei cavi non utilizzati non offrono sufficiente protezione dall'umidità e vanno sostituiti con tappi ciechi.

Passacavo

Munire sempre di idonei tappi ciechi tutti i passacavi non utilizzati. I cerchietti di plastica nei collegamenti a vite dei cavi fungono solamente da protezione contro la polvere nel corso del trasporto.

Passacavo ½ NPT

Nelle custodie degli apparecchi con filetti NPT autosigillanti, i collegamenti a vite dei cavi non possono essere avvitati in laboratorio. Per tale ragione, per il trasporto le aperture dei collegamenti a vite dei cavi sono chiuse con cappucci di protezione rossi.

Prima della messa in servizio, questi cappucci di protezione vanno sostituiti con collegamenti a vite omologati o vanno chiusi con tappi ciechi adeguati. I collegamenti a vite dei cavi non utilizzati non offrono sufficiente protezione dall'umidità e vanno sostituiti con tappi ciechi.

I pressacavi e i tappi ciechi adeguati sono forniti in dotazione insieme all'apparecchio.

Schermatura del cavo e collegamento di terra

Se si ritiene necessario usare un cavo schermato, collegare al potenziale di terra le due estremità dello schermo del cavo. Nel sensore lo schermo deve essere collegato direttamente al morsetto interno di terra. Il morsetto esterno di terra nella custodia deve essere collegato a bassa impedenza al conduttore equipotenziale.

Se si prevedono correnti transitorie di terra, eseguire il collegamento sul lato elaboratore con un condensatore di ceramica (per es. 1 nF, 1500 V). In questo modo si evitano correnti transitorie di terra a bassa frequenza, mantenendo efficace la protezione per i segnali di disturbo ad alta frequenza.

Attenzione:

All'interno di impianti galvanici e in serbatoi con protezione catodica anticorrosione vi sono notevoli differenze di potenziale. In caso di messa a terra dello schermo ad ambo i lati possono presentarsi forti correnti di compensazione sullo schermo del cavo.

Per evitare che ciò si verifichi, in queste applicazioni lo schermo del cavo va collegato solo unilateralmente al potenziale di terra nel quadro elettrico (ad armadio). Lo schermo del cavo **non** va collegato al morsetto di terra interno nel sensore e il morsetto di terra esterno sulla custodia **non** va allacciato al collegamento equipotenziale!

Informazione:

Le parti metalliche dell'apparecchio sono collegate conduttivamente al morsetto di terra interno ed esterno sulla custodia. Questo collegamento è direttamente metallico o per apparecchi con unità elettronica esterna è realizzato tramite lo schermo della speciale linea di collegamento.

I dati relativi ai collegamenti di potenziale all'interno dell'apparecchio sono contenuti nel capitolo "*Dati tecnici*".

Tecnica di collegamento

Il collegamento dell'alimentazione in tensione e dell'uscita del segnale si esegue con morsetti a molla situati nella custodia.

Il collegamento al tastierino di taratura con diplay e/o all'adattatore d'interfaccia si esegue con i terminali di contatto situati nella custodia.

Operazioni di collegamento

Procedere nel modo seguente:

Questo procedimento vale per gli apparecchi senza protezione contro le esplosioni.

- 1. Svitare il coperchio grande della custodia
- 2. Svitare il dado di raccordo del pressacavo
- 3. Togliere la guaina del cavo di collegamento per ca. 10 cm (4 in), denudare le estremità dei conduttori per ca. 1 cm (0.4 in).
- 4. Inserire il cavo nel sensore attraverso il pressacavo

Figura 6: Operazioni di collegamento 4 e 5

- 1 Bloccaggio delle morsettiere
- Infilare con forza un piccolo cacciavite per viti con testa a intaglio nell'apertura di bloccaggio quadrata del relativo morsetto
- Inserire le estremità dei conduttori nelle aperture circolari dei morsetti aperti

•

Informazione:

I conduttori rigidi e quelli flessibili con rivestimento sull'estremità possono essere inseriti direttamente nelle aperture dei morsetti. In caso di conduttori flessibili senza rivestimento sull'estremità, infilare con forza un piccolo cacciavite per viti con testa a intaglio nell'apertura di bloccaggio quadrata del relativo morsetto. In questo modo l'apertura del morsetto si apre. Estraendo il cacciavite l'apertura si richiude.

- Verificare che i conduttori siano ben fissati, tirando leggermente
 Per staccare un conduttore, infilare con forza un piccolo cacciavite per viti con testa a intaglio nell'apertura di bloccaggio quadrata come illustrato nella figura
- 8. Collegare lo schermo al morsetto interno di terra, connettere il morsetto esterno di terra al collegamento equipotenziale.
- 9. Serrare a fondo il dado di raccordo del pressacavo. L'anello di tenuta deve circondare perfettamente il cavo
- 10. Avvitare il coperchio della custodia

A questo punto l'allacciamento elettrico è completato.

Informazione:

Le morsettiere sono a innesto e possono essere staccate dall'unità elettronica sbloccando con un piccolo cacciavite le due leve di bloccaggio laterali. La morsettiera scatta automaticamente verso l'alto e può essere tolta. Nel reinserirla fare attenzione che scatti in posizione.

5.2 Allacciamento - rilevamento della soglia di livello

Apparecchi non-Ex e apparecchi con uscita in corrente senza sicurezza intrinseca

Vano dell'elettronica e di connessione - apparecchi non-Ex e apparecchi con uscita in corrente senza sicurezza intrinseca

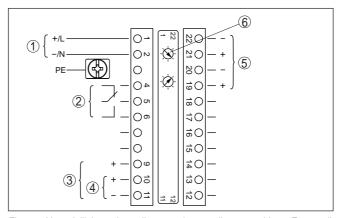


Figura 7: Vano dell'elettronica e di connessione negli apparecchi non-Ex e negli apparecchi con uscita in corrente senza sicurezza intrinseca

- 1 Tensione d'alimentazione
- 2 Uscita a relè
- 3 Uscita di segnale 8/16 mA/HART attiva
- 4 Uscita di segnale 8/16 mA/HART Multidrop passiva
- 5 Interfaccia per comunicazione sensore-sensore (MGC)
- 6 Impostazione indirizzo bus per comunicazione sensore-sensore (MGC)1)

Vano di calibrazione e connessione - apparecchi non-Ex e apparecchi con uscita in corrente senza sicurezza intrinseca

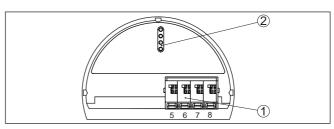


Figura 8: Vano di calibrazione e connessione per apparecchi non-Ex e apparecchi con uscita in corrente senza sicurezza intrinseca

- 1 Morsetti per l'unità d'indicazione e calibrazione esterna
- 2 Terminali di contatto per tastierino di taratura con display e/o per adattatore d'interfaccia

¹⁾ MGC = Multi Gauge Communication

Apparecchi con uscita in corrente a sicurezza intrinseca

Informazioni dettagliate relative ai modelli antideflagranti (Ex-ia, Ex-d) sono contenute nelle avvertenze di sicurezza specifiche per le applicazioni Ex allegate a ciascun apparecchio con omologazione Ex.

Vano dell'elettronica e di connessione per apparecchi con uscita in corrente a sicurezza intrinseca

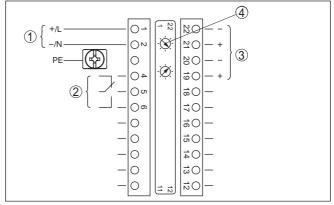


Figura 9: Vano dell'elettronica e di connessione (Ex-d) per apparecchi con uscita in corrente a sicurezza intrinseca

- 1 Tensione d'alimentazione
- 2 Uscita a relè
- 3 Interfaccia per comunicazione sensore-sensore (MGC)
- 4 Impostazione indirizzo bus per comunicazione sensore-sensore (MGC)2)

Vano di calibrazione e connessione per apparecchi con uscita in corrente a sicurezza intrinseca

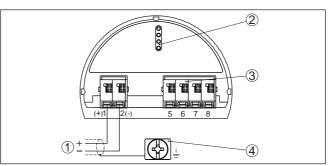


Figura 10: Vano di calibrazione e connessione (Ex-ia) per apparecchi con uscita in corrente a sicurezza intrinseca

- 1 Morsetti per uscita di segnale a sicurezza intrinseca 8/16 mA/HART (Multidrop) attiva (non per modelli con omologazione Ex-d)
- 2 Terminali di contatto per tastierino di taratura con display e/o per adattatore d'interfaccia
- 3 Morsetti per l'unità d'indicazione e calibrazione esterna
- 4 Morsetto di terra

²⁾ MGC = Multi Gauge Communication

5.3 Allacciamento - misura di livello

Apparecchi non-Ex e apparecchi con uscita in corrente senza sicurezza intrinseca

Vano dell'elettronica e di connessione - apparecchi non-Ex e apparecchi con uscita in corrente senza sicurezza intrinseca

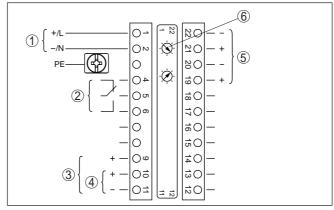


Figura 11: Vano dell'elettronica e di connessione negli apparecchi non-Ex e negli apparecchi con uscita in corrente senza sicurezza intrinseca

- 1 Tensione d'alimentazione
- 2 Uscita a relè
- 3 Uscita di segnale 4 ... 20 mA/HART attiva
- 4 Uscita di segnale 4 ... 20 mA/HART passiva
- 5 Interfaccia per comunicazione sensore-sensore (MGC)
- 6 Impostazione indirizzo bus per comunicazione sensore-sensore (MGC)3)

Vano di calibrazione e connessione - apparecchi non-Ex e apparecchi con uscita in corrente senza sicurezza intrinseca

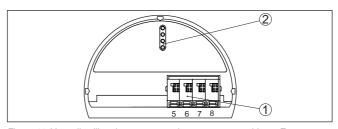


Figura 12: Vano di calibrazione e connessione per apparecchi non-Ex e apparecchi con uscita in corrente senza sicurezza intrinseca

- 1 Morsetti per l'unità d'indicazione e calibrazione esterna
- 2 Terminali di contatto per tastierino di taratura con display e/o per adattatore d'interfaccia

Info

Apparecchi con uscita in corrente a sicurezza intrinseca

Informazioni dettagliate relative ai modelli antideflagranti (Ex-ia, Ex-d) sono contenute nelle avvertenze di sicurezza specifiche per le applicazioni Ex allegate a ciascun apparecchio con omologazione Ex.

³⁾ MGC = Multi Gauge Communication

Vano dell'elettronica e di connessione per apparecchi con uscita in corrente a sicurezza intrinseca

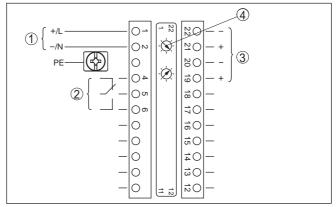


Figura 13: Vano dell'elettronica e di connessione (Ex-d) per apparecchi con uscita in corrente a sicurezza intrinseca

- 1 Tensione d'alimentazione
- 2 Uscita a relè
- 3 Interfaccia per comunicazione sensore-sensore (MGC)
- 4 Impostazione indirizzo bus per comunicazione sensore-sensore (MGC)4)

Vano di calibrazione e connessione per apparecchi con uscita in corrente a sicurezza intrinseca

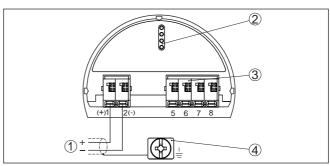


Figura 14: Vano di calibrazione e connessione (Ex-ia) per apparecchi con uscita in corrente a sicurezza intrinseca

- 1 Morsetti per uscita di segnale a sicurezza intrinseca 4 ... 20 mA/HART attiva (non per modelli con omologazione Ex-d)
- 2 Terminali di contatto per tastierino di taratura con display e/o per adattatore d'interfaccia
- 3 Morsetti per l'unità d'indicazione e calibrazione esterna
- 4 Morsetto di terra

MINITRAC 31 • 4 ... 20 mA/HART - quadrifilare

6 Sicurezza funzionale (SIL)

6.1 Objettivo

In caso di guasto, gli impianti e le macchine impiegati nel settore della tecnica dei processi possono rappresentare una fonte di rischio per le persone, le cose e l'ambiente. Il gestore dell'impianto è tenuto a valutare il rischio connesso a tali guasti e a predisporre misure volte alla sua riduzione su tre livelli: evitare errori, identificare errori e gestire efficacemente gli errori.

La parte di sicurezza dell'impianto che dipende dal corretto funzionamento dei componenti di sicurezza volti alla riduzione del rischio è detta sicurezza funzionale. I componenti impiegati in tali sistemi strumentali di sicurezza (SIS) devono perciò essere in grado di svolgere la funzione cui sono destinati (funzione di sicurezza) con un'elevata probabilità definita.

I requisiti di sicurezza richiesti per tali componenti sono descritti nello standard internazionale IEC 61508 che stabilisce i criteri per la valutazione standardizzata e comparabile della sicurezza degli apparecchi, contribuendo a stabilire la certezza giuridica in ogni parte del mondo. A seconda del grado di riduzione del rischio richiesto, si distingue tra quattro diversi livelli di sicurezza che vanno da SIL1 per rischio ridotto a SIL4 per rischio molto elevato (SIL = Safety Integrity Level).

6.2 Qualifica SIL

Ulteriori caratteristiche e requisiti

Nel corso dello sviluppo di apparecchi utilizzabili in sistemi strumentali di sicurezza, una particolare attenzione è rivolta all'evitare errori sistematici, nonché all'identificazione e alla gestione efficace di errori casuali.

Di seguito sono riportati le caratteristiche e i requisiti più importanti dal punto di vista della sicurezza funzionale conformemente all'IEC 61508.

- Sorveglianza interna di elementi rilevanti per la sicurezza
- Standardizzazione ampliata dello sviluppo di software
- In caso di errore passaggio ad uno stato sicuro definito delle uscite rilevanti per la sicurezza
- Determinazione della probabilità di guasto della funzione di sicurezza definita
- Parametrizzazione sicura in ambiente di calibrazione non sicuro
- Test periodico di funzionamento

La qualifica SIL dei componenti è comprovata da un manuale relativo alla sicurezza funzionale (Safety Manual), contenente tutti i dati caratteristici e le informazioni rilevanti per la sicurezza di cui necessitano l'utente e il progettista per la progettazione e l'impiego del sistema strumentale di sicurezza. Questo documento è allegato a ciascun apparecchio con qualifica SIL e può essere xonsultato anche sulla nostra homepage tramite la funzione di ricerca basata sul numero di serie.

6.3 Campo d'impiego

L'apparecchio può essere impiegato per il rilevamento della soglia di livello o per la misura di livello in liquidi e solidi in pezzatura in un sistema di sicurezza conformemnte alla norma IEC 61508. Prestare attenzione a quanto indicato nel Safety Manual.

A tal fine sono ammessi i seguenti ingressi e uscite:

- Uscita a relè
- Uscita in corrente 4 ... 20 mA

6.4 Sicurezza della parametrizzazione

Strumenti ausiliari per la calibrazione e la parametrizzazione

Sono ammessi i seguenti strumenti ausiliari per la parametrizzazione della funzione di sicurezza:

- L'unità d'indicazione e di calibrazione integrata per la calibrazione in loco
- II DTM adeguato all'elaboratore in collegamento con un software di servizio conforme allo standard FDT/DTM, per es. PACTware

•

Avviso:

Per la calibrazione del MINITRAC 31 è necessaria la DTM Collection, versione 1.67.2 o successiva. La modifica di parametri rilevanti per la sicurezza è possibile solo in presenza di un collegamento attivo all'apparecchio (modalità online).

Parametrizzazione sicura

Per evitare possibili errori di parametrizzazione in ambiente di calibrazione non sicuro si applica un procedimento di verifica che consente di identificare con sicurezza errori di parametrizzazione. Prima di poter essere memorizzati nell'apparecchio, i parametri rilevanti per la sicurezza vengono verificati. Inoltre con l'apparecchio nel normale stato operativo è interdetta qualsiasi modifica dei parametri al fine di impedire la calibrazione involontaria o arbitraria. Ciò vale sia per la calibrazione sull'apparecchio che per PACTware con DTM.

Parametri rilevanti per la sicurezza

Per garantire la protezione da una calibrazione accidentale o illecita, i parametri impostati vanno protetti da un accesso involontario o non autorizzato. Per tale ragione, l'apparecchio alla consegna è bloccato. Alla consegna il PIN è "0000".

In caso di fornitura di apparecchi con una parametrizzazione specifica, all'apparecchio viene allegato un elenco dei valori che variano rispetto all'impostazione di base. È possibile anche scaricare qesto elenco dal sito "www.vega.com/VEGA-Tools" indicando il numero di serie.

Dopo una modifica, è necessario verificare tutti i parametri rilevanti per la sicurezza e confermarli tramite una comparazione della sequenza di caratteri.

Le impostazioni dei parametri del punto di misura vanno documentate. A tal fine ogni apparecchio è corredato del documento "Impostazioni apparecchio SIL" che contiene una lista di tutti i parametri rilevanti per la sicurezza allo stato della consegna e offre spazio per annotazioni proprie. Anche questo documento può essere scaricato

dalla nostra homepage. Inoltre tramite PACTware/DTM è possibile salvare e stampare un elenco dei parametri rilevanti per la sicurezza.

Abilitare calibrazione

Ciascuna modifica di parametri richiede uno sblocco dell'apparecchio tramite l'immissione di un codice PIN (vedi capitolo "Sequenza della messa in servizio - Blocco della calibrazione"). Lo stato dell'apparecchio viene visualizzato sul display tramite un lucchetto aperto o chiuso.

Stato dell'apparecchio non sicuro

Attenzione:

Una volta che la calibrazione è stata sbloccata, la funzione di sicurezza deve essere classificata come non sicura. Ciò vale fino alla regolare conclusione della parametrizzazione. Eventualmente vanno attuate altre misure per garantire il mantenimento della funzione di sicurezza.

Modificare i parametri

Tutti i parametri modificati dall'operatore vengono contrassegnati automaticamente, in modo da poter essere verificati nella fase successiva.

Verifica dei parametri/ blocco della calibrazione

Per poter eseguire la verifica è necessario immettere innanzitutto il PIN ed eseguire un confronto tra due sequenze di caratteri. L'utente deve confermare che le due sequenze sono identiche. Ciò consente di verificare la rappresentazione dei caratteri e le vie di comunicazione. I testi di verifica sono disponibili in tedesco e in inglese per tutte le altre lingue di menu.

In una seconda fase vengono elencati tutti i parametri rilevanti per la sicurezza che sono stati modificati e che vanno confermati. Una volta concluso questo processo, la calibrazione viene bloccata automaticamente ed è nuovamente garantita la funzione di sicurezza.

Processo incompleto

Attenzione:

Nel caso in cui il processo di parametrizzazione non venga svolto interamente e correttamente (per es. a causa di un'interruzione o di una caduta di tensione), l'apparecchio rimane in stato sbloccato e quindi non sicuro.

Reset apparecchio

Attenzione:

In caso di ripristino dell'impostazione di base, vengono ripristinate le regolazioni di laboratori anche per i parametri rilevanti per la sicurezza. Per tale ragione, dopo il resettaggio è necessario controllare ed eventualmente reimpostare tutti i parametri rilevanti per la sicurezza.

7 Messa in servizio con il tastierino di taratura con display

7.1 Installare il tastierino di taratura con display

Installare/rimuovere il tastierino di taratura con display

È possibile installare in ogni momento il tastierino di taratura con display nel sensore e rimuoverlo nuovamente, senza interrompere l'alimentazione in tensione.

Procedere nel modo sequente:

- 1. Svitare il coperchio piccolo della custodia
- Disporre il tastierino di taratura con display sull'elettronica nella posizione desiderata (sono disponibili quattro posizioni a passi di 90°).
- Montare il tastierino di taratura con display sull'elettronica e ruotarlo leggermente verso destra finché scatta in posizione
- 4. Avvitare saldamente il coperchio della custodia con finestrella

Per rimuoverlo procedete nella seguenza inversa.

Il tastierino di taratura con display è alimentato dal sensore, non occorre un ulteriore collegamento.

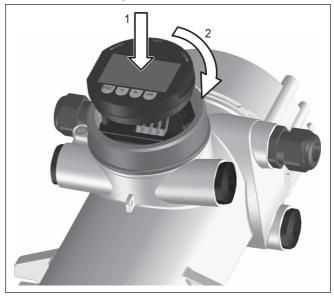


Figura 15: Installare il tastierino di taratura con display

Avviso:

Se si desidera corredare l'apparecchio di un tastierino di taratura con display e disporre così dell'indicazione del valore di misura, è necessario usare un coperchio più alto con finestrella.

7.2 Sistema operativo

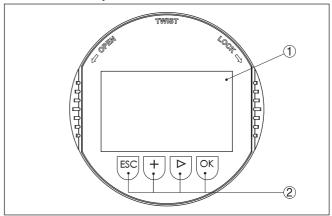


Figura 16: Elementi d'indicazione e di servizio

- 1 Display LC
- 2 Tasti di servizio

Funzioni dei tasti

Tasto [OK]:

- Passare alla panoramica dei menu
- Confermare il menu selezionato
- Editare i parametri
- Salvare il valore

Tasto *[-1*:

- Modificare la rappresentazione del valore di misura
- Selezionare una voce della lista
- Selezionare la posizione da modificare

Tasto [+]:

- Modificare il valore di un parametro

Tasto [ESC]:

- Interrompere l'immissione
- Passare al menu superiore

Sistema operativo

La calibrazione dell'apparecchio si esegue attraverso i quattro tasti del tastierino di taratura con display. Sul display LCD appaiono le singole voci di menu. Le funzioni dei singoli tasti sono descritte nella sezione precedente. Dopo ca. 60 minuti dall'ultimo azionamento di un tasto, scatta un ritorno automatico all'indicazione del valore di misura. I valori non confermati con **[OK]** vanno persi.

7.3 Parametrizzazione - misura di livello

Con la parametrizzazione si adegua l'apparecchio alle condizioni d'impiego. La parametrizzazione si esegue mediante il menu di servizio.

Informazione:

Queste -Istruzioni d'uso- descrivono i parametri specifici dell'apparecchio. Altri parametri generali sono descritti nelle -Istruzioni d'uso- "Tastierino di taratura con display".

Avvio dell'apparecchio

Avvertimento:

In occasione della prima messa in servizio o dopo un resettaggio dell'apparecchio, questo si avvia con valori standard predefiniti. Questi valori non sono adatti all'applicazione specifica e vanno sostituiti con valori reali.

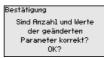
Eseguire una messa in servizio nella sequenza indicata di seguito.

Messa in servizio - Bloccare calibrazione

Con questa voce di menu si proteggono i parametri del sensore da modifiche arbitrarie o involontarie.

Per evitare possibili errori di parametrizzazione in ambiente di calibrazione non sicuro si applica un procedimento di verifica che consente di identificare con sicurezza errori di parametrizzazione. Prima di poter essere memorizzati nell'apparecchio, i parametri rilevanti per la sicurezza vengono verificati. Inoltre con l'apparecchio nel normale stato operativo è interdetta qualsiasi modifica dei parametri al fine di impedire la calibrazione involontaria o arbitraria.

Per tale ragione, l'apparecchio alla consegna è bloccato. Allo stato di consegna il PIN è "0000".


Dopo una modifica, è necessario verificare tutti i parametri rilevanti per la sicurezza. A tal fine va eseguita una comparazione della sequenza di caratteri che ha lo scopo di verificare la rappresentazione dei caratteri e le vie di comunicazione.

Confermare se le due sequenze di caratteri sono identiche. I testi di verifica sono a disposizione in tedesco e per tutte le altre lingue di menu in inglese.

In una seconda fase vengono elencati tutti i parametri rilevanti per la sicurezza modificati. Confermare i valori modificati.

Una volta che la parametrizzazione è stata eseguita completamente e correttamente secondo la procedura descritta, l'apparecchio è bloccato e quindi pronto all'uso.

Altrimenti l'apparecchio rimane in stato sbloccato e quindi non sicuro.

Menu principale

Il menu principale è suddiviso in cinque sezioni con la seguente funzionalità:

Messa in servizio: impostazioni per es. relative alla denominazione del punto di misura, all'isotopo, all'applicazione, alla radiazione di fondo, alla taratura, all'uscita del segnale

Display: impostazioni per es. relative alla lingua, all'indicazione del valore di misura

Diagnostica: informazioni per es. su stato dell'apparecchio, indicatore valori di picco, simulazione

Ulteriori impostazioni: unità apparecchio, reset, data/ora, funzione di copia

Info: denominazione dell'apparecchio, versione hardware e software, data di calibrazione, caratteristiche dell'apparecchio

Procedimento

Verificare se il display è impostato nella lingua corretta ed eventualmente modificare la lingua alla voce di menu "Display/Lingua".

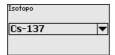
Iniziare con la messa in servizio del MINITRAC 31.

Per configurare in maniera ottimale la misura, selezionare in successione le singole voci di sottomenu del menu principale "Messa in servizio" e impostare i parametri riferiti alla propria applicazione. La procedura è descritta qui di seguito.

Possibilmente attenersi alla successione delle singole voci di sottomenu.

Messa in servizio

Messa in servizio - Denominazione punto di misura In questa voce di menu è possibile assegnare un nome univoco al sensore ovv. al punto di misura.


Questo parametro è descritto nelle -Istruzioni d'uso- "Tastierino di taratura con display".

Messa in servizio/Isotopo

In questa voce di menu è possibile impostare l'isotopo utilizzato nel contenitore di protezione per il MINITRAC 31.

Controllare quale isotopo è montato nel contenitore di protezione consultando la targhetta d'identificazione del contenitore di protezione.

Tramite questa selezione, la sensibilità del sensore viene adeguata in maniera ottimale all'isotopo. In questo modo si tiene conto della normale riduzione dell'attività di radiazione dovuta alla decomposizione radioattiva.


Il MINITRAC 31 necessita di questi dati per la compensazione automatica della decomposizione, in modo da garantire una misura esatta nel corso dell'intero periodo di impiego dell'emettitore gamma. Di consequenza non è necessario eseguire alcuna ricalibrazione annuale.

Immettere i parametri desiderati con i relativi tasti, memorizzare con [OK] e passare con [ESC] e [->] alla successiva voce di menu.

Messa in servizio - Applicazione

Immettere l'applicazione desiderata.

Questa voce di menu consente di adeguare il sensore all'applicazione desiderata. Si può scegliere tra le seguenti applicazioni: "Livello", "Soglia di livello" o "Summation slave".

Messa in servizio - Radiazione di fondo

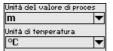
L'irraggiamento naturale presente sulla terra influenza la precisione della misura.

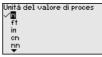
Tramite questo punto di menu è possibile escludere questa radiazione naturale di fondo.

Il MINITRAC 31 misura la radiazione di fondo naturale presente e azzera la frequenza degli impulsi.

In futuro la frequenza degli impulsi di questa radiazione di fondo viene sottratta automaticamente dalla frequenza complessiva degli impulsi. Ciò significa che viene visualizzata solamente la radiazione proveniente dalla sorgente utilizzata.

Per eseguire quest'impostazione il contenitore di protezione deve essere chiuso.





Messa in servizio - Unità

In questa voce di menu è possibile selezionare le unità del valore di processo e della temperatura.

Messa in servizio - Taratura

In questa voce di menu è possibile immettere il campo di misura (valore di processo min. e max) del sensore.

Queste impostazioni influenzano l'uscita in corrente del sensore.

Immettere nella finestra di menu "Max. valore di processo" il livello massimo (pieno) per es. in "m". Ciò corripsonde a una correte in uscita di 20 mA.

Immettere nella finestra di menu "*Min. valore di processo*" il livello minimo (vuoto) per es. in "*m*". Ciò corripsonde a una correte in uscita di 4 mA.

Messa in servizio/Linearizzazione

In questa voce di menu è possibile eseguire la taratura del sensore.

Avvertimento:

In occasione della prima messa in servizio o dopo un resettaggio dell'apparecchio, la linearizzazione è impostata su una coppia di valori predefinita (90000 ct/s \triangleq 0% e 0 ct/s \triangleq 100 %). Questi valori non sono adatti allo specifico compito di misura e vanno sostituiti con valori reali. Cancellare quindi questa coppia di valori ed eseguire la sequente linearizzazione.

A causa del principio di misura non esiste una correlazione lineare tra la frequenza degl impulsi e il livello. Per tale ragione è necessario eseguire in ogni caso questa taratura (ovv. la linearizzazione).

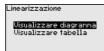
In caso di serbatoio non lineare (per es. serbatoio sferico), questa taratura va eseguita possibilmente con molti punti.

Avviso:

In caso non sia possibile riempire il serbatoio con il prodotto originale, è possibile eseguire la taratura anche con acqua.

Presupposti:

La radiazione è attivata - il contenitore di protezione è impostato su "On"


il serbatoio è riempito completamente (100%) o svuotato completamente (0%).

A seconda che il serbatoio sia riempito o svuotato si esegue innanzitutto la taratura di pieno o di vuoto. Il MINITRAC 31 ordina automaticamente i punti a seconda del livello.

Selezionare "Visualizzare tabella" per visualizzare e modificare i punti di linearizzazione.

Selezionare "Linearizzazione - Nuovo" per immettere il primo punto.

Selezionare "Calcolare impulsi" per immettere il primo punto.

Il rilevamento della frequenza degli impulsi attuale dura 2 minuti. Una volta rilevata la frequenza degli impulsi, il valore (ct/s) può essere assunto.

Il ritmo del conteggio viene indicato in ct/s che significa "counts per second" e indica la quantità di radiazioni misurata che giunge attualmente al sensore.

Immettere ora il relativo livello (m).

In questo modo si correla la frequenza degli impulsi attuale a un determinato livello.

Assumere la coppia di valori con "OK".

Svuotare o riempire ulteriormente il serbatoio, a seconda se si è iniziato con un serbatoio pieno o vuoto.

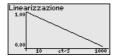
Eseguire una linearizzazione con diverse altezze di livello anche se si dispone di un serbatoio lineare.

In questo modo si può influenzare la sicurezza di misura del sensore. Quanti più punti di linearizzazione si immettono e quanto maggiore è

la differenza tra il primo e l'ultimo punto di linearizzazione, tanto più affidabile sarà la misurazione.

In caso di serbatoio non lineare (per es. serbatoio sferico), questa taratura va eseguita possibilmente con molti punti.

È possibile immettere al massimo 32 punti di linearizzazione.



Nel caso in cui nel corso della taratura non sia possibile riempire il serbatoio come minimo fino al 60% del livello massimo, è possibile eseguire la taratura di pieno con radiazione disattivata. Disattivando la radiazione si simula un riempimento del 100%.

Poiché precedentemente alla voce di menu: "Messa in servizio/ Radiazione di fondo" la radiazione di fondo è stata già azzerata, la frequenza degli impulsi misurata deve aggirarsi su 0 ct/s.

Visualizzare diagramma

Questa voce di menu è disponibile solo dopo che è stata eseguita una linearizzazione.

Visualizzare tabella

In questa voce di menu è possibile rappresentare singolarmente le coppie di valori della linearizzazione.

Linearizzazione - Cancellare

È possibile anche cancellare singoli punti di linearizzazione.

Linearizzazione - Modificare

Allo stesso modo si possono anche modificare singoli punti di linearizzazione.

Messa in servizio/Attenuazione

In questa voce di menu è possibile impostare l'attenuazione del sensore. Ciò consente di sopprimere oscillazioni nella visualizzazione del valore di misura dovute per es. a superfici agitate del prodotto. Questo tempo può essere impostato tra 1 e 1200 secondi. Considerare però che in questo modo aumenta anche il tempo di reazione della misura, per cui l'apparecchio può reagire solamente con un certo ritardo a rapide variazioni del valore di misura. Normalmente è sufficiente impostare un tempo di ca. 60 secondi per stabilizzare la visualizzazione del valore di misura.

Impostando "Automatico" l'apparecchio calcola un'attenuazione in base alla taratura e alle variazioni del valore di misura. Quest'impostazione è particolarmente adatta ad applicazioni caratterizzate da variazioni di livello veloci alternate a variazioni lente.

Messa in servizio/Correzione valore effettivo

Se si conosce il livello effettivo in corrispondenza di un determinato livello, in questa voce di menu è possibile immettere il livello effettivo rilevato per correggere il valore di misura. La funzione sposta la curva di linearizzazione su questo punto.

In questo modo è possibile adeguare la misurazione esattamente alle caratteristiche del serbatoio.

Messa in servizio/Uscita in corrente

In questa voce di menu è possibile attivare o disattivare l'uscita in corrente.

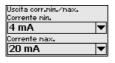
Il MINITRAC 31 controlla se in caso di uscita in corrente attivata è collegato effettivamente un apparecchio.

Nel caso in cui sull'uscita di corrente non sia collegato alcun apparecchio, l'uscita va disattivata.

Messa in servizio/Modo uscita in corrente

In questa voce di menu è possibile stabilire la caratteristica del sensore ed il comportamento in caso di anomalia.

Modo uscita in correte	
Caratteristica	
4-20 mA	┰
Modo disturbo	
< 3.6 mA	┰



Messa in servizio/Uscita in corrente min./max.

In questa voce di menu è possibile definire il comportamento dell'uscita in corrente.

È possibile stabilire separatamente la corrente per il livello minimo e massimo.

Messa in servizio/Relè

In questa voce di menu è possibile attivare l'uscita a relè e stabilirne la funzione e i punti di intervento.

Se è impostato l'output del valore di processo è possibile scegliere tra sicurezza di sovrappieno e protezione contro il funzionamento a secco.

Le uscite a relè del sensore reagiscono di conseguenza.

Per quanto riguarda la grandezza di riferimento, se si sceglie "Nessuna", l'uscita a relè lavora come relè d'avaria.

- Nessuna il relè lavora come relè d'avaria
- temperatura dell'elettronica
- Valore di processo

"Nessuna" grandezza di riferimento significa che l'uscita a relè lavora come relè d'avaria.

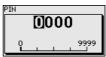
Premere il tasto [->] per eccedere alle impostazioni del relè.

Esempio di impostazione del valore di processo

Scegliere innanzitutto il modo operativo (sicurezza di sovrappieno o protezione contro il funzionamento a secco).

Avvertimento:

Indipendentemente dalla grandezza di riferimento selezionata, in caso di anomalia il relè si diseccita.


Messa in servizio - Bloccare calibrazione

Con questa voce di menu si proteggono i parametri del sensore da modifiche arbitrarie o involontarie.

Per evitare possibili errori di parametrizzazione in ambiente di calibrazione non sicuro si applica un procedimento di verifica che consente di identificare con sicurezza errori di parametrizzazione. Prima di poter essere memorizzati nell'apparecchio, i parametri rilevanti per la sicurezza vengono verificati. Inoltre con l'apparecchio nel normale stato operativo è interdetta qualsiasi modifica dei parametri al fine di impedire la calibrazione involontaria o arbitraria.

Per tale ragione, l'apparecchio alla consegna è bloccato. Allo stato di consegna il PIN è "0000".


Dopo una modifica, è necessario verificare tutti i parametri rilevanti per la sicurezza. A tal fine va eseguita una comparazione della sequenza di caratteri che ha lo scopo di verificare la rappresentazione dei caratteri e le vie di comunicazione.

Confermare se le due sequenze di caratteri sono identiche. I testi di verifica sono a disposizione in tedesco e per tutte le altre lingue di menu in inglese.

In una seconda fase vengono elencati tutti i parametri rilevanti per la sicurezza modificati. Confermare i valori modificati.

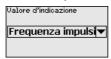
Una volta che la parametrizzazione è stata eseguita completamente e correttamente secondo la procedura descritta, l'apparecchio è bloccato e quindi pronto all'uso.

Altrimenti l'apparecchio rimane in stato sbloccato e guindi non sicuro.

Display

Display - Lingua

Tramite questo parametro è possibile modificare la lingua del display.


Questo parametro è descritto nelle -lstruzioni d'uso- "Tastierino di taratura con display".

Display/Valore d'indicazione

Tramite questo parametro è possibile modificare la visualizzazione del display.

È possibile scegliere se il display deve visualizzare la frequenza attuale degli impulsi, la corrente in uscita, la temperatura dell'elettronica o il valore di processo.

Diagnostica

Diagnostica - Stato apparecchio

In questa voce di menu è possibile consultare lo stato del sensore. Nel corso del normale funzionamento il sensore visualizza qui il messaggio "**OK**". In caso di disfunzione viene indicato il relativo codice.

Questo parametro è descritto nelle -Istruzioni d'uso- "Tastierino di taratura con display".

Diagnostica - Indicatore valori di picco

La funzione di indicazione dei valori di picco rileva i valori massimi e minimi nel corso del funzionamento.

Questo parametro è descritto nelle -Istruzioni d'uso- "Tastierino di taratura con display".

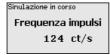
Diagnostica - Dati di taratura

Qui è possibile richiamare il valore di taratura del sensore. Si tratta del valore percentuale della differenza dei punti di taratura min. e max. (Delta I). Il valore rappresenta un indizio per l'affidabilità e la riproducibilità della misura.

Quanto più lontani sono tra di loro i punti di taratura, tanto maggiore è il valore della differenza (Delta I) e tanto più affidabile è la misurazione. Un valore Delta I inferiore al 10% è un indizio di misura critica.

Per innalzare il valore Delta I è necessario aumentare la distanza dei punti di taratura min. e max. nella linearizzazione.

Diagnostica/simulazione


In questa voce di menu si simulano i valori di misura attraverso l'uscita in corrente. Ciò consente di controllare il percorso del segnale, per es. attraverso indicatori collegati a valle o la scheda d'ingresso del sistema di controllo.

È possibile simulare diversi valori:

Frequenza degli impulsi del sensore

Valore di processo

Uscita in corrente

Funzione di intervento del relè

Informazione:

La simulazione s'interrompe automaticamente 60 minuti dopo l'ultimo azionamento di un tasto.

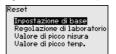
Ulteriori impostazioni

Ulteriori impostazioni - PIN

In questa voce di menu il PIN viene attivato/disattivato permanentemente. In questo modo si proteggono i dati del sensore dall'accesso illecito e da modifiche involontarie. Alla consegna il PIN è 0000.

Questo parametro è descritto nelle -Istruzioni d'uso- "Tastierino di taratura con display".

Ulteriori impostazioni -Data e ora


In questa voce di menu è possibile impostare la data e l'ora attuali. Questo parametro è descritto nelle -lstruzioni d'uso- "*Tastierino di*

Ulteriori impostazioni/ Reset

Tramite un reset vengono resettate tutte le impostazioni tranne alcune eccezioni e cioè: PIN, lingua, SIL e modo operativo HART.

taratura con display".

Ripristinare adesso regolaz. laboratorio?

Sono disponibili le seguenti funzioni di reset:

Impostazioni di base: ripristino dei valori di default dei parametri al momento della consegna dal laboratorio. Eventuali impostazioni specifiche della commessa vengono cancellate.

Impostazioni di laboratorio: ripristino dei parametri come per "Impostazioni di base". Inoltre vengono ripristinati i valori di default di parametri speciali. Eventuali impostazioni specifiche della commessa vengono cancellate.

Indicatore valori di picco valore di misura: reset delle impostazioni dei parametri nella voce di menu "Messa in servizio" ai valori di default del relativo apparecchio. Eventuali impostazioni specifiche

della commessa vengono mantenute ma non vengono assunte nei parametri attuali

Valore di picco temperatura: resettaggio delle temperature di min. e di max. misurate sull'attuale valore di misura.

La seguente tabella visualizza i valori di default dell'apparecchio. I valori valgono per l'applicazione "*Livello*". L'applicazione deve essere precedentemente selezionata.

A seconda del modello di apparecchio, non tutte le voci di menu sono disponibili oppure sono occupate diversamente.

Menu	Voce di menu	Valore di default
Messa in servizio	Denominazione punto di misura	Sensore
	Isotopo	Cs-137
	Applicazione	Livello
	Taratura	0 %, 100 %
	Linearizzazione	0 ct/s ≙ 100 %
		90000 ct/s ≙ 0 %
	Radiazione di fondo	0 ct/s
	Unità del valore di pro- cesso	%
	Unità di temperatura	°C
	Attenuazione	60 s (manuale)
	Correzione valore effettivo	0
	Uscita in corrente	Attivato
	Modo uscita in corrente	4 20 mA, < 3,6 mA
	Uscita in corrente min./ max.	Min. corrente 3,8 mA, max. corrente 20,5 mA
	Grandezza di riferimento - Relè	Nessuna
	Modo operativo	Sicurezza di sovrappieno
	Punto d'intervento superio- re - valore di processo	0 %
	Punto d'intervento inferiore - valore di processo	0%
	Punto d'intervento superio- re - temperatura	50 °C
	Punto d'intervento superio- re - temperatura	25 °C
	Bloccare calibrazione	Sbloccato
	Indirizzo - Summation Slave	interdetto

Menu	Voce di menu	Valore di default
Display	Lingua	Lingua selezionata
	Valore d'indicazione	Frequenza degli impulsi
	Unità d'indicazione	ct/s
Ulteriori impostazioni	Unità di temperatura	°C
	Curva di linearizzazione	Vuota
	Modalità HART	Standard
		Indirizzo 0

Ulteriori impostazioni -Modo operativo HART

Tramite questa funzione è possibile selezionare il modo operativo.

Il sensore offre i modi operativi HART Standard e Multidrop.

Se il valore di misura viene fornito attraverso l'uscita 4 ... 20 mA, non è possibile passare a HART Multidrop.

Il modo operativo standard con indirizzo fisso 0 (impostazione di laboratorio) significa indicazione del valore di misura come segnale 8/16 mA.

Questo parametro è descritto nelle -Istruzioni d'uso- "Tastierino di taratura con display".

Ulteriori impostazioni - Copiare impostazioni apparecchio

Questa funzione permette di:

- leggere i dati di parametrizzazione dal sensore nel tastierino di taratura con display
- scrivere i dati di parametrizzazione dal tastierino di taratura con display sul sensore

Questo parametro è descritto nelle -Istruzioni d'uso- "Tastierino di taratura con display".

Info

Questo menu contiene i seguenti punti:

- Nome apparecchio visualizza il nome dell'apparecchio e il numero di serie
- Esecuzione dell'apparecchio visualizza la versione hardware e software dell'apparecchio
- Data di calibrazione visualizza la data di calibrazione e la data dell'ultima modifica
- Caratteristiche dell'apparecchio visualizza ulteriori caratteristiche dell'apparecchio

Questi parametri sono descritti nelle -Istruzioni d'uso- "Tastierino di taratura con display".

7.4 Parametrizzazione/Rilevamento della soglia di livello

Con la parametrizzazione si adegua l'apparecchio alle condizioni d'impiego. La parametrizzazione si esegue mediante il menu di servizio.

Info

Informazione:

Queste -Istruzioni d'uso- descrivono i parametri specifici dell'apparecchio. Altri parametri generali sono descritti nelle -Istruzioni d'uso- "Tastierino di taratura con display".

Avvio dell'apparecchio

Avvertimento:

In occasione della prima messa in servizio o dopo un resettaggio dell'apparecchio, questo si avvia con valori standard predefiniti. Questi valori non sono adatti all'applicazione specifica e vanno sostituiti con valori reali.

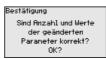
Eseguire una messa in servizio nella sequenza indicata di seguito.

Messa in servizio - Bloccare calibrazione

Con questa voce di menu si proteggono i parametri del sensore da modifiche arbitrarie o involontarie.

Per evitare possibili errori di parametrizzazione in ambiente di calibrazione non sicuro si applica un procedimento di verifica che consente di identificare con sicurezza errori di parametrizzazione. Prima di poter essere memorizzati nell'apparecchio, i parametri rilevanti per la sicurezza vengono verificati. Inoltre con l'apparecchio nel normale stato operativo è interdetta qualsiasi modifica dei parametri al fine di impedire la calibrazione involontaria o arbitraria.

Per tale ragione, l'apparecchio alla consegna è bloccato. Allo stato di consegna il PIN è "0000".


Dopo una modifica, è necessario verificare tutti i parametri rilevanti per la sicurezza. A tal fine va eseguita una comparazione della sequenza di caratteri che ha lo scopo di verificare la rappresentazione dei caratteri e le vie di comunicazione.

Confermare se le due sequenze di caratteri sono identiche. I testi di verifica sono a disposizione in tedesco e per tutte le altre lingue di menu in inglese.

In una seconda fase vengono elencati tutti i parametri rilevanti per la sicurezza modificati. Confermare i valori modificati.

Nicht-Sil-Parameter 1 von 1 Sprache des Menüs Deutsch Parameter OK?

Una volta che la parametrizzazione è stata eseguita completamente e correttamente secondo la procedura descritta, l'apparecchio è bloccato e quindi pronto all'uso.

Altrimenti l'apparecchio rimane in stato sbloccato e quindi non sicuro.

Menu principale

Il menu principale è suddiviso in cinque sezioni con la seguente funzionalità:

Messa in servizio: impostazioni per es. relative alla denominazione del punto di misura, all'isotopo, all'applicazione, alla radiazione di fondo, alla taratura, all'uscita del segnale

Display: impostazioni per es. relative alla lingua, all'indicazione del valore di misura

Diagnostica: informazioni per es. su stato dell'apparecchio, indicatore valori di picco, simulazione

Ulteriori impostazioni: unità apparecchio, reset, data/ora, funzione di copia

Info: denominazione dell'apparecchio, versione hardware e software, data di calibrazione, caratteristiche dell'apparecchio

Procedimento

Verificare se il display è impostato nella lingua corretta ed eventualmente modificare la lingua alla voce di menu "Display/Lingua".

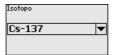
Iniziare con la messa in servizio del MINITRAC 31.

Per configurare in maniera ottimale la misura, selezionare in successione le singole voci di sottomenu del menu principale "Messa in servizio" e impostare i parametri riferiti alla propria applicazione. La procedura è descritta qui di seguito.

Possibilmente attenersi alla successione delle singole voci di sottomenu.

Messa in servizio

Messa in servizio - Denominazione punto di misura In questa voce di menu è possibile assegnare un nome univoco al sensore ovv. al punto di misura.

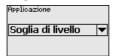

Questo parametro è descritto nelle -Istruzioni d'uso- "Tastierino di taratura con display".

Messa in servizio/Isotopo

In questa voce di menu è possibile impostare l'isotopo utilizzato nel contenitore di protezione per il MINITRAC 31.

Controllare quale isotopo è montato nel contenitore di protezione consultando la targhetta d'identificazione del contenitore di protezione.

Tramite questa selezione, la sensibilità del sensore viene adeguata in maniera ottimale all'isotopo. In questo modo si tiene conto della normale riduzione dell'attività di radiazione dovuta alla decomposizione radioattiva.


Il MINITRAC 31 necessita di questi dati per la compensazione automatica della decomposizione, in modo da garantire una misura esatta nel corso dell'intero periodo di impiego dell'emettitore gamma. Di consequenza non è necessario eseguire alcuna ricalibrazione annuale.

Immettere i parametri desiderati con i relativi tasti, memorizzare con [OK] e passare con [ESC] e [->] alla successiva voce di menu.

Messa in servizio - Applicazione

Immettere l'applicazione desiderata.

Questa voce di menu consente di adeguare il sensore all'applicazione desiderata. Si può scegliere tra le seguenti applicazioni: "Livello", "Soglia di livello" o "Summation slave".

Messa in servizio - Radiazione di fondo

L'irraggiamento naturale presente sulla terra influenza la precisione della misura.

Tramite questo punto di menu è possibile escludere questa radiazione naturale di fondo.

Il MINITRAC 31 misura la radiazione di fondo naturale presente e azzera la frequenza degli impulsi.

In futuro la frequenza degli impulsi di questa radiazione di fondo viene sottratta automaticamente dalla frequenza complessiva degli impulsi. Ciò significa che viene visualizzata solamente la radiazione proveniente dalla sorgente utilizzata.

Per eseguire quest'impostazione il contenitore di protezione deve essere chiuso.

Messa in servizio/Unità

In questa voce di menu è possibile selezionare l'unità della tempera-

Messa in servizio - Tipo di taratura

In questa voce di menu è possibile scegliere se eseguire una taratura di un punto o di due punti.

In caso di taratura di due punti viene selezionato automaticamente il

Consigliamo di eseguire la taratura di due punti. Per farlo è necessario poter modificare il livello del serbatoio per tarare il sensore con il serbatoio pieno (coperto) e vuoto (non coperto).

In questo modo si ottiene un punto di intervento molto affidabile.

In caso di taratura di un punto è necessario selezionare il valore differenzale dei punti di taratura min. e max. (Delta I) nel corso della successiva messa in servizio.

Messa in servizio/Taratura non coperto (taratura di un punto)

Questa voce di menu compare solamente se è stata scelta la "Taratura di un punto" nella voce di menu Messa in servizio/Tipo di

In guesta voce di menu si stabilisce il punto nel guale il MINITRAC 31 deve intervenire in stato non coperto.

Syuotare il serbatoio finché il sensore è scoperto.


Immettere manualmente la freguenza degli impulsi desiderata o farla rilevare dal MINITRAC 31. È preferibile optare per il rilevamento della frequenza degli impulsi.

La freguenza degli impulsi viene indicata in ct/s, ovvero "counts per second" e indica la quantità di raggi gamma misurata che giunge al sensore.

Presupposti:

- La radiazione è attivata il contenitore di protezione è impostato
- Tra il contenitore di protezione e il sensore non vi è prodotto

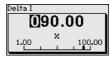
È possibile immettere manualmente il valore per "Taratura non coperto" (ct/s).

È possibile far rilevare il valore per "Taratura non coperto" di MINI-TRAC 31.

Messa in servizio/Delta I (taratura di un punto)

Questa voce di menu compare solamente se è stata scelta la "**Taratura di un punto**" nella voce di menu Messa in servizio/Tipo di taratura.

In questa voce di menu è possibile impostare in corrispondenza di quale valore percentuale della massima frequenza degli impulsi il sensore deve commutare.

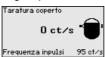

Poiché nella maggior parte dei casi con il sensore coperto la radiazione viene quasi completamente assorbita, la frequenza degli impulsi è molto bassa.

Di conseguenza la variazione tra i due stati è molto evidente.

Per tale ragione, per il valore Delta I è consigliabile un valore percentuale del 90%.

Si selezionano valori inferiori per il rilevamento di coni di deiezione o adesioni che determinano solo un assorbimento parziale della radiazione.

Taratura coperto (taratura di due punti)


Questa voce di menu compare solamente se è stata scelta la "**Taratura di due punti**" nella voce di menu Messa in servizio/Tipo di taratura.


In questa voce di menu è possibile impostare la frequenza minima degli impulsi (ct/s) che determina la commutazione del sensore.

Riempire il serbatoio finché il MINITRAC 31 è coperto.

In questo modo si ottiene la frequenza minima degli impulsi (ct/s) per la taratura coperto.

Immettere manualmente la frequenza degli impulsi o farla rilevare dal MINITRAC 31. È preferibile optare per il rilevamento della frequenza degli impulsi.

È possibile immettere manualmente il punto di taratura (ct/s).

È possibile far rilevare al MINITRAC 31 il punto di taratura.

Taratura non coperto (taratura di due punti)

Questa voce di menu compare solamente se è stata scelta la "Taratura di due punti" nella voce di menu Messa in servizio/Tipo di taratura.

In questa voce di menu è possibile impostare la frequenza massima degli impulsi (ct/s) che determina la commutazione del sensore.

Svuotare il serbatoio finché il MINITRAC 31 è scoperto.

In questo modo si ottiene la frequenza massima degli impulsi (ct/s) per la taratura non coperto.

Immettere manualmente la frequenza degli impulsi o farla rilevare dal MINITRAC 31. È preferibile optare per il rilevamento della frequenza degli impulsi.

È possibile immettere manualmente il punto di taratura (ct/s).

È possibile far rilevare al MINITRAC 31 il punto di taratura.

Messa in servizio/Uscita in corrente

In questa voce di menu è possibile attivare o disattivare l'uscita in corrente.

Il MINITRAC 31 controlla se in caso di uscita in corrente attivata è collegato effettivamente un apparecchio.

Nel caso in cui sull'uscita di corrente non sia collegato alcun apparecchio. l'uscita va disattivata.

Messa in servizio/Modo uscita in corrente

In questa voce di menu è possibile selezionare il comportamento di intervento del sensore.

È possibile scegliere tra una caratteristica 8 - 16 mA e una caratteristica 16 - 8 mA.

In questa voce di menu è possibile selezionare anche il comportamento in caso di disturbo: per l'uscita in corrente si può scegliere tra 22 mA e < 3,6 mA.

Messa in servizio/Relè

In questa voce di menu si sceglie in quale modo operativo deve lavorare il sensore.

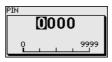
Si può scegiere tra sicurezza di sovrappieno e protezione contro il funzionamento a secco.

Le uscite a relè del sensore reagiscono di conseguenza.

Sicurezza di sovrappieno = il relè è senza corrente (stato sicuro) al raggiungimento del livello massimo.

Protezione contro il funzionamento a secco = il relè è senza corrente (stato sicuro) al raggiungimento del livello minimo.

Prestare attenzione che sia selezionata la caratteristica corretta. A tale proposito vedere la voce di menu "Messa in servizio/Modo uscita in corrente".


Messa in servizio - Bloccare calibrazione

Con questa voce di menu si proteggono i parametri del sensore da modifiche arbitrarie o involontarie.

Per evitare possibili errori di parametrizzazione in ambiente di calibrazione non sicuro si applica un procedimento di verifica che consente di identificare con sicurezza errori di parametrizzazione. Prima di poter essere memorizzati nell'apparecchio, i parametri rilevanti per la sicurezza vengono verificati. Inoltre con l'apparecchio nel normale stato operativo è interdetta qualsiasi modifica dei parametri al fine di impedire la calibrazione involontaria o arbitraria.

Per tale ragione, l'apparecchio alla consegna è bloccato. Allo stato di consegna il PIN è "0000".

Dopo una modifica, è necessario verificare tutti i parametri rilevanti per la sicurezza. A tal fine va eseguita una comparazione della se-

quenza di caratteri che ha lo scopo di verificare la rappresentazione dei caratteri e le vie di comunicazione.

Confermare se le due sequenze di caratteri sono identiche. I testi di verifica sono a disposizione in tedesco e per tutte le altre lingue di menu in inglese.

Zeichenfolgenvergleich Gerät: 1.23+4.56-789.0 Vorgabe: 1.23+4.56-789.0 Zeichenfolge identisch?

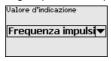
In una seconda fase vengono elencati tutti i parametri rilevanti per la sicurezza modificati. Confermare i valori modificati.

Nicht-Sil-Parameter 1 von 1 Sprache des Menüs Deutsch Parameter OK? Bestätigung Sind Anzahl und Werte der geänderten Parameter korrekt? OK?

Una volta che la parametrizzazione è stata eseguita completamente e correttamente secondo la procedura descritta, l'apparecchio è bloccato e quindi pronto all'uso.

Altrimenti l'apparecchio rimane in stato sbloccato e quindi non sicuro.

Display


Display - Lingua

Tramite questo parametro è possibile modificare la lingua del display. Questo parametro è descritto nelle -Istruzioni d'uso- "*Tastierino di taratura con display*".

Display/Valore d'indicazione

Tramite questo parametro è possibile modificare la visualizzazione del display

È possibile scegliere se il display deve visualizzare l'attuale frequenza degli impulsi o la temperatura dell'elettronica.

Diagnostica

Diagnostica - Stato apparecchio

In questa voce di menu è possibile consultare lo stato del sensore. Nel corso del normale funzionamento il sensore visualizza qui il messaggio "**OK**". In caso di disfunzione viene indicato il relativo codice.

Questo parametro è descritto nelle -lstruzioni d'uso- "Tastierino di taratura con display".

Diagnostica - Indicatore valori di picco

La funzione di indicazione dei valori di picco rileva i valori massimi e minimi nel corso del funzionamento.

Questo parametro è descritto nelle -lstruzioni d'uso- "Tastierino di taratura con display".

Diagnostica - Dati di taratura

Qui è possibile richiamare il valore di taratura del sensore, ovvero il valore percentuale della frequenza massima degli impulsi che determina la commutazione del sensore.

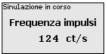
Se è stata eseguita la taratura di un punto, questo è il valore che è stato immesso. In caso di taratura di due punti questo è il valore calcolato.

Il valore rappresenta un indizio per l'affidabilità e la riproducibilità del punto di intervento.

Quanto maggiore è la differenza della frequenza degli impulsi tra lo stato coperto e non coperto, tanto maggiore è il valore differenziale (Delta I) e tanto più affidabile è la misura. Anche l'attenuazione calcolata automaticamente si orienta al valore Delta I. Quanto più elevato è il valore, tanto minore è l'attenuazione.

Un valore Delta I inferiore al 10% è un indizio di misura critica.

Diagnostica/simulazione


In questa voce di menu si simulano i valori di misura attraverso l'uscita in corrente. Ciò consente di controllare il percorso del segnale, per es. attraverso indicatori collegati a valle o la scheda d'ingresso del sistema di controllo.

È possibile simulare diversi valori:

Frequenza degli impulsi del sensore

Uscita in corrente

Funzione di intervento del relè

Informazione:

La simulazione s'interrompe automaticamente 10 minuti dopo l'ultimo azionamento di un tasto.

Diagnostica - Attenuazione calcolata

Il sensore calcola automaticamente un tempo di integrazione adequato.

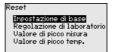
Ulteriori impostazioni

Ulteriori impostazioni - PIN

In questa voce di menu il PIN viene attivato/disattivato permanentemente. In questo modo si proteggono i dati del sensore dall'accesso illecito e da modifiche involontarie. Alla consegna il PIN è 0000.

Questo parametro è descritto nelle -Istruzioni d'uso- "Tastierino di taratura con display".

Ulteriori impostazioni -Data e ora


In questa voce di menu è possibile impostare la data e l'ora attuali. Questo parametro è descritto nelle -Istruzioni d'uso- "*Tastierino di*

Ulteriori impostazioni/ Reset

Tramite un reset vengono resettate tutte le impostazioni tranne alcune eccezioni e cioè: PIN, lingua, SIL e modo operativo HART.

taratura con display".

Ripristinare adesso regolaz. laboratorio?

Sono disponibili le seguenti funzioni di reset:

Impostazioni di base: ripristino dei valori di default dei parametri al momento della consegna dal laboratorio. Eventuali impostazioni specifiche della commessa vengono cancellate.

Impostazioni di laboratorio: ripristino dei parametri come per "*Impostazioni di base*". Inoltre vengono ripristinati i valori di default di parametri speciali. Eventuali impostazioni specifiche della commessa vengono cancellate.

Indicatore valori di picco valore di misura: reset delle impostazioni dei parametri nella voce di menu "Messa in servizio" ai valori di default del relativo apparecchio. Eventuali impostazioni specifiche della commessa vengono mantenute ma non vengono assunte nei parametri attuali

Valore di picco temperatura: resettaggio delle temperature di min. e di max. misurate sull'attuale valore di misura.

La seguente tabella visualizza i valori di default dell'apparecchio. I valori valgono per l'applicazione "*Livello*". L'applicazione deve essere precedentemente selezionata.

A seconda del modello di apparecchio, non tutte le voci di menu sono disponibili oppure sono occupate diversamente.

Menu	Voce di menu	Valore di default
Messa in servizio	Denominazione punto di misura	Sensore
	Isotopo	Cs-137
	Applicazione	Soglia di livello
	Tipo di taratura	Taratura di un punto
	Taratura - non co- perto	90000 ct/s
	Taratura - coperto	9000 ct/s
		solo con taratura di due punti
	Delta I	90 %
	Radiazione di fondo	0 ct/s
	Unità di tempe- ratura	°C
	Attenuazione	Viene calcolata automaticamente dall'apparecchio
	Modo uscita in corrente	8/16 mA, < 3,6 mA
	Modo operativo - relè	Sicurezza di sovrappieno
	Bloccare calibra- zione	Sbloccato
Display	Lingua	Lingua selezionata
	Valore d'indica- zione	Frequenza degli impulsi
Ulteriori imposta- zioni	Unità di tempe- ratura	°C
	Modalità HART	Standard

Ulteriori impostazioni -Modo operativo HART

Tramite questa funzione è possibile selezionare il modo operativo.

Il sensore offre i modi operativi HART Standard e Multidrop.

Se il valore di misura viene fornito attraverso l'uscita 4 ... 20 mA, non è possibile passare a HART Multidrop.

Il modo operativo standard con indirizzo fisso 0 (impostazione di laboratorio) significa indicazione del valore di misura come segnale 8/16 mA.

Questo parametro è descritto nelle -Istruzioni d'uso- "Tastierino di taratura con display".

Ulteriori impostazioni - Copiare impostazioni apparecchio

Questa funzione permette di:

- leggere i dati di parametrizzazione dal sensore nel tastierino di taratura con display
- scrivere i dati di parametrizzazione dal tastierino di taratura con display sul sensore

Info

Questo parametro è descritto nelle -Istruzioni d'uso- "Tastierino di taratura con display".

Info

Questo menu contiene i seguenti punti:

- Nome apparecchio visualizza il nome dell'apparecchio e il numero di serie
- Esecuzione dell'apparecchio visualizza la versione hardware e software dell'apparecchio
- Data di calibrazione visualizza la data di calibrazione e la data dell'ultima modifica
- Caratteristiche dell'apparecchio visualizza ulteriori caratteristiche dell'apparecchio

Questi parametri sono descritti nelle -Istruzioni d'uso- "Tastierino di taratura con display".

7.5 Protezione dei dati di parametrizzazione

È consigliabile annotare i dati impostati, per es. su questo manuale e poi archiviarli. Saranno così disponibili per ogni futura esigenza.

Se l'apparecchio è corredato di tastierino di taratura con display, è possibile memorizzare i dati del sensore in questo tastierino. Il procedimento è descritto nelle -lstruzioni d'uso- "Tastierino di taratura con display" alla voce di menu "Copiare dati del sensore". I dati restano memorizzati anche nel caso di mancanza di tensione del sensore.

Saranno memorizzati i seguenti dati e/o le impostazioni della calibrazione del tastierino di taratura con display:

- Tutti i dati dei menu "Messa in servizio" e "Display"
- Nel menu "Ulteriori impostazioni" i punti "Unità specifiche del sensore, unità di temperatura e linearizzazione"
- I valori della curva di linearizzazione liberamente programmabile

La funzione può essere usata anche per trasferire le impostazioni da un apparecchio ad un altro dello stesso tipo. Se si esegue una sostituzione del sensore, il tastierino di taratura con display sarà inserito nel nuovo apparecchio e i dati saranno scritti nel sensore nella voce di menu "Copiare dati del sensore".

8 Messa in servizio con PACTware

8.1 Collegamento del PC

Tramite l'adattatore d'interfaccia, direttamente al sensore

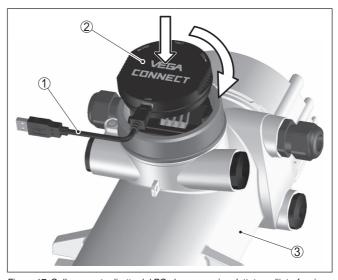


Figura 17: Collegamento diretto del PC al sensore via adattatore d'interfaccia

- 1 Cavo USB di collegamento al PC
- 2 Adattatore d'interfaccia VEGACONNECT 4
- 3 ">sensore

i

Informazione:

L'adattatore d'interfaccia VEGACONNECT 3 non è adatto per l'allacciamento del sensore.

Collegamento via HART

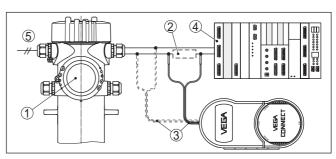


Figura 18: Collegamento del PC via HART alla linea del segnale

- 1 MINITRAC 31
- 2 Resistenza HART 250 Ω (opzionale in base all'elaborazione)
- 3 Cavo di collegamento con spinotti di 2 mm e morsetti
- 4 Sistema d'elaborazione/PLC/Alimentazione in tensione
- 5 Tensione d'alimentazione

Componenti necessari:

- MINITRAC 31
- PC con PACTware e VEGA-DTM idoneo
- VEGACONNECT 4
- Resistenza HART ca. 250 Ω
- Tensione d'alimentazione

Avviso:

Nel caso di alimentatori con resistenza HART integrata (resistenza interna ca. 250 Ω) non occorre una ulteriore resistenza esterna. Ciò vale per es. per gli apparecchi VEGATRENN 149A, VEGAMET 381 e VEGAMET 391. Anche le più comuni barriere di separazione Ex sono corredate nella maggior parte dei casi di una sufficiente resistenza di limitazione di corrente. In questi casi il VEGACONNECT 4 può essere collegato in parallelo alla linea 4 ... 20 mA.

8.2 Parametrizzazione con PACTware

Per la parametrizzazione del sensore tramite un PC Windows sono necessari il software di configurazione PACTware e un driver dell'apparecchio idoneo (DTM), conforme allo standard FDT. L'attuale versione del PACTware e tutti i DTM disponibili sono raccolti in una DTM Collection. È inoltre possibile integrare i DTM in altre applicazioni guadro conformemente allo standard FDT.

Avviso:

Per garantire il supporto di tutte le funzioni dell'apparecchio è necessario usare l'ultima DTM Collection, anche perchè le vecchie versioni Firmware non contengono tutte le funzioni descritte. È possibile scaricare l'ultima versione dell'apparecchio dalla nostra homepage. Su internet è disponibile anche una procedura di aggiornamento.

Ulteriori operazioni di messa in servizio sono descritte nelle -lstruzioni d'uso- "DTM Collection/PACTware", allegate ad ogni DTM Collection e scaricabili via internet. Una descrizione dettagliata è disponibile nella guida in linea di PACTware e nei DTM.

Presupposti

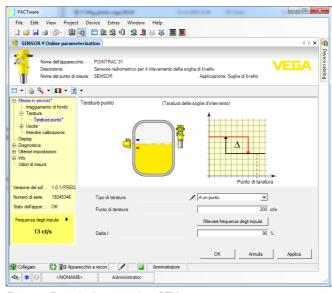


Figura 19: Esempio di una maschera DTM

Versione standard/Versione completa

Tutti i DTM degli apparecchi sono disponibili in versione standard e in versione integrale a pagamento. La versione standard contiene tutte le funzioni necessarie alla completa messa in servizio. Un assistente per la semplice configurazione del progetto facilita notevolmente la calibrazione. Parti integranti della versione standard sono anche la memorizzazione/stampa del progetto e una funzione Import/Export.

La versione integrale contiene anche una funzione di stampa ampliata per l'intera documentazione del progetto e la possibilità di memorizzare curve dei valori di misura e curve d'eco. Mette anche a disposizione un programma di calcolo del serbatoio e un multiviewer per la visualizzazione e l'analisi delle curve dei valori di misura e delle curve d'eco memorizzate.

La versione standard può essere scaricata dal sito www.vega.com/downloads, "Software". La versione integrale è disponibile su CD presso la rappresentanza responsabile.

8.3 Protezione dei dati di parametrizzazione

È consigliabile annotare e memorizzare i dati di parametrizzazione via PACTware. Saranno così disponibili per ogni eventuale futura esigenza.

9 Diagnostica e service

9.1 Manutenzione

L'apparecchio, usato in modo appropriato durante il normale funzionamento, non richiede manutenzione.

Il relativo contenitore di protezione va controllato a intervalli regolari. Ulteriori informazioni sono contenute nelle -Istruzioni d'uso- del contenitore di protezione.

9.2 Segnalazioni di stato

L'apparecchio dispone di un'autosorveglianza e diagnostica secondo NE 107 e VDI/VDE 2650. Relativamente alle segnalazioni di stato indicate nella tabella seguente sono visibili messaggi di errore dettagliati alla voce di menu "*Diagnostica*" tramite tastierino di taratura con display, PACTware/DTM ed EDD.

Segnalazioni di stato

I messaggi di stato sono suddivisi nelle seguenti categorie:

- Guasto
- Controllo di funzionamento
- Fuori specifica
- Manutenzione necessaria

e sono chiariti da pittogrammi:

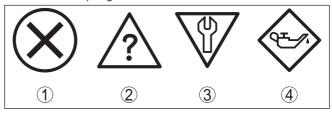


Figura 20: Pittogrammi delle segnalazioni di stato

- 1 Guasto (Failure) rosso
- 2 Fuori specifica (Out of specification) giallo
- 3 Controllo di funzionamento (Function check) arancione
- 4 Manutenzione necessaria (Maintenance) blu

Guasto (Failure): a causa del riconoscimento di un difetto di funzionamento nell'apparecchio, questo segnala un quasto.

Questa segnalazione di stato è sempre attiva e non può essere disattivata dall'utente.

Controllo di funzionamento (Function check): si sta lavorando sull'apparecchio, il valore di misura è temporaneamente non valido (per es. durante la simulazione).

Nelle impostazioni di default questa segnalazione di stato è inattiva. L'utente può attivarla tramite PACTware/DTM o EDD.

Fuori specifica (Out of specification): il valore di misura non è sicuro, poiché è stata superata la specifica dell'apparecchio (per es. temperatura dell'unità elettronica).

Failure

Nelle impostazioni di default questa segnalazione di stato è inattiva. L'utente può attivarla tramite PACTware/DTM o EDD.

Manutenzione necessaria (Maintenance): la funzione dell'apparecchio è limitata da influssi esterni. La misura viene influenzata, il valore di misura è ancora valido. Pianificare la manutenzione perché è probabile un guasto imminente (per es. a causa di adesioni).

Nelle impostazioni di default questa segnalazione di stato è inattiva. L'utente può attivarla tramite PACTware/DTM o EDD.

La seguente tabella elenca i codici di errore e i testi dei messaggi nella segnalazione di stato "Failure" e fornisce informazioni sulla causa e sui possibili rimedi.

Esempio di messaggio di errore

Codice	Cause	Eliminazione
Testo del messaggio		
F008 Errore co- municazione multisensore	Ulteriori sensori non inseriti Influssi EMI Non è disponibile nessun altro sensore	Controllare il cablaggio tra i sensori Collegare correttamente i sensori e predisporli al funzionamento
F013 Il sensore segnala un er- rore	Errore nell'ingresso in corrente Valore misura non valido Apparecchi collegati non in funzione	Controllare l'ingresso di corrente Controllare gli apparecchi collegati (slave)
F016 Dati di taratura invertiti	I valori di taratura di max. e min. sono invertiti	Correggere i valori di taratura
F017 Escursione ta- ratura troppo piccola	I valori della taratura di max. e min. sono troppo vicini tra di loro	Correggere i valori di taratura
F025 Tabella di li- nearizzazione non valida	Tabella di linearizzazione vuota Valore errato nella tabella di linearizzazione	Creare la tabella di lineariz- zazione Correggere la tabella di linearizzazione
F030 Valore di pro- cesso fuori limite	I valori di processo sono al di fuori del campo di misura impostato	- Ripetere la taratura
F034 Errore hardware E- PROM	- Elettronica difettosa	Riavviare l'apparecchio Sostituire l'elettronica

Codice Testo del messaggio	Cause	Eliminazione
F035 Errore dati E- EPROM	Errore nella comunicazione interna dell'apparecchio	Eseguire il reset Sostituire l'elettronica
F036 Programma memorizz. er- rato	Errore nel corso dell'aggior- namento del software	Ripetere aggiornamento software Sostituire l'elettronica
F037 Errore har- dware RAM	- Errore nella RAM	Riavviare l'apparecchio Sostituire l'elettronica
F038 Slave segnala anomalia	Linea di collegamento all'apparecchi slave interrotta Apparecchio non definito come slave	Controllare la linea di collegamento all'apparec- chio slave Definire l'apparecchio come slave
F040 Errore har- dware	- Sensore difettoso	Riavviare l'apparecchio Sostituire l'elettronica
F041 Errore foto- moltiplicatore	Errore nel rilevamento del valore di misura	Riavviare l'apparecchio Sostituire l'elettronica
F045 Errore nell'uscita in corrente	- Errore nell'uscita in corrente	Controllare il cablaggio dell'uscita in corrente Sostituire l'elettronica
F052 Configurazio- ne errata	Parametrizzazione non valida	- Eseguire il reset
F066 Taratura er- rata	Taratura non ancora eseguita Errore nel corso della tara- tura o all'immissione della tabella di linearizzazione	Eseguire la taratura Eseguire la linearizzazione
F068 Frequenza degli impulsi troppo elevata	Impostazioni errate dell'ap- parecchio	- Eseguire il reset
F072 Limite superato	Impostazioni errate dell'apparecchio	- Eseguire il reset
F073 Errore di cor- rezione valore effettivo	Correzione del valore effet- tivo errata	Ripetere la correzione del valore effettivo

	T	T
Codice	Cause	Eliminazione
Testo del messaggio		
F080	- Errore dell'apparecchio	- Riavviare l'apparecchio
Errore di si- stema		Contattare il servizio di assistenza
F086	- Errore nella comunicazione	- Riavviare l'apparecchio
Errore di co- municazione	bus di campo	Contattare il servizio di assistenza
F114	- Batteria scarica	- Reimpostare l'orologio in
Errore orolo- gio in tempo reale		tempo reale
F120	- Taratura apparecchio errata	- Eseguire la taratura
Errore del tempo di filtro	o mancante	
F121	- Non sono stati trovati gli	- Controllare apparecchi
Lista uten- ti errata sul	apparecchi slave	slave - Controllare l'elenco degli
bus comu-		slave nell'apparecchio
nicazione multisensore		master Apparecchio slave con
		indirizzo errato
F122	- L'indirizzo dell'apparecchio	Modificare gli indirizzi degli
Indirizzi doppi sul bus co-	è stato assegnato più volte	apparecchi
municazione		
multisensore		
F123	Apparecchi esterni causano radiazione	Determinare la causa della radiazione
Allarme rag- gi X		- In caso di radiazione
		esterna di breve durata: controllare manualmente le
		uscite di commutazione per
F104	Description ding P	questo periodo
F124 Allarme cau-	Dose eccessiva di radia- zioni	Determinare la causa della radiazione eccessiva
sato da		
radiazione ec- cessiva		
F125	Temperatura ambiente sulla	Raffreddare l'apparecchio o
Temperatura	custodia fuori specifica	proteggerlo dal calore della
ambiente ec- cessiva		radiazione con materiale isolante
CCOSIVA		

Function check

La seguente tabella elenca i codici di errore e i testi dei messaggi nella segnalazione di stato "*Function check*" e fornisce informazioni sulla causa e sui possibili rimedi.

Codice	Cause	Eliminazione
Testo del messaggio		
C029	- Simulazione attiva	- Terminare simulazione
Simulazione		Attendere la fine automatica dopo 60 minuti

Out of specification

La seguente tabella elenca i codici di errore e i testi dei messaggi nella segnalazione di stato "*Out of specification*" e fornisce informazioni sulla causa e sui possibili rimedi.

Codice Testo del messaggio	Cause	Eliminazione
S017 Precisione fuori specifica	Precisione fuori specifica	Correggere i valori di taratura
S025 Cattiva tabella di linearizza- zione	Cattiva tabella di lineariz- zazione	- Eseguire la linearizzazione
S038 Slave fuori specifica	- Slave fuori specifica	- Controllare lo slave
S125 Temperatura ambiente eccessiva/insufficiente	Temperatura ambiente eccessiva/insufficiente	Proteggere l'apparecchio da temperature estreme con materiale isolante

Maintenance

L'apparecchio non dispone di segnalazioni di stato per il settore "Maintenance".

9.3 Eliminazione di disturbi

Comportamento in caso di disturbi

È responsabilità del gestore dell'impianto prendere le necessarie misure per eliminare i disturbi che eventualmente si presentassero.

Procedimento per l'eliminazione di disturbi

I primi provvedimenti sono:

- Valutazione dei messaggi di errore, per es. tramite il tastierino di taratura con display
- Controllo del segnale in uscita
- Trattamento di errori di misura.

Un PC con il software PACTware e il relativo DTM offre ulteriori ampie possibilità diagnostiche. In molti casi in questo modo è possibile individuare le cause delle anomalie e provvedere alla loro eliminazione.

Controllare il segnale 4 ... 20 mA (misura di livello)

Collegare secondo lo schema elettrico un multimetro portatile nell'idoneo campo di misura. La seguente tabella descrive gli eventuali errori del segnale in corrente e i possibili rimedi.

Errore	Cause	Eliminazione
Segnale 4 20 mA insta- bile	Oscillazioni del livello	Impostare l'attenuazione a seconda dell'apparecchio tramite il tastierino di taratura con display o PACTware/DTM
Segnale 4 20 mA assente	Collegamento e- lettrico difettoso	Controllare il collegamento secondo il capitolo "Operazioni di collegamento" ed eventualmente correggere secondo il capitolo "Schema elettrico"
	Manca alimenta- zione in tensione	Controllare che i collegamenti non sia- no interrotti, eventualmente ripristinarli
	Tensione di a- limentazione troppo bassa e(o impedenza del ca- rico troppo alta	Controllare ed adeguare
Segnale in corrente superiore a 22 mA o inferiore a 3,6 mA	L'apparecchio se- gnala errore	Considerare il messaggio di errore sul tastierino di taratura con display

Controllare il segnale in uscita (rilevamento della soglia di livello)

La seguente tabella descrive possibili errori che eventualmente non generano un messaggio di errore:

Errore	Cause	Eliminazione
L'apparecchio se- gnala la copertura senza essere co- perto dal prodotto L'apparecchio segnala di non es- sere coperto pur essendo coperto dal prodotto	Manca alimenta- zione in tensione	Controllare che i collegamenti non sia- no interrotti, eventualmente ripristinarli
	Tensione di a- limentazione troppo bassa e(o impedenza del ca- rico troppo alta	Controllare ed adeguare
	Collegamento e- lettrico difettoso	Controllare il collegamento secondo il capitolo "Operazioni di collegamento" ed eventualmente correggere secondo il capitolo "Schema elettrico"
	Elettronica difettosa	Modificare il comportamento di in- tervento del sensore nel manu "Diagnostica/Simulazione". Se l'appa- recchio non commuta farlo riparare
	Adesioni sulla parete interna del serbatoio	Eliminare le adesioni Controllare il valore Delata I Migliorare la soglia di commutazione - eseguire una taratura di due punti
Segnale in corrente superiore a 22 mA o inferiore a 3,6 mA	Unità elettronica del sensore di- fettosa	Considerare i messaggi di errore sul tastierino di taratura con display

Comportamento dopo l'eliminazione dei disturbi

A seconda della causa del disturbo e delle misure attuate è eventualmente necessario ripetere i passi operativi descritti nel capitolo "Messa in servizio" o eseguire un controllo di plausibilità e di completezza.

Hotline di assistenza 24 ore su 24

Se non si dovesse ottenere alcun risultato, chiamare la Service Hotline VEGA al numero +49 1805 858550.

La hotline è disponibile anche al di fuori del normale orario d'ufficio, 7 giorni su 7, 24 ore su 24.

Poiché offriamo questo servizio in tutto il mondo, l'assistenza viene fornita in lingua inglese. Il servizio è gratuito, al cliente sarà addebitato solamente il costo della chiamata.

9.4 Sostituzione dell'unità l'elettronica

In caso di difetto, l'unità elettronica può essere sostituita da un tecnico dell'assistenza VEGA.

Negli apparecchi con qualifica SIL è possibile solamente l'impiego di un'unità elettronica con qualifica SIL.

Nelle applicazioni Ex usare unicamente un apparecchio e un'unità elettronica con omologazione Ex.

La nuova elettronica deve contenere le impostazioni di laboratorio del sensore, caricabili

- in laboratorio
- In loco da parte di un tecnico dell'assistenza

9.5 Aggiornamento del software

Per l'aggiornamento software sono necessari i seguenti componenti:

- Sensore
- Tensione d'alimentazione
- Adattatore d'interfaccia VEGACONNECT
- PC con PACTware
- Software attuale del sensore come file.

L'attuale software del sensore e informazioni dettagliate sul procedimento sono disponibili su "www.vega.com/downloads" alla voce "Software".

Le informazioni per l'installazione sono contenute nel file di download.

Avvertimento:

È possibile che gli apparecchi con omologazioni siano legati a determinate versioni del software. Assicurarsi perciò in caso di aggiornamento del software che l'omologazione rimanga operativa.

Per informazioni dettagliate si rimanda a <u>www.vega.com/downloads</u>, "*Omologazioni*".

9.6 Come procedere in caso di riparazione

La seguente procedura si riferisce esclusivamente al sensore. Se dovesse essere necessario riparare il contenitore di protezione, consultare le -lstruzioni d'uso- del contenitore di protezione.

Il foglio di reso apparecchio nonché informazioni dettagliate sono disponibili su www.vega.com/downloads, "Formulari e certificati".

L'utilizzo del modulo ci consente di eseguire più velocemente la riparazione.

Per richiedere la riparazione procedere come descritto di seguito.

- Stampare e compilare un modulo per ogni apparecchio
- Pulire l'apparecchio e predisporre un imballo infrangibile
- Allegare il modulo compilato e una eventuale scheda di sicurezza, esternamente, sull'imballaggio
- Chiedere l'indirizzo per la spedizione dell'apparecchio alla propria filiale competente, rintracciabile anche sulla nostra homepage www.vega.com.

10 Smontaggio

10.1 Sequenza di smontaggio

Attenzione:

Prima di smontare l'apparecchio assicurarsi che non esistano condizioni di processo pericolose, per es. pressione nel serbatoio o nella tubazione, temperature elevate, prodotti aggressivi o tossici, ecc.

Seguire le indicazioni dei capitoli "Montaggio" e "Collegamento all'alimentazione in tensione" e procedere allo stesso modo, ma nella sequenza inversa.

10.2 Smaltimento

L'apparecchio è costruito con materiali che possono essere riciclati dalle aziende specializzate. Abbiamo realizzato componenti che possono essere rimossi facilmente, costruiti anch'essi con materiali riciclabili.

Un corretto smaltimento evita danni all'uomo e all'ambiente e favorisce il riutilizzo di preziose materie prime.

Materiali: vedi "Dati tecnici"

Se non è possibile smaltire correttamente il vecchio apparecchio, contattateci per l'eventuale restituzione e il riciclaggio.

Direttiva RAEE 2002/96/CE

Questo apparecchio non è soggetto alla direttiva WEEE 2002/96/UE e alle relative leggi nazionali. Consegnare l'apparecchio direttamente a un'azienda specializzata nel riciclaggio e non usare i luoghi di raccolta comunali, che, secondo la direttiva WEEE 2002/96/UE, sono previsti solo per materiale di scarto di privati.

11 **Appendice**

11.1 Dati tecnici

Dati generali

316L corrisponde a 1.4404 oppure a 1.4435

Materiali, non a contatto col prodotto

- Materiale di scintillazione Nal (ioduro di idrogeno)

- Custodia di alluminio pressofuso Alluminio pressofuso AlSi10Mg, rivestito di polveri -

base: poliestere

316L - Custodia di acciaio speciale

- Guarnizione tra custodia e coperchio NBR (custodia di acciaio speciale, microfuso), silicone

(custodia di alluminio)

- Finestrella nel coperchio della custo-

dia (opzionale)

della custodia

Policarbonato

- Morsetto di terra 3161

Attacchi di processo

- Alette di fissaggio ø 9 mm (0.35 in), distanza fori 119 mm (4.69 in)

- Custodia di alluminio con unità elet-4,1 kg (9 lbs)

tronica

- Custodia di acciaio speciale con unità 9,1 kg (20.1 lbs)

elettronica

Max. coppia di serraggio viti di montag-50 Nm (36.88 lbf ft)

gio - alette di fissaggio alla custodia del

sensore

Max. coppia di serraggio per pressacavi NPT e tubi Conduit - Custodia di alluminio/di acciaio

speciale

50 Nm (36.88 lbf ft)

Valori in ingresso

Grandezza di misura	La grandezza di misura è l'intensità dei raggi gamma di
	un isotopo. Se l'intensità della radiazione diminuisce, per
	es. per effetto dell'aumento della densità del prodotto, il
	valore di misura del MINITRAC 31 cambia proporzional-
	monto alla doncità

mente alla densità.

Ingresso analogico

- Tipo di ingresso 4 ... 20 mA, passivo

 Carico interno 250 O

Ingresso di commutazione

- Tipo di ingresso - Open Collector 10 mA - Tipo di ingresso - contatto a relè 100 mA

Valori in uscita - misura di livello

4 ... 20 mA/HART - attivo: 4 ... 20 mA/HART - passivo Segnali di uscita

Range del segnale in uscita 3,8 ... 20,5 mA/HART

Tensione ai morsetti passiva 9 ... 30 V DC
Protezione contro cortocircuiti Esistente
Separazione di potenziale Esistente
Risoluzione del segnale 0.3 µA

Segnale di guasto uscita in corrente 22 mA, < 3,6 mA

(impostabile)

Max. corrente in uscita 22 mA Corrente di avviamento \leq 3,6 mA

Carico

 $-4 \dots 20$ mA/HART - attivo < 500 Ω $-4 \dots 20$ mA/HART - a sicurezza < 300 Ω intrinseca

Attenuazione (63% della grandezza in 1 ... 1200 s, impostabile

ingresso)

Valori in uscita HART

- PV (Primary Value) Livello

SV (Secondary Value) temperatura dell'elettronica

Grandezze in uscita - rilevamento della soglia di livello

Segnali di uscita 8/16 mA

Tensione ai morsetti passiva 9 ... 30 V DC

Protezione contro cortocircuiti Esistente

Separazione di potenziale Esistente

Segnale di guasto uscita in corrente 22 mA, < 3.6 mA

(impostabile)

Max. corrente in uscita 22 mA

Corrente di avviamento ≤ 3,6 mA

Carico

 $\begin{array}{lll} - 4 \dots 20 \text{ mA/HART - attivo} & < 500 \ \Omega \\ - 4 \dots 20 \text{ mA/HART - a sicurezza} & < 300 \ \Omega \end{array}$

intrinseca

Attenuazione (63% della grandezza in Automatica

ingresso)

PV (Primary Value)SV (Secondary Value)Condizione d'interventotemperatura dell'elettronica

Uscita a relè

Uscita Uscita a relè (SPDT), contatto di commutazione a potenziale zero

Tensione d'intervento

Valori in uscita HART

– Min. 10 mV

- Max. 253 V AC, 253 V DC

Corrente d'intervento

– Min. 10 μA

- Max. 3 A AC, 1 A DC

Potenza commutabile

– Min. 50 mW

- Max. 750 VA AC, 40 W DC

Se intervengono carichi induttivi o correnti elevate, la doratura dei contatti relè sarà irrimediabilmente danneggiata. Il contatto non sarà più idoneo alla commutazione

di piccoli circuiti elettrici del segnale.

Materiale dei contatti (contatti a relè) AgNi oppure AgSnO e placcato Au

Precisione di misura (secondo DIN EN 60770-1)

Condizioni di riferimento e di processo secondo DIN EN 61298-1

- Temperatura +18 ... +30 °C (+64 ... +86 °F)

- Umidità relativa dell'aria 45 ... 75 %

- Pressione dell'aria 860 ... 1060 mbar/86 ... 106 kPa (12.5 ... 15.4 psig)

Riproducibilità ≤ 0.1 %

Scostamento di misura su solidi in i valori dipendono fortemente dall'applicazione. Non è

pezzatura perciò possibile fornire indicazioni definitive.

Scostamento di misura sotto influenza ≤ 1 %

EMI

Grandezze d'influenza sulla precisione di misura

Indicazioni valide anche per l'uscita in corrente

Deriva termica - uscita in corrente ±0,03%/10 K riferita all'escursione 16 mA e/o

max. ±0,3% <±15 μA

Scostamento su uscita in corrente per

conversione analogico-digitale

Scostamento sull'uscita in corrente cau- <±150 µA

sato da forti induzioni elettromagnetiche

di alta frequenza nell'ambito della norma

EN 61326

Caratteristiche di misura e dati di potenza

Tempo di risposta del salto⁵⁾ ≤ 5 s (con attenuazione 1 s)

Condizioni ambientali

Temperatura ambiente, di stoccaggio e -40 ... +60 °C (-40 ... +140 °F)

di trasporto

⁵⁾ Intervallo di tempo che, dopo una rapida variazione della distanza di misura di max. 0,5 m in caso di applicazioni su liquidi e max. 2 m in caso di applicazioni su solidi in pezzatura, intercorre prima che il segnale di uscita raggiunga per la prima volta il 90% del suo valore a regime (IEC 61298-2).

Condizioni di processo

Per quanto riguarda le condizioni di processo, è necessario attenersi anche alle indicazioni della targhetta d'identificazione. Il valore valido è sempre il più basso.

Pressione di processo In assenza di pressione

Temperatura di processo (misurata sul -40 ... +60 °C (-40 ... +140 °F)

tubo del rilevatore) In caso di temperature superiori ai 60 °C consigliamo

l'impiego di un raffreddamento ad acqua.

Resistenza alla vibrazione⁶⁾ Oscillazioni meccaniche fino a 1 g in un campo di fre-

quenza di 5 ... 200 Hz

Dati elettro-meccanici - Esecuzione IP 66/IP 67

_			
\Box	assa	001	"
Т.	1550	Car	νL

- M20 x 1,5 2 pressacavi M20 x 1,5 (ø del cavo 6 ... 12 mm), 4 tappi

ciechi M20 x 1,5

Allegato: 1 pressacavo M20 x 1,5

- ½ NPT 5 tappi filettati (rossi) ½ NPT

Allegati: 3 pressacavi ½ NPT (cavo: ø 6 ... 12 mm), 4

tappi ciechi ½ NPT

Morsetti a molla per sezione del cavo

- Filo massiccio, liccio 0,2 ... 2,5 mm² (AWG 24 ... 14)

- Cavetto con rivestimento estremità

conduttore

0,2 ... 1,5 mm² (AWG 24 ... 16)

Tastierino di taratura con display

Elemento di visualizzazione Display con retroilluminazione

Visualizzazione del valore di misura

- Numero di cifre 5

Grandezza delle cifre
 L x A = 7 x 13 mm

Elementi di servizio 4 tasti

Grado di protezione

non installatoIP 20

- installato nella custodia senza coper- IP 40

chio

Materiali

Custodia ABS

- Finestrella Lamina di poliestere

Orologio integrato

Formato data Giorno, Mese, Anno

Formato ora 12 h/24 h
Fuso orario regolato in laboratorio CET

Scostamento max. 10.5 min./anno

⁶⁾ Controllo eseguito secondo le direttive del Germanischer Lloyd, caratteristica GL 2.

Misurazione della temperatura dell'elettronica		
Risoluzione	1 °C (1.8 °F)	
Precisione	±1 °C (1.8 °F)	

Tensione d'alimentazione			
Tensione d'esercizio	20 72 V DC oppure 20 253 V AC, 50/60 Hz		
Protezione contro inversione di polarità	Esistente		
May notenza assorbita	6 VA (AC): 4 W (DC)		

Protezioni elettriche

Grado di protezione, in base alla variante IP 66/IP 677 della custodia

Categoria di sovratensione III
Classe di protezione I

Omologazioni

Gli apparecchi con omologazioni possono avere dati tecnici differenti a seconda del modello.

Per questi apparecchi è quindi necessario rispettare i relativi documenti d'omologazione, che fanno parte della fornitura dell'apparecchio o possono essere scaricati da www.vega.com/downloads", "Omologazioni".

11.2 Dimensioni

I seguenti disegni quotati illustrano solo alcune delle possibili esecuzioni. Disegni quotati dettagliati possono essere scaricati dal sito www.vega.com/downloads, "Disegni".

⁷⁾ Presupposto per garantire il grado di protezione è l'uso di un cavo idoneo.

Custodia di alluminio e di acciaio speciale

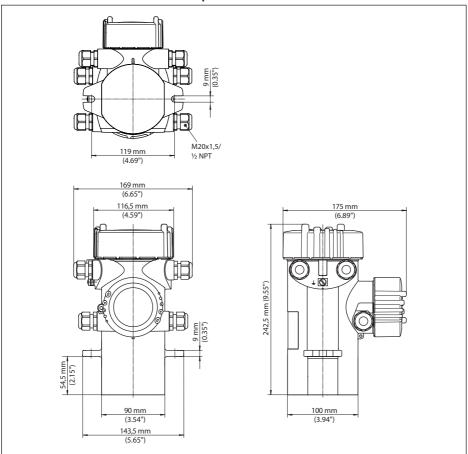


Figura 21: Custodia di alluminio ovv. di acciaio speciale microfuso

MINITRAC 31

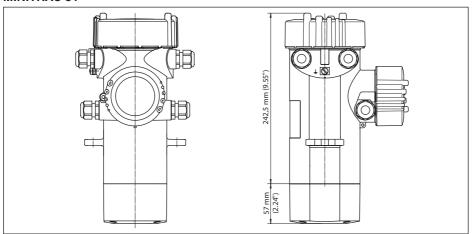


Figura 22: MINITRAC 31 L Campo di misura

11.3 Diritti di proprietà industriale

VEGA product lines are global protected by industrial property rights. Further information see www.vega.com.

Only in U.S.A.: Further information see patent label at the sensor housing.

VEGA Produktfamilien sind weltweit geschützt durch gewerbliche Schutzrechte.

Nähere Informationen unter www.vega.com.

Les lignes de produits VEGA sont globalement protégées par des droits de propriété intellectuelle. Pour plus d'informations, on pourra se référer au site www.vega.com.

VEGA lineas de productos están protegidas por los derechos en el campo de la propiedad industrial. Para mayor información revise la pagina web www.vega.com.

Линии продукции фирмы ВЕГА защищаются по всему миру правами на интеллектуальную собственность. Дальнейшую информацию смотрите на сайте www.vega.com.

VEGA系列产品在全球享有知识产权保护。

进一步信息请参见网站<www.vega.com>。

11.4 Marchio depositato

Tutti i marchi utilizzati, i nomi commerciali e delle società sono proprietà del loro legittimo proprietario/autore.

INDEX

Α

Accessori

Unità di visualizzazione esterna 11
Accessori per il montaggio 11
Applicazione 31, 44
Attenuazione 35, 51
Autorizzazione 11

В

Bloccare calibrazione 29, 37, 42, 48

C

Calore 16
Caratteristiche apparecchio 41, 53
Cavo di collegamento 17
Classe di protezione 17
Collegamento di terra 18
Collegamento equipotenziale 18
Contenitore di protezione 11
Controllare il segnale 61, 62
Correzione valore effettivo 35

D

Data 39, 51 Data di calibrazione 41, 53 Dati di taratura 38, 50 Delta I 46

E

Eliminazione delle anomalie 61 Esecuzione dell'apparecchio 41, 53

н

HART 41, 52

ı

Impostazioni apparecchio Copiare 41, 52 Incaricato della radioprotezione 12 Indicatore valori di picco 38, 49 Isotopo

- Co-60 30, 43 - Cs-137 30, 43

1

Linearizzazione 32 Lingua 37, 49

M

Menu principale 30, 43 Messaggi di stato - NAMUR NE 107 57 Modo operativo 41, 52 Modo uscita in corrente 35, 47

Ν

NAMUR NE 107

- Failure 58
- Function check 60
- Maintenance 61
- Out of specification 61
 Nome dell'apparecchio 41, 53

0

Operazioni di collegamento 18 Ora 39, 51

P

Passacavo 17
Pezzi di ricambio

– Unità elettronica 11
PIN 39, 51
Posizione di montaggio 14
Principio di funzionamento 9
Protezione contro le radiazioni 12
Punto di taratura 45

R

Radiazione di fondo 31, 44 Raffreddamento ad acqua 16 Relè 36, 48 Reset 39, 51 Riparazione 63

S

Schermatura 18
Service
- Hotline 63
Simulazione 38, 50
Sorgente radioattiva 30, 43
Stato apparecchio 38, 49

Т

Taratura 32
- sistema 28
Targhetta d'identificazione 7
Tecnica di collegamento 18
Tensione d'alimentazione 17,70
Tipo di taratura 45

Ш

Unità 31, 44 Uscita in corrente 35, 47

Uscita in corrente min./max. 36

۷

Valore d'indicazione 37, 49 Valori di default 40, 51

Z

Zone controllate 12

Finito di stampare:

Le informazioni contenute in questo manuale d'uso rispecchiano le conoscenze disponibili al momento della messa in stampa.

Riserva di apportare modifiche

© VEGA Grieshaber KG, Schiltach/Germany 2013

3389-IT-131230