

Istruzioni d'uso

VEGAFLEX 65 Profibus PA

Document ID: 31847

Sommario

1	II CO	ntenuto di questo documento	mento		
	1.1	Funzione	4		
	1.2	Documento destinato ai tecnici	4		
	1.3	Significato dei simboli	4		
2	Crite	Criteri di sicurezza			
	2.1	Personale autorizzato	5		
	2.2	Uso conforme alla destinazione e alle normative	5		
	2.3	Uso errato - avvertenza	5		
	2.4	Normative generali di sicurezza	5		
	2.5 2.6	Contrassegni di sicurezza sull'apparecchio Conformità CE	6 6		
	2.7	Realizzazione delle condizioni NAMUR	6		
	2.8	Normative di sicurezza per luoghi Ex	6		
	2.9	Salvaguardia ambientale	6		
3	Descrizione del prodotto				
	3.1	Struttura	7		
	3.2	Metodo di funzionamento	8		
	3.3	Calibrazione	9		
	3.4	Imballaggio, trasporto e stoccaggio	9		
4		Montaggio			
	4.1	Avvertenze generali	10		
	4.2	Indicazioni di montaggio	11		
5		egamento all'alimentazione in tensione			
	5.1	Preparazione del collegamento	14		
	5.2	Operazioni di collegamento	15		
	5.3 5.4	Schema elettrico custodia ad una camera	16 17		
	5.4 5.5	Schema elettrico - Esecuzione IP 66/IP 68, 1 bar	19		
_					
6		sa in servizio col tastierino di taratura con display SCOM			
	6.1	Breve descrizione	20		
	6.2	Installare il tastierino di taratura con display	20		
	6.3	Sistema operativo	22		
	6.4	Sequenza della messa in servizio	23 29		
	6.5 6.6	Architettura del menu	31		
		·			
7	Mettere in servizio con PACTware con altri programmi di servizio				
	7.1	Collegamento del PC	32		
	7.2	Parametrizzazione con PACTware	33		
	7.3	Parametrizzazione con PDM	33		
	7.4	Protezione dei dati di parametrizzazione	33		

8	Verifica periodica ed eliminazione dei disturbi				
	8.1	Manutenzione	34		
	8.2	Eliminazione di anomalie	34		
	8.3	Sostituzione dell'unità l'elettronica	36		
	8.4	Aggiornamento del software	37		
	8.5	Riparazione dell'apparecchio	38		
9	Smontaggio				
	9.1	Sequenza di smontaggio	39		
	9.2	Smaltimento	39		
10	Appendice				
	10.1	Caratteristiche tecniche	40		
	10.2	Profibus PA	47		
	10.3	Dimensioni	51		

Documentazione complementare

Informazione:

Ogni esecuzione è corredata di una specifica documentazione complementare, fornita con l'apparecchio, elencata nel capitolo "Descrizione dell'apparecchio".

Manuali d'istruzioni per accessori e pezzi di ricambio

i

Consiglio:

Per l'impiego e il funzionamento sicuri del VEGAFLEX 65 offriamo accessori e pezzi di ricambio e la relativa documentazione:

- 27720 VEGADIS 61
- 30207 Unità elettronica VEGAFLEX Serie 60
- 34296 Cappa di protezione climatica
- 31088 Flange secondo DIN-EN-ASME-JIS-GOST
- 30391 Stella di centraggio

Finito di stampare: 19-03-2012

1 Il contenuto di questo documento

1.1 Funzione

Queste -Istruzioni d'uso- forniscono le informazioni necessarie al montaggio, al collegamento e alla messa in servizio, nonché importanti indicazioni relative alla manutenzione e all'eliminazione di disturbi. Leggerle perciò prima della messa in servizio e conservarle come parte integrante dell'apparecchio, in un luogo facilmente raggiungibile, accanto allo strumento.

1.2 Documento destinato ai tecnici

Queste -Istruzioni d'uso- sono destinate a personale qualificato, che deve prenderne visione e applicarle.

1.3 Significato dei simboli

Informazioni, consigli, indicazioni

Questo simbolo identifica utili informazioni ausiliarie.

Attenzione: l'inosservanza di questo avviso di pericolo può provocare disturbi o errori di misura.

Avvertenza: l'inosservanza di questo avvertimento di pericolo può provocare danni alle persone e/o all'apparecchio.

Pericolo: l'inosservanza di questo avviso di pericolo può provocare gravi lesioni alle persone e/o danni all'apparecchio.

Applicazioni Ex

Questo simbolo identifica le particolari istruzioni per gli impieghi Ex.

Elenco

Questo punto identifica le singole operazioni di un elenco, non soggette ad una sequenza obbligatoria.

→ Passi operativi

Questa freccia indica un singolo passo operativo.

1 Sequenza operativa

I numeri posti davanti ai passi operativi identificano la sequenza delle singole operazioni.

2 Criteri di sicurezza

2.1 Personale autorizzato

Tutte le operazioni descritte in queste -lstruzioni d'uso- devono essere eseguite unicamente da personale qualificato e autorizzato dal gestore dell'impianto.

Per l'uso dell'apparecchio indossare sempre l'equipaggiamento di protezione personale necessario.

2.2 Uso conforme alla destinazione e alle normative

Il VEGAFLEX 65 è un sensore per la misura continua di livello.

Informazioni dettagliare relativamente al campo di impiego sono contenute nel capitolo "Descrizione del prodotto".

La sicurezza operativa dell'apparecchio è garantita solo da un uso conforme alle normative, secondo le -Istruzioni d'uso- ed eventuali istruzioni aggiuntive.

Interventi non in linea con queste -Istruzioni d'uso- devono essere effettuati solo da personale autorizzato dal costruttore, per ragioni di sicurezza e di garanzia. Sono categoricamente vietate trasformazioni o modifiche arbitrarie.

2.3 Uso errato - avvertenza

Un uso di questo apparecchio non appropriato o non conforme alle normative può provocare rischi funzionali dell'apparecchio, possono per es. verificarsi situazioni di troppo-pieno nel serbatoio o danni a componenti del sistema, causati da montaggio o installazione errati.

2.4 Normative generali di sicurezza

L'apparecchio corrisponde al suo livello tecnologico se si rispettano le normali prescrizioni e direttive. L'operatore deve rispettare le normative di sicurezza di questo manuale, gli standard d'installazione nazionali, le condizioni di sicurezza e le misure di prevenzione contro gli infortuni in vigore.

L'apparecchio deve funzionare solo in condizioni tecniche di massima sicurezza. È responsabilità dell'operatore assicurare un funzionamento dell'apparecchio esente da disturbi.

È inoltre compito del gestore garantire, per tutta la durata del funzionamneto, che le necessarie misure di sicurezza corrispondano allo stato attuale delle norme in vigore e rispettino le nuove disposizioni.

2.5 Contrassegni di sicurezza sull'apparecchio

Rispettare i contrassegni di sicurezza e le indicazioni presenti sull'apparecchio.

2.6 Conformità CE

Questo apparecchio soddisfa i requisiti legali delle direttive CE. Applicando il contrassegno CE, VEGA conferma che il controllo è stato eseguito con successo. La dichiarazione di conformità CE è disponibile nel menu Downloads sul sito "www.vega.com".

2.7 Realizzazione delle condizioni NAMUR

L'apparecchio soddisfa i requisiti stabiliti dalle relative raccomandazioni NAMUR.

2.8 Normative di sicurezza per luoghi Ex

Per le applicazioni Ex attenersi alle normative di sicurezza specifiche di questo impiego, che sono parte integrante di questo manuale e accompagnano tutti gli apparecchi omologati Ex.

2.9 Salvaguardia ambientale

La protezione delle risorse naturali è un compito di assoluta attualità. Abbiamo perciò introdotto un sistema di gestione ambientale, allo scopo di migliorare costantemente la difesa dell'ambiente aziendale. Questo sistema è certificato secondo DIN EN ISO 14001.

Aiutateci a rispettare queste esigenze e attenetevi alle indicazioni di queste -lstruzioni d'uso- per la salvaguardia ambientale:

- Capitolo "Imballaggio, trasporto e stoccaggio"
- Capitolo "Smaltimento"

3 Descrizione del prodotto

3.1 Struttura

Materiale fornito

La fornitura comprende:

- Sensore di livello VEGAFLEX 65
- Documentazione
 - Queste -Istruzioni d'uso-
 - Istruzioni d'uso 27835 "Tastierino di taratura con display PLICSCOM" (opzionale)
 - Istruzioni supplementari "Connettore per sensori di misura continua" (opzionale)
 - "Normative di sicurezza" specifiche Ex (per esecuzioni Ex)
 - Eventuali ulteriori certificazioni

Componenti

Il VEGAFLEX 65 è costituito dai seguenti componenti:

- Attacco di processo con sonda di misura
- Custodia con elettronica
- Coperchio della custodia, con tastierino di taratura con display opzionale

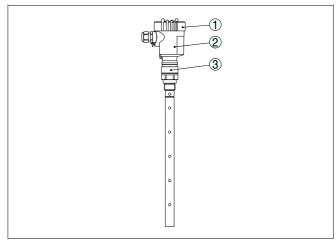


Figura 1: VEGAFLEX 65 con custodia ad una camera

- 1 Coperchio della custodia con tastierino di taratura con display (opzionale) situato sotto
- 2 Custodia con elettronica
- 3 Attacco di processo

Targhetta d'identificazione

La targhetta d'identificazione contiene i principali dati relativi all'identificazione e all'impiego dell'apparecchio:

- Numero di articolo
- Numero di serie

- Caratteristiche tecniche
- Numeri articoli documentazione

Il numero di serie vi consente di visualizzare, via www.vega.com, "VEGA Tools" e "serial number search" i dati di fornitura dell'apparecchio. Trovate il numero di serie non solo sulla targhetta d'identificazione esterna all'apparecchio, ma anche all'interno dell'apparecchio.

3.2 Metodo di funzionamento

Campo d'impiego

Il VEGAFLEX 65 é un sensore per la misura continua di livello con sonda di misura a a tubo.

È stato realizzato per l'impiego in tutti i settori della tecnologia e dei procedimenti industriali e può essere usato su liquidi.

Principio di funzionamento

Impulsi a mcroonde ad alta frequenza scorrono lungo una fune d'acciaio o una barra e raggiungono la superficie del prodotto, che li riflette. Il tempo d'andata e ritorno degli impulsi viene elaborato dall'apparecchio e fornito come misura di distanza.

Alimentazione e comunicazione bus

L'alimentazione in tensione é fornita dal convertitore/accoppiatore Profibus DP/PA o da schede VEGALOG 571 EP. Un cavo bifilare secondo specifica Profibus provvede contemporaneamente alla'limentazione e alla trasmissione digitale dei dati di più sensori. Il profilo dell'apparecchio del VEGAFLEX 65 corrisponde alla specifica del profilo versione 3.0.

L'illuminazione di fondo del tastierino di taratura con display è alimentata dal sensore. La tensione di servizio deve essere adequatamente elevata.

I dati relativi all'alimentazione in tensione sono contenuti nel capitolo "Caratteristiche tecniche".

Il riscaldamento opzionale richiede una propria tensione di esercizio. Trovate dettagliate informazioni nelle -lstruzioni supplementari- "Riscaldamento del tastierino di taratura con display".

Questa funzione generalmente non é disponibile per apparecchi omologati.

GSD/EDD

Voi trovate nella VEGA-Homepage www.vega.com sotto " Services -Downloads - Software - Profibus i GSD (dati base dell'apparecchio) e i file bit map necessari alla progettazione della vostra rete di comunicazione "Profibus-DP-(PA). Qui sono disponibili anche i relativi certificati. La completa funzionalità del sensore in ambiente PDM richiede inoltre una EDD (Electronic Device Description), anch'essa disponibile in Download. Potete anche richiedere un CD con i relativi file via e-mail sotto info@de.vega.com o telefonicamente presso la vostra filiale VEGA, indicando il numero d'ordinazione "DRIVER.S".

3.3 Calibrazione

L'apparecchio offre le seguenti possibilità di calibrazione:

- con il tastierino di taratura con display
- con l'idoneo VEGA-DTM in collegamento con un software di servizio secondo lo standard FDT/DTM, per es. PACTware e PC
- col software di servizio PDM

3.4 Imballaggio, trasporto e stoccaggio

Imballaggio

Durante il trasporto l'apparecchio è protetto dall'imballaggio. Un controllo secondo la normativa DIN EN 24180 garantisce il rispetto di tutte le esigenze di trasporto previste.

L'imballaggio degli apparecchi standard è di cartone ecologico e riciclabile. Per le esecuzioni speciali si aggiunge polietilene espanso o sotto forma di pellicola. Smaltire il materiale dell'imballaggio tramite aziende di riciclaggio specializzate.

Trasporto

Per il trasporto è necessario attenersi alle indicazioni relative all'imballaggio di trasporto. Il mancato rispetto può causare danni all'apparecchio.

Ispezione di trasporto

Al ricevimento della merce è necessario verificare immediatamente l'integrità della spedizione ed eventuali danni di trasporto. I danni di trasporto constatati o difetti nascosti devono essere trattati di conseguenza.

Stoccaggio

I colli devono restare chiusi fino al momento del montaggio, rispettando i contrassegni di posizionamento e di stoccaggio applicati esternamente.

Salvo indicazioni diverse, riporre i colli rispettando le seguenti condizioni:

- Non collocarli all'aperto
- Depositarli in un luogo asciutto e privo di polvere
- Non esporli ad agenti aggressivi
- Proteggerli dall'irradiazione solare
- Evitare urti meccanici

Temperatura di trasporto e di stoccaggio

- Temperatura di stoccaggio e di trasporto vedi "Appendice -Caratteristiche tecniche - Condizioni ambientali"
- Umidità relativa dell'aria 20 ... 85%

4 Montaggio

4.1 Avvertenze generali

Idoneità alle condizioni di processo

Assicuratevi che tutti gli elementi dell'apparecchio presenti nel processo, in particolare il sensore, la guarnizione e l'attacco di processo, siano adatti alle condizioni di processo esistenti, con particolare riferimento alla pressione e alla temperatura, nonché alle caratteristiche chimiche del prodotto.

Trovate le indicazioni relative nel capitolo "Dati tecnici" e sulla targhetta d'identificazione.

Posizione di montaggio

Scegliete una posizione di montaggio facilmente raggiungibile durante l'installazione e il collegamento ed anche durante un'eventuale futura applicazione di un tastierino di taratura con display. A questo scopo potete eseguire manualmente una rotazione della custodia di 330°. Potete inoltre installare il tastierino di taratura con display a passi di 90°.

Operazioni di saldatura

Prima di eseguire le operazioni di saldatura sul serbatoio, rimuovete l'unità elettronica dal sensore, per evitare che subisca danni causati da accoppiamenti induttivi.

Maneggiamento

Nelle versioni filettate non usate la custodia per avvitare. Serrando a fondo potreste danneggiare il meccanismo di rotazione.

Per avvitare usate l'apposito dado esagonale.

Umidità

Usare il cavo consigliato (vedi capitolo "Collegamento all'alimentazione in tensione") e serrare a fondo il pressacavo.

Per proteggere ulteriormente l'apparecchio da infiltrazioni d'umidità girare verso il basso il cavo di collegamento all'uscita dal pressacavo. In questo modo acqua piovana e condensa possono sgocciolare. Questa precauzione è raccomandata soprattutto nel caso di montaggio all'aperto, in luoghi dove si teme la formazione d'umidità (per es. durante processi di pulitura) o su serbatoi refrigerati o riscaldati.

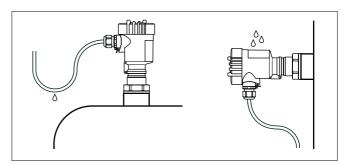


Figura 2: Accorgimenti per evitare infiltrazioni d'umiditá

Campo di misura

Il piano di riferimento per il campo di misura dei sensori é la superficie di tenuta dell'attacco filettato.

Tenete presente che sotto il piano di riferimento ed eventualmente all'estremità della sonda di misura occorre mantenere una distanza minima, lungo la quale non è possibile eseguire la misurazione. Trovate queste distanze minime nel capitolo "Dati tecnici" in "Appendice". Durante la taratura non dimenticate che la taratura di laboratorio si riferisce al campo di misura in acqua.

Pressione

In presenza di sovrappressione o depressione ermetizzate l'attacco di processo con una guarnizione resistente al prodotto.

La massima pressione ammessa è indicata nei "Dati tecnici" oppure sulla targhetta d'identificazione del sensore.

4.2 Indicazioni di montaggio

Posizione di montaggio

Montate il VEGAFLEX 65 in modo che la sonda di misura, durante il funzionamento, non venga in contatto con strutture interne o con le pareti del serbatoio.

Nei serbatoi con fondo conico è opportuno posizionare il sensore al centro del serbatoio, per eseguire la misura fino sul fondo.

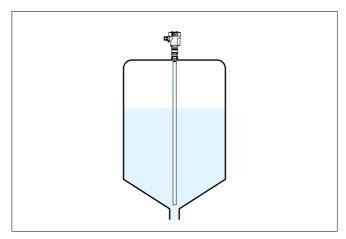


Figura 3: Serbatoio con fondo conico

Flusso di carico del prodotto

Non sottoponete la sonda di misura a forti spinte laterali. Montate il VEGAFLEX 65 in una posizione del serbatoio, lontana da influenze di disturbo, per es. da bocchettoni di carico, agitatori, ecc.

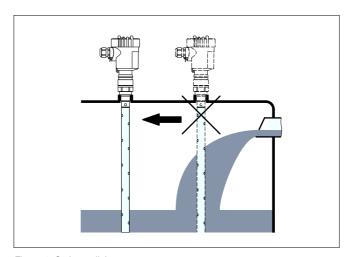


Figura 4: Carico radiale

Vibrazioni o scuotimenti estremi dell'impianto, causati per es. da agitatori o da turbolenze nel serbatoio durante caricamenti del prodotto, possono provocare vibrazioni di risonanza sulla sonda coassiale del VEGAFLEX 65. Nelle esecuzioni coassiali con una

lunghezza superiore a 1 m (3.281 in), applicate perciò immediatamente sotto l'estremità dell'elettrodo un adeguato supporto isolato o un ancoraggio per fissare la sonda di misura.

5 Collegamento all'alimentazione in tensione

Preparazione del collegamento

Normative di sicurezza

Rispettare le sequenti normative di sicurezza:

- Eseguire il collegamento unicamente in assenza di tensione
- Se si temono sovratensioni é opportuno installare idonei scaricatori di sovratensione secondo specifica Profibus.

Consiglio:

Noi raccomandiamo a questo scopo gli scaricatori di sovratensione VFGA B63-32.

In luoghi con pericolo d'esplosione attenersi alle normative e ai certificati di conformità e di prova d'omologazione dei sensori e degli alimentatori.

Alimentazione in tensione

L'alimentazione in tensione é fornità dal convertitore/accoppiatore Profibus DP/PA o da una scheda d'ingresso VEGALOG 571 EP. II campo dell'alimentazione in tensione può variare in base all'esecuzione dell'apparecchio.

I dati relativi all'alimentazione in tensione sono contenuti nel capitolo "Caratteristiche tecniche".

Cavo di collegamento

Il collegamento si esegue con un cavo schermato secondo la specifica Profibus. La tensione d'alimentazione e la trasmissione del segnale digitale bus passano attraverso lo stesso cavo di collegamento bifilare.

Usate un cavo a sezione circolare. Un diametro esterno del cavo di 5 ... 9 mm (0.2 ... 0.35 in) garantisce la tenuta stagna del pressacavo. Se applicate un cavo con un diametro diverso o una diversa sezione, scegliete un'altra guarnizione o utilizzate un pressacavo adeguato.

La vostra installazione deve essere eseguita secondo la specifica Profibus. E' importante verificare le corrette impedenze terminali delle estremità del bus.

Connessione elettrica 1/2 NPT

Nell'apparecchio con connessione elettrica ½ NPT e custodia di resina è inserita a injezione nella custodia una sede metallica filettata ½".

Avvertimento:

L'avvitamento del pressacavo NPT e/o del tubo d'acciaio nella sede filettata deve essere eseguito a secco, senza lubrificanti. Questi prodotti possono infatti contenere additivi che danneggiano il punto di raccordo fra sede filettata e custodia e compromettono la resistenza e l'impermeabilità della custodia.

Schermatura del cavo e collegamento di terra

Nei sistemi di collegamento equipotenziale, collegare lo schermo del cavo direttamente alla terra dell'alimentatore nella scatola di collegamento e al sensore. Collegare lo schermo direttamente al morsetto di terra interno. Il morsetto di terra esterno della custodia deve essere collegato a bassa impedenza al conduttore equipotenziale.

Nei sistemi senza collegamento equipotenziale, collegate lo schermo del cavo direttamente al potenziale di terra. Nella scatola di collegamento e/o nel distributore a T la breve linea di diramazione verso il sensore non deve essere collegata né al potenziale di terra, né ad un altro schermo del cavo. Gli schermi del cavo verso l'alimentatore e verso il successivo distributore a T devono essere collegati fra di loro e al potenziale di terra, mediante un condensatore di ceramica (per es. 1 nF, 1500 V). Evitate così correnti transitorie di terra a bassa frequenza, mantenendo efficace la protezione per segnali di disturbo ad alta frequenza.

Nelle applicazioni Ex la capacità totale del cavo e di tutti i condensatori non deve superare i 10 nF.

Le applicazioni Ex richiedono il rispetto delle vigenti normative d'installazione. É importante garantire l'assenza di correnti transitorie di terra lungo lo schermo del cavo. Procedete perció alla messa a terra bilaterale, usando un condensatore come sopra descritto o eseguendo un collegamento equipotenziale separato.

5.2 Operazioni di collegamento

Procedere nel modo seguente:

- 1 Svitare il coperchio della custodia
- 2 Rimuovere l'eventuale tastierino di taratura con display, ruotando verso sinistra
- 3 Svitare il dado di raccordo del pressacavo
- 4 Togliere la guaina del cavo di collegamento per ca. 10 cm (4 in), denudare le estremità dei conduttori per ca. 1 cm (0.4 in).
- 5 Inserire il cavo nel sensore attraverso il pressacavo
- 6 Tenere sollevate le alette d'apertura dei morsetti con un cacciavite (vedi figura)

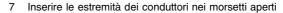


Figura 5: Operazioni di collegamento 6 e 7

- 8 Abbassare le alette dei morsetti a molla, fino ad avvertire lo scatto
- 9 Verificare che i conduttori siano ben fissati, tirando leggermente
- 10 Collegare lo schermo al morsetto interno di terra, connettere il morsetto esterno di terra al collegamento equipotenziale.
- 11 Serrare a fondo il dado di raccordo del pressacavo. L'anello di tenuta deve circondare perfettamente il cavo
- 12 Avvitare il coperchio della custodia

A questo punto il collegamento elettrico è concluso.

5.3 Schema elettrico custodia ad una camera

Le successive illustrazioni si riferiscono alle esecuzioni non Ex e alle esecuzioni Ex-ia.

Vano dell'elettronica e di connessione

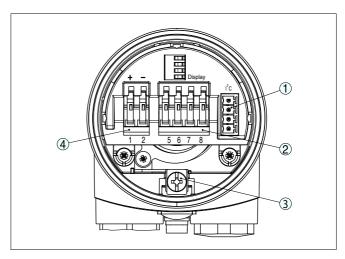


Figura 6: Vano dell'elettronica e di connessione della custodia ad una camera

- 1 Connettore per VEGACONNECT (interfaccia I²C)
- 2 Morsetti a molla per l'indicatore esterno VEGADIS 61
- 3 Morsetto di terra per il collegamento dello schermo del cavo
- 4 Morsetti a molla per l'alimentazione in tensione

Schema elettrico

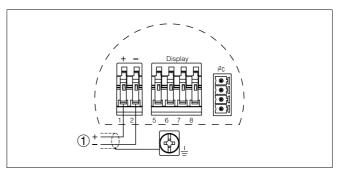


Figura 7: Schema elettrico custodia ad una camera

1 Alimentazione in tensione, uscita del segnale

5.4 Schema elettrico custodia a due camere

Le successive illustrazioni si riferiscono alle esecuzioni non Ex e alle esecuzioni Ex-ia.

Vano dell'elettronica

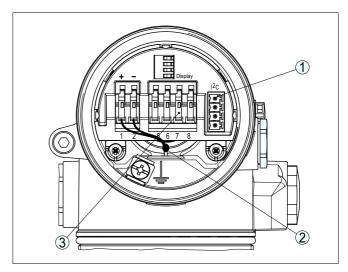


Figura 8: Vano dell'elettronica con custodia a due camere

- Connettore per VEGACONNECT (interfaccia I²C)
- Linea interna di connessione al vano di connessione
- Morsetti per VEGADIS 61

Vano di connessione

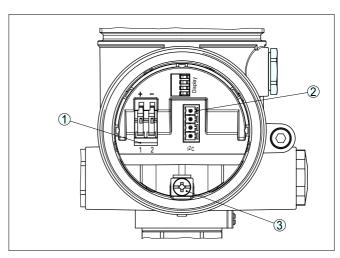


Figura 9: Vano di allacciamento custodia a due camere

- Morsetti a molla per l'alimentazione in tensione
- Connettore per VEGACONNECT (interfaccia I²C)
- Morsetto di terra per il collegamento dello schermo del cavo

Schema elettrico

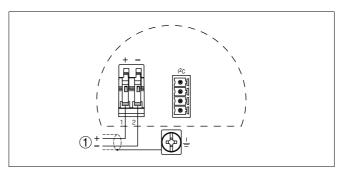


Figura 10: Schema elettrico custodia a due camere

1 Alimentazione in tensione, uscita del segnale

5.5 Schema elettrico - Esecuzione IP 66/IP 68, 1 bar

Assegnazione dei conduttori del cavo di collegamento

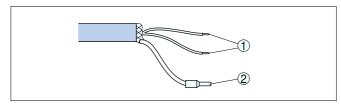


Figura 11: Assegnazione dei conduttori del cavo di collegamento

- 1 Marrone (+) e blu (-) verso l'alimentazione in tensione e/o verso il sistema d'elaborazione
- 2 Schermatura

6 Messa in servizio col tastierino di taratura con display PLICSCOM

6.1 Breve descrizione

Funzione/Struttura

Il tastierino di taratura con display consente la calibrazione, la diagnostica e la visualizzazione del valore di misura. Può essere inserito nelle seguenti custodie ed apparecchi:

- in tutti i sensori della famiglia di apparecchi plics[®], con custodia ad una o due camere (a scelta nel vano dell'elettronica o di connessione)
- Unità esterna d'indicazione e di servizio VEGADIS 61

Dalla versione hardware ...- 01 o superiore del PLICSCOM e la versione hardware ...- 01, 03 o superiore del sensore utilizzato, potete attivare, attraverso il menù di servizio, una illuminazione di fondo integrata. La revisione hardware é indicata sulla targhetta d'identificazione del PLICSCOM e/o dell'elettronica del sensore.

Avviso:

Trovate informazioni dettagliate per la calibrazione nelle -lstruzioni d'uso "*Tastierino di taratura con display*".

6.2 Installare il tastierino di taratura con display

Installare/rimuovere il tastierino di taratura con display

È possibile installare in ogni momento il tastierino di taratura con display nel sensore e rimuoverlo nuovamente, senza interrompere l'alimentazione in tensione.

Procedere nel modo seguente:

- Svitare il coperchio della custodia
- 2 Disporre il tastierino di taratura con display sull'elettronica nella posizione desiderata (sono disponibili quattro posizioni a passi di 90°).
- 3 Montare il tastierino di taratura con display sull'elettronica e ruotarlo leggermente verso destra finché scatta in posizione
- 4 Avvitare saldamente il coperchio della custodia con finestrella

Per rimuoverlo procedete nella sequenza inversa.

Il tastierino di taratura con display è alimentato dal sensore, non occorre un ulteriore collegamento.

Figura 12: Installare il tastierino di taratura con display

i

Avviso:

Se si desidera corredare l'apparecchio di un tastierino di taratura con display e disporre così dell'indicazione del valore di misura, è necessario usare un coperchio più alto con finestrella.

6.3 Sistema operativo



Figura 13: Elementi di servizio e d'indicazione

- 1 Display LC
- 2 Indicazione del numero della voce menú
- 3 Tasti di servizio

Funzioni dei tasti

Tasto [OK]:

- Passare alla panoramica dei menu
- Confermare il menu selezionato
- Editare i parametri
- Salvare il valore

Tasto [->] per selezionare:

- Cambiamento di menu
- Selezionare una voce della lista
- Selezionare la posizione di editazione

Tasto [+]:

Modificare il valore di un parametro

Tasto [ESC]:

- Interrompere l'immissione
- Tornare al menu superiore

Sistema operativo

La calibrazione del sensore si esegue attraverso i quattro tasti del tastierino di taratura con display. Sul display LCD appaiono le singole voci di menu. Le funzioni dei singoli tasti sono descritte in alto Dopo ca. 10 minuti dall'ultimo azionamento di un tasto scatta un ritorno automatico nell'indicazione del valore di misura. I valori non confermati con [OK] vanno persi.

6.4 Sequenza della messa in servizio

Fase d'avviamento

Dopo il collegamento del VEGAFLEX 65 all'alimentazione in tensione e/o dopo il rispristino della tensione l'apparecchio esegue per ca. 30 secondi un autotest delle seguenti funzioni:

- Controllo interno dell'elettronica.
- Indicazione del tipo d'apparecchio, della versione software e del TAG del sensore (denominazione del sensore)
- Il byte di stato va brevemente su disturbo

Apparirà poi il valore attuale di misura e sarà fornito sul circuito il relativo segnale digitale in uscita.¹⁾

Impostazione indirizzo

Prima della parametrizzazione di un sensore Profibus PA, occorre assegnare l'indirizzo. Le -lstruzioni d'uso- del tastierino di taratura con display o gli aiuti online di PACTware e/o DTM descrivono dettagliatamente l'operazione.

Parametrizzazione

Poiché il VEGAFLEX 65 é un misuratore di distanza, sarà misurata la distanza fra il sensore e la superficie del prodotto. Per visualizzare l'effettiva altezza di livello é necessario attribuire alla distanza misurata il valore percentuale dell'altezza. Per eseguire questa taratura impostate le distanze con serbatoio pieno e con serbatoio vuoto. Se questi valori non sono noti, potete eseguire la taratura con distanze corrispondenti per esempio a 10 % e a 90 %. Punto di partenza per le indicazioni di distanza é sempre la superficie di tenuta dell'attacco filettato o della flangia. In base a queste impostazioni sarà poi calcolata l'effettiva altezza di livello. Contemporaneamente il massimo campo di lavoro del sensore si riduce al campo effettivamente necessario.

Il livello attuale non ha nessuna importanza durante questa taratura, poiché la taratura di min./max. viene sempre eseguita senza variazione di livello. Potete perció eseguire queste impostazioni prima d'installare l'apparecchio.

Per eseguire una calibrazione ottimale é opportuno scegliere nel menù principale "*Impostazione di base*" le singole voci dei sottomenù in successione e corredarle dei corretti parametri.

Avvertimento:

Se nel serbatoio si crea una separazione di differenti liquidi, per es. per una formazione di condensa, il VEGAFLEX 65 rileverà sempre il prodotto coi valore di costante dielettrica relativa (ɛ,) più alto.

Tenete presente che gli strati di separazione possono determinare errori di misura.

I valori corrispondono al livello attuale e alle impostazioni precedentemente eseguite, per es. alla taratura di laboratorio.

Se volete misurare con sicurezza l'altezza totale di entrambi i liquidi, rivolgetevi ai nostri tecnici o usate un apparecchio di misura d'interfaccia.

Iniziate ora la vostra parametrizzazione con le seguenti voci menú dell'-Impostazione di base-:

Eseguire la taratura di min.

Procedere nel modo seguente:

 Passate dall'indicazione del valore di misura al menú principale, premendo [OK].

2 Selezionare la voce menù "Impostazione di base" con [->] e confermare con [OK]. Appare ora la voce menù "Taratura di min.".

- 3 Preparate con [OK] il valore percentuale da editare e con [->] spostate il cursore sulla posizione desiderata. Impostate il valore percentuale desiderato con [+] e memorizzate con [OK]. Il cursore salta sul valore della distanza.
- 4 Impostate il valore percentuale relativo alla distanza in metri con serbatoio vuoto (per es. distanza del sensore dal fondo del serbatoio).
- 5 Memorizzate le impostazioni con [OK] e passate alla taratura di max. con [->].

Eseguire la taratura di max.

Procedere nel modo seguente:

- 1 Preparate con [OK] il valore percentuale da editare e con [->] spostate il cursore sulla posizione desiderata. Impostate il valore percentuale desiderato con [+] e memorizzate con [OK]. Il cursore salta sul valore della distanza.
- 2 Impostate il valore percentuale, relativo alla distanza in metri con serbatoio pieno. Non dimenticate che il massimo livello deve trovarsi al di sotto della zona morta.
- 3 Memorizzate le impostazioni con [OK].

Applicazione

Ogni prodotto possiede particolari caratteristiche di riflessione. Nel caso di liquidi possono aggiungersi come fattori di disturbo superfici agitate e formazioni di schiuma, che nel caso di solidi saranno invece provocati da formazioni di polvere, coni di materiale e da echi aggiuntivi, provenienti dalla parete del serbatoio. Per adeguare il sensore a queste differenti condizioni di misura, dovrete dapprima selezionare in questa voce menù, sotto "*Prodotto*", "*Liquido*" oppure "*Solido4*".

Nelle esecuzioni coassiali questa voce menù deve trovarsi su "Liquido".

A seconda della costante dielettrica, i prodotti hanno un comportamento di riflessione più o meno accentuato. Per tale ragione vi è una possibilità di selezione aggiuntiva.

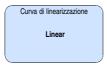
Alla voce "Sensibilità" è possibile selezionare "Standard (costante dielettrica ≥ 2)" oppure "Sensibilità elevata (costante dielettrica < 2)".

In questo modo si ottiene l'ottimale adeguamento del sensore al prodotto ed una più elevata sicurezza di misura, soprattutto su prodotti con cattive caratteristiche di riflessione.

Immettete i parametri desiderati con i relativi tasti, salvate le impostazioni e passate alla successiva voce di menu con il tasto [->].

Attenuazione

Per sopprimere oscillazioni del valore di misura, causate per es. da superfici agitate del prodotto, impostate un'attenuazione. Questo tempo d'integrazione può essere compreso fra 0 e 999 secondi. Tenete presente che in questo modo rallenta anche il tempo di reazione della misurazione e che il sensore reagisce con ritardo a rapide variazioni del valore di misura. In linea di massima sono sufficienti pochi secondi per attenuare l'indicazione del valore di misura.


Immettete i parametri desiderati con i relativi tasti, salvate le impostazioni e passate alla successiva voce di menu con il tasto [->].

Curva di linearizzazione

È necessario eseguire la linearizzazione di tutti i serbatoi il cui volume non aumenta linearmente con l'altezza di livello - per es. i serbatoi cilindrici orizzontali o i serbatoi sferici - e per i quali si desidera l'indicazione del volume. Esistono a questo scopo apposite curve di

linearizzazione, che indicano il rapporto fra altezza percentuale e volume del serbatoio. Attivando l'idonea curva sarà visualizzato il corretto volume percentuale del serbatoio. Se non desiderate indicare il volume in percentuale, bensì per esempio in litri o in chilogrammi, potete impostare un valore scalare alla voce menu "Display".

Immettete i parametri desiderati con i relativi tasti, salvate le impostazioni e passate alla successiva voce di menu con il tasto [->].

Avvertimento:

Se usate il VEGAFLEX 65 con relativa omologazione come componente di una sicurezza di sovrappieno secondo WHG, rispettate quanto seque:

Se si sceglie una curva di linearizzazione, il segnale di misura non è più obbligatoriamente linearmente proporzionale all'altezza di livello. L'utente ne tenga conto soprattutto durante l'impostazione del punto d'intervento sul rilevatore di livello.

TAG del sensore

In questa voce menú assegnate al sensore una chiara denominazione, per es. il nome del punto di misura, del serbatoio o del prodotto. Nei sistemi digitali e nella documentazione di grossi impianti é opportuno impostare una diversa denominazione per ogni punto di misura per identificarlo poi con sicurezza.

Questa voce menú conclude l'impostazione di base e voi potete ritornare nel menú principale col tasto [ESC].

Copiare dati del sensore

Questa funzione consente la lettura dei dati di parametrizzazione e la scrittura dei dati di parametrizzazione nel sensore mediante il tastierino di taratura con display. Trovate una descrizione della funzione nelle -Istruzioni d'uso- "Tastierino di taratura con display".

Con questa funzione leggete e/o scrivete i seguenti dati:

- Rappresentazione del valore di misura
- Calibrazione
- Prodotto
- Forma del serbatoio
- Attenuazione
- Curva di linearizzazione

- Sensor-TAG
- Valore d'indicazione
- Unità di taratura
- Lingua
- Sensibilità
- Unità scalare-PA
- PV-Out-Scale
- Channel
- Ulteriore valore PA

Non é possibile leggere e/o scrivere i seguenti importanti dati di sicurezza:

- Indirizzo sensore
- PIN
- Lunghezza sensore/Tipo sensore
- Soppressione dei segnali di disturbo

Copiare dati del sensore

Copiare dati del sensore?

Reset

Impostazione di base

Se eseguite la funzione di "Reset", il sensore riporta ai valori di reset i valori delle seguenti voci menù (vedi tabella):²⁾

Saranno ripristinati i seguenti valori.

Funzione	Valore di reset	
Taratura di max.	Distanza, zona morta superiore	
Taratura di min.	Distanza, lunghezza sensore fornita	
Taratura di min Esecuzione a fune	Distanza, zona morta inferiore	
Attenuazione ti	0 s	
Linearizzazione	Lineare	
TAG del sensore	Sensore	
Display	PA-Out 1	
Channel (PV)	lin %	
Ulteriore valore PA (PV)	lin %	
Unità Out-Scale	%	
PV-Out-Scale	0.00 lin % = 0.0 % 100.0 lin % = 100 %	

I valori delle seguenti voci menù, col "Reset" **non** saranno riportati ai valori di reset (vedi tabella):

²⁾ Impostazione di base specifica del sensore.

Funzione	Valore di reset	
Indirizzo sensore	nessun reset	
Lingua	nessun reset	

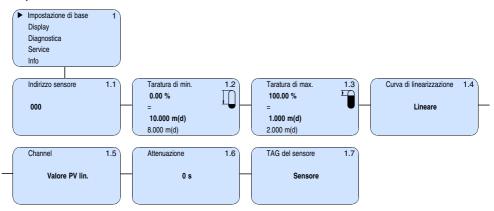
Regolazione di laboratorio

Come impostazione di base, tuttavia tutti i parametri speciali saranno riportati ai valori di default. 3)

Indicatore valori di picco

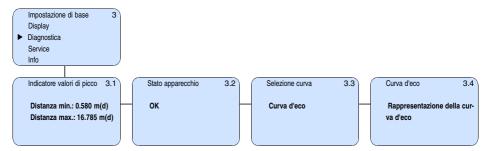
I valori di distanza min. e max. saranno riportati al valore attuale.

Impostazioni opzionali

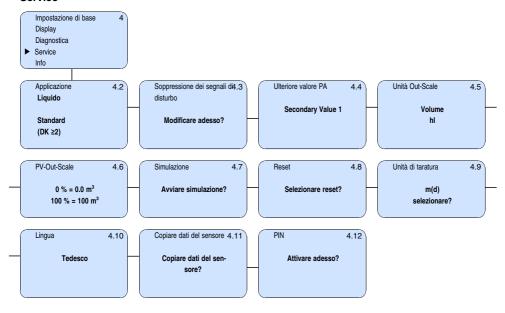

La seguente architettura del menù illustra ulteriori possibilità di regolazione e di diagnostica, come per es. indicazione dei valori scalari, simulazione o rappresentazione di curve di tendenza. Trovate una dettagliata descrizione di queste voci menù nelle -lstruzioni d'usodel "Tastierino di taratura con display".

I parametri speciali sono quelli impostati col software di servizio PACTware sul livello di servizio specifico del cliente.

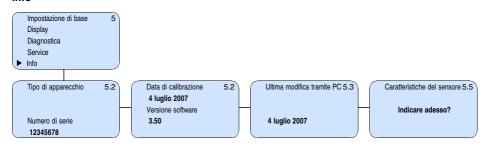
6.5 Architettura del menu


Impostazione di base

Display



Diagnostica



Service

Info

6.6 Protezione dei dati di parametrizzazione

È consigliabile annotare i dati impostati, per es. su questo manuale e poi archiviarli. Saranno così disponibili per ogni futura esigenza.

Se il VEGAFLEX 65 é corredato del tastierino di taratura con display, qui potete leggere i principali dati del sensore. Il procedimento é descritto nelle -Istruzioni d'uso- "Tastierino di taratura con display" alla voce menù "Copiare dati del sensore". I dati restano memorizzati anche nel caso di mancanza di tensione del sensore.

Nel caso di sostituzione del sensore, inserite il tastierino di taratura con display nel nuovo apparecchio, sul quale riporterete tutti i dati, attivando la voce "Copiare dati del sensore".

7 Mettere in servizio con PACTware con altri programmi di servizio

7.1 Collegamento del PC

VEGACONNECT direttamente al sensore

Figura 14: Collegamento diretto del PC al sensore via VEGACONNECT

- 1 Cavo USB di collegamento al PC
- 2 VEGACONNECT
- 3 Sensore

VEGACONNECT esterno

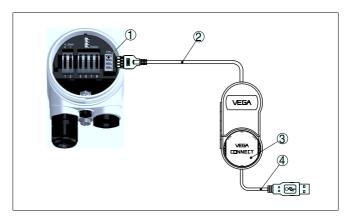


Figura 15: Collegamento via VEGACONNECT esterno

- 1 Interfaccia bus I²C (Com.) del sensore
- Cavo di collegamento I²C del VEGACONNECT
- 3 VEGACONNECT
- 4 Cavo USB di collegamento al PC

Componenti necessari:

- VFGAFLEX 65
- PC con PACTware e VFGA-DTM idoneo
- VEGACONNECT
- Alimentatore o sistema d'elaborazione

7.2 Parametrizzazione con PACTware

Ulteriori operazioni di messa in servizio sono descritte nelle -lstruzioni d'uso- "DTM-Collection/PACTware", allegate ad ogni CD e scaricabili dalla homepage. Una dettagliata descrizione é disponibile negli aiuti online di PACTware e nei VEGA-DTM.

Avviso:

Per eseguire la messa in servizio del VEGAFLEX 65 é necessaria la DTM-Collection nella versione attuale.

Tutti i VEGA-DTM attualmente disponibili sono raccolti in una DTM-Collection su CD e potete riceverli dalla vostra filiale VEGA, pagando un piccolo contributo spese. Questo CD contiene anche la versione PACTware attuale.

Potete inoltre scaricare gratuitamente questa DTM-Collection, PACTware compreso, nella versione base via internet . Andate a questo scopo via www.vega.com e "Downloads" alla voce "Software".

7.3 Parametrizzazione con PDM

Per i sensori VEGA sono disponibili anche descrizioni dell'apparecchio EDD per il software di servizio PDM. Queste descrizioni sono già disponibili nelle attuali versioni PDM. Nel caso di vecchie versioni PDM potete scaricare gratuitamente via internet le versione attuali.

Attraverso www.vega.com e "Downloads" andate alla voce "Software".

7.4 Protezione dei dati di parametrizzazione

E' consigliabile annotare e memorizzare i dati di parametrizzazione. Saranno così disponibili per ogni eventuale futura esigenza.

La DTM-Collection VEGA e il PACTware nella versione professionale con licenza, vi offrono tutti i tool di programmazione necessari ad una sistematica documentazione e memorizzazione del progetto.

8 Verifica periodica ed eliminazione dei disturbi

8.1 Manutenzione

L'apparecchio, usato in modo appropriato durante il normale funzionamento, non richiede una particolare manutenzione.

8.2 Eliminazione di anomalie

Comportamento in caso di disturbi

È responsabilità del gestore dell'impianto prendere le necessarie misure per eliminare i quasti e le disfunzioni che eventualmente si presentassero.

Cause di disturbo

Il VEGAFLEX 65 vi offre la massima sicurezza funzionale. È tuttavia possibile che durante il funzionamento si verifichino disturbi. Queste le possibili cause:

- Sensore
- Processo
- Alimentazione in tensione
- Elaborazione del segnale

Eliminazione di anomalie

Controllate prima di tutto il segnale d'uscita ed eseguite l'elaborazione dei messaggi d'errore attraverso il tastierino di taratura con display. Il procedimento é descritto qui sotto. Un PC con il software PACTware e l'adeguato DTM offre ulteriori ampie funzioni di diagnostica. In molti casi con questo sistema riuscirete a stabilire la causa dei disturbi e potrete eliminarli.

Hotline di assistenza 24 ore su 24

Se non si dovesse ottenere alcun risultato, chiamare la Service Hotline VFGA al numero +49 1805 858550.

La hotline è disponibile 7 giorni su 7, 24 ore su 24. Questo servizio è offerto in lingua inglese poiché è a disposizione dei nostri clienti in tutto il mondo. È gratuito, sono a vostro carico solo le spese telefoniche.

Controllo Profibus PA

La seguente tabella elenca i possibili errori e fornisce indicazioni per l'eliminazione:

Errore	Causa	Eliminazione
Il collegamento di un altro apparec- chio provoca un disturbo del seg- mento	E' stata superata la max. corrente di alimentazione dell'interfaccia di conversione/ac- coppiamento	Misurare la corrente assorbita, ridurre il segmento

Errore	Causa	Eliminazione
Il valore di misura appare nel Sima- tic 55 in modo errato	Simatic S5 non riesce ad inter- pretare il formato numerico IEEE del valore di mi- sura	Inserire il modulo di conversione di Siemens
Come valore di misura appare sempre 0 nel Si- matic S7	Nel PLC vengono caricati in modo stabile solo 4 byte	Usare il modulo funzionale SFC 14 per caricare in modo stabile 5 byte
Il valore di misura del tastierino di taratura con dis- play non corri- sponde al valore del PLC	Alla voce menù "Display - Valo- re d'indicazio- ne" la selezione non é impostata su "PA-Out"	Controllare i valori ed eventualmente correggerli
Non esiste colle- gamento fra PLC e rete PA	Impostazione errata dei parametri del bus e baud rate, che dipendono dall'interfaccia di conversione/accoppiamento	Controllare i dati ed eventualmente correggerli
L'apparecchio non appare nella con- figurazione del	Inversione di po- larità della linea Profibus DP	Controllare la linea e se necessario correggerla
collegamento	Terminazione non corretta	Controllare la terminazione alle due estremità del bus ed eseguirla secondo specifica
	Apparecchio non collegato al seg- mento, doppia assegnazione di un indirizzo	Controllare ed eventualmente correggere

Per gli impieghi Ex attenersi alle regole previste per l'accoppiamento elettrico dei circuiti elettrici a sicurezza intrinseca.

Segnalazioni di errore attraverso il tastierino di taratura con display Il tastierino di taratura con display visualizza errori mediante appositi codici. La seguente tabella descrive i codici di errore con stato secondo NE 107 e fornisce indicazioni relative alla causa e ai possibili rimedi.

Stato secondo NE 107	Codice d'errore	Testo del messaggio	Causa/Eliminazione
Guasto	E013	Nessun valore di misura disponibile	Sensore in fase d'inizializzazione
		Nessun valore di misura disponibile	Il sensore non trova nessun eco, per es. a causa d'installazione o parametrizzazione errata
		Nessun valore di misura disponibile	Immissione errata della lunghezza del sensore
	E017	Escursione taratura troppo piccola	Taratura non entro i limiti della specifica. Eseguire nuovamante la taratura, ampliando la distanza fra min. e max.
	E036	Software non funzionante	Aggiornamento software fallito o interrotto Ripetere l'aggiornamento
	E042	Errore di hardware, elettronica di- fettosa	Sostituire l'apparecchio o inviarlo in riparazione
	E043	Errore di hardware, elettronica di- fettosa	Sostituire l'apparecchio o inviarlo in riparazione
	E113	Conflitto di comunicazione	Sostituire l'apparecchio o inviarlo in riparazione

Comportamento dopo l'eliminazione dei disturbi

A seconda della causa del disturbo e dei rimedi applicati, occorrerà eventualmente eseguire nuovamente le operazioni descritte nel capitolo "Messa in servizio".

8.3 Sostituzione dell'unità l'elettronica

In caso di difetto, l'unità elettronica può essere sostituita dall'utente.

Nelle applicazioni Ex usare unicamente un apparecchio e un'unità elettronica con omologazione Ex.

Se non disponete di una unità elettronica sul posto, potete ordinarla alla vostra filiale VEGA.

Numero di serie del sensore

La nuova elettronica deve contenere le impostazioni del sensore, caricabili come segue:

- In officina da VEGA
- sul posto dall'utente

In entrambi i casi occorre indicare il numero di serie del sensore. rintracciabile sulla targhetta d'identificazione dell'apparecchio, all'interno della custodia o sulla bolla di consegna.

i

Informazione:

Per il caricamento sul posto è necessario dapprima scaricare da internet i dati dell'ordine (vedi -lstruzioni d'uso "Unità elettronica").

Correlazione

Le unità elettroniche sono di volta in volta idonee ai relativi sensori e i differenziano anche per quanto riguarda l'uscita del segnale e/o l'alimentazione.

Profibus PA

L'unità elettronicaFX-E.60P é adatta ai VEGAFLEX 61, 62, 63, 65, 66 - Profibus PA:

- FX-E.60PX (X = senza omologazioni)
- FX-E.60PA (A = omologazioni CA, DA secondo il catalogo Prodotti)
- FX-E.60PC (C = omologazioni XM, CX, CM, CK, GX secondo il catalogo Prodotti)

8.4 Aggiornamento del software

Potete stabilire la versione del software del VEGAFLEX 65:

- sulla targhetta d'identificazione dell'elettronica
- mediante il tastierino di taratura con display
- mediante PACTware

Nel nostro sito web <u>www.vega.com</u> trovate tutti gli archivi storici del software. Approfittate di questo vantaggio e registratevi per ricevere via e-mail tutti gli aggiornamenti.

Per l'aggiornamento software sono necessari i seguenti componenti:

- Sensore
- Alimentazione in tensione
- VEGACONNECT
- PC con PACTware
- Software attuale del sensore come file

Caricare sul PC il software del sensore

A questo scopo selezionare sulla nostra homepage "www.vega.com/downloads", "Software". Scegliere sotto "Sensori/apparecchi plics", "Firmwareupdates" la serie dei relativi apparecchi e la versione software. Caricare il file zip col tasto destro del mouse con "Salva oggetto con nome" per es. sul desktop del proprio PC. Fare clic con il tasto destro del mouse sulla cartella e scegliere "Estrai tutto". Memorizzare i fle estratti per es. sul desktop.

Preparare aggiornamento

Collegare il sensore all'alimentazione in tensione e stabilire la connessione tra PC e apparecchio attraverso il convertitore d'interfaccia. Avviare PACTware e richiamare l'assistente di progetto VEGA tramite il menu "Progetto". Selezionare "USB" e "Impostare apparecchio online". Attivare l'assistente di progetto premendo "Avvio". L'assistente crea automaticamente la linea di collegamento al sensore e apre la finestra dei parametri "Parametrizzazione online sensore #". Chiudere questa finestra di parametrizzazione prima di eseguire i passi successivi.

Caricare il software nel sensore

Selezionare il sensore nel progetto tramite il tasto destro del mouse, poi selezionare "Funzioni complementari". Dopodiché fare clic su "Aggiornamento software". Si apre la finestra "Aggiornamento software sensore #". PACTware controlla ora i dati del sensore e mostra l'attuale versione hardware e software del sensore. Questa procedura dura ca. 60 s.

Premere il pulsante "Aggiornare software" e scegliere il file hex precedentemente estratto. In questo modo sarà avviato l'aggiornamento del software e i nuovi file saranno installati automaticamente. A seconda del tipo di sensore, questa procedura può durare fino a 1 ora. Infine appare il messaggio "Aggiornamento software eseguito con successo".

8.5 Riparazione dell'apparecchio

Per richiedere la riparazione procedere come descritto di seguito.

In Internet, alla nostra homepage www.vega.com sotto: "Downloads - Formulare und Zertifikate - Reparaturformular" potete scaricare un apposito formulario (23 KB).

L'utilizzo del modulo ci consente di eseguire più velocemente la riparazione.

- Stampare e compilare un modulo per ogni apparecchio
- Pulire l'apparecchio e imballarlo a prova d'urto
- Allegare il modulo compilato e una eventuale scheda di sicurezza, esternamente, sull'imballaggio
- Richiedere alla propria filiale l'indirizzo al quale rispedire l'apparecchio da riparare. Sul sito <u>www.vega.com</u> sotto "Società VEGA nel mondo" (Company VEGA worldwide) sono riportati gli indirizzi di tutte le filiali.

9 Smontaggio

9.1 Sequenza di smontaggio

Attenzione:

Prima di smontare l'apparecchio assicurarsi che non esistano condizioni di processo pericolose, per es. pressione nel serbatoio, alte temperature, prodotti aggressivi o tossici, ecc.

Seguire le indicazioni dei capitoli "Montaggio" e "Collegamento all'alimentazione in tensione" e procedere allo stesso modo, ma nella sequenza inversa.

9.2 Smaltimento

L'apparecchio è costruito con materiali che possono essere riciclati dalle aziende specializzate. Abbiamo realizzato perciò un'elettronica che può essere facilmente rimossa, costruita anch'essa con materiali riciclabili.

Direttiva WEEE 2002/96/UE

Questo apparecchio non è soggetto alla direttiva WEEE 2002/96/UE e alle relative leggi nazionali. Consegnare l'apparecchio direttamente ad un'azienda specializzata nel riciclaggio e non usare i luoghi di raccolta comunali, che, secondo la direttiva WEEE 2002/96/UE, sono previsti solo per materiale di scarto di privati.

Un corretto smaltimento evita danni all'uomo e all'ambiente e favorisce il riutilizzo di preziose materie prime.

Materiali: vedi "Caratteristiche tecniche"

Se non è possibile smaltire correttamente il vecchio apparecchio, rivolgersi a Vega per l'eventuale restituzione e il riciclaggio.

10 Appendice

10.1 Caratteristiche tecniche

Dati generali

Materiale 316L corrisponde a 1.4404 oppure 1.4435

Materiali, a contatto col prodotto

- Attacco di processo 316L e TFM PCTFE +25 %GF, Hastelloy C22

(2.4602) e TFM PCTFE +25 %GF

Guarnizione di processo lato apparec- FKM (SHS FPM 70C3 GLT), FFKM (Kalrez 6375),

chio (passaggio del tubo) EPDM (A+P 75.5/KW75F), silicone rivestito di FEP

(A+P FEP-O-SEAL)

Guarnizione di processo procurata dal cliente (per apparecchi con attacco

filettato: Klingersil C-4400 spedita con l'apparec-

chio)

Tubo: ø 21,3 mm (0.839 in)
 316L oppure Hastelloy C22 (2.4602)

Materiali, non a contatto col prodotto

Custodia in resina resina PBT (poliestere)

Custodia di alluminio pressofuso
 Alluminio pressofuso AlSi10Mg, rivestito di polveri -

3161

base: poliestere

Policarbonato

Custodia di acciaio speciale - microfu-

sione

Custodia di acciaio speciale, lucidatura 316L

elettrochimica

Guarnizione tra custodia e coperchio NBR (custodia di acciaio speciale, microfusione),

della custodia di alluminio/resina; custodia di

acciaio speciale, lucidatura elettrochimica)

Finestrella nel coperchio della custodia

(opzionale)

Morsetto di terra
 316L

Attacchi di processo

Filettatura gas, zilindrica (DIN 3852-A)
 G¾ A, G1 A, G1½ A

Filettatura gas americana, conica
 ¾ NPT, 1 NPT, 1½ NPT

(ASME B1.20.1)

Flange
 DIN da DN 25, ANSI da 1"

Peso

Peso dell'apparecchio (in base all'attac ca. 0,8 ... 8 kg (0.176 ... 17.64 lbs)

co di processo)

Tubo: ø 21,3 mm (0.839 in)
 ca. 920 g/m (9.9 oz/ft)

Lunghezza sonda di misura L (da superficie di tenuta)

Tubo: Ø 21,3 mm (0.839 in) fino a 6 m (19.69 ft)
 Precisione del taglio a misura - tubo < 1 mm (0.039 in)
 Carico radiale - Tubo: Ø 21,3 mm (0.839 in)
 60 Nm (44 lbf ft)

dotto

Valore in ingresso

Grandezza di misura

livello di liquidi

Minima costante dielettrica relativa del pro-

 $\varepsilon_r > 1.4$

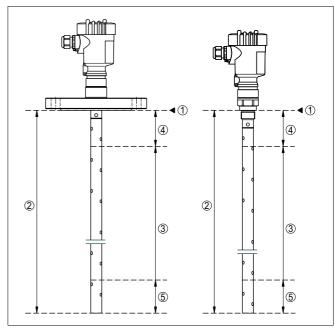


Figura 16: Campi di misura del VEGAFLEX 65

- 1 Livello di riferimento
- 2 Lunghezza sonda di misura L
- 3 Campo di misura (taratura di laboratorio riferita al campo di misura su acqua)
- 4 Zona morta superiore (vedi diagramma sotto precisione di misura zona grigia)
- 5 Zona morta inferiore (vedi diagramma sotto precisione di misura zona grigia)

Grandezza in uscita

Segnale di uscita segnale digitale d'uscita, formato secondo

IEEE-754

Tempo di ciclo min. 1 s (in base alla parametrizzazione)

Indirizzo sensore 126 (impostazione di laboratorio)

Valore in corrente 10 mA, ±0.5 mA

Attenuazione (63% della grandezza in in- 0 ... 999 s, impostabile

-----\

gresso)

Condizioni NAMUR realizzate NE 43

Risoluzione di misura digitale > 1 mm (0.039 in)

Precisione di misura (conforme a DIN EN 60770-1)

Condizioni di riferimento e di processo secondo DIN EN 61298-1

- Temperatura +18 ... +30 °C (+64 ... +86 °F)
- Umidità relativa dell'aria
 45 ... 75 %
- Pressione atmosferica
 +860 ... +1060 mbar/+86 ... +106 kPa

(+12.5 ... +15.4 psig)

Condizioni di riferimento per il montaggio

- Distanza minima da strutture
- Serbatoio
- Prodotto
- Montaggio

Parametrizzazione sensore Scostamento di misura

- > 500 mm (19.69 in)
- metallico, ø 1 m (3.281 ft), montaggio radiale, attacco di processo allo stesso livello del cielo del serbatojo
- Olio/acqua (valore Er ~2,0)

l'estremità della sonda di misura non tocca il fondo del serbatojo

soppressione dei segnali di disturbo eseguita

vedi diagrammi

In base alle condizioni di montaggio possono verificarsi scostamenti, eliminabili con un adeguamento della taratura o una modifica dell'offset del valore di misura nel modo service DTM.

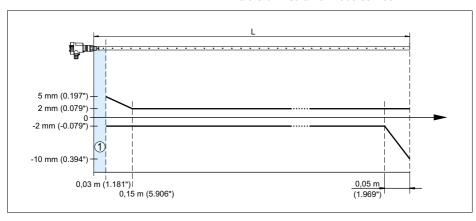


Figura 17: Scostamento di misura VEGAFLEX 65 in esecuzione coassiale nell'acqua

- 1 Zona morta in questa area non è possibile eseguire la misura
- L Lunghezza sonda di misura

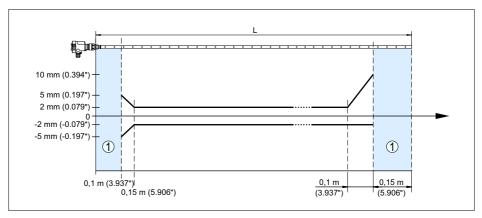


Figura 18: Scostamento di misura VEGAFLEX 65 in esecuzione coassiale su olio

- 1 Zona morta in questa area non è possibile eseguire la misura
- L Lunghezza sonda di misura

Influenza della temperatura ambiente sul	l'elettronica del sensore
Deriva termica	0,03 %/10 K riferita al max. campo di misura e/o max. 0,3 %
Deriva termica - Uscita digitale	3 mm/10 K riferita al max. campo di misura e/o max. 10 mm
Condizioni ambientali	
Temperatura ambiente, di stoccaggio e di trasporto	-40 +80 °C (-40 +176 °F)
Condizioni di processo	
Pressione di processo	-1 +40 bar/-100 +4000 kPa (- -14.5 +580 psig), in base all'attacco di processo
Temperatura di processo (temperatura attacco filettato e/o flangia)	
- FKM (Viton)	-40 +150 °C (-40 +302 °F)
- EPDM	-40 +150 °C (-40 +302 °F)
FFKM (Kalrez 6375)	-20 +150 °C (-4 +302 °F)
	L'errore di misura derivante dalla condizioni di processo si mantiene nel campo di pressione e di temperatura indicati sotto1 %.

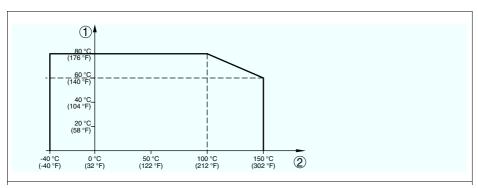


Figura 19: Temperatura ambiente - Temperatura di processo

- 1 Temperatura ambiente
- 2 Temperatura di processo (in base al materiale della guarnizione)

Dati elettromeccanici - Esecuzione IP 66/IP 67 e IP 66/IP 68; 0,2 bar

Connessione elettrica/Connettore4)

Custodia a due camere

Custodia a una camera

- 1 pressacavo M20 x 1,5 (cavo: Ø 5 ... 9 mm),
 1 tappo cieco M20 x 1,5
 oppure:
- 1 tappo filettato M20 x 1,5; 1 tappo cieco M20 x 1,5

oppure

- 1 tappo filettato ½ NPT, 1 tappo cieco ½ NPT oppure:
- 1 connettore (in base all'esecuzione), 1 tappo cieco M20 x 1.5
- 1 pressacavo M20 x 1,5 (cavo: Ø 5 ... 9 mm),
 1 tappo cieco M20 x 1,5; 1 tappo cieco
 M16 x 1,5 e/o 1 connettore M12 x 1 opzionale per unità d'indicazione e calibrazione esterna oppure:
- 1 tappo filettato ½ NPT, 1 tappo cieco ½ NPT, 1 tappo cieco M16 x 1,5 ovv. 1 connettore M12 x 1 opzionale per unità d'indicazione e calibrazione esterna

oppure:

 1 connettore (in base all'esecuzione), 1 tappo cieco M20 x 1,5; 1 tappo cieco M16 x 1,5 0vv.
 1 connettore M12 x 1 opzionale per unità d'indicazione e calibrazione esterna

Morsetti a molla per sezione del cavo

< 2,5 mm² (AWG 14)

In base all'esecuzione M12 x 1, secondo DIN 43650, Harting, 7/8" FF.

Dati elettro-meccanici - Esecuzione IP 66/IP 68 (1 bar)

Passacavo

Custodia a una camera
 1 pressacavo IP 68 M20 x 1,5; 1 tappo cieco

M₂₀ x 1.5

Custodia a due camere
 1 x pressacavo IP 68 M20 x 1,5; 1 x tappo cieco

M20 x 1,5; 1 x tappo cieco M16 x 1,5

Cavo di collegamento

Sezione dei conduttori 0,5 mm² (AWG 20)
 Resistenza conduttore < 0,036 Ω/m (0,011 Ω/ft)
 Resistenza a trazione < 1200 N (270 lbf)

Lunghezze standard5 m (16.4 ft)

Max. lunghezza
 1000 m (3280 ft)

Min. raggio di curvatura
 25 mm (0.984 in) con 25 °C (77 °F)

- Diametro ca. 8 mm (0.315 in)

Colore - standard PE
 Colore - standard PUR
 Colore - standard PUR
 Colore - blu
 Colore - colore blu

Tastierino di taratura con display

Visualizzazione Display LC a matrice di punti

Elementi di servizio 4 tasti

Tipo di protezione

non installato
 installato nel sensore senza coperchio
 IP 20
 IP 40

Materiali

- Custodia ABS

Finestrella Lamina di poliestere

Alimentazione in tensione

Tensione d'esercizio

Apparecchio non Ex
Apparecchio EEx-ia
Apparecchio EEx-d
9 ... 24 V DC
16 ... 32 V DC

Tensione di esercizio con tastierino di taratura con display illuminato

Apparecchio non Ex
 Apparecchio EEx-ia
 Apparecchio EEx-d
 Apparecchio EEx-d
 32 V DC
 24 V DC
 20 ... 32 V DC

Alimentazione attraverso/max. numero di sensori

Interfaccia di conversione/accoppia-

mento DP/PA

max. 32 (max. 10 per Ex)

Scheda VEGALOG 571 EP

max. 15 (max. 10 per Ex)

Protezioni elettriche

Grado di protezione, in base alla variante della custodia

Custodia in resina

IP 66/IP 67

 Custodia di alluminio; custodia di acciaio speciale - microfusione; custodia di acciaio speciale - lucidatura elettrochiIP 66/IP 68 (0,2 bar)5)

mica

Custodia di alluminio e di acciaio speciale, microfusione (opzionale)

IP 66/IP 68 (1 bar)

Categoria di sovratensione

Ш

Classe di protezione

Ш

Omologazioni

Gli apparecchi con omologazioni possono avere dati tecnici differenti a seconda del modello.

Per questi apparecchi è quindi necessario rispettare i relativi documenti d'omologazione, che fanno parte della fornitura dell'apparecchio o possono essere scaricati da www.vega.com via "VEGA Tools" e "serial number search" ed anche via "Downloads" e "Omologazioni".

Presupposto per garantire il grado di protezione è l'uso di un cavo idoneo.

10.2 Profibus PA

File principale apparecchio

I dati base dell'apparecchio (GSD) contengono i parametri dell'apparecchio Profibus PA. Fanno per esempio parte di questi dati la velocità di trasmissione ammessa, i valori di diagnostica e il formato dei valori di misura forniti con l'apparecchio PA.

Per i tool di progettazione della rete Profibus è inoltre messo a disposizione un file bitmap. Questo file s'installa automaticamente, integrando il file GSD nel sistema bus. Il file bitmap consente l'indicazione simbolica dell'apparecchio PA nel tool di configurazione.

Numero d'identificazione

Tutti gli apparecchi Profibus ricevono dall'organizzazione degli utenti Profibus (PNO) un chiaro numero d'identificazione (numero ID). Questo numero ID é riportato anche nel nome del file GSD. Per il VEGAFLEX 65 il numero ID é **0 x 0771(hex)** e il file GSD é **FX__0771.GSD**. IL PNO mette inoltre a disposizione dell'utente un file generale opzionale, definito GSD, specifico del profilo. Per il VEGAFLEX 65 userete il file generale GSD **PA139700.GSD**. In questo caso cambierete il numero del sensore mediante il software DTM e lo sostituirete col numero d'identificazione specifico del prodilo. Nel modo standard il sensore funzionerà col numero ID specifico del fabbricante.

Traffico ciclico dei dati

Il master class 1 (per es. PLC) legge ciclicamente i dati del valori di misura provenienti dal sensore. Lo schema funzionale visualizza i dati a cui il PLC può accedere.

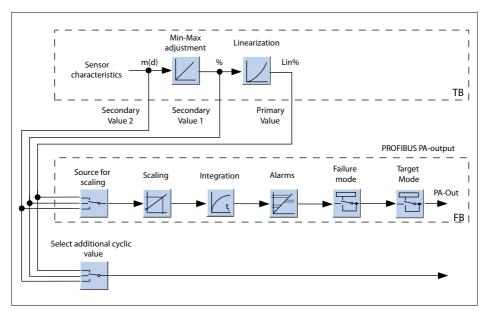


Figura 20: VEGAFLEX 65: Sistema a blocchi con valore AI (PA-OUT) e valore ciclico aggiuntivo

TB Transducer Block

FB Function Block

Moduli del sensore PA

Per il traffico ciclico dei dati il VEGAFLEX 65 mette a disposizione i seguenti moduli:

- AI (PA-OUT)
- Valore PA-OUT del FB1 dopo l'impostazione dei valori scalari
- Additional Cyclic Value
- Valore di misura ciclico supplementare (in base alla sorgente)
- Free Place
- Questo modulo deve essere usato se un valore del messaggio del traffico ciclico dei dati non può essere utilizzato (per es. sostituzione dell'Additional Cyclic Value)

Possono essere attivi al massimo tre moduli. Con l'aiuto del software di configurazione del master Profibus potete determinare con questi moduli la struttura del messaggio ciclico dei dati. La procedura dipende dal software di configurazione usato.

Avviso:

Sono disponibili due tipi di moduli:

- Short für Profibusmaster, di supporto solo ad un byte "Identifier Format", per es. Allen Bradley
- Long per Profibusmaster di supporto solo al byte "Identifier Format", per es. Siemens S7-300/400

Esempio della struttura di un messaggio

Trovate qui sotto esempi di combinazioni di moduli e la relativa struttura del messaggio.

Esempio 1 (impostazione standard) con valore distanza e valore ciclico supplementare:

- AI (PA-OUT)
- Additional Cyclic Value

Byte-No.	1	2	3	4	5	6	7	10		
Format		IEEE	-754-		Status		IEEE-	Status		
	Flo	ating	oint v	/alue		Floa	ating p			
Value		PA-0	DUT		Status	Ad	dition	Status		
		(FE	31)		(FB1)		Val	ue		

Esempio 2 2 con valore distanza, senzaalore ciclico supplementare:

AI (PA-OUT)

Free Place

Byte-No.	1	2	3	4	5
Format		IEE	Status		
	Flo	ating			
Value		PA-	Status		
		(F		(FB1)	

Formato dei dati del segnale d'uscita

		Byte2	Byte1	Byte0				
Status	Value (IEEE-754)							

Figura 23: Formato dei dati del segnale d'uscita

Il byte di stato é codificato e corrisponde al profilo 3,0 "Profibus PA Profile for Process Control Devices". Lo stato "Valore di misura OK" é codificato come 80 (hex) (Bit7 = 1, Bit6 ... 0 = 0).

Il valore di misura sarà trasmesso come numero da 32 bit a virgola mobile in formato IEEE-754.

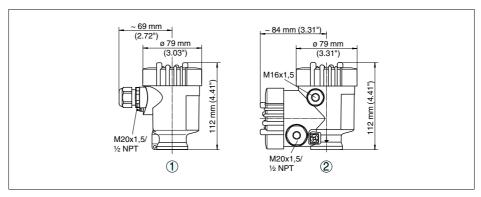
_																															
			Byt	e n					Byte n+1							Byte n+2							Byte n+3								
В	t Bit	Bit	Bit	Bit	Bit	Bit	Bit	Bit	Bit	Bit	Bit	Bit	Bit	Bit	Bit	Bit	Bit	Bit	Bit	Bit	Bit	Bit	Bit	Bit	Bit	Bit	Bit	Bit	Bit	Bit	Bit
7	6	5	4	3	2	1	0	7	6	5	4	3	2	1	0	7	6	5	4	3	2	1	0	7	6	5	4	3	2		0
V	Z 2	26	25	24	23	2 ²	21	20	2-1	2-2	2-3	2-4	2.5	2-6	2-7	2-8	2-9	210	211	212	213	214	215	216	217	218	219	220	2 ²¹	2 ²²	2-23
Sig Bi			Exp	one	ent				Significant					Significant								Significant									

Value = (-1)^{VZ} • 2 (Exponent - 127) • (1 + Significant)

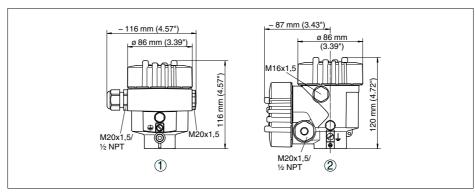
Figura 24: Formato dati del valore di misura

Codifica del byte di stato per valore in uscita PA

	Descrizione secondo norma Profibus	Possibile causa
0x00	bad - non-specific	Flash-Update attivo
0x04	bad - configuration error	 Errore di taratura Errore di configurazione nella PV-Scale (PV-Span too small) Unità di misura-Discrepanza Errore nella tabella di linearizzazione

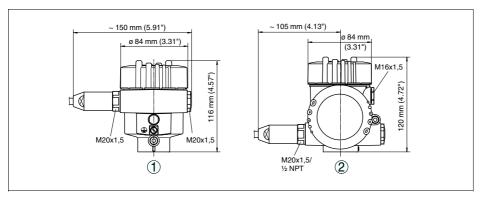

Codice di stato	Descrizione secondo norma Profibus	Possibile causa
0x0C	bad - sensor failure	 Errore hardware Errore del convertitore Errore d'impulso di perdita Errore di trigger
0x10	bad - sensor failure	Errore guadagno valore di misura
0x1f	bad - out of service constant	Inserito modo "Out of Service"
0x44	uncertain - last unstable value	Valore sostitutivo Failsafe (modo Failsafe = "Last value" e valore di misura già valido all'avviamento)
0x48	uncertain substitute set	 Attivare simulazione Valore sostitutivo Failsafe (modo Failsafe = "Fsafe value")
0x4c	uncertain - initial value	Valore sostitutivo Failsafe (modo Failsafe = "Last valid value" ed ancora nessun valore di misura valido all'avviamento)
0x51	uncertain - sensor; conversion not accurate - low limited	Valore sensore < limite inferiore
0x52	uncertain - sensor; conversion not accurate - high limited	Valore sensore > limite superiore
0x80	good (non-cascade) - OK	ок
0x84	good (non-cascade) - active block alarm	Static revision (FB, TB) changed (attiva per 10 sec. dopo la scelta del parametro della categoria Static)
0x89	good (non-cascade) - active advisory alarm - low limited	Lo-Alarm
0x8a	good (non-cascade) - active advisory alarm - high limited	Hi-Alarm
0x8d	good (non-cascade) - active critical alarm - low limited	Lo-Lo-Alarm
0x8e	good (non-cascade) - active critical alarm - high limited	Hi-Hi-Alarm

10.3 Dimensioni

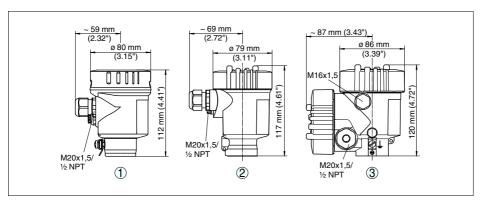

I seguenti disegni quotati illustrano solo alcune delle possibili esecuzioni. Disegni quotati dettagliati possono essere scaricati dal sito www.vega.com sotto "Downloads" e "Disegni".

Custodia in resina

- 1 Esecuzione a una camera
- 2 Esecuzione a due camere


Custodia in alluminio

- 1 Esecuzione a una camera
- 2 Esecuzione a due camere



Custodia in alluminio con grado di protezione IP 66/IP 68, 1 bar

- 1 Esecuzione a una camera
- 2 Esecuzione a due camere

Custodia di acciaio speciale

- 1 Esecuzione a una camera, lucidatura elettrochimica
- 2 Esecuzione a una camera, microfusione
- 2 Esecuzione a due camere, microfusione

VEGAFLEX 65, esecuzione filettata

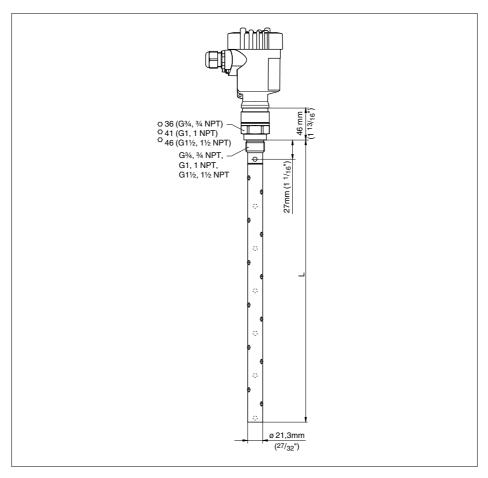


Figura 29: VEGAFLEX 65, esecuzione filettata

L Lunghezza sensore, vedi capitolo "Dati tecnici"

VEGAFLEX 65, esecuzione a flangia

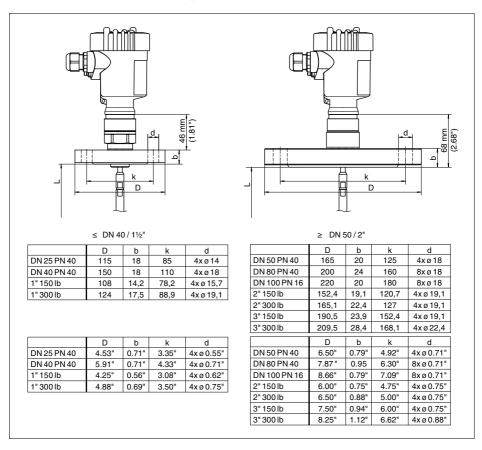


Figura 30: VEGAFLEX 65, esecuzione a flangia

L Lunghezza sensore, vedi capitolo "Dati tecnici"

10.4 Diritti di proprietà industriale

VEGA product lines are global protected by industrial property rights. Further information see http://www.vega.com.

Only in U.S.A.: Further information see patent label at the sensor housing.

VEGA Produktfamilien sind weltweit geschützt durch gewerbliche Schutzrechte

Nähere Informationen unter http://www.vega.com.

Les lignes de produits VEGA sont globalement protégées par des droits de propriété intellectuelle.

Pour plus d'informations, on pourra se référer au site http://www.vega.com.

VEGA lineas de productos están protegidas por los derechos en el campo de la propiedad industrial.

Para mayor información revise la pagina web http://www.vega.com.

Линии продукции фирмы ВЕГА защищаются по всему миру правами на интеллектуальную собственность.

Дальнейшую информацию смотрите на сайте http://www.vega.com.

VEGA系列产品在全球享有知识产权保护。 进一步信息请参见网站http://www.vega.com。

10.5 Marchio depositato

Tutti i marchi utilizzati, i nomi commerciali e delle società sono proprietà del loro legittimo proprietario/autore.

VEGA

Finito di stampare:

VEGA Grieshaber KG Am Hohenstein 113 77761 Schiltach Germania Telefono +49 7836 50-0 Fax +49 7836 50-201 e-mail: info.de@vega.com

www.vega.com

www.vega.com

VEGA Italia srl Via Giacomo Watt 37 20143 Milano MI Italia Telefono +3902891408.1 Fax +3902891408.40 e-mail: info.it@vega.com www.vegaitalia.it

Le informazioni contenute in questo manuale d'uso rispecchiano le conoscenze disponibili al momento della messa in stampa.

© VEGA Grieshaber KG, Schiltach/Germany 2012