

GESTRA Sistemi per vapore

LRGT 16-1 LRGT 16-2 LRGT 17-1

IT Italiano

Manuale d'installazione e uso 818759-03

Trasmettitore di conduttività LRG 16-1

Trasmettitore di conduttività LRG 16-2

Trasmettitore di conduttività LRG 17-1

Indice

Pagina

Indice

Note importanti	
Corretto utilizzo	4 6 6
Dati tecnici	
LRGT 16-1, LRGT 16-2, LRGT 17-1 Composizione della fornitura Targhetta dati / Marcature Dimensioni LRGT 16-1, LRGT 16-2, LRGT 17-1 Montaggio del trasmettitore di conduttività LRGT 16-1, LRGT 16-2, LRGT 17-1 1 Legenda 1 Attrezzi	9 10 11 12
Connessioni elettriche	
LRGT 16-1, LRGT 16-2, LRGT 17-1	15 15 16 16

Indice - continua -	
	Pagina
Valori impostati in fabbrica	17
Procedura di primo avviamento	
Inserimento tensione di alimentazione	18
Funzionamento	
Correzione del valore misurato Correzione della costante di cella Prova di funzionamento Indicatori a LED	20 21
Ricerca guasti	
Indicazioni, diagnosi e rimedi	22 23
Manutenzione	
Note di sicurezza Pulizia della sonda	
Rimozione e smaltimento del trasmettitore di conduttività	

Rimozione e smaltimento del trasmettitore di conduttività LRGT 16-1, LRGT 16-2, LRGT 17-124

Note importanti

Corretto utilizzo

Usare i trasmettitori di conduttività LRGT 16-1, LRGT 16-2 e LRGT 17-1 solo per misure di conduttività di liquidi.

Nel caso si utilizzino i trasmettitori LRGT 16-1 / LRGT 16-2 / 17-1 come limitatori di conduttività o per spurgo continuo di caldaie a vapore dovranno essere accoppiati alle seguenti apparecchiature:

Regolatore di conduttività LRR 1-51

Regolatore di conduttività LRR 1-53

Regolatore KS 90-1

Onde assicurare un sicuro funzionamento le caratteristiche e la qualità dell'acqua dovranno essere in accordo con le normative TRD e EN.

Utilizzare le apparecchiature entro i campi specificati di Pressione / Temperatura.

Funzione

I trasmettitori **di conduttività LRGT 16-1, LRGT 16-2, LRGT 17-1** sono composti da: elettrodo di conduttività, termoresistenza per il rilievo della temperatura e da una scheda elettronica inserita nella custodia.

I trasmettitori LRGT 16-1 e LRGT 17-1 lavorano secondo il metodo di misura della conduttività utilizzando due elettrodi di misura mentre il trasmettitore LRGT 16-2 utilizza quattro elettrodi di misura. Gli apparecchi misurano la conduttività di fluidi elettricamente conduttivi (contenuto TDS) ed emettono un segnale di uscita in corrente 4-20 mA dipendente dal valore di conduttività.

LRGT 16-1, LRGT 17-1

Una corrente di misura a frequenza variabile attraversa il fluido da misurare, ciò provoca una caduta di tensione U_U tra l'elettrodo di misura e il tubo di riferimento.

LRGT 16-2

La sonda di conduttività è costituita da due elettrodi di corrente e da due elettrodi di tensione. Attraverso gli elettrodi di corrente viene iniettata nel fluido una corrente U_I con frequenza fissa, provocando un potenziale tra gli elettrodi di tensione. La differenza di potenziale è recepita dagli elettrodi e valutata come tensione di misura U_{II} .

LRGT 16-1. LRGT 17-1 e LRGT 16-2

La conduttività elettrica è funzione della temperatura. Una termoresistenza integrata nell'elettrodo, misura la temperatura del fluido onde correggere il valore misurato con riferimento a 25°C.

La conduttività è calcolata in base alle tensioni misurate U_U e U_I e corretta con il valore T_k funzione della temperatura (il valore della conduttività è riferito a 25 °C). Dopo l'elaborazione del segnale, funzione della conduttività, è disponibile in uscita un segnale in corrente 4-20 mA.

Il cavo di connessione dell'elettrodo, il tubo di riferimento e la termoresistenza sono costantemente monitorati e controllati per quanto riguarda interruzioni e corti circuiti. Inoltre, la scheda elettronica è protetta contro eccessi di temperatura. In caso di malfunzionamento, i LED della scheda si illuminano o lampeggiano e il segnale di uscita verrà ridotto a 0 oppure 0,5 mA.

Il microinterruttore a 10 poli permette la parametrizzazione del trasmettitore, l'impostazione della costante di cella e l'attivazione del test di funzionamento. La conduttività elettrica è misurata in μ S/cm. In alcuni paesi viene utilizzato il ppM (parti per milione) al posto del μ S/cm, 1μ S/cm = 0.5 ppM.

Note importanti - continua -

Funzione - continua -

I trasmettitori di conduttività sono usati in combinazione con i seguenti apparecchi come limitatori di conduttività e regolatori di spurgo continuo di caldaie a vapore:

Regolatore di conduttività LRR 1-51 Regolatore di conduttività LRR 1-53 Regolatore KS 90-1

I trasmettitori di conduttività possono essere usati come apparecchi per monitoraggio conduttività delle condense in sistemi di trattamento acque.

I **trasmettitori di conduttività LRGT 16-1, LRGT 17-1** sono maggiormente utilizzati in caldaie a vapore con bassi contenuti di TDS, p.e. rigeneratori di vapore, caldaie ad alta pressione o serbatoi di condensato.

Il trasmettitore di conduttività LRGT 16-1 è anche approvato per il monitoraggio di acque alimento di caldaie a bordo di navi.

Il **trasmettitore di conduttività LRGT 16-2** è principalmente usato in caldaie industriali operanti con pressioni sino a PN 40 e conduttività massima ammessa, secondo TRD/EN, di 6000 μS/cm.

Note di sicurezza

L'apparecchio deve essere installato, collegato e messo in esercizio solo da personale competente e qualificato.

Lavori di manutenzione e retrofitting devono essere eseguiti solo da personale qualificato che, dopo adeguati training, abbia raggiunto un notevole livello di competenze.

Pericolo

Allentando la sonda di conduttività vapore o acqua calda usciranno violentemente! Sono possibili gravi ustioni su tutto il corpo!

E' essenziale, perciò, non rimuovere la sonda senza aver controllato che la pressione sia a 0 bar.

La sonda può essere molto calda durante il funzionamento.

Rischio di ustioni gravi a mani e braccia.

Prima di iniziare lavori di installazione o manutenzione assicurarsi che la sonda sia fredda.

Attenzione

La targhetta dati specifica le caratteristiche tecniche dell'apparecchio. Non mettere in esercizio o utilizzare apparecchiature che non siano provviste di targhetta dati.

Direttive e Normative standard

Direttiva PED (Pressure Equipment Directive) 97/23/EC

Gli apparecchi di controllo e monitoraggio conduttività LRGT 1..-.., LRR 1-5..., KS 90-1 soddisfano i requisiti di sicurezza della PED (Pressure Equipment Directive). Gli apparecchi di controllo e monitoraggio conduttività sono approvati EC secondo EN 12952/EN 12953. Queste direttive si occupano, oltre ad altri particolari, di sistemi di limitazione e apparecchi per caldaie a vapore e per impianti per acqua calda (pressurizzata).

Bollettino VdTÜV "Water Monitoring 100"

I trasmettitori di conduttività LRGT 16-1, LRGT 16-2, LRGT 17-1 in combinazione con i seguenti regolatori di conduttività costituiscono un gruppo approvato secondo il bollettino VdTÜV "Wasserstand (= Livello acqua) 100": LRR 1-51, LRR 1-53, regolatore industriale KS 90-1.

Il bollettino VdTÜV "Water Monitoring 100" specifica le caratteristiche di apparecchi per monitoraggio acqua.

Approvazioni per applicazioni a bordo di navi

Il trasmettitore di conduttività LRGT 16-1 è approvato per applicazioni a bordo di navi. Vedere foglio tecnico.

Direttiva LV (Bassa tensione) e EMC (Compatibilità elettromagnetica)

I trasmettitori di conduttività LRGT 16-1, LRGT 16-2, LRGT 17-1 soddisfano le richieste della direttiva "Low Voltage Directive 2006/95/EC" e della direttiva "EMC 2004/108/EC."

ATEX (Atmosphère Explosible)

Secondo la direttiva europea 94/9/EC l'apparecchio **non** può essere usato in zone con rischio d'esplosione.

Note su Dichiarazione di conformità / Dichiarazione del costruttore C€

Per dettagli sulle conformità degli apparecchi alle direttive europee, riferirsi alle nostre Dichiarazioni di conformità / Dichiarazioni del costruttore.

La Dichiarazione di conformità / Dichiarazione del costruttore sono reperibili in Internet all'indirizzo www.gestra.com → documents oppure possono essere richiesti alla nostra società.

Dati tecnici

LRGT 16-1, LRGT 16-2, LRGT 17-1

Pressione di servizio

LRGT 16-1: 32 bar a 238°C LRGT 16-2: 32 bar a 238°C

LRGT 17-1: 60 bar a 275°C

Attacco

Filettato 1" A. ISO 228

Materiali

Corpo filettato: 1.4571, X6CrNiMoTi17-12-2 elettrodo (i) di misura: 1.4571, X6CrNiMoTi17-12-2

Isolamento elettrodo: PTFE Custodia: 3.2161 G AlSi8Cu3

LRGT 16-1, LRGT 17-1: Tubo di misura / vite: 1.4571, X6CrNiMoTi 17-12-2

LRGT 16-1, LRGT 16-2: Dischi distanziatori PTFE/PEEK

LRGT 17-1: Dischi distanziatori PEEK HT

Lunghezze d'immersione e d'ingombro (l'elettrodo non può essere tagliato)

LRGT 16-1, LRGT 17-1: 200, 300, 400, 500, 600, 800, 1000 mm (per applicazioni a bordo di navi:

max. 400 mm)

LRGT 16-1: 180, 300, 380, 500, 600, 800, 1000 mm

Sensore di temperatura

Termoresistenza Pt 1000

Scheda elettronica

Alimentazione

24 V cc +/- 20%

Potenza

4.5 W

Fusibile

Fusibile termico elettronico T_{max} = 85 °C. isteresi – 2 K.

Ciclo di misura

1 sec.

Compensazione di temperatura

Lineare, Tk aggiustabile tramite interruttori di codice:

- 0 % per °C.
- 1.6 3.0 % per °C con incrementi di 0.1

Costante di tempo T

(determinata tramite due bagni)

Temperatura: 9 sec., conduttività: 14 sec

Pulsanti e indicatori

2 LED per messaggi di stato

1 interruttore a 10 poli per selezione di:

- campo di misura
- coefficiente di temperatura
- costante di cella
- test di funzionalità

Connessioni elettriche

Pressacavo EMC con blocco integrato, M 20 x 1.5, morsettiera a cinque poli, staccabile, per conduttori da 1.5 mm²

Dati tecnici - continua -

LRGT 16-1, LRGT 16-2, LRGT 17-1 - continua -

LRGT 16-1, LRGT 17-1

Campi di misura*) (μS/cm a 25 °C) Campi di misura preferenziali sino a 500 μS/cm		Corrente d'usci	ta mA = μS/cm
		4 mA corrisponde a	20 mA corrisponde a
	20		20
	100	0,5	100
	200		200
0.5	500		500
0,5	1000		1000
	2000		2000
	6000		6000
	12000		12000

LRGT 16-2

Campi di misura*) (µS/cm a 25 °C)		Corrente d'usci	ta mA = μS/cm
		4 mA corrisponde a	20 mA corrisponde a
	3000		3000
100	5000	100	5000
100	7000	100	7000
	10000		10000

La selezione dei campi sopra citati è fatta tramite l'interruttore di codice. Carico massimo sull'uscita 750 ohm. *) Conversione μS/cm in ppM (parti per milione): 1 μS/cm = 0.5 ppM

Protezione

IP 65 secondo EN 60529

Temperatura ambiente ammessa

Max. 70°C

Campo di temperatura di trasporto e magazzinaggio

-40 a + 80 °C

Peso

Circa 2,5 kg

Approvazioni

Certificato TÜV Bollettino VdTÜV "Wasserüberwachung 100"

(= Water Monitoring 100):

Requisiti per apparecchi di monitoraggio acqua Approvazione di tipo N°. TÜV . WÜL . 11-003, 12-017

(vedere targhetta dati)

Per applicazioni a bordo di navi LRG 16-1: GL 33254-06 HH

Dati tecnici - continua

Composizione della fornitura

LRG 16-1

- 1 Trasmettitore di conduttività LRGT 16-1
- 1 Guarnizione 33 x 39, forma D. DIN 7603, 1,4301, ricotto in bianco
- 1 Manuale d'installazione

LRG 16-2

- 1 Trasmettitore di conduttività LRGT 16-2
- 1 Guarnizione 33 x 39, forma D, DIN 7603, 1.4301, ricotto in bianco
- 1 Manuale d'installazione

LRG 17-1

- 1 Trasmettitore di conduttività LRGT 17-1
- 1 Guarnizione 33 x 39, forma D, DIN 7603, 1.4301, ricotto in bianco
- 1 Manuale d'installazione

Targhetta dati / Marcature

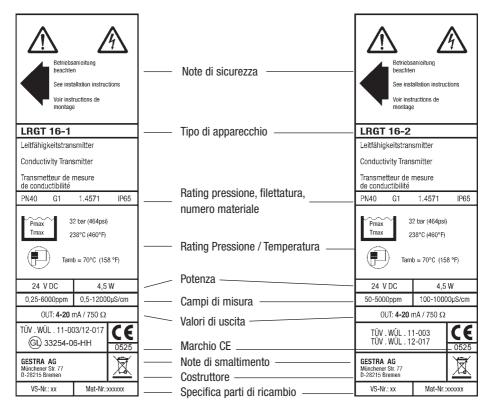


Fig. 1

Installazione

Dimensioni LRGT 16-1, LRGT 16-2, LRGT 17-1

10

Installazione - continua -

Note

- Per la costruzione del tronchetto esterno con flangia devono essere considerate le normative locali.
- Esempi di installazione tipici a pagina 12.

LRGT 16-1 (per applicazioni a bordo di navi)

- Massima lunghezza ammessa: 400 mm
- Durante l'installazione del trasmettitore di conduttività a bordo di navi assicurarsi che sia adequatamente fissato e che non possa inavvertitamente allentarsi.

Attenzione

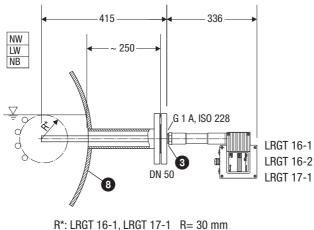
- Installare il trasmettitore di conduttività in posizione orizzontale o con inclinazione verso la verticale.
 La superficie(i) di misura deve essere permanentemente a contatto con il liquido.
- La superficie di appoggio della guarnizione e la filettatura sul tronchetto o sulla flangia devono essere accuratamente lavorate.
- Usare sono la guarnizione fornita 33 x 39, forma D, DIN 7603, in acciaio 1.4301, ricotto in bianco!
- Non coibentare il corpo della sonda sopra la sezione esagonale.
- Non utilizzare PTFE o canapa per la tenuta della sonda!
- Non applicare paste conduttive o grassi sulla filettatura della sonda!
- Le coppie di serraggio specificate devono essere strettamente osservate.

LRGT 16-1, LRGT 17-1

- Prevedere uno spazio di circa 30 mm tra la parte inferiore del tubo di misura e la parete della caldaia, tubi di fumo e altre parti metalliche come pure con la sonda di basso livello (LW).
- Non tagliare l'elettrodo e neppure il tubo di misura!

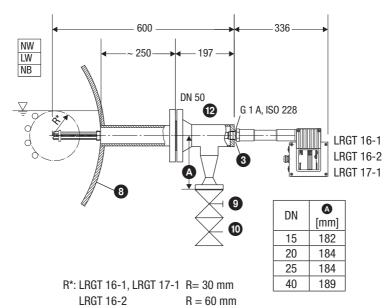
LRGT 16-2

- Prevedere uno spazio di circa 60 mm tra la parte inferiore degli elettrodi di misura e la parete della caldaia, tubi di fumo e altre parti metalliche come pure con la sonda di basso livello (LW).
- Non tagliare gli elettrodi di misura.
- Non sottoporre gli elettrodi di misura a colpi violenti.
- Non piegare gli elettrodi di misura durante il montaggio.
- Posizionare i dischi distanziatori (per elettrodi superiori a 800 mm) sugli elettrodi ad eguale distanza.


Montaggio del trasmettitore di conduttività

- 1. Controllare la superficie di tenuta. Fig. 4
- 2. Posizionare la guarnizione fornita 3 sulla sede di tenuta del tronchetto filettato oppure sulla flangia.
- 3. Applicare una piccola quantità di grasso al silicone resistente alle temperature (e. g. WINIX® 2150) sulla filettatura della sonda **⑤**.
- Avvitare il trasmettitore di conduttività sul tronchetto filettato o sulla flangia e serrare con chiave da 41 mm. La coppia di serraggio richiesta a freddo è 150 Nm.

Esempi di installazione


LRGT 16-1, LRGT 16-2, LRGT 17-1

Monitoraggio conduttività, installazione diretta del trasmettitore su tronchetto a lato della caldaia.

R*: LRGT 16-1, LRGT 17-1 R= 30 mm Fig. 5 LRGT 16-2 R = 60 mm

Monitoraggio conduttività e spurgo continuo caldaia, installazione diretta del trasmettitore di conduttività tramite connessione a ' T ' con connessione della valvola di spurgo.

12

Fig. 6

Esempi di installazione - continua -

LRGT 16-1, LRGT 16-2, LRGT 17-1 - continua -

Monitoraggio conduttività e spurgo continuo caldaia, installazione della trasmettitore di conduttività su linea di spurgo tramite barilotto separato.

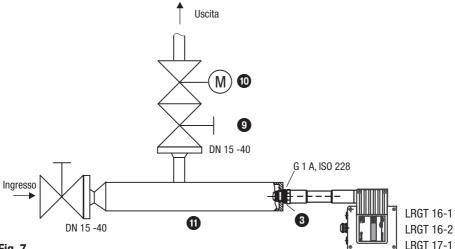
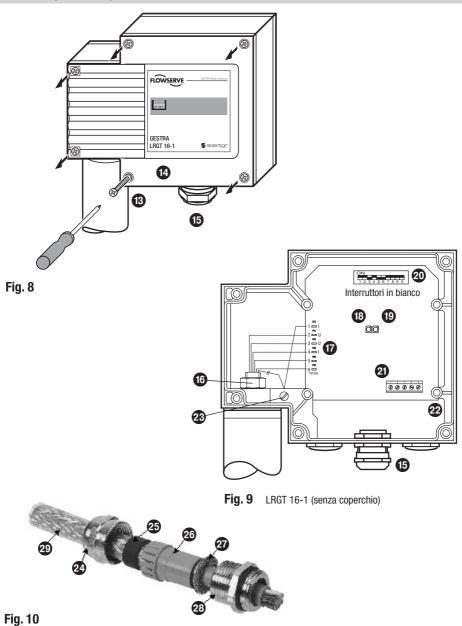


Fig. 7

Legenda

- Misure d'immersione e di installazione
- 2 Superficie di misura
- 3 Guarnizione 17 x 21 forma D secondo DIN 7603, 1.4301, ricotto in bianco
- 4 Grano M 2.5 DIN 913
- 5 Filettatura sonda G 1 A, ISO 228
- 6 Isolamento termico, da prevedere sul posto, spessore = 20 mm (all'esterno dell'isolamento termico della caldaia)


- Disco distanziatore (solo LRGT 16-2 da 800 mm in su)
- 8 Mantello caldaia
- 9 Valvola d'intercettazione GAV
- 10 Valvola di spurgo continuo BAE
- Barilotto
- 12 Connessione a 'T', a lato caldaia, DN 50
- 15 Pressacavo FMC M 20 x 1.5

Attrezzi

- Chiave fissa 41 mm
- Chiave per vite a brugola. dimensione 1.3
- Cacciaviti, dimensioni 1 e 2

Connessioni elettriche

LRGT 16-1, LRGT 16-2, LRGT 17-1

Connessioni elettriche continua

Collegamento del trasmettitore di conduttività

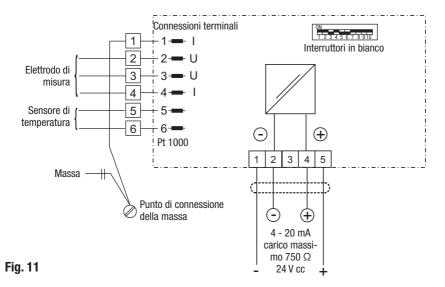
Un dado auto bloccante © collega la custodia all'elettrodo. La custodia può essere ruotata di +/- 180° per il miglior posizionamento dei cavi.

Per il collegamento dell'apparecchio utilizzare cavo schermato multi filo con sezione minima di 0.5 mm², p.e. LiYCY 4 x 0.5 mm², lunghezza massima: 100 m.

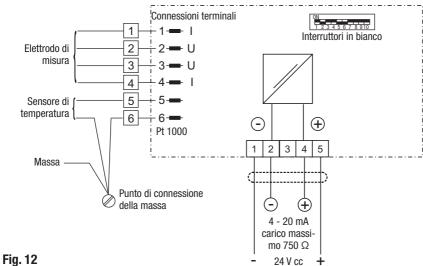
Assicurarsi che i cavi di collegamento dell'apparecchio siano nettamente separati e distanziati dai cavi di potenza.

Connessioni per LRGT 16-1, LRGT 16-2, LRGT 17-1

- 1. Svitare le viti 3 e togliere il coperchio 4. Fig. 8
- 2. Staccare la morsettiera **a** dalla scheda elettronica.
- Allentare il dado del pressacavo e togliere l'inserto lamellare fig. 10
- Tagliare la guaina del cavo
 ⊕ ed esporre lo schermo ⊕ per circa
 10 15 mm.
- 5. Inserire il dado 2 l'inserto lamellare 2 e l'anello di tenuta 2 sul cavo.
- 6. Ripiegare lo schermo verso l'esterno ad angolo retto (90°).
- 7. Ripiegare lo schermo 2 verso l'interno, ovvero di altri180°.
- 8. Spingere l'inserto lamellare ② con l'anello di tenuta ③ nel corpo ③, ruotare brevemente in entrambe le direzioni, spezzare quindi l'elemento anti rotazione.
- 9. Serrare con forza il dado 29.
- 10. Collegare i singoli conduttori alla morsettiera secondo lo schema elettrico 21.
- 11. Inserire la morsettiera 2 sulla scheda elettronica.
- 12. Rimettere il coperchio 14 e fissare le viti 15.


Legenda

- 13 Viti del coperchio (testa a croce M4)
- 14 Coperchio della custodia
- 15 Pressacavo EMC M 20 x 1.5
- 16 Dado di fissaggio custodia
- Attacchi per conduttori dell'elettrodo, e per la massa
- 18 LED 1 verde
- 1 FD 2 rosso
- 20 Interruttore per codici


- 2 Morsettiera
- 22 Viti di fissaggio scheda elettronica
- 23 Connessioni per la massa
- 24 Dado
- 25 Anello di tenuta
- 26 Inserto lamellare
- 27 Schermo a maglia
- 28 Corpo del pressacavo
- 29 Cavo schermato

Connessioni elettriche continua -

Schema collegamenti per trasmettitori LRGT 16-1, LRGT 17-1

Schema collegamenti per trasmettitori LRGT 16-2

Connessioni elettriche continua -

Alimentatore di sicurezza per LRGT 16-1, LRGT 16-2, LRGT 17-1

I trasmettitori devono essere alimentati con una tensione continua di 24 Vcc proveniente da alimentatore di sicurezza, per esempio Siemens Sitop PSU100C 24V/0,6A; questo alimentatore prevede un livello di isolamento contro i contatti pericolosi come per DIN EN 50178 oppure DIN EN 61010-1 oppure DIN EN 60730-1 o anche DIN EN 60950 (separazione elettrica di protezione). L'alimentatore deve essere equipaggiato con un dispositivo di protezione secondo DIN EN 61010-1.

Attrezzi

- Cacciavite dimensione 1
- Cacciavite dimensione 2,5, completamente isolato secondo VDE 0680-1

Valori impostati in fabbrica

I trasmettitori di conduttività vengono impostati in fabbrica con i sequenti valori di default:

LRGT 16-1, LRGT 17-1

■ Campi di misura: 0.5 µS/cm - 500 µS/cm (a 25°C) come campo di misura preferito

■ Coefficiente di temperatura 2.1 (% / °C)

LRGT 16-2

■ Campi di misura: $100 \mu \text{S/cm} - 7000 \mu \text{S/cm}$ (a 25°C)

■ Coefficiente di temperatura 2.1 (% / °C)

Procedura di primo avviamento

Inserimento tensione di alimentazione

Controllare che il trasmettitore di conduttività sia collegato come mostrato sullo schema (Fig. 11, 12, page 16) e quindi applicare tensione.

Scelta del campo di misura e dei valori di uscita

Per selezionare i parametri del trasmettitore aprire la custodia e utilizzare il micro interruttore a 10 poli. Il micro interruttore serve anche per variare la costante di cella onde poter eseguire un corretto aggiustaggio. I valori impostati in fabbrica sono evidenziati nelle tabelle in grigio.

- Stabilire il campo di misura di conduttività del trasmettitore in funzione della conduttività dell'acqua di caldaia.
- Impostare il campo di misura desiderato utilizzando il microinterruttore. Per selezionare i singoli interruttori utilizzare una penna a sfera.

LRGT 16-1, LRGT 17-1

C	odice interrutto	ri	Campi di misura (µS/cm a 25 °C) 4 mA		Corrente d'usci	ta mA = μS/cm
1	2	3			4 mA corrisponde a	20 mA corrisponde a
0FF	0FF	0FF		20		20
ON	0FF	0FF		100		100
0FF	ON	0FF		200		200
ON	ON	0FF		500		500
Valore impostato in fabbrica		0,5	500	0,5	300	
0FF	0FF	ON		1000		1000
ON	0FF	ON		2000		2000
0FF	ON	ON		6000		6000
ON	ON	ON		12000		12000

LRGT 16-2

C	Codice interruttori				Corrente d'usci	ta mA = μS/cm
1	2	3	Campi di misura (μS/cm a 25 °C)		4 mA corrisponde a	20 mA corrisponde a
0FF	0FF	0FF		3000		3000
ON	0FF	0FF	100	5000		5000
0FF	ON	0FF		7000	100	7000
Valore	impostato in fa	bbrica		7000		7000
ON	ON	0FF		10000		10000

Procedura di primo avviamento - continua -

Scelta del campo di misura e dei valori di uscita - continua -

Note

Applicando tensione (durante l'avviamento) il primo valore di corrente in uscita sarà 4 mA, la corrente quindi salirà gradualmente fino a raggiungere il valore di funzionamento.

Controllo del coefficiente di temperatura T_K

Il valore T_k impostato in fabbrica, per una compensazione lineare riferita a 25°C, è: 2.1 % per °C. Con temperatura di servizio della caldaia raggiunta è possibile variare questa impostazione eseguendo una misura di comparazione.

Se si nota una deviazione tra il valore indicato di conduttività e il valore misurato, correggere la lettura del trasmettitore impostando un basso o un alto coefficiente di temperatura T_k . Continuare a modificare il T_k gradino per gradino sino a che il valore di conduttività indicato sia accettabile. Attendere da 1 a 2 minuti dopo ogni gradino affinché i valori si stabilizzino.

Codice i	nterrutto	ri		Coefficiente di temperatura T _K (% / °C)
4	5	6	7	
0FF	0FF	0FF	0FF	0 (non compensato)
ON	0FF	0FF	0FF	1,6
0FF	ON	0FF	0FF	1,7
ON	ON	0FF	0FF	1,8
0FF	0FF	ON	0FF	1,9
ON	0FF	ON	0FF	2,0
0FF	ON	ON	0FF	2.1
Valor	e impost	ato in fab	brica	2,1
ON	ON	ON	0FF	2,2
0FF	0FF	0FF	ON	2,3
ON	0FF	0FF	ON	2,4
0FF	ON	0FF	ON	2,5
ON	ON	0FF	ON	2,6
0FF	0FF	ON	ON	2,7
ON	0FF	ON	ON	2,8
0FF	ON	ON	ON	2,9
ON	ON	ON	ON	3,0

Funzionamento

Correzione del valore misurato

- Se viene rilevata una differenza tra il valore di conduttività indicato ed il valore effettivo si può correggere tale differenza modificando il T_κ (coefficiente di temperatura). Per informazioni sulla taratura e come procedere vedere a pagina 19.
- Solo se il coefficiente di temperatura non è sufficiente per la compensazione sarà necessario modificare la costante di cella.

Correzione della costante di cella

La costante di cella è determinata dalla caratteristica geometrica della sonda e influenza il calcolo della conduttività. Questa costante, durante il funzionamento, può variare, p.e. per l'accumulo di sporcizia.

- In funzione della deviazione spostare gli interruttori 8 o 9 brevemente su ON e guindi su OFF.
- Ripetere questa procedura gradino per gradino fino a che il valore indicato sia corretto.
- Se il trasmettitore di conduttività ed il regolatore sono lontani quest'operazione dovrà essere eseguita con l'aiuto di una seconda persona oppure misurando la corrente di uscita del trasmettitore.
- Se la taratura non è possibile smontare il trasmettitore e pulire le superfici di misura della sonda.

Note

La costante di cella può essere riportata al valore di default. Per far questo spostare gli interruttori 8 e 9 simultaneamente su ON e dopo circa uno secondo ritornare su OFF. Ripetere la procedura di **correzione dalla costante di cella** sino ad ottenere lo stesso valore di conduttività letta e misurata.

Deviazioni dalla conduttività	Codice interruttori			Indicatori a LED	
indicata	8	9	Funzione	verde	rosso
nessuna	0FF	0FF	Nessun cambio		
Valore indicato sotto il valore misurato di riferimento	ON	0FF	Costante di cella aumenta		lampeggia velocemente
Valore indicato sopra il valore misurato di riferimento	0FF	ON	Costante di cella diminuisce	lampeggia velocemente	
	ON	ON	Ristabilisce i valori impostati in fabbrica		mpeggiano mente

Funzionamento - continua -

Prova di funzionamento

- Per la prova di funzionamento del trasmettitore selezionare l'interruttore di codice 10 su ON per simulare un valore che supera il campo di misura e una corrente di uscita di 20 mA.
- 2. Dopo la simulazione riportare l'interruttore su OFF.

Interruttore 10	Prova di funzionamento
0FF	Funzionamento normale
ON	Simulazione: campo di misura superato

Indicatori a LED

I due LED al centro della scheda elettronica indicano lo stato del trasmettitore di conduttività.

Funzionamento normale	LED verde	LED rosso	Corrente di uscita [mA]
Conduttività da 0 a + 10 % del campo di misura		illuminato	proporzionale al campo di misura
Conduttività da 10 a + 90 % del campo di misura	illuminato	illuminato	proporzionale al campo di misura
Conduttività da 90 a + 100 % del campo di misura	illuminato		proporzionale al campo di misura

Ricerca guasti

Indicazioni, diagnosi e rimedi

Attenzione

Prima di iniziare la ricerca guasti controllare:

Tensione di alimentazione:

L'apparecchio è alimentato con la tensione specificata sulla targhetta dati?

Collegamenti:

I collegamenti sono conformi allo schema elettrico?

Anomalie			
L'apparecchio non funziona accuratamente			
Errore	Rimedio		
L'indicazione della conduttività è più grande del valore effettivo.	Ridurre il coefficiente di temperatura T_k . Ridurre la costante di cella durante il funzionamento.		
L'indicazione della conduttività è minore del valore effettivo.	Aumentare il coefficiente di temperatura T_k . Aumentare la costante di cella durante il funzionamento.		
Cambiando i valori della costante di cella non si ottengono i valori desiderati.	Rimuovere la sonda di conduttività, pulire la superficie di misura e/o l'elettrodo.		

L'apparecchio non funziona			
Errore	Rimedio		
Guasto dell'alimentazione.	Inserire tensione di alimentazione Controllare tutte le connessioni elettriche.		
Scheda elettronica difettosa	Sostituire la scheda		
Il collegamento di massa con la caldaia è interrotto.	Pulire la sede e la filettatura della sonda unitamente alla guarnizione 33 x 39, forma D, DIN 7603 (acciaio 1.4301), ricotto in bianco. Non utilizzare PTFE o canapa per la tenuta!		

Indicazioni anomalie (LED)				
Visualizzazione	Corrente di uscita [mA]	Errore	Rimedio	
LED rosso lampeggia	0	Linee dell'elettrodo interrotte oppure superficie di misura non immersa.	Controllare le connessioni della sonda (scheda elettronica, terminali 1-4). Se necessario sostitui- re l'apparecchio. Controllare il livello dell'acqua e l'installazione.	
LED rosso lampeggia	4	Valore sotto lo 0%, p.e. su- perficie di misura/elettrodo non immersi.	Controllare il livello dell'acqua e l'installazione.	

Ricerca guasti - continua -

Indicazioni, diagnosi e rimedi - continua -

Anomalie					
Indicazioni anomalie (LED)					
Visualizzatore	Corrente di uscita [mA]	Errore	Rimedio		
LED rosso lampeggia	0	Cortocircuito conduttori elettrodo	Controllare le connessioni della sonda (scheda elettronica, terminali 1-4). Se necessario sostituire l'apparecchio.		
LED verde lampeggia	20	Valore di Setpoint oltre 100%, p.e. campo di misura troppo stretto.	Impostare un campo di misura più grande.		
I LED rosso e verde lampeggiano.	0	La temperatura della custodia supera 85°C.	Controllare la temperatura ambiente, assicurarsi che non superi 70°C.		
I LED rosso e verde lampeggiano alternativamente.	0,5	Le connessioni della termo- resistenza sono interrotte o in cortocircuito. Termoresistenza difettosa.	Controllare le connessioni della termoresistenza (scheda elettronica, terminali 5-6). Se necessario, sostituire l'apparecchio.		

Sostituzione della scheda elettronica

- 1. Allentare le viti 13 e togliere il coperchio 14.
- 2. Sfilare i conduttori dell'elettrodo dagli 🕡 dalla scheda elettronica. Staccare la morsettiera 21.
- 3. Togliere la connessione 3 di massa.
- Togliere le viti di fissaggio ② della scheda elettronica e toglierla.
 La scheda elettronica è ottenibile come parte di ricambio (tipo LRV 1-40 per LRGT 16-1, LRGT 17-1, tipo LRV 1-42 per LRGT 16-2).
- 5. Installare la nuova scheda con ordine inverso.

Note

Nel caso di ordini di parti di ricambio si prega di indicare la versione e il numero del materiale indicato sulla targhetta dati.

Dopo la sostituzione della scheda elettronica controllare la lettura del regolatore LRR 1-51, LRR 1-53, e KS 90-1 e avviare la procedura di comparazione.

Se esistono differenze, correggere la costante di cella del trasmettitore di conduttività.

Se il vostro guasto non compare in questo elenco, vi preghiamo di contattare i nostri uffici tecnici o le agenzie autorizzate.

Manutenzione

Note di sicurezza

L'apparecchio deve essere installato, collegato e messo in esercizio solo da personale competente e qualificato.

Lavori di manutenzione e retrofitting devono essere eseguiti solo da personale qualificato che, dopo adeguati training, abbia raggiunto un notevole livello di competenze.

Pericolo

Allentando la sonda di conduttività vapore o acqua calda usciranno violentemente! Sono possibili gravi ustioni su tutto il corpo!

E' essenziale, perciò, non rimuovere la sonda senza aver controllato che la pressione sia a 0 bar.

La sonda può essere molto calda durante il funzionamento.

Rischio di ustioni gravi a mani e braccia.

Prima di iniziare lavori di installazione o manutenzione assicurarsi che la sonda sia fredda.

Pulizia della sonda

L'apparecchio deve essere installato e rimosso solo da personale competente e qualificato. Vedere le note del capitolo "Installazione" a pagina 11.

Prima di pulire l'elettrodo di misura smontare e rimuovere il trasmettitore di conduttività.

LRGT 16-1, LRGT 17-1

Poi togliere la vite di sicurezza 4 e svitare il tubo misura 2 a mano, pulire l'elettrodo e la superficie di misura. Fig. 2

LRGT 16-2

Pulire gli elettrodi di misura.

- Utilizzare uno strofinaccio pulito per eliminare i depositi.
- Utilizzare carta vetrata (grana media) per togliere incrostazioni e depositi.

Rimozione e smaltimento del trasmettitore di conduttività

Rimozione e smaltimento del trasmettitore di conduttività LRGT 16-1, LRGT 16-2, LRGT 17-1

- 1. Togliere tensione di alimentazione.
- 2. Allentare le viti 13 e togliere il coperchio 14.
- 3. Scollegare i conduttori dalla morsettiera terminale 2 e sfilare i conduttori dal pressacavo.
- 4. Assicurarsi che l'apparecchio non sia né caldo né sotto pressione prima di rimuoverlo.

Per lo smaltimento dell'apparecchio osservare le regolamentazioni concernenti lo smaltimento dei rifiuti.

Per le vostre note

Per le vostre note

Per le vostre note

Agenzie in tutto il mondo:

www.gestra.com

Italia

Flowserve s.r.l.

Flow Control Division Via Prealpi, 30/32 I-20032 Cormano (MI)

Tel. 0039 02 / 66 32 51 Fax 0039 02 / 66 32 55 60 E-mail: infoitaly@flowserve.com Web www.flowserve.com

GESTRA AG

P. O Box 10 54 60, D-28054 Brema Münchener Str. 77, D-28215 Brema Tel. 0049 (0) 421 / 35 03-0 Fax 0049 (0) 421 / 35 03-393 E-mail gestra.ag@flowserve.com Web www.gestra.com

