Istruzioni d'uso

Sensore radiometrico per la misura di densità

MINITRAC 31

Profibus PA

Document ID: 43836

Sommario

1	Il contenuto di questo documento				
	1.1	Funzione	4		
	1.2	Documento destinato ai tecnici	4		
	1.3	Significato dei simboli	4		
2	Criteri di sicurezza				
_	2.1	Personale autorizzato	5		
	2.2	Uso conforme alla destinazione e alle normative			
	2.2				
		Avvertenza relativa all'uso improprio			
	2.4	Avvertenze di sicurezza generali			
	2.5	Conformità CE			
	2.6	Raccomandazioni NAMUR			
	2.7	Salvaguardia ambientale	6		
3	Descrizione del prodotto				
	3.1	Struttura	7		
	3.2	Metodo di funzionamento	8		
	3.3	Imballaggio, trasporto e stoccaggio	10		
	3.4	Accessori e parti di ricambio	10		
	3.5	Contenitore di protezione adequato			
4	Man				
4	4.1	taggio Avvertenze generali	10		
	4.1	Indicazioni di montaggio	1/		
			14		
5	Collegamento all'alimentazione in tensione				
	5.1	Preparazione del collegamento			
	5.2	Allacciamento - misura di densità e di flusso di massa			
	5.3	Allacciamento - rilevamento della soglia di livello			
	5.4	Impostare indirizzo apparecchio	28		
6	Messa in servizio con il tastierino di taratura con display				
	6.1	Installare il tastierino di taratura con display	29		
	6.2	Sistema operativo			
	6.3	Parametrizzazione - misura di livello			
	6.4	Parametrizzazione - misura di densità			
	6.5	Parametrizzazione - rilevamento della soglia di livello			
	6.6	Parametrizzazione - allarme raggi X			
	6.7	Parametrizzazione - correzione del valore effettivo			
	6.8	Protezione dei dati di parametrizzazione			
			00		
7		sa in servizio con PACTware			
	7.1	Collegamento del PC			
	7.2	Parametrizzazione con PACTware			
	7.3	Protezione dei dati di parametrizzazione	71		
8	Messa in servizio con altri sistemi				
	8.1	Programmi di servizio DD	72		
9	Diag	nostica e service			
	9.1	Manutenzione	73		
	9.2	Segnalazioni di stato			
	0.2	Eliminazione di diaturbi			

	9.4	Sostituzione dell'unità l'elettronica	78		
	9.5	Aggiornamento del software	79		
	9.6				
10	Smontaggio				
	10.1	Seguenza di smontaggio	81		
	10.2	Smaltimento	81		
11	Appendice				
	11.1	Dati tecnici	82		
		Comunicazione Profibus PA			
	11.3	Dimensioni	91		

•

Normative di sicurezza per luoghi Ex

Per le applicazioni Ex attenersi alle normative di sicurezza specifiche di questo impiego, che sono parte integrante di questo manuale e accompagnano tutti gli apparecchi omologati Ex.

Finito di stampare: 2013-11-11

1 Il contenuto di questo documento

1.1 Funzione

Queste -Istruzioni d'uso- forniscono le informazioni necessarie al montaggio, al collegamento e alla messa in servizio, nonché importanti indicazioni relative alla manutenzione e all'eliminazione di disturbi. Leggerle perciò prima della messa in servizio e conservarle come parte integrante dell'apparecchio, in un luogo facilmente raggiungibile, accanto allo strumento.

1.2 Documento destinato ai tecnici

Queste -Istruzioni d'uso- sono destinate a personale qualificato, che deve prenderne visione e applicarle.

1.3 Significato dei simboli

Informazioni, consigli, indicazioni

Questo simbolo identifica utili informazioni ausiliarie.

Attenzione: l'inosservanza di questo avviso di pericolo può provocare disturbi o errori di misura.

Avvertenza: l'inosservanza di questo avvertimento di pericolo può provocare danni alle persone e/o all'apparecchio.

Pericolo: l'inosservanza di questo avviso di pericolo può provocare gravi lesioni alle persone e/o danni all'apparecchio.

Applicazioni Ex

Questo simbolo identifica le particolari istruzioni per gli impieghi Ex.

Elenco

Questo punto identifica le singole operazioni di un elenco, non soggette ad una sequenza obbligatoria.

→ Passo operativo

Questa freccia indica un singolo passo operativo.

1 Sequenza operativa

I numeri posti davanti ai passi operativi identificano la sequenza delle singole operazioni.

Smaltimento di batterie

Questo simbolo contrassegna particolari avvertenze per lo smaltimento di batterie e accumulatori.

2 Criteri di sicurezza

2.1 Personale autorizzato

Tutte le operazioni descritte in queste -Istruzioni d'uso- devono essere eseguite unicamente da personale qualificato e autorizzato dal gestore dell'impianto.

Per l'uso dell'apparecchio indossare sempre l'equipaggiamento di protezione personale necessario.

2.2 Uso conforme alla destinazione e alle normative

Il MINITRAC 31 è un sensore per la misura di densità e il rilevamento della soglia di livello.

Informazioni dettagliare relative al campo di impiego sono contenute nel capitolo "Descrizione del prodotto".

La sicurezza operativa dell'apparecchio è garantita solo da un uso conforme alle normative, secondo le -Istruzioni d'uso- ed eventuali istruzioni aggiuntive.

2.3 Avvertenza relativa all'uso improprio

Un uso di questo apparecchio non appropriato o non conforme alle normative può provocare rischi funzionali dell'apparecchio, possono per es. verificarsi situazioni di troppo-pieno nel serbatoio o danni a componenti del sistema, causati da montaggio o installazione errati.

2.4 Avvertenze di sicurezza generali

L'apparecchio corrisponde al suo livello tecnologico solo se si rispettano le normali prescrizioni e direttive. Deve essere usato solo in condizioni tecniche perfette e sicure. Il funzionamento esente da disturbi è responsabilità del gestore.

È inoltre compito del gestore garantire, per tutta la durata del funzionamneto, che le necessarie misure di sicurezza corrispondano allo stato attuale delle norme in vigore e rispettino le nuove disposizioni.

L'utente deve inoltre rispettare le normative di sicurezza di queste istruzioni d'uso, gli standard nazionali s'installazione e le vigenti condizioni di sicurezza e di protezione contro gli infortuni.

Interventi non in linea con queste -Istruzioni d'uso- devono essere effettuati solo da personale autorizzato dal costruttore, per ragioni di sicurezza e di garanzia. Sono categoricamente vietate trasformazioni o modifiche arbitrarie.

Occorre inoltre tener conto dei contrassegni e degli avvisi di sicurezza apposti sull'apparecchio.

Questo sistema di misura impiega radiazioni gamma. Prestare perciò attenzione alle avvertenze in materia di radioprotezione nel capitolo "Descrizione del prodotto". Tutti i lavori sul contenitore di protezione vanno eseguiti sotto il controllo di un incaricato della radioprotezione in possesso dell'idonea formazione.

2.5 Conformità CE

L'apparecchio soddisfa i requisiti di legge della relativa direttiva CE. Con l'apposizione del simbolo CE VEGA conferma il successo dell'avvenuto collaudo.

Solo per apparecchi di classe A

L'apparecchio è uno strumento di classe A ed è destinato all'impiego in ambiente industriale. In caso di impiego in un ambiente diverso, per es. nel settore abitativo, l'utente è tenuto a garantire la compatibilità elettromagnetica. Eventualmente vanno attuate misure di schermatura contro grandezze perturbatrici sulle linee di alimentazione e irradiate.

La dichiarazione di conformità CE può essere scaricata dal nostro sito www.vega.com.

2.6 Raccomandazioni NAMUR

La NAMUR è l'Associazione d'interesse per la tecnica di controllo di processo nell'industria chimica e farmaceutica in Germania. Le raccomandazioni NAMUR valgono come standard per la strumentazione di campo.

L'apparecchio soddisfa i requisiti stabiliti dalle seguenti raccomandazioni NAMUR:

- NE 21 compatibilità elettromagnetica di strumenti
- NE 43 livello segnale per l'informazione di guasto di convertitori di misura
- NE 53 compatibilità di apparecchi di campo e componenti d'indicazione e di calibrazione
- NE 107 autosorveglianza e diagnostica di apparecchi di campo

Per ulteriori informazioni consultare il sito www.namur.de.

2.7 Salvaguardia ambientale

La protezione delle risorse naturali è un compito di assoluta attualità. Abbiamo perciò introdotto un sistema di gestione ambientale, allo scopo di migliorare costantemente la difesa dell'ambiente aziendale. Questo sistema è certificato secondo DIN EN ISO 14001.

Aiutateci a rispettare queste esigenze e attenetevi alle indicazioni di queste -lstruzioni d'uso- per la salvaguardia ambientale:

- Capitolo "Imballaggio, trasporto e stoccaggio"
- Capitolo "Smaltimento"

3 Descrizione del prodotto

3.1 Struttura

Targhetta d'identificazione

La targhetta d'identificazione contiene i principali dati relativi all'identificazione e all'impiego dell'apparecchio:

Figura 1: Struttura della targhetta d'identificazione (esempio)

- 1 Tipo di apparecchio
- 2 Codice del prodotto
- 3 Elettronica
- 4 Grado di protezione
- 5 Temperatura ambiente
- 6 Versione hardware e software
- 7 Numero d'ordine
- 8 Numero di serie dell'apparecchio
- 9 Numero ID documentazione apparecchio

Numero di serie

La targhetta d'identificazione contiene il numero di serie dell'apparecchio, tramite il quale sulla nostra homepage è possibile trovare i sequenti dati:

- codice prodotto dell'apparecchio (HTML)
- data di fornitura (HTML)
- caratteristiche dell'apparecchio specifiche della commessa (HTML)
- istruzioni d'uso valide al momento della fornitura (PDF)
- dati del sensore specifici della commessa per una sostituzione dell'elettronica (XML)
- certificato di prova trasduttore di pressione (PDF)

Per accedere alle informazioni sulla nostra homepage <u>www.vega.com</u>, selezionare "VEGA Tools" e "Ricerca apparecchio".

In alternativa è possibile trovare i dati tramite smartphone:

- scaricare l'app per smartphone "VEGA Tools" da "Apple App Store" oppure da "Google Play Store"
- scansionare il codice Data Matrix riportato sulla targhetta d'identificazione dell'apparecchio, oppure
- immettere manualmente nell'app il numero di serie

Campo di applicazione di queste Istruzioni d'uso

Queste -Istruzioni d'uso- valgono per le seguenti esecuzioni di apparecchi:

- Hardware da 1.0.4
- Software da 1.5.0
- Stato di modifica unità elettronica da -01.

Esecuzioni dell'elettronica

L'apparecchio è fornito con differenti esecuzioni dell'elettronica. L'esecuzione è riconoscibile dal codice del prodotto sulla targhetta d'identificazione:

• Elettronica standard tipo PT30P-XX

Materiale fornito

La fornitura comprende:

- sensore radiometrico
- Accessori per il montaggio
- Documentazione
 - Queste -Istruzioni d'uso-
 - Istruzioni d'uso "Tastierino di taratura con display" (opzionale)
 - "Normative di sicurezza" specifiche Ex (per esecuzioni Ex)
 - Eventuali ulteriori certificazioni

3.2 Metodo di funzionamento

Campo d'impiego

L'apparecchio è adatto ad applicazioni su liquidi e materiali in pezzatura in serbatoi in presenza di condizioni di processo difficili, in quasi tutti i settori industriali.

Il rilevamento del valore di misura avviene senza contatto attraverso la parete del serbatoio. Non sono necessari né un attacco di processo né un'apertura nel serbatoio, per cui l'apparecchio è ideale per l'installazione in sistemi esistenti.

L'apparecchio si presta a svariate applicazioni. Accanto alle applicazioni principali quali misura di densità e rilevamento della soglia di livello, il MINITRAC 31 può essere impiegato per identificare quantità residue oppure, in collegamento con un apparecchio di misura di portata, per rilevare il flusso di massa.

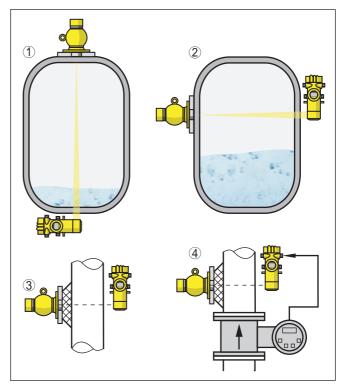


Figura 2: MINITRAC 31 - Possibilità d'impiego

- 1 Misura di livello identificazione di quantità residue
- 2 Rilevamento della soglia di livello
- 3 Misura di densità
- 4 Misura di portata massica

L'apparecchio può essere inoltre utilizzato come allarme in caso di rilevamento di sorgenti di radiazioni estranee (Allarme raggi X) oppure come correzione del valore effettivo

Se è selezionato Allarme raggi X, l'apparecchio rileva le radiazioni di sorgenti di radiazioni esterne. Queste possono essere rappresentate per es. da un controllo del cordone di saldatura in un impianto adiacente o da altri apparecchi radiometrici.

Se l'apparecchio viene impiegato per la correzione del valore effettivo, esso trasmette un valore effettivo per correggere un altro sensore radiometrico. In questo modo è possibile adeguare esattamente la misura alle caratteristiche specifiche nel serbatoio.

Principio di funzionamento

Per la misura radiometrica si impiega un isotopo cesio 137 o cobalto 60 che emette radiazioni gamma focalizzate. Queste radiazioni subiscono un'attenuazione penetrando attraverso la parete di un tubo e il prodotto. Il rilevatore Nal situato dalla parte opposta, per es. su una tubazione, rileva l'irraggiamento in arrivo, la cui intensità dipende

dalla densità del prodotto da misurare. Il principio di misura si è rivelato efficace in presenza di condizioni di processo estreme, poiché la misura avviene senza contatto attraverso la parete della tubazione. Il sistema di misura garantisce massima sicurezza, affidabilità e disponibilità dell'impianto, indipendentemente dal prodotto e dalle sue caratteristiche

3.3 Imballaggio, trasporto e stoccaggio

Imballaggio

Durante il trasporto l'apparecchio è protetto dall'imballaggio. Un controllo in base a ISO 4180 garantisce il rispetto di tutte le esigenze di trasporto previste.

L'imballaggio degli apparecchi standard è di cartone ecologico e riciclabile. Per le esecuzioni speciali si aggiunge polietilene espanso o sotto forma di pellicola. Smaltire il materiale dell'imballaggio tramite aziende di riciclaggio specializzate.

Trasporto

Per il trasporto è necessario attenersi alle indicazioni relative all'imballaggio di trasporto. Il mancato rispetto può causare danni all'apparecchio.

Ispezione di trasporto

Al ricevimento della merce è necessario verificare immediatamente l'integrità della spedizione ed eventuali danni di trasporto. I danni di trasporto constatati o difetti nascosti devono essere trattati di conseguenza.

Stoccaggio

I colli devono restare chiusi fino al momento del montaggio, rispettando i contrassegni di posizionamento e di stoccaggio applicati esternamente.

Salvo indicazioni diverse, riporre i colli rispettando le seguenti condizioni:

- Non collocarli all'aperto
- Depositarli in un luogo asciutto e privo di polvere
- Non esporli ad agenti aggressivi
- Proteggerli dall'irradiazione solare
- Evitare urti meccanici

Temperatura di trasporto e di stoccaggio

- Temperatura di stoccaggio e di trasporto vedi "Appendice Dati tecnici - Condizioni ambientali"
- Umidità relativa dell'aria 20 ... 85%

3.4 Accessori e parti di ricambio

PLICSCOM

Il tastierino di taratura con display PLICSCOM serve per la visualizzazione del valore di misura, la calibrazione e la diagnostica. Può essere inserito e rimosso in qualsiasi momento nel/dal sensore ovv. nella/dalla unità d'indicazione e calibrazione esterna.

Ulteriori informazioni sono contenute nelle -Istruzioni d'uso- "Tastierino di taratura con display PLICSCOM" (ID documento 27835).

VEGACONNECT

L'adattatore d'interfaccia VEGACONNECT permette di collegare all'interfaccia USB di un PC apparecchi interfacciabili. Per la parame-

trizzazione di questi apparecchi è necessario il software di servizio PACTware con VEGA-DTM.

Ulteriori informazioni sono contenute nelle -Istruzioni d'uso- "Adattatore d'interfaccia VEGACONNECT" (ID documento 32628).

VEGADIS 81

Il VEGADIS 81 è un'unità esterna di visualizzazione e di servizio per sensori plics® VEGA.

Per i sensori con custodia a due camere è necessario anche l'adattatore d'interfaccia "DISADAPT" per il VEGADIS 81.

Ulteriori informazioni sono contenute nelle -Istruzioni d'uso- "VEGA-DIS 81" (ID documento 43814).

Unità elettronica

L'unità elettronica PT30E.XX è un componente sostituibile per sensori radiometrici MINITRAC 31.

L'unità elettronica può essere sostituita solamente da un tecnico dell'assistenza VFGA

Accessori per il montaggio

Per il montaggio del MINITRAC 31 sono disponibili sostegni e speciali accessori. In proposito rivolgersi al reparto distribuzione.

3.5 Contenitore di protezione adeguato

La misura radiometrica richiede l'impiego di un isotopo radioattivo conservato in un contenitore di protezione adequato.

L'uso di materiale radioattivo è regolamentato per legge. Sono determinanti le disposizioni in materia in vigore nel paese in cui si utilizza l'impianto.

In Germania, per es., vale l'attuale Ordinanza sulla radioprotezione (Strahlenschutzverordnung - StrlSchV) sulla base della legge sull'energia nucleare (Atomschutzgesetz - AtG).

Per la misura radiometrica sono rilevanti soprattutto i punti elencati qui di sequito.

Autorizzazione

L'impiego di un impianto basato sull'utilizzo di radiazioni gamma necessita di un'autorizzazione, ossia di un permesso rilasciato dalle autorità competenti su richiesta (in Germania, per es. dall'Ufficio regionale per la protezione ambientale ecc.).

Informazioni dettagliate sono contenute nelle -Istruzioni d'uso- del contenitore di protezione.

Indicazioni generali in materia di protezione contro le radiazioni

La manipolazione di preparati radioattivi deve avvenire evitando qualsiasi inutile esposizione alle radiazioni. L'esposizione inevitabile va ridotta al minimo possibile. A tale proposito attenersi ai tre principi sequenti:

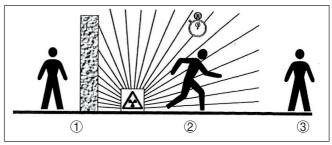


Figura 3: Provvedimenti per la protezione da fonti radioattive

- 1 Schermatura
- 2 Tempo
- 3 Distanza

Schermatura: garantire la miglior schermatura possibile tra la sorgente di radiazioni e voi stessi ovv. tutte le altre persone. Il contenitore di protezione (per es. VEGASOURCE), nonché tutti i materiali ad elevata densità (per es. piombo, ferro, calcestruzzo ecc.), assicurano una schermatura efficace.

Tempo: trattenersi il più brevemente possibile nell'area esposta alle radiazioni.

Distanza: rimanere il più lontano possibile dalla sorgente di radiazione. L'intensità di dose delle radiazioni diminuisce quadraticamente con l'aumentare della distanza dalla sorgente di radiazione.

Incaricato della radioprotezione

Il gestore dell'impianto deve nominare un incaricato della radioprotezione in possesso delle cognizioni e della formazione necessarie. L'incaricato è responsabile del rispetto dell'ordinanza sulla radioprotezione e dei relativi provvedimenti.

Zona controllata

Le zone controllate sono zone all'interno delle quali l'intensità di dose ambientale supera un determinato valore. In queste zone controllate possono operare solamente persone sottoposte ad una sorveglianza ufficiale del dosaggio di radiazioni. I valori limiti relativi alla zona controllata sono stabiliti per legge (in Germania, per es. nell'Ordinanza sulla radioprotezione).

Siamo volentieri a disposizione per ulteriori informazioni in materia di radioprotezione e normative in vigore in altri paesi.

4 Montaggio

4.1 Avvertenze generali

Disinserzione della sorgente di radiazioni

Il contenitore di protezione è parte integrante del sistema di misura. Nel caso in cui il contenitore di protezione contenga già un isotopo attivo, esso va assicurato prima di procedere al montaggio.

Prima dell'inizio dei lavori di montaggio assicurarsi che la sorgente di radiazioni sia chiusa in maniera affidabile e assicurare il contenitore di protezione con un lucchetto per impedire un'apertura involontaria.

Protezione dall'umidità

Proteggere l'apparecchio dalle infiltrazioni di umidità attuando le seguenti misure:

- utilizzare il cavo consigliato (v. capitolo "Collegamento all'alimentazione in tensione")
- serrare bene il pressacavo
- Ruotare la custodia in modo che il pressacavo sia rivolto verso il
- condurre verso il basso il cavo di collegamento prima del pressacavo

Questo vale soprattutto:

- in caso di montaggio all'aperto
- in ambienti nei quali è prevedibile la presenza di umidità (per es. in seguito a processi di pulizia)
- su serbatoi refrigerati o riscaldati

processo

Idoneità alle condizioni di Assicurarsi che tutti i componenti dell'apparecchio coinvolti nel processo siano adeguati alle effettive condizioni di processo.

Tra questi rientrano in particolare:

- Componente attivo di misura
- Attacco di processo
- Guarnizione di processo

Tra le condizioni di processo rientrano in particolare:

- Pressione di processo
- Temperatura di processo
- Caratteristiche chimiche dei prodotti
- Abrasione e influssi meccanici

I dati relativi alle condizioni di processo sono indicati nel capitolo "Dati tecnici" e sulla targhetta d'identificazione.

Cappuccio di protezione

Nelle custodie degli apparecchi con filetti NPT autosigillanti, i collegamenti a vite dei cavi non possono essere avvitati in laboratorio. Per tale ragione, per il trasporto le aperture delle entrate dei cavi sono chiuse con cappucci di protezione rossi.

Prima della messa in servizio, questi cappucci di protezione vanno sostituiti con pressacavi omologati o eventualmente con tappi ciechi idonei.

I pressacavi e i tappi ciechi adeguati sono forniti in dotazione insieme all'apparecchio.

4.2 Indicazioni di montaggio

Posizione di montaggi

Avviso:

Nell'ambito della progettazione, i nostri specialisti analizzeranno le carattristiche del punto di misura al fine di dimensionare adeguatamente la sorgente di radiazioni (isotopo).

Il cliente riceve un documento "Source-Sizing" relativo al punto di misura con l'indicazione dell'attività della fonte necessaria e tutte le informazioni importanti per il montaggio.

Oltre alle seguenti istruzioni per il montaggio si deve prestare attenzione anche istruzioni contenute nel documento "Source-Sizing".

In mancanza di indicazioni diverse nel documento "Source-Sizing", valgono le seguenti istruzioni per il montaggio.

Maggiori informazioni sulle barriere e sul montaggio del relativo contenitore di protezione sono contenute nelle -lstruzioni d'uso- del contenitore di protezione, per es. VEGASOURCE.

Il MINITRAC 31 può essere montato in qualsiasi posizione. Se è stato ordinato un apparecchio con un manto di piombo per la protezione da radiazioni ambientali (opzionale), il sensore è protetto lateralmente da radiazioni esterne. In questo caso le radiazioni possono penetrare solo frontalmente.

Fissare i sensori in modo da escludere la possibilità che cadano dal sostegno.

Orientare l'angolo di diffusione dei raggi del contenitore di protezione sul MINITRAC 31.

Montare il contenitore di protezione il più vicino possibile al serbatoio. Se dovessero rimanere degli interstizi, vanno applicate barriere e grate protettive per impedire l'accesso alla zona pericolosa.

Avvertimento:

Prestare attenzione che il tubo sia sempre riempito completamente. Soprattutto in caso di tratti di misura in tubo orizzontali, inclusioni d'aria o depositi nel tubo possono falsificare il risultato di misura. Misurare preferibilmente attraverso il centro del tubo.

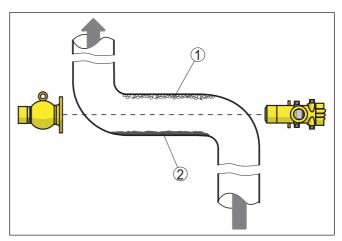


Figura 4: Montaggio su una tubazione orizzontale

- 1 Inclusioni d'aria
- 2 Depositi

Misura di densità

È possibile effettuare una misura di densità e concentrazione in tubazioni e in serbatoi. La precisione della misura aumenta con la lunghezza irradiata (L) del prodotto. Ciò è particolarmente importante nel caso di prodotti con bassa densità o tubi con diametro ridotto. Ci sono diverse possibilità di aumentare la lunghezza irradiata (L) del prodotto.

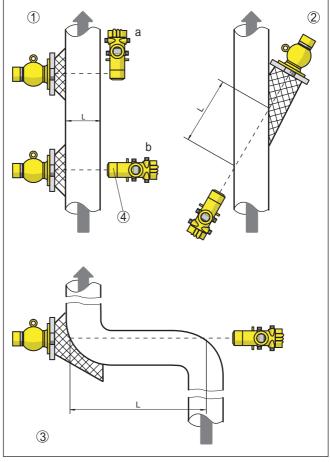


Figura 5: Varianti di montaggio - misura di densità o misura di concentrazione

- 1a Irraggiamento radiale montaggio verticale
- 1b Irraggiamento assiale montaggio orizzontale o in caso di impiego del manto di piombo per la protezione da radiazioni ambientali
- 2 Irraggiamento obliquo per l'allungamento della lungezza irradiata (L)
- 3 Allungamento della lunghezza irradiata (L) tramite l'inserimento di un raccordo angolare come tratto di misura
- 4 Manto di piombo per la protezione da radiazioni ambientali l'apparecchio è protetto lateralmente

Nella misura di densità, la differenza di irraggiamento con diverse densità è molto ridotta. Soprattutto in presenza di tubazioni con diametri piccoli la variazione è minima.

Per tale ragione è importante garantire la schermatura da radiazioni esterne di disturbo, equipaggiando l'apparecchio con l'anello di piombo opzionale. Non è possibile equipaggiare l'apparecchio con l'anello di piombo in un momento successivo.

Flusso di massa

Il MINITRAC 31 può essere impiegato in collegamento con un apparecchio di misura di portata per rilevare il flusso di massa.

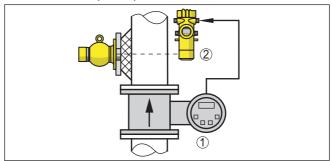


Figura 6: Misura del flusso di massa

- 1 Apparecchio di misura di portata
- 2 MINITRAC 31

Rilevamento della soglia di livello

Per il rilevamento della soglia di livello normalmente il sensore viene montato orizzontalmente all'altezza della soglia di livello desiderata. Prestare attenzione che in questa posizione nel serbatoio non vi siano controventature o nervature di rinforzo.

Orientare l'angolo di diffusione dei raggi del contenitore di protezione esattamente sul campo di misura del MINITRAC 31.

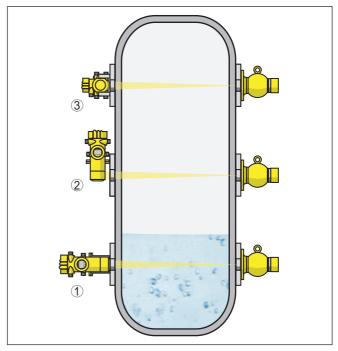


Figura 7: Posizione di montaggio - rilevamento della soglia di livello

- 1 Montaggio orizzontale
- 2 Montaggio verticale
- 3 Montaggio orizzontale, trasversalmente rispetto al serbatoio

Misura di livello - identificazione di quantità residue

Il MINITRAC 31 può essere utilizzato per l'identificazione di quantità residue, per es. in serbatoi di stoccaggio per liquidi di grande valore. A tal fine l'apparecchio va montato nel punto più basso del serbatoio.

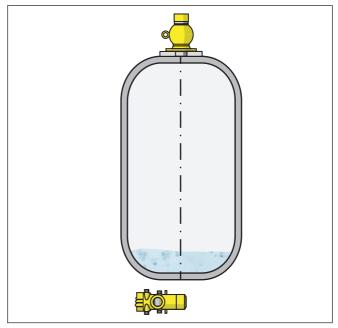


Figura 8: Misura di livello - identificazione di quantità residue in un serbatoio di stoccaggio

Protezione dal calore

Nel caso in cui si superi la massima temperatura ambiente è necessario predisporre misure adeguate per proteggere l'apparecchio dal surriscaldamento.

È possibile per esempio proteggere l'apparecchio dal calore tramite un adeguato isolamento, oppure montarlo ad una distanza maggiore dalla fonte di calore.

Le misure necessarie vanno predisposte già in fase di progettazione. Nel caso in cui si desideri predisporle a posteriori, è opportuno consultare i nostri specialisti per non rischiare di compromettere la precisione dell'applicazione.

Se queste misure non sono sufficienti per garantire il rispetto della massima temperatura ambiente ammessa, per il MINITRAC 31 è disponibile un raffreddamento ad acqua.

Anche il raffreddamento ad acqua va incluso nel calcolo del punto di misura, perciò è opportuno consultare i nostri specialisti per la sua progettazione.

5 Collegamento all'alimentazione in tensione

5.1 Preparazione del collegamento

Normative di sicurezza

Rispettare le seguenti normative di sicurezza:

- Eseguire il collegamento unicamente in assenza di tensione
- Se si temono sovratensioni, occorre installare scaricatori di sovratensione

Tensione d'alimentazione

L'alimentazione in tensione è fornita da un convertitore Profibus DP/ $P\Delta$

Il campo dell'alimentazione in tensione può variare in base all'esecuzione dell'apparecchio. Trovate i dati relativi all'alimentazione in tensione nel capitolo "Dati tecnici".

Cavo di collegamento

Il collegamento si esegue con un cavo schermato secondo la specifica Profibus. La tensione d'alimentazione e la trasmissione del segnale digitale bus passano attraverso lo stesso cavo di collegamento bifilare.

Usate un cavo a sezione circolare. Un diametro esterno del cavo di 5 ... 9 mm (0.2 ... 0.35 in) garantisce la tenuta stagna del pressacavo. Se applicate un cavo con un diametro diverso o una diversa sezione, scegliete un'altra guarnizione o utilizzate un pressacavo adeguato.

La vostra installazione deve essere eseguita secondo la specifica Profibus. E' importante verificare le corrette impedenze terminali delle estremità del bus.

Trovate dettagliate informazioni relative a specifica del cavo, installazione e topologia nella "*Profibus PA - User and Installation Guideline*" su www.profibus.com.

Passacavo

Munire sempre di idonei tappi ciechi tutti i passacavi non utilizzati. I cerchietti di plastica nei collegamenti a vite dei cavi fungono solamente da protezione contro la polvere nel corso del trasporto.

Passacavo ½ NPT

Nelle custodie degli apparecchi con filetti NPT autosigillanti, i collegamenti a vite dei cavi non possono essere avvitati in laboratorio. Per tale ragione, per il trasporto le aperture dei collegamenti a vite dei cavi sono chiuse con cappucci di protezione rossi.

Prima della messa in servizio, questi cappucci di protezione vanno sostituiti con collegamenti a vite omologati o vanno chiusi con tappi ciechi adeguati. I collegamenti a vite dei cavi non utilizzati non offrono sufficiente protezione dall'umidità e vanno sostituiti con tappi ciechi.

I pressacavi e i tappi ciechi adeguati sono forniti in dotazione insieme all'apparecchio.

Schermatura del cavo e collegamento di terra

Prestare attenzione che la schermatura del cavo e il collegamento a terra vadano eseguiti conformemente alla specifica Feldbus. Nel caso in cui sia probabile un'irradiazione elettromagnetica superiore ai

valori di prova dell'EN 61326-1 per i settori industriali, consigliamo di collegare lo schermo del cavo ad ambo i lati al potenziale di terra.

Nei sistemi di collegamento equipotenziale, collegare lo schermo del cavo direttamente alla terra dell'alimentatore nella scatola di collegamento e al sensore. Collegare lo schermo direttamente al morsetto di terra interno. Il morsetto di terra esterno della custodia deve essere collegato a bassa impedenza al conduttore equipotenziale.

Nei sistemi senza collegamento equipotenziale con schermo bilaterale, collegare lo schermo del cavo sull'alimentatore e il sensore direttamente al potenziale di terra. Nella scatola di collegamento e/o nel distributore a T, la breve linea di diramazione verso il sensore non deve essere collegata né al potenziale di terra, né ad un altro schermo del cavo. Gli schermi del cavo verso l'alimentatore e verso il successivo distributore a T devono essere collegati fra di loro e al potenziale di terra, mediante un condensatore di ceramica (per es. 1 nF, 1500 V). In questo modo si evitano correnti transitorie di terra a bassa frequenza, mantenendo efficace la protezione per segnali di disturbo ad alta frequenza.

Tecnica di collegamento

Il collegamento dell'alimentazione in tensione e dell'uscita del segnale si esegue con morsetti a molla situati nella custodia.

Il collegamento al tastierino di taratura con diplay e/o all'adattatore d'interfaccia si esegue con i terminali di contatto situati nella custodia.

Operazioni di collegamento

Procedere nel modo seguente:

Questo procedimento vale per gli apparecchi senza protezione contro le esplosioni.

- 1. Svitare il coperchio grande della custodia
- 2. Svitare il dado di raccordo del pressacavo
- 3. Togliere la guaina del cavo di collegamento per ca. 10 cm (4 in), denudare le estremità dei conduttori per ca. 1 cm (0.4 in).
- 4. Inserire il cavo nel sensore attraverso il pressacavo

Figura 9: Operazioni di collegamento 4 e 5

- 1 Bloccaggio delle morsettiere
- 5. Infilare con forza un piccolo cacciavite per viti con testa a intaglio nell'apertura di bloccaggio quadrata del relativo morsetto
- Inserire le estremità dei conduttori nelle aperture circolari dei morsetti aperti

ĭ

Informazione:

I conduttori rigidi e quelli flessibili con rivestimento sull'estremità possono essere inseriti direttamente nelle aperture dei morsetti. In caso di conduttori flessibili senza rivestimento sull'estremità, infilare con forza un piccolo cacciavite per viti con testa a intaglio nell'apertura di bloccaggio quadrata del relativo morsetto. In questo modo l'apertura del morsetto si apre. Estraendo il cacciavite l'apertura si richiude.

- Verificare che i conduttori siano ben fissati, tirando leggermente
 Per staccare un conduttore, infilare con forza un piccolo cacciavite per viti con testa a intaglio nell'apertura di bloccaggio quadrata come illustrato nella figura
- Collegare lo schermo al morsetto interno di terra, connettere il morsetto esterno di terra al collegamento equipotenziale.
- Serrare a fondo il dado di raccordo del pressacavo. L'anello di tenuta deve circondare perfettamente il cavo
- 10. Avvitare il coperchio della custodia

A questo punto l'allacciamento elettrico è completato.

Informazione:

Le morsettiere sono a innesto e possono essere staccate dall'unità elettronica sbloccando con un piccolo cacciavite le due leve di bloccaggio laterali. La morsettiera scatta automaticamente verso l'alto e può essere tolta. Nel reinserirla fare attenzione che scatti in posizione.

5.2 Allacciamento - misura di densità e di flusso di massa

Apparecchi non-Ex e apparecchi con uscita in corrente senza sicurezza intrinseca

Vano dell'elettronica e di connessione - apparecchi non-Ex e apparecchi con uscita in corrente senza sicurezza intrinseca

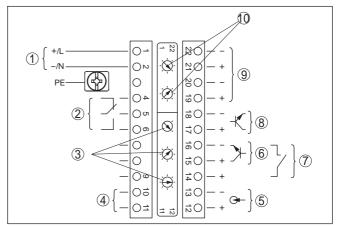


Figura 10: Vano dell'elettronica e di connessione negli apparecchi non-Ex e negli apparecchi con uscita in corrente senza sicurezza intrinseca

- 1 Tensione d'alimentazione
- 2 Uscita a relè
- 3 Impostazione dell'indirizzo di bus per Profibus PA
- 4 Allacciamento Profibus PA
- 5 Ingresso di segnale 4 ... 20 mA (sensore attivo)
- 6 Ingresso di connessione per transistor NPN
- 7 Ingresso di connessione a potenziale zero
- 8 Uscita a transistor
- 9 Interfaccia per comunicazione sensore-sensore (MGC)
- 10 Impostazione indirizzo bus per comunicazione sensore-sensore (MGC)¹⁾

Vano di calibrazione e connessione - apparecchi non-Ex e apparecchi con uscita in corrente senza sicurezza intrinseca

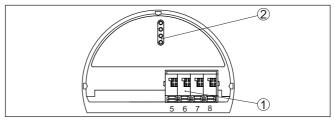


Figura 11: Vano di calibrazione e connessione per apparecchi non-Ex e apparecchi con uscita in corrente senza sicurezza intrinseca

- 1 Morsetti per l'unità d'indicazione e calibrazione esterna
- 2 Terminali di contatto per tastierino di taratura con display e/o per adattatore d'interfaccia

Apparecchi con uscita in corrente a sicurezza intrinseca

Informazioni dettagliate relative ai modelli antideflagranti (Ex-ia, Ex-d) sono contenute nelle avvertenze di sicurezza specifiche per le applicazioni Ex allegate a ciascun apparecchio con omologazione Ex.

Vano dell'elettronica e di connessione per apparecchi con uscita in corrente a sicurezza intrinseca

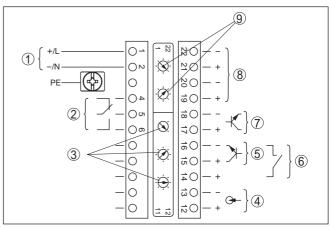


Figura 12: Vano dell'elettronica e di connessione (Ex-d) per apparecchi con uscita in corrente a sicurezza intrinseca

- 1 Tensione d'alimentazione
- 2 Uscita a relè
- 3 Impostazione dell'indirizzo di bus per Profibus PA
- 4 Ingresso di segnale 4 ... 20 mA (sensore attivo)
- 5 Ingresso di connessione per transistor NPN
- 6 Ingresso di connessione a potenziale zero
- 7 Uscita a transistor
- 8 Interfaccia per comunicazione sensore-sensore (MGC)
- 9 Impostazione indirizzo bus per comunicazione sensore-sensore (MGC)²⁾

²⁾ MGC = Multi Gauge Communication

Vano di calibrazione e connessione per apparecchi con uscita in corrente a sicurezza intrinseca

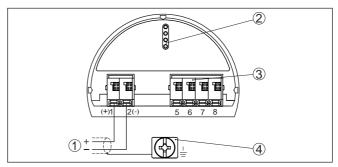


Figura 13: Vano di calibrazione e connessione (Ex-ia) per apparecchi con uscita in corrente a sicurezza intrinseca

- 1 Morsetti per Profibus PA
- 2 Terminali di contatto per tastierino di taratura con display e/o per adattatore d'interfaccia
- 3 Morsetti per l'unità d'indicazione e calibrazione esterna
- 4 Morsetto di terra

5.3 Allacciamento - rilevamento della soglia di livello

Apparecchi non-Ex e apparecchi con uscita in corrente senza sicurezza intrinseca

Vano dell'elettronica e di connessione - apparecchi non-Ex e apparecchi con uscita in corrente senza sicurezza intrinseca

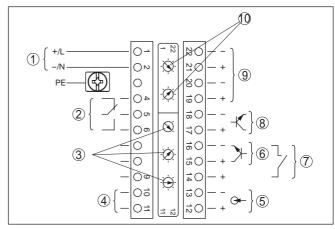


Figura 14: Vano dell'elettronica e di connessione negli apparecchi non-Ex e negli apparecchi con uscita in corrente senza sicurezza intrinseca

- 1 Tensione d'alimentazione
- 2 Uscita a relè
- 3 Impostazione dell'indirizzo di bus per Profibus PA
- 4 Allacciamento Profibus PA
- 5 Ingresso di segnale 4 ... 20 mA (sensore attivo)
- 6 Ingresso di connessione per transistor NPN
- 7 Ingresso di connessione a potenziale zero
- 8 Uscita a transistor
- 9 Interfaccia per comunicazione sensore-sensore (MGC)
- 10 Impostazione indirizzo bus per comunicazione sensore-sensore (MGC)3)

Vano di calibrazione e connessione - apparecchi non-Ex e apparecchi con uscita in corrente senza sicurezza intrinseca

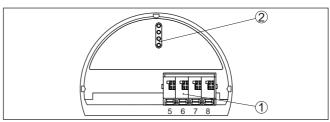


Figura 15: Vano di calibrazione e connessione per apparecchi non-Ex e apparecchi con uscita in corrente senza sicurezza intrinseca

- 1 Morsetti per l'unità d'indicazione e calibrazione esterna
- 2 Terminali di contatto per tastierino di taratura con display e/o per adattatore d'interfaccia

³⁾ MGC = Multi Gauge Communication

Apparecchi con uscita in corrente a sicurezza intrinseca

Informazioni dettagliate relative ai modelli antideflagranti (Ex-ia, Ex-d) sono contenute nelle avvertenze di sicurezza specifiche per le applicazioni Ex allegate a ciascun apparecchio con omologazione Ex.

Vano dell'elettronica e di connessione per apparecchi con uscita in corrente a sicurezza intrinseca

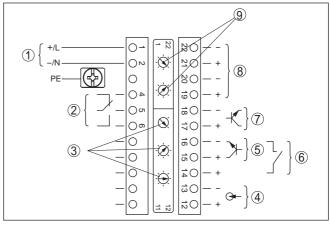


Figura 16: Vano dell'elettronica e di connessione (Ex-d) per apparecchi con uscita in corrente a sicurezza intrinseca

- 1 Tensione d'alimentazione
- 2 Uscita a relè
- 3 Impostazione dell'indirizzo di bus per Profibus PA
- 4 Ingresso di segnale 4 ... 20 mA (sensore attivo)
- 5 Ingresso di connessione per transistor NPN
- 6 Ingresso di connessione a potenziale zero
- 7 Uscita a transistor
- 8 Interfaccia per comunicazione sensore-sensore (MGC)
- 9 Impostazione indirizzo bus per comunicazione sensore-sensore (MGC)4)

Vano di calibrazione e connessione per apparecchi con uscita in corrente a sicurezza intrinseca

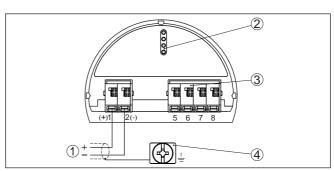


Figura 17: Vano di calibrazione e connessione (Ex-ia) per apparecchi con uscita in corrente a sicurezza intrinseca

- Morsetti per Profibus PA
- 2 Terminali di contatto per tastierino di taratura con display e/o per adattatore
- 4) MGC = Multi Gauge Communication

d'interfaccia

- 3 Morsetti per l'unità d'indicazione e calibrazione esterna
- 4 Morsetto di terra

5.4 Impostare indirizzo apparecchio

Indirizzo apparecchio

Assegnare un indirizzo ad ogni apparecchio Profibus PA. Gli indirizzi ammessi vanno da 0 a 126. Ogni indirizzo di una rete Profibus PA deve essere attribuito solo una volta. Il sensore sarà riconosciuto dal sistema di controllo solo se l'indirizzo è stato impostato correttamente.

Nella condizione di fornitura da laboratorio è impostato l'indirizzo 126. Questo indirizzo può essere usato per il controllo di funzioni dell'apparecchio e per il collegamento a una rete Profibus PA esistente. L'indirizzo deve poi essere modificato, per il collegamento di altri apparecchi.

L'impostazione dell'indirizzo si esegue a scelta mediante:

- Il selettore d'indirizzo nel vano dell'elettronica dell'apparecchio (impostazione d'indirizzo via hardware)
- Il tastierino di taratura con display (impostazione d'indirizzo via software)
- PACTware/DTM (impostazione d'indirizzo via software)

Indirizzamento hardware

L'indirizzamento hardware è attivo quando col selettore d'indirizzo dell'apparecchio è impostato un indirizzo inferiore a 126. L'indirizzamento via software è così inattivo ed è valido l'indirizzo hardware impostato.

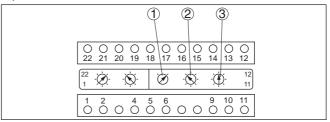


Figura 18: Selettore d'indirizzo

- 1 Indirizzi inferiori a 100 (selezione 0), indirizzi superiori a 100 (selezione 1)
- 2 Posizione delle decine dell'indirizzo (selezione da 0 a 9)
- 3 Posizione delle unità dell'indirizzo (selezione da 0 a 9)

Indirizzamento software

28

L'indirizzamento software è attivo, se con i selettori d'indirizzo sull'apparecchio è impostato l'indirizzo 126 o uno superiore.

Il procedimento di assegnazione indirizzo è descritto nelle -Istruzioni d'uso- "Tastierino di taratura con display".

6 Messa in servizio con il tastierino di taratura con display

6.1 Installare il tastierino di taratura con display

Installare/rimuovere il tastierino di taratura con display

È possibile installare in ogni momento il tastierino di taratura con display nel sensore e rimuoverlo nuovamente, senza interrompere l'alimentazione in tensione.

Procedere nel modo sequente:

- 1. Svitare il coperchio piccolo della custodia
- Disporre il tastierino di taratura con display sull'elettronica nella posizione desiderata (sono disponibili quattro posizioni a passi di 90°).
- 3. Montare il tastierino di taratura con display sull'elettronica e ruotarlo leggermente verso destra finché scatta in posizione
- 4. Avvitare saldamente il coperchio della custodia con finestrella

Per rimuoverlo procedete nella sequenza inversa.

Il tastierino di taratura con display è alimentato dal sensore, non occorre un ulteriore collegamento.

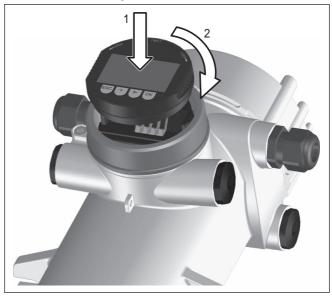


Figura 19: Installare il tastierino di taratura con display

Avviso:

Se si desidera corredare l'apparecchio di un tastierino di taratura con display e disporre così dell'indicazione del valore di misura, è necessario usare un coperchio più alto con finestrella.

6.2 Sistema operativo

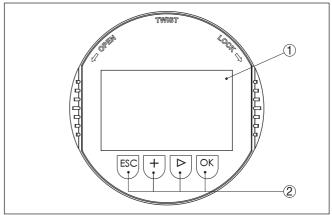


Figura 20: Elementi d'indicazione e di servizio

- 1 Display LC
- 2 Tasti di servizio

Funzioni dei tasti

Tasto [OK]:

- Passare alla panoramica dei menu
- Confermare il menu selezionato
- Editare i parametri
- Salvare il valore

Tasto *[-1*:

- Modificare la rappresentazione del valore di misura
- Selezionare una voce della lista
- Selezionare la posizione da modificare

Tasto [+]:

- Modificare il valore di un parametro

Tasto [ESC]:

- Interrompere l'immissione
- Passare al menu superiore

Sistema operativo

La calibrazione dell'apparecchio si esegue attraverso i quattro tasti del tastierino di taratura con display. Sul display LCD appaiono le singole voci di menu. Le funzioni dei singoli tasti sono descritte nella sezione precedente. Dopo ca. 60 minuti dall'ultimo azionamento di un tasto, scatta un ritorno automatico all'indicazione del valore di misura. I valori non confermati con **[OK]** vanno persi.

6.3 Parametrizzazione - misura di livello

Con la parametrizzazione si adegua l'apparecchio alle condizioni d'impiego. La parametrizzazione si esegue mediante il menu di servizio.

Informazione:

Queste -Istruzioni d'uso- descrivono i parametri specifici dell'apparecchio. Altri parametri generali sono descritti nelle -Istruzioni d'uso- "Tastierino di taratura con display".

Avvio dell'apparecchio

Avvertimento:

In occasione della prima messa in servizio o dopo un resettaggio dell'apparecchio, questo si avvia con valori standard predefiniti. Questi valori non sono adatti all'applicazione specifica e vanno sostituiti con valori reali.

Eseguire una messa in servizio nella sequenza indicata di seguito.

Menu principale

Il menu principale è suddiviso in cinque sezioni con la seguente funzionalità:

Messa in servizio: impostazioni per es. relative alla denominazione del punto di misura, all'isotopo, all'applicazione, alla radiazione di fondo, alla taratura, all'uscita del segnale

Display: impostazioni per es. relative alla lingua, all'indicazione del valore di misura

Diagnostica: informazioni per es. su stato dell'apparecchio, indicatore valori di picco, simulazione

Ulteriori impostazioni: unità apparecchio, reset, data/ora, funzione di copia

Info: denominazione dell'apparecchio, versione hardware e software, data di calibrazione, caratteristiche dell'apparecchio

Procedimento

Verificare se il display è impostato nella lingua corretta ed eventualmente modificare la lingua alla voce di menu "*Display/Lingua*".

Iniziare con la messa in servizio del MINITRAC 31.

Per configurare in maniera ottimale la misura, selezionare in successione le singole voci di sottomenu del menu principale "Messa in servizio" e impostare i parametri riferiti alla propria applicazione. La procedura è descritta qui di seguito.

Possibilmente attenersi alla successione delle singole voci di sottomenu.

Messa in servizio

Messa in servizio - Indirizzo sensore

A ciascun apparecchio Profibus PA va assegnato un indirizzo. Ciascun indirizzo va assegnato una sola volta in una rete Profibus PA. Il sistema pilota riconoscerà il sensore solamente se l'indirizzo è stato impostato correttamente.

Nella condizione di fornitura da laboratorio è impostato l'indirizzo 126. Questo indirizzo può essere usato per il controllo di funzioni dell'apparecchio e per il collegamento a una rete Profibus PA esistente. L'indirizzo deve poi essere modificato, per il collegamento di altri apparecchi.

L'impostazione dell'indirizzo si esegue a scelta mediante:

- Il selettore d'indirizzo nel vano dell'elettronica dell'apparecchio (impostazione d'indirizzo via hardware)
- Il tastierino di taratura con display (impostazione d'indirizzo via software)
- PACTware/DTM (impostazione d'indirizzo via software)

Indirizzamento hardware

L'indirizzamento hardware è attivo quando con i selettori d'indirizzo sull'unità elettronica del MINITRAC 31 viene impostato un indirizzo inferiore a 126. L'indirizzamento via software è così inattivo ed è valido l'indirizzo hardware impostato.

Indirizzamento software

L'indirizzamento software è attivo, se con i selettori d'indirizzo sull'apparecchio è impostato l'indirizzo 126 o uno superiore.

Se è stato impostato un indirizzo hardware (inferiore a 126), l'apparecchio segnala che l'indirizzo hardware è attivo.

Messa in servizio - Denominazione punto di misura

Qui è possibile assegnare un nome adeguato del punto di misura. Premere il tasto "**OK**" per avviare l'elaborazione. Con il tasto "+" si modifica il carattere e con il tasto "->" si passa alla posizione successiva.

È possibile immettere nomi composti da max. 19 caratteri. Sono disponibili i seguenti caratteri:

- lettere maiuscole dalla A alla Z
- cifre da 0 a 9
- caratteri speciali + / _ spazio

Messa in servizio - Isotopo

In questa voce di menu è possibile impostare l'isotopo utilizzato nel contenitore di protezione per il MINITRAC 31.

Controllare quale isotopo è montato nel contenitore di protezione consultando la targhetta d'identificazione del contenitore di protezione.

Messa in servizio - Applicazione

Immettere l'applicazione desiderata.

Questa voce di menu consente di adeguare il sensore all'applicazione desiderata. Si può scegliere tra le seguenti applicazioni: "Livello", "Densità", "Soglia di livello", "Allarme raggi X" o "Correzione valore effettivo"

Messa in servizio - Radiazione di fondo

L'irraggiamento naturale presente sulla terra influenza la precisione della misura.

Tramite questo punto di menu è possibile escludere questa radiazione naturale di fondo.

Il MINITRAC 31 misura la radiazione di fondo naturale presente e azzera la frequenza degli impulsi.

In futuro la frequenza degli impulsi di questa radiazione di fondo viene sottratta automaticamente dalla frequenza complessiva degli impulsi. Ciò significa che viene visualizzata solamente la radiazione proveniente dalla sorgente utilizzata.

Per eseguire quest'impostazione il contenitore di protezione deve essere chiuso.

Messa in servizio - Unità

In questa voce di menu è possibile selezionare le unità del valore di processo e della temperatura.

Messa in servizio - Taratura

In questa voce di menu è possibile immettere il campo di misura (valore di processo min. e max) del sensore.

Queste impostazioni influenzano l'uscita in corrente del sensore.

Immettere nella finestra di menu "Max. valore di processo" il livello massimo (pieno) per es. in "m". Ciò corripsonde a una correte in uscita di 20 mA.

Immettere nella finestra di menu "*Min. valore di processo*" il livello minimo (vuoto) per es. in "*m*". Ciò corripsonde a una correte in uscita di 4 mA.

Messa in servizio - Linearizzazione

In questa voce di menu è possibile eseguire la taratura del sensore.

A causa del principio di misura non esiste una correlazione lineare tra la frequenza degl impulsi e il livello. Per tale ragione è necessario eseguire in ogni caso questa taratura (ovv. la linearizzazione).

•

Avviso:

In caso non sia possibile riempire il serbatoio con il prodotto originale, è possibile eseguire la taratura anche con acqua.

Presupposti:

La radiazione è attivata - il contenitore di protezione è impostato su "On"

il serbatoio è riempito completamente (100%) o svuotato completamente (0%).

A seconda che il serbatoio sia riempito o svuotato si esegue innanzitutto la taratura di pieno o di vuoto. Il MINITRAC 31 ordina automaticamente i punti a seconda del livello.

Selezionare "Visualizzare tabella" per visualizzare e modificare i punti di linearizzazione.

Selezionare "Linearizzazione - Nuovo" per immettere il primo punto.

Selezionare "Calcolare impulsi" per immettere il primo punto.

Il rilevamento della frequenza degli impulsi attuale dura 2 minuti. Una volta rilevata la frequenza degli impulsi, il valore (ct/s) può essere assunto.

Immettere ora il relativo livello (m).

In questo modo si correla la frequenza degli impulsi attuale a un determinato livello.

Assumere la coppia di valori con "OK".

Svuotare o riempire ulteriormente il serbatoio, a seconda se si è iniziato con un serbatoio pieno o vuoto.

Eseguire una linearizzazione con diverse altezze di livello anche se si dispone di un serbatoio lineare.

È possibile immettere al massimo 32 punti di linearizzazione.

Messa in servizio - Attenuazione

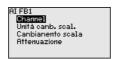
In questa voce di menu è possibile impostare l'attenuazione del sensore. Ciò consente di sopprimere oscillazioni nella visualizzazione del valore di misura dovute per es. a superfici agitate del prodotto. Questo tempo può essere impostato tra 1 e 1200 secondi. Considerare però che in questo modo aumenta anche il tempo di reazione della misura, per cui l'apparecchio può reagire solamente con un certo ritardo a rapide variazioni del valore di misura. Normalmente è sufficiente impostare un tempo di ca. 60 secondi per stabilizzare la visualizzazione del valore di misura.

Messa in servizio - Allarme raggi X

L'influsso di sorgenti radioattive esterne può falsificare il risultato di misura del sensore.

Tra le possibili sorgenti radioattive esterne rientrano per es. un controllo del cordone di saldatura su un impianto adiacente oppure altri apparecchi radiometrici.

L'allarme raggi X si attiva quando gli impulsi (ct/s) superano di oltre il 25% il massimo valore della tabella di linearizzazione.

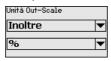

L'allarme permane solamente per la durata della radiazione esterna, dopodiché viene ripristinato automaticamente.

In questa voce menu è possibile stabilire il comportamento del sensore al presentarsi di sorgenti di radiazioni esterne.

Messa in servizio - Al FB1

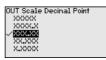
Poiché la calibrazione è molto estesa, le voci di menu del Function Block 1 (FB1) sono state raggruppate in un sottomenu.

- Channel


Messa in servizio - Al FB1 Nella voce di menu "Channel" si stabilisce a quale grandezza di misura si riferisce l'uscita.

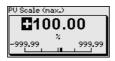
Messa in servizio - Al FB1 - Unità valori scalari

Nella voce di menu "Unità valori scalari" si definiscono la grandezza e l'unità dei valori scalari per la frequenza degli impulsi sul display, per es. in percentuale.



Messa in servizio - Al FB1 - Impostazione valori scalari

Nella voce di menu "Impostazione valori scalari" si definiscono il formato sul display e i valori scalari dei valori di misura per 0% e 100%.




Valore di misura min.

Valore di misura max.

- Attenuazione

Messa in servizio - Al FB1 Per attenuare colpi di pressione e oscillazioni di livello, impostate in questa voce di menu un tempo da 0 a 999 s.

La regolazione di laboratorio è un'attenuazione di 0 s.

Messa in servizio - Relè

In questa voce di menu è possibile attivare l'uscita a relè e stabilirne la funzione e i punti di intervento.

Se è impostato l'output del valore di processo è possibile scegliere tra sicurezza di sovrappieno e protezione contro il funzionamento a secco.

Le uscite a relè del sensore reagiscono di conseguenza.

Per quanto riguarda la grandezza di riferimento, se si sceglie "Nessuna". l'uscita a relè lavora come relè d'avaria.

Avvertimento:

Indipendentemente dalla grandezza di riferimento selezionata, in caso di anomalia il relè si diseccita.

Ulteriori impostazioni

Ulteriori impostazioni -Reset

Tramite un reset vengono resettate tutte le impostazioni tranne alcune eccezioni e cioè: PIN, lingua e SIL.

Reset <u>Impostazione di base</u> Regolazione di laboratorio Valore di picco nisura Valore di picco temp.

Ripristinare adesso regolaz. laboratorio?

Sono disponibili le seguenti funzioni di reset:

Impostazioni di base: ripristino dei valori di default dei parametri al momento della consegna dal laboratorio. Eventuali impostazioni specifiche della commessa vengono cancellate.

Impostazioni di laboratorio: ripristino dei parametri come per "Impostazioni di base". Inoltre vengono ripristinati i valori di default di parametri speciali. Eventuali impostazioni specifiche della commessa vengono cancellate.

Indicatore valori di picco valore di misura: reset delle impostazioni dei parametri nella voce di menu "Messa in servizio" ai valori di default del relativo apparecchio. Eventuali impostazioni specifiche della commessa vengono mantenute ma non vengono assunte nei parametri attuali

Valore di picco temperatura: resettaggio delle temperature di min. e di max. misurate sull'attuale valore di misura.

La seguente tabella visualizza i valori di default dell'apparecchio. I valori valgono per l'applicazione "*Livello*". L'applicazione deve essere precedentemente selezionata.

A seconda del modello di apparecchio, non tutte le voci di menu sono disponibili oppure sono occupate diversamente.

Menu	Voce di menu	Valore di default
Messa in servizio	Indirizzo sensore	126
	Denominazione punto di misura	Sensore
	Isotopo	Cs-137
	Applicazione	Livello
	Radiazione di fondo	0 ct/s
	Unità del valore di processo	%
	Unità di temperatura	°C
	Taratura min.	Min. valore di processo = 0%
	Taratura max.	Max. valore di processo = 100%
	Linearizzazione	0 ct/s = 100 %
		90000 ct/s = 0 %
	Al FB1 Channel	Valore di processo
	Al FB1 unità di valore scalare	%
	Valori scalari Al FB1	0 % = 0 % 100 % = 100 %
	Attenuazione Al FB1	0 s
	Attenuazione	60 s
	Correzione valore effettivo	0
	Grandezza di riferimento - Relè	Nessuna
	Bloccare calibrazione	Sbloccato
Display	Lingua	Lingua selezionata
	Valore d'indicazione	Frequenza degli impulsi (ct/s)

6.4 Parametrizzazione - misura di densità

Con la parametrizzazione si adegua l'apparecchio alle condizioni d'impiego. La parametrizzazione si esegue mediante il menu di servizio.

Informazione:

Queste -Istruzioni d'uso- descrivono i parametri specifici dell'apparecchio. Altri parametri generali sono descritti nelle -Istruzioni d'uso- "Tastierino di taratura con display".

Presupposti

Per garantire un funzionamento sicuro e affidabile devono essere soddisfatte le seguenti premesse:

- il tubo deve essere riempito e privo di inclusioni d'aria;
- il contenitore di protezione deve essere inserito;
- il punto di prelievo campione deve essere nelle immediate vicinanze del punto di misura.

Attenzione:

Con il contenitore di protezione inserito il tubo deve sempre essere pieno. Il tubo vuoto può causare un aumento dell'intensità di dose. Assicurare che il tubo sia riempito anche in caso di inattività dell'impianto, oppure disinserire il contenitore di protezione.

Avvio dell'apparecchio

Eseguire una messa in servizio nella sequenza indicata di seguito.

Avvertimento:

In occasione della prima messa in servizio o dopo un resettaggio dell'apparecchio, questo si avvia con valori standard predefiniti. Questi valori non sono adatti all'applicazione specifica e vanno sostituiti con valori reali.

Menu principale

Il menu principale è suddiviso in cinque sezioni con la seguente funzionalità:

Messa in servizio: impostazioni per es. relative alla denominazione del punto di misura, all'isotopo, all'applicazione, alla radiazione di fondo, alla taratura, all'uscita del segnale

Display: impostazioni per es. relative alla lingua, all'indicazione del valore di misura

Diagnostica: informazioni per es. su stato dell'apparecchio, indicatore valori di picco, simulazione

Ulteriori impostazioni: unità apparecchio, reset, data/ora, funzione di copia

Info: denominazione dell'apparecchio, versione hardware e software, data di calibrazione, caratteristiche dell'apparecchio

Procedimento

Verificare se il display è impostato nella lingua corretta ed eventualmente modificare la lingua alla voce di menu "Display/Lingua".

Iniziare con la messa in servizio del MINITRAC 31.

Per configurare in maniera ottimale la misura, selezionare in successione le singole voci di sottomenu del menu principale "Messa in servizio" e impostare i parametri riferiti alla propria applicazione. La procedura è descritta qui di seguito.

Possibilmente attenersi alla successione delle singole voci di sottomenu.

Messa in servizio

Messa in servizio - Indirizzo sensore

A ciascun apparecchio Profibus PA va assegnato un indirizzo. Ciascun indirizzo va assegnato una sola volta in una rete Profibus PA. II

sistema pilota riconoscerà il sensore solamente se l'indirizzo è stato impostato correttamente.

Nella condizione di fornitura da laboratorio è impostato l'indirizzo 126. Questo indirizzo può essere usato per il controllo di funzioni dell'apparecchio e per il collegamento a una rete Profibus PA esistente. L'indirizzo deve poi essere modificato, per il collegamento di altri apparecchi.

L'impostazione dell'indirizzo si esegue a scelta mediante:

- Il selettore d'indirizzo nel vano dell'elettronica dell'apparecchio (impostazione d'indirizzo via hardware)
- Il tastierino di taratura con display (impostazione d'indirizzo via software)
- PACTware/DTM (impostazione d'indirizzo via software)

Indirizzamento hardware

L'indirizzamento hardware è attivo quando con i selettori d'indirizzo sull'unità elettronica del MINITRAC 31 viene impostato un indirizzo inferiore a 126. L'indirizzamento via software è così inattivo ed è valido l'indirizzo hardware impostato.

Indirizzamento software

L'indirizzamento software è attivo, se con i selettori d'indirizzo sull'apparecchio è impostato l'indirizzo 126 o uno superiore.

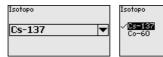
Se è stato impostato un indirizzo hardware (inferiore a 126), l'apparecchio segnala che l'indirizzo hardware è attivo.

Messa in servizio - Denominazione punto di misura

Qui è possibile assegnare un nome adeguato del punto di misura. Premere il tasto "**OK**" per avviare l'elaborazione. Con il tasto "+" si modifica il carattere e con il tasto "->" si passa alla posizione successiva.

È possibile immettere nomi composti da max. 19 caratteri. Sono disponibili i seguenti caratteri:

- lettere maiuscole dalla A alla Z
- cifre da 0 a 9
- caratteri speciali + / _ spazio

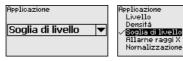


Messa in servizio - Isotopo

In questa voce di menu è possibile impostare l'isotopo utilizzato nel contenitore di protezione per il MINITRAC 31.

Controllare quale isotopo è montato nel contenitore di protezione consultando la targhetta d'identificazione del contenitore di protezio-

Tramite questa selezione, la sensibilità del sensore viene adeguata in maniera ottimale all'isotopo. In questo modo si tiene conto della normale riduzione dell'attività di radiazione dovuta alla decomposizione radioattiva.


Il MINITRAC 31 necessita di questi dati per la compensazione automatica della decomposizione, in modo da garantire una misura esatta nel corso dell'intero periodo di impiego dell'emettitore gamma. Di conseguenza non è necessario eseguire alcuna ricalibrazione annuale.

Immettere i parametri desiderati con i relativi tasti, memorizzare con [OK] e passare con [ESC] e [->] alla successiva voce di menu.

Messa in servizio - Applicazione

Immettere l'applicazione desiderata.

Questa voce di menu consente di adeguare il sensore all'applicazione desiderata. Si può scegliere tra le seguenti applicazioni: "Livello", "Densità". "Soglia di livello"." Allarme raggi X" o "Correzione valore effettivo"

zione di fondo

Messa in servizio - Radia- L'irraggiamento naturale presente sulla terra influenza la precisione della misura.

> Tramite questo punto di menu è possibile escludere questa radiazione naturale di fondo.

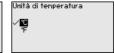
Avviso:

Tenere conto che alcuni prodotti hanno una radiazione naturale. Questa è molto accentuata per es. nel petrolio o nella soluzione di sale potassico. Per tale ragione, per il rilevamento della radiazione di fondo il tubo deve essere pieno.

Il MINITRAC 31 misura la radiazione di fondo naturale presente e azzera la freguenza degli impulsi.

In futuro la frequenza degli impulsi di questa radiazione di fondo viene sottratta automaticamente dalla frequenza complessiva degli impulsi. Ciò significa che viene visualizzata solamente la radiazione proveniente dalla sorgente utilizzata.

Per eseguire quest'impostazione il contenitore di protezione deve essere chiuso (OFF).



Messa in servizio - Unità

In questa voce di menu è possibile selezionare le unità del valore di processo e della temperatura.

Messa in servizio - Taratura

In questa voce di menu è possibile immettere il campo di misura (valore di processo min. e max) del sensore.

Queste impostazioni influenzano l'uscita in corrente del sensore.

Immettere nella finestra di menu "*Max. valore di processo*" la densità massima per es. in "*g/cm*³". Ciò corrisponde a una correte in uscita di 20 mA.

Immettere nella finestra di menu "Min. valore di processo" la densità minima per es. in "g/cm³". Ciò corrisponde a una correte in uscita di 4 mA.

Messa in servizio - Diametro interno

In questa voce di menu è possibile immettere il diametro interno del tubo ovv. la lunghezza irradiata (L).

Quest'impostazione influenza la precisione del sensore.

Selezionare innanzitutto l'unità di misura del diametro interno.

Immettere nella finestra di menu "*Diametro interno*" il diametro interno del tubo, per es. in "*cm*".

Se l'irradiazione non avviene a 90° , invece del diametro del tubo immettere la lunghezza irradiata (L).

Immettere anche qui la lunghezza irradiata senza lo spessore della parete del tubo.

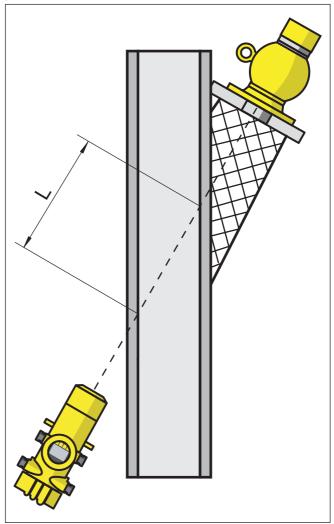


Figura 21: In caso di montaggio obliquo vale la lunghezza irradiata del tubo.

rizzazione

Messa in servizio - Linea - In questa voce di menu è possibile eseguire la taratura del sensore.

Avvertimento:

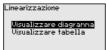

In occasione della prima messa in servizio o dopo un resettaggio dell'apparecchio, la linearizzazione è impostata su una coppia di valori predefinita (90000 ct/s e 0,500 g/cm³). Questi valori non sono adatti allo specifico compito di misura e vanno sostituiti con valori reali. Cancellare quindi questa coppia di valori ed eseguire la seguente linearizzazione.

A causa del principio di misura non esiste una correlazione lineare tra la freguenza degl impulsi e la densità. Per tale ragione è necessario eseguire in ogni caso questa taratura (ovv. la linearizzazione).

Eseguire la taratura con più punti, al fine di aumentare la precisione della misura.

Avviso:

Presupposti:


La radiazione è attivata - il contenitore di protezione è impostato su "On"

Il tubo è completamente riempito. Eventuali bolle o inclusioni d'aria possono falsificare la misura.

Il MINITRAC 31 ordina i punti automaticamente a seconda della densità.

Selezionare "Visualizzare tabella" per visualizzare e modificare i punti di linearizzazione.

Selezionare "Linearizzazione - Nuovo" per immettere il primo punto.

Selezionare "Calcolare impulsi" per immettere il primo punto.

Il rilevamento della frequenza degli impulsi attuale dura 2 minuti. Una volta rilevata la freguenza degli impulsi, il valore può essere assunto.

Il ritmo del conteggio viene indicato in ct/s che significa "counts per second" e indica la quantità di radiazioni misurata che giunge attualmente al sensore.

Immettere ora il relativo valore di densità (g/cm³) ein.

In questo modo si correla la frequenza degli impulsi attuale a una determinata densità.

Avviso:

È necessario prelevare, se possibile contemporaneamente, un campione del prodotto nel punto di prelievo e determinarne la densità.

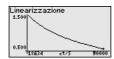
Si è dimostrato utile contrassegnare i campioni di prodotto con la data e la relativa frequenza degli impulsi. In questo modo successivamente è possibile correlare i valori con sicurezza.

Assumere la coppia di valori con "OK".

Se possibile immettere molti punti di linearizzazione, in modo da aumentare la precisione della misura di densità. Quanti più punti di linearizzazione vengono immessi e quanto maggiore è la differenza tra i valori di densità, tanto più affidabile sarà la misura.

Le coppie di valori non ancora complete, per es. perché la misura di densità non è ancora disponibile, possono essere modificate successivamente con la funzione "Messa in servizio - Linearizzazione" al punto "Modificare/Editare".

È possibile immettere al massimo 32 punti di linearizzazione.


Avviso:

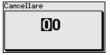
Nel caso in cui non sia possibile modificare il prodotto nel corso della taratura, è possibile eseguire la linearizzazione anche con un solo punto. È però consigliabile immettere ulteriori punti di linearizzazione in un momento successivo.

Visualizzare diagramma

Questa voce di menu è disponibile solo dopo che è stata eseguita una linearizzazione.

Visualizzare tabella

In questa voce di menu è possibile rappresentare singolarmente le coppie di valori della linearizzazione.

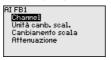


Linearizzazione - Cancellare

È possibile anche cancellare singoli punti di linearizzazione. Immettere il numero del punto che si desidera cancellare.

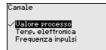
Linearizzazione - Modificare

Allo stesso modo si possono anche modificare singoli punti di linearizzazione.


Dopo la modifica è necessario attivare la coppia di valori completa affinché il punto di misura risulti efficace.

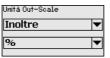
I punti di linearizzazione attivi sono muniti di un piccolo quadrato con una crocetta posto accanto al numero del punto di linearizzazione.


Messa in servizio - Al FB1


Poiché la calibrazione è molto estesa. le voci di menu del Function Block 1 (FB1) sono state raggruppate in un sottomenu.

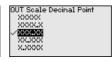
- Channel

Messa in servizio - Al FB1 Nella voce di menu "Channel" si stabilisce a quale grandezza di misura si riferisce l'uscita.



Unità valori scalari

Messa in servizio - Al FB1 Nella voce di menu "Unità valori scalari" si definiscono la grandezza e l'unità dei valori scalari per la freguenza degli impulsi sul display, per es. in percentuale.



Messa in servizio - Al FB1 - Impostazione valori scalari

Nella voce di menu "Impostazione valori scalari" si definiscono il formato sul display e i valori scalari dei valori di misura per 0% e 100%.

Valore di misura min.

Valore di misura max.

Messa in servizio - Al FB1 - Attenuazione

Per attenuare colpi di pressione e oscillazioni di livello, impostate in questa voce di menu un tempo da 0 a 999 s.

La regolazione di laboratorio è un'attenuazione di 0 s.

Messa in servizio - Attenuazione

In questa voce di menu è possibile impostare l'attenuazione del sensore. Ciò consente di sopprimere oscillazioni nella visualizzazione del valore di misura dovute per es. a superfici agitate del prodotto. Questo tempo può essere impostato tra 1 e 1200 secondi. Considerare però che in guesto modo aumenta anche il tempo di reazione della misura, per cui l'apparecchio può reagire solamente con un certo ritardo a rapide variazioni del valore di misura. Normalmente è sufficiente impostare un tempo di ca. 60 secondi per stabilizzare la visualizzazione del valore di misura.

Impostando "Automatico" l'apparecchio calcola un'attenuazione in base alla taratura e alle variazioni del valore di misura. Quest'impostazione è particolarmente adatta ad applicazioni caratterizzate da variazioni di livello veloci alternate a variazioni lente.

Messa in servizio - Correzione del valore effettivo (manuale)

L'esecuzione di una correzione del valore effettivo è necessaria solamente nel caso in cui le premesse del punto di misura siano mutate. Ciò si verifica per es. in caso di abrasione in un tubo.

Se si conosce la densità di un determinato prodotto, in questa voce di menu è possibile immettere la densità effettiva rilevata per correggere il valore di misura. La funzione sposta la curva di linearizzazione su questo punto.

In questo modo è possibile adeguare la misurazione esattamente alle caratteristiche del tubo.

Messa in servizio - Relè

In questa voce di menu è possibile attivare l'uscita a relè e stabilirne la funzione e i punti di intervento.


Se è impostato l'output del valore di processo è possibile scegliere tra sicurezza di sovrappieno e protezione contro il funzionamento a secco.

Le uscite a relè del sensore reagiscono di conseguenza.

È possibile scegliere le seguenti grandezze di riferimento:

- Nessuna il relè lavora come relè d'avaria
- temperatura dell'elettronica
- Valore di processo

"Nessuna" grandezza di riferimento significa che l'uscita a relè lavora come relè d'avaria.

Premere il tasto [->] per eccedere alle impostazioni del relè.

Esempio di impostazione del valore di processo

Scegliere innanzitutto il modo operativo (sicurezza di sovrappieno o protezione contro il funzionamento a secco).

Punti d'intervento
Punto massimo
0.000 g/cm³
Punto ninino
0.000 q/cm³

Avvertimento:

Indipendentemente dalla grandezza di riferimento selezionata, in caso di anomalia il relè si diseccita.

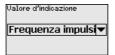
Messa in servizio - Bloccare calibrazione

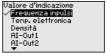
Con questa voce di menu si proteggono i parametri del sensore da modifiche arbitrarie o involontarie.

Questa voce di menu è descritta nelle -lstruzioni d'uso- "Tastierino di taratura con display".

Display

Display - Lingua


Tramite questo parametro è possibile modificare la lingua del display.


Questo parametro è descritto nelle -Istruzioni d'uso- "Tastierino di taratura con display".

Display - Valore d'indicazione

Tramite questo parametro è possibile modificare la visualizzazione del display.

È possibile scegliere se il display deve visualizzare la frequenza attuale degli impulsi, la temperatura dell'elettronica o il valore di processo.

Diagnostica

Diagnostica - Stato apparecchio

In questa voce di menu è possibile consultare lo stato del sensore. Nel corso del normale funzionamento il sensore visualizza qui il messaggio "**OK**". In caso di disfunzione viene indicato il relativo codice.

Questo parametro è descritto nelle -Istruzioni d'uso- "Tastierino di taratura con display".

Diagnostica - Indicatore valori di picco

La funzione di indicazione dei valori di picco rileva i valori massimi e minimi nel corso del funzionamento.

Questo parametro è descritto nelle -Istruzioni d'uso- "Tastierino di taratura con display".

Diagnostica - Dati di taratura

Qui è possibile richiamare il valore di taratura del sensore. Si tratta del valore percentuale della differenza dei punti di taratura min. e max. (Delta I). Il valore rappresenta un indizio per l'affidabilità e la riproducibilità della misura.

Quanto più lontani sono tra di loro i punti di taratura, tanto maggiore è il valore della differenza (Delta I) e tanto più affidabile è la misurazione. Un valore Delta I inferiore al 10% è un indizio di misura critica.

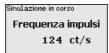
Per innalzare il valore Delta I è necessario aumentare la distanza dei punti di taratura min. e max. nella linearizzazione.

Diagnostica - Simulazione

In questa voce di menu si simulano i valori di misura attraverso l'uscita in corrente. Ciò consente di controllare il percorso del segnale, per es. attraverso indicatori collegati a valle o la scheda d'ingresso del sistema di controllo.

Avviso:

Per poter eseguire una simulazione con il tastierino di taratura con display va inserito l'interruttore di simulazione sull'unità elettronica (posizione dell'interruttore 1).


Il relativo commutatore rotante si trova sull'unità elettronica nel vano dell'elettronica e di connessione (coperchio grande).

È possibile simulare diversi valori:

Frequenza degli impulsi del sensore

Valore di processo

Funzione di intervento del relè

Informazione:

La simulazione s'interrompe automaticamente 10 minuti dopo l'ultimo azionamento di un tasto.

Ulteriori impostazioni

Ulteriori impostazioni - PIN

In questa voce di menu il PIN viene attivato/disattivato permanentemente. In questo modo si proteggono i dati del sensore dall'accesso illecito e da modifiche involontarie. Alla consegna il PIN è 0000.

Questo parametro è descritto nelle -Istruzioni d'uso- "Tastierino di taratura con display".

Ulteriori impostazioni -Data e ora

In questa voce di menu è possibile impostare la data e l'ora attuali. Questo parametro è descritto nelle -Istruzioni d'uso- "*Tastierino di taratura con display*".

Ulteriori impostazioni -Reset

Tramite un reset vengono resettate tutte le impostazioni tranne alcune eccezioni e cioè: PIN, lingua, SIL e modo operativo HART.

Ripristinare adesso regolaz. laboratorio?

Sono disponibili le seguenti funzioni di reset:

Impostazioni di base: ripristino dei valori di default dei parametri al momento della consegna dal laboratorio. Eventuali impostazioni specifiche della commessa vengono cancellate.

Impostazioni di laboratorio: ripristino dei parametri come per "Impostazioni di base". Inoltre vengono ripristinati i valori di default di parametri speciali. Eventuali impostazioni specifiche della commessa vengono cancellate.

Indicatore valori di picco valore di misura: reset delle impostazioni dei parametri nella voce di menu "Messa in servizio" ai valori di default del relativo apparecchio. Eventuali impostazioni specifiche della commessa vengono mantenute ma non vengono assunte nei parametri attuali

Valore di picco temperatura: resettaggio delle temperature di min. e di max. misurate sull'attuale valore di misura.

La seguente tabella visualizza i valori di default dell'apparecchio. I valori valgono per l'applicazione "*Livello*". L'applicazione deve essere precedentemente selezionata.

A seconda del modello di apparecchio, non tutte le voci di menu sono disponibili oppure sono occupate diversamente.

Menu	Voce di menu	Valore di default
Messa in servizio	Indirizzo sensore	126
	Denominazione punto di misura	Sensore
	Isotopo	Cs-137
	Applicazione	densità
	Radiazione di fondo	0 ct/s
	Unità del valore di processo	g/cm ³
	Unità di temperatura	° C
	Taratura min.	Min. valore di proces- so = 0,5 g/cm ³
	Taratura max.	Max. valore di proces- so = 1,5 g/cm³
	Diametro interno	0,2 m
	Linearizzazione	90000 ct/s = 0,5 g/cm ³
	Al FB1 Channel	Valore di processo
	Al FB1 unità di valore scalare	%
	Valori scalari Al FB1	0 g/cm ³ = 0 % 99,999 g/cm ³ = 100%
	Attenuazione Al FB1	0 s
	Attenuazione	60 s
	Correzione valore effettivo	0
	Grandezza di riferimento - Relè	Nessuna
	Bloccare calibrazione	Sbloccato
Display	Lingua	Lingua selezionata
	Valore d'indicazione	Frequenza degli impul- si (ct/s)

Ulteriori impostazioni - Copiare impostazioni apparecchio

Questa funzione permette di:

- leggere i dati di parametrizzazione dal sensore nel tastierino di taratura con display
- scrivere i dati di parametrizzazione dal tastierino di taratura con display sul sensore

Questo parametro è descritto nelle -Istruzioni d'uso- "Tastierino di taratura con display".

Info

Questo menu contiene i seguenti punti:

- Nome apparecchio visualizza il nome dell'apparecchio e il numero di serie
- Versione dell'apparecchio visualizza la versione hardware e software dell'apparecchio

Info

- Data di calibrazione visualizza la data di calibrazione e la data dell'ultima modifica
- Profibus Ident Number visualizza il numero di identificazione del Profibus
- Caratteristiche dell'apparecchio visualizza ulteriori caratteristiche dell'apparecchio

Questi parametri sono descritti nelle -Istruzioni d'uso- "Tastierino di taratura con display".

6.5 Parametrizzazione - rilevamento della soglia di livello

Con la parametrizzazione si adegua l'apparecchio alle condizioni d'impiego. La parametrizzazione si esegue mediante il menu di servizio.

Informazione:

Queste -Istruzioni d'uso- descrivono i parametri specifici dell'apparecchio. Altri parametri generali sono descritti nelle -Istruzioni d'uso- "Tastierino di taratura con display".

Avvio dell'apparecchio

Avvertimento:

In occasione della prima messa in servizio o dopo un resettaggio dell'apparecchio, questo si avvia con valori standard predefiniti. Questi valori non sono adatti all'applicazione specifica e vanno sostituiti con valori reali.

Eseguire una messa in servizio nella seguenza indicata di seguito.

Menu principale

Il menu principale è suddiviso in cinque sezioni con la seguente funzionalità:

Messa in servizio Display Diagnostica Ulteriori impostazioni Info

Messa in servizio: impostazioni per es. relative alla denominazione del punto di misura, all'isotopo, all'applicazione, alla radiazione di fondo, alla taratura, all'uscita del segnale

Display: impostazioni per es. relative alla lingua, all'indicazione del valore di misura

Diagnostica: informazioni per es. su stato dell'apparecchio, indicatore valori di picco, simulazione


Ulteriori impostazioni: unità apparecchio, reset, data/ora, funzione di copia

Info: denominazione dell'apparecchio, versione hardware e software, data di calibrazione, caratteristiche dell'apparecchio

Procedimento

Verificare se il display è impostato nella lingua corretta ed eventualmente modificare la lingua alla voce di menu "Display/Lingua".

Iniziare con la messa in servizio del MINITRAC 31.

Per configurare in maniera ottimale la misura, selezionare in successione le singole voci di sottomenu del menu principale "Messa in servizio" e impostare i parametri riferiti alla propria applicazione. La procedura è descritta qui di seguito.

Possibilmente attenersi alla successione delle singole voci di sottomenu.

Messa in servizio

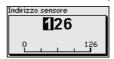
Messa in servizio - Indirizzo sensore

A ciascun apparecchio Profibus PA va assegnato un indirizzo. Ciascun indirizzo va assegnato una sola volta in una rete Profibus PA. Il sistema pilota riconoscerà il sensore solamente se l'indirizzo è stato impostato correttamente.

Nella condizione di fornitura da laboratorio è impostato l'indirizzo 126. Questo indirizzo può essere usato per il controllo di funzioni dell'apparecchio e per il collegamento a una rete Profibus PA esistente. L'indirizzo deve poi essere modificato, per il collegamento di altri apparecchi.

L'impostazione dell'indirizzo si esegue a scelta mediante:


- Il selettore d'indirizzo nel vano dell'elettronica dell'apparecchio (impostazione d'indirizzo via hardware)
- Il tastierino di taratura con display (impostazione d'indirizzo via software)
- PACTware/DTM (impostazione d'indirizzo via software)


Indirizzamento hardware

L'indirizzamento hardware è attivo quando con i selettori d'indirizzo sull'unità elettronica del MINITRAC 31 viene impostato un indirizzo inferiore a 126. L'indirizzamento via software è così inattivo ed è valido l'indirizzo hardware impostato.

Indirizzamento software

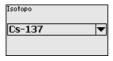
L'indirizzamento software è attivo, se con i selettori d'indirizzo sull'apparecchio è impostato l'indirizzo 126 o uno superiore.

Se è stato impostato un indirizzo hardware (inferiore a 126), l'apparecchio segnala che l'indirizzo hardware è attivo.

Messa in servizio - Denominazione punto di misura

Qui è possibile assegnare un nome adequato del punto di misura. Premere il tasto "OK" per avviare l'elaborazione. Con il tasto "+" si modifica il carattere e con il tasto "->" si passa alla posizione successiva.

È possibile immettere nomi composti da max. 19 caratteri. Sono disponibili i sequenti caratteri:

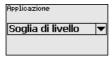

- lettere maiuscole dalla A alla Z
- cifre da 0 a 9
- caratteri speciali + / _ spazio

Messa in servizio - Isotopo

In questa voce di menu è possibile impostare l'isotopo utilizzato nel contenitore di protezione per il MINITRAC 31.

Controllare quale isotopo è montato nel contenitore di protezione consultando la targhetta d'identificazione del contenitore di protezione.

Tramite questa selezione, la sensibilità del sensore viene adequata in maniera ottimale all'isotopo. In questo modo si tiene conto della normale riduzione dell'attività di radiazione dovuta alla decomposizione radioattiva.


Il MINITRAC 31 necessita di guesti dati per la compensazione automatica della decomposizione, in modo da garantire una misura esatta nel corso dell'intero periodo di impiego dell'emettitore gamma. Di conseguenza non è necessario eseguire alcuna ricalibrazione annuale.

Immettere i parametri desiderati con i relativi tasti, memorizzare con [OK] e passare con [ESC] e [->] alla successiva voce di menu.

Messa in servizio - Applicazione

Immettere l'applicazione desiderata.

Questa voce di menu consente di adequare il sensore all'applicazione desiderata. Si può scegliere tra le seguenti applicazioni: "Livello". "Soglia di livello" o "Summation slave".

zione di fondo

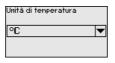
54

Messa in servizio - Radia- L'irraggiamento naturale presente sulla terra influenza la precisione della misura.

> Tramite questo punto di menu è possibile escludere questa radiazione naturale di fondo.

Il MINITRAC 31 misura la radiazione di fondo naturale presente e azzera la frequenza degli impulsi.

In futuro la frequenza degli impulsi di questa radiazione di fondo viene sottratta automaticamente dalla frequenza complessiva degli impulsi. Ciò significa che viene visualizzata solamente la radiazione proveniente dalla sorgente utilizzata.


Per eseguire quest'impostazione il contenitore di protezione deve essere chiuso.

Messa in servizio - Unità

In questa voce di menu è possibile selezionare l'unità della temperatura.

Messa in servizio - Tipo di taratura

In questa voce di menu è possibile scegliere se eseguire una taratura di un punto o di due punti.

In caso di taratura di due punti viene selezionato automaticamente il valore Delta I.

Consigliamo di eseguire la taratura di due punti. Per farlo è necessario poter modificare il livello del serbatoio per tarare il sensore con il serbatoio pieno (coperto) e vuoto (non coperto).

In questo modo si ottiene un punto di intervento molto affidabile.

In caso di taratura di un punto è necessario selezionare il valore differenzale dei punti di taratura min. e max. (Delta I) nel corso della successiva messa in servizio.

Messa in servizio - Taratura non coperto (taratura di un punto)

Questa voce di menu compare solamente se è stata scelta la "Taratura di un punto" nella voce di menu Messa in servizio/Tipo di taratura.

In questa voce di menu si stabilisce il punto nel quale il MINITRAC 31 deve intervenire in stato non coperto.

Svuotare il serbatoio finché il sensore è scoperto.

Immettere manualmente la frequenza degli impulsi desiderata o farla rilevare dal MINITRAC 31. È preferibile optare per il rilevamento della frequenza degli impulsi.

La frequenza degli impulsi viene indicata in ct/s, ovvero "counts per second" e indica la quantità di raggi gamma misurata che giunge al sensore.

Presupposti:

- La radiazione è attivata il contenitore di protezione è impostato su "On"
- Tra il contenitore di protezione e il sensore non vi è prodotto

È possibile immettere manualmente il valore per "Taratura non coperto" (ct/s).

È possibile far rilevare il valore per "Taratura non coperto" di MINI-TRAC 31.

Messa in servizio - Delta I (taratura di un punto)

Questa voce di menu compare solamente se è stata scelta la "Taratura di un punto" nella voce di menu Messa in servizio/Tipo di taratura.

In questa voce di menu è possibile impostare in corrispondenza di quale valore percentuale della massima frequenza degli impulsi il sensore deve commutare.

Poiché nella maggior parte dei casi con il sensore coperto la radiazione viene quasi completamente assorbita, la frequenza degli impulsi è molto bassa.

Di conseguenza la variazione tra i due stati è molto evidente.

Per tale ragione, per il valore Delta I è consigliabile un valore percentuale del 90%.

Si selezionano valori inferiori per il rilevamento di coni di deiezione o adesioni che determinano solo un assorbimento parziale della radiazione.

Taratura coperto (taratura di due punti)

Questa voce di menu compare solamente se è stata scelta la "**Taratura di due punti**" nella voce di menu Messa in servizio/Tipo di taratura.

In questa voce di menu è possibile impostare la frequenza minima degli impulsi (ct/s) che determina la commutazione del sensore.

Riempire il serbatoio finché il MINITRAC 31 è coperto.

In questo modo si ottiene la frequenza minima degli impulsi (ct/s) per la taratura coperto.

Immettere manualmente la frequenza degli impulsi o farla rilevare dal MINITRAC 31. È preferibile optare per il rilevamento della frequenza degli impulsi.

È possibile immettere manualmente il punto di taratura (ct/s).

È possibile far rilevare al MINITRAC 31 il punto di taratura.

Taratura non coperto (taratura di due punti)

Questa voce di menu compare solamente se è stata scelta la "Taratura di due punti" nella voce di menu Messa in servizio/Tipo di taratura.

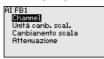
In questa voce di menu è possibile impostare la frequenza massima degli impulsi (ct/s) che determina la commutazione del sensore.

Syuotare il serbatoio finché il MINITRAC 31 è scoperto.

In questo modo si ottiene la frequenza massima degli impulsi (ct/s) per la taratura non coperto.

Immettere manualmente la frequenza degli impulsi o farla rilevare dal MINITRAC 31. È preferibile optare per il rilevamento della frequenza degli impulsi.

È possibile immettere manualmente il punto di taratura (ct/s).



È possibile far rilevare al MINITRAC 31 il punto di taratura.

Messa in servizio - Al FB1 Poiché la calibrazione è molto estesa, le voci di menu del Function Block 1 (FB1) sono state raggruppate in un sottomenu.

Messa in servizio - Al FB1 - Channel

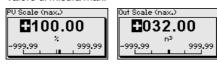
Nella voce di menu "Channel" si stabilisce a quale grandezza di misura si riferisce l'uscita.

- Unità valori scalari

Messa in servizio - Al FB1 Nella voce di menu "Unità valori scalari" si definiscono la grandezza e l'unità dei valori scalari per la freguenza degli impulsi sul display, per es. in percentuale.



Messa in servizio - Al FB1 - Impostazione valori scalari


Nella voce di menu "Impostazione valori scalari" si definiscono il formato sul display e i valori scalari dei valori di misura per 0% e 100%.

Valore di misura min.

Valore di misura max.

- Attenuazione

Messa in servizio - Al FB1 Per attenuare colpi di pressione e oscillazioni di livello, impostate in questa voce di menu un tempo da 0 a 999 s.

La regolazione di laboratorio è un'attenuazione di 0 s.

Messa in servizio - Relè

In guesta voce di menu si sceglie in guale modo operativo deve lavorare il sensore.

Si può scegiere tra sicurezza di sovrappieno e protezione contro il funzionamento a secco.

Le uscite a relè del sensore reagiscono di conseguenza.

Sicurezza di sovrappieno = il relè è senza corrente (stato sicuro) al raggiungimento del livello massimo.

Protezione contro il funzionamento a secco = il relè è senza corrente (stato sicuro) al raggiungimento del livello minimo.

Prestare attenzione che sia selezionata la caratteristica corretta. A tale proposito vedere la voce di menu "Messa in servizio/Modo uscita in corrente".

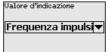
Messa in servizio - Bloccare calibrazione

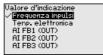
Con questa voce di menu si proteggono i parametri del sensore da modifiche arbitrarie o involontarie.

Questa voce di menu è descritta nelle -Istruzioni d'uso- "Tastierino di taratura con display".

Display

Display - Lingua


Tramite questo parametro è possibile modificare la lingua del display.


Questo parametro è descritto nelle -Istruzioni d'uso- "Tastierino di taratura con display".

Display - Valore d'indicazione

Tramite questo parametro è possibile modificare la visualizzazione del display.

È possibile scegliere se il display deve visualizzare ad es. l'attuale frequenza degli impulsi o la temperatura dell'elettronica.

Diagnostica

Diagnostica - Stato apparecchio

In questa voce di menu è possibile consultare lo stato del sensore. Nel corso del normale funzionamento il sensore visualizza qui il messaggio "**OK**". In caso di disfunzione viene indicato il relativo codice.

Questo parametro è descritto nelle -Istruzioni d'uso- "Tastierino di taratura con display".

Diagnostica - Indicatore valori di picco

La funzione di indicazione dei valori di picco rileva i valori massimi e minimi nel corso del funzionamento.

Questo parametro è descritto nelle -Istruzioni d'uso- "Tastierino di taratura con display".

Diagnostica - Dati di taratura

Qui è possibile richiamare il valore di taratura del sensore, ovvero il valore percentuale della frequenza massima degli impulsi che determina la commutazione del sensore.

Se è stata eseguita la taratura di un punto, questo è il valore che è stato immesso. In caso di taratura di due punti questo è il valore calcolato.

Il valore rappresenta un indizio per l'affidabilità e la riproducibilità del punto di intervento.

Quanto maggiore è la differenza della frequenza degli impulsi tra lo stato coperto e non coperto, tanto maggiore è il valore differenziale (Delta I) e tanto più affidabile è la misura. Anche l'attenuazione calcolata automaticamente si orienta al valore Delta I. Quanto più elevato è il valore, tanto minore è l'attenuazione.

Un valore Delta I inferiore al 10% è un indizio di misura critica.

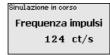
Diagnostica - Simulazione

In questa voce di menu si simulano i valori di misura attraverso l'uscita in corrente. Ciò consente di controllare il percorso del segnale, per es. attraverso indicatori collegati a valle o la scheda d'ingresso del sistema di controllo.

ĭ

Avviso:

Per poter eseguire una simulazione con il tastierino di taratura con display va inserito l'interruttore di simulazione sull'unità elettronica (posizione dell'interruttore 1).


Il relativo commutatore rotante si trova sull'unità elettronica nel vano dell'elettronica e di connessione (coperchio grande).

È possibile simulare diversi valori:

Frequenza degli impulsi del sensore

Funzione di intervento del relè

Informazione:

La simulazione viene interrotta automaticamente 10 minuti dopo l'ultimo azionamento di un tasto. Può comunque essere interrotta anche con l'interruttore posto sull'unità elettronica.

Diagnostica - Attenuazione calcolata

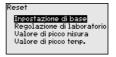
Il sensore calcola automaticamente un tempo di integrazione adequato.

Ulteriori impostazioni

Ulteriori impostazioni - PIN

In questa voce di menu il PIN viene attivato/disattivato permanentemente. In questo modo si proteggono i dati del sensore dall'accesso illecito e da modifiche involontarie. Alla consegna il PIN è 0000.

Questo parametro è descritto nelle -Istruzioni d'uso- "Tastierino di taratura con display".


Ulteriori impostazioni -Data e ora

In questa voce di menu è possibile impostare la data e l'ora attuali. Questo parametro è descritto nelle -Istruzioni d'uso- "*Tastierino di taratura con display*".

Ulteriori impostazioni - Reset

Tramite un reset vengono resettate tutte le impostazioni tranne alcune eccezioni e cioè: PIN, lingua, SIL e modo operativo HART.

Ripristinare adesso regolaz. laboratorio?

Sono disponibili le seguenti funzioni di reset:

Impostazioni di base: ripristino dei valori di default dei parametri al momento della consegna dal laboratorio. Eventuali impostazioni specifiche della commessa vengono cancellate.

Impostazioni di laboratorio: ripristino dei parametri come per "Impostazioni di base". Inoltre vengono ripristinati i valori di default di parametri speciali. Eventuali impostazioni specifiche della commessa vengono cancellate.

Indicatore valori di picco valore di misura: reset delle impostazioni dei parametri nella voce di menu "Messa in servizio" ai valori di default del relativo apparecchio. Eventuali impostazioni specifiche della commessa vengono mantenute ma non vengono assunte nei parametri attuali

Valore di picco temperatura: resettaggio delle temperature di min. e di max. misurate sull'attuale valore di misura.

La seguente tabella visualizza i valori di default dell'apparecchio. I valori valgono per l'applicazione "*Livello*". L'applicazione deve essere precedentemente selezionata.

A seconda del modello di apparecchio, non tutte le voci di menu sono disponibili oppure sono occupate diversamente.

Menu	Voce di menu	Valore di default
Messa in servizio	Indirizzo sensore	126
	Denominazione punto di misura	Sensore
	Isotopo	Cs-137
	Applicazione	Soglia di livello
	Radiazione di fondo	0 ct/s
	Unità di temperatura	° C
	Tipo di taratura	1 punto
	Taratura (non coperto)	90000 ct/s
	Delta I	90%
	Al FB1 Channel	Valore di processo
	Al FB1 unità di valore scalare	%
	Valori scalari Al FB1	0 % = 0 %
		100 % = 100 %
	Attenuazione Al FB1	0 s
	Modo operativo relè	Protezione contro il funziona- mento a secco
	Bloccare calibrazione	Sbloccato
Display	Lingua	Lingua selezionata
	Valore d'indicazione	Frequenza degli impul- si (ct/s)

Ulteriori impostazioni - Copiare impostazioni apparecchio

Questa funzione permette di:

- leggere i dati di parametrizzazione dal sensore nel tastierino di taratura con display
- scrivere i dati di parametrizzazione dal tastierino di taratura con display sul sensore

Questo parametro è descritto nelle -Istruzioni d'uso- "Tastierino di taratura con display".

Info

Info

Questo menu contiene i seguenti punti:

- Nome apparecchio visualizza il nome dell'apparecchio e il numero di serie
- Versione dell'apparecchio visualizza la versione hardware e software dell'apparecchio
- Data di calibrazione visualizza la data di calibrazione e la data dell'ultima modifica
- Profibus Ident Number visualizza il numero di identificazione del Profibus
- Caratteristiche dell'apparecchio visualizza ulteriori caratteristiche dell'apparecchio

Questi parametri sono descritti nelle -Istruzioni d'uso- "Tastierino di taratura con display".

Allarme raggi X

6.6 Parametrizzazione - allarme raggi X

Radiazioni esterne, come per es. quelle risultanti da un controllo del cordone di saldatura, possono falsificare il valore di misura senza che l'utente se ne accorga. Perciò è importante identificare eventuali radiazioni esterne di disturbo.

Il MINITRAC 31 identifica radiazioni esterne in maniera affidabile e reagisce a partire da una quantità di radiazioni liberamente definibile.


L'apparecchio di misura di livello o densità agisce come master e il MINITRAC 31 lavora come slave.

Prima di definire l'apparecchio master definire la funzione dell'apparecchio slave. In questo modo l'apparecchio master può riconoscere immediatamente lo slave collegato.

A tal fine l'apparecchio slave va definito come "Allarme raggi X". Selezionare alla voce di menu "*Messa in servizio/Applicazione*" la funzione "Allarme raggi X".

Nell'apparecchio slave è possibile scegliere liberamente l'impostazione dell'indirizzo (MGC). Solamente l'indirizzo "0 - 0" è riservato all'apparecchio master.

Sull'apparecchio master impostare l'indirizzo (MGC) su "0 - 0".

Applicazione Livello Densità V<mark>Soglia di livello</mark> Allarne raggi X Nornalizzazione

L'indirizzo dell'apparecchio slave va registrato nella lista dell'apparecchio master. Questa funzione non è possibile nel tastierino di taratura con display. è necessario utilizzare PACTware con il relativo DTM.

Menu principale

Il menu principale è suddiviso in cinque sezioni con la seguente funzionalità:

Messa in servizio: impostazioni per es. relative alla denominazione del punto di misura, all'isotopo, all'applicazione, alla radiazione di fondo, alla taratura, all'uscita del segnale

Display: impostazioni per es. relative alla lingua, all'indicazione del valore di misura

Diagnostica: informazioni per es. su stato dell'apparecchio, indicatore valori di picco, simulazione

Ulteriori impostazioni: unità apparecchio, reset, data/ora, funzione di copia

Info: denominazione dell'apparecchio, versione hardware e software, data di calibrazione, caratteristiche dell'apparecchio

Procedimento

Verificare se il display è impostato nella lingua corretta ed eventualmente modificare la lingua alla voce di menu "Display/Lingua".

Iniziare con la messa in servizio del MINITRAC 31.

Per configurare in maniera ottimale la misura, selezionare in successione le singole voci di sottomenu del menu principale "Messa in servizio" e impostare i parametri riferiti alla propria applicazione. La procedura è descritta qui di seguito.

Possibilmente attenersi alla successione delle singole voci di sottomenu.

Messa in servizio

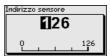
Messa in servizio - Indirizzo sensore

A ciascun apparecchio Profibus PA va assegnato un indirizzo. Ciascun indirizzo va assegnato una sola volta in una rete Profibus PA. Il sistema pilota riconoscerà il sensore solamente se l'indirizzo è stato impostato correttamente.

Nella condizione di fornitura da laboratorio è impostato l'indirizzo 126. Questo indirizzo può essere usato per il controllo di funzioni dell'apparecchio e per il collegamento a una rete Profibus PA esistente. L'indirizzo deve poi essere modificato, per il collegamento di altri apparecchi.

L'impostazione dell'indirizzo si esegue a scelta mediante:

- Il selettore d'indirizzo nel vano dell'elettronica dell'apparecchio (impostazione d'indirizzo via hardware)
- Il tastierino di taratura con display (impostazione d'indirizzo via software)
- PACTware/DTM (impostazione d'indirizzo via software)


Indirizzamento hardware

L'indirizzamento hardware è attivo quando con i selettori d'indirizzo sull'unità elettronica del MINITRAC 31 viene impostato un indirizzo inferiore a 126. L'indirizzamento via software è così inattivo ed è valido l'indirizzo hardware impostato.

Indirizzamento software

L'indirizzamento software è attivo, se con i selettori d'indirizzo sull'apparecchio è impostato l'indirizzo 126 o uno superiore.

Se è stato impostato un indirizzo hardware (inferiore a 126), l'apparecchio segnala che l'indirizzo hardware è attivo.

Messa in servizio - Denominazione punto di misura

Qui è possibile assegnare un nome adeguato del punto di misura. Premere il tasto "**OK**" per avviare l'elaborazione. Con il tasto "+" si modifica il carattere e con il tasto "->" si passa alla posizione successiva.

È possibile immettere nomi composti da max. 19 caratteri. Sono disponibili i seguenti caratteri:

- lettere maiuscole dalla A alla Z
- cifre da 0 a 9
- caratteri speciali + / _ spazio

Messa in servizio - Isotopo

In questa voce di menu è possibile impostare l'isotopo utilizzato nel contenitore di protezione per il MINITRAC 31.

Controllare quale isotopo è montato nel contenitore di protezione consultando la targhetta d'identificazione del contenitore di protezione.

Tramite questa selezione si adegua in maniera ottimale la sensibilità del sensore all'isotopo.


Il MINITRAC 31 necessita di questo dato per la compensazione del decadimento. In questo modo si evita di dover eseguire ogni anno una ricalibrazione.

Immettere i parametri desiderati con i relativi tasti, memorizzare con *[OK]* e passare con *[ESC]* e *[->]* alla successiva voce di menu.

Messa in servizio - Applicazione

Immettere l'applicazione desiderata.

Questa voce di menu consente di adeguare il sensore all'applicazione desiderata. Si può scegliere tra le seguenti applicazioni: "Livello", "Densità", "Soglia di livello", "Allarme raggi X" o "Correzione valore effettivo"

Messa in servizio - Bloccare calibrazione

Con questa voce di menu si proteggono i parametri del sensore da modifiche arbitrarie o involontarie.

Questa voce di menu è descritta nelle -lstruzioni d'uso- "Tastierino di taratura con display".

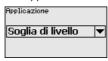
6.7 Parametrizzazione - correzione del valore effettivo

Correzione valore effettivo

Per correggere una misura di livello, al raggiungimento di un determinato livello è possibile eseguire una correzione del valore effettivo. Ciò è necessario per es. in caso di adesioni periodiche alle pareti del serbatojo.

In questo modo è possibile riportare la misura di livello al valore effettivo corretto.

L'apparecchio di misura di livello agisce come master e il MINITRAC 31 lavora come slave.


Prima di definire l'apparecchio master definire la funzione dell'apparecchio slave. In questo modo l'apparecchio master può riconoscere immediatamente lo slave collegato.

A tal fine l'apparecchio slave va definito come "Correzione del valore effettivo". Selezionare alla voce di menu "Messa in servizio/Applicazione" la funzione "Correzione del valore effettivo".

Nell'apparecchio slave è possibile scegliere liberamente l'impostazione dell'indirizzo (MGC). Solamente l'indirizzo "0 - 0" è riservato all'apparecchio master.

L'apparecchio master deve avere la funzione "Livello": selezionare la funzione "Livello" alla voce di menu "Messa in servizio/Applicazione".

Sull'apparecchio master impostare l'indirizzo (MGC) su "0 - 0".

L'indirizzo dell'apparecchio slave va registrato nella lista dell'apparecchio master. Questa funzione non è possibile nel tastierino di taratura con display, è necessario utilizzare PACTware con il relativo DTM.

Menu principale

Il menu principale è suddiviso in cinque sezioni con la seguente funzionalità:

Messa in servizio: impostazioni per es. relative alla denominazione del punto di misura, all'isotopo, all'applicazione, alla radiazione di fondo, alla taratura, all'uscita del segnale

Display: impostazioni per es. relative alla lingua, all'indicazione del valore di misura

Diagnostica: informazioni per es. su stato dell'apparecchio, indicatore valori di picco, simulazione

Ulteriori impostazioni: unità apparecchio, reset, data/ora, funzione di copia

Info: denominazione dell'apparecchio, versione hardware e software, data di calibrazione, caratteristiche dell'apparecchio

Procedimento

Verificare se il display è impostato nella lingua corretta ed eventualmente modificare la lingua alla voce di menu "Display/Lingua".

Iniziare con la messa in servizio del MINITRAC 31.

Per configurare in maniera ottimale la misura, selezionare in successione le singole voci di sottomenu del menu principale "Messa in servizio" e impostare i parametri riferiti alla propria applicazione. La procedura è descritta qui di seguito.

Possibilmente attenersi alla successione delle singole voci di sottomenu.

Messa in servizio

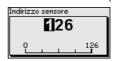
Messa in servizio - Indirizzo sensore

A ciascun apparecchio Profibus PA va assegnato un indirizzo. Ciascun indirizzo va assegnato una sola volta in una rete Profibus PA. Il sistema pilota riconoscerà il sensore solamente se l'indirizzo è stato impostato correttamente.

Nella condizione di fornitura da laboratorio è impostato l'indirizzo 126. Questo indirizzo può essere usato per il controllo di funzioni dell'apparecchio e per il collegamento a una rete Profibus PA esistente. L'indirizzo deve poi essere modificato, per il collegamento di altri apparecchi.

L'impostazione dell'indirizzo si esegue a scelta mediante:

- Il selettore d'indirizzo nel vano dell'elettronica dell'apparecchio (impostazione d'indirizzo via hardware)
- Il tastierino di taratura con display (impostazione d'indirizzo via software)
- PACTware/DTM (impostazione d'indirizzo via software)


Indirizzamento hardware

L'indirizzamento hardware è attivo quando con i selettori d'indirizzo sull'unità elettronica del MINITRAC 31 viene impostato un indirizzo inferiore a 126. L'indirizzamento via software è così inattivo ed è valido l'indirizzo hardware impostato.

Indirizzamento software

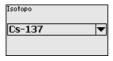
L'indirizzamento software è attivo, se con i selettori d'indirizzo sull'apparecchio è impostato l'indirizzo 126 o uno superiore.

Se è stato impostato un indirizzo hardware (inferiore a 126), l'apparecchio segnala che l'indirizzo hardware è attivo.

Messa in servizio - Denominazione punto di misura

Qui è possibile assegnare un nome adeguato del punto di misura. Premere il tasto "**OK**" per avviare l'elaborazione. Con il tasto "+" si modifica il carattere e con il tasto "->" si passa alla posizione successiva.

È possibile immettere nomi composti da max. 19 caratteri. Sono disponibili i seguenti caratteri:

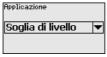

- lettere maiuscole dalla A alla Z
- cifre da 0 a 9
- caratteri speciali + / _ spazio

Messa in servizio - Isotopo

In questa voce di menu è possibile impostare l'isotopo utilizzato nel contenitore di protezione per il MINITRAC 31.

Controllare quale isotopo è montato nel contenitore di protezione consultando la targhetta d'identificazione del contenitore di protezione.

Tramite questa selezione si adegua in maniera ottimale la sensibilità del sensore all'isotopo.


Il MINITRAC 31 necessita di questo dato per la compensazione del decadimento. In questo modo si evita di dover eseguire ogni anno una ricalibrazione.

Immettere i parametri desiderati con i relativi tasti, memorizzare con *[OK]* e passare con *[ESC]* e *[->]* alla successiva voce di menu.

Messa in servizio - Applicazione

Immettere l'applicazione desiderata.

Questa voce di menu consente di adeguare il sensore all'applicazione desiderata. Si può scegliere tra le seguenti applicazioni: "Livello", "Densità", "Soglia di livello", "Allarme raggi X" o "Correzione valore effettivo"

Messa in servizio - Bloccare calibrazione

68

Con questa voce di menu si proteggono i parametri del sensore da modifiche arbitrarie o involontarie.

Questa voce di menu è descritta nelle -Istruzioni d'uso- "Tastierino di taratura con display".

6.8 Protezione dei dati di parametrizzazione

È consigliabile annotare i dati impostati, per es. su questo manuale e poi archiviarli. Saranno così disponibili per ogni futura esigenza.

Se l'apparecchio è corredato di tastierino di taratura con display, è possibile memorizzare i dati del sensore in questo tastierino. Il procedimento è descritto nelle -lstruzioni d'uso- "Tastierino di taratura con display" alla voce di menu "Copiare dati del sensore". I dati restano memorizzati anche nel caso di mancanza di tensione del sensore.

Saranno memorizzati i seguenti dati e/o le impostazioni della calibrazione del tastierino di taratura con display:

- Tutti i dati dei menu "Messa in servizio" e "Display"
- Nel menu "Ulteriori impostazioni" i punti "Unità specifiche del sensore, unità di temperatura e linearizzazione"
- I valori della curva di linearizzazione liberamente programmabile

La funzione può essere usata anche per trasferire le impostazioni da un apparecchio ad un altro dello stesso tipo. Se si esegue una sostituzione del sensore, il tastierino di taratura con display sarà inserito nel nuovo apparecchio e i dati saranno scritti nel sensore nella voce di menu "Copiare dati del sensore".

7 Messa in servizio con PACTware

7.1 Collegamento del PC

Tramite l'adattatore d'interfaccia, direttamente al sensore

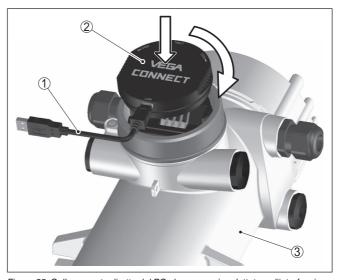


Figura 22: Collegamento diretto del PC al sensore via adattatore d'interfaccia

- 1 Cavo USB di collegamento al PC
- 2 Adattatore d'interfaccia VEGACONNECT 4
- 3 ">sensore

•

Informazione:

L'adattatore d'interfaccia VEGACONNECT 3 non è adatto per l'allacciamento del sensore.

7.2 Parametrizzazione con PACTware

Presupposti

Per la parametrizzazione del sensore tramite un PC Windows sono necessari il software di configurazione PACTware e un driver dell'apparecchio idoneo (DTM), conforme allo standard FDT. L'attuale versione del PACTware e tutti i DTM disponibili sono raccolti in una DTM Collection. È inoltre possibile integrare i DTM in altre applicazioni quadro conformemente allo standard FDT.

Avviso:

Per garantire il supporto di tutte le funzioni dell'apparecchio è necessario usare l'ultima DTM Collection, anche perchè le vecchie versioni Firmware non contengono tutte le funzioni descritte. È possibile scaricare l'ultima versione dell'apparecchio dalla nostra homepage. Su internet è disponibile anche una procedura di aggiornamento.

Ulteriori operazioni di messa in servizio sono descritte nelle -lstruzioni d'uso- "DTM Collection/PACTware", allegate ad ogni DTM Collection e scaricabili via internet. Una descrizione dettagliata è disponibile nella guida in linea di PACTware e nei DTM.

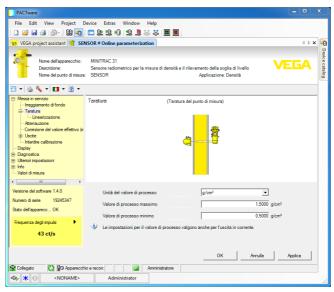


Figura 23: Esempio di una maschera DTM

Versione standard/Versione completa

Tutti i DTM degli apparecchi sono disponibili in versione standard e in versione integrale a pagamento. La versione standard contiene tutte le funzioni necessarie alla completa messa in servizio. Un assistente per la semplice configurazione del progetto facilita notevolmente la calibrazione. Parti integranti della versione standard sono anche la memorizzazione/stampa del progetto e una funzione Import/Export.

La versione integrale contiene anche una funzione di stampa ampliata per l'intera documentazione del progetto e la possibilità di memorizzare curve dei valori di misura e curve d'eco. Mette anche a disposizione un programma di calcolo del serbatoio e un multiviewer per la visualizzazione e l'analisi delle curve dei valori di misura e delle curve d'eco memorizzate.

La versione standard può essere scaricata dal sito www.vega.com/downloads, "Software". La versione integrale è disponibile su CD presso la rappresentanza responsabile.

7.3 Protezione dei dati di parametrizzazione

È consigliabile annotare e memorizzare i dati di parametrizzazione via PACTware. Saranno così disponibili per ogni eventuale futura esigenza.

8 Messa in servizio con altri sistemi

8.1 Programmi di servizio DD

Sono disponibili descrizioni degli apparecchi sotto forma di Enhanced Device Description (EDD) per programmi di servizio DD, come per es.AMS™ e PDM.

I file possono essere scaricati da <u>www.vega.com/downloads</u>, "Software".

9 Diagnostica e service

9.1 Manutenzione

L'apparecchio, usato in modo appropriato durante il normale funzionamento, non richiede manutenzione.

Il relativo contenitore di protezione va controllato a intervalli regolari. Ulteriori informazioni sono contenute nelle -Istruzioni d'uso- del contenitore di protezione.

9.2 Segnalazioni di stato

L'apparecchio dispone di un'autosorveglianza e diagnostica secondo NE 107 e VDI/VDE 2650. Relativamente alle segnalazioni di stato indicate nella tabella seguente sono visibili messaggi di errore dettagliati alla voce di menu "*Diagnostica*" tramite tastierino di taratura con display, PACTware/DTM ed EDD.

Segnalazioni di stato

I messaggi di stato sono suddivisi nelle seguenti categorie:

- Guasto
- Controllo di funzionamento
- Fuori specifica
- Manutenzione necessaria

e sono chiariti da pittogrammi:

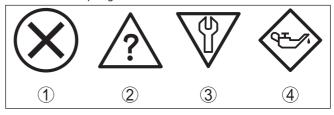


Figura 24: Pittogrammi delle segnalazioni di stato

- 1 Guasto (Failure) rosso
- 2 Fuori specifica (Out of specification) giallo
- 3 Controllo di funzionamento (Function check) arancione
- 4 Manutenzione necessaria (Maintenance) blu

Guasto (Failure): a causa del riconoscimento di un difetto di funzionamento nell'apparecchio, questo segnala un quasto.

Questa segnalazione di stato è sempre attiva e non può essere disattivata dall'utente.

Controllo di funzionamento (Function check): si sta lavorando sull'apparecchio, il valore di misura è temporaneamente non valido (per es. durante la simulazione).

Nelle impostazioni di default questa segnalazione di stato è inattiva. L'utente può attivarla tramite PACTware/DTM o EDD.

Fuori specifica (Out of specification): il valore di misura non è sicuro, poiché è stata superata la specifica dell'apparecchio (per es. temperatura dell'unità elettronica).

Failure

Nelle impostazioni di default questa segnalazione di stato è inattiva. L'utente può attivarla tramite PACTware/DTM o EDD.

Manutenzione necessaria (Maintenance): la funzione dell'apparecchio è limitata da influssi esterni. La misura viene influenzata, il valore di misura è ancora valido. Pianificare la manutenzione perché è probabile un guasto imminente (per es. a causa di adesioni).

Nelle impostazioni di default questa segnalazione di stato è inattiva. L'utente può attivarla tramite PACTware/DTM o EDD.

La seguente tabella elenca i codici di errore e i testi dei messaggi nella segnalazione di stato "Failure" e fornisce informazioni sulla causa e sui possibili rimedi.

Esempio di messaggio di errore

Codice	Cause	Eliminazione			
Testo del messaggio					
F008 Errore co- municazione multisensore	Ulteriori sensori non inseriti Influssi EMI Non è disponibile nessun altro sensore	Controllare il cablaggio tra i sensori Collegare correttamente i sensori e predisporli al funzionamento			
F013 Il sensore segnala un er- rore	Errore nell'ingresso in corrente Valore misura non valido Apparecchi collegati non in funzione	Controllare l'ingresso di corrente Controllare gli apparecchi collegati (slave)			
F016 Dati di taratura invertiti	I valori di taratura di max. e min. sono invertiti	Correggere i valori di taratura			
F017 Escursione ta- ratura troppo piccola	I valori della taratura di max. e min. sono troppo vicini tra di loro	Correggere i valori di taratura			
F025 Tabella di li- nearizzazione non valida	Tabella di linearizzazione vuota Valore errato nella tabella di linearizzazione	Creare la tabella di lineariz- zazione Correggere la tabella di linearizzazione			
F030 Valore di pro- cesso fuori limite	I valori di processo sono al di fuori del campo di misura impostato	- Ripetere la taratura			
F034 Errore hardware E- PROM	- Elettronica difettosa	Riavviare l'apparecchio Sostituire l'elettronica			

Codice	Cause	Eliminazione			
Testo del messaggio					
F035	- Errore nella comunicazione	- Eseguire il reset			
Errore dati E- EPROM	interna dell'apparecchio	Sostituire l'elettronica			
F036	- Errore nel corso dell'aggior-	- Ripetere aggiornamento			
Programma memorizz. er- rato	namento del software	software - Sostituire l'elettronica			
F037	- Errore nella RAM	- Riavviare l'apparecchio			
Errore har- dware RAM		Sostituire l'elettronica			
F038	- Linea di collegamento	- Controllare la linea di			
Slave segnala anomalia	all'apparecchi slave interrotta	collegamento all'apparec- chio slave			
anomana	Apparecchio non definito come slave	Definire l'apparecchio come slave			
F040	- Sensore difettoso	- Riavviare l'apparecchio			
Errore har- dware		Sostituire l'elettronica			
F041	- Errore nel rilevamento del	- Riavviare l'apparecchio			
Errore foto- moltiplicatore	valore di misura	Sostituire l'elettronica			
F052	Parametrizzazione non	 Eseguire il reset 			
Configurazio- ne errata	valida				
F066	- Taratura non ancora	Eseguire la taratura			
Taratura er- rata	eseguita Errore nel corso della taratura o all'immissione della tabella di linearizzazione	- Eseguire la linearizzazione			
F068	- Impostazioni errate dell'ap-	- Eseguire il reset			
Frequenza	parecchio	-			
degli impulsi troppo elevata					
F072	- Impostazioni errate dell'ap-	 Eseguire il reset 			
Limite supe- rato	parecchio				
F073	- Correzione del valore effet-	- Ripetere la correzione del			
Errore di cor- rezione valore effettivo	tivo errata	valore effettivo			
F080	- Errore dell'apparecchio	- Riavviare l'apparecchio			
Errore di si- stema		Contattare il servizio di assistenza			

		I			
Codice	Cause	Eliminazione			
Testo del messaggio					
F086	- Errore nella comunicazione	- Riavviare l'apparecchio			
Errore di co- municazione	bus di campo	Contattare il servizio di assistenza			
F114	- Batteria scarica	- Reimpostare l'orologio in			
Errore orolo- gio in tempo reale		tempo reale			
F120	- Taratura apparecchio errata	- Eseguire la taratura			
Errore del tempo di filtro	o mancante				
F121 Lista uten-	Non sono stati trovati gli apparecchi slave	Controllare apparecchi slave			
ti errata sul bus comu- nicazione		Controllare l'elenco degli slave nell'apparecchio master			
multisensore		Apparecchio slave con indirizzo errato			
F122	- L'indirizzo dell'apparecchio	- Modificare gli indirizzi degli			
Indirizzi doppi sul bus co- municazione multisensore	è stato assegnato più volte	apparecchi			
F123 Allarme rag-	Apparecchi esterni causano radiazione	Determinare la causa della radiazione			
gi X		In caso di radiazione esterna di breve durata: controllare manualmente le uscite di commutazione per questo periodo			
F124	- Dose eccessiva di radia-	- Determinare la causa della			
Allarme cau- sato da radiazione ec- cessiva	zioni	radiazione eccessiva			
F125	- Temperatura ambiente sulla	- Raffreddare l'apparecchio o			
Temperatura ambiente ec- cessiva	custodia fuori specifica	proteggerlo dal calore della radiazione con materiale isolante			

Function check

La seguente tabella elenca i codici di errore e i testi dei messaggi nella segnalazione di stato "Function check" e fornisce informazioni sulla causa e sui possibili rimedi.

Codice Testo del	Cause	Eliminazione
messaggio		
C029	 Simulazione attiva 	- Terminare simulazione
Simulazione		Attendere la fine automatica dopo 60 minuti

Out of specification

La seguente tabella elenca i codici di errore e i testi dei messaggi nella segnalazione di stato "*Out of specification*" e fornisce informazioni sulla causa e sui possibili rimedi.

Codice Testo del messaggio	Cause	Eliminazione
S017 Precisione fuori specifica	Precisione fuori specifica	Correggere i valori di taratura
S025 Cattiva tabella di linearizza- zione	Cattiva tabella di lineariz- zazione	- Eseguire la linearizzazione
S038 Slave fuori specifica	- Slave fuori specifica	- Controllare lo slave
S125 Temperatura ambiente eccessiva/insufficiente	Temperatura ambiente eccessiva/insufficiente	Proteggere l'apparecchio da temperature estreme con materiale isolante

Maintenance

L'apparecchio non dispone di segnalazioni di stato per il settore "Maintenance".

9.3 Eliminazione di disturbi

Comportamento in caso di disturbi

È responsabilità del gestore dell'impianto prendere le necessarie misure per eliminare i disturbi che eventualmente si presentassero.

Procedimento per l'eliminazione di disturbi

I primi provvedimenti sono:

- Valutazione dei messaggi di errore tramite il tastierino di taratura con display
- Controllo del segnale in uscita
- Trattamento di errori di misura.

Un PC con il software PACTware ed il relativo DTM offre ulteriori ampie possibilità di diagnostica.

In molti casi in questo modo è possibile stabilire le cause ed eliminare i guasti.

Controllare il segnale in uscita (misura di livello)

La seguente tabella elenca i possibili errori relativi al segnale in uscita e fornisce indicazioni per l'eliminazione:

Errore	Cause	Eliminazione
Segnale in uscita non stabile	Oscillazioni del livello	Impostare l'attenuazione a seconda dell'apparecchio tramite il tastierino di taratura con display o PACTware/DTM
Manca segnale in uscita	Collegamento elettrico di- fettoso	Controllare il collegamento secondo il capitolo "Operazioni di collegamento" ed eventualmente correggere secondo il capitolo "Schema elettrico"
	Manca alimentazione in tensione	Controllare che i collegamenti non siano interrotti, eventualmente ripristinarli
	Tensione d'alimentazione troppo bassa	Controllare ed adeguare

Controllare il segnale in uscita (rilevamento della soglia di livello)

La seguente tabella descrive possibili errori che eventualmente non generano un messaggio di errore:

Errore	Cause	Eliminazione		
L'apparecchio segnala la co- pertura senza essere coperto	Manca alimentazione in tensione	Controllare che i collegamenti non siano interrotti, eventualmente ripristinarli		
dal prodotto L'apparecchio segnala di non	Tensione d'alimentazione troppo bassa	Controllare ed adeguare		
essere coperto pur essendo coperto dal prodotto	Collegamento elettrico di- fettoso	Controllare il collegamento secondo il capitolo "Operazioni di collegamento" ed eventualmente correggere secondo il capitolo "Schema elettrico"		
	Elettronica difettosa	Modificare il comportamento di intervento del sensore nel manu "Diagnostica/Simulazione". Se l'apparecchio non commuta farlo riparare		
	Adesioni sulla parete interna del serbatoio	Eliminare le adesioni Controllare il valore Delata I Migliorare la soglia di commutazione - esegui una taratura di due punti		

Comportamento dopo l'eliminazione dei disturbi

A seconda della causa del disturbo e delle misure attuate è eventualmente necessario ripetere i passi operativi descritti nel capitolo "Messa in servizio" o eseguire un controllo di plausibilità e di completezza.

Hotline di assistenza 24 ore su 24

Se non si dovesse ottenere alcun risultato, chiamare la Service Hotline VEGA al numero +49 1805 858550.

La hotline è disponibile anche al di fuori del normale orario d'ufficio, 7 giorni su 7, 24 ore su 24.

Poiché offriamo questo servizio in tutto il mondo, l'assistenza viene fornita in lingua inglese. Il servizio è gratuito, al cliente sarà addebitato solamente il costo della chiamata.

9.4 Sostituzione dell'unità l'elettronica

In caso di difetto, l'unità elettronica può essere sostituita dall'utente.

Nelle applicazioni Ex usare unicamente un apparecchio e un'unità elettronica con omologazione Ex.

Se non si dispone di un'unità elettronica sul posto, è possibile ordinarla alla propria filiale di competenza. Le unità elettroniche sono adeguate al relativo sensore e si differenziano nell'uscita del segnale e nell'alimentazione in tensione.

La nuova elettronica deve contenere le impostazioni di laboratorio del sensore, caricabili

- in laboratorio
- sul posto dall'utente

In entrambi i casi occorre indicare il numero di serie del sensore, rintracciabile sulla targhetta d'identificazione dell'apparecchio, all'interno della custodia e sulla bolla di consegna.

Per il caricamento sul posto è necessario dapprima scaricare da internet i dati dell'ordine (vedi -lstruzioni d'uso "Unità elettronica").

9.5 Aggiornamento del software

Per l'aggiornamento software sono necessari i seguenti componenti:

- Sensore
- Tensione d'alimentazione
- Adattatore d'interfaccia VEGACONNECT
- PC con PACTware
- Software attuale del sensore come file

L'attuale software del sensore e informazioni dettagliate sul procedimento sono disponibili su "www.vega.com/downloads" alla voce "Software".

Le informazioni per l'installazione sono contenute nel file di download.

Avvertimento:

È possibile che gli apparecchi con omologazioni siano legati a determinate versioni del software. Assicurarsi perciò in caso di aggiornamento del software che l'omologazione rimanga operativa.

Per informazioni dettagliate si rimanda a <u>www.vega.com/downloads</u>, "*Omologazioni*".

9.6 Come procedere in caso di riparazione

La seguente procedura si riferisce esclusivamente al sensore. Se dovesse essere necessario riparare il contenitore di protezione, consultare le -Istruzioni d'uso- del contenitore di protezione.

Il foglio di reso apparecchio nonché informazioni dettagliate sono disponibili su <u>www.vega.com/downloads</u>, "Formulari e certificati".

L'utilizzo del modulo ci consente di eseguire più velocemente la riparazione.

Per richiedere la riparazione procedere come descritto di seguito.

- Stampare e compilare un modulo per ogni apparecchio
- Pulire l'apparecchio e predisporre un imballo infrangibile
- Allegare il modulo compilato e una eventuale scheda di sicurezza, esternamente, sull'imballaggio

 Chiedere l'indirizzo per la spedizione dell'apparecchio alla propria filiale competente, rintracciabile anche sulla nostra homepage www.vega.com.

10 Smontaggio

10.1 Sequenza di smontaggio

Attenzione:

Prima di smontare l'apparecchio assicurarsi che non esistano condizioni di processo pericolose, per es. pressione nel serbatoio o nella tubazione, temperature elevate, prodotti aggressivi o tossici, ecc.

Seguire le indicazioni dei capitoli "Montaggio" e "Collegamento all'alimentazione in tensione" e procedere allo stesso modo, ma nella sequenza inversa.

10.2 Smaltimento

L'apparecchio è costruito con materiali che possono essere riciclati dalle aziende specializzate. Abbiamo realizzato componenti che possono essere rimossi facilmente, costruiti anch'essi con materiali riciclabili.

Un corretto smaltimento evita danni all'uomo e all'ambiente e favorisce il riutilizzo di preziose materie prime.

Materiali: vedi "Dati tecnici"

Se non è possibile smaltire correttamente il vecchio apparecchio, contattateci per l'eventuale restituzione e il riciclaggio.

Direttiva RAEE 2002/96/CE

Questo apparecchio non è soggetto alla direttiva WEEE 2002/96/UE e alle relative leggi nazionali. Consegnare l'apparecchio direttamente a un'azienda specializzata nel riciclaggio e non usare i luoghi di raccolta comunali, che, secondo la direttiva WEEE 2002/96/UE, sono previsti solo per materiale di scarto di privati.

11 Appendice

11.1 Dati tecnici

Dati generali

316L corrisponde a 1.4404 oppure a 1.4435

Materiali, non a contatto col prodotto

Materiale di scintillazione
 Nal (ioduro di idrogeno)

- Custodia di alluminio pressofuso Alluminio pressofuso AlSi10Mg, rivestito di polveri -

base: poliestere

Custodia di acciaio speciale
 316L

- Guarnizione tra custodia e coperchio NBR (custodia di acciaio speciale, microfuso), silicone

(custodia di alluminio)

- Finestrella nel coperchio della custo-

dia (opzionale)

della custodia

Policarbonato

- Morsetto di terra 316L

Attacchi di processo

- Alette di fissaggio ø 9 mm (0.35 in), distanza fori 119 mm (4.69 in)

Pesc

- Custodia di alluminio con unità elet- 4,1 kg (9 lbs)

tronica

- Custodia di acciaio speciale con unità 9,1 kg (20.1 lbs)

elettronica

Max. coppia di serraggio viti di montag- 50 Nm (36.88 lbf ft)

gio - alette di fissaggio alla custodia del

sensore

00 1 1111 (00100 121 11)

Max. coppia di serraggio per pressacavi NPT e tubi Conduit

- Custodia di alluminio/di acciaio

50 Nm (36.88 lbf ft)

speciale

Valori in ingresso

Grandezza di misura La grandezza di misura è l'intensità dei raggi gamma di un isotopo. Se l'intensità della radiazione diminuisce, per

un isotopo. Se l'intensità della radiazione diminuisce, pei es. per effetto dell'aumento della densità del prodotto, il valore di misura del MINITRAC 31 cambia proporzional-

mente alla densità.

Ingresso analogico

- Tipo di ingresso 4 ... 20 mA, passivo

- Carico interno 250 Ω

Ingresso di commutazione

Tipo di ingresso - Open CollectorTipo di ingresso - contatto a relè100 mA

Valori in uscita - misura di livello

Uscita

- Segnale di uscita segnale digitale d'uscita, formato secondo IEEE-754

- Indirizzo sensore 126 (impostazione di laboratorio)

Attenuazione (63% della grandezza in 0 ... 999 s, impostabile

ingresso)

Profilo Profibus PA 3.02 Numero del FB con Al (blocchi di funzioni 3

con ingresso analogico)

Valori di default

- 1. FB PV

- 2. FB temperatura dell'elettronica- 3. FB Frequenza degli impulsi

Valore in corrente 10 mA, ±0.5 mA

Valori in uscita - misura di densità

Uscita

- Segnale di uscita segnale digitale d'uscita, formato secondo IEEE-754

0 ... 999 s, impostabile

Indirizzo sensore
 126 (impostazione di laboratorio)

Attenuazione (63% della grandezza in

ingresso)

Profilo Profibus PA 3.02 Numero del FB con AI (blocchi di funzioni 3

con ingresso analogico)

Valori di default

- 1. FB PV

- 2. FB temperatura dell'elettronica- 3. FB Frequenza degli impulsi

Valore in corrente 10 mA, ±0.5 mA

Grandezze in uscita - rilevamento della soglia di livello

Uscita

- Segnale di uscita segnale digitale d'uscita, formato secondo IEEE-754

0 ... 999 s, impostabile

Indirizzo sensore
 126 (impostazione di laboratorio)

Attenuazione (63% della grandezza in

ingresso)

Profilo Profibus PA 3.02

Numero del FB con AI (blocchi di funzioni 3

con ingresso analogico)

Valori di default

- 1. FB PV

- 2. FB temperatura dell'elettronica- 3. FB Frequenza degli impulsi

Valore in corrente 10 mA, ±0.5 mA

Valori in uscita - allarme raggi X

Uscita

- Segnale di uscita segnale digitale d'uscita, formato secondo IEEE-754

Indirizzo sensore
 126 (impostazione di laboratorio)

Attenuazione (63% della grandezza in 0 ... 999 s, impostabile

ingresso)

Profilo Profibus PA 3.02

Numero del FB con AI (blocchi di funzioni 3

con ingresso analogico)

Valori di default

– 1. FB PV

- 2. FB temperatura dell'elettronica- 3. FB Frequenza degli impulsi

Valore in corrente 10 mA, ±0.5 mA

Valori in uscita - correzione valore effettivo

Uscita

Segnale di uscita segnale digitale d'uscita, formato secondo IEEE-754

0 ... 999 s, impostabile

Indirizzo sensore
 126 (impostazione di laboratorio)

Attenuazione (63% della grandezza in

ingresso)

Profilo Profibus PA 3.02 Numero del FB con AI (blocchi di funzioni 3

con ingresso analogico)

Valori di default

- 1. FB PV

- 2. FB temperatura dell'elettronica- 3. FB Frequenza degli impulsi

Valore in corrente 10 mA, ±0.5 mA

Uscita a relè

Uscita Uscita a relè (SPDT), contatto di commutazione a poten-

ziale zero

Tensione d'intervento

– Min. 10 mV

- Max. 253 V AC, 253 V DC

Corrente d'intervento

- Min. $10 \,\mu\text{A}$

- Max. 3 A AC, 1 A DC

Potenza commutabile

– Min. 50 mW

- Max.	750 VA AC. 40 W DC

Se intervengono carichi induttivi o correnti elevate, la doratura dei contatti relè sarà irrimediabilmente danneggiata. Il contatto non sarà più idoneo alla commutazione

di piccoli circuiti elettrici del segnale.

Materiale dei contatti (contatti a relè) AgNi oppure AgSnO e placcato Au

Uscita a transistor

Uscita Uscita a transistor a potenziale zero, protetta permanen-

temente contro I cortocircuiti

Corrente di carico $< 400 \, \text{mA}$ Caduta di tensione < 1 V Tensione d'intervento < 55 V DC Corrente di blocco $< 10 \mu A$

Precisione di misura (secondo DIN EN 60770-1)

Condizioni di riferimento e di processo secondo DIN EN 61298-1

- Temperatura +18 ... +30 °C (+64 ... +86 °F)

 Umidità relativa dell'aria 45 ... 75 %

860 ... 1060 mbar/86 ... 106 kPa (12.5 ... 15.4 psig) - Pressione dell'aria

Riproducibilità ≤ 0,1 %

Scostamento di misura su solidi in i valori dipendono fortemente dall'applicazione. Non è

perciò possibile fornire indicazioni definitive. pezzatura

Scostamento di misura sotto influenza ≤ 1 %

EMI

Caratteristiche di misura e dati di potenza

Tempo di risposta del salto⁵⁾ \leq 5 s (con attenuazione 1 s)

Condizioni ambientali

Temperatura ambiente, di stoccaggio e

-40 ... +60 °C (-40 ... +140 °F)

di trasporto

Condizioni di processo

Per quanto riquarda le condizioni di processo, è necessario attenersi anche alle indicazioni della targhetta d'identificazione. Il valore valido è sempre il più basso.

Pressione di processo In assenza di pressione

Temperatura di processo (misurata sul -40 ... +60 °C (-40 ... +140 °F)

tubo del rilevatore) In caso di temperature superiori ai 60 °C consigliamo

l'impiego di un raffreddamento ad acqua.

Resistenza alla vibrazione⁶⁾ Oscillazioni meccaniche fino a 1 g in un campo di fre-

quenza di 5 ... 200 Hz

Intervallo di tempo che, dopo una rapida variazione della distanza di misura di max. 0,5 m in caso di applicazioni su liquidi e max. 2 m in caso di applicazioni su solidi in pezzatura, intercorre prima che il segnale di uscita raggiunga per la prima volta il 90% del suo valore a regime (IEC 61298-2).

⁶⁾ Controllo eseguito secondo le direttive del Germanischer Lloyd, caratteristica GL 2.

11 Appendice	
Dati elettro-meccanici - Esecuzione II	P 66/IP 67
Passacavo	
- M20 x 1,5	2 pressacavi M20 x 1,5 (ø del cavo 6 12 mm), 4 tappi ciechi M20 x 1,5
	Allegato: 1 pressacavo M20 x 1,5
− ½ NPT	5 tappi filettati (rossi) ½ NPT
	Allegati: 3 pressacavi ½ NPT (cavo: ø 6 12 mm), 4 tappi ciechi ½ NPT
Morsetti a molla per sezione del cavo	
- Filo massiccio, liccio	0,2 2,5 mm ² (AWG 24 14)
 Cavetto con rivestimento estremità conduttore 	0,2 1,5 mm ² (AWG 24 16)
Tastierino di taratura con display	
Elemento di visualizzazione	Display con retroilluminazione
Visualizzazione del valore di misura	
- Numero di cifre	5
 Grandezza delle cifre 	$L \times A = 7 \times 13 \text{ mm}$
Elementi di servizio	4 tasti
Grado di protezione	
 non installato 	IP 20
 installato nella custodia senza coperchio 	IP 40
Materiali	
- Custodia	ABS
- Finestrella	Lamina di poliestere
Orologio integrato	
Formato data	Giorno.Mese.Anno
Formato ora	12 h/24 h
Fuso orario regolato in laboratorio	CET
Scostamento max.	10,5 min./anno
Misurazione della temperatura dell'el	ettronica
Risoluzione	1 °C (1.8 °F)
Precisione	±1 °C (1.8 °F)
Tensione d'alimentazione	
Alimentazione sensore	20 72 V DC oppure 20 253 V AC, 50/60 Hz
Profibus PA	

9 ... 32 V DC 9 ... 17,5 V DC

FISCO

- Bus non a sicurezza intrinseca

- Bus a sicurezza intrinseca - modello

 Bus a sicurezza intrinseca - modello 9 ... 24 V DC ENTITY

Numero di sensori per ogni convertitore DP/PA

Apparecchi non ExApparecchi Ex10

Protezioni elettriche

Grado di protezione, in base alla variante IP 66/IP 677)

della custodia

Categoria di sovratensione III
Classe di protezione I

Omologazioni

Gli apparecchi con omologazioni possono avere dati tecnici differenti a seconda del modello.

Per questi apparecchi è quindi necessario rispettare i relativi documenti d'omologazione, che fanno parte della fornitura dell'apparecchio o possono essere scaricati da www.vega.com/downloads", "Omologazioni".

11.2 Comunicazione Profibus PA

File principale apparecchio

I dati base dell'apparecchio (GSD) contengono i parametri dell'apparecchio Profibus PA. Fanno per esempio parte di questi dati la velocità di trasmissione ammessa, i valori di diagnostica e il formato dei valori di misura forniti con l'apparecchio PA.

Per i tool di progettazione della rete Profibus è inoltre messo a disposizione un file bitmap. Questo file s'installa automaticamente, integrando il file GSD nel sistema bus. Il file bitmap consente l'indicazione simbolica dell'apparecchio PA nel tool di configurazione.

Numero ID

Tutti gli apparecchi Profibus ricevono dall'organizzazione degli utenti Profibus (PNO) un numero d'identificazione (numero ID). Questo numero ID è riportato anche nel nome del file GSD. Il PNO mette inoltre a disposizione dell'utente un file generale opzionale, definito GSD, specifico del profilo. Se usate questo file generale GSD, cambierete il numero del sensore via software DTM e lo sostituirete col numero d'identificazione specifico del profilo. Nel modo standard il sensore funziona col numero d'identificazione specifico del costruttore. Nel caso d'impiego dell'apparecchio su un convertitore/accoppiatore SK-2 oppure SK-3 non sono necessari speciali file GSD.

La seguente tabella indica gli ID degli apparecchi e il i nomi dei file GSD per la serie di sensori PROTRAC.

Nome dell'appa-	ID appa	recchio	Nome file GSD		
recchio	VEGA	Classe apparec- chio nel profilo 3.02	VEGA	Specifico del pro- filo	
MINITRAC 31	0xCF5	0x9702	VE010CF5.GSD	PA139702.GSD	
FIBERTRAC 31	0xCF2	0x9702	VE010CF2.GSD	PA139702.GSD	

⁷⁾ Presupposto per garantire il grado di protezione è l'uso di un cavo idoneo.

Nome dell'appa-	ID app	arecchio	Nome file GSD		
recchio	VEGA	Classe apparec- chio nel profilo 3.02	VEGA	Specifico del pro- filo	
SOLITRAC 31	0xCF4	0x9702	VE010CF4.GSD	PA139702.GSD	
POINTRAC 31	0xD48	0x9702	VE010D48.GSD	PA139702.GSD	
WEIGHTRAC 31	0xCF8	0x9702	VE010CF8.GSD	PA139702.GSD	

Traffico ciclico dei dati

Il master class 1 (per es. PLC) legge ciclicamente i dati del valori di misura provenienti dal sensore. Lo schema funzionale visualizza i dati a cui il PLC può accedere.

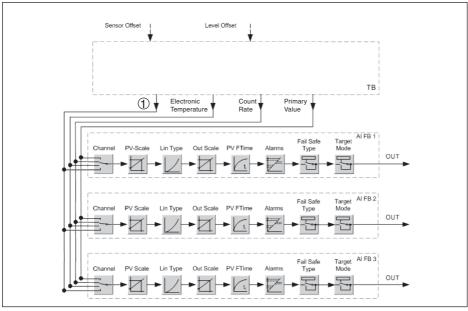


Figura 25: MINITRAC 31: Block diagram with AI FB 1 ... AI FB 3 OUT values

TB Transducer Block

FB 1 ... FB 3 Function Block

- 1 Valore in uscita, impostabile (in funzione del tipo di apparecchio e dell'applicazione v. la lista seguente)
- Temperatura di processo
- Densità del vapore
- densità
- Portata in volume
- Massa
- Velocità del nastro
- Carico

Moduli del sensore PA

Per il traffico ciclico dei dati il MINITRAC 31 mette a disposizione i seguenti moduli:

- AI FB1 (OUT)
 - Valore Out dell'Al FB1 dopo l'impostazione dei valori scalari
- AI FB2 (OUT)
 - Valore Out dell'Al FB2 dopo l'impostazione valori scalari
- AI FB3 (OUT)
 - Valore Out dell'Al FB3 dopo impostazione dei valori scalari
- Free Place
 - Questo modulo deve essere usato se un valore del messaggio del traffico ciclico dei dati non può essere utilizzato (per es. sostituzione della temperatura e dell'Additional Cyclic Value)

Possono essere attivi al massimo tre moduli. Con l'aiuto del software di configurazione del master Profibus potete determinare con questi moduli la struttura del messaggio ciclico dei dati. La procedura dipende dal software di configurazione usato.

Avviso:

Sono disponibili due tipi di moduli:

- Short f
 ür Profibusmaster, di supporto solo ad un byte "Identifier Format", per es. Allen Bradley
- Long per Profibusmaster di supporto solo al byte "Identifier Format", per es. Siemens S7-300/400

Esempio della struttura di un messaggio

Trovate qui sotto esempi di combinazioni di moduli e la relativa struttura del messaggio.

Esempio 1

- AI FB1 (OUT)
- AI FB2 (OUT)
- AI FB3 (OUT)

Byte- No.	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
For- mato	IEEE		loating lue	point	Stato	IEEE-754-Floating point value		Stato	Stato IEEE-754-Floating point value			point	Stato		
Value	(/				AI FB1	(/			AI FB2		AI FB3	(OUT)		AI FB3	

Esempio 2

- AI FB1 (OUT)
- Free Place
- Free Place

Byte-No.	1	2	3	4	5
Format		Status			
Value		AI FB1			

Avviso:

1

In questo esempio i byte 6-15 non sono assegnati.

Formato dati del segnale d'uscita

Byte4	Byte3	Byte2	Byte1	Byte0					
Status	Value (IEEE-754)								

Figura 26: Formato dati del segnale d'uscita

Il byte di stato é codificato e corrisponde al profilo 3.02 "Profibus PA Profile for Process Control Devices". Lo stato "Valore di misura OK" é codificato come 80 (hex) (Bit7 = 1, Bit6 \dots 0 = 0).

Il valore di misura sarà trasmesso come numero da 32 bit a virgola mobile in formato IEEE-754.

	Byte n Byte n+1								Byte n+2 Byte n+3								+3														
Bit	Bit	Bit	Bit	Bit	Bit	Bit	Bit	Bit	Bit	Bit	Bit	Bit	Bit	Bit	Bit	Bit	Bit	Bit	Bit	Bit	Bit	Bit	Bit	Bit	Bit	Bit	Bit	Bit	Bit	Bit	Bit
7	6	5	4	3	2	1	0	7	6	5	4	3	2	1	0	7	6	5	4	3	2	1	0	7	6	5	4	3	2	1	0
VZ	27	26	25	2 ⁴	2 ³	2 ²	21	20	2-1	2-2	2-3	2-4	2.5	2-6	2-7	2-8	2-9	210	211	212	213	214	215	216	217	218	219	220	221	222	2-23
Sign Bit									Sig	nific	ant						Siç	nifi	can	t											

Value = (-1)^{VZ} • 2 (Exponent - 127) • (1 + Significant)

Figura 27: Formato dati del valore di misura

Codifica del byte di stato per valore in uscita PA

Trovate ulteriori informazioni relative alla codifica del byte di stato nella Device Description 3.02 su www.profibus.com.

Codice di stato	Descrizione secondo norma Profibus	Descrizione dell'errore
0 x 24	bad	(F) Failure
0 x 3C	bad	(C) Function Check
0 x 78	uncertain	(S) Out of Spec
0 x A4	good	(M) Maintenance required
0 x A8	good	(M) Maintenance demanded
0 x 00	good	(G) Good

Mapping - User error codes

Priorità	Descrizione secondo norma Profibus	User Error Codes	Stato NE 107
31	Hardware Failure	40, 41	FAILURE
30	Memory Failure	34, 35, 36, 37	FAILURE
29	Software Failure	80	FAILURE
28	Parameterization corrupt	72	FAILURE
27	Undefined 27	-	-
26	Undefined 26	-	-
25	Parameterization Error	16, 17, 25, 52, 53, 57, 66, 117, 120	FAILURE
24	Conflict in MGC	121, 122, 141	FAILURE

Priorità	Descrizione secondo norma Profibus	User Error Codes	Stato NE 107			
23	Communication Error in MGC	8	FAILURE			
22	MGC-Slave reports Error	38	FAILURE			
21	Undefined 21	-	-			
20	Undefined 20	-	-			
19	Undefined 19	-	-			
18	Detector Temperature critical	125	OUT_OF_SPEC			
17	Error while Auto-Standar-dization	73	FAILURE			
16	Excessive Radiation	123, 124	FAILURE			
15	Input out of Bounds	13	OUT_OF_SPEC			
14	Error while Signal Processing	68	FAILURE			
13	Undefined 13	-	-			
12	Undefined 12	-	-			
11	Undefined 11	-	-			
10	Undefined 10	-	-			
9	Undefined 9	-	-			
8	Undefined 8	-	-			
7	AITB Simulated	29	FUNCTION CHECK			
6	Undefined 6	-	-			
5	Undefined 5	-	-			
4	Undefined 4	-	-			
3	Undefined 3	-	-			
2	Undefined 2	-	-			
1	Error while Trend Recording	126, 127	GOOD			
0	Undefined 01	-	-			
Not displayed	-	33, 45, 71, 86	GOOD			

•

Lo stato NE 107 preimpostato alla consegna rappresenta sono una raccomandazione. Le impostazioni possono essere adeguate conformemente al profilo PA 3.02. V. DIAG_EVENT_SWITCH.

11.3 Dimensioni

I seguenti disegni quotati illustrano solo alcune delle possibili esecuzioni. Disegni quotati dettagliati possono essere scaricati dal sito www.vega.com/downloads, "Disegni".

Custodia di alluminio e di acciaio speciale

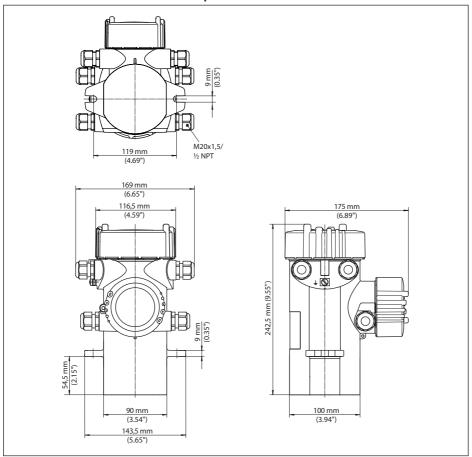


Figura 28: Custodia di alluminio ovv. di acciaio speciale microfuso

MINITRAC 31

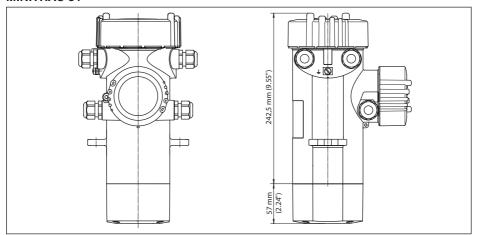


Figura 29: MINITRAC 31

L Campo di misura

11.4 Diritti di proprietà industriale

VEGA product lines are global protected by industrial property rights. Further information see www.vega.com.

Only in U.S.A.: Further information see patent label at the sensor housing.

VEGA Produktfamilien sind weltweit geschützt durch gewerbliche Schutzrechte.

Nähere Informationen unter www.vega.com.

Les lignes de produits VEGA sont globalement protégées par des droits de propriété intellectuelle. Pour plus d'informations, on pourra se référer au site www.vega.com.

VEGA lineas de productos están protegidas por los derechos en el campo de la propiedad industrial. Para mayor información revise la pagina web www.vega.com.

Линии продукции фирмы ВЕГА защищаются по всему миру правами на интеллектуальную собственность. Дальнейшую информацию смотрите на сайте www.vega.com.

VEGA系列产品在全球享有知识产权保护。

进一步信息请参见网站<www.vega.com>。

11.5 Marchio depositato

Tutti i marchi utilizzati, i nomi commerciali e delle società sono proprietà del loro legittimo proprietario/autore.

INDEX

Α

Accessori per il montaggio 11 Al FB1 Function Block 34, 45, 58 Allarme raggi X 34, 63 Applicazione 33, 40, 54, 65, 68 Attenuazione 34, 35, 46, 58, 61 Autorizzazione 11

В

Bloccare calibrazione 48, 59, 65, 68 Byte di stato valore in uscita PA 90

C

Calore 19
Caratteristiche apparecchio 51, 62
Channel 35, 45, 58
Contenitore di protezione 11
Controllare il segnale 77, 78
Correzione valore effettivo 47, 66

D

Data 50, 61
Data di calibrazione 51, 62
Dati di taratura 48, 60
Delta I 56
Denominazione punto di misura 32, 39, 54, 65, 68
Diametro interno 41

Е

EDD (Enhanced Device Description) 72 Eliminazione delle anomalie 77

F

File GSD 87
File principale apparecchio 87
Formato dati segnale d'uscita 90

ı

Impostazione valori scalari 35, 46, 58 Impostazioni apparecchio Copiare 51, 62 Incaricato della radioprotezione 12 Indicatore valori di picco 48, 59 Indirizzamento hardware 28, 32, 39, 53, 64, 67 Indirizzamento software 28, 32, 39, 53, 64, 67 Indirizzo apparecchio 28 Indirizzo sensore 31, 38, 53, 64, 67 Isotopo

- -Co-60 32, 39, 54, 65, 68
- -Cs-137 32, 39, 54, 65, 68

L

Linearizzazione 33, 43 Lingua 48, 59

M

Menu principale 31, 38, 52, 63, 66 Messaggi di stato - NAMUR NE 107 73 Moduli PA 88

N

NAMUR NE 107

- Failure 74

Passacavo 20

- Function check 76
- Maintenance 77
- Out of specification 77
 Nome dell'apparecchio 51, 62

0

Operazioni di collegamento 21 Ora 50.61

P

Pezzi di ricambio

– Unità elettronica 11

PIN 49, 61

Posizione di montaggio 14

Principio di funzionamento 9

Protezione contro le radiazioni 11

Punto di taratura 55

R

Radiazione di fondo 33, 40, 54 Raffreddamento ad acqua 19 Relè 35, 47, 58 Reset 36, 50, 61 Riparazione 79

0

Service
- Hotline 78
Simulazione 49, 60
Sorgente radioattiva 32, 39, 54, 65, 68
Stato apparecchio 48, 59
Struttura del messaggio 89

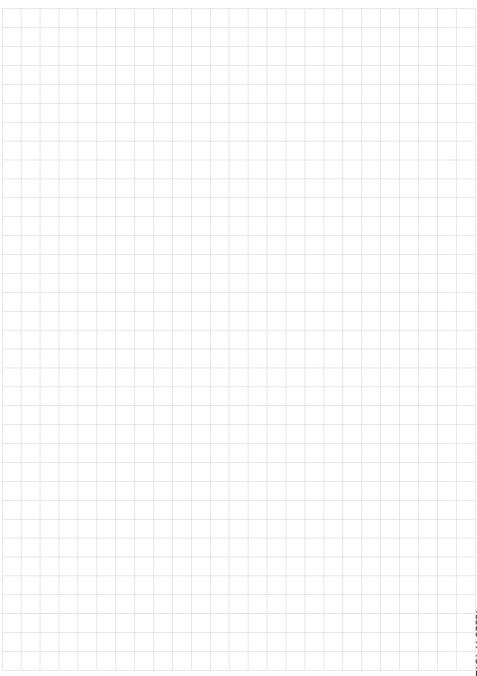
т

Taratura 33, 41
- sistema 30
Targhetta d'identificazione 7

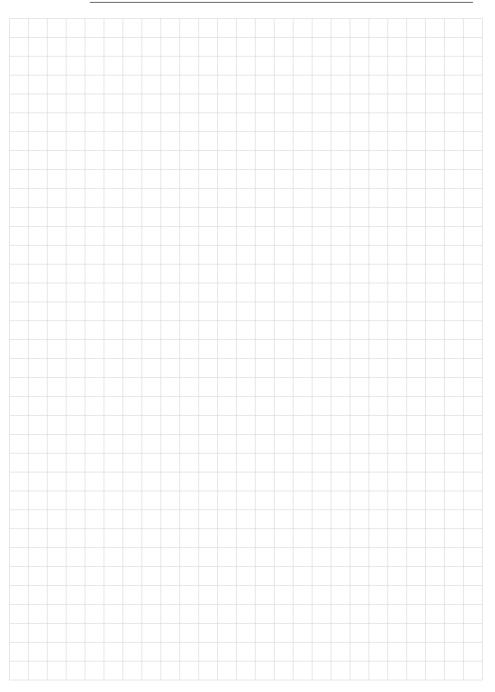
Tecnica di collegamento 21 Tensione d'alimentazione 86 Tipo di taratura 55 Traffico ciclico dei dati 88

U

Unità 33, 41, 55 Unità dei valori scalari 35, 46, 58


V

Valore d'indicazione 48, 59 Valori di default 36, 50, 61


Z

Zone controllate 12

Finito di stampare:

Le informazioni contenute in questo manuale d'uso rispecchiano le conoscenze disponibili al momento della messa in stampa.

Riserva di apportare modifiche

© VEGA Grieshaber KG, Schiltach/Germany 2013

.3836-IT-13123