S700

Servoamplificatore digitale S701x2...S724x2 (STO doppio canale)

Manuale di istruzioni

Edizione 06/2012 Traduzione del manuale originale Valido per la revisione del prodotto 02.10

Conservare il manuale per l'intera durata del prodotto. In caso di cambio di proprietà il manuale deve essere fornito al nuovo utilizzatore quale parte integrante del prodotto.

KOLLMORGEN

Edizioni fino ad ora pubblicate:

Edizione	Nota
04/2008	Prima edizione
10/2000	Schema di numero, STO-Enable, MMC, EMC standards, CE declaration, Hiperface, UL, Ether-
10/2008	CAT onboard, ROD/X1 1.5Mhz primary feedback
12/2009	STO è conceduto una licenza, Posl/O-Monitor cambiato titolo a Posl/O (parte analogica rimos-
12/2008	sa), collegamenti minimi corretti (DGND)
	Product brand, memory card, part number scheme, faults, EnDat 2.2, Multilink, certificates,
02/2010	GOST-R, SSI input (X5 clock - inverted), Posl/O-Monitor added, Safety Card S1 added, TÜV pro-
02/2010	ved safety, FAN option F2, X4A/3 changed from XGND to STO2-Enable, Emergency Stop exam-
	ples moved to WIKI
07/2010	new DriveGUI icon, bridge DGND-GND (dig-I/O) changed, type 6 integrated
12/2010	Expansion module 2CAN, company address and name, name plate, CE certificate, fax form
06/2011	Schema di numero del prodotto, emulazione encoder via X1, BiSS-C, feedback systems visuali-
00/2011	zed, STO SIL3/PLe, certificates removed
09/2011	New certificates added, safety characteristic data
06/2012	Fusing corrected, expansion card FB-2to1 new, emergency stop updated

Numero di revisione del prodotto

Hardware Rev.	utilizzabile Firmware Rev.	utilizzabile DRIVEGUI.EXE Rev.	Remark
00.20	2.21	1.30 Build 0060	Prima serie
01.21	2.50 - 3.49	≥ 1.30 Build 0060	Alloggiamento corto, X5, X6, X7
02.00	3.50 - 4.99	≥ 1.30 Build 0063	Connettore X0/X8 specchio-funzionato, Ether-CAT onboard, circuito caricantesi (abilità del collegamento parallelo)
02.10	≥ 5.18	≥ 2.20 Build 0004	scheda di memoria utilizzabile, STO a due vie, X4A coded to PIN2

WINDOWS è un marchio registrato di Microsoft Corporation

HIPERFACE è un marchio registrato di Max Stegmann GmbH.

EnDat è un marchio registrato di Dr. Johannes Heidenhain GmbH.

EtherCAT è registrato depositato e la tecnologia brevettata, conceduti una licenza a da Beckhoff Automation GmbH

Il produttore si riserva la facoltà di apportare modifiche tecniche volte al miglioramento degli apparecchi

Stampato nella Repubblica federale tedesca

Tutti i diritti riservati. Nessuna parte del documento può essere riprodotta in qualsiasi forma (fotocopia, microfilm o altro processo) senza l'approvazione scritta della ditta Kollmorgen Europe GmbH o rielaborata, riprodotta o diffusa mediante l'uso di sistemi elettronici.

		Pagina
1	Indio	azioni generali
		uesto manuale
		uppo di obiettivo
		dicazioni per la versione on-line (formato PDF)
		breviazioni utilizzate
		mboli utilizzati
		orme utilizzati
2		rezza
_		
		dicazioni di sicurezza
		o conforme
		o conforme vietato
3		logazioni
	3.1 Co	onformità UL
	3.2 Co	onformità CE
	3.2.1	Direttive e norme europee per produttore della macchina
	3.2.2	Dichiarazione di conformità CE17
	3.3 Co	onformità GOST-R
	3.4 Si	curezza funzionale
	3.4.1	Certificato di sicurezza S700
4	Utili	770
•		asporto
		ballaggio
		occaggio
		anutenzione / Pulizia
		essa fuori servizio
		parazioni
		naltimento
_		
5		tificazione del prodotto
		ballaggio fornito
		rghetta di omologazione
	5.3 Sc	hema di numero del prodotto
6	Desc	rizione tecnica
	6.1 Se	rvoamplificatori digitali della famiglia S700
		ti tecnici
	6.2.1	Dati nominale S7xx0
	6.2.2	Dati nominale S7xx6
	6.2.3	Ingressi/uscite, Tensione ausiliaria
	6.2.4	Connettore
	6.2.5	Coppie di serraggio consigliate
	6.2.6	Fusibili
	6.2.7	Condizioni ambientali, aerazione, posizione di montaggio
	6.2.8	Sezioni dei cavi
		eno di arresto motore
		splay a LED
		stema di messa a terra
		enaggio dinamico
		ocedura di inserzione e disinserzione
	6.7.1	Comportamento durante il funzionamento normale
	6.7.2	Comportamento in caso di errore (con le impostazioni standard)
		nzione di arresto, arresto- / spegnimento d'emergenza
	6.8.1	Arresto
	6.8.2	Arresto d'emergenza
	6.8.3	Spegnimento d'emergenza
	0.0.3	Opogrimonio a emergenza

	Pag	jina
	6.9 Funzione di sicurezza STO	41
	6.9.1 Caratteristice relative alla funzione di sicurezza	
	6.9.2 Luogo di installazione	
	6.9.3 Cablaggio	
	6.9.4 Indicazioni di sicurezza	
	6.9.5 Uso conforme	
	6.9.6 Uso conforme vietato	42
	6.9.7 Dati tecnici e configurazione dei collegamenti	
	6.9.8 Descrizione dell funzionamento	
	6.9.8.1 Diagramma ciclo segnale	
	6.9.8.2 Circuito elettrico di comando singola scanalatura SIL2/PLd (esempio)	
	6.9.8.3 Circuito elettrico di comando doppia scanalatura SIL2/PLd (esempio)	
	6.9.8.4 Circuito elettrico di comando doppia scanalatura SIL3/PLe (esempio)	
	6.9.8.5 Schema generale circuito principale	
	6.9.9 Collaudo funzionale	
	6.9.9.1 Singola / doppia scanalatura, SIL CL2 / PLd	
	6.9.9.2 Doppia scanalatura SIL CL3 / PLe	
	6.10 Protezione dal contatto accidentale	
	6.10.1 Corrente di dispersione	
	6.10.2 Interruttori di sicurezza per le correnti di guasto (FI)	
	6.10.3 Trasformatori d'isolamento di protezione	52
7	Installazione meccanica	
	7.1 Indicazioni di sicurezza	
	7.2 Istruzioni per l'installazione meccanica	
	7.3 Montaggio	
	7.4 Dimensioni	
	7.5 Montaggio del ventilatore	56
8	Installazione elettrica	
	8.1 Indicazioni di sicurezza	57
	8.2 Istruzioni per l'installazione elettrica	58
	8.3 Cablaggio	59
	8.3.1 Indicazioni di sicurezza	59
	8.3.2 Istruzioni importanti	
	8.3.3 Collegamento dello schermo di protezione alla piastra frontale	
	8.3.4 Connettore motore X9 con collegamento di schermatura	
	8.3.5 Dati tecnici dei cavi di collegamento	
	8.4 Componenti di un servosistema	
	8.5 Diagramma a blocchi	
	8.6 Assegnazione dei connettori	
	8.7 Schema collegamenti (descrizione)	
	8.8 Tensione di alimentazione	
	8.8.1 Collegamento a varie reti di alimentazione elettrica	
	8.8.1.1 Tipi S7xx0	
	8.8.1.2 Tipi S7xx6	
	8.8.2 Collegamento alla rete (X0), trifase	
	8.8.3 Collegamento alla rete (X0), bifase senza conduttore neutro	
	8.8.4 Collegamento alla rete (X0), monofase con conduttore neutro	
	8.8.5 Tensione ausiliaria da 24V (X4)	
	8.9 Resistenza di frenatura esterna (X8)	
	8.10 DC-link (X8)	
	8.12 Retroazione	/ 3

			Pag	ina
	8.13 Siste	ema di retroazione primario et secundario		.74
	8.13.1	Resolver (X2)		
	8.13.2	Encoder seno con BiSS analogo (X1)		
	8.13.3	Encoder seno con BiSS digitale (X1)		
	8.13.4	Encoder seno con EnDat 2.1 (X1)		
	8.13.5	Encoder con EnDat 2.2 (X1)		
	8.13.6	Encoder seno con HIPERFACE (X1)		
	8.13.7	Encoder seno con SSI (X1).		
	8.13.8	Encoder seno senza traccia dati (X1)		
	8.13.9	Encoder seno con Hall (X1)		
		ROD (AquadB) 5V, 1,5MHz (X1)		
		ROD (Aquadb) 5V, 1,5WH2 (X1)		
		ROD (AquadB) 5V, 350kHz con Hall (X1)		
		ROD (AquadB) 24V (X3)		
		ROD (AquadB) 24V con Hall (X3/X1)		
		Encoder SSI (X1)		
		Encoder Hall (X1)		
		missione elettronico e master-slave		
	8.14.1	Fonti del segnale		
	8.14.2	January		
		.2.1 Direzione / impulsi di 5V (X1)		
		.2.2 Direzione / impulsi di 24V (X3)		
		Master-slave		
		.3.1 Collegamento al master di S700, livello di 5V (X1)		
		.3.2 Collegamento al master di S700, livello di 5V (X5)		
		lazione del codificatore, uscita di posizione		
	8.15.1	Interfaccia ROD (AquadB) (X1)		
	8.15.2	Interfaccia SSI (X1)		
	_	essi/Uscite digitali e analogici		
	8.16.1	Ingressi analogici (X3B)		
	8.16.2	Ingressi digitali (X3A, X3B, X4B)		
		.2.1 Connettore X4A, X4B		
		.2.2 Connettore X3A, X3B		
		Uscite digitali (X3A, X3B)		
		faccia RS232, collegamento per PC (X6)		
		faccia CANopen (X6)		
		faccia EtherNET (X7)		
		eda di memoria		103
9	Messa	in funzione		
		azioni di sicurezza		
	9.2 Softw	ware di messa in funzione		106
	9.2.1	Uso conforme		
	9.2.2	Descrizione del software		
	9.2.3	Requisiti hardware, sistemi operativi		
	9.2.4	Installazione sotto WINDOWS		107
	9.3 Avvic	o immediato, test rapido		
	9.3.1	Preparazione		
	9.3.2	Collegamenti		
	9.3.3	Elementi principali della videata		
	9.3.4	Wizard di configurazione		
	9.3.4	r		
	9.3.4			
	9.3.4	`		
	9.3.4	\		
	9.3.4	·		
	9.3.5	Funzioni di assistenza (Jog)		
	9.3.6	Altre impostazioni possibili		116

	Pagina
9.4 Sistemi multiasse	
9.5 Comando a tasti / display a LED	
9.5.1 Comando	
9.5.2 Visualizzazione delle condizioni di stato	
9.5.3 Struttura del menu standard	
9.5.4 Struttura del menu dettagliato	
9.6 Messaggi d'errore	
9.7 Messaggi di avvertenza	
9.8 Eliminazione dei guasti	
Espansione	
10.1 Schede di espansione per lo slot 1	
10.1.1 Indicazioni per l'installazione delle schede di espansione nello slot 1 .	
10.1.2 Scheda di espansione -I/O-14/08	
10.1.2.1 Dati tecnici	
10.1.2.2 Diodi luminosi	
10.1.2.3 Selezionare il codice di task di movimento (esempio)	
10.1.2.4 Assegnazione dei connettori	
10.1.2.5 Schema collegamenti (default)	
10.1.3 Scheda di espansione -PROFIBUS	
10.1.3.1 Sistema di allacciamento	
10.1.3.2 Schema collegamenti	
10.1.4 Scheda di espansione -SERCOS	
10.1.4.1 Diodi luminosi	
10.1.4.2 Sistema di allacciamento	
10.1.4.3 Schema collegamenti	
10.1.4.4 Setup	
10.1.5 Scheda di espansione - DEVICENET	
10.1.5.1 Sistema di allacciamento, schema collegamenti	
10.1.5.2 LED modulo/stato rete combinato	
10.1.5.3 Setup	
10.1.5.4 Cavo bus	
10.1.6 Scheda di espansione -SYNQNET	
10.1.6.1 Selettore NODE ID	
10.1.6.2 Tabella dei LED Node	
10.1.6.3 Collegamenti SynqNet, connettore X21B e X21C (RJ-45)	
10.1.6.4 Ingressi/uscite digitali, connettore X21A (SubD a 15 poli, presa).	
10.1.6.5 Schema di collegamento ingressi / uscite digitali, connettore X21A	
10.1.7 Scheda di espansione - FB-2to1	
10.1.7.1 Assegnazione dei connettori	
10.1.7.2 Esempio di collegamento BiSS digitale (primario) e SinCos (secon	
10.1.8 Modulo di espansione -2CAN	
10.1.8.1 Montaggio del modulo di espansione	
10.1.8.2 Sistema di allacciamento	
10.1.8.3 Assegnazione dei connettori	
10.1.8.4 Impostazione dell'indirizzo e del Baud Rate	138

	Pagina
10.2 Schede di espansione per lo slot 2	
10.2.1 Indicazioni per l'installazione delle schede di espansione nello slot 2	139
10.2.2 Opzione "F2"	
10.2.3 Scheda di espansione "Posl/O" e "Posl/O-Monitor"	
10.2.3.1 Feedback	
10.2.3.1.1 ROD (AquadB) 5V (X5, X1)	
10.2.3.1.2 ROD (AquadB) 5V con Hall (X5, X1)	
10.2.3.1.3 Encoder SSI (X5, X1)	
10.2.3.1.4 Encoder seno con SSI (X5, X1)	
10.2.3.2 Trasmissione elettronico e master-slave (X5)	
10.2.3.2.1 Collegamento al master di 3700, livello di 5v (x5)	
10.2.3.3 Emulazioni encoder (X5)	
10.2.3.3.1 Interfaccia trasduttore incrementale ROD (AquadB) (X5)	
10.2.3.3.2 Interfaccia SSI (X5)	
10.2.3.4 Ingressi/Uscite analogici	
10.2.3.4.1 Uscite analogici ANALOG-OUT 1 e 2	
10.2.3.4.2 Ingressi analogici ANALOG-IN 3 e 4	
10.3 Schede di espansione per lo slot 3	
10.3.1 Indicazioni per l'installazione delle schede di espansione nello slot 3	
10.3.2 Opzione "F2"	
10.3.3 Scheda di espansione "Posl/O" e "Posl/O-Monitor"	
10.3.4 Scheda di espansione "Safety 2" (S2)	
10.3.4.1 Funzioni di azionamento di sicurezza S2	
10.3.4.2 Indicazioni di sicurezza S2	
10.3.4.3 Collegamenti di alimentazione S2	
10.3.4.4 Ingressi/uscite di sicurezza S2	
10.3.4.6 Collegamenti uscite S2	
10.3.5 Scheda di espansione "Safety 1" (S1)	
10.3.5.1 Funzioni di azionamento di sicurezza S1	
10.3.5.2 Indicazioni di sicurezza S1	
10.3.5.3 Encoder esterno S1	
10.3.5.4 Collegamenti di alimentazione S1	
10.3.5.5 Ingressi/uscite di sicurezza S1	
10.3.5.6 Collegamenti ingressi S1	
10.3.5.7 Collegamenti uscite S1	
11 Allegato	
11.1 Glossario	
11.2 Numeri d'ordine	
11.2.1 Servoamplificatori	
11.2.2 Memory Card	
11.2.3 Scheda di Espansione et Opzione	
11.2.3.1 Coperture per le Slots	
11.2.3.2 Slot 1	
11.2.3.3 Slot 2	
11.2.3.4 Slot 3	
11.2.4 Accoppiatori	
11.3 Index	

Pagina lasciata intenzionalmente in bianco.

1 Indicazioni generali

1.1 Questo manuale

Questo manuale descrive i servoamplificatori digitali della serie S701x-S724x (versione standard: corrente nominale da 1.5A....24A). Gli servoamplificatori delle serie S748x e S772x sono descritti in differenti manuali.

Una descrizione più dettagliata delle schede di espansione attualmente disponibili e del collegamento digitale ai sistemi di automazione è contenuta, insieme alle nostre note applicative, in formato Acrobat-Reader sul CD-ROM di accompagnamento (requisiti del sistema: WINDOWS, browser per Internet, Acrobat Reader) in diverse lingue.

Per i dati tecnici e i disegni quotati di accessori quali cavi, resistenze di carico, alimentatori e così via consultare il manuale degli accessori.

È possibile stampare questo documento su qualsiasi stampante commerciale standard. Una documentazione stampata si può acquistare anche presso l'azienda.

Più informazioni di base possono essere trovate nel nostro "Prodotto WIKI", disponibile a www.wiki-kollmorgen.eu.

1.2 Gruppo di obiettivo

Questo manuale è rivolto a personale con le seguenti qualifiche:

solo a cura di personale con nozioni di movimentazione Trasporto:

componenti sensibili alle cariche elettrostatiche.

Disimballaggio: solo da parte di elettrotecnici specializzati

solo a cura di elettricisti qualificati. Installazione:

Configurazione: solo a cura di personale qualificato con nozioni approfondite in

materia di elettrotecnica e tecnologia di azionamento.

Il personale tecnico deve conoscere e osservare le seguenti norme e direttive:

EN 60364 e EN 60664

disposizioni antinfortunistiche nazionali

AAVVERTENZA Quando l'apparecchio è in funzione sussiste il pericolo di morte, di seri infortuni o danni materiali. L'operatore deve accertarsi che le istruzioni di sicurezza in questo manuale siano seguite. L'operatore deve accertarsi che tutti i personali responsabili del funzionamento con servoamplificatore abbiano letto e capito il manuale del prodotto.

1.3 Indicazioni per la versione on-line (formato PDF)

Segnalibri:

Indice e indice analitico sono segnalibri attivi.

Indice e indice analitico nel testo:

Le righe sono riferimenti incrociati attivi. Cliccando sulla riga prescelta si visualizza la pagina corrispondente.

Numeri di pagina/capitolo nel testo:

I numeri di pagina/capitolo nei riferimenti incrociati sono attivi. Cliccare sul numero di pagina/capitolo per visualizzare il punto indicato.

1.4 Abbreviazioni utilizzate

Abbreviazione	Significato	
AGND	Massa analogica	
xAF	Fusibili, x ampère, veloce	
xAM	Fusibili, x ampère, mezzo	
xAT Fusibili, x ampère, lento		
BTB/RTO Operativo		
CAN	Bus di campo CANopen	
CE	Comunità Europea	
CLK	Clock (segnale temporizzato)	
COM	Interfaccia seriale di un PC	
DGND	Massa digitale	
Disk	Supporto magnetico di memorizzazione (dischetto, disco fisso)	
EEPROM	Memoria di sola lettura cancellabile e programmabile elettricamente	
EMI	Disturbo elettromagnetico	
EMV	Compatibilità elettromagnetica	
ESD	Scarica di elettricità statica	
F-SMA	Connettore (cavo di fibra ottica), IEC 60874-2	
IGBT	Transistor bipolare a gate isolato	
INC	Interfaccia incrementale	
LED	Diodo luminoso	
MB	Megabyte	
NI	Impulso di riferimento	
PELV	Bassa tensione protetta	
PL	Performance Level	
PWM	Modulazione di impulsi in ampiezza	
RAM	Memoria volatile	
R _{Brems} / R _B		
RBe	Resistenza di frenatura esterna	
RBi	Resistenza di frenatura interna	
RES Resolver		
ROD	Encoder A quad B	
SDI	Direzione di movimento sicura	
SIL	Safety Integrity Level	
SIL CL	Safety Integrity Level Claim Limit	
SLS	Velocità limitata in modo sicuro	
SOS	Arresto operativo sicuro	
SPS	Unità di controllo a logica programmabile	
SRAM	RAM statica	
SS1	Arresto sicuro	
SS2	Arresto activa sicuro	
SSI	Interfaccia seriale sincrona	
SSR	Range di velocità sicuro	
STO	Sistema di protezione contro il riavvio accidentale (già AS)	
V AC	Tensione alternata	
V DC	Tensione continua	
VDE	Associazione elettrotecnica tedesca	
VDE	ASSOCIAZIONE EIEUNOLECNICA LEUESCA	

1.5 Simboli utilizzati

Symbolo	Significato
▲ PERICOLO	Segnala una situazione di pericolo che, se non evitata, comporta la
	morte o lesioni gravi e permanenti.
AAVVERTENZA	Segnala una situazione di pericolo che, se non evitata, può compor-
	tare la morte o lesioni gravi e permanenti.
AATTENZIONE	Segnala una situazione di pericolo che, se non evitata, può compor-
	tare infortuni leggeri.
AVVISO	Segnala una situazione di pericolo che, se non evitata, può compor-
AVVIOO	tare danni materiali.
Informazioni	Questo non è un simbolo di sicurezza, ma serve a segnalare infor-
	mazioni importanti.

1.6 Norme utilizzati

Norme utilizzati	Significato		
EN 4762	Hexagon socket head cap screws		
ISO 11898	Road vehicles — Controller area network (CAN)		
EN 12100	Safety of machinery: Basic concepts, general principles for design		
EN 13849	Safety of machinery: Safety-related parts of control systems		
EN 60085	Electrical insulation - Thermal evaluation and designation Maintenance		
EN 60204	Safety of Machinery: Electrical equipment of machinery		
EN 60364	Low-voltage electrical installations		
EN 60439	Low-Voltage Switchgear and Controlgear Assemblies		
EN 60529	Protection categories by housing (IP Code)		
EN 60664	Insulation coordination for equipment within low-voltage systems		
EN 60721	Classification of environmental conditions		
EN 61000	Electromagnetic compatibility (EMC)		
EN 61131	Programmable controllers		
EN 61491	Electrical equipment of industrial machines – Serial data link for real-time		
EN 01491	communications between controls and drives.		
EN 61508	Functional safety of electrical/electronic/programmable electronic		
EN 01300	safety-related systems		
EN 61800	Adjustable speed electrical power drive systems		
EN 62061	Functional safety of electrical/electronic/programmable electronic		
EN 02001	safety-related systems		
EN 62079 Preparation of instructions - Structuring, content and presentation			
ANSI Z535	Product safety (symbols, colors, information)		
UL 840	UL Standard for Safety for Insulation Coordination Including Clearances		
UL 040	and Creepage Distances for Electrical Equipment		
UL 508C UL Standard for Safety Power Conversion Equipment			

ANSI American National Standard Institute, Inc.

EN European Standard

ISO International Organization for Standardization

UL Underwriters Laboratories

2 Sicurezza

2.1 Indicazioni di sicurezza

APERICOLO

Non aprire o toccare l'apparecchio mentre è in funzione. Durante il funzionamento tenere chiuse tutte le coperture e le porte dei quadri elettrici ad armadio. L'intervento sull'apparecchio acceso è consentito solo a personale specializzato qualificato durante la messa in funzione. Sussiste pericolo di morte, di infortunio grave o di danni materiali perché

- durante il funzionamento i servoamplificatori, a seconda del loro grado di protezione, possono presentare parti scoperte sotto tensione.
- i collegamenti di comando e di potenza possono condurre tensione anche a motore fermo.
- durante il funzionamento i servoamplificatori possono presentare superfici calde, con temperature anche superiori a 80°C.

AAVVERTENZA Non allentare mai i collegamenti elettrici dei servoamplificatori sotto tensione. In casi sfavorevoli possono venire a crearsi archi voltaivi con conseguenti danni a carico di persone e contatti. Dopo aver staccato i servoamplificatori dalle tensioni di alimentazione, attendere almeno otto minuti prima di toccare i componenti sotto tensione (ad esempio contatti) o di allentare collegamenti. Le cariche residue nei condensatori possono presentare valori pericolosi anche fino a 5 minuti nei modelli da 1,5A a 12A, e fino a 8 minuti nei modelli da 24A dopo la disinserzione della tensione di rete. Per sicurezza, misurare la tensione nel circuito intermedio e attendere fino a quando il valore è sceso al di sotto dei 40V.

AATTENZIONE Prima di procedere all'installazione e alla messa in funzione leggere la presente documentazione. L'errata manipolazione del servoamplificatore può comportare danni a persone o a cose. Osservare assolutamente i dati tecnici e le indicazioni sulle condizioni di collegamento (targhetta di omologazione e documentazione). I lavori di trasporto, installazione, messa in funzione e manutenzione si possono affidare esclusivamente a personale tecnico qualificato, che abbia familiarità con il trasporto, l'installazione, il montaggio, la messa in funzione e il funzionamento del prodotto e che disponga di opportune qualifiche per lo svolgimento di tali attività. Il personale tecnico deve conoscere e osservare le seguenti norme e direttive:

- EN 60364 e EN 60664;
- disposizioni antinfortunistiche nazionali.

AATTENZIONE Il produttore è tenuto a realizzare una valutazione di rischio per il macchinario e ad adottare le misure necessarie, affinché eventuali movimenti imprevisti non causino danni a persone o a cose.

AVVISO

Controlli il numero di revisione del prodotto (veda l'etichetta del prodotto). Questo numero di revisione deve abbinare il numero di revisione alla pagina di copertina del manuale.

AVVISO

I servoamplificatori contengono elementi sensibili alle scariche elettrostatiche, che possono essere danneggiati da una manipolazione non eseguita a regola d'arte. Scaricare la propria carica elettrostatica prima di maneggiare il servoamplificatore toccando ad esempio un oggetto messo a terra avente una superficie conduttrice. Evitare il contatto con materiali altamente isolanti (fibre sintetiche, pellicole in materia plastica, e così via). Collocare il servoamplificatore su un supporto conduttivo.

2.2 Uso conforme

I servoamplificatori sono componenti di sicurezza in impianti o macchine elettrici e possono funzionare esclusivamente come componenti integrati di tali impianti o macchine.

Il produttore della macchina deve generare una valutazione di rischio per la macchina ed adottare misure adeguate per assicurare che movimenti imprevisti non possano causare lesioni o danni a persone o cose.

Se i servoamplificatori vengono utilizzati in aree residenziali, in aree commerciali o in piccoli ambienti industriali, l'utente è tenuto ad implementare ulteriori filtrazione.

Armadio e Cablaggio

I servoamplificatori devono funzionare **soltanto** in un quadro elettrico ad armadio chiuso, nel rispetto delle condizioni ambientali definite a pag. 31. La ventilazione o il raffreddamento possono essere necessari per mantenere la temperatura del quadro ad armadio a un livello inferiore a 40°C.

Utilizzare esclusivamente conduttori di rame per il cablaggio. Per le sezioni dei conduttori, fare riferimento alla norma EN 60204 (in alternativa, per le sezioni AWG: NEC tabella 310-16, colonna 60°C o 75°C).

Alimentazione elettrica

<u>S7xx0:</u> I servoamplificatori della serie S7xx0 (categoria di sovratensione III secondo EN 61800-5-1) possono essere alimentati da reti elettriche industriali trifase messe a terra (sistema TN, TT con punto neutro messo a terra, corrente nominale simmetrica non superiore a 42kA a 208V_{-10%}, 230V, 240V, 400V oder 480V^{+10%}.

<u>S7xx6</u>: I servoamplificatori della serie S7xx6 (categoria di sovratensione III secondo EN 61800-5-1) possono essere alimentati da reti elettriche industriali monofase o trifase messe a terra (sistema TN, TT con punto neutro messo a terra, corrente nominale simmetrica non superiore a 42kA a 110V_{-10%} ... 230V^{+10%}.

Le sovratensioni periodiche tra le fasi (L1, L2, L3) e l'alloggiamento del servoamplificatore non devono superare il picco di 1000V.

In conformità alla norma EN 61800, i picchi di tensione transitori (< 50 μ s) non devono superare i 1000V. I picchi di tensione transitori (< 50 μ s) tra una fase e l'alloggiamento non devono superare 2000V

Motori

La famiglia di servoamplificatori S700 è **esclusivamente** destinata all'azionamento di servomotori sincroni brushless, motori asincroni e motori DC adeguati con controllo di coppia, velocità e/o posizione.

La tensione nominale dei motori deve essere almeno della stessa entità della tensione DC-link/ $\sqrt{2}$ prodotta dal servoamplificatore ($U_{nMotor}=U_{DC}/\sqrt{2}$).

Safety

Durante l'uso di funzione STO attenersi alle avvertenze riportate a pag. 41.

Per ottenere la classificazione PL o SIL CL 3 è necessario verificare periodicamente la sicurezza operativa del blocco impulsi mediante analisi del segnale di feedback trasmesso dall'unità di controllo di sicurezza (vedere pagina 50).

Consideri le documentazioni di utente per le carte di sicurezza S1 e S2 quando usate le funzioni di sicurezza offerte da queste carte di espansione.

2.3 Uso conforme vietato

Impieghi diversi da quelli descritti al paragrafo 2.2 non sono conformi alla destinazione d'uso e possono comportare infortuni, danni all'apparecchio o danni materiali in genere.

È vietato l'uso del servoamplificatore nei seguenti ambienti:

- aree a rischio di esplosione
- ambienti caratterizzati dalla presenza di acidi, soluzioni alcaline, oli, vapori, polveri corrosivi e/o conduttivi
- direttamente su reti elettriche non collegate a terra o su alimentazioni messe a terra asimmetricamente con una tensione > 230V.
- è installata su navi o impianti off-shore

L'uso conforme del servoamplificatore è vietato quando la macchina cui è destinato

- non è conforme alle disposizioni della Direttiva macchine CE
- non soddisfa le disposizioni della Direttiva sulla compatibilità elettromagnetica
- non soddisfa le disposizioni della Direttiva Bassa Tensione

Il controllo dei freni della tenuta dallo S700 da solo non può essere utilizzato nelle applicazioni, dove la sicurezza di personale deve essere accertata con il freno.

3 Omologazioni

I certificati possono essere trovati nel nostro prodotto WIKI alla pagina Approvals.

3.1 Conformità UL

I servoamplificatori S7xx0 è archiviato con numero di pratica UL **E217428**. I servoamplificatori S7xx6 **non sono registrati** in UL.

I servoamplificatori certificati UL (Underwriters Laboratories Inc.) sono conformi alle normative antincendio americane (in questo caso UL 840 e UL 508C).

La certificazione UL si riferisce esclusivamente alle caratteristiche costruttive meccaniche ed elettriche dell'apparecchio.

Le disposizioni UL stabiliscono, tra gli altri, i requisiti minimi tecnici richiesti agli apparecchi elettrici per prevenire eventuali pericoli d'incendio. La conformità tecnica alle disposizioni antincendio americane viene verificata da un ispettore UL indipendente mediante omologazione e prove di controllo regolari.

A parte le indicazioni per l'installazione e la sicurezza, l'utente non deve attenersi a nessun altro punto connesso direttamente con la certificazione UL.

UL 508C

La normativa UL 508C descrive la conformità costruttiva ai requisiti minimi prescritti per i convertitori di potenza ad azionamento elettrico, come invertitori di frequenza e servoamplificatori, atti ad impedire il rischio che tali apparecchi possano generare incendi.

UL 840

La disposizione UL 840 descrive la conformità costruttiva alla distanza in aria e alla linea di dispersione di apparecchi elettrici e piastrine dei conduttori.

Prescrizioni per marchiatura UL

- Usare solo cavo in rame 60°/75° per ogni modello di questa sezione.
- Usare solo cavo classe 1 o equivalente.
- Coppie di serraggio dei morsetti.
 X0, X8, X9: 0.7 0.8Nm
- Usare in ambiente con grado di inquinamento 2
- Utilizzabile in un circuito in grado di erogare non più di 42KA rms simmetrici alla tensione massima di 480 Vac
- Per la protezione dei circuiti vedere la seguente tabella

Modello	Classe dei fusibili	Valori nominali	Massimo valore del fusibile
S7010	RK5, CC, J, T	600VAC 200kA	6A (Time-Delay)
S7030	RK5, CC, J, T	600VAC 200kA	6A (Time-Delay)
S7060	RK5, CC, J, T	600VAC 200kA	10A (Time-Delay)
S7120	RK5, CC, J, T	600VAC 200kA	15A (Time-Delay)
S7240	RK5, CC, J, T	600VAC 200kA	30A (Time-Delay)

 Gli azionamenti possono essere collegati con il DCBUS in parallelo in accordo alle istruzioni riportate a pag. 60. Gli azionamenti possono essere parallelati anche dal lato alimentazione AC utilizzando un solo fusibile del valore massimo riportato in tabella (Es. 3 azionamenti S7010 con un fusibile di linea da 6AT).

3.2 Conformità CE

La conformità alla Direttiva Maccine 2006/42/CE, alla Direttiva EMC 2004/108/CE ed alla Direttiva sulla Bassa Tensione 2006/95/CE è obbligatoria per la fornitura dei servoamplificatori nell'ambito della Comunità europea. La dichiarazione di conformità si trova sul nostro sito (area download).

In merito all'immunità ai disturbi, il servoamplificatore soddisfa i requisiti della seconda categoria ambientale (ambienti industriali). Per l'emissione di rumore, il servoamplificatore soddisfa il requisito di un prodotto a disponibilità ridotta della categoria C2 (cavo motore ≤ 10 m).

AVVISO

In ambiente domestico questo prodotto può provocare disturbi ad alta freguenza che richiedono l'adozione di misure preventive.

Con un cavo del motore di lunghezza superiore ai 10 m, il servoamplificatore soddisfa i requisiti della categoria C3 ambientale.

I servoamplificatori sono stati testati da un laboratorio di collaudo autorizzato in una confiqurazione definita, utilizzando i componenti del sistema descritti nella presente documentazione. Qualsiasi differenza dalla configurazione e dall'installazione descritta nella presente documentazione presuppone l'onere di nuove misurazioni per garantire la conformità ai requisiti normativi.

3.2.1 Direttive e norme europee per produttore della macchina

I servoamplificatori sono componenti di sicurezza destinati all'integrazione in impianti e macchine elettrici per uso industriale. Quando i servoamplificatori sono integrati in macchine o impianti, l'uso previsto dell'amplificatore è vietato fino a quando viene stabilito che la macchina o l'attrezzatura soddisfa i requisiti della

- Direttiva Macchine (2006/42/CE)
- Direttiva EMC (2004/108/CE)
- Direttiva sulla Bassa Tensione (2006/95/CE)

Le seguenti norme devono essere applicate in conformità alla Direttiva 2006/42/CE: EN 60204-1:2007 (sicurezza e apparecchiature elettriche nelle macchine)

EN 12100:2010 (sicurezza delle macchine)

AATTENZIONE Il produttore della macchina deve produrre un'analisi dei rischi per la macchina ed implementare misure adequate per assicurare che movimenti imprevisti non possano causare lesioni o danni a persone o cose. Il produttore della macchina/dell'impianto deve verificare la necessità di applicazione di altre norme o direttive CE a questa macchina/a questo impianto.

> Le seguenti norme devono essere applicate in conformità alla Direttiva 2006/95/CE: EN 60204-1:2007 (sicurezza e apparecchiature elettriche nelle macchine)

EN 60439-1:2005 (combinazioni di quadri di comando a bassa tensione)

Le seguenti norme devono essere applicate in conformità alla Direttiva 2004/108/CE: EN 61000-6-1 o -2:2006 (immunità alle interferenze nelle aree residenziali e industriali) EN 61000-6-3 o -4:2007 (generazione di interferenze nelle aree residenziali e industriali)

Il produttore della macchina/dell'impianto deve garantire che tale macchina/impianto rientri nei limiti richiesti dai regolamenti sulla EMC. Consigli sull'installazione corretta per la EMC (come schermature, messe a terra, trattamenti di connettori e disposizioni dei cavi) si trovano anche in questa documentazione.

Garantiamo la conformità del servosistema alle norme qui menzionate solo se vengono utilizzati componenti originali (motore, cavi, induttori e così via).

3.2.2 Dichiarazione di conformità CE

EC Declaration of Conformity

KOLLMORGEN

Document No.: GL-11/24/48/10

We, the company

Kollmorgen Europe GmbH Pempelfurtstraße 1 D-40880 Ratingen

hereby in sole responsibility declare the conformity of the product series

Servo drive \$701...\$724

with the following standards:

- EC Directive 2006/42/EG
Directive for machinery
Used harmonized standards
EN 61800-5-2 (04/2008)
EN ISO 13849-1 (07/2007)
EN ISO 13849-2 (12/2003)

EC Directive 2004/108/EC
 Electromagnetic compatibility
 Used harmonized standard EN61800-3 (07/2005)

EC Directive 2006/95/EC
 Electrical devices for use in special voltage limits
 Used harmonized standard EN61800-5-1 (04/2008)

Year of EC-Declaration 2007

Issued by: Product Manager Drives Europe

Holger Goergen

Ratingen, 01.12.2010

Legally valid signature

The above-mentioned company has the following technical documentation for examination:

Hohn ly

- Proper operating instructions
- Setup Software
- Diagrams / software source codes (for EU authority only)
- Test certificates (for EU authority only)
- Other technical documentation (for EU authority only)

The special technical product documentation has been created.

Responsible person for documentation: Lars Lindner, Phone: +49(0)2102/9394-0

3.3 Conformità GOST-R

Certificato per i servo amplificatori ed accessori (pagina di copertina).

3.4 Sicurezza funzionale

CEPTUФИКАТ ◆ CERTIFICADO

3.4.1 Certificato di sicurezza S700

TUV

CERTIFICATE

No. Z10 11 07 75872 002

Holder of Certificate: Kollmorgen Europe GmbH

Pempelfurtstr. 1 40880 Ratingen GERMANY

Factory(ies): 20132, 72254

Certification Mark:

Product: AC Servo Systems

Model(s): S700 Series

For nomenclature see attachment

Parameters: Supply voltage AC: 3* 208 - 480 VAC or 110 - 230 VAC

Power output: 1.1 kVA – 50 kVA
Safety Parameters SIL 3 (EN 61508)

PL e, Cat 4 (EN ISO 13849-1) SIL CL 3 (EN 62061)

Tested 2006/42/EC according to: EN 61326-3-1:2008

EN 61800-3:2004 EN 61800-5-2:2007 EN 61508-1:2001 EN 61508-2:2001 EN 61508-2:2001 EN 61508-4:2001 EN 150 13849-1:2008 EN 62061:2005

The product was tested on a voluntary basis and complies with the essential requirements. The certification mark shown above can be affixed on the product. It is not permitted to alter the certification mark in any way. In addition the certification holder must not transfer the certificate to third parties. See also notes overleaf.

Test report no.: 717502561 **Valid until:** 2016-08-01

Date, 2011-08-11 (Jürgen Blum)

Page 1 of 2

TÜV®

41 / 12.09

CERTIFICATE

TÜV SÜD Product Service GmbH · Zertifizierstelle · Ridlerstraße 65 · 80339 München · Germany

Pagina lasciata intenzionalmente in bianco.

4 Utilizzo

4.1 Trasporto

Solo da parte di personale qualificato in imballaggio originale riciclabile

Evitare urti

■ Temperatura -25...+70°C, variazione max. 20K/ora,

categoria 2K3 secondo EN61800-2

Umidità umidità relativa max. 95%, senza condensa,

categoria 2K3 secondo EN61800-2

AVVISC

- I servoamplificatori contengono elementi costruttivi sensibili alle scariche elettrostatiche che possono essere danneggiati se maneggiati non correttamente.
 Scaricare l'elettricità statica dal corpo prima di toccare direttamente il servoamplificatore. Evitare il contatto con materiali altamente isolanti. Collocare il servoamplificatore su un supporto conduttivo.
- In caso di imballaggio danneggiato, verificare che l'apparecchio non presenti danni visibili. Informarne il trasportatore ed eventualmente il produttore.

4.2 Imballaggio

- Cartone riciclabile con inserti
- Dimensioni: S701...S712 (HxLxP) 125x415x350 mm
 S724 (HxLxP) 155x415x350 mm
- Identificazione: targhetta di omologazione apparecchio all'esterno sul cartone

4.3 Stoccaggio

- Altezza impilamento max. 8 cartoni, solo in imballaggio originale
- Temperatura di stoccaggio -25...+55°C, variazione max. 20K/ora, categoria 1K4 secondo EN61800-2
- Umidità atmosferica relativa max. 5...95%, senza condensa, categoria 1K3 secondo EN61800-2
- Durata a magazzino < 1 anno senza limitazioni
 Durata a magazzino > 1 anno: prima della messa in funzione del servoamplificatore, i condensatori devono essere rigenerati di nuovo. A questo scopo, allentare tutti i collegamenti elettrici. Alimentare poi il servoamplificatore per 30 minuti con corrente monofase da 230VAC sui morsetti L1/L2.

4.4 Manutenzione / Pulizia

Gli apparecchi non necessitano di manutenzione. L'apertura degli apparecchi comporta l'annullamento della garanzia.

Pulizia:

- in caso di imbrattamento dell'alloggiamento: pulizia con isopropanolo o similari AVVISO: non immergere o nebulizzare
- in caso di imbrattamento nell'apparecchio: pulizia a cura del produttore
- in caso di griglia del ventilatore sporca: pulizia con pennello (asciutto)

4.5 Messa fuori servizio

Per mettere un servoamplificatore fuori servizio (ad esempio per sostituirlo) procedere come segue:

1. Mettere l'apparecchio fuori tensione

AAVVERTENZA

Staccare la tensione di alimentazione nel quadro elettrico ad armadio e togliere i fusibili dal circuito.

Dopo aver isolato il servoamplificatore dalle tensioni di alimentazione, attendere almeno otto minuti prima di toccare i componenti sotto tensione (ad esempio contatti) o di allentare i collegamenti. Per sicurezza, misurare la tensione nel circuito intermedio e attendere fino a quando il valore è sceso al di sotto dei 40V. A questo punto staccare tutti i connettori. Infine staccare la messa a terra.

2. Controllo della temperatura

AATTENZIONE Durante il funzionamento, il dissipatore del servoamplificatore può raggiungere temperature superiori a 80°C (176°F). Prima di toccare il dissipatore verificarne la temperatura e attendere che sia scesa sotto i 40°C (104°F).

3. Smontaggio

Togliere l'alloggiamento del ventilatore e smontare il servoamplificatore (seguire in ordine inverso la procedura indicata al capitolo "Installazione meccanica".

4.6 Riparazioni

Il servoamplificatore può essere riparato unicamente dal fabbricante; l'apertura dell'apparecchio annulla automaticamente la garanzia. Mettere l'apparecchio fuori servizio come descritto al paragrafo 4.5 e inviarlo al fabbricante utilizzando la confezione originale:

> KOLLMORGEN srl Largo Brughetti 1/B2 I-20030 Bovisio Masciago (MI)

4.7 **Smaltimento**

Nell'accordo al WEEE-2002/96/EC-Guidelines prendiamo i vecchi dispositivi ed accessori indietro per eliminazione professionale, i costi del trasporto sono a carico del il mittente. Invii i dispositivi a previa richiesta RMA:

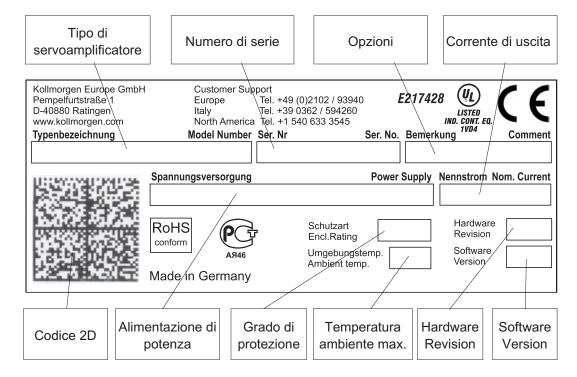
> KOLLMORGEN srl Largo Brughetti 1/B2 I-20030 Bovisio Masciago (MI)

5 Identificazione del prodotto

5.1 Imballaggio fornito

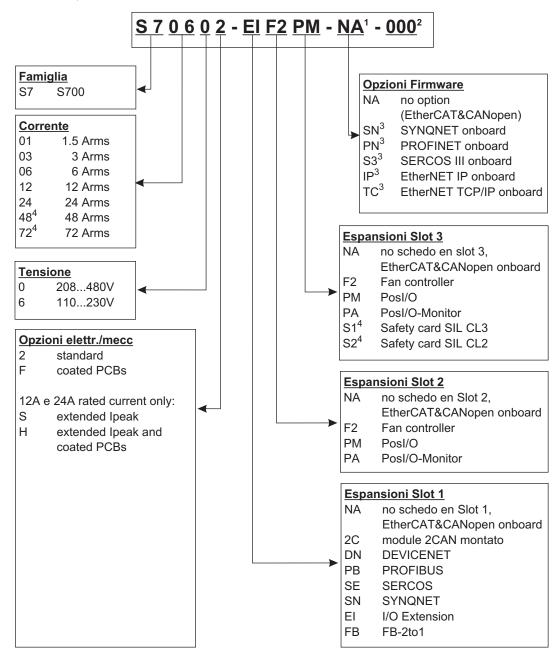
Un amplificatore della serie S700 (codici di ordin. ⇒ p.159), comprende:

- Manuale di istruzioni S700
- Operating Manual Safety Expansion Card Sx (in case of a built-in safety card)
- Documentazione online e software di configurazione su CD-ROM
- Connettori corrispondenti X0, X3A, X3B, X4A, X4B, X8


Informazioni I connettori SubD corrispondenti non vengono forniti in dotazione!

Accessori: (eventualmente da ordinarsi separatamente; per la descrizione vedere il manuale degli accessori)

- Cavo del motore (preconfezionato) con il morsetto speciale dello schermo o entrambi i connettori elettrici separati, con il cavo del motore da tagliare a misura
- Cavo di retroazione (preconfezionato) o entrambi i connettori di retroazione separati, con il cavo di retroazione da tagliare a misura
- Reattanza induttiva del motore 3YL o 3YLN, per cavi di lunghezza superiore a 25m
- Resistenza di frenatura esterna BAR(U)
- Cavo di comunicazione con il PC (⇒ S.100) per impostare i parametri da un PC
- Cavo di alimentazione, cavi di comando, cavi del bus di campo (da tagliare a metri)


5.2 Targhetta di omologazione

La targhetta di omologazione illustrata qui sotto si trova su un lato del servoamplificatore. Le informazioni descritte di seguito sono stampate nei singoli campi.

5.3 Schema di numero del prodotto

Il codice qui indicato serve anche come numero d'ordine.

- 1 non presente nei modelli standard
- 2 non presente nei modelli standard, un codice aggiuntivo definisce caratteristiche particolari scelte dal cliente.
- 3 in fase di preparazione
- 4 descritto in manuali separati

Esempio: S70602-EIF2PM-NA-000

- S7 S700
- 06 6A corrente nominale
- 0 Tensione di rifornimento 208...480V
- 2 Nessun'opzione elettrica/meccanica
- El Espansion I/O en Slot 1
- F2 Controllo del ventilatore en Slot 2
- PM Posl/O schedo en Slot 3
- NA Standard firmware (EtherCAT & CANopen onboard)
- 000 Nessun specials di specific del cliente

6 Descrizione tecnica

6.1 Servoamplificatori digitali della famiglia S700

Versione standard

Campo di tensione nominale maggiore: 3 x 110V_{-10%} ... 3 x 480V^{+ 10%}

Categoria di sovratensione III secondo EN 61800-5-1

Due larghezze: S701...S712 70 mm
 S724 100 mm

- CANopen integrata
- EtherCAT integrata
- RS232 integrata, interfaccia 24V di direzione degli impulsi integrata
- Analisi resolver, encoder, trasduttore incrementale, ComCoder integrata
- Controller intelligente di posizione integrato
- Arresto sicuro STO integrato (fino a SIL CL3, PLe)
- Tre slot per schede di espansione sulla piastra frontale
- Unità di lettura/scrittura per schede di memoria integrata
- I servomotori sincroni, i motori lineari, i motori asincroni ed i motori DC possono essere utilizzati

Alimentazione elettrica

S7xx6:

Direttamente sull'alimentazione messa a terra, $1x110V_{-10\%}$... $3x230V^{+10\%}$, 50/60Hz S7xx0:

Direttamente sull'alimentazione messa a terra, 3x208V_{-10%} ... 3x480V^{+10%}, 50/60Hz

- rete TN o rete TT con punto neutro collegato a terra, corrente nominale simmetrica di 42kA max., collegamento ad altri tipi di alimentazione solo mediante trasformatore d'isolamento, ⇒ pag. 66
- Raddrizzatore a ponte B6, filtro di alimentazione integrato e circuito di avvio dolce
- Protezione (ad es. mediante fusibili in aria) a cura dell'utente
- Tutti i collegamenti di schermatura vengono eseguiti direttamente sull'amplificatore
- Stadio di uscita: modulo IGBT con misurazione della corrente flottante
- Circuito di frenatura: con distribuzione dinamica della potenza rigenerata tra diversi amplificatori sullo stesso circuito DC-link.
 Resistenza di frenatura interna di serie, resistenze di frenatura esterne su richiesta.
- Tensione DC-link 135...900 V DC, con possibilità di connessione in parallelo
- I filtri di soppressione delle interferenze sono integrati per l'alimentazione elettrica e la tensione di alimentazione ausiliaria da 24V (con cavo del motore ≤ 10 m per C2 secondo la norma EN 61800-3, con cavo del motore > 10 m per C3 secondo la norma EN 61800-3).

Sicurezza integrata

- Le distanze di isolamento/dispersione adeguate e l'isolamento elettrico garantiscono una separazione elettrica sicura, in conformità alla norma EN 61800-5-1, tra i collegamenti d'ingresso dell'alimentazione/del motore e l'elettronica dei segnali
- Avvio dolce, rilevamento di sovratensioni, protezione contro i cortocircuiti, monitoraggio delle mancanze di fasi
- Monitoraggio della temperatura del servoamplificatore e del motore (se vengono utilizzati motori e cavi prefabbricati di nostra produzione)
- Arresto sicuro (fino a SIL CL3 a norma EN62061, PLe a norma EN13849-1)

 p.41.
 Alloggiamento per scheda con funzioni di sicurezza (opzionali) per il funzionamento degli assi di trasmissione,

 p. 150

Tensione di alimentazione ausiliaria 24V DC

- A separazione di potenziale, con protezione interna (alimentatore regolatore separato da ventilatore/freno), da un alimentatore esterno da 24V DC
- Il rifornimento separato 24V ha immesso per le uscite digitali

Funzionamento e impostazione dei parametri

- Con il nostro intuitivo software per la configurazione attraverso l'interfaccia seriale di un PC
- Se non è disponibile un PC: funzionamento diretto con due tasti sul servoamplificatore e un display a LED da 3 caratteri
- Completamente programmabili attraverso l'interfaccia RS232
- Possibilità di scrivere/leggere i set di parametri e il firmware tramite smart card MMC

Controllo completamente digitale

- Controller di corrente digitale (vettore di spazio, modulazione dell'ampiezza degli impulsi, 62,5 μs)
- Controller di velocità digitale a libera programmazione (62,5 µs)
- Controller di posizione integrato, con possibilità di adattamento per tutte le applicazioni (250 μs, possibilità di commutazione a125 μs)
- Interfaccia 24V di direzione degli impulsi integrata per collegare un servomotore ad un controller passo-passo

Ingressi/Uscite

- 2 ingressi analogiche programmabili ⇒ p. 96
- 4 ingressi digitali programmabili ⇒ p. 97
- 2 ingressi/uscite digitali programmabili (direzione del segnale commutabile) ⇒ p. 99
- Combinazioni logiche programmabili di segnali digitali
- 1 ingresso Enable ⇒ p. 98
- 2 ingressi STO Enable ⇒ p. 97

Espansioni

Slot 1

Le carte di espansione in slot1 possono essere unite con opzione F2 in slot 2. Più combinazioni di carte di espansione della slot 1 e della slot 2 non sono possibili.

- Scheda di espansione I/O-14/08, ⇒ p. 124
- Scheda di espansione SERCOS, ⇒ p. 128
- Scheda di espansione DeviceNet, ⇒ p. 130
- Scheda di espansione SyngNet, ⇒ p. 133
- Scheda di espansione FB-2to1, ⇒ p. 135
- Modulo di espansione -2CAN-, connettore separato per CAN Bus e RS232,

 p. 137

Slot 2

- Opzione F2, controllo del ventilatore, non può essere inserito più successivamente

 ⇒ p.139, può essere unito con le carte di espansione in slot 1
- Scheda di espansione Posl/O, ⇒ p. 140
- Scheda di espansione Posl/O-Monitor, ⇒ p. 140

Slot 3

- Opzione F2, controllo del ventilatore, non può essere inserito più successivamente
 ⇒ p.149
- Scheda di espansione Posl/O, ⇒ p. 149
- Scheda di espansione Posl/O-Monitor, ⇒ p. 140
- Scheda di espansione Safety S1 (SIL CL3), ⇒ p. 153

Per schede di espansione di altre marche (ModBus, LightBus, FIP-IO, ecc.) contattare il produttore per ulteriori informazioni.

Programmazione Macro

Più informazioni in "Product WIKI" (www.wiki-kollmorgen.eu).

- 62.5µs / 250µs / 1ms / 4ms / 16ms / IDLE / IRQ
- 128 kByte di memoria
- Testo strutturato secondo EN 61131
- 400 istruzioni base ogni 62.5µs
- Comunicazione CAN per controllo multiasse

6.2 Dati tecnici

6.2.1 Dati nominale \$7xx0

Dati elettrica	DIM	S70102	S70302	S70602		S72402/ S7240S	
Tensione di alimentazione nominale		3 x 208V _{-10%} 3 x 480V ^{+10%} , 50/60 H				60 Hz	
(alimentazione messa a terra)		3 / 20	70 V -10%	. 5 % 400	v ···, 50/	00 112	
Potenza nominale installata per il fun-	I-\ / A	1 1	2.2	1 5	9	10	
zionamento S1	kVA	1,1	2,2	4,5	9	18	
Frequenza di inserzione ammessa	1/h			30			
Alimentazione ausiliaria	_			⇒ p.30			
Tensione DC-link max.	V=			900			
Corrente in uscita nominale (valore rm	s, ± 3%	6)					
a 3x208V	Arms	2,5	5	6	12	24	
a 3x230V	Arms	2	4	6	12	24	
a 3x400V	Arms	1,5	3	6	12	24	
a 3x480V	Arms	1,5	3	6	12	24	
Corrente di picco in uscita (2s,±3%)	Arms	4,5	9	18	24/30	48/72	
Corrente di picco in uscita (5s,±3%)	Arms	3	6	12	24	48	
Frequenza di clock (stadio di uscita)	kHz			8		10	
Velocità di incremento della tensione d		micurata	canza m		anarsi na	g 72)	
a 3x208V	kV/µs	Ilisurata	301124 1110	3,0	cricioi pa	g. / <i>L)</i>	
a 3x230V	kV/μs						
a 3x400V	kV/μs		3,3				
a 3x480V	kV/μs		5,7 6,9				
Dati tecnici per il circuito di frenatura	κν/μδ			· ·			
Soglia di disinserzione (sovraccarico)	VDC		⇒ p.35				
Induttanza del motore min.	VDC			⇒ p.35			
	mH	77	2.0	1.0	1.2	0.7	
a 3x208V	mH	7,7	3,9 4,3	1,9	1,2 1,3	0,7	
a 3x230V a 3x400V	mH	8,5		2,1 3,7	2,2	0,8	
		14,8	7,4			1,4	
a 3x480V		17,8	8,9	4,4	2,7	1,7	
Induttanza del motore max.	mH	Consultare il nostro servizio di assistenza clienti					
Fattore di forma della corrente d'usci-		1.01					
ta (cond. nom., indutt. di carico min.)				1.01			
Larghezza di banda del controller di	l/∐-z	> 1,2 (fino a 5)					
corrente subordinato	kHz						
Caduta di tensione residua alla cor-	V	4					
rente nominale		4				6	
Dissipazione inattiva, stadio d'uscita						0.5	
disattivato	W		max	c. 20		max.25	
Dissipazione alla corrente nom. (com-							
prese le perdite dell'unità di alimen-	W	40	70	100	160	330	
taz., senza dissipazione di carico)							
Emissione di rumore	dB(A)	43	43	58	65	65	
Dati Meccanica		70	_ 7 0				
Peso		4,4 5,			5,5		
		·			348		
Altezza, senza connettori					382		
Altezza, conconnettori	mm				100		
Larghezza					243		
Profondità, senza connettori							
Profondità, con connettori		285 28			285		

6.2.2 Dati nominale \$7xx6

Dati elettrica	DIM	S7016	S7036	S7066	S7126	S7126	S7246	S7246
Dati eletti ica	DIIVI	2	2	2	2	S	2	S
Tensione di alimentazione nominale	V~	1 x	(110\/	100/	3 x 230)\/ +10%	50/60	Hz
(alimentazione messa a terra)	V			10%	- X 200	,	00/00	
Potenza nominale installata per il	kVA	1	2	2,3	4,5	4,5	9	9
funzionamento S1	KVA	'		2,0	7,0	7,0		
Frequenza di inserzione ammessa	1/h				30			
Alimentazione ausiliaria	_				⇒ p.30)		
Tensione DC-link max.	V=				455			
Corrente in uscita nominale (valore rms	$(5, \pm 3\%)$	- 3%)						
a 1x110V (1~)	Arms	1,5	3	6	7	7	10	10
a 1x230V (1~)	Arms	1,5	3	6	8	8	11	11
a 3x110V (3~)	Arms	2,5	5	6	12	12	24	24
a 3x230V (3~)	Arms	2,5	5	6	12	12	24	24
Corrente di picco in uscita (valore rms,	±3%)							
a 1x110V (1~), for 2s / 5s	Arms	3/3	3/3	6/6	7/7	7/7	10/10	10/10
a 1x230V (1~), for 2s / 5s	Arms	4,5/3	9/6	12/12	12/12	12/12	13/13	13/13
a 3x110V (3~), for 2s / 5s	Arms	4,5/3	9/6	18/12	24/24	30/24	48/48	72/48
a 3x230V (3~), for 2s / 5s	Arms	4,5/3	9/6	18/12	24/24	30/24	48/48	72/48
Frequenza di clock (stadio di uscita)	kHz				8			
Velocità di incremento della tensione d	U/dt							
a 1x110V	kV/µs				2			
a 1x230V	kV/µs				3,3			
a 3x110V	kV/µs				2			
a 3x230V	kV/µs							
Dati tecnici per il circuito di frenatura		⇒ p.35						
Soglia di disinserzione (sovraccarico)	VDC	⇒ p.35						
Induttanza del motore min.								
a 1x110V	mH	5,7	5,7	2,9	2,5	2,5	1,7	1,7
a 1x230V	mH	8	4	3	3	3	2,8	2,8
a 3x110V	mH	3,8	1,9	0,96	0,72	0,57	0,36	0,24
a 3x230V	mH	8	4	2	1,5	1,2	0,75	0,5
Induttanza del motore max.	mH		Con	sultare	il nost	tro ser	vizio	
Fattore di forma della corrente d'uscita					4.04			
(cond. nom., indutt. di carico min.)	_				1.01			
Larghezza di banda del controller di								
corrente subordinato	kHz			> 1	1,2 (bis	5)		
Caduta di tensione residua alla cor-								
rente nominale	V			4			(6
Dissipazione inattiva, stadio d'uscita								
disattivato	W		r	max. 20	0		max	k.25
Dissipazione alla corrente nom. (com-								
prese le perdite dell'unità di alimen-	W	30	45	60	90	90	175	175
taz., senza dissipazione di carico)	V V	30	45	00	30	90	173	173
· · · · · · · · · · · · · · · · · · ·	4D(V)	43	43	50	65	65	65	65
Emissione di rumore Dati Meccanica	dB(A)	43	43	58	65	65	65	65
	l/~			1 1			F	5
Peso Altozza conza connettori	kg							
Altezza, senza connettori	mm			345				
Altezza, conconnettori	mm							
Larghezza	mm							
Profondità, senza connettori	mm			243				13
Profondità, con connettori	mm	285 285			ວວ			

6.2.3 Ingressi/uscite, Tensione ausiliaria

Interfaccia	dati elettrica
Ingressi analogici 1/2	±10V
Intervallo tensione sincrona max.	±10V
Ingranoi di comando digitali	sec. EN 61131-2 Tipo1,
Ingressi di comando digitali	max. 30VDC, 15mA
Llocito di comando digitale	sec. EN 61131-2 Tipo1,
Uscite di comando digitale,	max. 30VDC, 100mA
Uscita BTB/RTO, contatti a relè	max. 30VDC, max 42VAC
OSCIIA BTB/RTO, CONIAIII a reie	500mA
24V-IO, uscite digitale	20 - 30V
Aliment. di tensione ausil., con separazione di	24V (-0% +15%)
potenziale, corrente senza/con freno	1A / 3A
Corrente d'uscita min./max. freno	0,15A / 2A

6.2.4 Connettore

Connettore	Tipi	max. sezioni ^{*1}		Tensione consentito*3
Segnali di comando X3A,B	Mini-Combicon (maschio)	1,5mm ²	4A	160V
Tensione ausiliaria X4A,B	Mini-Combicon (maschio)	1,5mm²	4A	160V
Segnali di potenza X0,X8,X9	Power-Combicon (maschio)	6mm²	24A	1000V
Ingresso resolver X2	SubD 9poli (femmina)	0,5mm ²	1A	<100V
Ingresso encoder X1	SubD15poli (femmina)	0,5mm ²	1A	<100V
Interfaccia PC, CAN X6	SubD 9poli (maschio)	0,5mm ²	1A	<100V
Emulazione encoder, ROD/SSI X5 (opzionali)	SubD 9poli (maschio)	0,5mm²	1A	<100V

^{*1} collegamento a linea singola

6.2.5 Coppie di serraggio consigliate

Connettore	Coppia di serraggio
X0, X8, X9	0,7 0,8 Nm
Perno di terra	3,5 Nm

6.2.6 Fusibili

Protezione interna, elettronica o con fusibile per correnti deboli

Circuito	Protezione interna
Tensione ausiliaria da 24V / ventilatore&freno	4 AM / 4 AM
Resistenza di frenatura	elettronica
STO-Enable	2 AM

Protezione esterna fornita dall'utente (Tra parentesi i tipi per gli Stati Uniti)

Fusibili a fili o similari	S701 / S703	S706 S712		S724	
Alim. di corr. AC F _{N1/2/3}	6 AT (6A)*	10 AT (10A)*	16 AT (15A)*	30/35 AT (30A)*	
Alim. da 24V F _{H1/2}		max. 8 AT (8A)			
Resist. di frenatura F _{B1/2}	10 A**	10 A**	10 A**	15 A**	

^{*} Fusibili europei: gRL o gL 400V/500V, T significa "temporizzati"

Fusibili USA tra parentesi: fusibili classe RK5/CC/J/T, 600VAC 200kA, temporizzati

Tips and detailed information can be found in the Product-Wiki on page "Fuses"

^{*2} collegamento a linea singola con la sezione del conduttore consigliamo (cap.6.2.8)

^{*3} tensione nominale con il livello d'inquinamento 2

^{**} Bussmann FWP-xx

6.2.7 Condizioni ambientali, aerazione, posizione di montaggio

Stoccaggio e Trasporto	⇒ p.21
Tames ambiente di cassinia	0+40°C alle condizioni nominali
Temp. ambiente di esercizio	+40+55°C con correzione di potenza di 2,5% / K
Umidità atmosferica di esercizio	rel. Luftfeuchte 85%, nicht betauend
	fino a 1000 metri s.l.m. senza limitazioni da 1000 a
Altitudine d'installazione	2500 metri s.l.m. con correzione di potenza di
	1,5%/100 metri
Grado di imbrattamento	Livello d'inquinamento 2 secondo EN 60664-1, 2.5.1
Vibrazioni	Class 3M1 secondo EN 60721-3-3
Grado di protezione	IP 20 secondo EN 60529
Posizione di montaggio	verticale ⇒ p.54
Ventilazione	ventilatore

AVVISO

Una temperatura eccessiva nel quadro elettrico ad armadio porta al disinserimento del servoamplificatore (messaggio di errore F08/F13, vedere pag. 120), la coppia del motore scende a zero. Assicurarsi che nel quadro elettrico ad armadio chiuso sia presente un sufficiente ricircolo d'aria forzata.

6.2.8 Sezioni dei cavi

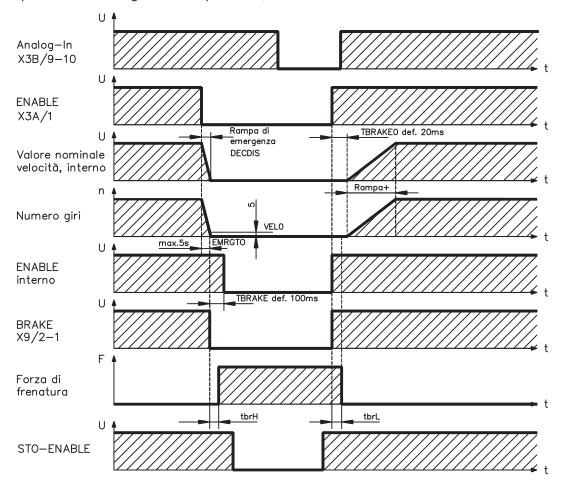
Nell'ambito di EN 60204 per i sistemi monoasse consigliamo:

Interfaccia	Sezioni		Requisiti tecnici	
	S701706:	1,5 mm ²		
Collegamento AC	S712:	2,5 mm ²	600V,80°C	
	S724:	4 mm ²		
DC-link	S701706:	1,5 mm ²	1000V, 80°C, schermato per	
Resistenza di frenatura	S712724:	2,5 mm ²	lunghezze > 0,20 m	
Cavi del motore sin induttanza	S701706: S712:	11,5 mm ² 2,5 mm ²	600V,80°C,	
per motore, max. 25m	S712. S724:	4 mm ²	schermato, C<150pF/m	
Cavi del motore con induttanza	vi del motore con induttanza		600V,80°C,	
per motore 3YL o 3YLN,25-50m*	S712: S724:	2,5 mm ² 4 mm ²	schermato, C<150pF/m	
Resolver, termostato del motore	4x2x0,25 mm²		cavi bipolari,	
max.100m*	48280,25 1111		schermato, C<120pF/m	
Encoder, termostato del motore,	7x2x0,25 mi	m²	cavi bipolari,	
max. 50m*	7 XZXU,Z3 1111		schermato, C<120pF/m	
ComCoder, termostato del moto-	8x2x0,25 m	m²	cavi bipolari,	
re, max. 25m	0,23111		schermato, C<120pF/m	
Setpoint, AGND, max. 30m	0,25 mm ²		cavi bipolari, schermato	
Segnali di comando, BTB,	0,5 mm²			
DGND, max. 30m	0,5 mm-			
Freno (motore)	min. 0,75 mm²		600V, 80°C, schermato,	
Tieno (motore)			Cons. la caduta di tensione!	
+24 V / XGND, max. 30m	max. 2,5 mm ²		Cons. la caduta di tensione!	
Par i sistami multiassa ossarvara la condizioni speciali dell'impianto in uso				

AVVISO

Per i sistemi multiasse osservare le condizioni speciali dell'impianto in uso. La sicurezza di funzionamento con cavi di massima lunghezza è garantita solo rispettando scrupolosamente i requisiti richiesti per i materiali (⇔ pag.61).

^{*} Kollmorgen Nord America: cavo fino a 39 m, Europa: fino alla lunghezza massima.


6.3 Freno di arresto motore

Un freno nel motore da 24 V / max.2 A può essere comandato direttamente.

AATTENZIONE Questa funzione non garantisce la sicurezza del personale! Il carico d'attaccatura (asce verticali) richiede un freno meccanico supplementare che deve essere azionato sicuro, per esempio via la carta di sicurezza S1 (⇒ pag. 153).

Il freno funziona solo se la tensione di alimentazione è sufficiente (⇒ pag. 30). Controllare la caduta di tensione, misurare la tensione sull'ingresso freno e verificare la funzionalità dei freni (in rilascio e in frenatura).

La funzione del freno deve essere abilitata attraverso il parametro FRENO (schermata: Motore). Nello schema seguente sono illustrati i rapporti di tempo e funzionali tra il segnale di abilitazione, il setpoint della velocità, la velocità e la forza frenante. Tutti i valori possono essere registrati con i parametri, i valori nello schema sono vales di difetto.

Durante il tempo di ritardo dell'abilitazione interna di 100 ms (DECDIS), il setpoint della velocità del servoamplificatore viene condotto internamente su una rampa regolabile a 0V. L'uscita per il freno viene attivata quando la velocità ha raggiunto 5 giri/min (VELO), al più tardi dopo 5s (EMRGTO).

I tempi di aumento (f_{brH}) e diminuzione (f_{brL}) del freno di stazionamento incorporato nel motore sono diversi per i vari modelli di motore (vedere il manuale del motore).

Una descrizione dell'interfaccia si trova a p. 72.

6.4 Display a LED

Un <u>display a LED</u> da 3 caratteri indica lo stato dell'amplificatore dopo l'inserzione dell'alimentazione da 24V (⇔ pag.119). Quando l'amplificatore viene azionato mediante i tasti sul pannello frontale, vengono visualizzati i numeri del parametro e della funzione, come pure i codice di eventuali errori comparsi (⇔ pag.120).

6.5 Sistema di messa a terra

AGND — ingressi analogici, messa analogica interna

DGND — 24V-IO, ingressi/uscite digitali, isolamento ottico

GND — messa digitale interna, emulazione encoder, RS232, CAN

XGND — l'alimentazione da 24V, STO-Enable, ventilatore, freno

6.6 Frenaggio dinamico

Durante frenaggio dinamico con l'aiuto del motore, l'energia viene riconvogliata verso il servoamplifcatore. Questa energia rigenerativa viene dissipata sotto forma di calore nella resistenza di frenatura .

La resistenza di frenatura viene inserita dal circuito di frenatura. Il software di configurazione può essere utilizzato per adattare il circuito di frenatura (soglie) in base alla tensione di alimentazione elettrica.

Il nostro servizio di assistenza clienti può aiutarvi nel calcolo della potenza di frenatura necessaria per il vostro sistema. Un <u>metodo semplice</u> è descritto nel "Prodotto Wiki" quale è accessibile a <u>www.wiki-kollmorgen.eu</u>. Per una descrizione dell'interfaccia si rimanda a p. 70.

Descrizione funzionale:

1.- Amplificatori singoli, **non accoppiati** attraverso il circuito DC-link (DC+, DC-) Se l'energia riconvogliata dal motore ha una potenza media o di picco che supera il livello preimpostato per la potenza di frenatura nominale, il servoamplificatore genera l'allarme "n02 potenza di frenatura superata" e il circuito di frenatura viene disinserito.

Durante il controllo interno successivo della tensione del DC-link (dopo pochi millisecondi), viene rilevata una sovratensione e il servoamplificatore viene spento con il messaggio d'errore "Sovratensione F02" (⇔ pag.120).

Contemporaneamente viene aperto il contatto BTB/RTO (morsetti X3B/14,15 ⇒ p 99)

2.- Diversi servoamplificatori accoppiati attraverso il DC-link (DC+, DC-)

Grazie al circuito di frenatura incorporato, diversi amplificatori (anche con diverse correnti nominali) possono essere comandati da un DC-link comune, senza la necessità di ulteriori misure (**Attenersi alle indicazioni di pagina 71**).

Sia per la potenza di picco che per la potenza continua è sempre disponibile il 90% delle **potenze cumulative** di tutti gli amplificatori. La disinserzione in caso di sovraccarico avviene come descritto al punto 1 in caso di amplificatore con soglia di disinserzione minima nei limiti delle tolleranze previste.

I dati tecnici del circuito di frenatura dipendono dal tipo di servoamplificatore utilizzato e dalla tensione di rete. Vedere la tabella alla pagina seguente.

Dati tecnici S7xx0:

Circui	to di frenatura		Tensione di rete		
Tipo	Dati nominali	DIM	230 V	400 V	480 V
_	Soglia d'inserzione circuito di frenatura	V	400	720	840
	Sovratensione F02	V	455	800	900
22	Resistenza di frenatura interna (RBi)	Ohm		33	
S70102	Potenza continua di resistenza interna (RBi)	W		50	
S7	Potenza max.di frenatura (media per 1s)	kW	0,9	0,85	0,86
	Potenza a impulsi di frenatura	kW	4	15	21
	Resistenza di frenatura esterna (RBe), optional	Ohm		33	
	Potenza continua esterna (RBe)	kW		0,3	
	Soglia d'inserzione circuito di frenatura	V	400	720	840
	Sovratensione F02	V	455	800	900
02	Resistenza di frenatura interna (RBi)	Ohm		33	
S70302	Potenza continua di resistenza interna (RBi)	W		50	
S7	Potenza max.di frenatura (media per 1s)	kW	0,9	0,85	0,86
	Potenza a impulsi di frenatura	kW	4	15	21
	Resistenza di frenatura esterna (RBe), optional	Ohm		33	
	Potenza continua esterna (RBe)	kW	1		
	Soglia d'inserzione circuito di frenatura	V	400	720	840
	Sovratensione F02	V	455	800	900
02	Resistenza di frenatura interna (RBi)	Ohm		33	
S70602	Potenza continua di resistenza interna (RBi)	W		75	
S	Potenza max.di frenatura (media per 1s)	kW	1,38	1,3	1,26
	Potenza a impulsi di frenatura	kW	4	15	21
	Resistenza di frenatura esterna (RBe), optional	Ohm	33		
	Potenza continua esterna (RBe)	kW		1	
(0	Soglia d'inserzione circuito di frenatura	V	400	720	840
208	Sovratensione F02	V	455	800	900
S71202/S7120S	Resistenza di frenatura interna (RBi)	Ohm		33	
2/S	Potenza continua di resistenza interna (RBi)	W		100	
20	Potenza max.di frenatura (media per 1s)	kW	1,93	1,75	1,7
37	Potenza a impulsi di frenatura	kW	4	15	21
0)	Resistenza di frenatura esterna (RBe), optional	Ohm 33			
	Potenza continua esterna (RBe)	kW	1,5		
G	Soglia d'inserzione circuito di frenatura	V	400	720	840
S72402/S7240S	Sovratensione F02	V	455	800	900
172	Resistenza di frenatura interna (RBi)	Ohm		23	
2/8	Potenza continua di resistenza interna (RBi)	W		200	
40	Potenza max.di frenatura (media per 1s)	kW	3,93	3,55	3,45
372	Potenza a impulsi di frenatura	kW	6	23	30
0,	Resistenza di frenatura esterna (RBe), optional	Ohm			
	Potenza continua esterna (RBe)	kW		4	

Informazioni Le resistenze di frenatura esterne adatte allo scopo sono indicate nel manuale degli accessori.

Dati tecnici S7xx6:

Circuito di frenatura			Tension	ne di rete
Tipo	Dati nominali	DIM	110V	230 V
	Soglia d'inserzione circuito di frenatura	V	200	400
	Sovratensione F02	V	235	455
32	Resistenza di frenatura interna (RBi)	Ohm	3	33
S70162	Potenza continua di resistenza interna (RBi)		Į	50
S7	Potenza max.di frenatura (media per 1s)	kW	C),9
	Potenza a impulsi di frenatura	kW	1,2	4
	Resistenza di frenatura esterna (RBe), optional	Ohm	3	3*
	Potenza continua esterna (RBe)	kW	C),3
	Soglia d'inserzione circuito di frenatura	V	200	400
	Sovratensione F02	V	235	455
32	Resistenza di frenatura interna (RBi)	Ohm	3	33
036	Potenza continua di resistenza interna (RBi)	W	Į	50
S70362	Potenza max.di frenatura (media per 1s)	kW	C),9
	Potenza a impulsi di frenatura	kW	1,2	4
	Resistenza di frenatura esterna (RBe), optional	Ohm	3	3*
	Potenza continua esterna (RBe)	kW		1
	Soglia d'inserzione circuito di frenatura	V	200	400
	Sovratensione F02	V	235	455
32	Resistenza di frenatura interna (RBi)	Ohm		33
S70662	Potenza continua di resistenza interna (RBi)	W	7	75
S	Potenza max.di frenatura (media per 1s)	kW	1	,38
	Potenza a impulsi di frenatura	kW	1,2	4
	Resistenza di frenatura esterna (RBe), optional	Ohm	33*	
	Potenza continua esterna (RBe)	kW	1	
40	Soglia d'inserzione circuito di frenatura	V	200	400
597	Sovratensione F02	V	235	455
712	Resistenza di frenatura interna (RBi)	Ohm		33
S71262/S7126S	Potenza continua di resistenza interna (RBi)	W	1	00
262	Potenza max.di frenatura (media per 1s)	kW	1	,93
7	Potenza a impulsi di frenatura	kW	1,2	4
S	Resistenza di frenatura esterna (RBe), optional	Ohm	3	3*
	Potenza continua esterna (RBe)	kW	1	,5
	Soglia d'inserzione circuito di frenatura	V	200	400
465	Sovratensione F02	V	235	455
S72462/S7246S	Resistenza di frenatura interna (RBi)	Ohm	2	23
S/2	Potenza continua di resistenza interna (RBi)	W	200	
462	Potenza max.di frenatura (media per 1s)	kW	3,93	
72	Potenza a impulsi di frenatura	kW	1,74	6
S	Resistenza di frenatura esterna (RBe), optional	Ohm	23*	
	Potenza continua esterna (RBe) kW 4		4	

^{*} Può essere ridotto a 15 Ohm a richiesta (PBALRES 15).

Informazioni Le resistenze di frenatura esterne adatte allo scopo sono indicate nel manuale degli accessori.

6.7 Procedura di inserzione e disinserzione

Questo paragrafo descrive il comportamento del S all'inserzione e disinserzione, e le misure necessarie ad ottenere un funzionamento corretto in caso di arresto regolare o di emergenza.

Informazioni

L'alimentazione a 24V del servoamplificatore deve essere mantenuta. I comandi ASCII ACTFAULT (reazione all'errore) e STOPMODE (reazione a un segnale enable) determinano il comportamento dell'azionamento.

ACTFAULT /	Comportamento (vedere anche il codice ASCII sulla assistenza online		
STOPMODE	del software di messa in funzione)		
0	Il motore si arresta irregolarmente		
1 (default)	Il motore viene frenato in modo guidato		

Comportamento in caso di caduta dell'alimentazione

I servoamplificatori rilevano il guasto di una o più fasi di rete (alimentazione di potenza) attraverso un circuito integrato.

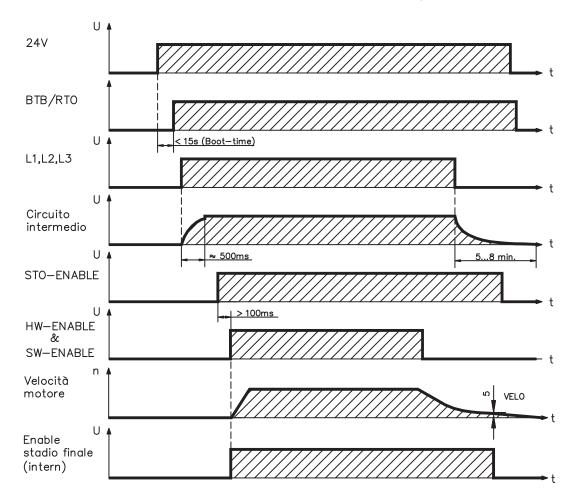
Il comportamento del servoamplificatore si imposta con l'ausilio del software di messa in funzione: sulla videata Impostazioni di base, alla voce "Intervento in caso di perdita di una fase di rete" (PMODE) selezionare:

- Allarme, se l'unità di controllo subordinante deve spegnere l'azionamento: la mancanza di una fase di rete viene segnalata come allarme (n05) e la corrente del motore viene limitata a 4A. Il servoamplificatore non viene disattivato. L'unità di controllo subordinante può portare a termine in modo mirato il ciclo in corso oppure avviare la procedura di spegnimento dell'azionamento. Inoltre ad esempio il messaggio d'errore "RETE-BTB, F16" viene settato su un'uscita digitale del servoamplificatore e analizzato dall'unità di controllo.
- Messaggio d'errore, se il servoamplificatore deve spegnere l'azionamento: l'assenza di una fase di rete viene segnalata come errore (F19). Il servoamplificatore viene disattivato e il contatto BTB si apre. Se le impostazioni non sono state modificate (ACTFAULT=1) il motore viene frenato con la "RAMPA DI EMERGENZA" impostata.

Comportamento al raggiungimento della soglia di sottotensione

Se il valore di tensione scende sotto la soglia inferiore (il valore dipende dal tipo di servoazionamento) nel circuito intermedio viene visualizzato l'errore "BASSA TENSIONE, F05". La reazione dell'azionamento dipende dall'impostazione di ACTFAULT/STOP-MODE.

Comportamento con funzione "Freno di stazionamento" abilitata


Se è stata abilitata la funzione freno di stazionamento i servoamplificatori dispongono di un ciclo separato per la disinserzione dello stadio finale (pagina 32). La disabilitazione del segnale enable determina l'intervento del freno elettrico. Come per tutti i circuiti elettronici, anche per il gruppo interno "Freno di stazionamento" occorre tenere conto di possibili malfunzionamenti. Il carico d'attaccatura (asce verticali) richiede un freno meccanico supplementare che deve essere azionato sicuro, per esempio via la carta di sicurezza S1 (pag. 153).

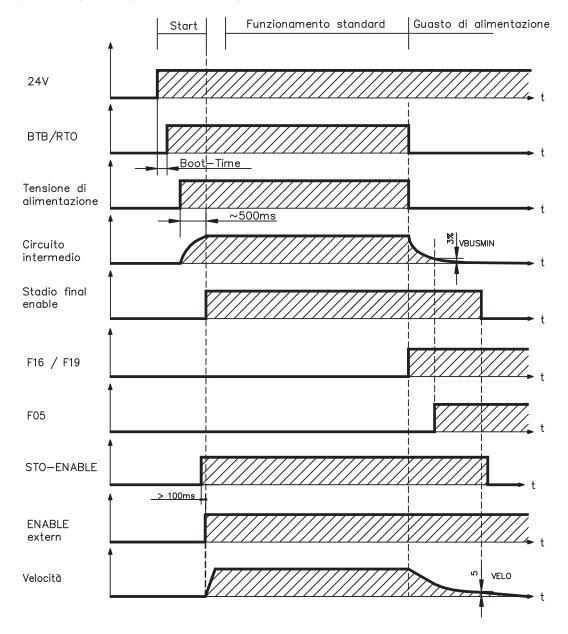
Comportamento della funzione di sicurezza STO

Grazie di funzione di sicurezza STO omologato TÜV, dopo l'arresto dell'azionamento un componente elettronico interno provvede a disinserire l'alimentazione di potenza, in modo che l'albero di trasmissione non possa riavviarsi accidentalmente e garantisca così la sicurezza del personale. L'impiego della funzione di sicurezza STO viene illustrato al paragrafo "Funzione di sicurezza STO" a pagina 41.

6.7.1 Comportamento durante il funzionamento normale

Il comportamento del servoamplificatore dipende sempre dalle impostazioni di vari parametri (ad esempio ACTFAULT, VBUSMIN, VEL0, STOPMODE e così via, vedere la <u>assistenza online</u>). Il diagramma sottostante illustra la sequenza corretta da un punto di vista funzionale durante l'inserzione e la disinserzione del servoamplificatore.

Se è stata selezionata la funzione "Freno" gli apparecchi dispongono di un ciclo separato per la disinserzione dello stadio finale (\Rightarrow p.32).


Con la funzione di sicurezza STO l'azionamento può essere disinserito in modo che l'albero di trasmissione soddisfi i requisiti di sicurezza per il personale (⇒ p.41).

Informazioni

Nel caso di una carta di sicurezza incorporata, l'aspettare il Ready Acknowledge (X30 Pin 16) della carta di sicurezza prima di permettere al servo amplificatore ancora.

6.7.2 Comportamento in caso di errore (con le impostazioni standard)

Il comportamento del servoamplificatore dipende sempre dalle impostazioni di vari parametri (ad esempio ACTFAULT, VBUSMIN, VEL0, STOPMODE e così via, vedere la assistenza online). Lo schema illustra il ciclo di avvio e il ciclo dell'unità di controllo interna del servoamplificatore in caso di caduta di una o più fasi dell'alimentazione di potenza, quando i parametri sono impostati sui valori standard.

(F16 / F19 = messaggi d'errore Rete BTB / Fase di rete, F05 = messaggio d'errore Sottotensione)

Anche senza l'intervento di un'unità di controllo esterna (nell'esempio il segnale enable rimane attivo), al rilevamento di un errore di fase, se le impostazioni non sono state modificate (ACTFAULT=1) il motore viene immediatamente frenato con la rampa di emergenza.

Informazioni Nel caso di una carta di sicurezza incorporata, l'aspettare il Ready Acknowledge (X30 Pin 16) della carta di sicurezza prima di permettere al servo amplificatore ancora.

6.8 Funzione di arresto, arresto- / spegnimento d'emergenza

Informazioni

Grazie al funzione di sicurezza STO omologato (vedere pagina 41), dopo l'arresto dell'azionamento un componente elettronico interno provvede a disinserire l'alimentazione di potenza (assenza di coppia), in modo che l'albero di trasmissione non possa riavviarsi accidentalmente e garantisca così la sicurezza del personale (fino a SIL CL3 a norma EN 62061, PLe a norma EN 13849-1).

Informazioni

L'installazione della scheda di espansione "Safety" garantisce funzioni di azionamento sicure ai sensi della norma EN 61508 (vedere pag. 150 e seguenti).

Informazioni

Per eseguire gli arresti e arresti di emergenza nelle categorie indicate i parametri "STOPMODE" e "ACTFAULT" devono essere impostati su 1. Se necessario modificare i parametri dalla finestra Terminale del software di messa in funzione e salvare i dati nella EEPROM.

Gli esempi per l'esecuzione possono essere trovati nel WIKI alla pagina "Stop and Emergency Stop Function".

6.8.1 Arresto

La funzione di arresto serve a fermare la macchina in modo regolare. Le funzioni di arresto sono definite dalla norma EN 60204.

Categoria 0: spegnimento mediante disinserzione immediata dell'alimentazione

elettrica diretta agli azionamenti della macchina (vale a dire un arresto non comandato). Per questo scopo, la funzione STO può essere

utilizzata STO (vedere p.41).

Categoria 1: arresto comandato, in cui l'alimentazione elettrica diretta agli

azionamenti della macchina viene mantenuta per la funzione di arresto; l'alimentazione elettrica si interrompe solo a macchina ferma.

Categoria 2: spegnimento comandato in cui l'alimentazione elettrica diretta agli

azionamenti della macchina viene mantenuta.

Per stabilire la categoria di arresto occorre effettuare una valutazione di rischio della macchina e prevedere opportune misure atte a garantire uno spegnimento sicuro.

Le funzioni di arresto delle categorie 0 e 1 devono essere attive a prescindere dal modo di funzionamento, e in ogni caso un arresto di categoria 0 deve avere la priorità. Le funzioni di arresto devono essere realizzate mediante interruzione del relativo circuito e sono prioritarie rispetto alle funzioni di avvio ad esse associate.

Se necessario, prevedere la possibilità di collegare dispositivi di protezione ed asservimenti. In caso di necessità la funzione di arresto deve segnalare il proprio stato all'unità logica di controllo. Il reset della funzione di arresto non deve provocare situazioni pericolose.

Gli esempi per l'esecuzione possono essere trovati nel WIKI alla pagina "Stop and Emergency Stop Function".

6.8.2 Arresto d'emergenza

La funzione di arresto di emergenza si usa per l'arresto più rapido possibile della macchina in una situazione di pericolo. La funzione di arresto di emergenza è definita da EN 60204. I principi dei sistemi di arresto di emergenza e gli aspetti funzionali sono stabiliti in ISO 13850.

La funzione di arresto di emergenza può essere attivata manuale da una sola persona, per es. con l'ausilio di un interruttore a pressione con apertura forzata (tasto rosso su sfondo giallo). Deve essere del tutto funzionante e disponibile in qualsiasi momento. L'operatore deve sapere immediatamente come azionare questo meccanismo (senza consultare istruzioni o riferimenti).

Informazioni

Stabilire la categoria di arresto por arresto di emergenza valutando i rischi della macchina.

Oltre ai requisiti per l'arresto, l'arresto di emergenza deve soddisfare i seguenti requisiti:

- l'arresto di emergenza deve avere la priorità rispetto a tutte le altre funzioni e comandi in qualsiasi situazione di funzionamento
- L'alimentazione di eventuali elementi di azionamento che potrebbero causare situazioni di pericolo deve essere interrotta il prima possibile senza provocare altri pericoli (categoria di arresto 0, per es. con STO) oppure essere gestita in modo che il movimento pericoloso venga fermato il prima possibile (categoria di arresto 1).
- il ripristino non deve provocare un riavvio.

Gli esempi per l'esecuzione possono essere trovati nel WIKI alla pagina "Stop and **Emergency Stop Function".**

6.8.3 Spegnimento d'emergenza

La funzione di spegnimento di emergenza viene utilizzata per disattivare l'alimentazione elettrica della macchina e impedire rischi derivanti dall'energia elettrica (per es. scosse elettriche). Gli aspetti funzionali dello spegnimento di emergenza sono stabiliti in IEC 60364-5-53.

Lo spegnimento di emergenza viene attivato manualmente da una sola persona, per es. con l'ausilio di un interruttore a pressione con apertura forzata (tasto rosso su sfondo giallo).

Informazioni I risultati di una valutazione dei rischi della macchina stabiliscono la necessità o meno di uno spegnimento di emergenza.

> Lo spegnimento di emergenza si ottiene disattivando l'alimentazione elettrica con apparecchi di commutazione elettromeccanici. Ciò comporta un arresto della categoria 0. Se questa categoria di arresto non è consentita per la macchina in questione, occorre garantire in altro modo lo spegnimento di emergenza (per es. protezione da contatto diretto).

6.9 Funzione di sicurezza STO

Una delle funzioni principali consta nella protezione contro il riavvio accidentale degli azionamenti, finalizzata alla sicurezza del personale. Il servo amplificatore S700 offre, anche nella versione di base, una funzione a due vie di STO (Safe Torque Off). La funzione blocca gli impulsi di accensione dei transistor dello stadio finale (blocco impulsi).

Vantaggi del sistema di protezione STO:

- il circuito intermedio rimane in carica in quanto il circuito principale resta attivo;
- viene inserita solo una bassa tensione, quindi i contatti non si usurano;
- il dispendio in termini di cablaggio è molto ridotto
- sono possibili implementazioni di architteture a singolo e doppio canale.
- Soluzioni SIL2 o SIL3 possibili

La funzione di sicurezza STO corrisponde alla categoria di arresto 0 (arresto non comandato) secondo EN 60204-1. La funzione di sicurezza STO può essere azionata a partire dai relè esterni di sicurezza, a partire da un controllo esterno di sicurezza (uscita a semiconduttore o contatto determinato) o a partire dalla carta di sicurezza incorporata S1 o S2 (⇒ pag. 150)

Il concetto di sicurezza STO è certificato dal TÜV. Il livello di sicurezza certificato della funzione "Safe Torque OFF" è SIL CL3 con riferimento alla norma EN62061 e PLe con riferimento alla norma EN13849-1.

Informazioni

Le soluzioni SIL2/PLd possono prevedere sistemi di comando a uno o due canali con dispositivi di commutazione di sicurezza semplici.

Per una soluzione SIL3/PLe occorre un dispositivo di commutazione di sicurezza che, analizzando il segnale di feedback, controlli periodicamente la sicurezza operativa del blocco impulsi.

6.9.1 Caratteristice relative alla funzione di sicurezza

I parametri caratteristici che descrivono la funzione di sicurezza sono SIL CL, PFHD e T_M.

Dispositivo	Modo	EN13849-1	EN62061	PFH _D [1/h]	T _м [Year]
STO1/2-Enable	STO singola scanalatura	PLd, Cat 3	SIL CL2	7,05E-08	20
STO1-Enable+	CTO donnio acanalatura	DI 4 C-4 3		7.055.00	20
STO2-Enable	STO doppia scanalatura	PLu, Cat 3	SIL CL2	7,05E-06	
STO1-Enable+	STO doppia scanalatura				
STO2-Enable+	+	PLe, Cat 4	SIL CL3	SIL CL3 1,04E-09	20
STO-Status	periodical testing				

6.9.2 Luogo di installazione

Poiché il regolatore rientra nel grado di protezione IP20, il luogo di installazione va scelto in modo che anche l'ambiente circostante garantisca un funzionamento sicuro del servo-amplificatore. Il luogo di installazione deve essere conforme almeno al grado di protezione IP54.

6.9.3 Cablaggio

Se il cablaggio di STO si trova all'esterno del luogo di installazione (IP54), i cavi devono essere posati in modo duraturo (fisso), protetti da danni esterni (per es. con una canalina), inseriti in guaine diverse o protetti uno a uno da collegamento a terra. Se il cablaggio è all'interno del luogo di installazione stabilito, deve essere effettuato nel rispetto di quanto indicato nella norma EN 60204-1.

6.9.4 Indicazioni di sicurezza

AAVVERTENZA

Pericolo di infortuni dovuti a carichi sospesi. L'amplificatore non è in grado di trattenere il carico quando si attiva la funzione STO, il motore non eroga più la coppia. Per garantire la sicurezza, gli azionamenti con carico sospeso devono anche essere bloccati meccanicamente (ad esempio con il freno di stazionamento del motore).

AATTENZIONE

Quando la funzione STO è abilitata rimuovendo il 24VDC dai due ingressi separati STO1-Enable e STO2-Enable, il motore rallenterà senza controllo e il servoamplificatore mostrerà l'errore F27 sul displays. A quel punto non si ha alcuna possibilità di frenare l'azionamento in modo controllato. Se un'applicazione richiede una frenata controllata prima dell'utilizzo del sistema di protezione contro il riavvio accidentale, occorre frenare l'azionamento e separare l'ingressi STO1-ENABLE e STO2-ENABLE da +24VCC con un leggero ritardo.

AATTENZIONE Controllo a singolo canale:

Se l'STO è attivato automaticamente da un sistema di controllo, porre attenzione chel'uscita sia monitorata per prevenire possibili malfunzionamenti. Poichè l'STO è utilizzato con una archittetura a singolo canale, abilitazioni errate non saranno riconosciute.

AATTENZIONE Il funzione STO contro il riavvio accidentale non consente una separazione elettrica dall'uscita di potenza. Se è necessario intervenire sul collegamento o sul cavo del motore, occorre staccare il servoamplificatore dalla rete e aspettare che si esaurisca il tempo di scarica del circuito intermedio.

AVVISO

Rispettare le sequenze qui descritte quando si utilizza l'STO:

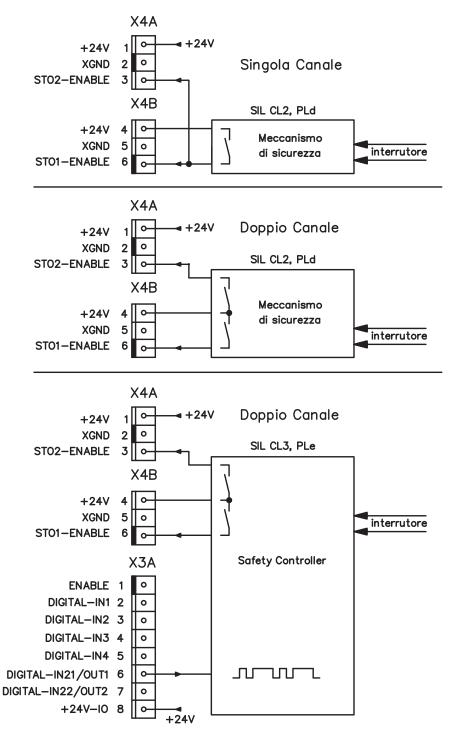
- 1. frenare l'azionamento in modo regolato (valore nominale velocità = 0V);
- 2. in caso di velocità = 0 min⁻¹, disabilitare il servoamplificatore (enable = 0V);
- 3. in caso di carico sospeso, bloccare l'azionamento anche meccanicamente;
- 4. attivare la funzione STO (STO1-Enable e STO2-Enable = 0V).

6.9.5 Uso conforme

La funzione di sicurezza STO contro il riavvio accidentale del macchinario ha esclusivamente la funzione di impedire il riavvio di un azionamento per garantire la sicurezza personale. A questo scopo il circuito di sicurezza deve soddisfare i requisiti di sicurezza delle norme EN 60204, EN 12100, EN 62061 e EN 13849-1.

Se si utilizza il singolo canale, l'STO, porre attenzione che l'uscita del sistema di controllo sia monitorata per prevenire possibili malfunzionamenti.

Per ottenere la classificazione PL o SIL CL 3 è necessario verificare periodicamente la sicurezza operativa del blocco impulsi mediante analisi del segnale di feedback trasmesso dall'unità di controllo di sicurezza (vedere pagina 50).


6.9.6 Uso conforme vietato

La funzione di sicurezza STO contro il riavvio accidentale del macchinario non può essere utilizzato se l'azionamento deve essere arrestato per i seguenti motivi:

- 1. Interventi di pulizia, manutenzione e riparazione, lunghe pause di esercizio: l'intero impianto deve essere spento e bloccato dal personale (interruttore generale).
- 2. Situazioni di spegnimento d'emergenza: il contattore di rete viene disinserito (tasto di spegnimento d'emergenza).

6.9.7 Dati tecnici e configurazione dei collegamenti

Tensione di ingresso	20V30V		
Corrente in ingresso	33mA – 40mA (leff)		
Corrente di picco	100mA (Is)		
Tempo di reazione	STO1: 1ms		
/fuente in disease sullingueses CTO fine allin	STO2: 2ms		
terruzione dell'alimentazione diretta al motore)	3102. 21118		

Informazioni

SIL CL3/PLe richiede il controllo periodico della serratura della fase dell'uscita. Di conseguenza la condizione deve essere collegata ad una delle uscite digitali DIGITAL-OUT1 o a 2 (X3A/6 o X3A/7) con l'ordine OxMODE70 di ASCII.

6.9.8 Descrizione dell funzionamento

In caso di utilizzo della funzione di sicurezza STO, l'ingressi STO1-Enable e STO2-Enable deve essere collegato con l'uscita di un'unità di controllo o di un relè di sicurezza che soddisfino almeno i requisiti della SIL CL2 a norma EN 62061 e PLd a norma EN 13849-1. (Fare riferimento allo schema collegamenti a pag. 46).

Qui di seguito sono riportati gli stati che il servoamplificatore può assumere se collegato al sistema di protezione contro il riavvio accidentale STO:

STO1-ENABLE STO2-ENABLE	ENABLE	Messaggio display	Coppia motore	SIL CL2 / PLd o SIL CL3 / PLe	
0V	0V	-S-	no	sì	
0V	+24V	F27	no	sì	
+24V	0V	Ident.apparecchio p.es. 06	no	no	
+24V	+24V	Ident.apparecchio p.es. E06	sì	no	

Comando a un canale SIL2/PLd

Quando la funzione di sicurezza STO (SIL2/PLd) viene controllata con comando a un canale, entrambe le linee di disinserzione STO1-Enable e STO2-Enable vengono commutate da un'uscita di un dispositivo di commutazione di sicurezza (ad esempio un relè di sicurezza), vedere l'esempio a pagina 46.

Comando a due canali SIL2/PLd

Quando la funzione di sicurezza STO (SIL2/PLd) viene controllata con comando a due canali, le linee di disinserzione STO1-Enable e STO2-Enable vengono commutate separatamente da due uscite di un dispositivo di commutazione di sicurezza (ad esempio un relè di sicurezza), vedere l'esempio a pagina 47.

Comando a due canali SIL3/PLe

Quando la funzione di sicurezza STO viene controllata con comando a due canali, le linee di disinserzione STO1-Enable e STO2-Enable vengono commutate separatamente da due uscite di un'unità di controllo di sicurezza, vedere l'esempio a pagina 48. Per ottenere la classificazione PL o SIL CL 3 è necessario verificare periodicamente la sicurezza operativa del blocco impulsi mediante analisi del segnale di feedback trasmesso dall'unità di controllo di sicurezza (vedere pagina 50). Il segnale di feedback viene portato su una delle uscite digitali DIGITAL-OUTx ((X3A/6 o X3A/7, vedere pagina 99) dell'S700 con il comando ASCII OxMODE70.

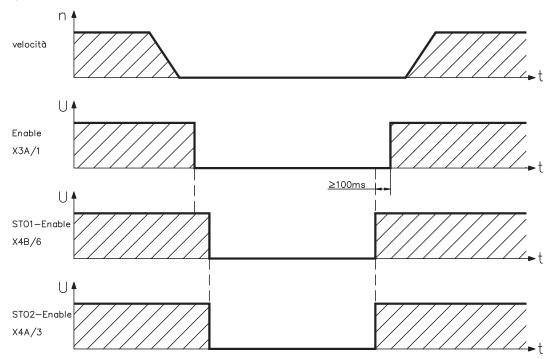
AVVISO

Nel cablare l'ingressi STO all'interno del luogo di installazione occorre considerare che sia i cavi utilizzati che il luogo stesso devono soddisfare i requisiti della EN 60204-1.

Se il cablaggio è realizzato all'esterno del luogo di installazione, deve essere posato in modo duraturo e protetto da danneggiamenti esterni (⇒ pag. 6.9.3).

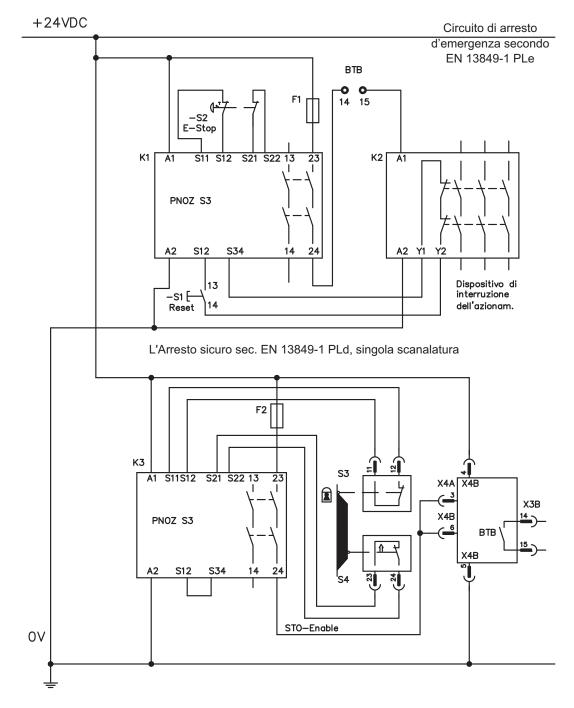
Informazioni Se un'applicazione non richiede la funzione di sicurezza STO, ingressi STO1-ENABLE e STO2-ENABLE deve essere collegato direttamente a +24 V DC. In tal modo si esclude il sistema di protezione contro il riavvio accidentale che quindi non può essere utilizzato. Il servoamplificatore non può essere utilizzato come componente di sicurezza riferirsi allaEC Direttiva Macchine.

6.9.8.1 Diagramma ciclo segnale


AAVVERTENZA Quando la funzione STO è abilitata rimuovendo il 24VDC dai due ingressi separati STO1-Enable e STO2-Enable, il motore rallenterà senza controllo e il servoamplificatore mostrerà l'errore F27 sul displays. A quel punto non si ha alcuna possibilità di frenare l'azionamento in modo controllato. Se un'applicazione richiede una frenata controllata prima dell'utilizzo del sistema di protezione contro il riavvio accidentale, occorre frenare l'azionamento e separare l'ingressi STO1-ENABLE e STO2-ENABLE da +24VCC con un leggero ritardo.

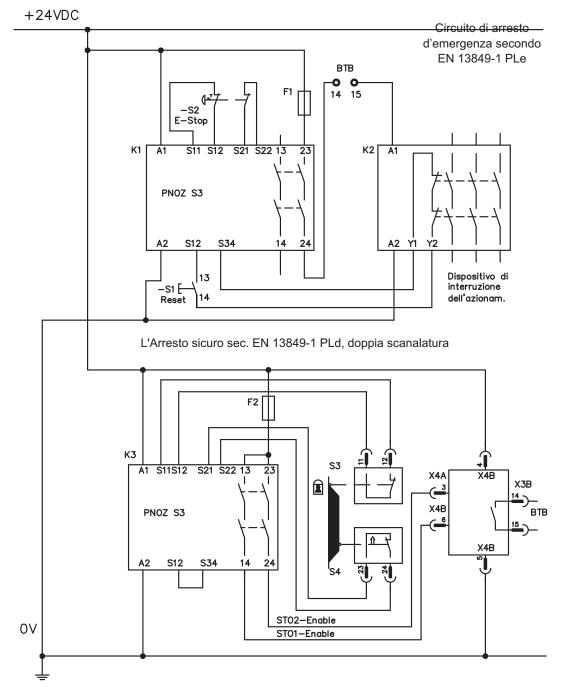
- 1. Portare il motore in posizione di riposo in modo controllato, valore teorico del numero di giri = 0
- 2. Se numero di giri=0, tensione per Enable = 0 V
- 3. In caso di carico sospeso, bloccare l'azionamento anche meccanicamente
- 4. Attivare sistema di protezione contro il riavvio accidentale, tensione per STO1-Enable e STO2-Enable = 0 V

AATTENZIONE


Con motori senza freni è possibile che i carichi sospesi si mettano in movimento, perché quando STO è azionato (STO1-Enable e STO2-Enable aperto ovvero 0V) il motore non eroga alcuna coppia. Usare quindi motori con freno di stazionamento integrato.

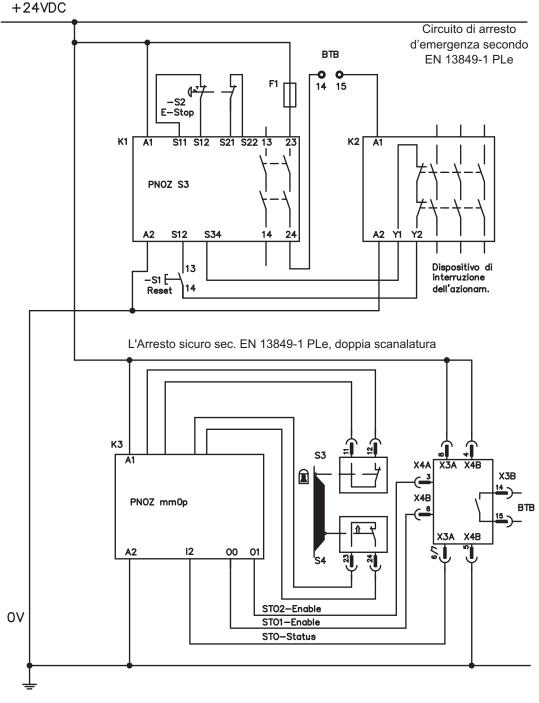
Il diagramma indica come si deve utilizzare STO contro il riavvio accidentale, al fine di consentire un arresto sicuro dell'azionamento e un corretto funzionamento del servoamplificatore.

6.9.8.2 Circuito elettrico di comando singola scanalatura SIL2/PLd (esempio)

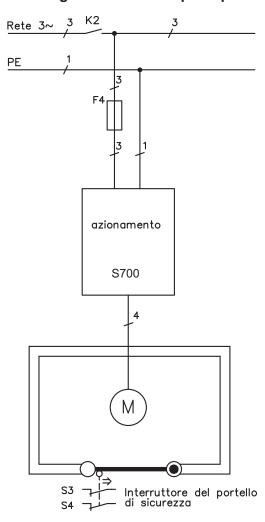

L'esempio mostra lo schema elettrico di un asse con un circuito di arresto di emergenza. La funzione STO dell'azionamento viene attivata da una porta di protezione. La disinserzione è monocanale. I dispositivi di commutazione di sicurezza utilizzati nell'applicazione esemplificata sono della ditta Pilz e risultano conformi almeno alla classificazione PLd secondo EN 13849-1. Per ulteriori informazioni su tali dispositivi rivolgersi alla ditta Pilz. Si possono impiegare dispositivi di commutazione di sicurezza di altre marche, purché anch'essi siano conformi alla classificazione PLd secondo EN 13849-1 oppure SIL CL2 secondo EN 62061.

Informazioni Osservare le avvertenze relative al cablaggio a pag. 41.

6.9.8.3 Circuito elettrico di comando doppia scanalatura SIL2/PLd (esempio)


L'esempio mostra lo schema elettrico di un asse con un circuito di arresto di emergenza. La funzione STO dell'azionamento viene attivata da una porta di protezione. La disinserzione è bicanale. I dispositivi di commutazione di sicurezza utilizzati nell'applicazione esemplificata sono della ditta Pilz e risultano conformi almeno alla classificazione PLd secondo EN 13849-1. Per ulteriori informazioni su tali dispositivi rivolgersi alla ditta Pilz. Si possono impiegare dispositivi di commutazione di sicurezza di altre marche, purché anch'essi siano conformi alla classificazione PLd secondo EN 13849-1 oppure SIL CL2 secondo EN 62061.

Informazioni Osservare le avvertenze relative al cablaggio a pag. 41.


6.9.8.4 Circuito elettrico di comando doppia scanalatura SIL3/PLe (esempio)

L'esempio mostra lo schema elettrico di un asse con un circuito di arresto di emergenza. La funzione STO dell'azionamento viene attivata da una porta di protezione. La disinserzione è bicanale. La sicurezza operativa del blocco impulsi deve essere controllata periodicamente tramite valutazione del feedback dell'unità di controllo di sicurezza. I dispositivi di commutazione di sicurezza utilizzati nell'applicazione esemplificata sono della ditta Pilz e risultano conformi almeno alla classificazione PLd secondo EN 13849-1. Per ulteriori informazioni su tali dispositivi rivolgersi alla ditta Pilz. Si possono impiegare dispositivi di commutazione di sicurezza di altre marche, purché anch'essi siano conformi alla classificazione PLd secondo EN 13849-1 oppure SIL CL2 secondo EN 62061.

Informazioni Osservare le avvertenze relative al cablaggio a pag. 41.

6.9.8.5 Schema generale circuito principale

6.9.9 Collaudo funzionale

6.9.9.1 Singola / doppia scanalatura, SIL CL2 / PLd

▲ATTENZIONE

Alla prima messa in funzione, dopo ogni intervento sul cablaggio dell'impianto o dopo la sostituzione di uno o più componenti, occorre verificare il funzionamento del STO.

1. Metodo:

- 1. Spegnere l'azionamento con valore teorico 0, lasciare "enabled" (abilitati) i servoamplificatori (Enable=24V). **PERICOLO: Non entrare nell'area protetta!**
- 2. Attivare il sistema di protezione STO1-Enable e STO2-Enable contro il riavvio accidentale, ad es. aprendo la porta di protezione. (X4A/3=0V e X4B/6=0V)

Ora il contatto BTB si deve aprire, il contattore di rete si deve diseccitare e il regolatore deve segnalare l'errore F27.

2. Metodo:

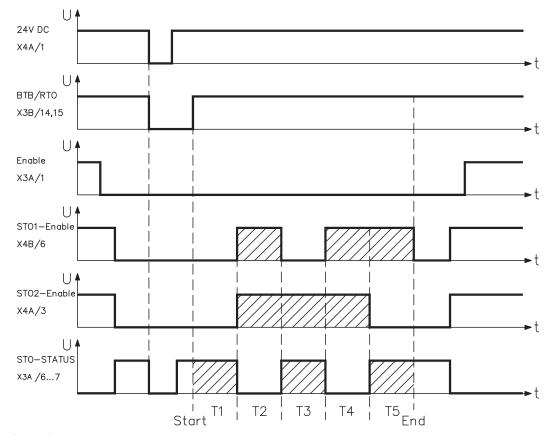
- 1. Spegnere l'azionamento con valore teorico 0, bloccare i servoamplificatori (Enable=0V).
- 2. Attivare il sistema di protezione STO1-Enable e STO2-Enable contro il riavvio accidentale, ad es. aprendo la porta di protezione. (X4A/3=0V e X4B/6=0V)

Ora sul display deve comparire -S-.

6.9.9.2 Doppia scanalatura SIL CL3 / PLe

AATTENZIONE

Per ottenere la classificazione PLe/SIL CL 3 è necessario verificare periodicamente la sicurezza operativa del blocco impulsi mediante analisi del segnale di feedback trasmesso dall'unità di controllo di sicurezza:


- all'avviamento dell'impianto;
- al riavvio dopo intervento di un dispositivo di sicurezza;
- almeno ogni 8 ore ad opera del conduttore,

che dovrà commutare gli ingressi STO1-ENABLE e STO2-ENABLE alternativamente in base a una sequenza di prova definita. Lo stato del blocco impulsi è segnalato da un'uscita digitale dell'S700 e viene valutato da un'unità di controllo di sicurezza.

La sequenza della verifica funzionale del blocco impulsi deve svolgersi secondo lo schema illustrato di seguito.

Condizione preliminare per iniziare la sequenza di prova:

- macchina pronta BTB/RTO = 1;
- segnale di consenso ENABLE = 0;
- STO1-ENABLE e STO2-ENABLE = 0

Legenda:

STO1-ENABLE: ingresso digitale, 1a linea di disinserzione STO2-ENABLE: ingresso digitale, 2a linea di disinserzione STO-STATUS: uscita digitale, stato del blocco impulsi

T1 ... T5: sequenza di prova Start: avvio della sequenza di prova End: fine della sequenza di prova

6.10 Protezione dal contatto accidentale

6.10.1 Corrente di dispersione

La corrente di dispersione (Idisp) sul conduttore della terra di protezione (PE) deriva dalla somma delle correnti di dispersione delle apparecchiature e del cavo. L'andamento della frequenza della corrente di dispersione corrisponde all'insieme di diverse frequenze, mentre gli interruttori di sicurezza per le correnti di guasto valutano prevalentemente la corrente a 50 Hz. Per questa ragione non è possibile misurare con un multimetro.

I nostri cavi a bassa capacità permettono di calcolare lo stadio finale della Idisp con una tensione di rete di 400 V, in funzione della frequenza, con la formula empirica:

I_{disp} = n x 20mA + L x 1mA/m con stadio finale a frequenza di clock di 8 kHz
 I_{disp} = n x 20mA + L x 2mA/m con stadio finale a frequenza di clock di 16 kHz
 (dove Idisp = corrente di dispersione, n = numero degli amplificatori, L = lunghezza del cavo motore)
 Con tensioni di rete diverse la Idisp varia proporzionalmente alla tensione.

Esempio: 2 servoamplificatori + cavo motore da 25 m con frequenza di clock di 8 kHZ:

 $2 \times 20mA + 25m \times 1mA/m = 65mA = Idisp$

Informazioni

Dal momento che la corrente di dispersione verso la terra di protezione supera i 3,5 mA, conformemente a EN 61800-5-1 occorre raddoppiare il collegamento di terra oppure utilizzare un cavo di allacciamento con sezione >10mm². Per rispondere a questo requisito usare i morsetti PE oppure il dispersore di terra.

Queste contromisure consentono di contenere Idisp entro livelli minimi.

- Ridurre la lunghezza dei cavi motore
- Usare cavi a bassa capacità (vedere pag. 61)
- Eliminare i filtri EMC esterni (il S700 integra filtri)

6.10.2 Interruttori di sicurezza per le correnti di guasto (FI)

Secondo quanto espresso dalle normative EN 60364-4-41 sulle installazioni elettriche negli edifici ed EN 60204 in materia di equipaggiamento elettrico dei macchinari è possibile impiegare un interruttore di sicurezza per le correnti di guasto (in seguito definito FI) se si garantisce il rispetto delle disposizioni applicabili.

S700 è un sistema trifase con ponticelli B6 che richiede l'impiego di FI a sensibilità universale, in grado di rilevare anche eventuali correnti di guasto continue. La formula empirica per determinare la corrente di dispersione è indicata a capitolo 6.10.1.

Correnti di guasto misurate con FI:

	Protezione dal "contatto accidentale indiretto" (misure di protezione perso-
10 -30 mA	nale e antincendio) per materiali elettrici fissi e mobili, e dal "contatto
	accidentale diretto".
50 -300 mA	Protezione dal "contatto accidentale indiretto" (misure di protezione perso-
50 -300 MA	nale e antincendio) per materiali elettrici fissi

Informazioni

Per la protezione dal contatto accidentale diretto consigliamo (cavi motore di lunghezza inferiore ai 5 m) di installare su ciascun servoamplificatore un interruttore di sicurezza contro le correnti di guasto a sensibilità universale da 30mA.

Il sistema di analisi intelligente di un interruttore di sicurezza FI selettivo evita che il dispositivo di protezione possa intervenire in modo intempestivo.

6.10.3 Trasformatori d'isolamento di protezione

Quando la protezione dal contatto accidentale indiretto è assolutamente indispensabile anche in presenza di una corrente di dispersione più elevata, oppure occorre una protezione alternativa è possibile impiegare un trasformatore d'isolamento (schema di collegamento vedere pagina 66).

Per il controllo del corto circuito è possibile impiegare un controllo di dispersione a terra.

Informazioni

Consigliamo di collegare trasformatore e servoamplificatore con un cavo il più possibile corto.

7 Installazione meccanica

7.1 Indicazioni di sicurezza

AATTENZIONE

Se la messa a terra del servoamplificatore (o del motore) non è corretta dal punto di vista della compatibilità elettromagnetica, le cariche presenti possono provocare scosse elettriche. Non utilizzare piastre di montaggio verniciate (non conduttive).

AVVISO

Proteggere i servoamplificatori da sollecitazioni non ammesse. In particolare, durante il trasporto e la movimentazione non piegare elementi costruttivi e/o modificare le distanze d'isolamento. Evitare di toccare i gruppi elettronici ed i contatti.

AVVISO

In caso di surriscaldamento il servoamplificatore si stacca automaticamente. Assicurare una sufficiente alimentazione di aria fredda filtrata proveniente dal basso nel quadro elettrico ad armadio, oppure usare uno scambiatore di calore. A questo proposito, osservare quanto riportato a pagina 31.

AVVISO

Non montare direttamente vicino al servoamplificatore componenti che creano campi magnetici, i quali, se intensi, potrebbero influire direttamente sui componenti interni. Montare gli apparecchi che creano campi magnetici a una certa distanza dai servoamplificatori e/o schermare i campi magnetici.

7.2 Istruzioni per l'installazione meccanica

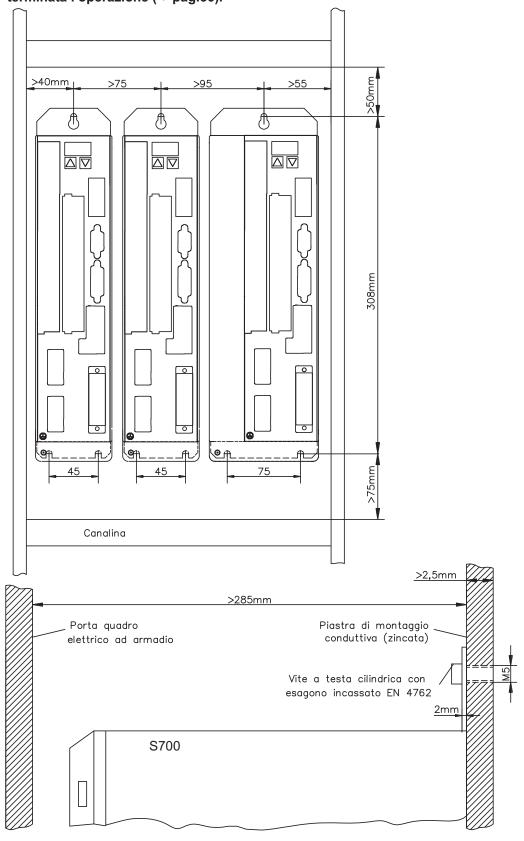
Le indicazioni seguenti si prefiggono di aiutare l'utente a procedere secondo una sequenza corretta durante l'installazione, senza dimenticare punti importanti.

Luogo di montaggio In armadio chiuso. Osservare quanto riportato a pagina 31. Il luogo di installazione deve essere privo di materiali conduttivi e aggressivi. Disposizione in armadio ⇒ p.54

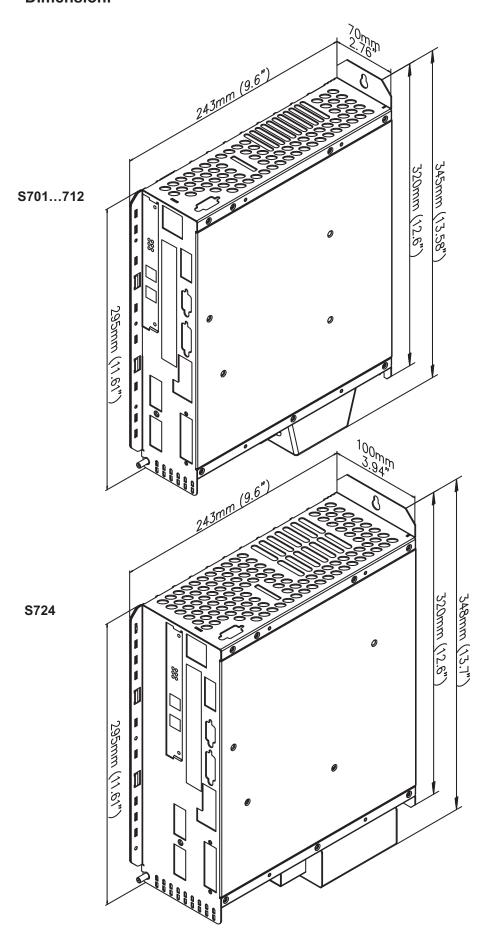
Aerazione

Assicurare la libera ventilazione dei servoamplificatori e rispettare la temperatura ambiente ammessa, ⇒ p. 31 . Lasciare lo spazio necessario sia sopra che sotto i servoamplificatori, ⇒ p.54.

Montaggio


Installare i servoamplificatori e l'alimentatore l'uno vicino all'altro sulla piastra di montaggio conduttiva con **messa a terra** nel quadro elettrico ad armadio.

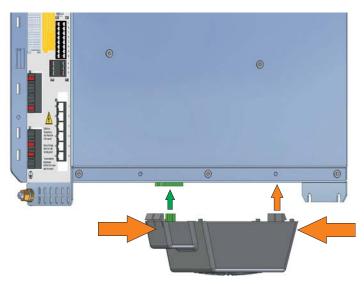
Messa a terra Schermatura Schermatura conforme alla direttiva in materia di compatibilità elettromagnetica e messa a terra (⇒ p.65). Collegare a terra piastra di montaggio, carcassa del motore e CNC-GND dell'unità di controllo. Per indicazioni sulla tecnica di collegamento si rimanda a pagina 60


7.3 Montaggio

Materiale di montaggio:3 viti a testa cilindrica con esagono cavo secondo EN 4762, M5. Attrezzo necessario: chiave esagonale da 4 mm.

Informazioni Prima di montare il servoamplificatore togliere il ventilatore, e rimontarlo una volta terminata l'operazione (⇒ pag.56).

7.4 Dimensioni

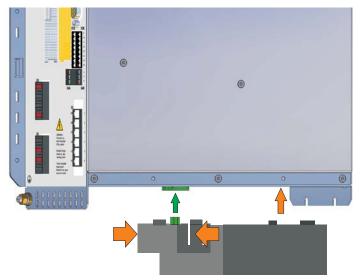

7.5 Montaggio del ventilatore

Il cablaggio del ventilatore non è indispensabile. I connettori integrati nell'alloggiamento del ventilatore si innestano nelle prese inferiori dell' S700.

Informazioni

Prima di montare il servoamplificatore togliere il ventilatore, e rimontarlo una volta terminata l'operazione.

Montaggio/Smontaggio del ventilatore sui modelli S701...712


Smontaggio:

premere leggermente sui lati l'alloggiamento del ventilatore in senso longitudinale e tirarlo verso il basso.

Montaggio:

posizionare il ventilatore in modo che il connettore verde si allinei con la presa dell' S700. Innestare il ventilatore sul connettore fino a quando l'alloggiamento scatta nella sua sede. Sostenendo l'alloggiamento del ventilatore in senso longitudinale premere leggermente sui lati.

Montaggio/Smontaggio del ventilatore sul modello S724

Smontaggio:

premere leggermente sui lati l'alloggiamento del ventilatore in senso trasversale e tirarlo verso il basso.

Montaggio:

posizionare il ventilatore in modo che il connettore verde si allinei con la presa dell'S700. Innestare il ventilatore sul connettore fino a quando l'alloggiamento scatta nella sua sede. Sostenendo l'alloggiamento del ventilatore in senso trasversale premere leggermente sui lati.

8 Installazione elettrica

8.1 Indicazioni di sicurezza

APERICOLO

Non allentare mai i collegamenti elettrici dei servoamplificatori sotto tensione. In casi sfavorevoli ciò potrebbe comportare il guasto dell'impianto elettronico. Dopo aver staccato i servoamplificatori dalle tensioni di alimentazione, attendere almeno otto minuti prima di toccare i componenti sotto tensione (ad esempio contatti) o di allentare collegamenti. Le cariche residue nei condensatori possono presentare valori pericolosi anche fino a 5 minuti nei modelli da 1,5A a 12A, e fino a 8 minuti nei modelli da 24A dopo la disinserzione della tensione di rete.

Misurare la tensione sul circuito intermedio (+DC/-DC) e attendere fino a quando è scesa al di sotto di 40V. I collegamenti di comando e di potenza possono condurre tensione anche a motore fermo.

AVVISO

Tensioni di rete non corrette, motori non idonei o errori di cablaggio possono danneggiare il servoamplificatore. Verificare l'assegnazione dei servoamplificatori e del motore. Confrontare la tensione nominale e la corrente nominale degli apparecchi. Eseguire il cablaggio conformemente alle indicazioni di pagina 59. Assicurarsi che la tensione nominale massima ammessa sui collegamenti L1, L2, o +DC, -DC anche nel caso più sfavorevole non venga superata di oltre il 10% (vedere EN 60204-1).

AVVISO

Fusibili sovradimensionati possono compromettere la sicurezza di cavi e apparecchi. La protezione dell'alimentazione del lato AC e dell'alimentazione da 24V è a carico dell'utente, per le dimensioni consigliate ⇔ pag.30. Per indicazioni sugli interruttori di sicurezza per le correnti di guasto (FI) ⇔ pag. 51.

AVVISO

Un cablaggio corretto è fondamentale affinché il servosistema funzioni in modo affidabile. Posare separatamente cavi di potenza e di comando. Consigliamo una distanza superiore a 20 cm. In questo modo, l'immunità alle interferenze richiesta dalla direttiva in materia di compatibilità elettromagnetica risulta migliorata. Se il cavo di potenza impiegato per il motore integra i fili di comando del freno questi ultimi devono essere schermati separatamente. Collegare le schermature in modo da coprire un'ampia superficie (a bassa impedenza), possibilmente mediante un corpo connettore metallizzato o morsetti schermati. Per indicazioni sulla tecnica di collegamento, si rimanda a pagina 60.

AVVISO

Non prolungare i cavi di retroazione; questo interromperebbe la schermatura e l'analisi del segnale risulterebbe disturbata. I cavi tra l'amplificatore e il resistenza di frenatura esterno devono essere schermati. Tutti i cavi devono avere sezione sufficiente ai sensi di EN 60204 (⇔ p.31); per realizzare cavi di massima lunghezza utilizzare materiali della qualità indicata a p. 61.

AVVISO

Il PLC deve monitorare lo stato del servoamplificatore. Inserire il contatto BTB nel circuito di arresto d'emergenzia. Il circuito di arresto d'emergenzia deve azionare il contattore di rete.

Informazioni

È possibile modificare le impostazioni del servoamplificatore mediante il software di messa in funzione. Ulteriori interventi annullano il diritto alla garanzia.

8.2 Istruzioni per l'installazione elettrica

Le indicazioni seguenti si prefiggono di aiutare l'utente a procedere secondo una sequenza corretta durante l'installazione, senza dimenticare punti importanti.

Scelta dei cavi Scegliere i cavi secondo la norma EN 60204, ⇒ p. 31

Messa a terra **Schermatura**

Schermatura conforme alla direttiva in materia di compatibilità elettromagnetica e messa a terra (⇒ p.65). Collegare a terra piastra di montaggio, carcassa del motore e CNC-GND dell'unità di controllo. Per indicazioni sulla tecnica di collegamento si rimanda a pagina 60

Cablaggio

INFORMAZIONI: Posare separatamente i cavi di potenza e di comando. Inserire un contatto BTB nel circuito di arresto d'emergenzia

- Collegare ingressi/uncite digitali del servoamplificatore
- Se necessario, collegare il valore nominale analogico
- Collegare l'unità di retroazione
- Collegare la scheda di espansione (consultare p. 123 ...)
- Collegare i cavi motore, collegare le schermature sui due lati del connettore EMC. In caso di lunghezza dei cavi >25m, utilizzare un induttanza (3YL/3YLN)
- Collegare il freno di arresto, collegare le schermature sui due lati del connettore EMC
- Se necessario, collegare la resistenza di frenatura esterna (con protezione)
- Collegare la tensione ausiliaria (valori massimi ammessi ⇒ p. 31)
- Collegare la tensione di potenza (valori massimi ammessi ⇒ p. 31, Interruttori di sicurezza per le correnti di guasto (FI) ⇒ p.51
- Collegare il PC (⇒ p. 100).

Controllo

 Verificare il cablaggio eseguito sulla base degli schemi di collegamento utilizzati

8.3 Cablaggio

A titolo di esempio, descriviamo la procedura da seguire durante l'installazione. A seconda del tipo di apparecchi impiegati, può risultare opportuna una procedura diversa. Ulteriori approfondimenti in merito vengono forniti durante i nostri corsi di addestramento (su richiesta).

8.3.1 Indicazioni di sicurezza

▲PERICOLO

Pericolo di infortuni gravi dovuti alla formazione di arco. Collegare gli apparecchi sempre in assenza di tensione, vale a dire prima di inserire l'alimentazione di potenza, la tensione ausiliaria da 24 V e la tensione d'esercizio di qualsiasi altro apparecchio da collegare. Assicurarsi che il quadro elettrico ad armadio venga disinserito in modo sicuro (blocco, cartelli di avvertenza). Le singole tensioni verranno inserite solo con la messa in funzione.

AATTENZIONE Solo i tecnici con una specifica formazione elettrotecnica possono installare il servoamplificatore.

8.3.2 Istruzioni importanti

Informazioni

Il simbolo della massa rhn che si trova in tutti gli schemi di collegamento indica che occorre provvedere ad un collegamento conduttivo il più ampio possibile tra l'apparecchio identificato e la piastra di montaggio nel quadro elettrico ad armadio. Tale collegamento deve consentire la dispersione di interferenze ad alta frequenza e non deve essere confuso con il simbolo di terra (PE) \frac{1}{2} (misura di protezione secondo EN 60204).

Informazioni

Utilizzare i seguenti schemi dei collegamenti:

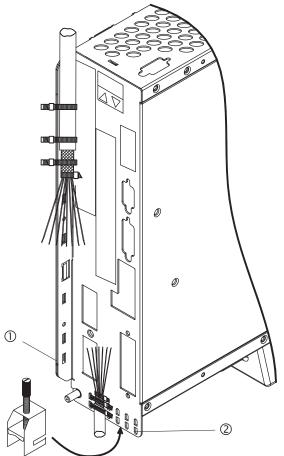
Descrizione generale : pagina 65 Sistema di protezione STO : pagina 46 Collegamenti di potenza : pagina 68 e ss Motore : pagina 72 Retroazione : pagina 74 e ss

Trasmissione elettronico / Master-Slave

Interfaccia Master-Slave : pagina 91 **Interfaccia Puls-Richtungs** : pagina 76 Ingressi/Uscite digitali e analogici : pagina 96 e ss RS232 / PC : pagina 100 Interfaccia CANopen : pagina 101 Interfaccia EtherNET : pagina 102

Scheda di espansione Slot 1:

I/O-14/08 : pagina 126 **PROFIBUS** : pagina 127 **SERCOS** : pagina 129 **DeviceNet** : pagina 130 **SynqNet** : pagina 134 FB-2to1 : pagina 135 -2CAN-: pagina 137


Scheda di espansione Slot 2:

Posl/O & Posl/O-Monitor : pagina 140 e ss

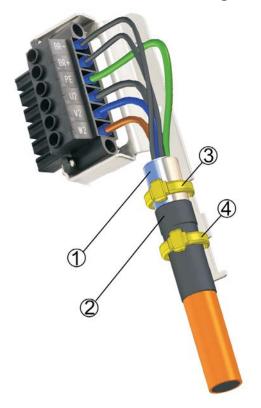
Scheda di espansione Slot 3:

Posl/O & Posl/O-Monitor : pagina 149 e ss Safety : pagina 150 e ss

8.3.3 Collegamento dello schermo di protezione alla piastra frontale

Togliere la guaina esterna del cavo e la treccia schermante fino ad ottenere fili della lunghezza voluta. Fissare i fili con una fascetta.

Togliere circa 30mm di guaina esterna dal cavo senza danneggiare la treccia schermante.


Isolare tutti i fili e montare i manicotti terminali.

Fissare il cavo mediante apposite fascette sulla piastra schermante laterale (1) o inferiore (2) del servoamplificatore. Premere la treccia schermante del cavo e la fascetta fermacavo contro la guida schermante.

Utilizzi il morsetto dello schermo che è trasportato con il cavo del motore per il collegamento dello schermo del cavo del motore. Il morsetto deve essere agganciato nella protezione più bassa e garantisce il contatto ottimale fra lo schermo e la guida schermante.

Cablare i morsetti ad innesto seguendo lo schema elettrico. Collegare la schermatura del cavo motore mediante il connettore motore inferiore X9 (vedere oltre).

8.3.4 Connettore motore X9 con collegamento di schermatura

Togliere circa 120 mm di guaina esterna dal cavo senza rovinare la schermatura. Ripiegare la schermatura (1) sul cavo e fissarla con una bussola in gomma (2) o con un tratto di tubo termoretraibile. Accorciare tutti i fili eccetto il conduttore della terra di protezione PE (giallo / verde) di circa 20 mm, in modo che il filo di terra sia più lungo degli altri. Isolare tutti i fili e montare i manicotti terminali

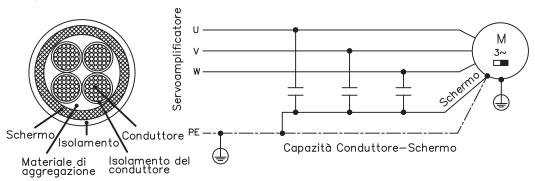
Con l'aiuto di una fascetta (3) premere la schermatura del cavo contro la piastra schermante e fissare il cavo con un'altra fascetta (4) oltre la bussola in gomma.

Collegare il connettore come indicato sullo schema elettrico. Inserire il connettore nella presa sulla piastra frontale dell'S700.

Stringere le viti del connettore. In questo modo si realizza un collegamento a conduzione elettrica di ampia superficie tra la schermatura e la piastra frontale.

8.3.5 Dati tecnici dei cavi di collegamento

Per ulteriori informazioni sulle proprietà chimiche, meccaniche ed elettriche dei cavi consultare il manuale degli accessori o rivolgersi al nostro settore applicazioni.

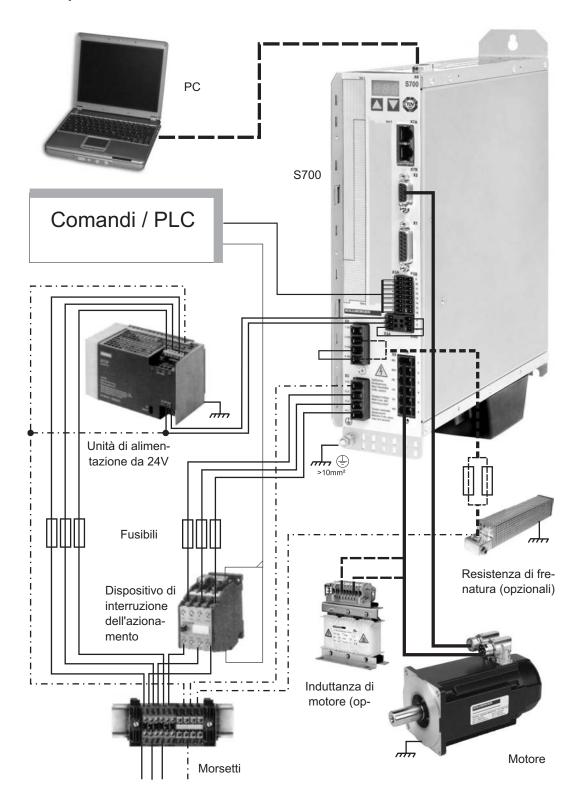

Informazioni

Attenersi a quanto prescritto nel capitolo "Sezioni dei cavi" a pagina 31. Per utilizzare il servoamplificatore in sicurezza con cavi della lunghezza massima consentita, il materiale dei cavi deve rispondere ai requisiti di capacità indicati di seguito.

Capacità

Cavo motore Inferiore a 150 pF/m Cavo RES/encoder Inferiore a 120 pF/m

Esempio: cavo del motore:

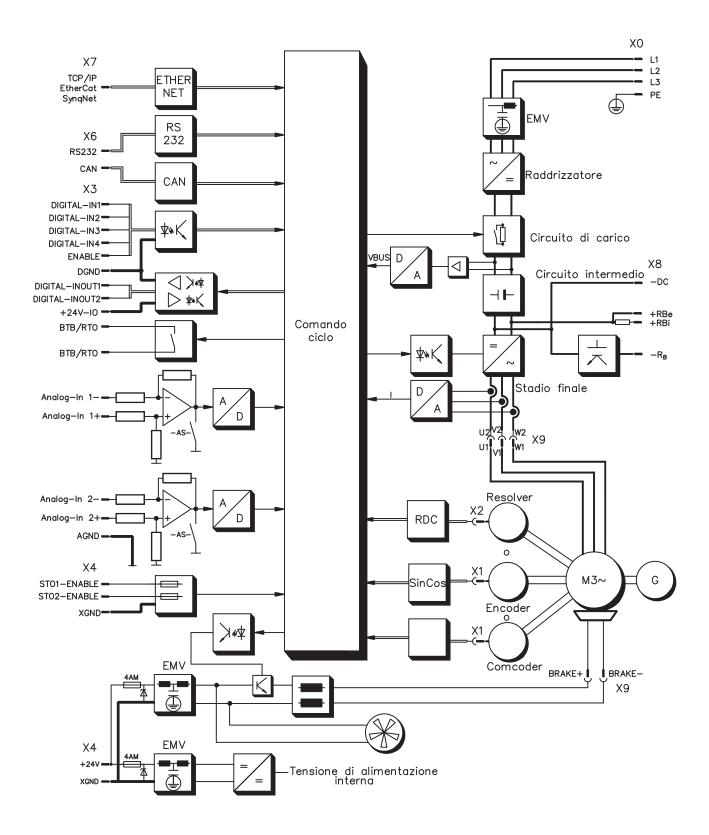


Dati tecnici

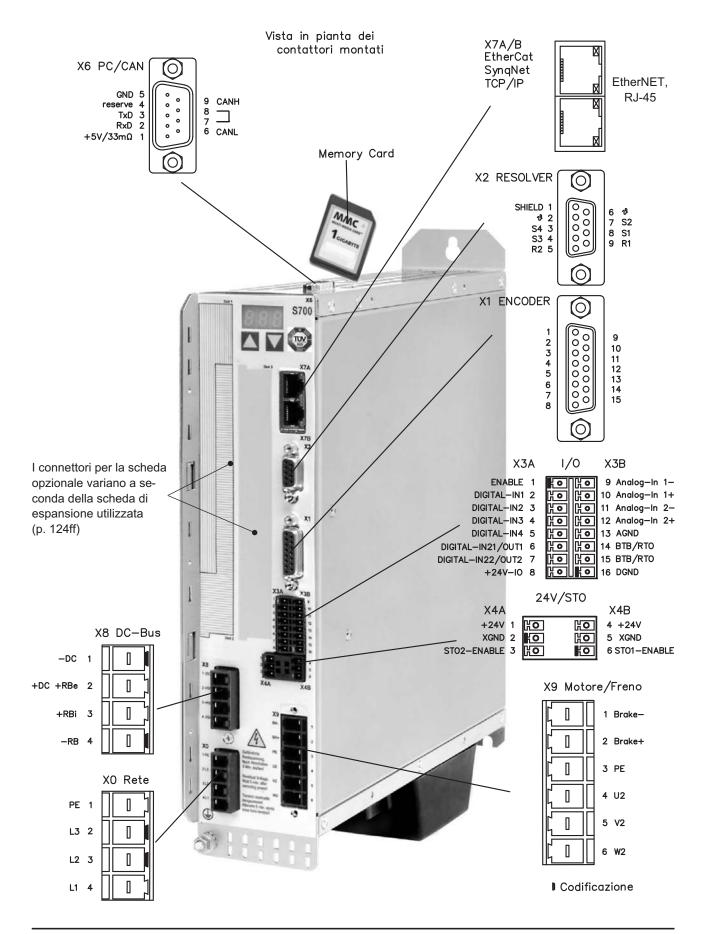
Per la descrizione dettagliata dei cavi e confezionamento consultare il manuale degli accessori.

Informazioni Cavi motore oltre i 25m richiedono l'impiego dell'induttanza 3YL/3YLN

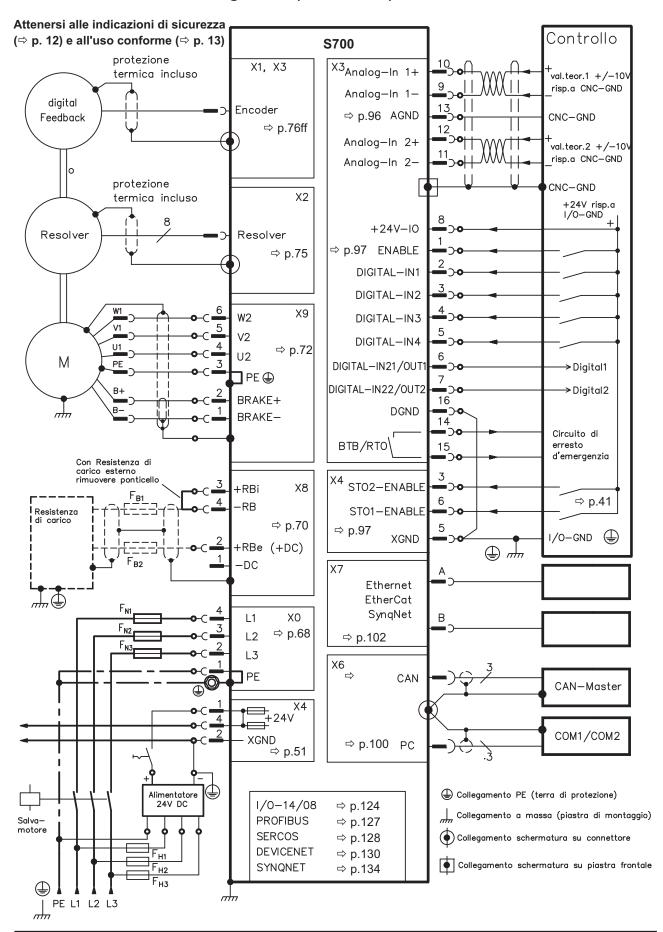
8.4 Componenti di un servosistema



Informazioni

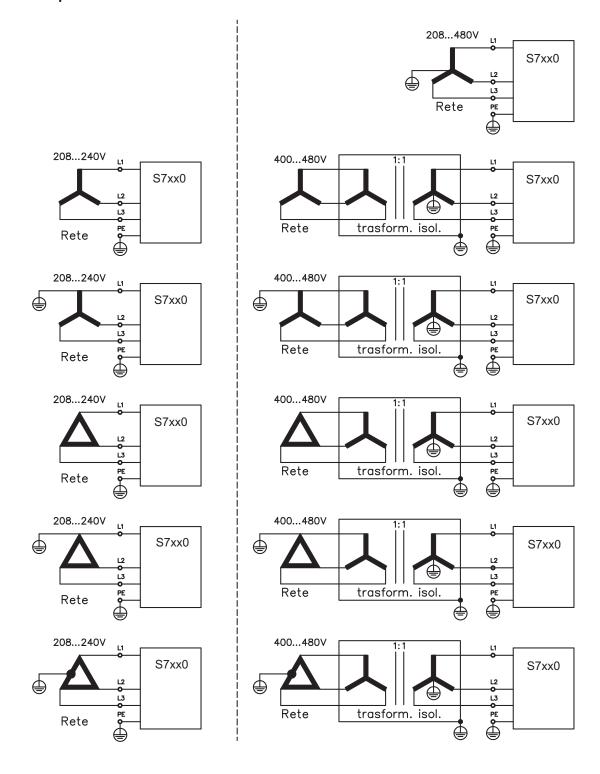

Grassetto disegnati cavi sono protetti. La messa a terra elettrica è disegnata con le linee precipitare-punteggiate. I dispositivi facoltativi sono collegati con le linee tratteggiate all'amplificatore servo. Gli accessori necessari sono descritti sul manuale degli accessori. La funzione di STO è disattivata nell'esempio.

8.5 Diagramma a blocchi

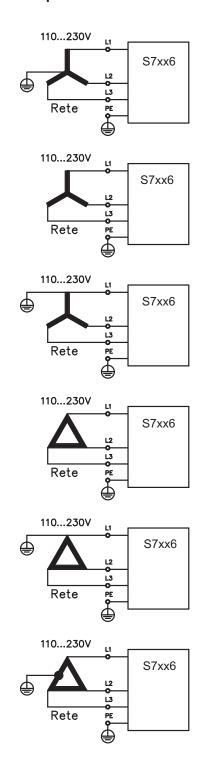

Il diagramma a blocchi illustrato qui di seguito si propone unicamente di fornire una panoramica.

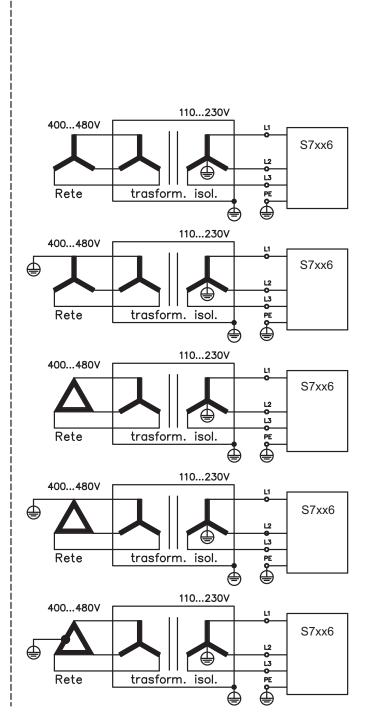
8.6 Assegnazione dei connettori

8.7 Schema collegamenti (descrizione)


8.8 Tensione di alimentazione

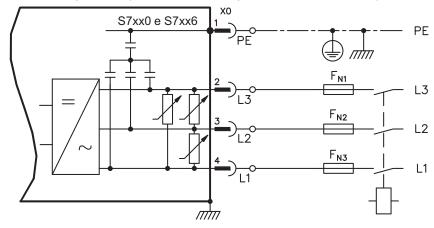
8.8.1 Collegamento a varie reti di alimentazione elettrica


AAVVERTENZA

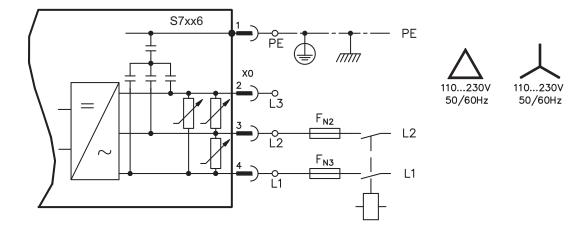

Una messa a terra non corretta del servoamplificatore comporta pericolo di infortuni gravi o morte. Un trasformatore d'isolamento è necessario per reti messe a terra asimmetricamente o non messe a terra.

8.8.1.1 Tipi S7xx0

8.8.1.2 Tipi S7xx6

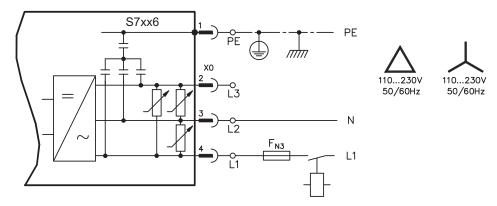


8.8.2 Collegamento alla rete (X0), trifase


- Collegamento diretto con la rete 3~, filtro integrato, tipi di rete

 p.66
- Protezione (ad esempio valvola fusibile) a carico dell'utente

 p.30



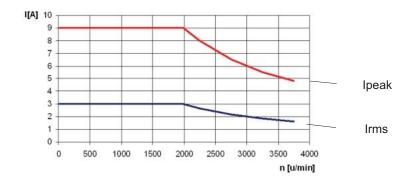
8.8.3 Collegamento alla rete (X0), bifase senza conduttore neutro

8.8.4 Collegamento alla rete (X0), monofase con conduttore neutro

S700 nella versione 230V (S7xx6) può essere alimentato da una rete monofase. Se alimentato in monofase la potenza elettrica è ridotta.

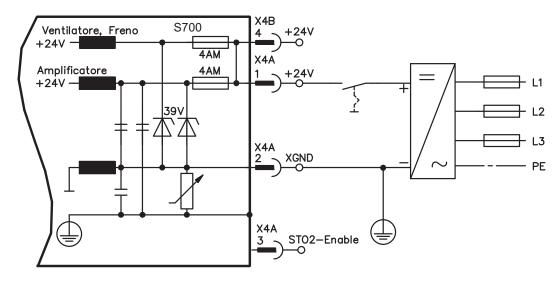
La seguente tabella indica la massima potenza nominale (Pn) e la massima potenza di picco (Pp) se alimentato in monofase:

	S7016		S70	S7036 S7066		066	S7126		S7246	
Massima potenza elettrica	Pn/W	Pp/W	Pn/W	Pp/W	Pn/W	Pp/W	Pn/W	Pp/W	Pn/W	Pp/W
VBUSBAL0 (110V)	200	400	400	400	800	800	950	950	1300	1300
VBUSBAL1 (230V)	400	1200	800	2400	1600	3200	2200	3300	3000	3500


La massima corrente disponibile dipende dalla costante di coppia del motore kT e dalla velocità a cui è usato:

Corrente continuativa:
$$I_{rms} = \frac{P_n \cdot 60}{2 \cdot \pi \cdot k_T \cdot n}$$
 Corrente di picco: $I_{peak} = \frac{P_p \cdot 60}{2 \cdot \pi \cdot k_T \cdot n}$

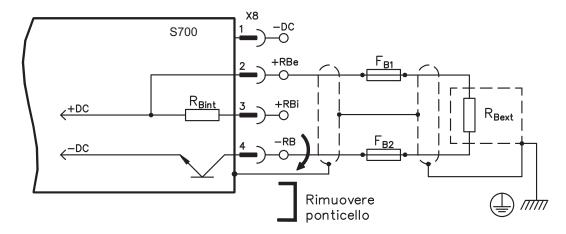
Informazioni


La velocità può essere limitata con il parametro ASCII VLIM in modo da avere la corrente necessaria per la coppia desiderata.

Utilizzando motori speciali (avvolti con kT ottimizzato) la corrente di uscita è simile a quanto riportato nel grafico seguente:

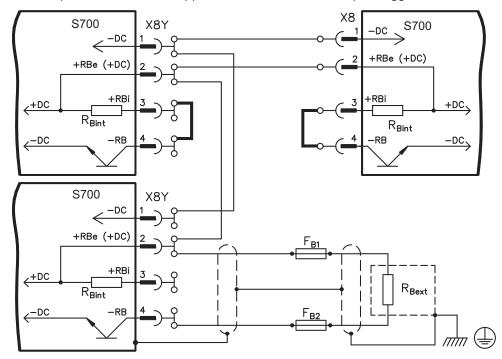
8.8.5 Tensione ausiliaria da 24V (X4)

- Alimentazione elettrica da 24V DC esterna, con isolamento elettrico, ad es. attraverso un trasformatore d'isolamento
- Corrente nominale richiesta ⇒ p.28
- Filtro EMC integrato per l'alimentazione ausiliaria da 24V


8.9 Resistenza di frenatura esterna (X8)

Rimuovere il ponticello tra i morsetti X8/4 (-RB) e X8/3 (+RBi).

Per collegare anche i circuiti intermedi di servoamplificatori S700 affiancati usare il morsetto ad innesto opzionale X8Y (vedere le indicazioni per l'ordinazione pag.159). Per un esempio di collegamento con X8Y vedere la pagina seguente (DC-Link).


Utilizzi il Y-connettore facoltativo X8Y (vedi i numeri di ordine sul pag. 159), se volete collegare la DC Bus con altri servo amplificatori S700.

Un esempio dei collegamenti con connettore Y sul pag.71.

8.10 DC-link (X8)

Morsetti X8/1 (-DC) e X8/2 (+RBe). Possono essere collegati in parallelo, nel qual caso la potenza di rigenerazione è divisa tra tutti gli amplificatori collegati allo stesso circuito DC-link. Il morsetto a innesto opzionale X8Y consente di collegare il circuito intermedio di servoamplificatori affiancati, oppure una resistenza di recupero aggiuntiva esterna.

Con alimentatore di tensione sulla stessa rete (stessa potenza e tensione di alimentazione) la circuito intermedio di questi servoamplificatori si possono collegare:

	S700 con HWR* < 2.00	S700 con HWR* ≥ 2.00	S300
S700 con HWR* < 2.00	\otimes	no	no
S700 con HWR* ≥ 2.00	no	\otimes	\otimes

^{*}HWR = Hardware Revision (controlli la targhetta)

AVVISO

Elevate differenze di tensione sui circuiti intermedi collegati possono distruggere il servoamplificatore. Sul circuito intermedio si possono collegare solo servoamplificatori con alimentatore di tensione sulla stessa rete (stessa potenza e tensione di alimentazione).

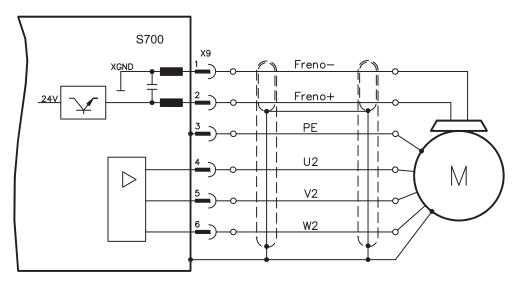
La somma delle correnti nominali di tutti i servoamplificatori collegati in parallelo a un S700 non deve superare i 48A.

Usare conduttori singoli non schermati (sezioni ⇒ p.31) di lunghezza non superiore a 200mm. Per lunghezze superiori usare conduttori schermati.

Le informazioni di fusione sono spiegate dettagliatamente nel " Prodotto Wiki" , disponibile a www.wiki-kollmorgen.eu, pagina wiki: "DC Bus link in parallel"

8.11 Collegamento del motore e freno (X9)

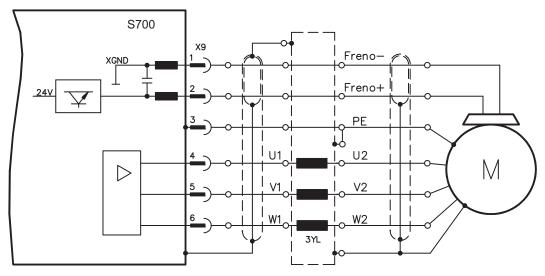
Lo stadio di potenza finale del servoamplificatore forma con il cavo e l'avvolgimento motore un circuito oscillante. Parametri come capacità dei cavi, lunghezza dei cavi, induttanza del motore, frequenza e velocità di incremento della tensione (vedere Dati tecnici a pagina 28) determinano la tensione massima presente nel sistema.


AVVISO

Rialzi dinamici di tensione possono ridurre la durata del motore e, in caso di motori non adatti, determinare scariche di tensione nell'avvolgimento.

- Impiegare solo motori con materiale isolante di classe F (EN 60085) o superiore
- Impiegare solo cavi conformi ai requisiti indicati a pag.31 e pag.61.

AATTENZIONE Questa funzione non garantisce la sicurezza del personale! Il carico d'attaccatura (asce verticali) richiede un freno meccanico supplementare che deve essere azionato sicuro, per esempio via la carta di sicurezza S1 (⇒ pag. 153).


Lunghezza del cavo ≤ 25 metri

Lunghezza del cavo >25 metri

AVVISO

Le correnti di dispersione proprie dei cavi lunghi compromettono la sicurezza degli stadi finali dei servoamplificatori. Per lunghezze da 25m fino al massimo 50m occorre allacciare l'induttore per il motore 3YL/3YLN (vedere il manuale degli accessori) al cavo motore vicino all'amplificatore.

8.12 Retroazione

Di norma in ogni servosistema chiuso occorre almeno un dispositivo di retroazione che invii i valori reali del motore al servoazionamento. In base al dispositivo di retroazione scelto il feedback al servoamplificatore viene trasmesso in modo digitale o analogico. È possibile utilizzare fino a tre retroazioni parallelo. S700 supporta tutti i più comuni dispositivi di retroazione, i cui parametri:

FBTYPE (videata FEEDBACK), retroazione primaria, ⇒ p.73ff

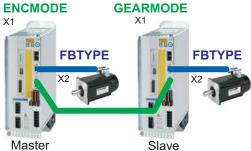
EXTPOS (videata ANELLO DI POSIZIONE), retroazione secondaria, ⇒ p.73ff

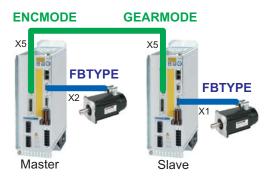
GEARMODE (videata ASSO ELETTRICO), retroazione secondaria, ⇒ p.91 si devono assegnare nel software di messa in funzione. Anche il ridimensionamento e altre regolazioni si devono impostare nello stesso modo.

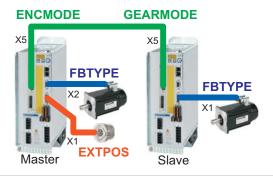
La descrizione dettagliata dei parametri ASCII è riportata nella <u>assistenza online</u>) del software di messa in funzione.

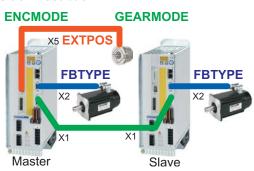
Alcune configurazioni possibili

Motor Feedback


Motor Feedback & External Position Feedback






Motor Feedback & Master Slave

Motor Feedback & Master Slave & External Position Feedback

8.13 Sistema di retroazione primario et secundario

La tabella seguente illustra i tipi di retroazione supportati, i relativi parametri e un riferimento allo schema di collegamento di pertinenza.

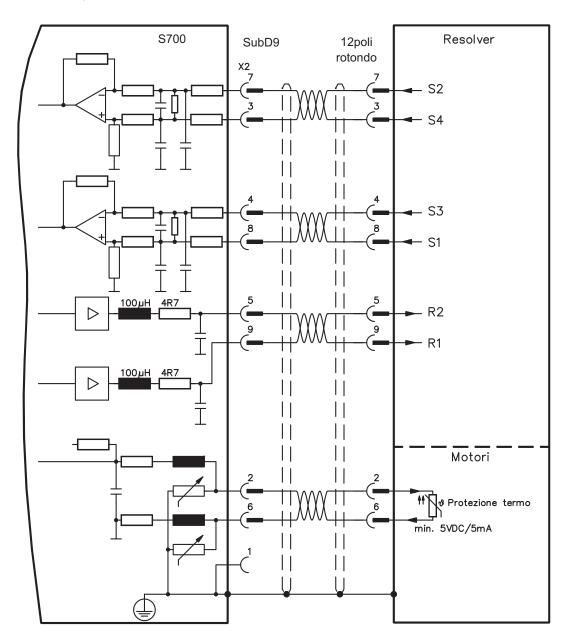
FBTYPE (videata FEEDBACK), retroazione primaria

EXTPOS (videata ANELLO DI POSIZIONE), retroazione secondaria

La descrizione dettagliata dei parametri ASCII è riportata nella assistenza online) del software di messa in funzione.

Sistema di retroazione	Con- nettore	Schema di collegamento	primario FBTYPE	secondario EXTPOS
Resolver	X2	⇒ p.75	0	_
SinCos Encoder BiSS analogo	X1	⇒ p.76	23,24	-
SinCos Encoder BiSS digitale	X1	⇒ p.77	20,22,33	11, 12
SinCos Encoder ENDAT 2.1	X1	⇒ p.78	4, 21	8
SinCos Encoder ENDAT 2.2	X1	⇒ p.79	32	13
SinCos Encoder HIPERFACE	X1	⇒ p.80	2	9
SinCos Encoder SSI (linear)	X1	⇒ p.81	26	-
SinCos Encoder senza traccia dati	X1	⇒ p.82	1, 3, 7, 8	6, 7
SinCos Encoder + Hall	X1	⇒ p.83	5, 6	-
ROD* (AquadB) 5V, 1.5MHz	X1	⇒ S.84	30, 31	30
ROD* (AquadB) 5V, 350kHz	X1	⇒ p.85	17,27	10
ROD* (AquadB) 5V, 350kHz + Hall	X1	⇒ p.86	15	-
ROD* (AquadB) 24V	Х3	⇒ p.87	12, 16	2
ROD* (AquadB) 24V + Hall	X3/X1	⇒ p.88	14	-
SSI	X1	⇒ p.89	25	25
Hall	X1	⇒ p.90	11	-
Direzione / impulsi 24V	Х3	⇒ p.92	-	1
Senza sistema di retroazione	-	-	10	-
avec scheda di espansionse "Pos	I/O" o "F	osl/O-Monitor"	1	
ROD* (AquadB) 5V	X5	⇒ p.141	13, 19	3
ROD* (AquadB) 5V + Hall	X5/X1	⇒ p.142	18	-
SSI	X5	⇒ p.143	9	5
SinCos Encoder SSI (linear)	X5/X1	⇒ p.144	28	'-
Direzione / impulsi 5V	X5	⇒ p.145	-	4

^{*} ROD è la sigla che indica il encoder incrementale


Informazioni La scheda di espansione FB-2to1 (⇔ p. 135) consente il collegamento simultaneo di una retroazione digitale primaria e di una analogica secondaria al connettore X1.

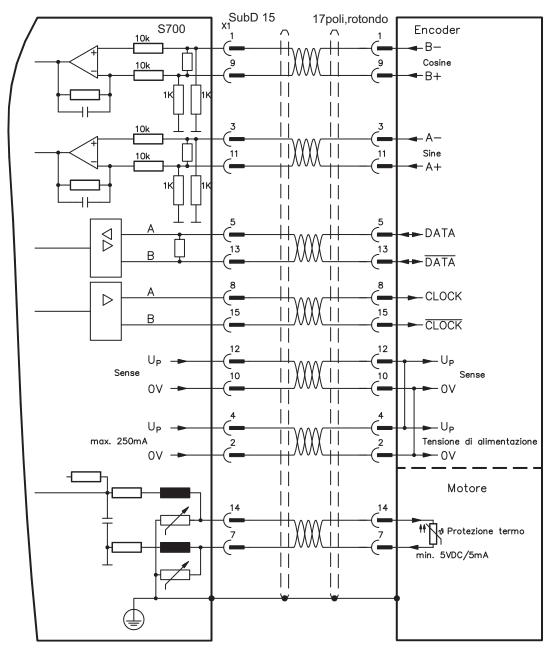
8.13.1 Resolver (X2)

Collegamento di un sistema di retroazione realizzato con resolver (da 2 a 36 poli) (primario feedback , \Rightarrow p.74). La protezione termica nel motore viene collegato mediante il cavo del resolver sul X2 e qui analizzato.

Se si prevedono cavi di lunghezza superiore a 100 m rivolgersi al nostro settore applicazioni.

FBTYPE: 0

La piedinatura indicata sul lato trasduttore si riferisce ai motori Kollmorgen.


8.13.2 Encoder seno con BiSS analogo (X1)

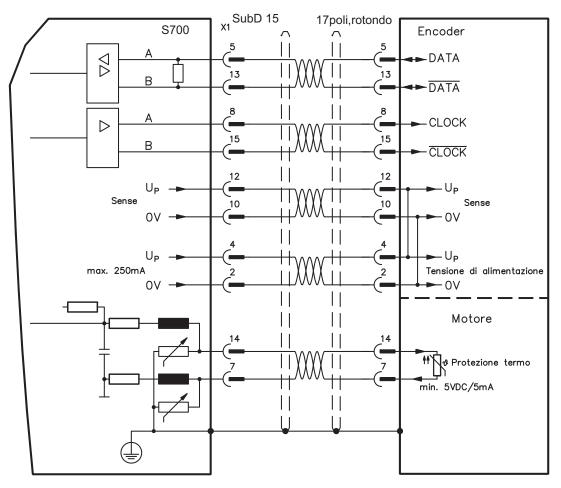
Collegamento di un sistema di retroazione realizzato con encoder sin/cos monogiro o multigiro e interfaccia BiSS (primario o secondario feedback, ⇒ p. 74).

La protezione termica del motore viene collegato al connettore X1 mediante il cavo encoder. Il nostro cavo di collegamento encoder preconfezionato consente di collegare tutti i segnali. Se si prevedono cavi di lunghezza superiore a 50 m rivolgersi al nostro settore applicazioni.

Frequenza limite (sin, cos): 350 kHz

Tipo	FBTYPE	EXTPOS	GEARMODE	Up
5V analog (BiSS B)	23	_	-	5V +/-5%
12V analog (BiSS B)	24	-	-	7,511V

La piedinatura indicata sul lato trasduttore si riferisce ai motori Kollmorgen.

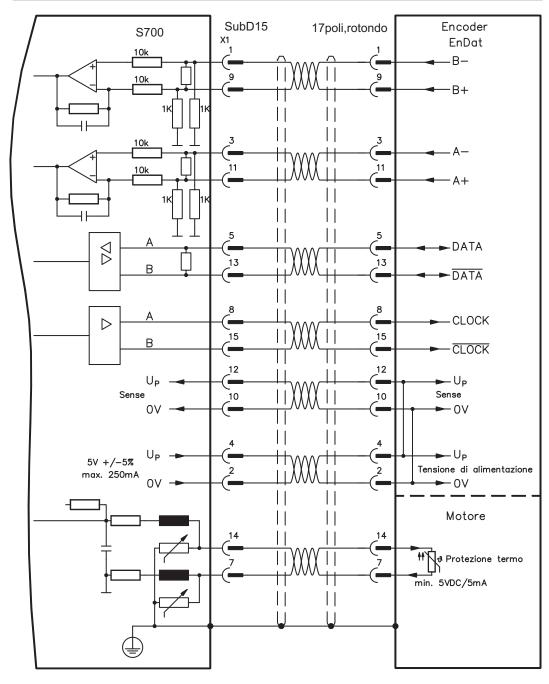

8.13.3 Encoder seno con BiSS digitale (X1)

Collegamento di un sistema di retroazione realizzato con encoder digitale monogiro o multigiro e interfaccia BiSS (primario o secondario feedback, ⇒ p. 74).

La protezione termica del motore viene collegato al connettore X1 mediante il cavo encoder. Il nostro cavo di collegamento encoder preconfezionato consente di collegare tutti i segnali. Se si prevedono cavi di lunghezza superiore a 50 m rivolgersi al nostro settore applicazioni.

Frequenza limite: 1,5 MHz

Tipo	FBTYPE	EXTPOS	GEARMODE	Up
5V digital (BiSS B)	20	11	11	5V +/-5%
12V digital (BiSS B)	22	11	11	7,511V
5V digital (BiSS C)	33	12	12	5V +/-5%

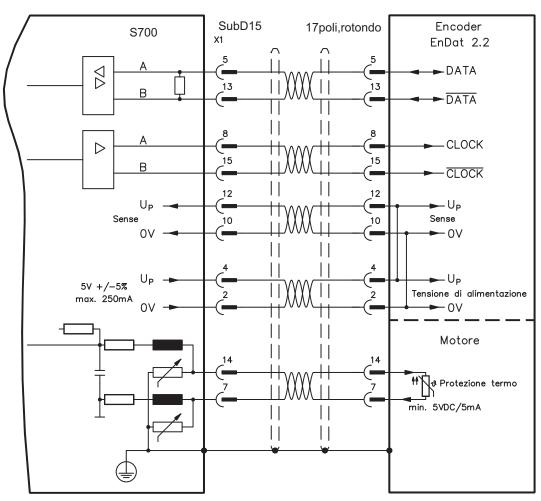


La piedinatura indicata sul lato trasduttore si riferisce ai motori Kollmorgen.

8.13.4 Encoder seno con EnDat 2.1 (X1)

Collegamento di un sistema di retroazione realizzato con encoder sin/cos con il protocollo EnDat 2.1 monogiro o multigiro (primario o secondario feedback, ⇒ p. 74). I tipi preferiti sono i codificatori ottici ECN1313 / EQN1325 o codificatori induttivo ECI 1118/1319 o EQI 1130/1331. La protezione termica del motore viene collegato al connettore X1 mediante il cavo encoder. Il nostro cavo di collegamento encoder preconfezionato consente di collegare tutti i segnali. Se si prevedono cavi di lunghezza superiore a 50 m rivolgersi al nostro settore applicazioni. Frequenza limite (sin, cos): 350 kHz

Tipo	FBTYPE	EXTPOS	GEARMODE
ENDAT 2.1	4	8	8
ENDAT 2.1 + Wake&Shake	21	8	8


La piedinatura indicata sul lato trasduttore si riferisce ai motori Kollmorgen.

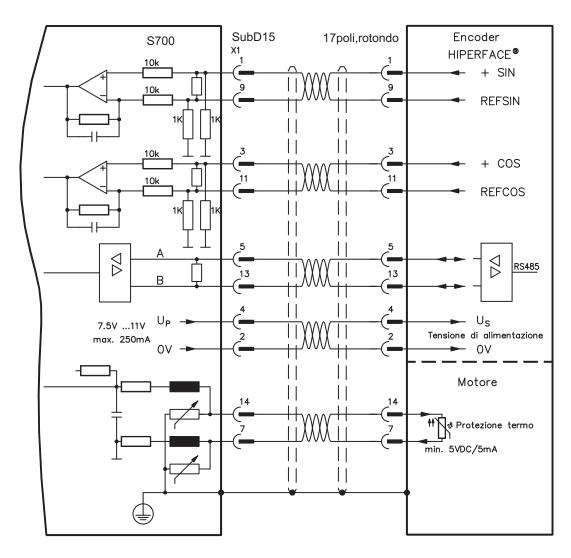
8.13.5 Encoder con EnDat 2.2 (X1)

Collegamento di un sistema di retroazione realizzato con encoder con il protocollo EnDat 2.2 monogiro o multigiro (primario feedback, \Rightarrow p. 74). La protezione termica del motore viene collegato al connettore X1 mediante il cavo encoder. Il nostro cavo di collegamento encoder preconfezionato consente di collegare tutti i segnali. Se si prevedono cavi di lunghezza superiore a 50 m rivolgersi al nostro settore applicazioni.

Frequenza limite: 1,5 MHz

Tipo	FBTYPE	EXTPOS	GEARMODE
ENDAT 2.2	32	13	13

La piedinatura indicata sul lato trasduttore si riferisce ai motori Kollmorgen.


8.13.6 Encoder seno con HIPERFACE (X1)

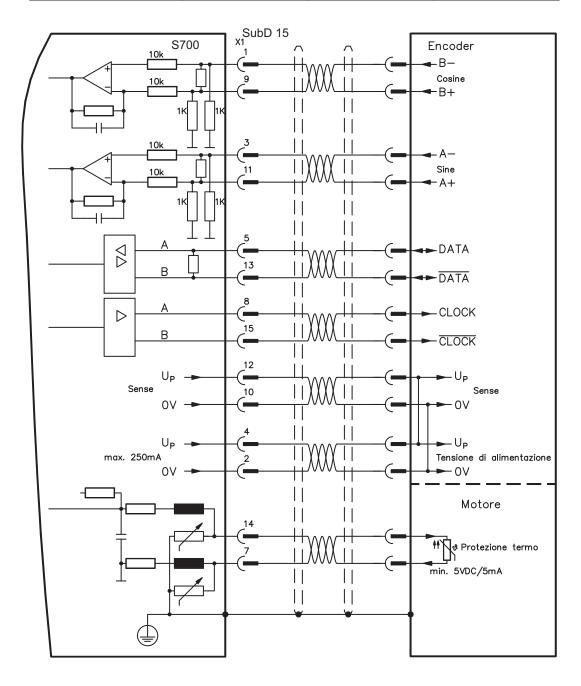
Collegamento di un sistema di retroazione realizzato con encoder sin/cos monogiro o multigiro e protocollo HYPERFACE (primario o secondario feedback , ⇒ p. 74).

La protezione termica del motore viene collegato al connettore X1 mediante il cavo encoder. Il nostro cavo di collegamento encoder preconfezionato consente di collegare tutti i segnali. Se si prevedono cavi di lunghezza superiore a 50 m rivolgersi al nostro settore applicazioni.

Frequenza limite (sin, cos): 350 kHz

Tipo	FBTYPE	EXTPOS	GEARMODE
HIPERFACE	2	9	9

La piedinatura indicata sul lato trasduttore si riferisce ai motori Kollmorgen.


8.13.7 Encoder seno con SSI (X1)

Collegamento di un sistema di retroazione lineari realizzato con encoder sin/cos e protocollo SSI (primario feedback , ⇒ p. 74).

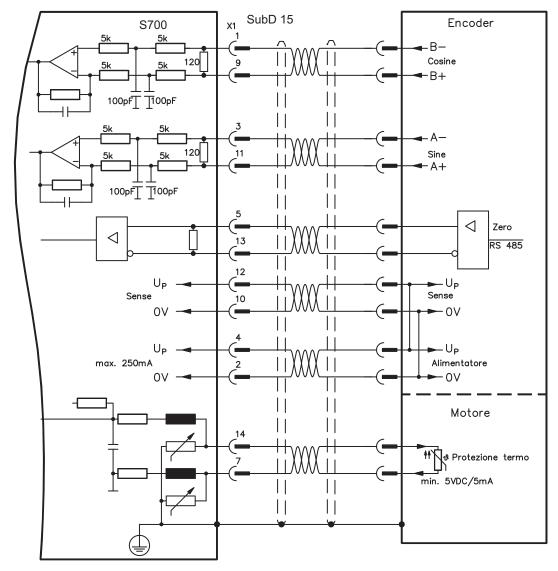
La protezione termica del motore viene collegato al connettore X1 mediante il cavo encoder. Il nostro cavo di collegamento encoder preconfezionato consente di collegare tutti i segnali. Se si prevedono cavi di lunghezza superiore a 50 m rivolgersi al nostro settore applicazioni.

Frequenza limite (sin, cos): 350 kHz

Tipo	FBTYPE	EXTPOS	GEARMODE
SinCos SSI 5V linear	26	-	-

8.13.8 Encoder seno senza traccia dati (X1)

Collegamento di un sistema di retroazione realizzato con un encoder sin/cos senza traccia dati (primario o secondario feedback, ⇒ p. 74). Ad ogni inserzione dell'alimentazione a 24V l'amplificatore richiede le informazioni di partenza per il regolatore di posizione (parametro MPHASE). In base al tipo di retroazione si esegue un Wake&Shake o si rileva il valore di MPHASE dalla EEPROM del servoamplificatore.

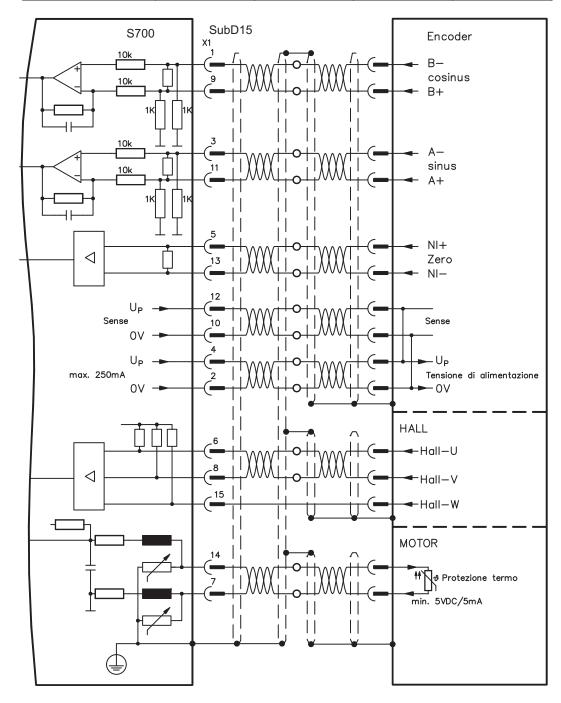

AAVVERTENZA

In caso di asse verticale il carico può cadere liberamente, in quanto la funzione Wake&Shake rilascia il freno e non è possibile erogare una coppia sufficiente a trattenerlo.

Non usare questo sistema di retroazione con carichi sospesi verticali.

La protezione termica del motore viene collegato al connettore X1 mediante il cavo encoder. Se si prevedono cavi di lunghezza superiore a 50m rivolgersi al nostro settore applicazioni. Frequenza limite (sin, cos): 350 kHz

Tipo	FBTYPE	EXTPOS	GEARMODE	Up	Nota
SinCos 5V	1	6	6	5V +/-5%	MPHASE dalla EEPROM
SinCos 12V	3	7	7	7,511V	MPHASE dalla EEPROM
SinCos 5V	7	6	6	5V +/-5%	MPHASE wake & shake
SinCos 12V	8	7	7	7,511V	MPHASE wake & shake

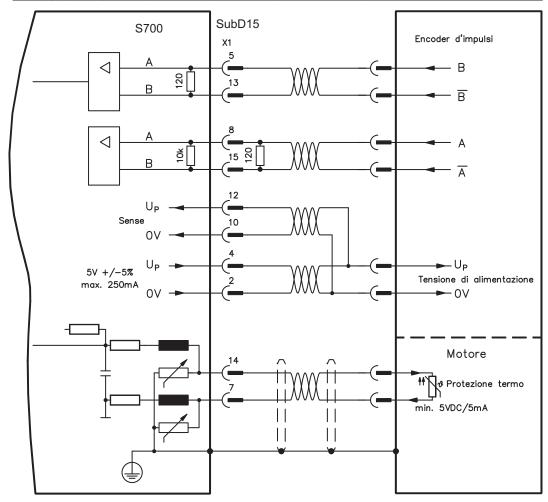

8.13.9 Encoder seno con Hall (X1)

I encoder seno che non forniscono dati di commutazione assoluti si possono analizzare come sistemi di retroazione completi (primario feedback , \Rightarrow p.74) con un sensore di Hall aggiuntivo.

Tutti i segnali sono collegati al connettore X1. Se si prevedono cavi di lunghezza superiore a 25 m rivolgersi al nostro settore applicazioni.

Frequenza limite (sin, cos): 350 kHz

Tipo	FBTYPE	EXTPOS	GEARMODE	Up
SinCos 5V con Hall	5	-	-	5V +/-5%
SinCos 12V con Hall	6	-	-	7,511V

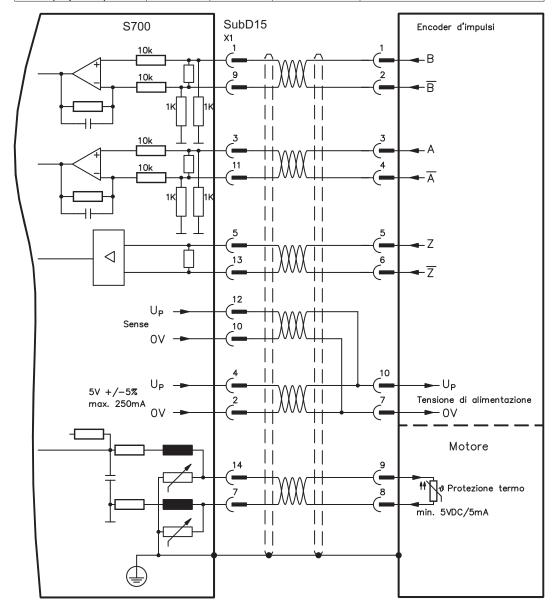

8.13.10 ROD (AquadB) 5V, 1,5MHz (X1)

Come sistema di retroazione è possibile impiegare un trasduttore incrementale da 5V (ROD, AquadB) (primario o secondario feedback, ⇒ p.74). Ad ogni inserzione dell'alimentazione a 24V l'amplificatore richiede le informazioni di partenza per il regolatore di posizione (parametro MPHASE). In base al tipo di retroazione si esegue un Wake&Shake o si rileva il valore di MPHASE dalla EEPROM del servoamplificatore. La protezione termica del motore viene collegato al connettore X1 mediante il cavo encoder. Il nostro cavo di collegamento encoder preconfezionato consente di collegare tutti i segnali. Se si prevedono cavi di lunghezza superiore a 50 m rivolgersi al nostro settore applicazioni.

AAVVERTENZA In caso di asse verticale il carico può cadere liberamente, in quanto la funzione Wake&Shake rilascia il freno e non è possibile erogare una coppia sufficiente a trattenerlo. Non usare questo sistema di retroazione con carichi sospesi verticali.

Frequenza limite (A, B): 1,5MHz

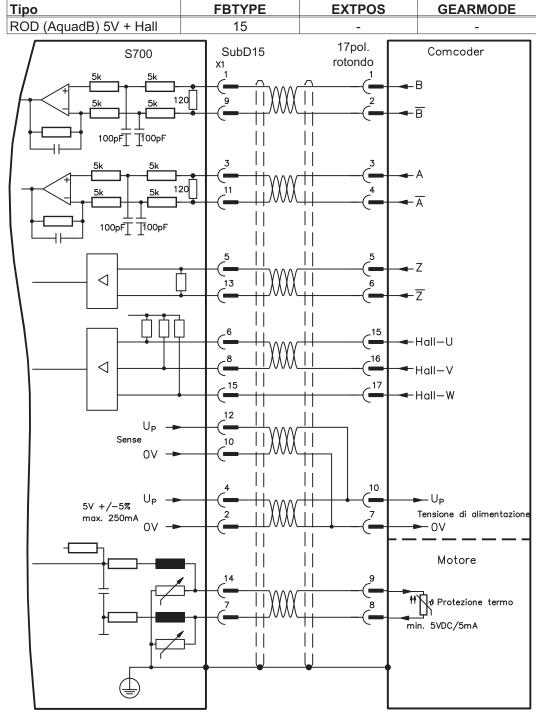
Tipo	FBTYPE	EXTPOS	GEARMODE	Nota
ROD (AquadB) 5V	31	30	30	MPHASE dalla EEPROM
ROD (AquadB) 5V	30	30	30	MPHASE wake & shake


8.13.11 ROD (AquadB) 5V, 350kHz (X1)

Come sistema di retroazione è possibile impiegare un trasduttore incrementale da 5V (ROD, AquadB) (primario o secondario feedback, ⇒ p.74). Ad ogni inserzione dell'alimentazione a 24V l'amplificatore richiede le informazioni di partenza per il regolatore di posizione (parametro MPHASE). Con questo tipo di retroazione pertanto ad ogni inserzione dell'alimentazione a 24V si esegue un Wake&Shake.

AAVVERTENZA In caso di asse verticale il carico può cadere liberamente, in quanto la funzione Wake&Shake rilascia il freno e non è possibile erogare una coppia sufficiente a trattenerlo. Non usare questo sistema di retroazione con carichi sospesi verticali.

> La protezione termica del motore viene collegato all'amplificatore mediante il connettore X1. Se si prevedono cavi di lunghezza superiore a 50m rivolgersi al nostro settore applicazioni. Frequenza limite (A, B): 350 kHz


Tipio	FBTYPE	EXTPOS	GEARMODE	Nota
ROD (AquadB) 5V	27	10	10	MPHASE dalla EEPROM
ROD (AquadB) 5V	17	10	10	MPHASE wake & shake

La piedinatura indicata sul lato trasduttore si riferisce ai motori Kollmorgen.

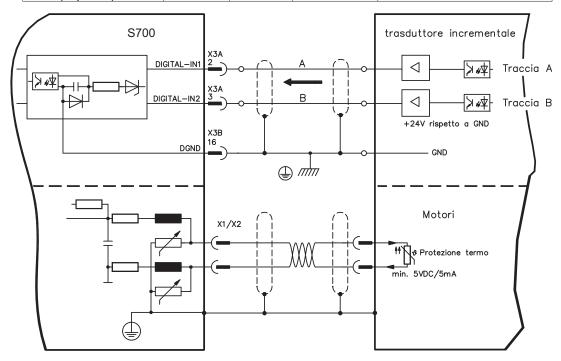
8.13.12 ROD (AquadB) 5V, 350kHz con Hall (X1)

Collegamento di una unità di retroazione realizzata con ComCoder (primario feedback , ⇒ p.74). Per la commutazione si utilizzano sensori di Hall e per la risoluzione un trasduttore incrementale (AquadB) integrato. La protezione termica nel motore viene collegato sul X1 e qui analizzato. Il nostro cavo di collegamento ComCoder preconfezionato consente di collegare tutti i segnali. Se si prevedono cavi di lunghezza superiore a 25 m rivolgersi al nostro settore applicazioni. Nei sistemi di trasduttori separati (trasduttore incrementale separato dal sensore Hall) il cablaggio deve seguire le indicazioni del p.83. I collegamenti sull'amplificatore corrispondono allo schema sottostante. Frequenza limite (A, B): 350 kHz

La piedinatura indicata sul lato trasduttore si riferisce ai motori Kollmorgen.

8.13.13 ROD (AquadB) 24V (X3)

Come sistema di retroazione è possibile impiegare un trasduttore incrementale da 24V (ROD, AquadB) (primario o secondario feedback, ⇒ p. 74). Vengono utilizzati gli ingressi digitali DIGITAL-IN 1 e 2 sul connettore X3. Ad ogni inserzione dell'alimentazione a 24V l'amplificatore richiede le informazioni di partenza per il regolatore di posizione (parametro MPHASE). Con questo tipo di retroazione pertanto ad ogni inserzione dell'alimentazione a 24V si esegue un Wake&Shake.

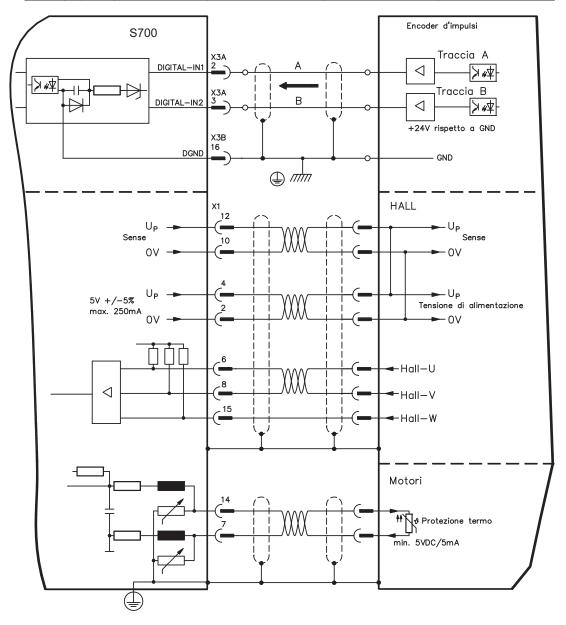

AAVVERTENZA

In caso di asse verticale il carico può cadere liberamente, in quanto la funzione Wake&Shake rilascia il freno e non è possibile erogare una coppia sufficiente a trattenerlo. Non usare questo sistema di retroazione con carichi sospesi verticali.

La protezione termica del motore viene collegato all'amplificatore mediante il connettore X1 o X2. Se si prevedono cavi di lunghezza superiore a 25 m rivolgersi al nostro settore applicazioni.

Frequenza limite: 100 kHz, transconduttanza tv $\leq 0.1 \mu s$

Tipo	FBTYPE	EXTPOS	GEARMODE	Nota
ROD (AquadB) 24V	12	2	2	MPHASE dalla EEPROM
ROD (AquadB) 24V	16	2	2	MPHASE wake & shake


8.13.14 ROD (AquadB) 24V con Hall (X3/X1)

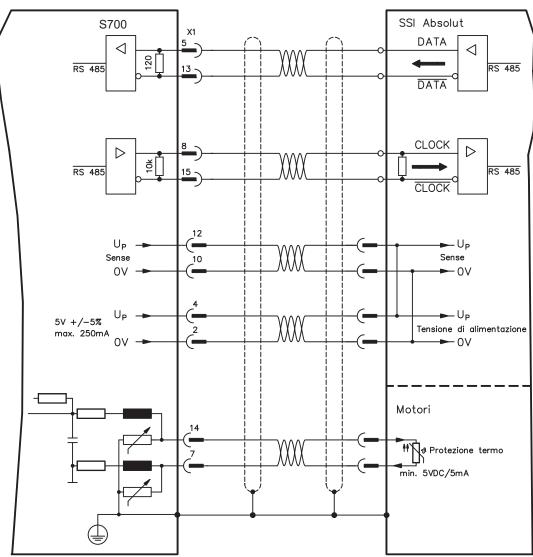
Collegamento di una unità di retroazione realizzata con un trasduttore incrementale da 24V (ROD, AquadB) e un sensore Hall (primario feedback, \Rightarrow p.74). Per la commutazione si utilizza il sensore di Hall e per la risoluzione il trasduttore incrementale.

La protezione termica del motore viene collegato all'amplificatore mediante il connettore X1. Se si prevedono cavi di lunghezza superiore a 25 m rivolgersi al nostro settore applicazioni.

Frequenza limite X3: 100 kHz, X1: 350 kHz

Tipo	FBTYPE	EXTPOS	GEARMODE
ROD (AquadB) 24V + Hall	14	-	-

8.13.15 Encoder SSI (X1)

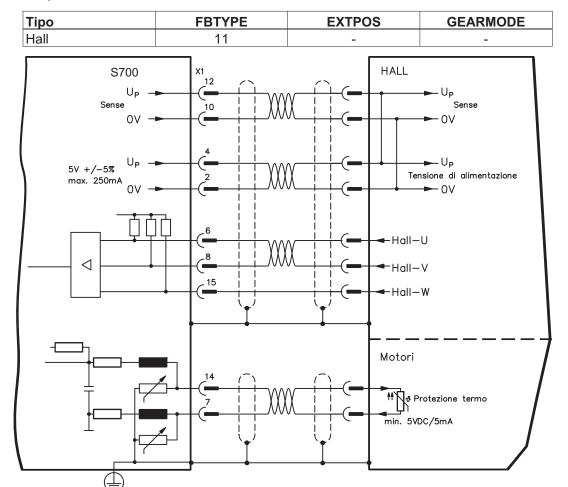

Collegamento di una unità di retroazione realizzata con un trasduttore assoluto sincrono seriale (primario o secondario feedback , ⇒ p. 74). È possibile leggere dati in formato binario o Gray.

La protezione termica del motore viene collegato all'amplificatore mediante il connettore X1. Se si prevedono cavi di lunghezza superiore a 50 m rivolgersi al nostro settore applicazioni.

Frequenza limite: 1,5MHz Risoluzione/girata: max. 16 Bit

Girate: max. 16 Bit

Tipo	FBTYPE	EXTPOS	GEARMODE
SSI	25	25	25



8.13.16 **Encoder Hall (X1)**

Collegamento di una unità di retroazione realizzata con un sensore Hall (primario feedback, \Rightarrow p. 74).

La protezione termica del motore viene collegato all'amplificatore mediante il connettore X1. Se si prevedono cavi di lunghezza superiore a 25 m rivolgersi al nostro settore applicazioni.

Frequenza limite: 350 kHz

8.14 Trasmissione elettronico e master-slave

Con la funzione "Trasmissione elettronica" (vedere il software di messa in funzione e la descrizione del parametro GEARMODE) il servoamplificatore viene comandato da una retroazione secondaria in qualità di "follower".

È possibile realizzare sistemi master-slave, usare un encoder esterno come trasduttore di valori nominali oppure collegare l'amplificatore all'unità di controllo di un motore passo-passo.

I parametri del servoamplificatore vengono impostati con il software di messa in funzione (trasmissione elettronico). La risoluzione (numero impulsi/rotazione) è regolabile.

Informazioni

Se si utilizza l'ingresso X1 senza alimentatore di tensione X1 (pin 2, 4, 10, 12), (per esempio nel funzionamento master-slave con altri servoamplificatori), è necessario disattivare il controllo dell'alimentatore di tensione per evitare che si visualizzi il messaggio di errore F04. Per far questo è necessario modificare il bit 20 del parametro DRVCNFG2 (si veda il riferimento oggetto ASCII nella guida on-line).

8.14.1 Fonti del segnale

Si possono usare i trasduttori esterni indicati di seguito:

Tipo di retroazione secondaria	Frequenza limite	Con- nettore	Schema di collegamento	GEARMODE
SinCos Encoder BISS digital	1,5MHz	X1	⇒ p.77	11, 12
SinCos Encoder ENDAT 2.1	350kHz	X1	⇒ p.78	8
SinCos Encoder ENDAT 2.2	1,5MHz	X1	⇒ p.79	13
SinCos Encoder HIPERFACE	350kHz	X1	⇒ p.80	9
SinCos Encoder senza traccia dati	350kHz	X1	⇒ p.82	6, 7
ROD* (AquadB) 5V	1,5MHz	X1	⇒ p.84	30
ROD* (AquadB) 5V	350kHz	X1	⇒ p.85	10
ROD* (AquadB) 24V	100kHz	X3	⇒ p.87	2
SSI 5V	1,5MHz	X1	⇒ p.89	25
Direzione/Impulsi 5V	1,5MHz	X1	⇒ p.92	27
Direzione/Impulsi 24V	100kHz	Х3	⇒ p.92	1

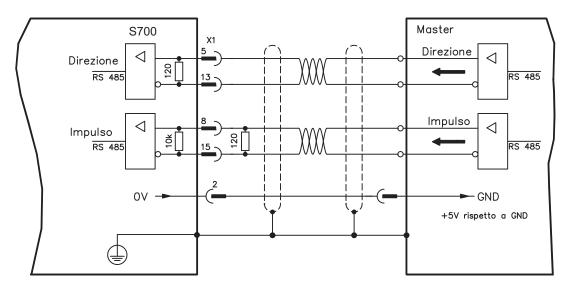
La scheda di espansione "Posl/O" o "Posl/O-Monitor" nello slot 2 o 3 consente inoltre di usare i trasduttori veloci indicati di seguito:

Tipo di retroazione secondaria	Frequenza limite	Connet- tore	Schema di collega- mento	GEARMODE
SSI 5V	1,5MHz	X5	⇒ p.143	5
ROD* (AquadB) 5V	1,5MHz	X5	⇒ p.145	3
Direzione/Impulsi 5V	1,5MHz	X5	⇒ p.145	4

^{*} ROD è la sigla che indica il encoder incrementale

8.14.2 Collegamento al comandi motore passo-passo (direzione impulsi)

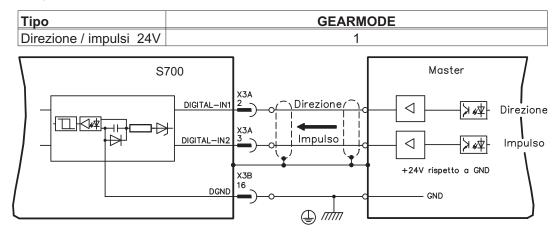
È possibile collegare il servoamplificatore all'unità di controllo di un motore passo-passo (qualsiasi marca).


I parametri del servoamplificatore vengono impostati con il software di messa in funzione (trasmissione elettrica). Il numero di passi è regolabile, in modo da poter adattare il servoamplificatore ai segnali di direzione/impulso di qualsiasi comando per motori passo-passo. È anche possibile emettere vari messaggi.

Informazioni L'uso di un trasduttore ROD (encoder incrementale) consente una maggiore immunità elettromagnetica.

8.14.2.1 Direzione / impulsi di 5V (X1)

Collegamento dei comando di un motore passo-passo con un livello del segnale di 5V. A questo scopo viene utilizzato il connettore X1 SubD. Frequenza limite: 1,5 MHz

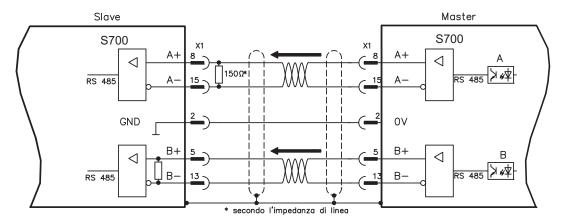

Tipo	GEARMODE
Direzione / impulsi 5V	27

8.14.2.2 Direzione / impulsi di 24V (X3)

Collegamento dei comando di un motore passo-passo con un livello del segnale di 24V. A questo scopo vengono utilizzati gli ingressi digitali DIGITAL-IN 1 e 2 sul connettore X3.

Frequenza limite: 100 kHz

8.14.3 Master-slave


8.14.3.1 Collegamento al master di S700, livello di 5V (X1)

È possibile collegare due amplificatori S700. In questo modo il master comanda un amplificatore slave mediante l'uscita dell'encoder X1 (=> p.90).

Regolazione master: uscita di posizione su X1 sulla videata "Emulazione Encoder". Regolazione slave: sulla videata "Asso Elettrico" (GEARMODE)

Frequenza limite: 1,5 MHz

Esempio di sistemi master-slave con due amplificatori S700 (emulazione AquadB, ROD): Slave **GEARMODE: 30**Master **ENCMODE: 9**

Se l'emulazione di SSI è usata, il master ENCMODE deve essere regolato a 10 ed allo slave GEARMODE a 25.

8.14.3.2 Collegamento al master di S700, livello di 5V (X5)

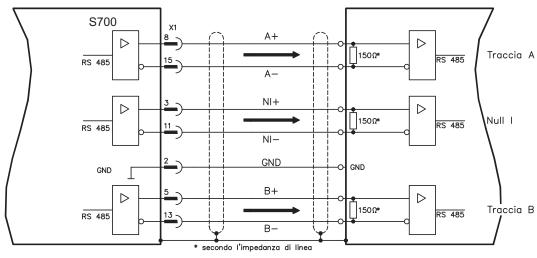
Se una scheda di espansione Pos I/O o una Pos I/O monitor (vedi p. 140 ff) viene utilizzata, la emulazione encoder sarà disponibile su X5.

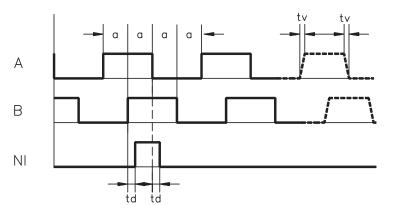
Utilizzando questa interfaccia **un massimo di 16 unità slave** possono essere connesse ad una unità master. Collegamenti a p. 145.

8.15 Emulazione del codificatore, uscita di posizione

8.15.1 Interfaccia ROD (AquadB) (X1)

L'interfaccia del trasduttore incrementale è compresa nella dotazione. Scegliere la funzione dell'encoder ROD (videata "Encoder"). La posizione dell'albero motore viene calcolata nel servoamplificatore sulla base dei segnali ciclici assoluti del resolver o dell' encoder. In funzione di queste informazioni vengono generati impulsi compatibili con il trasduttore incrementale. Sul connettore X1 SubD gli impulsi vengono emessi sotto forma di due segnali A e B sfasati elettricamente di 90° e in un impulso di zero. La risoluzione (prima della moltiplicazione) può essere impostata:


Funzione dell'encoder (ENCMODE)	Sistema di retroazione (FBTYPE)	Risoluzione (ENCOUT)	Impulso zero			
	0, Resolver	324096				
9, ROD => X1	>0, Encoder	256524288 (2 ⁸ 2 ¹⁹)	una volta per giro (solo a A=B=1)			


Informazioni Se una carta di sicurezza è built-in, solo le risoluzioni binarie fino a 2¹² sono possibili.

> È possibile impostare e memorizzare la posizione dell'impulso di zero in un giro meccanico (parametro ENCZERO). Il circuito d'uscita è alimentato internamente.

Informazioni La lunghezza di cavo al massimo ammissibile è di 100 m.

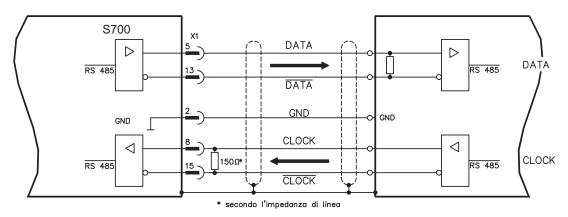
Descrizione del collegamento e dei segnali dell'interfaccia del trasduttore incrementale La direzione di numerazione è impostata in modo ascendente rispetto all'asse motore con rotazione destrorsa.

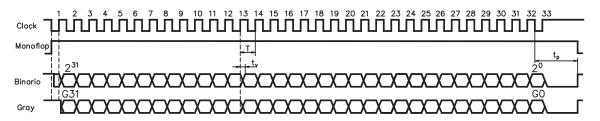
Distanza fra i fronti a ≥ 0,20µs Pendenza tv \leq 0,1 μ s Ritardo N-I-td \leq 0,1 μ s $|\Delta U| \ge 2V/20mA$

8.15.2 Interfaccia SSI (X1)

L'interfaccia SSI (emulazione dell'encoder assoluto seriale sincrono) fa parte della dotazione fornita. Selezionare la funzione dell'encoder SSI (schermata "Encoder", ENCMODE 10). Il servoamplificatore calcola la posizione dell'albero del motore sulla base di segnali assoluti ciclici del resolver o dell'encoder. Da queste informazioni viene fornita una data SSI (secondo la specifica di brevetto Stegmann DE 3445617C2). Vengono trasmessi al massimo 32 bit. Il bit di dati guida contiene il numero di giri ed è selezionabile da 12 a 16 bit. I successivi 16 bit max. contengono la risoluzione e non sono variabili.

La tabella seguente indica l'assegnazione della data SSI a seconda del numero di giri selezionato:


	Giro														F	Ris	olu	ızi	one) (/ar	iak	oile))								
	S	SIF	RΕ	VΟ	L																											
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0																
Ħ		14	13	12	11	10	9	8	7	6	5	4	3	2	1	0																
m			13	12	11	10	9	8	7	6	5	4	3	2	1	0	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
				12	11	10	9	8	7	6	5	4	3	2	1	0																
					11	10	9	8	7	6	5	4	3	2	1	0																


La sequenza di segnali può essere emessa nel codice **Gray** o **binario** (standard) (parametro SSI-CODE). Il servoamplificatore può essere regolato alla frequenza di clock della propria valutazione SSI attraverso il parametro SSI-TIMEOUT (1,3 µs o 10 µs).

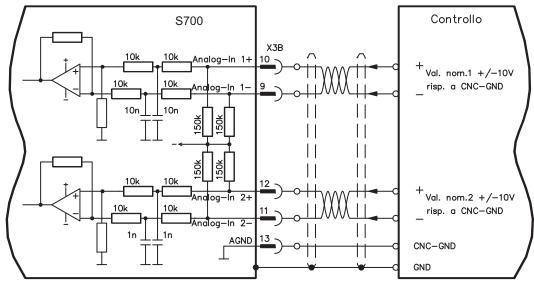
Il circuito d'uscita è alimentato internamente.

Collegamento e segnali per l'interfaccia SSI:

la direzione di conteggio per l'interfaccia SSI è UP quando l'albero del motore ruota in senso orario (guardando verso l'estremità dell'albero del motore).

Tempo di commutazione dati $t_v \le 300 ns$ Durata minima periodo T = 600 ns Time Out $t_p = 1.3 \mu s/10 \mu s$ (SSITOUT)

Uscita I∆UI ≥ 2V/20mA Ingresso I∆UI ≥ 0.3V


8.16 Ingressi/Uscite digitali e analogici

8.16.1 Ingressi analogici (X3B)

Per i valori nominali analogici il servoamplificatore dispone di due ingressi differenziali **programmabili**. Come riferimento di potenziale occorre collegare sempre AGND (X3B/13) con CNC-GND dell'unità di controllo.

Caratteristiche tecniche

- Tensione d'ingresso differenziale di max. ± 10 V
- Massa di riferimento: AGND, morsetto X3B/13
- Resistenza d'ingresso di 150 kΩ
- Intervallo tensione sincrona per entrambi gli ingressi di ulteriori ± 10 V
- Velocità di scansione 62,5 μs

Ingresso Analog-In 1 (morsetti X3B/10-9)

Tensioni d'ingresso differenziali di max. ± 10 V, risoluzione di 16 Bit (precisione 13 Bit), scalabili. Impostazione standard: valore nominale velocità

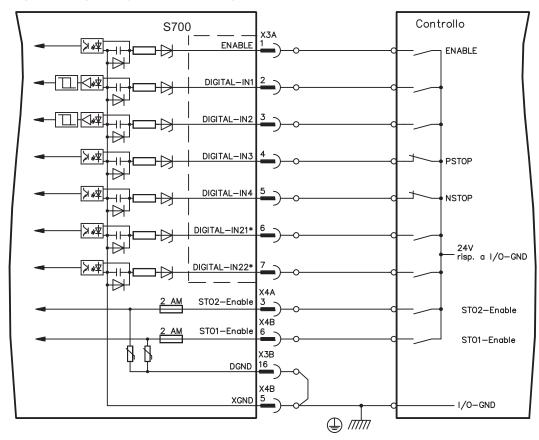
Eingang Analog-In 2 (Klemmen X3B/12-11)

Tensioni d'ingresso differenziali di max. \pm 10 V, risoluzione di 16 Bit (precisione 13 Bit), scalabili. Impostazione standard: valore nominale coppia

Esempi applicativi per ingresso valore nominale Analog-In 2:

- limitazione della corrente esterna regolabile
- ingresso attenuato per modo di messa a punto / passo-passo
- Pilotaggio / oltrecorsa

Quando ad un ingresso viene assegnata una funzione preprogrammata, il record di dati deve essere memorizzato nella Eeprom del servoamplificatore e l'alimentazione della tensione ausiliaria a 24V del servoamplificatore deve essere disinserita e reinserita (reset del software dell'amplificatore).


Assegnazione direzione di rotazione

Impostazione standard: rotazione destrorsa dell'albero motore (vista dell'albero)

- Tensione positiva su morsetto X3B/10 (+) presa morsetto X3B/9 () oppure
- Tensione positiva su morsetto X3B/12 (+) presa morsetto X3B/11 ()

Per invertire il senso di rotazione è possibile scambiare l'assegnazione dei morsetti X3B/10-9 o X3B/12-11 o modificare il parametro SENSO DI ROTAZIONE sulla videata "Velocità" (0/1).

8.16.2 Ingressi digitali (X3A, X3B, X4B)

^{*} DIGITAL-IN21/22 si devono definire come ingressi con il software di messa in funzione (videata "I/O digitali")

8.16.2.1 Connettore X4A, X4B

In questo modo, si ottiene un blocco contro il riavvio per la sicurezza del personale utilizzando l'ingressi STO1-Enable et STO2-Enable insieme ad un circuito di sicurezza esterno.

Ingresso STO1-ENABLE (X4B/6) e STO2-Enable (X4A/3)

- A potenziale zero, massa di riferimento XGND
- 20V...30V / 33mA...40mA

Informazioni

Questo ingresso non è compatibile con EN 61131-2.

Questi ingressi digitali supplementari inibisce lo stadio d'uscita di potenza dell'amplificatore fino a quando il segnale da 24V viene applicato a questo ingresso. Se l'ingressi STO va in circuito aperto, il motore non viene più alimentato, l'azionamento perde tutta la coppia e si arresta.

MATTENZIONE Una funzione di arresto fail-safe per l'azionamento, se richiesta, deve essere assicurata attraverso un freno meccanico, poiché la frenatura elettrica con l'aiuto dell'azionamento non è più possibile.

Per ulteriori informazioni e per esempi di collegamento consultare pag. 41 e ss.

8.16.2.2 Connettore X3A, X3B

Ingresso ENABLE

- PLC compatibile (EN 61131-2 Typ 1), potenziale zero, massa di riferimento DGND
- High: 15...30 V / 2...15 mA, Low: -3...5 V / <1mA
- Velocità di scansione Software:250 µs

È possibile abilitare lo stadio finale del servoamplificatore con il segnale di abilitazione (morsetto X3A/1, attivo alto). Abilitazione possibile solo se l'ingressi ha un segnale STOx-Enable 24V (vedi pag. 41 e ss). Nello stato bloccato (segnale)basso il motore collegato è privo di coppia.

Inoltre con il software di messa in funzione occorre configurare un'abilitazione software (collegamento AND) che possa comunque anche rimanere sempre attiva (videata "impostazioni di base" del software di messa in funzione DRIVEGUI.EXE).

Ingressi digitali programmabili a piacere: X3:

È possibile utilizzare gli ingressi digitali X3A/2...7 per attivare funzioni memorizzate preprogrammate nel servoamplificatore. Un elenco delle funzioni preprogrammate è disponibile nella videata "I/O digitali" del nostro software di messa in funzione.

Quando ad un ingresso viene assegnata una funzione preprogrammata, il record di dati deve essere memorizzato nella Eeprom del servoamplificatore e l'alimentazione della tensione ausiliaria a 24V del servoamplificatore deve essere disinserita e reinserita (reset del software dell'amplificatore).

Ingressi digitali DIGITAL-IN 1...2 (X3A/2,3):

Questi ingressi sono particolarmente rapidi e quindi adatti ad esempio a funzioni latch o segnali di retroazione veloci.

- PLC compatibile (EN 61131-2 Typ 1), potenziale zero, massa di riferimento DGND
- High: 15...30 V / 2...15 mA, Low: -3...5 V / <1mA
- Velocità di scansione: Hardware 2µs

Ingressi digitali DIGITAL-IN 3...4 (X3A/4,5):

Inoltre questi ingressi si possono configurare per le funzioni di analisi dei finecorsa PSTOP e NSTOP. Selezionare la funzione desiderata nel software di messa in funzione (videata "I/O digitali").

- PLC compatibile (EN 61131-2 Typ 1), potenziale zero, massa di riferimento DGND
- High: 15...30 V / 2...15 mA, Low: -3...5 V / < 1mA
- Velocità di scansione: Software 250 µs

Ingressi digitali DIGITAL-IN 21...22 (X3A/6,7):

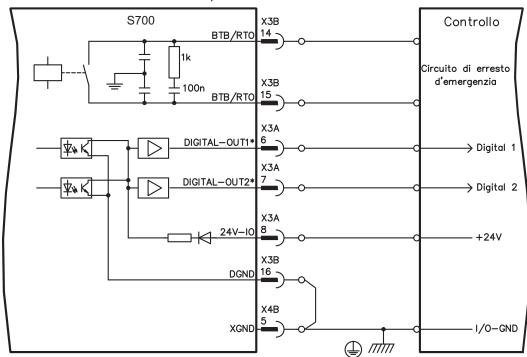
I pin 6 e 7 di X3A si possono usare a scelta come ingresso o uscita. Selezionare la funzione desiderata nel software di messa in funzione (videata "I/O digitali").

- PLC compatibile (EN 61131-2 Typ 1), potenziale zero, massa di riferimento DGND
- High: 15...30 V / 2...15 mA, Low: -3...5 V / <1mA
- Velocità di scansione: Software 250 µs

Informazioni A seconda della funzione selezionata si attivano gli ingressi High o Low.

8.16.3 Uscite digitali (X3A, X3B)

Caratteristiche tecniche


Tensione a morsetti X3A/8 (24V-IO) e X3B/16 (DGND)

Tutte le uscite digitali sono a potenziale zero24V-IO : 20V DC...30V DC

DIGITAL-OUT1 / 2 : PLC compatibile (EN 61131-2 Typ 1), max. 100mA

BTB/RTO : Uscita relè, max. 30V DC o 42V AC, 0,5A

Velocità di scansione : 250 µs

^{*} DIGITAL-OUT1/2 si devono definire come uscite con il software di messa in funzione.

Contatto di pronto per l'uso BTB/RTO (X3B/14,15)

La disponibilità per l'uso (morsetto X3B/14 e X3B/15) viene segnalata da un contatto a relè pulito. Il contatto è **chiuso** a servoamplificatore operativo, il contatto **non** viene influenzato dal segnale enable, dalla limitazione l²t e dalla soglia della resistenza di frenatura.

Informazioni

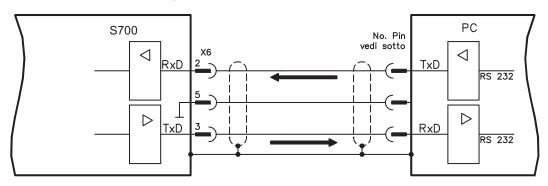
Tutti gli errori comportano una caduta del contatto BTB e la disinserzione dello stadio finale (con contatto BTB aperto lo stadio finale è bloccato -> potenza nulla). Per l'elenco dei messaggi d'errore si rimanda a pagina 120.

Uscite digitali programmabili DIGITAL-OUT 1 / 2 (X3A/6,7):

I pin 6 e 7 di X3A si possono usare a scelta come ingresso o uscita. Selezionare la funzione desiderata nel software di messa in funzione. Le uscite sono a potenziale zero, la tensione di collegamento a 24V si deve derivare dall'esterno.

Se programmati come uscite, si possono usare per messaggi riguardanti le funzioni programmate memorizzate nel servoamplificatore.

Un elenco delle funzioni preprogrammate è disponibile nella videata "I/O digitali" del nostro software di messa in funzione.

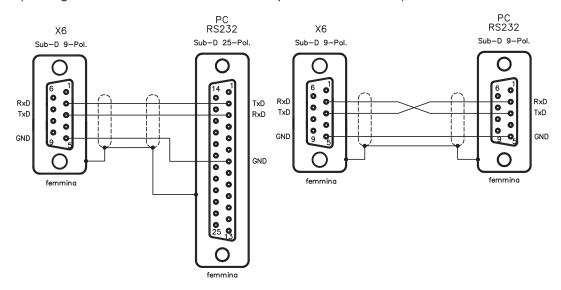

Se un'uscita deve essere assegnata ad una funzione preprogrammata, il set di dati deve essere salvato nella EEPROM del servoamplificatore e deve essere eseguito un avvio a freddo (reset software dell'amplificatore).

8.17 Interfaccia RS232, collegamento per PC (X6)

L'impostazione dei parametri d'esercizio, di regolazione della posizione e dei record di movimento può avere luogo con il software di messa in funzione su un normale personal computer.

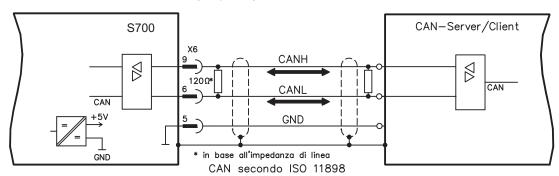
Con tensioni di alimentazione disinserite collegare l'interfaccia PC (X6) del servoamplificatore con un'interfaccia seriale del PC (pag 83.

Informazioni Non un cavo null modem power link.


L'interfaccia è isolata galvanicamente mediante optoaccoppiatori ed ha lo stesso potenziale dell'interfaccia CANopen.

L'interfaccia viene selezionata e impostata nel software di messa in funzione. Per ulteriori indicazioni, si rimanda alla pagina 106.

Con la modulo di espansione opzionale -2CAN-, entrambe le interfacce RS232 e CAN, che occupano lo stesso connettore X6, vengono distribuite su due connettori. (⇒ p.137).


Cavo di trasmissione tra PC e servoamplificatore della serie S700:

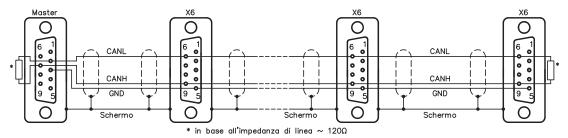
(Vista: guardando verso il lato saldato delle prese SubD sul cavo)

8.18 Interfaccia CANopen (X6)

Interfaccia per il collegamento al CAN Bus (valore predefinito: 500 kBaud). Il profilo integrato si basa sul profilo di comunicazione CANopen DS301 e sul profilo di trasmissione DS402. In base al regolatore di posizione, tra le altre sono disponibili le funzioni seguenti: passo-passo con velocità variabile, corse al punto di riferimento, avvio di un task di traslazione, avvio di un task di traslazione diretto, predefinizione dei valori nominali digitali, funzioni di trasmissione dati e molto altro. Per informazioni dettagliate si rimanda al manuale CANopen. L'interfaccia è isolata galvanicamente mediante optoaccoppiatori ed ha lo stesso potenziale dell'interfaccia RS232. Gli ingressi analogici dei valori nominali possono essere comunque utilizzati. Con la modulo di espansione opzionale -2CAN-, entrambe le interfacce RS232 e CAN, che occupano lo stesso connettore X6, vengono distribuite su due connettori. (⇒ p.137).

Cavo bus CAN

Ai sensi della norma ISO 11898 occorre utilizzare un cavo bus con un'impedenza caratteristica di 120 Ω . La lunghezza del cavo utilizzabile per garantire una comunicazione sicura diminuisce con l'aumento della velocità di trasmissione. Come indicazione è possibile utilizzare i seguenti valori, da noi misurati, che tuttavia non sono da considerarsi come valori limite:


resistenza conduttori (loop) 159,8 Ω /km

Lunghezza del cavo a seconda delle velocità di trasmissione (esempio)

Velocità di trasmissione (kBaud)	Lunghezza max. del cavo (m)
1000	10
500	70
250	115

Con capacità d'esercizio (max. 30 nF/km) e resistenza dei conduttori ridotte (loop, 115 Ω /km) è possibile raggiungere distanze di trasmissione maggiori. (impedenza caratteristica 150 ± 5 Ω \Rightarrow resistenza terminale 150 ± 5 Ω). Per ragioni di compatibilità elettromagnetica il corpo connettore SubD deve rispondere ai seguenti requisiti:

- corpo metallico o rivestito in metallo
- possibilità di collegamento per la schermatura nel corpo, collegamento su ampia superficie

S701x2-S724x2 Manuale di istruzioni

8.19 Interfaccia EtherNET (X7)

Mediante i due connettori RJ45 questa interfaccia costituisce un sistema hardware compatibile TCP/IP con trasmissione dati (protocollo) configurabile. A seconda del firmware installato il servoamplificatore può comunicare con le reti indicate di seguito.


- EtherCAT (standard, Can over EtherCAT)
- SYNQNET (in preparazione)
- PROFINET (in preparazione)
- EtherNET IP (in preparazione)
- SERCOS III (in preparazione)
- EtherNET TCP/IP (in preparazione)

Informazioni L'interfaccia è disattivata, se una scheda di espansione del bus del campo è inserita ad una slot di espansione.

> Il protocollo installato con il firmware deve essere abilitato (comando ASCII ETHMODE).

Setup normale: se un collegamento di EtherCAT è rilevato mentre caric il sistemaare il servo amplificatore, quindi EtherCAT è attivato, altrimenti CANopen (vedi il pag. 101) è attivato.

Le diverse versioni del firmware si possono scaricare nel servoamplificatore con l'apposito tool (sul CD-ROM del prodotto e nell'area download del nostro sito).

I LED integrati nel connettore segnalano lo stato della comunicazione.

Connettore	LED#	Nome	Funzione				
	LED4	LINK IN	Acceso = ricezione valida (porta IN)				
	LED1	LINK_IIN	Spento = non valida, mancanza tensione o reset.				
X7A			Acceso = rete ciclica				
	LED2	CYCLIC	Intermittente = rete non ciclica				
			Spento = mancanza tensione o reset				
	LED3	LINK OUT	Acceso = ricezione valida (porta OUT)				
	LED3	LINK_OUT	Spento = non valida, mancanza tensione o reset.				
X7B			Acceso = ripetitore acceso, rete ciclica				
A/D	LED4	REPEATER	Intermittente = ripetitore acceso, rete aciclica				
	LED4	NEFEATER	Spento = ripetitore spento, mancanza tensione o re-				
			set				

8.20 Scheda di memoria

Nella parte superiore del servoamplificatore si trova un lettore per schede di memoria. Su queste schede è possibile memorizzare il firmware e un set di parametri completo (con i tasti di comando o il software di messa in funzione) da ricaricare sul servoamplificatore. Le carte MMC e SD sono sostenuti.

Questa funzione permette di mettere in funzione un apparecchio di ricambio o assi identici di macchine prodotte in serie in modo estremamente rapido e semplice.

I Uploads e Downloads da ed alla scheda di memoria possono essere iniziati con la tastiera o il software di setup. Il trattamento con gli ordini di ASCII è descritto nel Prodotto-WIKI alla pagina "Memory Card".

La funzionalità è sostenuta dalla revisione hardware 2.10.

Informazioni

Inserire e togliere la scheda di memoria solo quando l' S700 è spento. Se si impiega un trasduttore assoluto, dopo aver caricato i parametri in un apparecchio nuovo occorre eseguire una corsa al punto di riferimento.

Per installare una nuova versione del firmware su un amplificatore senza connessione a un PC procedere come segue:

- 1. Salvare il firmware da programmare sulla scheda di memoria assegnandogli il nome "default.s19" (formato S Record) oppure "default.bin" (formato binario).
- 2. Isolare l'amplificatore (disattivare l'alimentazione a 24 V) e inserire la scheda di memoria nell'apposito slot.
- 3. Tenere premuti i due tasti di comando () e riattivare la tensione di alimentazione a 24 V dell'amplificatore. Sul display viene visualizzato "—" per segnalare che il programma monitor è stato attivato. Nel caso dei problemi di accesso l'esposizione dell'azionamento mostra le lettere "CCC". L'ordine interrotto continua dopo il reinserimento della scheda di memoria.
- 4. Per avviare la procedura di aggiornamento premere ancora i due tasti di comando. L'avanzamento della procedura viene visualizzato sul display:
- Inizialmente il firmware viene copiato dalla scheda alla memoria interna.
- Durante questa fase il display visualizza un conteggio da 0 a 100.
- Successivamente viene cancellata la memoria firmware interna. Durante questa fase il display visualizza il numero 100.
- A cancellazione avvenuta, ha inizio la scrittura del firmware. Durante questa fase sul display viene visualizzato un conto alla rovescia da 100 a 0.
- 5. Completata la programmazione, il sistema si avvia automaticamente.

Durante il riavvio il file dei parametri viene caricato automaticamente. Se sulla scheda di memoria è presente un file di parametri denominato "default.par", a questo punto della procedura il firmware procede a caricarlo. Questo permette di aggiornare in modo completamente automatico il firmware e i parametri.

Pagina lasciata intenzionalmente in bianco.

Messa in funzione 9

A titolo di esempio descriviamo la procedura da seguire per la messa in funzione. A seconda del tipo di apparecchi impiegati può risultare opportuna una procedura diversa. In caso di sistemi multiasse mettere in funzione ogni servoamplificatore singolarmente.

9.1 Indicazioni di sicurezza

APERICOLO

Verificare che tutti gli elementi di collegamento sotto tensione siano protetti in modo sicuro contro il contatto. Presenza di tensioni letali fino a 900V.

AAVVERTENZA

Non allentare mai i collegamenti elettrici dei servoamplificatori sotto tensione. Le cariche residue nei condensatori possono presentare valori pericolosi fino a 8 minuti (5 minuti nei modelli da 1,5A a 12A e a 8 minuti nei modelli da 24A) dopo la disinserzione della tensione di rete.

ATTENZIONE Durante il funzionamento la temperatura del dissipatore e delle piastre frontali sull'amplificatore può raggiungere gli 80°C. Verificare (misurare) la temperatura del dissipatore. Prima di toccarlo attendere che abbia raggiunto i 40°C.

AATTENZIONE Il produttore della macchina è tenuto a realizzare una valutazione di rischio per il macchinario e ad adottare le misure necessarie, affinché eventuali movimenti imprevisti non causino danni a persone o a cose.

ATTENZIONE Solo i tecnici specializzati in elettrotecnica e tecniche di azionamento possono mettere in funzione il servoamplificatore.

AVVISO

Se il servoamplificatore è rimasto fermo per più di un anno, i condensatori del circuito intermedio devono essere ricondizionati. A questo scopo, allentare tutti i collegamenti elettrici. Alimentare il servoamplificatore per ca. 30 min. con l'alimentazione minima consentita sui morsetti L1/L2. In questo modo i condensatori vengono ricondizionati.

Informazioni

Ulteriori informazioni sulla messa in funzione:

l'adeguamento dei parametri e gli effetti sul tipo di controllo sono descritti nel online help di software di messa in funzione.

La messa in funzione della scheda d'espansione eventualmente presente è descritta nelle istruzioni su CD-ROM.

Ulteriori approfondimenti in merito vengono forniti durante i nostri corsi di addestramento (su richiesta).

9.2 Software di messa in funzione

Questo capitolo descrive l'installazione del software di messa in funzione DRIVEGUI.EXE per i servoamplificatori digitali S700.

Su richiesta offriamo corsi di addestramento e di pratica.

9.2.1 Uso conforme

Il software di messa in funzione serve per modificare e memorizzare i parametri d'esercizio dei servoamplificatori della serie S700. Il servoamplificatore collegato viene messo in funzione mediante il software - a questo proposito, l'azionamento può essere comandato direttamente con le funzioni di assistenza.

AAVVERTENZA L'impostazione online dei parametri di un azionamento in funzione è consentita esclusivamente al personale addetto che disponga delle conoscenze tecniche descritte a pagina 9.

> I record di dati memorizzati si supporto non sono protetti da modifiche accidentali. Dopo il caricamento di un record di dati prima di abilitare il servoamplificatore occorre pertanto controllare dettagliatamente tutti i parametri.

9.2.2 Descrizione del software

I servoamplificatori devono essere adeguati alle condizioni della macchina in uso. L'impostazione dei parametri generalmente non viene eseguita sull'amplificatore, ma su un personal computer mediante il software di messa in funzione. Il PC è collegato ad un cavo null modem (seriale, ⇒ p.100) con il servoamplificatore. Il software di messa in funzione instaura la comunicazione tra PC e S700.

Il software di messa in funzione è contenuto nel CD-ROM allegato e nella pagina Internet all'interno della sezione download.

Con estrema facilità, è possibile modificare i parametri e riconoscerne immediatamente l'effetto sull'azionamento, in quanto sussiste un collegamento costante (online) con l'amplificatore. Contemporaneamente i valori reali dall'amplificatore vengono letti e visualizzati sul monitor del PC (funzioni oscilloscopio).

I moduli delle interfacce eventualmente incorporati nell'amplificatore (schede d'espansione) vengono riconosciuti automaticamente; i parametri supplementari necessari per la regolazione della posizione o la definizione dei record di movimento risultano quindi subito disponibili.

È possibile memorizzare i record di dati su un supporto (archivio) da cui ricaricarli. I record di dati possono essere stampati.

I nostri record predefiniti riferiti al motore si applicano alle più probabili combinazioni tra servoamplificatore e motore, e nella maggior parte delle applicazioni consentono di mettere in funzione l'azionamento in uso senza alcun problema.

Un'ampia guida online con descrizione integrata di tutte le variabili e le funzioni supportate in ogni situazione.

9.2.3 Requisiti hardware, sistemi operativi

L'interfaccia PC (X6, RS232) del servoamplificatore viene collegata mediante un cavo null modem (**non un cavo null modem link**) con un'interfaccia seriale del PC (⇒ p.100).

AVVISO

Estrarre e inserire il cavo di collegamento solo con tensioni di alimentazione disinserite (amplificatore e PC).

L'interfaccia nel servoamplificatore è isolata galvanicamente mediante optoaccoppiatori ed ha lo stesso potenziale dell'interfaccia CANopen.

Requisiti minimi per il PC:

Processore : Pentium[®] II o superiore Scheda grafica : Windows compatibile, a colori

Drive : Disco fisso (almeno 10 MB liberi), drive per CD-ROM

Interfaccia : interfaccia seriale libera (COM1...COM10)

o USB con un convertitore seriale USB

Sistema operativi WINDOWS 2000, XP, VISTA, 7

DRIVEGUI.EXE è compatibile con WINDOWS 2000, XP, VISTA e 7.

In casi di emergenza è possibile comandare il sistema con un'emulazione ASCII del terminale (senza interfaccia uomo-macchina).

Impostazione dell'interfaccia: 38400 Baud, Databit 8, no Parity, Stopbit 1, no flow control

Sistema operativi Unix, Linux

Il funzionamento del software **non** è stato testato per il funzionamento con Unix o Linux.

9.2.4 Installazione sotto WINDOWS

Il CD-ROM contiene un programma per l'installazione del software di messa in funzione.

Installazione

Funzione Autorun attivata:

Introdurre il CD-ROM nel drive. Si apre la videata di avvio del CD, che contiene un collegamento al software di messa in funzione DRIVEGUI.EXE. Fare clic sul collegamento e seguire le istruzioni.

Funzione Autorun disattivata:

Introdurre il CD-ROM nel drive. Fare clic su **START** (barra dei comandi), poi su **Esegui**. Nella finestra d'immissione, inserire il percorso del programma : **x:\index.htm** (x= lettera dell'unità CD). Fare clic su **OK** e procedere come indicato sopra.

Collegamento all'interfaccia seriale del PC

Collegare il cavo di trasmissione ad un'interfaccia seriale del PC (COM1...COM10) e all'interfaccia PC (X6) di S700 (⇒ p. 100).

9.3 Avvio immediato, test rapido

9.3.1 Preparazione

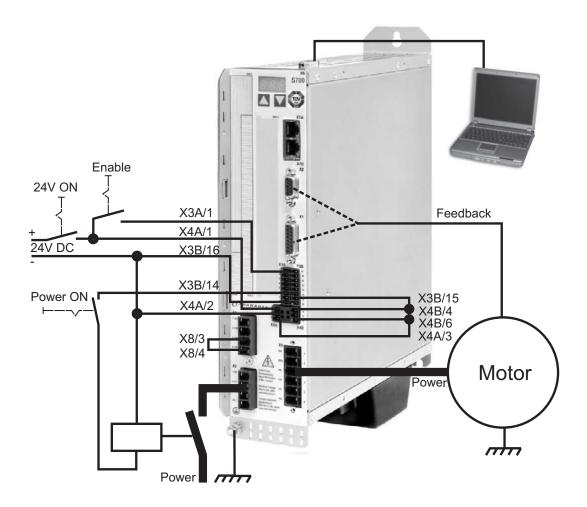
Disimballi, monti e configuri il servoamplificatore

- 1. Togliere dall'imballo il servoamplificatore e gli accessori.
- 2. Rispettare gli avvertimenti riportati nei manuali
- 3. Montare il servoamplificatore come descritto nel cap. 7
- 4. Cablare il servoamplificatore come descritto nel cap. 8 o allestire il cablaggio minimo per il test rapido (vedi cap. 9.3.1)
- 5. Installi il software come descritto nel cap. 9.2
- 6. Informazioni necessarie sui componenti di azionamento:
 - Tensione di rete nominale
 - Tipo di motore (dati del motore, se il motore non è contemplato nella banca dati consultare la assistenza online)
 - Unità di retroazione integrata nel motore (tipo, numero di poli/numero di linee/protocollo dati, ecc.)
 - Momento d'inerzia del carico

Documentazione

La documentazione necessaria è la seguente (in formato PDF sul CD-ROM del prodotto con la possibilità di scaricare la versione via via più aggiornata del manuale dal nostro sito web):

- Manuale di istruzioni
- Profilo di comunicazione EtherCAT
- Profilo di comunicazione CANopen
- Manuale degli accessori

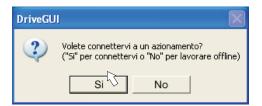

In funzione della scheda di espansione integrata si richiede una delle seguenti documentazioni:

- Operating Manual Safety Expansion Card Sx
- Profilo di comunicazione PROFIBUS DP
- Profilo di comunicazione DeviceNet
- Profilo di comunicazione SERCOS

Per leggere i file in PDF occorre Acrobat Reader. Su ogni videata del CD-ROM del prodotto è presente un link per l'installazione.

Cablaggio minimo richiesto per il test rapido

AATTENZIONE Questi collegamenti non soddisfano alcune condizioni a sicurezza o a funzionalità della vostra applicazione ma mostrano solamente i collegamenti richiesti per provare l'azionamento senza carico.


9.3.2 Collegamenti

- Collegare il cavo di trasmissione seriale a un'interfaccia seriale del PC e all'interfaccia seriale X6 del servoamplificatore. Come opzione si può utilizzare un convertitore seriale USB.
- Inserire l'alimentazione a 24 V del servoamplificatore.
- Attendere ca. 30s, finché il display sulla piastra frontale del servoamplificatore non indica i tipi di corrente (per es. ⊕ ⊕ □ per 3 A). Se anche l'alimentazione di potenza è inserita, compare l'indicazione di una P di riferimento (per es. ⊕ □ □ per Power, 3A).

Informazioni

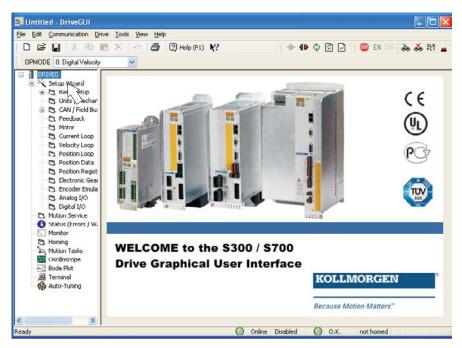
Per avviare il software DRIVEGUI.EXE cliccare sull'icona presente sul desktop di Windows.

DRIVEGUI.EXE offre la possibilità di lavorare off-line oppure on-line. Lavoriamo on-line.

La prima volta che si instaura un contatto, si devono impostare i parametri di comunicazione

Selezionare il sistema di comunicazione e l'interfaccia a cui è collegato il servoamplificatore e cliccare su OK.

Il software tenta ora di creare un collegamento con il servoamplificatore. Se non si stabilisce una comunicazione, appare il seguente messaggio di errore:



La cause più frequenti sono:

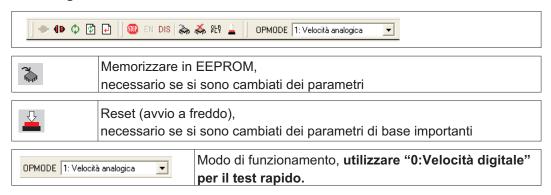
- interfaccia errata
- collegamento all'amplificatore errato
- porta di comunicazione già usata
- alimentazione ausiliaria a 24V disinserita
- cavo di trasmissione difettoso o errato

Dopo la conferma del messaggio di errore, il software passa alla modalità off-line. Ciò richiede una selezione manuale del servoamplificatore. Interrompere la selezione chiudendo la finestra. Cercare ed eliminare l'errore o il guasto che impedisce la comunicazione. Riavviare il software in modalità on-line.

Se si stabilisce una comunicazione, viene visualizzata la seguente schermata di avvio: Selezionare "Wizard di configurazione" nella finestra di navigazione.

AVVISO

Assicurarsi che l'amplificatore sia disabilitato (ingresso HW-Enable morsett X3A/1 0V o aperto)!


9.3.3 Elementi principali della videata

Funzione di guida

Nella <u>assistenza online</u> sono riportate informazioni dettagliate su tutti i parametri che il servoamplificatore può elaborare.

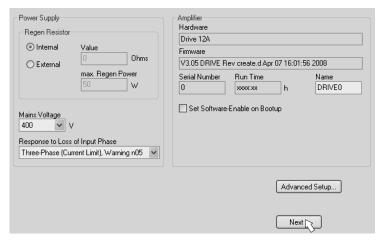
Tasto F1	Avvia la assistenza online per la videata attiva
Barra dei menu ?	Avvia la assistenza online con indice analitico
N?	Guida contestuale. Innanzitutto cliccare sul simbolo di aiuto e successivamente sulla funzione per cui si richiede assistenza.

Barra degli strumenti

Barra di stato

Il simbolo on-line verde indica che la comunicazione è attiva.

9.3.4 Wizard di configurazione

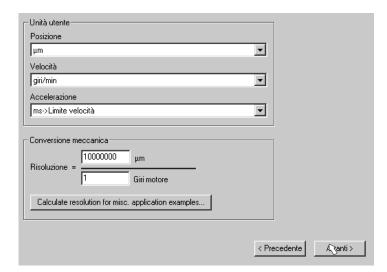

Il Wizard di configurazione guida l'utente attraverso le fasi fondamentali della configurazione di base dell'azionamento. A seconda della funzione da portare a termine vengono rappresentate solo le videate necessarie.

Per un test rapido della funzionalità selezionare il tipo di setup "Setup rapido"

Avviare il Wizard.

9.3.4.1 Impostazioni di base

Qui si impostano i valori fondamentali.


Max. tensione di alimentazione: Impostare la tensione nominale di rete disponibile Risposta alla mancanza di fase in ingresso: Selezionare funzionamento monofase o trifase. In caso di funzionamento trifase si può scegliere l'uscita dell'allarme "n05" o dell'errore "F19". "F19" determina la disattivazione dello stadio finale, "n05" viene trattato come messaggio.

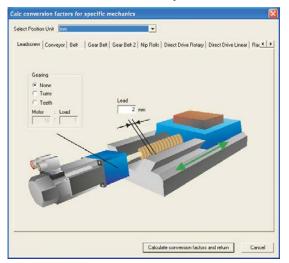
Nome: Si può assegnare un nome al servoamplificatore (max. 8 caratteri). Ciò facilita l'identificazione dell'azionamento nel sistema.

Attivare "Imposta l'abilitazione software all'avvio": Non selezionare questa opzione per il test rapido!

Cliccare su AVANTI.

9.3.4.2 Unità/conversione

Qui si preselezionano le unità utente per tutte le indicazioni concernenti il software di messa in funzione.


Posizione, velocità, accelerazione

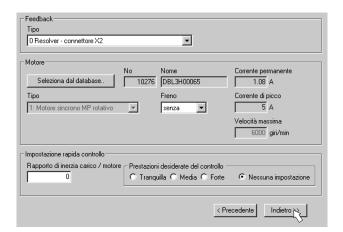
Selezionare le unità opportune per l'applicazione in relazione al carico in movimento.

Conversione meccanica

In questa parte si crea un riferimento tra giri dell'albero motore e corsa di traslazione del carico. Si possono includere i rapporti di cambio. Per spiegazioni più dettagliate consultare la guida on-line. Per individuare la risoluzione basandosi sulle applicazioni esemplificate selezionate utilizzare lo strumento di calcolo:

Calcolo PGEARI/PGEARO per..."

Se nessuno degli esempi riportati corrisponde alla vostra applicazione, inserire i parametri richiesti direttamente nei campi della videata "Unità".


Innanzitutto selezionare l'uso che corrisponde alla vostra applicazione. Poi impostare l'unità di posizione. Selezionare l'unità di posizione che consente di raffigurare la precisione richiesta dalla vostra applicazione.

Inserire ora i dati meccanici inerenti all'applicazione in oggetto. Se un riduttore è collegato al motore tramite flangia, nelle applicazioni che via via si introducono si possono inserire anche i dati del riduttore ovvero il numero dei denti o il rapporto dei giri.

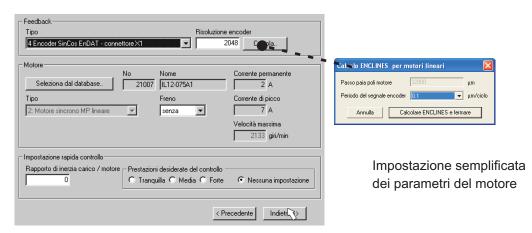
Alla fine cliccare sul pulsante "Calcolate conversion factors and return" (Calcola fattori di conversione e chiudi).

Cliccare su AVANTI.

9.3.4.3 Motore (rotativo) / Feedback

Impostazione semplificata dei parametri del motore

Informazioni


Feedback: Selezionare il sistema di retroazione (feedback) utilizzato nel motore.

Il numero di poli del resolver è fissato a 2 nella modalità di impostazione "Setup rapido"! Se necessario, modificare il numero di poli nel "Setup completo" della finestra "Feedback".

Tipo di motore: Cliccare sul pulsante "**Seleziona dal database...**". Aprire il file del database memorizzato (mdb___.csv) e selezionare il tipo di motore impiegato. I motori speciali devono essere definiti con il "Setup completo".

Freno: Se l'amplificatore deve azionare un freno, modificare selezionando CON. **Impostazione rapida controllo:** Se si conosce il rapporto di inerzia carico/motore (0 significa carico assente), inserire il numero e selezionare il grado di rigidità desiderata per la regolazione. Se non si conosce il rapporto, selezionare "Nessuna impostazione". **Cliccare su INDIETRO**

9.3.4.4 Motore (lineare) / Feedback

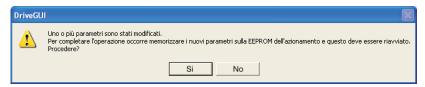
Feedback: Selezionare il sistema di retroazione (feedback) utilizzato.

Tipo di motore: Cliccare sul pulsante "**Seleziona dal database...**". Aprire il file del database memorizzato (mdb___.csv) e selezionare il tipo di motore impiegato. I motori speciali devono essere definiti con il "Setup completo".

Risoluzione encoder (appare con feedback tipo Encoder Sin.):

Cliccare su "Calcola" e riportare il periodo del segnale encoder.

Freno: Se l'amplificatore deve azionare un freno, modificare selezionando CON. **Impostazione rapida controllo:** Se si conosce il rapporto di inerzia carico/motore (0 significa carico assente), inserire il numero e selezionare il grado di rigidità desiderata per la regolazione. Se non si conosce il rapporto, selezionare "Nessuna impostazione".


Cliccare su INDIETRO

9.3.4.5 Memorizzazione parametri e riavvio

Si sta per terminare l'installazione di base e si sono modificati/impostati dei parametri. A prescindere dai parametri che si sono variati, ora il programma può reagire in due modi:

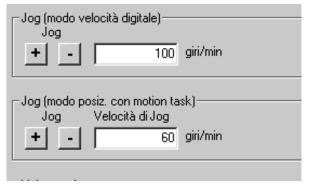
Sono stati modificati dei parametri di configurazione importanti

Compare un'avvertenza in cui si richiede il riavvio dell'amplificatore (avvio a freddo).

Cliccare su Sì. Ora i parametri vengono memorizzati automaticamente nella EEPROM del servoamplificatore e un comando di reset riavvia l'amplificatore (l'operazione richiede alcuni secondi).

Sono stati modificati pochi parametri di rilievo

Non compare alcuna avvertenza. Salvare i parametri nella EEPROM del servoamplificatore manualmente. A tal fine cliccare sul simbolo necessario un riavvio dell'amplificatore. Ora selezionare la pagina **Funzioni di assistenza**.


9.3.5 Funzioni di assistenza (Jog)

AVVISO

Verificare che la posizione in uso permetta i seguenti movimenti del carico. Altrimenti l'asse può traslare sul finecorsa hardware o sulla battuta meccanica. Assicurarsi che uno strappo o un'accelerazione improvvisa del carico non causi alcun danno.

- Inserire l'alimentazione dell'azionamento.
- STO-Enable: +24 V su ingressi STO1-Enable [X4B/6] e STO2-Enable [X4A/3]
- Software-Enable: Cliccare sul simbolo EN nella barra degli strumenti.
 Il display sulla piastra frontale adesso riporta E unitamente all'intensità di corrente

 (per esB. 8.8.9.9 per Enable, 3A). Cliccando su DIS si disattiva di nuovo lo stadio finale (Disable).

Jog (modo velocità digitale):

Qui si può far avanzare l'azionamento a velocità costante. Immettere la velocità desiderata.

ATTENZIONE: Per l'applicazione tenere conto dei requisiti di una "velocità ridotta sicura"!

Col pulsante premuto (+ o -) l'azionamento avanza alla velocità impostata, si arresta quando si lascia il pulsante.

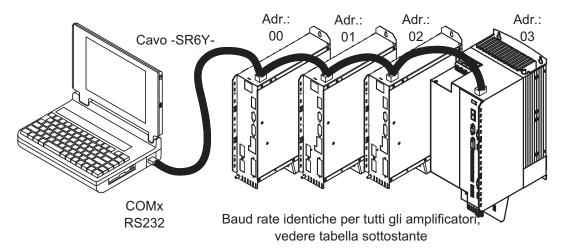
Gli allarmi e gli errori attuali sono elencati nella videata "**Status**". La descrizione dei messaggi di errore / degli allarmi è riportata nella guida on-line o a pag. 120 e ss.

A questo punto la messa in funzione e il test delle funzioni fondamentali dell'azionamento sono stati portati a termine con successo.

9.3.6 Altre impostazioni possibili

AATTENZIONE

Prima di modificare altri parametri, attenersi alle indicazioni di sicurezza riportate nei manuali e nella guida on-line.


Per tutte le altre impostazioni possibili consultare le indicazioni dettagliate della guida on-line e i riferimenti ai comandi ivi integrati.

Per attivare tutte le possibilità di input, selezionare la voce "Setup completo" nel Wizard di configurazione. Si ottiene l'accesso a:

- Impostazioni CanBus/Bus di campo: Configurazione degli indirizzi apparecchio e della velocità di trasmissione
- Feedback: adattamento dettagliato alle unità di retroazione impiegate
- Motore: adattamento dettagliato al motore utilizzato
- Circuito di regolazione: i regolatori di corrente, di numero di giri e di posizione possono essere ottimizzati manualmente
- Dati di posizione: adeguamento della regolazione della posizione alle condizioni della macchina
- Registro di posizione: si possono controllare max. 16 valori di posizione nell'ambito di una corsa di traslazione.
- Asse elettrico: se il servoamplificatore deve seguire un valore teorico predefinito, qui si può selezionare la fonte del valore teorico e impostare un rapporto di trasmissione.
- Emulazione Encoder: selezione dell'emulazione encoder (uscita di posizione)
- I/O analogici: impostazione degli ingressi analogici
- I/O digitali: impostazione degli ingressi / delle uscite digitali
- Stato (errori/allarmi): visualizzazione dello stato storico dell'apparecchio, errori/allarmi attuali
- Monitor: visualizzazione dei dati di funzionamento (valori reali)
- Ricerca dell/origine: impostazione e avvio della corsa al punto di riferimento
- Tabella Motion Task: definizione e avvio dei task di movimento
- Oscilloscopio: oscilloscopio a 4 canali con funzioni multiple
- Diagramma di Bode: strumento per l'ottimizzazione dell'azionamento
- Terminale: uso del servoamplificatore mediante comandi ASCII
- Scheda di espansione: in base alla scheda installata appare una voce di menu supplementare
- Autotuning: ottimizzazione veloce del ciclo di velocità

9.4 Sistemi multiasse

Mediante un cavo speciale è possibile collegare al PC fino a 255 servoamplificatori: Tipo di cavo -SR6Y- (per 4 amplificatori) o -SR6Y6- (per 6 amplificatori) vedi Manuale degli accessori.

Dopo il collegamento ad un solo servoamplificatore, con il software di messa in funzione è possibile selezionare e parametrizzare tutti amplificatori mediante gli indirizzi di stazione impostati.

Indirizza stazione per CAN-Bus

È possibile impostare gli indirizzi di stazione dei singoli amplificatori e la velocità di trasmissione per la comunicazione agendo sulla tastiera della piastra frontale (\$\Display\$ p.119). È in ogni caso preferibile importare tutti i parametri con il software di messa in funzione.

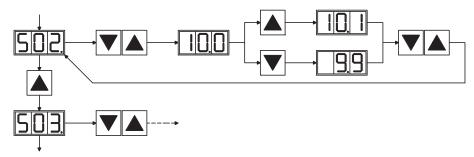
Baud rate per CAN-Bus

Informazioni

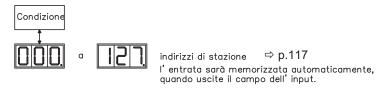
Dopo aver modificato l'indirizzo della stazione e il baud rate occorre disinserire e reinserire la tensione ausiliaria a 24V dei servoamplificatori.

Codifica del baud rate sul display a LED:

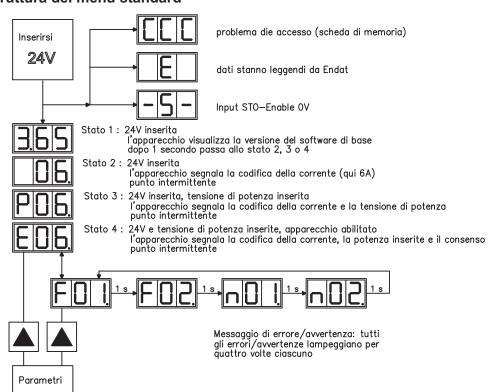
Codifica	Baud rate in kBit/s	Codifica	Baud rate in kBit/s
1	10	25	250
2	20	33	333
5	50	50	500
10	100	66	666
12	125	80	800
		100	1000


9.5 Comando a tasti / display a LED

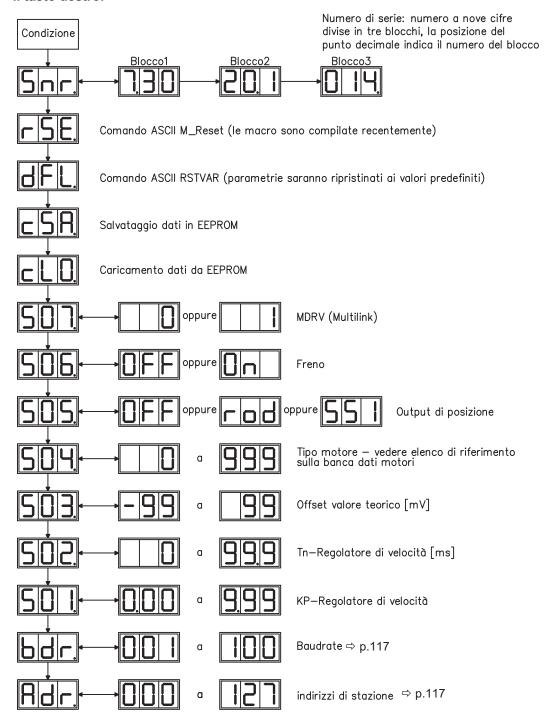
Qui di seguito sono illustrate due possibili strutture del menu di comando e le modalità di comando con la tastiera sulla piastra frontale. Normalmente S visualizza solo il menu standard. Se si desidera comandare l'amplificatore mediante il menu dettagliato, durante l'inserzione della tensione di alimentazione a 24V occorre tenere premuto il tasto destro.


9.5.1 Comando

I due tasti consentono di eseguire le funzioni qui elencate:


Tasto	Funzioni
	premere una volta:
	per scorrere il menu verso l'alto, per aumentare un valore di un'unità
	premere velocemente per due volte consecutive:
	per aumentare un valore di una decina
	premere una volta:
	per scorrere il menu verso il basso, per diminuire un valore di un'unità
	premere velocemente per due volte consecutive:
	per diminuire il valore di una decina
	tenere premuto il tasto destro e contemporaneamente premere il tasto
	sinistro: per immettere numeri, funzione return

9.5.2 Visualizzazione delle condizioni di stato


9.5.3 Struttura del menu standard

9.5.4 Struttura del menu dettagliato

Informazioni

Durante l'inserzione della tensione di alimentazione a 24V occorre tenere premuto il tasto destro.

9.6 Messaggi d'errore

Eventuali errori vengono visualizzati sotto forma di codice sul display a LED della piastra frontale. Tutti i messaggi d'errore comportano un'apertura del contatto BTB e la disinserzione dello stadio finale dell'amplificatore. Viene attivato il freno di arresto motore.

Cod.	Denominazione	Spiegazione
E/P	Messaggio di stato	Messaggio di stato, nessun errore, vedere p. 118
	Messaggio di stato	Amplificatore aggiorna la configurazione startup
-	Messaggio di stato	Messaggio di stato, nessun errore, Modo programmaz.
- S -	STO-Enable	Ingresso STO-Enable = 0V (se azionamento disabilitato)
CCC	Memory Card	Problema di accesso (scheda di memoria)
F01	Temp. radiatore	Temperatura termodispersore eccessiva (default 80°C)
F02	Cond. sovratensione	Sovraccarico nel circuito intermedio Soglia in funzione della tensione di rete
F03	Errore di inseguimen.	Messaggio del regolatore di posizione
F04*	Perdita feedback	Rottura cavo, cortocircuito, dispersione a terra
F05	Cond. sottotensione	Bassa tensione nel DC-Link (default 100V)
F06	Temperatura motore	Sensore difettoso o temperatura del motore eccessiva.
F07*	Tensione interna	Tensione ausiliaria interna non regolare
F08*	Cond. super. Velocità	Motore in fuga, velocità eccessiva
F09*	EEPROM	Errore di checksum
F10	riservato	riservato
F11*	Freno motore	Rottura cavo, cortocircuito, dispersione a terra
F12	Fase motore	Manca fase motore (rottura cavo o similari), in
		preparazione
F13	Temperatura ambiente	Temperatura ambiente eccessiva
F14*	Stadio di potenzia	Errore nello stadio finale della potenza, anche con il cavo errato del motore o la schermo insufficiente del cavo
E45	124	
F15	I ² t max.	Valore massimo l²t superato
F16	Rete BTB/RTO	Mancanza di 2 o 3 fasi dell'alimentazione
F17*	Convertitore A/D	Errore nella conversione analogico-digitale, spesso causato da disturbi elettromagnetici molto intensi
F18*	Circuito di frenatura	Circuito di frenatura difettoso o impostazione errata
F19	DC-Link	Crollo di tensione nel circuito intermedio
F20*	Errore slot	errore della scheda di espansione, vedi Guida on-line
F21*	Errore handling	Errore software della scheda di espansione
F22	riservato	riservato
F23*	CAN Bus inattivo	Interruzione comunicazione CAN Bus
F24	Avvertenza	Il messaggio d'avviso viene interpretato come errore
F25*	Commutazione	Errore di commutazione
F26	Finecorsa	Errore finecorsa durante homing (finecorsa raggiunto)
F27*	STO	Errore durante il comando del STO, gli STO-ENABLE e
		ENABLE sono stati settati contemporaneamente
F28	Errore bus di campo	vedi Riferimento ai comandi ASCII
F29	Errore bus di campo	vedi Riferimento ai comandi ASCII
F30	Time out	Time out arresto di emergenza
F31	Errore Safety Card	Errore della carta di sicurezza, numero di errore:
F32*	Errore di sistema	oXX=numero di error, iYY= subindex di errore Il software di sistema non reagisce correttamente
ГЈ	LITUIE UI SISTEIIIA	ni sonware di sistema non reagisce correttamente

^{* =} con DRVCNFG3=16: reset per hardware reset di servo amplificatore. Tutti i altri difetti possono essere ripristinati dall'ordine CLRFAULT.

Informazioni Per ulteriori informazioni sui messaggi consultare il riferimento ASCII (assistenza online), vedere Parametri ERRCODE. Informazioni sulle riparazioni dei guasti nel capitolo "trouble-shooting" da assistenza online.

9.7 Messaggi di avvertenza

I guasti che non comportano la disinserzione dello stadio finale dell'amplificatore (il contatto BTB rimane chiuso) vengono visualizzati sotto forma di codice sul display a LED sulla piastra frontale.

Codice	Denominazione	Spiegazione
E/P	Messaggio di stato	Messaggio di stato, nessun errore, vedere p.
	Messaggio di stato	Amplificatore aggiorna la configurazione startup
-	Messaggio di stato	Messaggio di stato, nessun errore, Modo programmaz.
- S -	STO-Enable	Ingressi STO = 0V (se azionamento disabled)
n01	l²t	Valore soglia l²t superato
n02	Potenza di frenatura	Potenza di frenatura impostata raggiunta
n03*	FError	Superato l'intervallo di errore di inseguimento impostato
n04*	Sorveglianza nodo	Controllo watch-dog (bus di campo) attivo
n05	Fase di rete	Manca fase di rete
n06*	Finecorsa software 1	Finecorsa software 1 raggiunto
n07*	Finecorsa software 2	Finecorsa software 2 raggiunto
n08	Errore del task	E' stato avviato un task di traslazione errato
n09	Nessun punto di	Durante l'avvio del task di traslazione non è stato impo-
	riferimento	stato alcun punto di riferimento
n10*	PSTOP	Finecorsa PSTOP azionato
n11*	NSTOP	Finecorsa NSTOP azionato
	Valori predefiniti mo-	Solo ENDAT o HIPERFACE® : Numeri motore diversi
n12	tore caricati	memorizzati nell'encoder e nell'amplificatore, sono stati
	tore caricati	caricati valori predefiniti del motore
n13*	Avviso slot	Assenza alimentazione a 24V della scheda di espansio-
1113	AVVISO 5101	ne I/O
		Commutazione SinCos (wake & shake) non compiuta,
n14	Retroazione SinCos	viene resettato dopo consenso all'amplificatore ed ese-
		cuzione wake & shake
n15	Errore tabella	Errore tabella velocità/corrente INXMODE 35
n16	Allarme cumulativo	Allarme cumulativo da n17 a n31
n17	Bus di campo sinc.	CAN sinc. non registrato
n18		Superamento del numero max. di giri con encoder mul-
	max. giri	ti-turn
	Limitazione della	Superamento del campo valori con dati relativi al record
n19	rampa con record di	di movimento
	movimento	
n20		Record di movimento non valido
n21	Avviso del program-	II significato dipende dal programma
	ma del PLC	
	Superamento tempe-	L'avviso permette all'utente di reagire prima che il guasto
n22	ratura del motore	"Surriscaldamento del motore" determini lo spegnimento
		del regolatore
n23	Encoder sin/cos.	Raggiunta soglia di guardia
n24	Ingressi digitali	Configurazione non logica
n25-n31	riservato	riservato
n32	Firmware versione	Versione firmware di test
	Beta	

^{* =} questi messaggi comportano l'arresto controllato del motore (frenatura con rampa d'emergenza).

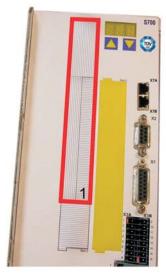
Informazioni Per ulteriori informazioni sui messaggi consultare il riferimento ASCII (assistenza online), vedere Parametri STATCODE. Informazioni sulle riparazioni dei guasti nel capitolo "trouble-shooting" da assistenza online.

9.8 Eliminazione dei guasti

A seconda delle condizioni dell'impianto in uso diverse possono essere le cause di un'anomalia. Nei sistemi multiasse le ragioni possono essere a monte, anche non evidenti.

Informazioni I suggerimenti per rimozione dei difetti possono essere trovati in assistenza online nel capitolo "Trouble-Shooting".

Il nostro settore applicazioni è comunque in grado di offrire un valido supporto.


Errore Cause possibili N		Misure per l'eliminazione dell'errore
Messaggio	 Uso di un cavo errato 	Utilizzare un cavo null modem
Anomalia di	 Cavo inserito nel connettore errato 	 Inserire il cavo nei connettori corretti
comunicazione	sul servoamplificatore o sul PC	sul servoamplificatore e sul PC
comunicazione	Interfaccia PC errata	Selezionare l'interfaccia corretta
	Servoamplificatore non abilitato	Attivare il segnale ENABLE
	Cavo valori nominali interrotto	Controllare il cavo valori nominali
	Fasi motore scambiate	Impostare le fasi del motore
	Freno non rilasciato	correttamente
Il motore non	 Azionamento bloccato meccani- 	Controllare il comando del freno
gira	camente	Controllare la meccanica
	Numero di poli motore non	Impostare il parametro numero di
	impostato correttamente	poli motore
	Retroazione impostata in modo	Impostare correttamente la
	errato	retroazione
	Amplificazione eccessiva	Ridurre il Kp (regolatore velocità)
	(regolatore velocità)	
Il motore oscilla	 Schermatura cavo di retroazione 	Sostituire il cavo di retroazione
	interrotta	
	AGND non cablato	Collegare AGND con CNC-GND
L'azionamento	— Valori I _{rms} o I _{peak} troppo bassi	Aumentare I _{rms} o I _{peak}
segnala un erro-	Talest IIIIg o Ipcak a oppo bacc.	(attenersi ai dati del motore)
re di insegui-	Rampa valori nominali eccessiva	Ridurre la rampa Setp. +/-
mento	Trampa valori norimian dedeciva	radario la rampa cosp/
Il motore si	— Valori I _{rms} /I _{peak} troppo alti	— Ridurre I _{rms} /I _{peak}
surriscalda	·	
	Kp (regolatore velocità)	Aumentare Kp (regolatore velocità)
	insufficiente	T () () () ()
Azionamento	Tn (regolatore velocità) eccessivo	Tn (regolatore velocità), valore
troppo dolce	ADI DE LADURE	predefinito motore
	— ARLPF / ARHPF eccessivo	— Ridurre ARLPF / ARHPF
	— ARLP2 eccessivo	Ridurra il Kn (ragalatara valasità)
L'azionemente	Kp (regolatore velocità) eccessivo To (regolatore velocità) incuffi	Ridurre il Kp (regolatore velocità) To (regolatore velocità) velore
L'azionamento	Tn (regolatore velocità) insuffi-	— Tn (regolatore velocità), valore
funziona a	ciente	predefinito motore
strappi	ARLPF / ARHPF insufficiente ARLP3 insufficients	— Aumentare ARLPF / ARHPF
	ARLP2 insufficiente Offset con valore nominale	Aumentare il ARLP2 Compensare l'offset del software
Dorivo occo		(analogico I/O)
Deriva asse con valore nomi-	analogico predefinito non	(analogico i/O)
	compensato correttamente	Collegers ACND a CNC CND
nale=0V	AGND non collegato con	Collegare AGND e CNC-GND
	CNC-GND dell'unità di controllo	

10 Espansione

Per informazioni in merito alla disponibilità e ai codici di ordinazione consultare p. 159.

10.1 Schede di espansione per lo slot 1

10.1.1 Indicazioni per l'installazione delle schede di espansione nello slot 1

1- Limite slot 1

2 - Allentare la pellicola (perforazion)

3 - Staccare la pellicola (fino al segno)

4 - Spezzare la linguetta superiore

5 - Spezzare la linguetta

6 - Spezzare il lamierino superiore

7 - Spezzare il lamierino inferiore

8 - Inserire la scheda

9 - Serrare le viti

10.1.2 Scheda di espansione -I/O-14/08-

Questo capitolo descrive la scheda di espansione I/O-14/08-. Sono descritte esclusivamente le proprietà aggiuntive che la scheda di espansione conferisce al S.

La -I/O-14/08- mette a disposizione 14 ingressi digitali e 8 uscite digitali aggiuntive. La funzione degli ingressi e delle uscite è impostata. Gli ingressi/uscite si utilizzano per avviare task di movimento memorizzati nel servoamplificatore e per valutare i messaggi del regolatore di posizione integrato nell'unità di controllo subordinata.

La funzione degli ingressi e delle uscite dei segnali corrisponde alle funzioni che possono essere assegnate agli I/O digitali sul connettore X3 del S700.

L'alimentazione della scheda di espansione con 24V CC avviene tramite il controllo. Tutti gli ingressi e le uscite sono isolate mediante optoaccoppiatori e a potenziale zero rispetto al servoamplificatore.

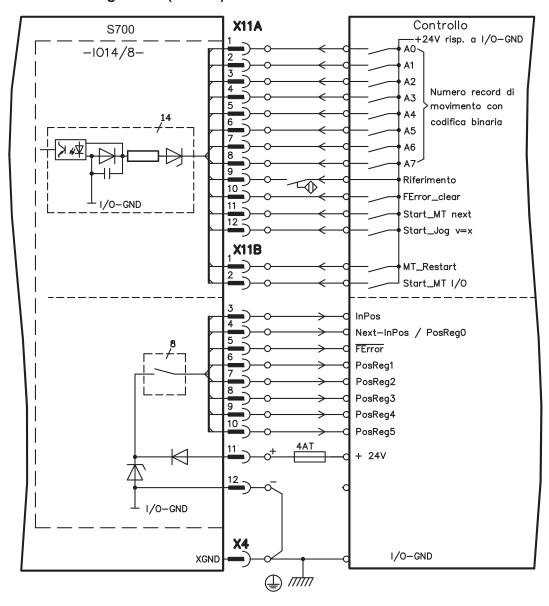
10.1.2.1 Dati tecnici

Ingressi di comando	24V / 7 mA, PLC compatibile, EN 61131
Uscite dei segnali	24V / max. 500 mA, PLC compatibile, EN 61131
	24V (1836V) / 100 mA più corrente cumulativa
	delle uscite (a seconda del circuito in entrata del
Ingressi alimentazione	controllo). INFORMAZIONI: La tensione 24VDC
conformi a EN 61131	deve essere assicurata tramite un gruppo di ali-
	mentazione elettricamente isolato, per esempio
	con il trasformatore d'isolamento.
Protezione (esterna)	4 AT
Connettori	MiniCombicon, a 12 poli, codificato su PIN1 o 12
	Dati - fino a 50 m di lunghezza: 22 x 0,5 mm², non
Cavo	schermato, alimentazione - 2 x 1 mm², prestare at-
	tenzione alle eventuali cadute di tensione
Attesa fra 2 task di movimento	a seconda del tempo di reazione del controllo
Tempo di indirizzamento (min.)	4ms
Ritardo avviamento (max.)	2ms
Tempo di reazione uscite digitali	10ms max.

10.1.2.2 Diodi luminosi

Accanto ai morsetti della scheda di espansione sono stati applicati due LED. Il LED verde segnala la disponibilità della tensione ausiliaria di 24 V necessaria per la scheda di espansione. Il LED rosso segnala eventuali errori sulle uscite della scheda di espansione (sovraccarico degli elementi del commutatore e cortocircuito).

10.1.2.3 Selezionare il codice di task di movimento (esempio)


Codice del task di movimento	A 7	A6	A5	A4	А3	A2	A1	A0
binario 1010 1110	1	0	1	0	1	1	1	0
decimale 174	128	_	32	-	8	4	2	_

10.1.2.4 Assegnazione dei connettori

Le funzioni sono registrabili con il software di messa a punto.

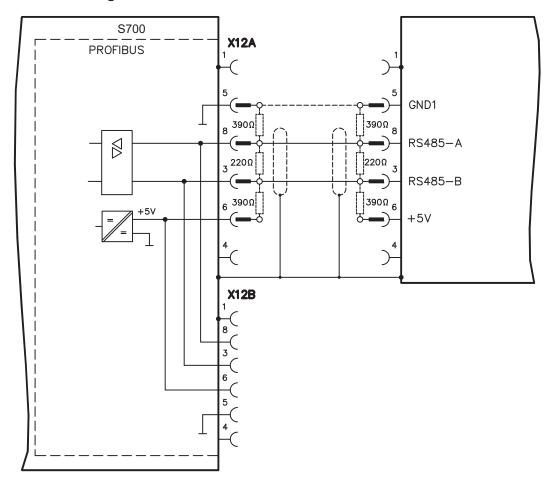
	ettore X11	Δ	
Pin	Dir	Funzione	Descrizione (default)
1	Ingresso	A0	Codice del record di movimento 2 ⁰ , LSB
2	Ingresso	A1	Codice del record di movimento 2 ¹
3	Ingresso	A2	Codice del record di movimento 2 ²
4	Ingresso	A3	Codice del record di movimento 2 ³
5	Ingresso	A4	Codice del record di movimento 2 ⁴
6	Ingresso	A5	Codice del record di movimento 2 ⁵
7	Ingresso	A6	Codice del record di movimento 2 ⁶
8	Ingresso	A7	Codice del record di movimento 2 ⁷ , MSB
9	Ingresso	Reference	Richiesta del commutatore di riferimento Se si utilizza un ingresso digitale sul dispositivo di base come ingresso di riferimento, l'ingresso della scheda di espansione I/O non sarà rilevato.
10	Ingresso	F_error_ clear	Errore di inseguimento (n03) o annulla controllo intervento (n04).
11	Ingresso	Start_MT _Next	Il task di sequenza definito nel record di movimento con l'impostazione "Avvia tramite I/O" viene eseguito. La posizione d'arrivo del record di movimento corrente deve essere raggiunta prima dell'avvio del task di sequenza. Il task di movimento in sequenza può essere avviato anche con un ingresso digitale appositamente definito nel dispositivo di base.
12	Ingresso	Start_Jog v=x	Avviare il modo di funzionamento per la messa a punto "Velocità costante". "x" rappresenta la velocità memorizzata nel amplificatore per la funzione VELOCITÀ COSTANTE. Una rampa in salita avvia il movimento, una rampa in discesa interrompe il movimento.
Conn	ettore X11	В	
1	Ingresso	MT_Restart	Riprende l'ultimo task di movimento interrotto.
2*	Ingresso	Start_MT I/O	Avvio del task di movimento, che risulta indirizzato su A0-A7 (connettore X11A/1-X11A/8). Se non è indirizzato alcun task di movimento, viene avviata la corsa al punto di riferimento
3	l la sita		Il raggiungimento della posizione d'arrivo (finestra "In
	Uscita	InPos	posizione") di un task di movimento viene segnalato tramite l'emissione di un segnale alto. La rottura dei cavi non viene riconosciuta.
4	Uscita	Next-InPos	mite l'emissione di un segnale alto. La rottura dei cavi non viene riconosciuta. L'avvio di ogni task di movimento facente parte di una sequenza eseguita automaticamente viene segnalato dall'inversione del segnale di uscita. All'avviamento del primo task di movimento della sequenza, l'uscita emette un segnale basso. La forma dei segnali può essere modificata servendosi dei comandi ASCII.
4			mite l'emissione di un segnale alto. La rottura dei cavi non viene riconosciuta. L'avvio di ogni task di movimento facente parte di una sequenza eseguita automaticamente viene segnalato dall'inversione del segnale di uscita. All'avviamento del primo task di movimento della sequenza, l'uscita emette un segnale basso. La forma dei segnali può essere modificata servendosi dei comandi ASCII. Impostazione possibile soltanto per comandi ASCII.
4 5		Next-InPos	mite l'emissione di un segnale alto. La rottura dei cavi non viene riconosciuta. L'avvio di ogni task di movimento facente parte di una sequenza eseguita automaticamente viene segnalato dall'inversione del segnale di uscita. All'avviamento del primo task di movimento della sequenza, l'uscita emette un segnale basso. La forma dei segnali può essere modificata servendosi dei comandi ASCII. Impostazione possibile soltanto per comandi ASCII. L'uscita dalla finestra Errore di inseguimento impostata viene segnalato con un segnale basso.
-	Uscita	Next-InPos PosReg 0	mite l'emissione di un segnale alto. La rottura dei cavi non viene riconosciuta. L'avvio di ogni task di movimento facente parte di una sequenza eseguita automaticamente viene segnalato dall'inversione del segnale di uscita. All'avviamento del primo task di movimento della sequenza, l'uscita emette un segnale basso. La forma dei segnali può essere modificata servendosi dei comandi ASCII. Impostazione possibile soltanto per comandi ASCII. L'uscita dalla finestra Errore di inseguimento impostata viene segnalato con un segnale basso. Impostazione predeinita: finecorsa SW 1, indicato con segnale High.
5	Uscita	Next-InPos PosReg 0 F_error	mite l'emissione di un segnale alto. La rottura dei cavi non viene riconosciuta. L'avvio di ogni task di movimento facente parte di una sequenza eseguita automaticamente viene segnalato dall'inversione del segnale di uscita. All'avviamento del primo task di movimento della sequenza, l'uscita emette un segnale basso. La forma dei segnali può essere modificata servendosi dei comandi ASCII. Impostazione possibile soltanto per comandi ASCII. L'uscita dalla finestra Errore di inseguimento impostata viene segnalato con un segnale basso. Impostazione predeinita: finecorsa SW 1, indicato con
5	Uscita Uscita Uscita	Next-InPos PosReg 0 F_error PosReg1 PosReg2	mite l'emissione di un segnale alto. La rottura dei cavi non viene riconosciuta. L'avvio di ogni task di movimento facente parte di una sequenza eseguita automaticamente viene segnalato dall'inversione del segnale di uscita. All'avviamento del primo task di movimento della sequenza, l'uscita emette un segnale basso. La forma dei segnali può essere modificata servendosi dei comandi ASCII. Impostazione possibile soltanto per comandi ASCII. L'uscita dalla finestra Errore di inseguimento impostata viene segnalato con un segnale basso. Impostazione predeinita: finecorsa SW 1, indicato con segnale High. Impostazione predeinita: finecorsa SW 2, indicato con segnale High.
5 6 7	Uscita Uscita Uscita Uscita	PosReg 0 F_error PosReg1 PosReg2 PosReg3	mite l'emissione di un segnale alto. La rottura dei cavi non viene riconosciuta. L'avvio di ogni task di movimento facente parte di una sequenza eseguita automaticamente viene segnalato dall'inversione del segnale di uscita. All'avviamento del primo task di movimento della sequenza, l'uscita emette un segnale basso. La forma dei segnali può essere modificata servendosi dei comandi ASCII. Impostazione possibile soltanto per comandi ASCII. L'uscita dalla finestra Errore di inseguimento impostata viene segnalato con un segnale basso. Impostazione predeinita: finecorsa SW 1, indicato con segnale High. Impostazione predeinita: finecorsa SW 2, indicato con
5 6 7 8	Uscita Uscita Uscita Uscita Uscita	Next-InPos PosReg 0 F_error PosReg1 PosReg2	mite l'emissione di un segnale alto. La rottura dei cavi non viene riconosciuta. L'avvio di ogni task di movimento facente parte di una sequenza eseguita automaticamente viene segnalato dall'inversione del segnale di uscita. All'avviamento del primo task di movimento della sequenza, l'uscita emette un segnale basso. La forma dei segnali può essere modificata servendosi dei comandi ASCII. Impostazione possibile soltanto per comandi ASCII. L'uscita dalla finestra Errore di inseguimento impostata viene segnalato con un segnale basso. Impostazione predeinita: finecorsa SW 1, indicato con segnale High. Impostazione possibile soltanto per comandi ASCII Impostazione predeinita: finecorsa SW 2, indicato con segnale High.
5 6 7 8 9	Uscita Uscita Uscita Uscita Uscita Uscita	PosReg 0 F_error PosReg1 PosReg2 PosReg3 PosReg4	mite l'emissione di un segnale alto. La rottura dei cavi non viene riconosciuta. L'avvio di ogni task di movimento facente parte di una sequenza eseguita automaticamente viene segnalato dall'inversione del segnale di uscita. All'avviamento del primo task di movimento della sequenza, l'uscita emette un segnale basso. La forma dei segnali può essere modificata servendosi dei comandi ASCII. Impostazione possibile soltanto per comandi ASCII. L'uscita dalla finestra Errore di inseguimento impostata viene segnalato con un segnale basso. Impostazione predeinita: finecorsa SW 1, indicato con segnale High. Impostazione possibile soltanto per comandi ASCII Impostazione possibile soltanto per comandi ASCII Impostazione possibile soltanto per comandi ASCII

10.1.2.5 Schema collegamenti (default)

10.1.3 Scheda di espansione -PROFIBUS-

Questo capitolo descrive la scheda di espansione PROFIBUS per S700.

Le informazioni sul volume di funzioni e sul protocollo software si trovano nella manuale "Profilo di comunicazione PROFIBUS DP".


La scheda di espansione PROFIBUS dispone due connettori femmina Sub-D a 9 poli, cablati in parallelo. L'alimentazione della scheda di espansione avviene tramite il servoa-limentatore.

10.1.3.1 Sistema di allacciamento

La scelta dei cavi, la conduttività dei cavi, la schermatura, il connettore di collegamento bus, la terminazione bus e i tempi d'esercizio sono descritti nelle "Indicazioni di montaggio PROFIBUS-DP/FMS" dell'Associazione degli utenti PROFIBUS PNO.

10.1.3.2 Schema collegamenti

10.1.4 Scheda di espansione -SERCOS-

Questo capitolo descrive la scheda di espansione SERCOS per S700. Le informazioni sul volume di funzioni e sul protocollo software si trovano nella nostra descrizione "Guida di riferimento SERCOS".

10.1.4.1 Diodi luminosi

fornisce indicazioni sulla correttezza della ricezione dei telegrammi SERCOS. Nella fase finale della comunicazione (fase 4), questo LED dovrebbe illuminarsi, in quanto la ricezione dei telegrammi avviene ciclicamente.

Fornisce indicazioni sulla correttezza della spedizione dei telegrammi SERCOS. Nella fase finale della comunicazione (fase 4), questo LED dovrebbe illuminarsi, in quanto la spedizione dei telegrammi avviene ciclicamente. Verificare gli indirizzi delle stazioni nell'unità di controllo e nel servoamplificatore se:

- il LED non si accende mai durante la fase SERCOS 1 oppure
 - se l'asse non può essere messo in funzione, nonostante il LED RT si accenda ciclicamente.

Informa di eventuali errori o disturbi nella comunicazione SERCOS.

Se questo LED lampeggia intensamente, la comunicazione è fortemente disturbata o addirittura non disponibile. Verificare la velocità di trasmissione SERCOS sull'unità di controllo e nel servoamplificatore (BAUDRATE) e nel collegamento del cavo di fibra ottica.

ERR

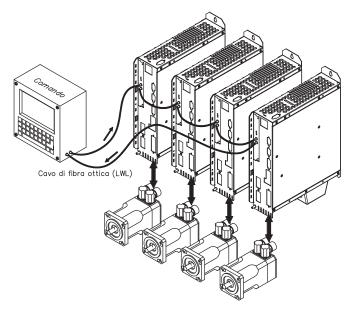
TT

Quando questo LED si accende, la comunicazione SERCOS è lievemente disturbata, la potenza di trasmissione non è perfettamente adatta alla lunghezza del cavo. Verificare la potenza di trasmissione della stazione SERCOS fisica precedente. La prestazione di trasmissione dei servoamplificatori può essere impostata dalla videata SERCOS del software di messa in funzione DRIVEGUI.EXE adattandola alla lunghezza del cavo tramite il parametro relativo alla lunghezza del cavo a fibre ottiche.

10.1.4.2 Sistema di allacciamento

Per il collegamento del cavo di fibra ottica, si consiglia di utilizzare soltanto componenti SERCOS conformi allo standard EN 61491.

Dati di ricezione


Il cavo di fibra ottica con i dati di ricezione per l'azionamento nella struttura ad anello si connette con un connettore F-SMA al X13

Dati di trasmissione

collegare il cavo di fibra ottica per l'uscita dei dati con un connettore F-SMA al X14.

10.1.4.3 Schema collegamenti

Struttura del sistema bus ad anello con cavo di fibra ottica (schema elementare)

10.1.4.4 Setup

Modifica dell'indirizzo stazione

L'indirizzo dell'azionamento si può settare tra 0 e 63. Se l'indirizzo è 0 l'azionamento viene assegnato all'anello SERCOS come amplificatore. Impostazione dell'indirizzo stazione:

Tasti sulla piastra frontale del servoamplificatore

L'indirizzo si può modificare tramite i tasti sull'amplificatore (p. 119).

Software di messa in funzione

L'indirizzo si può modificare anche con il software di messa in funzione (vedere il manuale "Software di messa in funzione" o la <u>assistenza online</u>). In alternativa nella videata "Terminale" è possibile immettere il comando **ADDR #**, dove # indica il nuovo indirizzo dell'azionamento.

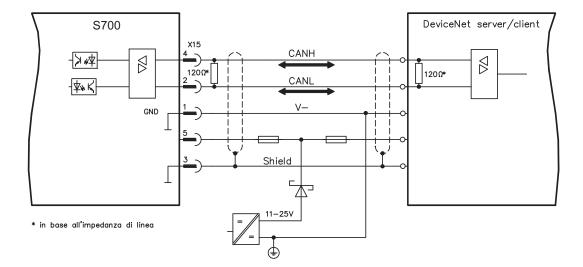
Modifica del baud rate e della potenza ottica

Se il baud rate non è impostato correttamente la comunicazione non avviene. Il baud rate si imposta con il parametro **SBAUD** #, dove # indica la velocità di trasmissione. Se la potenza ottica non è regolata correttamente si verificano errori di trasmissione dei telegrammi e si accende il LED rosso sull'azionamento. Durante la normale comunicazione i LED verdi di trasmissione e ricezione lampeggiano rapidamente, dando l'impressione di essere sempre accesi. Il parametro **SLEN** # consente di regolare il campo ottico per un cavo a fibra ottica standard da 1 mm²; # corrisponde alla lunghezza del cavo (in metri).

	SBAUD		SLEN
2	2 Mbaud	0	Collegamento molto corto
4	4 Mbaud	1< 15	Lunghezza del collegamento con un cavo in plastica da 1 mm²
8	8 MBaud	15< 30	Lunghezza del collegamento con un cavo in plastica da 1 mm²
16	16 MBaud	з 30	Lunghezza del collegamento con un cavo in plastica da 1 mm²

Software di messa in funzione

I parametri si possono modificare con il software di messa in funzione, dalla videata "SERCOS". Per ulteriori informazioni consultare il manuale "Software di messa in funzione" o la <u>assistenza online</u>). In alternativa nella videata "Terminale" si possono immettere i comandi **SBAUD** # e **SLEN** #.


10.1.5 Scheda di espansione - DEVICENET -

Questo capitolo descrive la scheda di espansione DeviceNet per S700. Per informazioni sulle funzioni e sul protocollo del software, si rimanda al manuale "Profilo di comunicazione di DeviceNet".

10.1.5.1 Sistema di allacciamento, schema collegamenti

Scelta dei collegamenti, guida dei cavi, schermatura, connettore di collegamento al bus, terminazione del bus e tempi ciclo sono descritti nella "Specifica di DeviceNet, volume I, II, edizione 2.0", edita da ODVA.

10.1.5.2 LED modulo/stato rete combinato

LED	Significato:
	L'apparecchio non è online.
spento	- L'apparecchio non ha terminato il test Dup_MAC_ID.
	- L'apparecchio potrebbe essere spento.
	L'apparecchio funziona nello stato normale, è online e i collegamenti
verde	sono nello stato stabilito.
	- L'apparecchio è assegnato ad un master.
	L'apparecchio funziona nello stato normale, è online e i collegamenti non
	sono nello stato stabilito.
verde	- L'apparecchio ha superato il test Dup_MAC_ID ed è online, ma i
lampeggiante	collegamenti con gli altri nodi non sono instaurati.
	- Questo apparecchio non è assegnato ad alcun master.
	- Configurazione mancante, incompleta o errata.
rosso	Errore eliminabile e/o almeno un collegamento I/O si trova nello stato di
lampeggiante	attesa.
	- Sull'apparecchio si è verificato un errore non eliminabile; deve essere
	eventualmente sostituito.
rosso	- Apparecchio di comunicazione guasto. L'apparecchio ha riconosciuto
	un errore che impedisce la comunicazione con la rete (ad es. MAC ID
	doppio o BUSOFF).

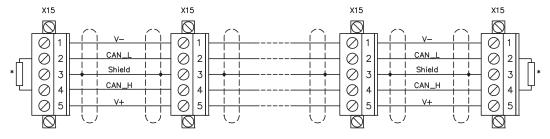
10.1.5.3 Setup

Impostazione dell'indirizzo stazione (indirizzo dispositivo)

L'indirizzo stazione del servoamplificatore si può impostare in tre modi:

- Portare i selettori rotativi sul frontalino della scheda di espansione su un valore compreso tra 0 e 63. Ogni rotella imposta una cifra decimale. Per assegnare all'azionamento l'indirizzo 10 portare MSD su 1 e LSD su 0.
- Portare i selettori rotativi sul frontalino della scheda di espansione su un valore maggiore di 63. A questo punto è possibile impostare l'indirizzo della stazione con i comandi ASCII DNMACID x, SAVE, COLDSTART, dove "x" (l'indirizzo della stazione).
- Portare i selettori rotativi sul frontalino della scheda opzionale su un valore maggiore di 63. A questo punto l'indirizzo della stazione si può impostare tramite l'oggetto DeviceNet (classe 0x03, attributo 1). A questo scopo avvalersi di un dispositivo di messa in funzione DeviceNet. Il parametro si deve salvare nella memoria non volatile (classe 0x25, attributo 0x65); dopo aver modificato l'indirizzo riavviare l'azionamento.

Impostazione della velocità di trasmissione


La velocità di trasmissione di DeviceNet si può impostare in tre modi diversi:

- Portare il selettore rotativo per il baud rate sul frontalino della scheda opzionale su un valore compreso tra 0 e 2, 0 = 125 Kbit/s, 1 = 250 Kbit/s, 2 = 500 Kbit/s.
- Portare i selettori rotativi sul frontalino della scheda opzionale su un valore maggiore di 2. A questo punto è possibile impostare il baud rate con i comandi da terminale DNBAUD x, SAVE, COLDSTART, dove "x" indica 125, 250 o 500.
- Portare i selettori rotativi sul frontalino della scheda opzionale su un valore maggiore di 2. A questo punto è possibile impostare il baud rate su un valore compreso tra 0 e 2 tramite l'oggetto DeviceNet (classe 0x03, attributo 2). A questo scopo avvalersi di un dispositivo di messa in funzione DeviceNet. Il parametro si deve salvare nella memoria non volatile (classe 0x25, attributo 0x65); dopo aver modificato il baud rate riavviare l'azionamento.

10.1.5.4 Cavo bus

In ottemperanza alla norma ISO 989 è necessario impiegare un cavo bus con impedenza caratteristica di 1200hm. Con l'aumentare della velocità di trasmissione la lunghezza dei cavi in grado di assicurare una comunicazione affidabile si riduce progressivamente. I valori riportati di seguito, risultato di misurazioni da noi condotte, sono puramente indicativi e non si devono interpretare come valori limite.

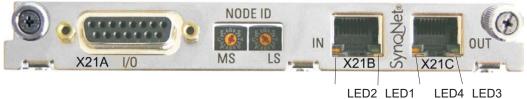
Caratteristica generale	Specifica
Bit rate	125 KBit, 250 KBit, 500 KBit
Distance can also ama callattuica	500 m bei 125 KBaud
Distanza con sbarra collettrice	250 m bei 250 KBaud
spessa	100 m bei 500 KBaud
Numero dei nodi	64
Trasmissione del segnale	CAN
Modulazione	Larghezza di banda di fondo
Accoppiamento mezzi di co-	Funzionamento in trasmissione / ricezione differenziale
municazione	collegato in corrente continua
Isolamento	500 V (opzione: optoaccoppiatore sul lato del nodo del ri-
Isolamento	cetrasmettitore)
Impedenza differenziale di in-	Shunt C = 5pF
gresso tipica (stato recessivo)	Shunt R = $25K\Omega$ (power on)
Impedenza differenziale di in-	Shunt C = 24pF + 36pF/m della linea di derivazione fissa
gresso min. (stato recessivo)	Shunt R = 20KW
	da -25 V a +18 V (CAN_H, CAN_L). Le tensioni su
Compa di tanaiana massima	CAN_H e CAN_L si riferiscono al perno di terra IC del ri-
Campo di tensione massimo	cetrasmettitore. Questa tensione supera il morsetto V- di
assoluto	un valore corrispondente alla caduta di tensione del dio-
	do Schottky (max 0,6 V).

* in base all'impedanza di linea \sim 120 Ω

Messa a terra:

Per evitare loop di terra il dispositivo DeviceNet si deve collegare a massa su un solo punto. I circuiti del layer fisico di tutti i dispositivi sono riferiti al segnale bus V-. Il collegamento a terra avviene mediante l'alimentatore bus. Il flusso di corrente tra V- e terra può avvenire solo attraverso un alimentatore di corrente.

Topologia bus:


Il mezzo di comunicazione DeviceNet ha una topologia bus lineare. Sono necessarie resistenze di chiusura su ogni estremità del cavo di collegamento. Sono ammesse diramazioni fino a 6 m ciascuna, in modo da poter collegare almeno un nodo.

Resistenze di chiusura:

Per DeviceNet occorre installare una resistenza di chiusura su ogni estremità del cavo di collegamento. Dati resistenza: 1200hm, 1% film metallico, 1/4 W

10.1.6 Scheda di espansione -SYNQNET-

Questo capitolo descrive la scheda di espansione SynqNet. Per informazioni sulle funzioni e sul protocollo software si rimanda alla documentazione SynqNet.

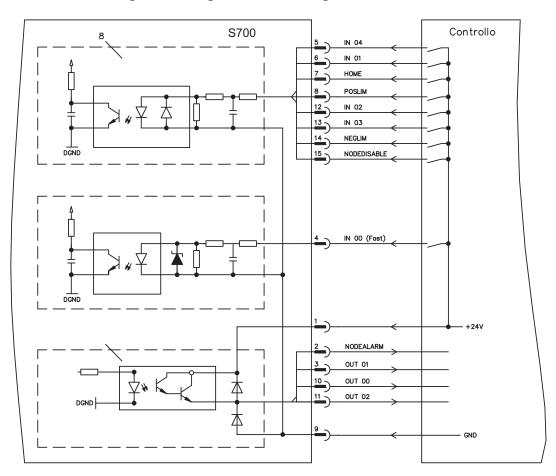
10.1.6.1 Selettore NODE ID

Il selettore rotativo esadecimale consente di impostare separatamente il byte superiore e inferiore di Node ID. Per funzionare correttamente in rete SynqNet non esige necessariamente un indirizzo, per alcune applicazioni questo può essere tuttavia utile al riconoscimento da parte di un software applicativo.

10.1.6.2 Tabella dei LED Node

LED#	Nome	Funzione	
LED1, verde	LINK IN	acceso = ricezione valida (porta IN)	
LED1, verde	LIINK_IIN	spento = non valida, mancanza tensione o reset.	
		acceso = rete ciclica	
LED2, ambrato	CYCLIC	intermittente = rete non ciclica	
		spento = mancanza tensione o reset	
LED3, verde LINK OUT		acceso = ricezione valida (porta OUT)	
LEDS, Verue	LINK_OUT	spento = non valida, mancanza tensione o reset.	
		acceso = ripetitore acceso, rete ciclica	
LED4, ambrato	REPEATER	intermittente = ripetitore acceso, rete non ciclica	
		spento = ripetitore spento, mancanza tensione o reset	

10.1.6.3 Collegamenti SynqNet, connettore X21B e X21C (RJ-45)


Collegamenti alla rete SynqNet tramite connettori femmina RJ-45 (porte IN e OUT) con LED integrati.

10.1.6.4 Ingressi/uscite digitali, connettore X21A (SubD a 15 poli, presa)

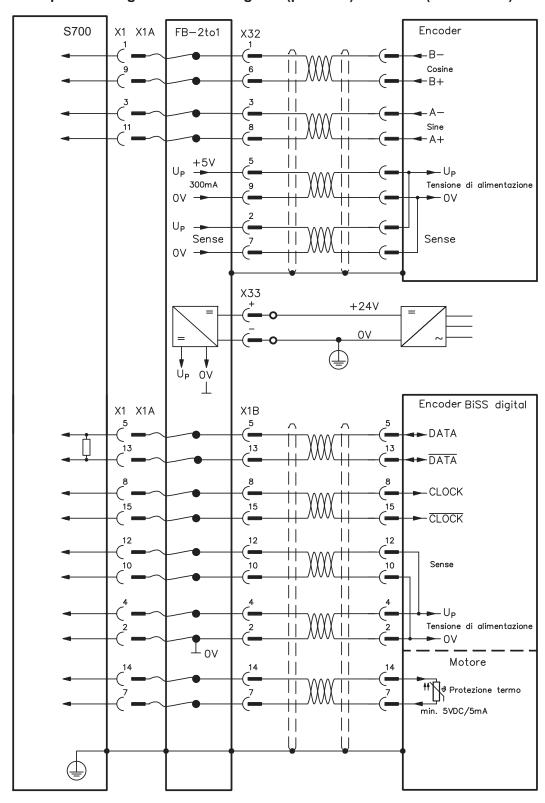
Ingressi (In): 24V (20...28V), disaccoppiamento ottico, un ingresso alto-speed (pin 4) Uscite (Out): 24V, disaccoppiamento ottico, driver Darlington

Tabe	lla di a	ssegnazione conn	ettore X21A (SubD a 15 poli)
Pin	Tipo	Descrizione	, ,
1	In	+24V	Tensione di alimentazione
2	Out	NODEALARM	Segnala problemi sul nodo
3	Out	OUT_01	Uscita digitale
4	In	IN_00 (fast)	Ingresso Capture (rapido)
5	In	IN_04	Ingresso digitale
6	In	IN_01	Ingresso digitale
7	In	HOME	Commutatore di riferimento
8	In	POSLIM	Finecorsa senso di rotazione pos.
9	In	GND	Tensione di alimentazione
10	Out	OUT_00	Uscita digitale
11	Out	OUT_02	Uscita digitale
12	In	IN_02	Ingresso digitale
13	In	IN_03	Ingresso digitale
14	In	NEGLIM	Finecorsa senso di rotazione neg.
15	In	NODEDISABLE	Nodo disattivato

10.1.6.5 Schema di collegamento ingressi / uscite digitali, connettore X21A

10.1.7 Scheda di espansione - FB-2to1 -

Il presente capitolo descrive la scheda di espansione per retroazione FB-2to1 per l'S700. La scheda consente il collegamento simultaneo di una retroazione digitale primaria e di una analogica secondaria al connettore X1. L'alimentazione con una tensione 24 V CC su X33 viene convertita nella scheda di espansione in un'alimentazione 5 V CC precisa del trasduttore per la retroazione secondaria.



10.1.7.1 Assegnazione dei connettori

X33	Assegnazione connettore Combicon
+	+24V DC (2030V), ca. 500mA
-	GND

X32	Assegnazione SubD 9 poli (retroazione secondaria) SinCos (1V p-p)	Х1В	Assegnazione SubD 15 poli (retroazione primaria) EnDat 2.2, BiSS digital, SSI absolut
1	B- (Cosine)	1	n.c.
2	SENSE+	2	0V
3	A- (Sine)	3	n.c.
4	n.c.	4	+5V DC
5	+5V DC (300mA)	5	DATA
6	B+ (Cosine)	6	n.c.
7	SENSE-	7	Sensore temperatura motore
8	A+ (Sine)	8	CLOCK
9	0V	9	n.c.
-	-	10	Sense 0V
-	-	11	n.c.
-	-	12	Sense +5V
-	-	13	DATA
-	-	14	Sensore temperatura motore
-	-	15	CLOCK

10.1.7.2 Esempio di collegamento BiSS digitale (primario) e SinCos (secondario)

10.1.8 Modulo di espansione -2CAN-

Al connettore x6 di S700 sono assegnati i segnali dell'interfaccia RS232 e dell'interfaccia CAN. Ciò non consente un'assegnazione standard dei pin alle interfacce ed è necessario un cavo speciale, qualora si intenda utilizzare contemporaneamente entrambe le interfacce. Il modulo di espansione -2CAN- permette di utilizzare le interfacce su connettori Sub-D separati. I due connettori CAN sono cablati parallelamente. Con il commutatore è possibile inserire una resistenza di terminazione (120 Ω) per CAN Bus, se il S700 è l'ultimo del bus.

10.1.8.1 Montaggio del modulo di espansione

Il modulo si avvita sul vano opzionale, dopo aver tolto la copertura (vedere p 123):

Informazioni

- Avvitare le parti di distanza nelle barre di fissaggio della vano opzionale
- Disporre il modulo di espansione sullo vano opzionale
- Avvitare le viti nei filetti delle parti di distanza
- Inserire lo zoccolo Sub-D9 il connettore X6 da S700

10.1.8.2 Sistema di allacciamento

Per le interfacce RS232 e CAN è possibile utilizzare cavi standard schermati.

Informazioni

Se il servoamplificatore è l'ultimo dispositivo sul CAN Bus, il commutatore di terminazione del bus deve essere posizionato su ON.

In caso contrario, il commutatore deve essere posizionato su OFF (stato al momento della consegna).

10.1.8.3 Assegnazione dei connettori

	RS232		CAN1=CAN2
X6A Pin	Segnale	X6B=X6C Pin	Segnale
1	Vcc	1	
2	RxD	2	CAN-basso
3	TxD	3	CAN-GND
4		4	
5	GND	5	
6		6	
7		7	CAN-alto
8		8	
9		9	

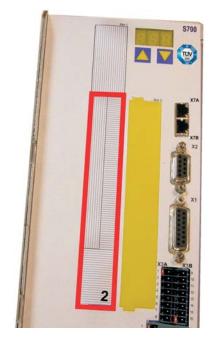
10.1.8.4 Impostazione dell'indirizzo e del Baud Rate

Durante la messa in servizio è possibile utilizzare il tastierino per impostare l'indirizzo dell'azionamento e il baud rate.

Informazioni

Dopo aver modificato l'indirizzo della stazione e il baud rate occorre disinserire e reinserire la tensione ausiliaria a 24V dei servoamplificatori.

Possibili modi per l'impostazione:


- Tastierino sul frontale dell'azionamento
- Software di configurazione (DriveGUI): Pagina "CAN / Fieldbus"
- Interfaccia seriale con una sequenza di comandi ASCII:
 ADDR nn ⇒ SAVE ⇒ COLDSTART (nn = indirizzi di stazione)
 CBAUD bb ⇒ SAVE ⇒ COLDSTART (bb = baud rate in kB)

Codifica del baud rate sul display a LED:

Codifica	Baud rate in kBit/s	Codifica	Baud rate in kBit/s
1	10	25	250
2	20	33	333
5	50	50	500
10	100	66	666
12	125	80	800
		100	1000

10.2 Schede di espansione per lo slot 2

10.2.1 Indicazioni per l'installazione delle schede di espansione nello slot 2

Limite slot 2

Le schede di espansione per lo slot 2 si montano in modo analogo a quanto descritto per lo slot 1 (vedere

- Staccare la parte tratteggiata inferiore della pellicola (rettangolo 2).
- Facendo leva, staccare le lamiere di copertura sottostanti.
- Inserire la scheda di espansione nello slot.
- Avvitare la piastra frontale della scheda di espansione con le viti in dotazione.

10.2.2 Opzione "F2"

Per ridurre il rumore l'azionamento può essere ordinato con la scheda opzione F2. Questa scheda non può essere inserita successivamente. L'opzione F2 occupa lo slot2 o 3 (Per la codifica vedere a pag. 24).

Informazioni La carta di opzione F2 può essere usata ha unito con un'altra carta in slot 1 anche se è tappata per slot 2!

Funzionamento

Il ventilatore è commutato in funzione e a riposo o funziona con velocità stimato di 50% secondo la temperatura e la potenza di resistenza di frenatura. Questo riduce il rumore medio emesso.

Temperatura d'attivazione

Monitoraggio	ventola off	ventola ~50%	ventola on
Temperatura interna	< 55°C	~ 58°C	> 65°C
Temperatura del dissipatore	< 60°C	~ 65°C	> 75°C
Resistenza di frenatura (interna)	< 20W	~ 30W	> 45W

10.2.3 Scheda di espansione "Posl/O" e "Posl/O-Monitor"

La scheda di espansione "Posl/O" e "Posl/O-Monitor" si può inserire nello slot 2 o 3. Le carte di espansione non possono essere unite e l'uso di soltanto una scanalatura a tempo è permesso.

PosI/O

La scheda offre un ulteriore connettore SubD X5 con ingressi/uscite digitali rapide e bidirezionali da 5V. Con il software di messa in servizio è possibile selezionare diverse funzioni di ingresso e uscita, ad esempio:

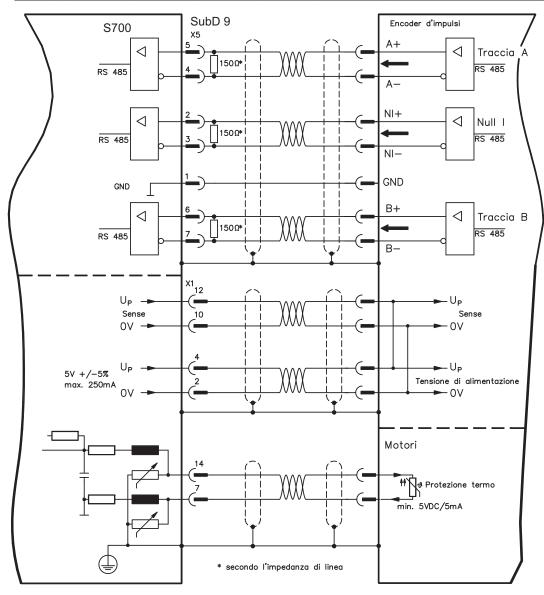
- Emulazione di un trasduttore di posizione (compatibile ROD o SSI)
- Ingresso per segnali veloci RS485 da 5V (trasmissione elettronica, master-slave).

Posl/O-Montor

La scheda offre le caratteristiche della carta di Posl/O più un ulteriore connettore SubD X3C con ingressi/uscite analogici da +/-10V (pagina 148, capitolo "Ingressi/Uscite analogici"), la cui funzione è configurabile con il software di messa in funzione o funzioni macro.

10.2.3.1 Feedback

10.2.3.1.1 ROD (AquadB) 5V (X5, X1)

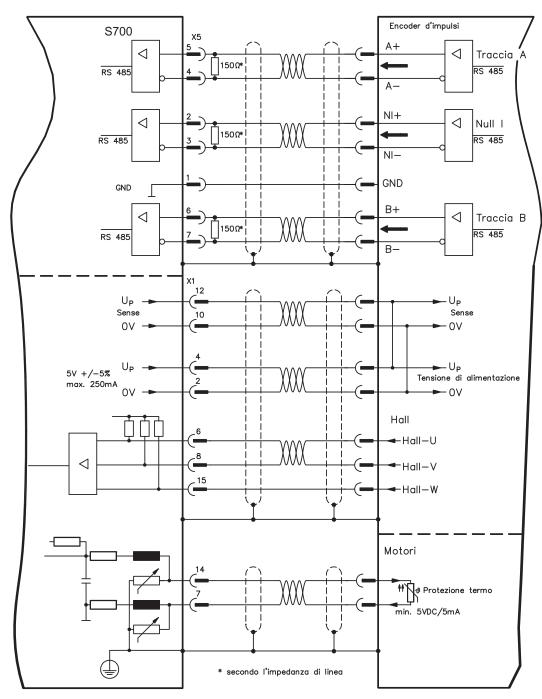

Come sistema di retroazione è possibile impiegare un trasduttore incrementale da 5V (ROD, AquadB) (primario o secondario feedback , ⇒ p. 74). Ad ogni inserzione dell'alimentazione a 24V l'amplificatore richiede le informazioni di partenza per il regolatore di posizione (parametro MPHASE). In base al tipo di retroazione si esegue un Wake&Shake o si rileva il valore di MPHASE dalla EEPROM del servoamplificatore.

AAVVERTENZA

In caso di asse verticale il carico può cadere liberamente, in quanto la funzione Wake&Shake rilascia il freno e non è possibile erogare una coppia sufficiente a trattenerlo. Non usare questo sistema di retroazione con carichi sospesi verticali.

La protezione termica del motore viene collegato all'amplificatore mediante il connettore X1. Se si prevedono cavi di lunghezza superiore a 50 m rivolgersi al nostro settore applicazioni. Frequenza limite (A, B, N): 1.5 MHz

Tipo	FBTYPE	EXTPOS	GEAR- MODE	ENCMODE	Nota
ROD (AquadB) 5V	13	3	3	0	MPHASE dalla EEPROM
ROD (AquadB) 5V	19	3	3	0	MPHASE wake & shake

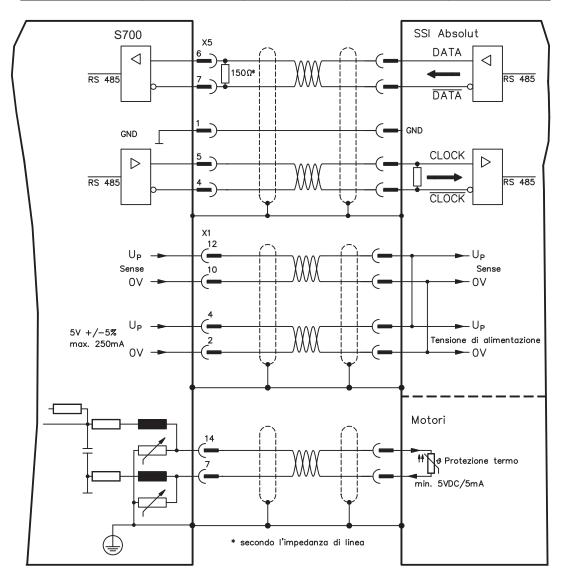

10.2.3.1.2 ROD (AquadB) 5V con Hall (X5, X1)

Collegamento di una unità di retroazione realizzata con un trasduttore incrementale da 5V (ROD, AquadB) e un sensore Hall (primario feedback , ⇒ p.74). Per la commutazione si utilizza il sensore di Hall e per la risoluzione il trasduttore incrementale.

La protezione termica del motore viene collegato all'amplificatore mediante il connettore X1. Se si prevedono cavi di lunghezza superiore a 25 m rivolgersi al nostro settore applicazioni.

Frequenza limite X5: 1,5 MHz, X1: 350 kHz

Tipo	FBTYPE	EXTPOS	GEARMODE	ENCMODE
ROD (AquadB) 5V con Hall	18	-	-	0

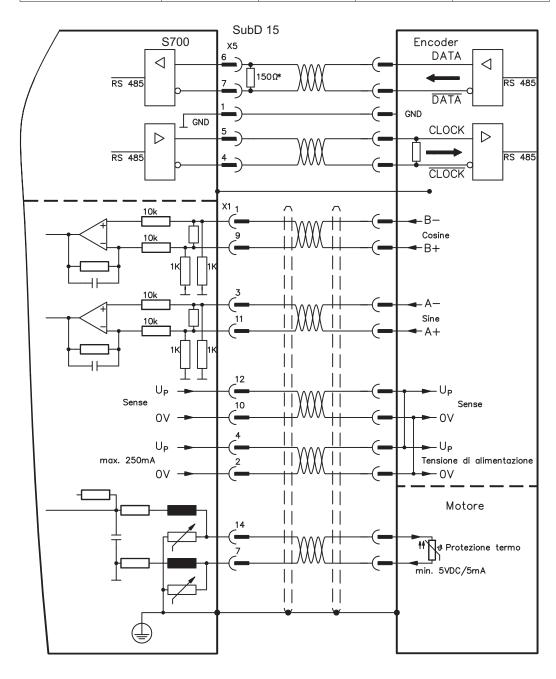

10.2.3.1.3 Encoder SSI (X5, X1)

Collegamento di una unità di retroazione realizzata con un trasduttore assoluto sincrono seriale (primario o secondario feedback , ⇒ p. 74). È possibile leggere dati in formato binario o Gray.

La protezione termica del motore viene collegato all'amplificatore mediante il connettore X1. Se si prevedono cavi di lunghezza superiore a 50 m rivolgersi al nostro settore applicazioni.

Frequenza limite:1,5 MHz

Tipo	FBTYPE	EXTPOS	GEARMODE	ENCMODE
SSI	9	5	5	0


10.2.3.1.4 Encoder seno con SSI (X5, X1)

Collegamento di un sistema di retroazione lineari realizzato con encoder sin/cos e protocollo SSI (primario feedback , ⇒ p. 74).

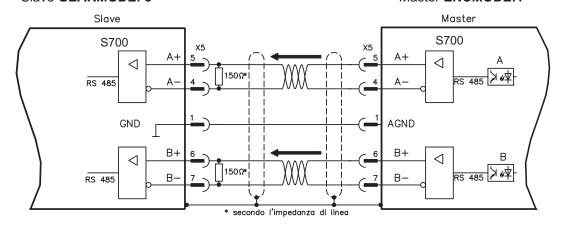
La protezione termica del motore viene collegato al connettore X1 mediante il cavo encoder. Il nostro cavo di collegamento encoder preconfezionato consente di collegare tutti i segnali. Se si prevedono cavi di lunghezza superiore a 50 m rivolgersi al nostro settore applicazioni.

Frequenza limite (sin, cos): 350 kHz

Tipo	FBTYPE	EXTPOS	GEARMODE	ENCMODE
SinCos SSI 5V linear	28	-	-	0

10.2.3.2 Trasmissione elettronico e master-slave (X5)

10.2.3.2.1 Collegamento al master di S700, livello di 5V (X5)

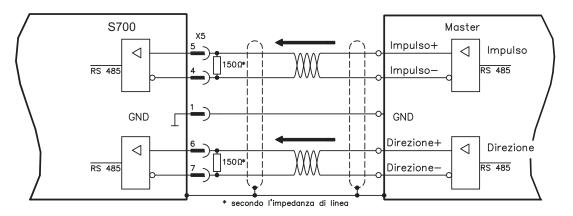

È possibile collegare tra loro più amplificatori S700:

Regolazione master: uscita di posizione su X5 sulla videata "Emulazione Encoder". Regolazione slave: sulla videata "Asso Elettrico" (GEARMODE)

In questo modo il master comanda fino a 16 amplificatori slave mediante l'uscita dell'encoder. A questo scopo viene utilizzato il connettore X5 SubD.

Frequenza limite: 1,5 MHz

Esempio di sistemi master-slave con due amplificatori S700, emulazione ROD: Slave **GEARMODE: 3**Master **ENCMODE:1**


Se l'emulazione di SSI è usata, il master ENCMODE deve essere regolato a 2 ed allo slave GEARMODE a 5.

10.2.3.2.2 Collegamento al comandi motore passo-passo di 5V (X5)

Collegamento dei comando di un motore passo-passo con un livello del segnale di 5V. A questo scopo viene utilizzato il connettore X5 SubD.

Frequenza limite: 1,5 MHz

Tipo	FBTYPE	EXTPOS	GEARMODE
Direzione / impuls 5V	-	-	4

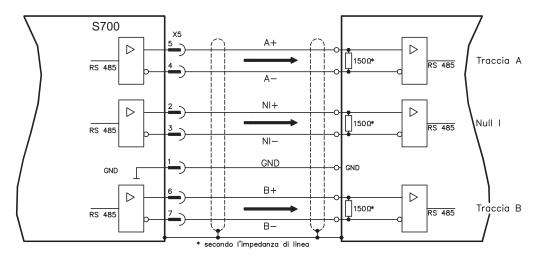
10.2.3.3 Emulazioni encoder (X5)

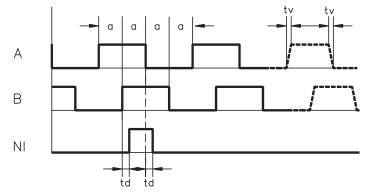
10.2.3.3.1 Interfaccia trasduttore incrementale ROD (AquadB) (X5)

L'interfaccia del trasduttore incrementale è compresa nella dotazione. Scegliere la funzione dell'encoder ROD (videata "Encoder"). La posizione dell'albero motore viene calcolata nel servoamplificatore sulla base dei segnali ciclici assoluti del resolver o dell' encoder. In funzione di queste informazioni vengono generati impulsi compatibili con il trasduttore incrementale. Sul connettore X5 SubD gli impulsi vengono emessi sotto forma di due segnali A e B sfasati elettricamente di 90° e in un impulso di zero. La risoluzione (prima della moltiplicazione) può essere impostata con il parametro RISOLUZIONE:

Funzione dell'encoder (ENCMODE)	Retroazione (FBTYPE)	Risoluzione (ENCOUT)	Impulso zero
	0, Resolver	32 4006	una volta per giro
1 000	u, Resolvei	324096	(solo a A=B=1)
1, ROD	. O		una volta per giro
	>0, Encoder	(2 ⁸ 2 ¹⁹)	(solo a A=B=1)
2 Internalazione BOD	Encodor	2 ⁴ 2 ⁷ (moltiplicazione)	segnale dell'encoder
3, Interpolazione ROD	Encoder	Linea TTL x risol.encoder	passato da X1 verso X5

Informazioni


Se una carta di sicurezza è built-in, solo le risoluzioni binarie fino a 2¹² sono possibilii.


È possibile impostare e memorizzare la posizione dell'impulso di zero in un giro meccanico (parametro OFFSET-NI). Il circuito d'uscita è alimentato internamente.

Informazioni

La lunghezza di cavo al massimo ammissibile è di 100 m.

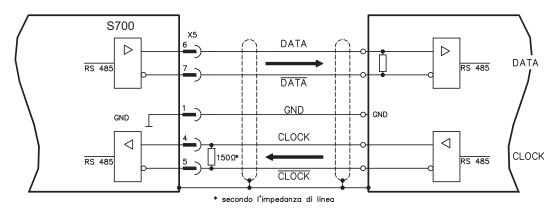
Descrizione del collegamento e dei segnali dell'interfaccia del trasduttore incrementale La direzione di numerazione è impostata in modo ascendente rispetto all'asse motore con rotazione destrorsa.

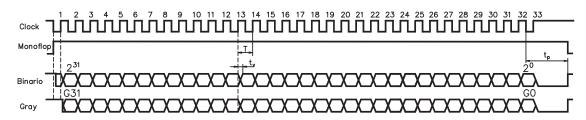
Distanza fra i fronti a \geq 0,20 μ s Pendenza tv \leq 0,1 μ s Ritardo N-I-td \leq 0,1 μ s I Δ UI \geq 2V/20mA

10.2.3.3.2 Interfaccia SSI (X5)

L'interfaccia SSI (emulazione dell'encoder assoluto seriale sincrono) fa parte della dotazione fornita. Selezionare la funzione dell'encoder SSI (schermata "Encoder", ENCMODE 2). Il servoamplificatore calcola la posizione dell'albero del motore sulla base di segnali assoluti ciclici del resolver o dell'encoder. Da queste informazioni viene fornita una data SSI (secondo la specifica di brevetto Stegmann DE 3445617C2). Vengono trasmessi al massimo 32 bit. Il bit di dati guida contiene il numero di giri ed è selezionabile da 12 a 16 bit. I successivi 16 bit max. contengono la risoluzione e non sono variabili.

La tabella seguente indica l'assegnazione della data SSI a seconda del numero di giri selezionato:


							G	irc)											F	Ris	olu	zic	one) (/ar	iak	oile	!)			
	S	SIF	RΕ	/ O	L																											
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0																
#		14	13	12	11	10	9	8	7	6	5	4	3	2	1	0																
m			13	12	11	10	9	8	7	6	5	4	3	2	1	0	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
				12	11	10	9	8	7	6	5	4	3	2	1	0															ĺ	
					11	10	9	8	7	6	5	4	3	2	1	0																


La sequenza di segnali può essere emessa nel codice **Gray** o **binario** (standard) (parametro SSI-CODE). Il servoamplificatore può essere regolato alla frequenza di clock della propria valutazione SSI attraverso il parametro SSI-TIMEOUT (1,3 µs o 10 µs).

Il circuito d'uscita è alimentato internamente.

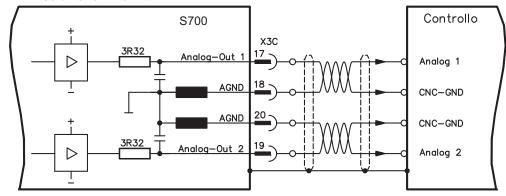
Collegamento e segnali per l'interfaccia SSI:

la direzione di conteggio per l'interfaccia SSI è UP quando l'albero del motore ruota in senso orario (guardando verso l'estremità dell'albero del motore).

Tempo di commutazione dati $t_v \le 300 ns$ Durata minima periodo T=600~ns Time Out $t_p=1.3 \mu s/10 \mu s$ (SSITOUT)

Uscita $|\Delta U| \ge 2V/20mA$ Ingresso $|\Delta U| \ge 0.3V$

10.2.3.4 Ingressi/Uscite analogici

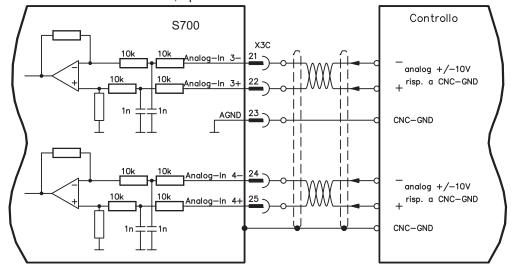

Il " della carta di espansione; Posl/O-Monitor" aggiunge le entrate analogiche e le uscite al servo amplificatore, erano segnali preprogrammati possono essere assegnate a. Un elenco delle funzioni preprogrammate è disponibile nella videata "I/O analogici" del nostro software di messa in funzione.

10.2.3.4.1 Uscite analogici ANALOG-OUT 1 e 2

È possibile utilizzare il morsetto X3C/17 (Analog-Out 1) o il morsetto X3C/19 (Analog-Out 2) per emettere valori analogici trasformati a partire da valori di misurazione digitali rilevati nel servoamplificatore.

Caratteristiche tecniche

- Massa di riferimento Analog-GND (AGND, morsetto X3C/18 e X3C/20)
- Secondo EN 61131-2 Table 11
- Tensione d'uscita di ±10 V
- Risoluzione: ±16 Bit



10.2.3.4.2 Ingressi analogici ANALOG-IN 3 e 4

È possibile utilizzare il morsetto X3C/21-22 (Analog-In 3) o il morsetto X3C/24-25 (Analog-In 4) con parecchie funzioni preprogrammate.

Caratteristiche tecniche

- Tensione d'ingresso differenziale di max. ± 10 V
- Risoluzione 1.25 mV, 16 bits, evolutivo
- Massa di riferimento: AGND, morsetto X3C/23
- Resistenza d'ingresso di 20 kΩ
- Intervallo tensione sincrona per entrambi gli ingressi di ulteriori ± 10 V
- Velocità di scansione 62,5 µs

10.3 Schede di espansione per lo slot 3

10.3.1 Indicazioni per l'installazione delle schede di espansione nello slot 3

Limite slot 3

Le schede di espansione per lo slot 3 si montano in modo analogo a quanto descritto per lo slot 1 (vedere pag. 123).

- Staccare la parte contrassegnata in giallo della pellicola (rettangolo 3).
- Facendo leva, staccare la lamiera di copertura sottostante.
- Rimuova il piccolo circuito stampato (STO Bridge) che è inserito la scanalatura. Utilizzi le pinze adatte.
- Inserire la scheda di espansione nello slot.
- Avvitare la piastra frontale della scheda di espansione con le viti in dotazione.

10.3.2 Opzione "F2"

Per ridurre il rumore l'azionamento può essere ordinato con la scheda opzione F2. Questa scheda non può essere inserita successivamente. L'opzione F2 occupa lo slot2 o 3 (Per la codifica vedere a pag. 24)

Funzionamento

Il ventilatore è commutato in funzione e a riposo o funziona con velocità stimato di 50% secondo la temperatura e la potenza di frenatura. Questo riduce il rumore medio emesso.

Temperatura d'attivazione

Monitoraggio	ventola off	ventola 50%	ventola on
Temperatura interna	< 55°C	~ 58°C	> 65°C
Temperatura del dissipatore	< 60°C	~ 65°C	> 75°C
Resistenza di frenatura (interna)	< 20W	~ 30W	> 45W

10.3.3 Scheda di espansione "Posl/O" e "Posl/O-Monitor"

La scheda di espansione "Posl/O" e "Posl/O-Monitor" si può inserire nello slot 2 o 3. Le carte di espansione non possono essere unite e l'uso di soltanto una scanalatura a tempo è permesso.

Per una descrizione dettagliata delle interfacce vedere pag. 140 e seguenti.

10.3.4 Scheda di espansione "Safety 2" (S2)

Offre diverse funzioni (versione di base) per la sicurezza di funzionamento degli assi di azionamento. I motori snchronous rotatori sono permessi quando usando questa carta di sicurezza.

Tutte le funzioni soddisfanno le condizioni **SIL CL2** di sicurezza secondo IEC 62061 rispettivamente del livello di rendimento **PLd** secondo ISO13849-1.

10.3.4.1 Funzioni di azionamento di sicurezza S2

Le funzioni di sicurezza si attivano mediante gli ingressi digitali della scheda di espansione. Tutte le funzioni soddisfanno le condizioni SIL CL2 di sicurezza secondo IEC 62061 rispettivamente del livello di rendimento PLd secondo ISO13849-1. Funzioni disponibili:

Sistema di protezione contro il riavvio accidentale, Safe Torque Off (STO)

Con la funzione STO l'energia diretta al motore viene interrotta in modo sicuro direttamente nell'azionamento. Questo corrisponde a una frenatura non controllata a norma EN 60204-1, categoria 0.

Arresto sicuro 1, Safe Stop 1 (SS1)

Con la funzione SS1 l'azionamento viene arrestato con una frenata controllata, quindi l'alimentazione diretta al motore viene interrotta in modo sicuro.

Questo corrisponde a una frenatura non controllata a norma EN 60204-1, categoria 1.

Arresto sicuro 2, Safe Stop 2 (SS2)

Con la funzione SS2 l'azionamento viene arrestato con una frenatura controllata, quindi rimane in arresto regolato (SOS).

Questo corrisponde a una frenatura controllata a norma EN 60204-1, categoria 2.

Arresto operativo sicuro, Safe Operating Stop (SOS)

La funzione SOS controlla la posizione di arresto raggiunta ed impedisce lo spostamento dal campo definito.

Velocità limitata sicuro, Safely Limited Speed (SLS)

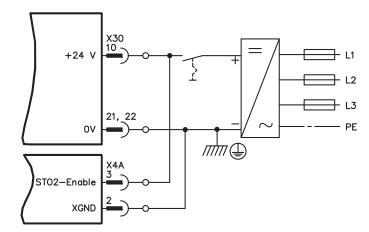
La funzione SLS controlla che l'azionamento mantenga una velocità definita.

Range di velocità sicuro, Safe Speed Range (SSR)

La funzione SSR controlla il valore di velocità effettivo dell'azionamento rispetto a una soglia massima e minima.

Direzione di movimento sicura, Safe Direction (SDI)

La funzione SDI garantisce che il movimento dell'azionamento avvenga solo in una direzione (definita).

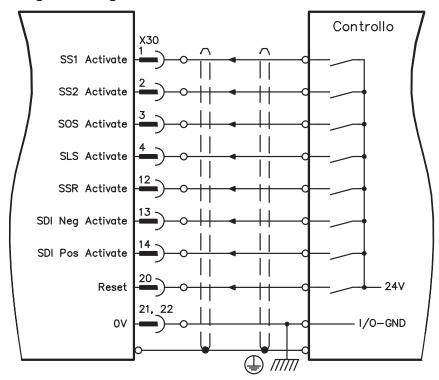

10.3.4.2 Indicazioni di sicurezza S2

AATTENZIONE La documentazione di utente della carta di sicurezza deve essere considerata.

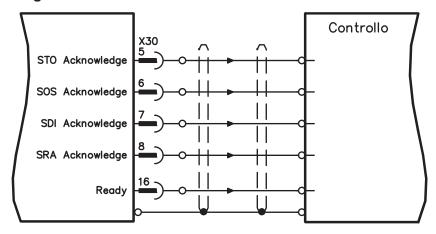
10.3.4.3 Collegamenti di alimentazione S2

AVVISO

Dell'input X4A/3 "STO2-Enable" deve essere collegato a +24V CC e non deve essere usato come input supplementare di STO!



L'input STO1-Enable [X4B/6] non deve essere collegato.


10.3.4.4 Ingressi/uscite di sicurezza S2

	Pin	Ingr./Usc.	Descrizione
SS1 Activate	1	I	Funzione attivata: SS1
SS2 Activate	2	I	Funzione attivata: SS2
SOS Activate	3	I	Funzione attivata: SOS
SLS Activate	4	I	Funzione attivata: SLS
STO Acknowledge	5	U	Messaggio:STO attivato
SOS Acknowledge	6	U	Messaggio:SOS attivato
SDI Acknowledge	7	U	Messaggio:SDI attivato
SRA Acknowledge	8	U	Messaggio:SSR attivato
24V Supply	10	-	24V alimentazione per uscite di sicurezza
SSR Activate	12	I	Funzione attivata: SSR
SDI Neg Activate	13	I	Funzione attivata: SDI (left rotation)
SDI Pos Activate	14	I	Funzione attivata: SDI (right rotation)
Ready Acknowledge	16	U	Messaggio:"Disponibilità per l'uso"
Reset	20	I	Ingresso per Reset
0V Supply	21	-	0V alimentazione per uscite di sicurezza

10.3.4.5 Collegamenti ingressi S2

10.3.4.6 Collegamenti uscite S2

10.3.5 Scheda di espansione "Safety 1" (S1)

Questa carta di espansione comprende tutte le funzioni di sicurezza disponibili. I motori snchronous rotatori sono permessi quando usando questa carta di sicurezza. Tutte le funzioni soddisfanno le condizioni SIL CL3 di sicurezza secondo IEC 62061 rispettivamente del livello di rendimento PLe secondo ISO13849-1.

10.3.5.1 Funzioni di azionamento di sicurezza S1

Le funzioni di sicurezza si attivano mediante gli ingressi digitali della scheda di espansione. Tutte le funzioni soddisfanno le condizioni SIL CL3 di sicurezza secondo IEC 62061 rispettivamente del livello di rendimento PLe secondo ISO13849-1. Funzioni disponibili:

Sistema di protezione contro il riavvio accidentale, Safe Torque Off (STO)

Con la funzione STO l'energia diretta al motore viene interrotta in modo sicuro direttamente nell'azionamento. Questo corrisponde a una frenatura non controllata a norma EN 60204-1, categoria 0.

Arresto sicuro 1, Safe Stop 1 (SS1)

Con la funzione SS1 l'azionamento viene arrestato con una frenata controllata, quindi l'alimentazione diretta al motore viene interrotta in modo sicuro.

Questo corrisponde a una frenatura non controllata a norma EN 60204-1, categoria 1.

Arresto sicuro 2, Safe Stop 2 (SS2)

Con la funzione SS2 l'azionamento viene arrestato con una frenatura controllata, quindi rimane in arresto regolato.

Questo corrisponde a una frenatura controllata a norma EN 60204-1, categoria 2.

Arresto operativo sicuro, Safe Operating Stop (SOS)

La funzione SOS controlla la posizione di arresto raggiunta ed impedisce lo spostamento dal campo definito.

Velocità limitata sicuro, Safely Limited Speed (SLS)

La funzione SLS controlla che l'azionamento mantenga una velocità definita.

Range di velocità sicuro, Safe Speed Range (SSR)

La funzione SSR controlla il valore di velocità effettivo dell'azionamento rispetto a una soglia massima e minima.

Direzione di movimento sicura, Safe Direction (SDI)

La funzione SDI garantisce che il movimento dell'azionamento avvenga solo in una direzione (definita).

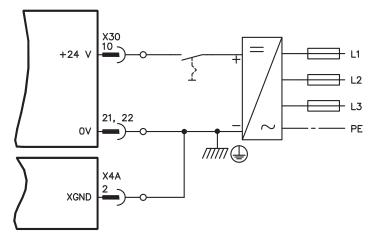
Controllo sicuro del freno, Safe Brake Control (SBC)

Un freno meccanico esterno può essere controllato dai 2 pali uscite "SBC+/SBC" della carta di sicurezza. Lo SBC diventerà attivo con STO.

Prova di freno sicura, Safe Brake Test (SBT)

La funzione di sicurezza SBT può essere usata per le prove il freno meccanico esterno e del freno interno del motore.

10.3.5.2 Indicazioni di sicurezza S1

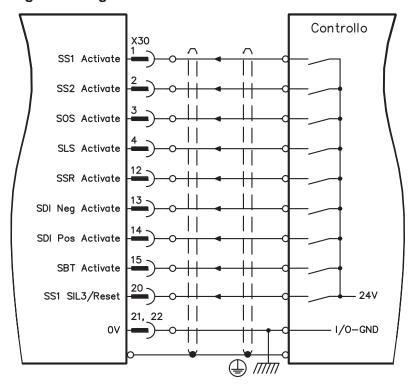

ATTENZIONE La documentazione di utente della carta di sicurezza deve essere considerata.

10.3.5.3 Encoder esterno S1

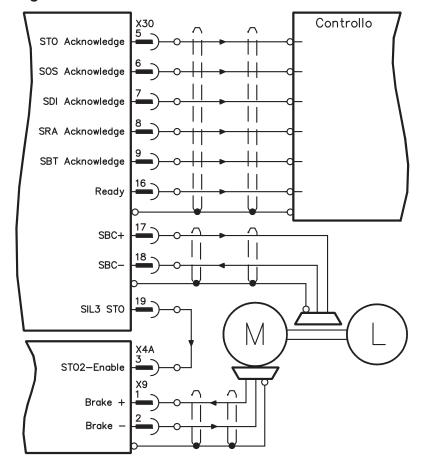
I encoder incrementali	(TTI) o con i segnali d	li SSI nossono esser	collegati a X31
i choodel incrementali	t i i L i U Coll i Scullali u	11 001 0030110 63361	t contuan a Ab i.

X31 Pin	Encoder incrementale	SSI Encoder (in process)
1	Channel A+	Clock +
2	Channel B+	Data +
3	Reference Z+	n.c.
4	Supply U+	Supply U+
5	Schermo	n.c.
6	Channel A-	Clock-
7	Channel B-	Data-
8	Reference Z-	n.c.
9	Supply 0 V	Supply 0 V

10.3.5.4 Collegamenti di alimentazione S1



L'input STO1-Enable [X4B/6] non deve essere collegato.


10.3.5.5 Ingressi/uscite di sicurezza S1

	Pin	Ingr./Usc.	Descrizione
SS1 Activate	1	I	Funzione attivata: SS1
SS2 Activate	2	I	Funzione attivata: SS2
SOS Activate	3	I	Funzione attivata: SOS
SLS Activate	4		Funzione attivata: SLS
STO Acknowledge	5	U	Messaggio:STO attivato
SOS Acknowledge	6	U	Messaggio:SOS attivato
SDI Acknowledge	7	U	Messaggio:SDI attivato
SRA Acknowledge	8	U	Messaggio:SSR attivato
SBT Acknowledge	9	U	Messaggio:SSR attivato
24V Supply	10		24V alimentazione per uscite di sicurezza
Encoder Supply	11	-	alimentazione per encoder esterno
SSR Activate	12	l	Funzione attivata: SSR
SDI Neg Activate	13	I	Funzione attivata: SDI (left rotation)
SDI Pos Activate	14		Funzione attivata: SDI (right rotation)
SBT Activate	15	I	Funzione attivata: SBT
Ready Acknowledge	16	U	Messaggio:"Disponibilità per l'uso"
SBC+	17	U	Controlli il freno esterno +
SBC-	18	U	Controlli il freno esterno -
STO SIL3	19	U	Uscite
SS1 SIL3/Reset	20		Ingresso per SIL3 e RESET
0V Supply	21	-	0V alimentazione per uscite di sicurezza
0V Encoder Supply	22	-	0V alimentazione per encoder esterno

10.3.5.6 Collegamenti ingressi S1

10.3.5.7 Collegamenti uscite S1

Pagina lasciata intenzionalmente in bianco.

11	Allegato	
11.1	Glossario	
С	Circuito di frenatura	Mediante la resistenza di frenatura si trasforma in calore l'energia in eccesso accumulata dal motore durante la frenatura.
	Circuito intermedio	Tensione di potenza raddrizzata e livellata
	Clock	Segnale di temporizzazione
	Contagiri T, costante di tempo	Costante del tempo di filtrazione nella retroazione della velocità del circuito di regolazione
	Conteggi	Impulsi di conteggio interni, 1 imp. = 1/2 ²⁰ giri/min.
	Convezione libera	Libera circolazione d'aria per il raffreddamento
	Cortocircuito	qui: collegamento a conduzione elettrica tra 2 fasi
D	Deriva ingresso	Modifiche di un ingresso analogico dovute a temperatura e invecchiamento
	Disable	Disabilitazione del segnale ENABLE
	Dispersione a terra	Collegamento conduttivo tra una fase e PE
E	Enable	Segnale di abilitazione per il servoamplificatore
F	Filtro di rete	Dispositivo per I deviare verso PE anomalie sui cavi dell'alimentazione di potenza
	Finecorsa	Limitatore della corsa di traslazione della macchina esecuzione come contatto normalmente chiuso
	Formato GRAY	Forma speciale della rappresentazione numerica binaria
	Freno di arresto	Freno motore che può essere impiegato solo a motore fermo
I	Impulso nullo	Viene emesso da trasduttori incrementali una volta per giro e serve per l'azzeramento della macchina
	Interfaccia bus di campo	CANopen, PROFIBUS, SERCOS, e così via
	Interfaccia SSI	Output ciclico della posizione assoluta seriale
	Interfaccia trasduttore incrementale	Segnalazione della posizione mediante 2 segnali sfalsati di 90°, output della posizione assoluta assente
	Interface	Interfaccia
	Interruttore di potenza	Protezione dell'impianto con controllo della caduta di fase
	Ipeak, corrente di picco	Valore efficace della corrente d'impulso
	Irms, corrente efficace	Valore efficace della corrente continua
K	Kp, amplificazione P	Amplificazione proporzionale di un circuito di regolazione
M	Macchina	Globalità di componenti o dispositivi collegati tra loro, di cui almeno uno è in movimento
	Modo di inversione	Funzionamento con cambio periodico della direzione di rotazione
0	Optoaccoppiatore	Collegamento ottico tra due sistemi indipendenti da un punto di vista elettrico

Р	PID-T2	Costante del tempo di filtrazione per l'uscita del regolatore di velocità
	Potenza continuativa di frenatura	Potenza media, che può essere gestita nel circuito di frenatura
	Potenza d'impulso di frenatura	Potenza massima che può essere gestita nel circuito di frenatura
R	Rampe SW	Limitazione della velocità di variazione del valore nominale di velocità
	Record di movimento	Record di dati con tutti i parametri di regolazione della posizione necessari per un task di traslazione
	Regolatore di corrente	Regola la differenza tra il valore nominale e quello reale della corrente rispetto a 0. Uscita: tensione di uscita della potenza
	Regolatore di posizione	Regola la differenza tra il valore nominale e il valore reale della posizione rispetto a 0. Uscita: valore nominale velocità
	Regolatore P	Circuito di regolazione che funziona in modo puramente proporzionale
	Regolatore PID	Circuito di regolazione con comportamento proporzionale, integrale e differenziale
	Regolatore velocità	Regola la differenza tra la velocità nominale e quella reale rispetto a 0. Uscita: valore nominale della corrente
	Reset	Riavvio del microprocessore
	Resolver-Digital-Converter	Conversione dei segnali analogici del resolver in informazioni digitali
S	Separazione del potenziale	Disaccoppiamento elettrico
	Servoamplificatore	Organo per la regolazione di coppia, velocità e posizione di un servomotore
	Sfasamento magnetico	Compensazione del ritardo tra il campo elettro-
		e il campo magnetico nel motore
	Sistema multiasse	Macchina con più assi di trasmissione indipendenti
	Soglia I²t	Controllo della corrente efficace Irms effettivamente richiesta
Т	Tensione contagiri	Tensione proporzionale al valore reale della velocità
	Tensione sincrona	Ampiezza di disturbo che un ingresso analogico (ingresso differenziale) può regolare
	Termocontatto di protezione	Interruttore a rilevamento termico incorporato nell'avvolgimento del motore
	Tn, tempo di inerzia I	Parte integrante del circuito di regolazione
U	Uscita monitor	Uscita di un valore di misurazione analogico
V	Velocità finale	Valore massimo per la standardizzazione della velocità a ±10V

11.2 Numeri d'ordine

Per numeri di ordinazione di accessori quali cavi, resistenze di carico, alimentatori e così via consultare il manuale degli accessori.

11.2.1 Servoamplificatori

Articolo (Tipologie standard)*	Numero d'ordine EU Numero d'ordine US
Servoamplificatore S70102	S70102-NANANA
Servoamplificatore S70302	S70302-NANANA
Servoamplificatore S70602	S70602-NANANA
Servoamplificatore S71202	S71202-NANANA
Servoamplificatore S7120S	S7120S-NANANA
Servoamplificatore S72402	S72402-NANANA
Servoamplificatore S7240S	S7240S-NANANA

^{*=} con resistenza di recupero, CANopen e EtherCAT on board, STO doppio canale, 208...480V alimentazione di rete. Vedere anche i codici dei modelli a pagina 24.

Article (Tipologie standard con opzione F2 in Slot 2)	Numero d'ordine EU	Numero d'ordine US
Servoamplificatore S70102-NAF2NA	S70102-	NAF2NA
Servoamplificatore S70302-NAF2NA	S70302-	NAF2NA
Servoamplificatore S70602-NAF2NA	S70602-	NAF2NA
Servoamplificatore S71202-NAF2NA	S71202-	NAF2NA
Servoamplificatore S7120S-NAF2NA	S7120S-	NAF2NA
Servoamplificatore S72402-NAF2NA	S72402-	NAF2NA
Servoamplificatore S7240S-NAF2NA	S7240S-	NAF2NA

Article (Tipologie standard con opzione F2 in Slot 3)	Numero d'ordine EU	Numero d'ordine US
Servoamplificatore S70102-NANAF2	S70102-	NANAF2
Servoamplificatore S70302-NANAF2	S70302-	NANAF2
Servoamplificatore S70602-NANAF2	S70602-	NANAF2
Servoamplificatore S71202-NANAF2	S71202-	NANAF2
Servoamplificatore S7120S-NANAF2	S7120S-	NANAF2
Servoamplificatore S72402-NANAF2	S72402-	NANAF2
Servoamplificatore S7240S-NANAF2	S7240S-	NANAF2

11.2.2 Memory Card

Article	Numero d'ordine EU	Numero d'ordine US
Industrial Memory Card (può rimanere	DE-201257	in proparaziono
nell'azionamento)	DE-201237	in preparazione

11.2.3 Scheda di Espansione et Opzione

11.2.3.1 Coperture per le Slots

Article	EU order code	US order code
Slot Cover (1 por Slot 1 & 1 por 2 o 3)	DE-201295	in process

11.2.3.2 Slot 1

Articolo	Numero d'ordine EU	Numero d'ordine US
Scheda di espansione DeviceNet	DE-103571	OPT-DN
Scheda di espansione PROFIBUS DP	DE-106712	OPT-PB3
Scheda di espansione SERCOS	DE-90879	OPT-SE
Scheda di espansione I/0-14/08	DE-90057	OPT-EI
Scheda di espansione SyngNet	DE-200073	OPT-SN
Scheda di espansione FB-2to1	DE-201664	in preparazione
Modulo di espansione 2CAN	DE-201076	in preparazione

11.2.3.3 Slot 2

Articolo	Numero d'ordine EU	Numero d'ordine US
Scheda di espansione Posl/O	DE-200881	in preparazione
Scheda di espansione Posl/O-Monitor	DE-201294	in preparazione

11.2.3.4 Slot 3

Articolo	Numero d'ordine EU	Numero d'ordine US	
Scheda di espansione Posl/O	DE-200881	in preparazione	
Scheda di espansione Posl/O-Monitor	DE-201294	in preparazione	
Scheda di espansione Safety 2	DE-201303	in preparazione	
(SIL CL2, PLd)	BE 201000	III proparazione	
Scheda di espansione Safety 1	DE-201302	in preparazione	
(SILCL3, PLe)	DE-201302	iii preparazione	
STO Bridge (anziché la carta di	DE-200566	in preparazione	
sicurezza)	DL-200300	iii preparazione	

11.2.4 Accoppiatori

Articolo	Numero d'ordine EU	Numero d'ordine US
Accoppiatori X3A	DE-200447	CON-S7X3A
Accoppiatori X3B	DE-200448	CON-S7X3B
Accoppiatori X3C	DE-200957	CON-S7X3C
Accoppiatori X4A	DE-200449	CON-S7X4A
Accoppiatori X4B	DE-200450	CON-S7X4B
Accoppiatori X0	DE-200451	CON-S7X0
Accoppiatori X0F*	DE-200955	CON-S7X0F
Accoppiatori X0Y	DE-200851	CON-S7X0Y
Accoppiatori X8	DE-200452	CON-S7X8
Accoppiatori X8F*	DE-200956	CON-S7X8F
Accoppiatori X8Y	DE-200852	CON-S7X8Y
Accoppiatori X9	DE-200453	CON-S7X9

^{*} F-Tipo: con i morsetti di azione della molla per collegamenti veloci

11.3 Index

Α	Abbreviazioni	F	Frenaggio dinamico 33 Freno del motore 32 Funzioni di sicurezza 153 S1 153 S2 150 STO 4 Fusibili 30 Glossar 157
В	Baud rate	н	Grado di imbrattamento
С	Cablaggio	1	Imballaggio27Imballaggio fornito23Indicazioni di sicurezza12Indirizza della stazione117Ingressi4Abilitazione (enable)98ANALOG IN 1/296ANALOG IN 3/4148programmabili98STO-Enable97Installazione57Elettrica57Meccanica53Scheda di espansione Slot 1123
D	Dati tecnici 28 DC-link, interfaccia 71 Diagramma a blocchi 63 Direzione/Impulsi 24V 92 Direzione/Impulsi 5V - X1 92 Direzione/Impulsi 5V - X5 145 Direzione/Impulsi, interfaccia 92 Display a LED 117	L	Scheda di espansione Slot 2
E	Emissione di rumore 28 Emulazione AquadB X5 146 Emulazione AquadB, X1 94 Emulazione encoder X1 94 Emulazione encoder X5 146 Emulazione SSI 147 Emulazione SSI, X1 95 Encoder A quad B 24V 87 Encoder A quad B 24V con Hall 88 Encoder A quad B 5V con Hall 86 Encoder A quad B 5V, 1.5MHz 84 Encoder A quad B 5V, 350kHz 85 Encoder Hall 90 Encoder seno con Hall 83 Encoder seno senza traccia dati 82 EnDat 2.1 Encoder 78 EnDat 2.2 Encoder 79 EtherNet 102 Ethercat Protokoll 102 Ethernet IP Protokoll 102 ProfiNet Protokoll 102 SERCOS III Protokoll 102 SynqNet Protokoll 102	N O P	Manutenzione 2 Master-Slave X1 93 Master-Slave X5 148 Messa fuori servizio 22 Messa in funzione 105 Messaggi d'errore 120 Messaggi di avvertenza 12 Modulo di espansione -2CAN- 13 Montaggio 54 Montaggio del ventilatore 56 Norme 16 Numeri d'ordine 159 Option F2 139 Posizione di montaggio 37 Potenza ottica 129 Procedura di inserzione/disinserzione 36 Pulizia 20 Quickstart 108

Т

R	Requisiti hardware 107	
	Resistenza di frenatura Dati tecnici 33 Interfaccia esterno 70 Resolver, interfaccia 75 Reti di alimentazione 66 Retroazione 73 Ricondizionamento 105 Riparazioni 22 RS232/PC, interfaccia 100	
S	Scheda di espansione DEVICENET 130 FB-2to1 135 I/O 14/08 124 PosI/O 140 PosI/O-Monitor 140 PROFIBUS 127 -Safety S1- 153 -Safety S2- 150 SERCOS 128 SYNQNET 133 Scheda di memoria MMC 103 Schema collegamenti 65 Schermadura 24	
	Schermatura Installazione 58 Schema collegamenti 65 Sezioni dei cavi 31 Simbolo della massa 59 SinCos+SSI an X5 144 SinCos+SSI Encoder X1 81 Smaltimento 22 Spegnimento d'emergenza 40 SSI Encoder X1 89 SSI Encoder X5 143 STO 41 Steasongrie 24	

Т	Targhetta23Temperatura ambiente33Trasmissione elettronico X193Trasmissione elettronico X5145
	Trasporto
U	Uscite
	analogici
	BTB/RTO99
	DIGI-OUT 1/2
	Uso conforme
	Servoamplificatori
	Software di messa in funzione 106
	STO 42
V	Velocità di trasmissione 13
	Ventilazione 3
	Vibrazioni

Pagina lasciata intenzionalmente in bianco.

Servizio

Ci impegniamo a fornire un servizio di qualità al cliente. Per servire nel senso più efficace, prego mettasi in contatto con il vostro rappresentante locale per assistenza. Contattateci per maggiori informazioni.

Italia

Kollmorgen vendite e servizio di cliente Italia

Internet www.kollmorgen.com
E-Mail mil-info@kollmorgen.com
Tel.: + 39 0362 / 594260
Fax: + 39 0362 / 594263

KOLLMORGEN Italian Website

European Product WIKI

Europe

KOLLMORGEN Service de clients Europe

Internet www.kollmorgen.com
E-Mail technik@kollmorgen.com
Tel.: +49 (0)2102 - 9394 - 0
Fax: +49 (0)2102 - 9394 - 3155

KOLLMORGEN UK Website

L'Amérique du Nord

KOLLMORGEN Customer Support North America

Internet www.kollmorgen.com
E-Mail support@kollmorgen.com
Tel.: +1 - 540 - 633 - 3545
Fax: +1 - 540 - 639 - 4162

KOLLMORGEN US Website

Asia

KOLLMORGEN

Internet www.kollmorgen.com

E-Mail sales.china@kollmorgen.com

Tel: +86 - 400 666 1802 Fax: +86 - 10 65 15 0263

KOLLMORGEN CN Website