Energie Rinnovabili

DL SOLAR-A

SISTEMA PER LO STUDIO DELL'ENERGIA SOLARE FOTOVOLTAICA

Sistema didattico per lo studio teorico-pratico delle installazioni di energia solare fotovoltaica.

Il sistema è montato su una struttura mobile per poter essere portato nel luogo più adatto per lo svolgimento delle esercitazioni pratiche, in modo che il pannello fotovoltaico possa ricevere la radiazione solare.

In uno dei lati si trova il pannello fotovoltaico, la cui inclinazione può essere variata da 0° a 90°, e la cellula calibrata per misurare l'irradiazione solare. Sul lato opposto si trovano tutti i componenti di una installazione fotovoltaica di base per fornire 12 V in corrente continua e 230 V in corrente alternata.

Energie Rinnovabili

ESERCITAZIONI CHE SI POSSONO REALIZZARE

- Identificazione di tutti i componenti del sistema e della loro funzione
- Misura dell'irradiazione solare
- Misura dei parametri di tensione e corrente del pannello fotovoltaico
- Programmazione del regolatore di carica
- Analisi dell'installazione del sistema
- Fornitura di energia in corrente continua
- Fornitura di energia in corrente alternata

ELENCO DEI COMPONENTI

- Pannello fotovoltaico da 50 W a 12 V
- Cellula per la misura dell'irradiazione solare
- Regolatore elettronico di carica programmabile, con ampio schermo LCD
- Inverter per ottenere tensione alternata a 230 V, 150 Wp semisinusoidale
- Batteria da 17 A/h
- Lampade usate come carico da 12 V e 230 V, 50 W
- Strumento per la misura dell'irradiazione solare in W/m²
- Strumento per la misura della corrente di carica
- Due interruttori magnetotermici di protezione

Il sistema viene fornito con manuale descrittivo e di esercitazioni

DIMENSIONI DELLA BASE: 400 x 610 mm.

ALTEZZA CON IL PANNELLO A 45°: 900 mm.

Energie Rinnovabili

DL SOLAR-B TRAINER MODULARE PER LO STUDIO DELL'ENERGIA SOLARE FOTOVOLTAICA

Trainer modulare per lo studio teorico e pratico di installazioni elettriche con energia solare fotovoltaica.

Si compone di:

- Un modulo inclinabile fotovoltaico, 90W, 12V, completo di cella per la misura dell'irradiazione solare e sensore di misura della temperatura del pannello.
- Un telaio di supporto per i moduli.
- Una batteria.
- Un modulo di controllo batteria, 12V, 32A.
- Un modulo di carico che include due lampadine da 12V, dicroica 35W e a LED 3W, con interruttori indipendenti.
- Un modulo di carico che include due lampadine da 230V, dicroica 35W e a LED 3W, con interruttori indipendenti.
- Un modulo di regolazione elettronica con schermo LCD.
- Un reostato.
- Un modulo per la misura di: irradiazione solare (W/m²), temperatura del pannello solare (°C), corrente fino a 30V, ± 15A (due amperometri in cc), tensione fino a 40V e potenza fino a 300W.
- Un modulo convertitore da cc a ca con uscita di rete a 230 V.
 Potenza media: 300W.

Il trainer è completo di cavi di collegamento e manuale degli esperimenti.

Il trainer è completo di software per acqusizione ed elaborazione di dati.

Opzione:

- DL SIMSUN: modulo con lampade per un utilizzo all'interno della classe.

Energie Rinnovabili

DL SOLAR-C

MODULO PER LO STUDIO DELL'ENERGIA SOLARE FOTOVOLTAICA

Modulo per lo studio teorico-pratico delle applicazioni dell'energia solare fotovoltaica in un'abitazione.

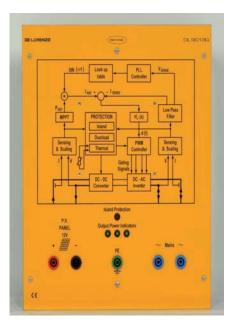
Composto da:

- Un pannello di simulazione con la rappresentazione grafica di una casa, completa di lampade, interruttori, motore per l'estrazione di acqua, ecc.
- Sei moduli fotovoltaici con boccole da 2 mm. Per esperienze di configurazioni serie, parallelo e miste e per la misura di tensioni e correnti in funzione dell'irradiazione solare.
- Una batteria per esperienze di accumulo d'energia.
- Un multimetro digitale per effettuare le misure.
- Un ponte di illuminazione sui moduli fotovoltaici con 2 lampade dicroiche da 50 W e un regolatore elettronico della luce. E' possibile cambiare l'inclinazione del ponte da 0 a 90° e l'intensità della luce in modo da simulare all'interno della classe l'effetto dell'irradiazione solare nelle differenti ore del giorno.

Completo di contenitore in ABS e di manuale degli esperimenti.

Dimensioni del trainer: 486 x 289 x 70 mm. Dimensioni della scatola: 520 x 370 x 120 mm.

Energie Rinnovabili


DL SOLAR-D1

SISTEMA PER LO STUDIO DELL'ENERGIA SOLARE FOTOVOLTAICA CON COLLEGAMENTO ALLA RETE

Sistema didattico per lo studio della generazione di energia elettrica con pannelli fotovoltaici e della sua immissione nella rete di distribuzione elettrica.

Energie Rinnovabili

Si compone di:

- Un pannello inclinabile fotovoltaico, 90W, 12V, completo di cella per la misura dell'irradiazione solare e sensore di misura della temperatura del pannello.
- Un telaio di supporto per i moduli.
- Un modulo di carico che include due lampadine da 230V, dicroica 35W e a LED 3W, con interruttori indipendenti.
- Un reostato, 6 A, 80 W.
- Un interruttore magnetotermico differenziale.
- Un modulo per la misura di: irradiazione solare (W/m²), temperatura del pannello solare (°C), corrente (due amperometri in cc), tensione e potenza.
- Un modulo convertitore grid da cc a ca con uscita a 230V.
 Potenza media: 300W.
- Un modulo per la misura dell'energia elettrica in kW/h.

Il trainer è completo di cavi di collegamento e manuale degli esperimenti. Il trainer è completo di software per acqusizione ed elaborazione di dati.

Opzioni:

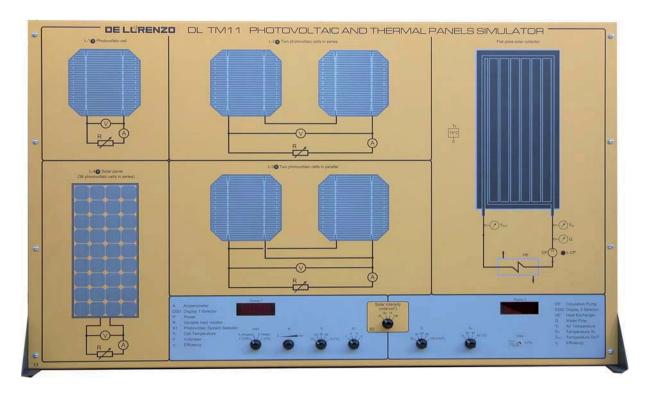
- **DL SIMSUN**: modulo con lampade per fornire un'adeguata illuminazione al pannello solare per un utilizzo all'interno della classe.

Energie Alternative

DL SIMSUN PANNELLO CON LAMPADE PER TRAINER FOTOVOLTAICI

Questo prodotto viene utilizzato per fornire la giusta illuminazione ai moduli solari fotovoltaici che vengono utilizzati nei trainer De Lorenzo: DL SOLAR-B, DL SOLAR-D1 e DL SUN-WIND.

L'intensità della luce può essere regolata manualmente tramite un potenziometro o controllata automaticamente tramite un ingresso 0-10 V, per consentire di eseguire esperimenti con diverse intensità luminose, quindi simulando le condizioni di luce dall'alba al tramonto.


Il DL SIMSUN include i seguenti componenti principali:

- 4 lampade alogene da 300 W ciascuno
- Dimmer per controllare l'intensità della luce
- Interruttore magneto-termico, differenziale 10 A
- Potenziometro, 10k

Energie Rinnovabili

DL TM11

SIMULATORE DI PANNELLI FOTOVOLTAICI E TERMICI

Il simulatore permette lo studio, la sperimentazione e la ricerca guasti relativamente ai seguenti componenti e sistemi:

- cella fotovoltaica di silicio monocristallino squadrata da 135 mm di lato;
- due celle fotovoltaiche collegate in serie;
- due celle fotovoltaiche collegate in parallelo;
- pannello di 36 celle fotovoltaiche collegate in serie;
- pannello termico a circolazione di liquidi.

Tali componenti e sistemi sono riprodotti sul pannello, tramite sinottico a colori che ne permette una analisi completa delle caratteristiche tecniche.

E' possibile simulare il comportamento di componenti e sistemi, in base alle condizioni operative che studenti ed insegnanti possono gestire direttamente sul pannello o attraverso il personal computer.

Quest'ultimo mantiene costantemente sotto controllo la simulazione in atto, visualizzandone l'andamento tramite segnali ed indicatori analogici e digitali; in tal modo lo studente, attraverso opportune misure e test, può procedere alla ricerca guasti.

Energie Rinnovabili

La sperimentazione sui sistemi fotovoltaici (sopra descritti) è così organizzata:

- possibilità di simulare diversi valori della intensità della radiazione solare (W/m);
- possibilità di simulare diversi valori della temperatura delle celle fotovoltaiche;
- possibilità di variare il carico elettrico collegato ai sistemi fotovoltaici suddetti;
- rilievo delle curve caratteristiche tensione corrente (V I), fornite dai sistemi fotovoltaici, al variare della intensità della radiazione solare e della temperatura delle celle;
- rilievo delle curve caratteristiche tensione potenza (V P), fornite dai sistemi fotovoltaici, al variare della intensità della radiazione solare e della temperatura delle celle;
- valutazione della efficienza di conversione (energia radiante energia elettrica) dei sistemi fotovoltaici in dotazione.

La sperimentazione sul pannello termico a circolazione di liquido è così organizzata:

- possibilità di simulare diversi valori della intensità della radiazione solare (W/m²);
- possibilità di simulare diversi valori della temperatura del liquido termovettore in ingresso al pannello;
- possibilità di variare la portata del liquido termovettore attraverso il pannello termico;
- valutazione della temperatura del liquido termovettore in uscita al pannello, al variare della intensità della radiazione solare e della temperatura in ingresso;
- valutazione della efficienza di conversione (energia radiante energia termica) del pannello termico.

Energie Rinnovabili

DL THERMO-A1

TRAINER PER LO STUDIO DELL'ENERGIA SOLARE TERMICA

Sistema didattico per lo studio teorico e pratico degli impianti solari usati per ottenere acqua calda per impianti sanitari, aria condizionata e altre applicazioni civili.

Il DL THERMO-A1 è un sistema che permette una vasta gamma di applicazioni didattiche.

E' fornito con sei sonde di temperatura poste in quattro diversi punti del circuito e con un sensore di irradiazione solare che viene usato per calcolare l'energia assorbita.

SCOPI DIDATTICI

Il DL THERMO-A1 è un sistema globale per lo studio teorico e pratico degli impianti a energia solare, che permette le seguenti attività didattiche:

- o Identificazione di tutti i componenti e dei loro collegamenti.
- o Interpretazione dei parametri tecnici di tutti i componenti.
- Criteri di dimensionamento per impianti di acqua calda sanitaria, aria condizionata, ecc.
- o Criteri per l'assemblaggio e la manutenzione degli impianti.
- o Interpretazione dei dati forniti dal sistema di controllo.

Energie Rinnovabili

CONFIGURAZIONE

Il trainer è composto dalle seguenti tre unità operative:

MODULO PRINCIPALE

Dimensioni $1000 \times 650 \times 1650 \text{ mm.}$, con pannello sinottico dello schema dell'impianto.

Contiene i componenti per la circolazione, il deposito e il controllo del liquido nei circuiti primario e secondario.

Questi componenti sono posizionati verticalmente su una base per facilitare l'accesso a tutte le parti del sistema nelle operazioni di montaggio e smontaggio da effettuarsi durante le esperienze pratiche descritte nel manuale.

Il pannello di controllo si trova sulla parte superiore del modulo ed è composto da:

- Una serigrafia rappresentante l'impianto.
- o Un centro di controllo elettronico con un monitor LCD per il display dei dati.
- Luci di segnalazione.

Sulla parte posteriore del modulo si trovano gli attacchi idraulici per l'ingresso dell'acqua fredda, per l'uscita dell'acqua calda sanitaria, il collegamento al pannello solare, ecc.

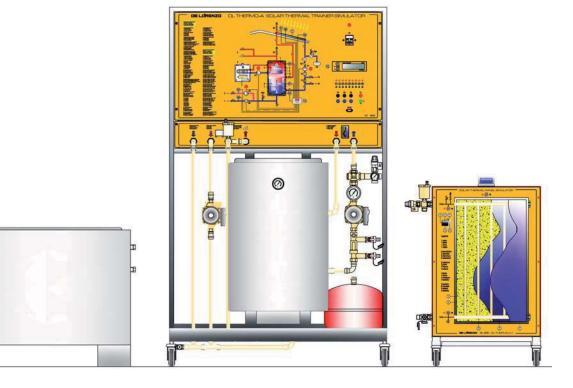
PANNELLO SOLARE

Simulatore di pannello solare alimentato dalla rete elettrica per permettere l'esecuzione delle esperienze pratiche all'interno di un'aula.

In alternativa (codice DL THERMO-A2), è possibile fornire un pannello solare reale posto in una struttura metallica e connesso alla base tramite tubi flessibili. Nei tubi sono installate valvole di scarico, di sicurezza e di riempimento.

TERMOCONVETTORE

Come applicazione della produzione di acqua calda, viene fornito un termoconvettore che si connette al sistema per mezzo di tubi flessibili.


Questo componente ci permette di sperimentare gli effetti dell'acqua calda ottenuta per mezzo del trainer. Inoltre, il sistema è sufficientemente aperto per permettere un facile utilizzo con altre applicazioni, come ad esempio la fornitura di acqua calda per sanitari, riscaldamento a pavimento ecc..

Il sistema è fornito completo di un manuale di esercitazioni.

Energie Rinnovabili

DL THERMO-A2

TRAINER PER LO STUDIO DELL'ENERGIA SOLARE TERMICA

Sistema didattico per lo studio teorico e pratico degli impianti solari usati per ottenere acqua calda per impianti sanitari, aria condizionata e altre applicazioni civili.

Il DL THERMO-A2 è un sistema che permette una vasta gamma di applicazioni didattiche.

E' fornito con sei sonde di temperatura poste in quattro diversi punti del circuito e con un sensore di irradiazione solare che viene usato per calcolare l'energia assorbita.

SCOPI DIDATTICI

Il DL THERMO-A2 è un sistema globale per lo studio teorico e pratico degli impianti a energia solare, che permette le seguenti attività didattiche:

- o Identificazione di tutti i componenti e dei loro collegamenti.
- o Interpretazione dei parametri tecnici di tutti i componenti.
- O Criteri di dimensionamento per impianti di acqua calda sanitaria, aria condizionata, ecc.
- o Criteri per l'assemblaggio e la manutenzione degli impianti.
- o Interpretazione dei dati forniti dal sistema di controllo.

Energie Rinnovabili

CONFIGURAZIONE

Il trainer è composto dalle seguenti tre unità operative:

MODULO PRINCIPALE

Dimensioni 1000 x 650 x 1650 mm., con pannello sinottico dello schema dell'impianto.

Contiene i componenti per la circolazione, il deposito e il controllo del liquido nei circuiti primario e secondario.

Questi componenti sono posizionati verticalmente su una base per facilitare l'accesso a tutte le parti del sistema nelle operazioni di montaggio e smontaggio da effettuarsi durante le esperienze pratiche descritte nel manuale.

Il pannello di controllo si trova sulla parte superiore del modulo ed è composto da:

- Una serigrafia rappresentante l'impianto.
- o Un centro di controllo elettronico con un monitor LCD per il display dei dati.
- Luci di segnalazione.

Sulla parte posteriore del modulo si trovano gli attacchi idraulici per l'ingresso dell'acqua fredda, per l'uscita dell'acqua calda sanitaria, il collegamento al pannello solare, ecc.

PANNELLO SOLARE

Pannello solare reale posto in una struttura metallica e connesso alla base tramite tubi flessibili. Nei tubi sono installate valvole di scarico, di sicurezza e di riempimento. In alternativa (codice DL THERMO-A1), è possibile fornire un simulatore di pannello solare alimentato dalla rete elettrica per permettere l'esecuzione delle esperienze pratiche all'interno di un'aula.

TERMOCONVETTORE

Come applicazione della produzione di acqua calda, viene fornito un termoconvettore che si connette al sistema per mezzo di tubi flessibili.

Questo componente ci permette di sperimentare gli effetti dell'acqua calda ottenuta per mezzo del trainer. Inoltre, il sistema è sufficientemente aperto per permettere un facile utilizzo con altre applicazioni, come ad esempio la fornitura di acqua calda per sanitari, riscaldamento a pavimento ecc..

Il sistema è fornito completo di un manuale di esercitazioni.

Energie Rinnovabili

DL WIND-A

TRAINER MODULARE PER LO STUDIO DELL'ENERGIA EOLICA

Sistema didattico per lo studio teorico e pratico dei sistemi a energia eolica. Il trainer comprende un gruppo di moduli di controllo, di misura e di applicazione, l'aerogeneratore, un dispositivo di misura della velocità del vento e i manuali descrittivi e pratici.

MODULI

- Modulo di misura
- Modulo convertitore CC/CA
- Modulo di controllo batteria
- o Modulo lampade 12 V
- Modulo lampade 220 V
- o Batteria da 24Ah, 12 V

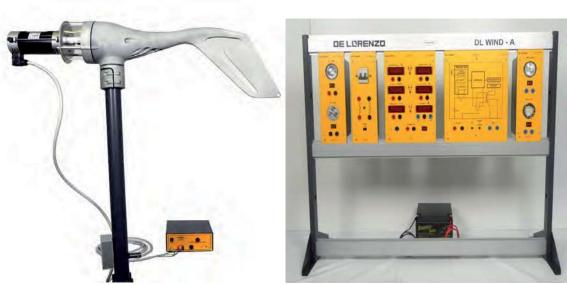
GENERATORE EOLICO

Generatore eolico da 160 W, 12 V

SENSORE DEL VENTO

 Anemometro e sensore della direzione del vento montato su supporto

Include anche:


- Telaio
- Set di cavi di collegamento
- Manuale descrittivo e pratico
- Manuale di istruzione dell'aerogeneratore

Completo di software per acquisizione e visualizzazione dati.

Energie Rinnovabili

DL WIND-A1

TRAINER MODULARE PER LO STUDIO DELL'ENERGIA EOLICA CON MOTORE PER USO IN ASSENZA DI VENTO

Sistema didattico per lo studio teorico e pratico dei sistemi a energia eolica. Il trainer comprende un gruppo di moduli di controllo, di misura e di applicazione, l'aerogeneratore, un motore di trascinamento dell'aerogeneratore per utilizzare il sistema all'interno del laboratorio e i manuali descrittivi e pratici.

MODULI

- Modulo di misura
- Modulo convertitore cc/ca
- Modulo di controllo batteria
- Modulo con lampade da 12 V
- Modulo con lampade da 220 V
- Batteria da 24 Ah, 12 V
- Kit motore di trascinamento.

GENERATORE EOLICO

o 160 W, 12 V.

SENSORI DEL VENTO

 Anemometro e sensore della direzione del vento

Include anche:

- Telaio di supporto dei moduli
- Set di cavi di collegamento
- Manuale descrittivo e pratico
- Manuale di istruzione dell'aerogeneratore

Completo di software per acquisizione e visualizzazione dati.

Energie Alternative

DL WIND-B

TRAINER ENERGIA EOLICA CON TUNNEL DEL VENTO

Trainer per lo studio teorico e pratico della generazione di energia elettrica da energia eolica.

E' possibile cambiare il flusso dell'aria che raggiunge la turbina eolica ed effettuare esperimenti con e senza carichi.

Si compone di:

- Un tunnel del vento in cui sono istallati i seguenti componenti:
 - Un ventilatore industriale monofase con regolatore elettronico di velocità;
 - Una turbina eolica, 12 V, 40 W, con un meccanismo per cambiarne l'inclinazione rispetto alla sorgente del vento.
- Un anemometro;
- Un amperometro;
- Un voltmetro;
- Un alimentatore, 0÷230 V, 4 A, con strumentazione per la misurazione della velocità del vento, della tensione e della corrente, un potenziometro per controllare il ventilatore e una lampadina che funge da carico resistivo. Uscite analogiche dagli strumenti: 0-10V.
- Un carico resistivo variabile.

Dimensioni: 1780 x 610 x 1360 mm.

Completo di manuale operativo e di esperimenti.

Opzione:

DL DAQ-RE: interfaccia per PC e software per acquisizione e visualizzazione dati.

Energie Rinnovabili

DL HYDROGEN-A

Pannello per lo studio delle celle a combustibile a idrogeno

Il pannello comprende: una pila a combustibile PEM (10 celle), un elettrolizzatore, un alimentatore, un software di monitoraggio, un contenitore per lo stoccaggio dell'idrogeno, una lampada per simulare il carico elettrico, un ventilatore, un modulo solare e due moduli con lampade per illuminare il pannello solare.

Inoltre, il set include anche una bottiglia di acqua distillata, occhiali di protezione, un tubetto di silicone e un manuale didattico.

Caratteristiche

Elettrolizzatore: 15 W

Pila a combustibile

potenza per cella: 200 mW

potenza (10 celle) 2 W

Modulo solare: 4 V / 3,3 A

Stoccaggio del gas: 80 cm3

Lampada: 4,4 W

Alimentazione: 6 Vcc / 3 A

Software di monitoraggio

Dimensioni: 1000 x 620 x 200 mm.

Energie Rinnovabili

Lista delle esperienze

- Studio di una pila a combustibile fino a 10 celle
- Produzione e stoccaggio di idrogeno
- Determinazione delle curve caratteristiche di un pannello solare
- Misure automatiche controllate dalla tensione
- Determinazione della curva caratteristica di un elettrolizzatore
- Studio della legge di Faraday
- Determinazione delle curve caratteristiche di una cella a combustibile
- Determinazione dell'efficienza di una cella a combustibile
- Determinazione della tensione di decomposizione dell'acqua
- Misure di lungo periodo con PC
- Assegnazione delle uscite in diversi punti della pila a combustibile
- Monitoraggio a PC delle tensioni delle singole celle
- Misure automatiche controllate dalla potenza

Energie Rinnovabili

DL HYDROGEN-B

Trainer per lo studio delle celle di combustibile a idrogeno

Questo trainer è stato realizzato per lo studio delle celle di combustibile a idrogeno, ne studia i principi di ingegneria e permette di eseguire una serie di esperimenti didattici.

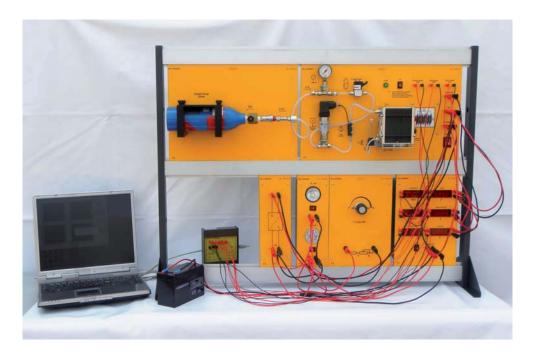
E' sicuro e di facile utilizzo.

Inoltre è molto flessibile, a composizione modulare ed adatto a comprendere sia i principi di base sia i concetti di tecnologia più complessi.

Il trainer include i seguenti moduli:

- Cella di combustibile PEM da 100 W. Prestazioni: 14 V a 7.2 A. Consumo di H2: 1.4 l/min. Completa di controllore elettronico.
- Mini-bombola in alluminio da 225 NI
- Convertitore CC/CC, uscita 12 V, 8 A
- Carico, con una lampada alogena, 12 V, 50 W, e una lampada a LED, 12 V, 3 x
 1W
- Reostato variabile di tipo logaritmico, 1,5 Ohm ÷ 17 Ohm, 100 W, Imax = 8 A
- Batteria
- Modulo con strumenti di misura, composto da 2 voltmetri, 40 V, 1 amperometro, 10 A, e 3 display per temperatura, pressione e flusso

Energie Rinnovabili


Opzioni:

- Convertitore CC/CA, uscita sinusoidale
- Modulo di carico, con due lampade alogene, 220 V, 50 W

Il trainer può essere fornito completo di **software** in ambiente LabVIEW per acquisizione ed elaborazione dati:

- Acquisizione dati via interfaccia a PC
- Software di elaborazione dati

Accessorio per riempire la mini-bombola di idrogeno: Generatore di idrogeno.

DELORENZO

Engineering Training Solutions

Energie Rinnovabili

DL BIO-30 IMPIANTO PILOTA PER LA PRODUZIONE DI BIODIESEL

Il Biodiesel può essere usato nei motori diesel per autotrazione (autocarri, trattori, autovetture, ecc.) o nei generatori (di elettricità, di calore, ecc.) nella sua forma naturale o mescolato con diesel da idrocarburi in proporzioni variabili. Il Biodiesel non richiede alcuna modifica nei motori standard.

Il nostro impianto pilota permette la produzione di combustibile che può essere usato nelle applicazioni diesel sopra menzionate.

Il Biodiesel viene prodotto per reazione chimica di un olio vegetale o di grasso animale con metanolo o etanolo (alcool puro di canna da zucchero), in presenza di un catalizzatore. Questo processo è noto come transesterificazione e il catalizzatore può essere alcalino, acido o enzimatico. Questo processo produce anche glicerina, usata per la produzione di saponi e altri prodotti.

DE LORENZO

Engineering Training Solutions

Energie Rinnovabili

Il nostro IMPIANTO DI PROCESSO DI TRANSESTERIFICAZIONE per la produzione di BIODIESEL è stato progettato da esperti professionisti, usando componenti disponibili sule mercato, e automatizzato con caratteristiche tecniche in uso nei processi industriali, ma adattato all'applicazione didattica per la realizzazione di esercitazioni pratiche.

Con questo impianto è possibile controllare le temperature di riscaldamento dell'olio vegetale, della reazione e del lavaggio. E' anche possibile ricircolare la miscela durante il tempo di reazione.

Secondo le richieste degli utenti finali, il nostro Ufficio Tecnico è in grado di progettare IMPIANTI PILOTA per la produzione di BIODIESEL con caratteristiche tecniche particolari. Per esempio, la capacità produttiva dell'impianto può essere variata. L'impianto può includere o non includere il sistema di recupero dell'alcool o la tecnologia a ultrasuoni per migliorare l'efficienza della fase di miscelatura. Pertanto, l'impianto descritto qui di seguito deve essere considerato come un impianto pilota campione con caratteristiche specifiche che possono essere discusse in dettaglio con l'utente finale.

In questo particolare caso, l'impianto ha una capacità di 30 litri/ciclo, include il sistema di recupero dell'alcool e non include il dispositivo ad ultrasuoni.

Energie Rinnovabili

CARATTERISTICHE TECNICHE DELL'IMPIANTO

Capacità dell'impianto: 30 litri/ciclo

Componenti principali:

- Sistema di trattamento di oli vegetali:
 - Serbatoio per il ricevimento della materia prima
 Capacità: 30 litri, include un filtro per particelle solide nel lato superiore
 - Sistema di riscaldamento elettrico
 - Termometro
 - Filtro da 10μm
- Sistema di reazione di transesterificazione:
 - O Serbatoio conico in acciaio inossidabile AISI 316L. Capacità: 30 litri
 - Sistema di miscelatura
 - Sistema di riscaldamento elettrico
 - Sistema di recupero dell'alcool
 - o Pompa
- Pannello digitale di controllo
- Dispensatore catalitico
- Serbatoio in acciaio inossidabile AISI 304L per la miscelatura del metile.

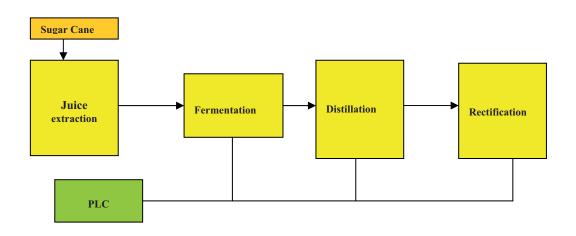
Capacità: 4 litri

- Serbatoio di decantazione in acciaio inossidabile.
 - Capacità: 30 litri con recupero di alcool e condensatore con un'area di 0,5 m².
- Sistema di lavaggio con filtratura:
 - Serbatoio di lavaggio. Capacità: 30 litri
 - Sistema di miscelatura
 - Sistema di riscaldamento elettrico
 - o Filtri da 10 μm e 1 μm
- Kit di installazione in acciaio inossidabile per i collegamenti delle apparecchiature.
- Accessori:
 - Calibro digitale
 - o Termometro
 - Misuratore di pH
 - Matraccio a fondo piano da 500 ml
 - Bicchiere per precipitati da 1000ml
 - Provetta con porta provette
 - o Imbuto

- Pipetta graduata
- o Pipetta volumetrica
- Tubo di prova
- Tubo di prova con porta tubo
- Becco Bunsen
- Treppiede
- Foglio di asbesto
- Struttura metallica in acciaio e vernice epossidica ad alta resistenza.

Dimensioni: 2 x 0.9 x 1.8m

Energie Rinnovabili


DL ETAL-15

IMPIANTO PILOTA PER LA PRODUZIONE DI BIOETANOLO

L'impianto pilota per la produzione di bio-etanolo della De Lorenzo riflette l'esperienza che la nostra società ha accumulato nel settore delle energie rinnovabili. L'impianto permette di produrre circa 150 litri di succo partendo da 250 kg di canna da zucchero e quindi da 10 a 15 litri di alcool al 94/96%. La produzione avviene in quattro fasi come illustrato nel seguente schema a blocchi.

Su richiesta, è possibile produrre alcool con **tuberi** (sorgo dolce, manioca, patate, riso e mais) con frantumatori aggiuntivi.

Energie Rinnovabili

L'impianto è composto da:

Frantumatore per la canna da zucchero con capacità di frantumazione di 250 kg/h, motore elettrico trifase da 3 CV e pressione di frantumazione variabile.

Serbatoio di diluizione in polipropilene, capacità 200 litri, per la preparazione (Brix e temperatura) del succo da far fermentare.

Serbatoio di pulizia, in polipropilene, spessore 3 mm., cinque fasi, due uscite, una per rimuovere il succo, l'altra per scarico e pulizia, con valvola a sfera da 1" e mezzo in PVC. Capacità 60 litri, con pompa e tubazioni per il trasferimento del succo.

Serbatoi di fermentazione, in polipropilene, con relè di temporizzazione, capacità totale 300 litri.

Decanter, per la separazione dei lieviti, capacità 200 litri.

Set di due pompe con tubazione di trasferimento dal serbatoio di diluizione ai serbatoi di fermentazione e dal serbatoio di fermentazione al decanter.

Colonna di distillazione, con rettificazione, riscaldamento a resistenza elettrica, per la produzione di alcool idrato, ANP 94/96° GL, in acciaio inossidabile 304, capacità di carico 180 litri, termometro digitale, valvola di sicurezza, coperchio di ispezione e pannello di controllo.

Serbatoio per lo stoccaggio dell'alcool, in polipropilene, spessore 3 mm. Capacità 100 litri.

Pannello elettrico per il controllo dei diversi moduli.

DELORENZO

Engineering Training Solutions

Energie Rinnovabili

PLC con HMI per il controllo dei parametri di processo.

Per il controllo di qualità dell'etanolo prodotto, vengono forniti un alcoolimetro, un idrometro Brix e un termometro.

Per un test completo dei componenti dell'alcool è necessaria un'analisi da laboratorio.

Materia prima

L'impianto produce alcool 94/96% da canna da zucchero.

Informazioni per l'installazione dell'impianto:

Alimentazione elettrica: tensione trifase

Consumo d'energia - circa 5 kW (configurazione base)

Spazio necessario:

- Per il frantumatore: 3 m²

- Per i serbatoi: 30 m²

Per il distillatore: da 3 a 5 m²
 Per il pannello elettrico: 0,5 m²

OPZIONI

Su richiesta, è possibile fornire l'impianto con tutti I serbatoi in acciaio inossidabile.

Su richiesta, è possibile produrre **alcool da tuberi** (sorgo dolce, manioca, patate, riso e mais) con trituratori aggiuntivi.

I lieviti per la fermentazione possono essere forniti dalla De Lorenzo.

L'impianto può essere allestito per la produzione con processo o discontinuo, secondo le necessità del cliente.

Energie Rinnovabili

DL GREENKIT

ENERGIA SOLARE-EOLICA-CELLE A COMBUSTIBILE

Questo sistema è stato progettato per lo studio delle energie rinnovabili: energia solare, energia eolica e sistemi di celle a combustibile a idrogeno.

Con questo sistema è possibile realizzare I seguenti esperimenti:

- Assemblaggio di una cella a combustibile
- Produzione e stoccaggio di idrogeno
- Determinazione della curva caratteristica di un pannello solare
- Funzionamento idrogeno/ossigeno o idrogeno/aria
- Determinazione della curva caratteristica di un elettrolizzatore
- Determinazione dell'efficienza di un elettrolizzatore
- Studio delle leggi di Faraday
- Determinazione delle curve caratteristiche di una cella a combustibile
- Determinazione dell'efficienza di una cella a combustibile
- Determinazione della tensione di decomposizione dell'acqua
- Costruzione di un modello di auto a idrogeno
- Uso del metanolo per generare elettricità
- Determinazione delle curve caratteristiche del DMFC
- Influenza della superficie di un modulo solare sull'intensità di tensione e corrente del modulo
- Tensione e corrente in un collegamento serie di pannelli solari

Energie Rinnovabili

- Tensione e corrente in un collegamento parallelo di pannelli solari
- Tensione e corrente in un pannello solare in funzione dell'intensità della luce
- La curva caratteristica corrente tensione di un pannello solare
- Energia elettrica da energia eolica
- Effetti della velocità del vento
- Vento da direzioni differenti
- Influenza del numero di pale del rotore
- Influenza della posizione delle pale
- Osservazione di un generatore eolico sotto carico
- Caratteristica corrente tensione di un generatore eolico
- Stoccaggio dell'energia elettrica generate dal vento mediante l'uso della tecnologia a idrogeno
- Concetto di sistema autarchico con energia rinnovabile

Specifiche Tecniche

Cella per elettrolisi:

5 cm³/min H2; 2,5 cm³/min O2;

1,16 W

RFC H2/O2/Aria:

Come elettrolizzatore: 5 cm³/min H2; 2.5

cm³/min O2; 1,16 W

Come cella a combustibile:

H2/O2 mode: 300 mW

H2/air mode: 100 mW

Kit PEMFC:

In modalità H2/O2: 600 mW In modalità H2/aria: 200 mW Cella a combustibile a metanolo:

Potenza: 10 mW

Stoccaggio gas:

30 cm³ H2; 30 cm³ O2

Modulo solare: 2.0 V / 600 mA

Batteria: 4.5 VDC / 0.8 A

Alimentatore: 1.2 A

Carico (ventolina): 10 mW

Carico (auto): 150 mW

Lunghezza del cavo: 250 mm

Generatore eolico

(prestazioni medie con ventilatore da

tavolo)

Umax =6,0 V

Imax = 0.3 A

Modulo solare: 2.0 V / 600 mA

Decade di resistenze:

Capacità max.: 1,2 W

Boccole: 2 mm

Peso: 190 g

H x W x D: 40 x 160 x 130 mm

Multimetri:

Boccole: 2 mm

Peso: 140 g

H x W x D: 125 x 70 x 30 mm

2 valigette: 140 x 450 x 380 mm. cadauna

Peso: 4 kg. cadauna

Opzione:

Struttura di sostegno con 2 lampade alogene

Ventilatore da tavolo

Energie Rinnovabili

DL SUN-WIND

SISTEMA MODULARE PER LO STUDIO DELL'ENERGIA SOLARE/EOLICA

Sistema modulare per lo studio teorico-pratico delle installazioni elettriche con energia solare fotovoltaica ed energia eolica.

Composto da:

- Un **modulo fotovoltaico inclinabile**, 85W, 12V, completo di cella per la misura dell'irraggiamento solare e con un sensore di temperatura.
- Un aerogeneratore
 - Aerogeneratore 12 Vdc, 160 W
 - Struttura di sostegno 1,5 m.
 - Anemometro e sensore della direzione del vento.
- Un **set di moduli** su una struttura di supporto:
 - Un modulo per il controllo di una batteria, 12V, 32A, con batteria.
 - Un modulo di carico. Include due lampade da 12V, dicroica da 35W e a LED da 3W, con interruttori indipendenti.
 - Un modulo di carico. Include due lampade da 220V, dicroica da 35W e a LED da 3W, con interruttori indipendenti.
 - Un modulo di regolazione elettronica, con schermo LCD.
 - Un reostato.

Energie Rinnovabili

- Un modulo per la misura dell'irraggiamento solare (W/m²), della temperatura del pannello solare (°C), di corrente, tensione e potenza.
- Un modulo per la misura della velocità e della direzione del vento.
- Un kit motore per usare l'aerogeneratore all'interno del laboratorio.
- Un modulo di conversione cc-ca, con uscita a tensione di rete. Potenza media: 300 W.

Il sistema viene fornito completo di cavetti di collegamento e manuale delle esercitazioni.

Completo di software per acquisizione e visualizzazione dati.

Energie Rinnovabili

DL SUN-WIND24V e DL SUN-WIND12V

Sistema ibrido per lo studio delle energie solare ed eolica

Descrizione

L'obiettivo principale di un sistema ibrido è quello di gestire più sorgenti con lo scopo di produrre energia elettrica non-intermittente, sfruttando le disponibilità di energia rinnovabile.

Questo sistema è composto da due sotto-sistemi, uno per la generazione di energia elettrica da energia solare fotovoltaica per mezzo di un pannello solare e l'altro per la generazione di energia elettrica da energia eolica per mezzo di un aerogeneratore.

In questo sistema, uno dei due inverter, operando come master, sincronizza la frequenza del secondo inverter, in funzione slave, per permettere la creazione di un collegamento tra le due uscite che operano come un'unica linea con potenza disponibile doppia.

Energie Rinnovabili

Caratteristiche del sistema

Il sistema è composto da:

		versione 24V	versione 12V
PFS AEROGEN	Modulo fotovoltaico montato su supporto con ruote e completo di scala graduata su un lato per regolare l'inclinazione e di una cella calibrata nella parte superiore per misurare l'irraggiamento solare. Aerogeneratore da 160W, con anemometro e	185W, 24V	85W, 12V
	sensore di direzione del vento montato su un supporto. L'aerogeneratore è fornito di un kit motore per utilizzare il sistema all'interno della classe o in assenza di vento.		
DL 9012	Regolatore elettronico per la carica della batteria, con display LCD per informazioni sullo stato del sottosistema. E' in grado di visualizzare la tensione solare e la tensione della batteria, la corrente di carica, l'accumulo di carica in Ah e la temperatura.		
DL 9013MS	Convertitore CC/CA, con uscita sinusoidale per generare una rete elettrica. Con un contattore per accendere e spegnere l'inverter. Funzionamento master o slave. Completo di pannello di controllo.	Due da 1000W cadauno con quattro batterie da 12V	Due da 500W cadauno con due batterie da 12V
DL 9015	Modulo per la messa in parallelo degli inverter. Consente fino a un master e quattro slave.		
DL 9044	Carico con una lampada alogena da 20 W, 12Vcc e una lampada a LED da 3W, 12Vcc. Ogni lampada è fornita di interruttore di accensione indipendente.	Quantità 4	Quantità 2
DL 9017	Carico con una lampada alogena da 35 W a tensione di rete e una lampada a LED da 3W a tensione di rete. Ogni lampada è fornita di interruttore di accensione indipendente.		

Energie Rinnovabili

DL 9018 Reostato variabile logaritmico da 80Ω , 6A

max., come carico per il pannello fotovoltaico allo scopo di rilevare le curve caratteristiche

tensione-corrente.

DL 9021 Modulo strumenti per la misura dei parametri

solari. Visualizza: tensioni e correnti, irraggiamento solare, temperatura del

pannello solare, potenza elettrica.

DL 9022 Modulo strumenti per la misura dei parametri

eolici. Visualizza: tensioni e correnti, velocità del vento, direzione del vento, potenza

elettrica.

DL SIMSUN Set di lampade per illuminare il pannello solare

fotovoltaico per usarlo all'interno della classe o nel caso di giornata nuvolosa. L'intensità luminosa può essere controllata dall'operatore per mezzo di un potenziometro o in remoto

per mezzo di un segnale in CC.

DL 2100-1M Struttura di supporto per i moduli.

Completo di cavi di collegamento e manuale degli esperimenti.

Quantità 2 Quantità 1

DE LORENZO

Engineering Training Solutions

Efficienza Energetica

DL EFFICIENCY-A

EFFICIENZA ENERGETICA NEI MOTORI ELETTRICI

Sistema per lo studio dell'efficienza energetica nel controllo di motori elettrici. Il sistema permette lo studio dell'efficienza energetica in un circuito idraulico con pompa motorizzata controllata da un inverter.

Il sistema è composto da:

- Un pannello didattico sul quale sono montati i componenti di un circuito idraulico. Il circuito simula, in modo schematico, un acquedotto. Da un serbatoio l'acqua viene fatta fluire, per mezzo di una pompa, attraverso un circuito idraulico strumentato che termina con 3 prese d'acqua di differenti diametri controllate da elettrovalvole.
- Un modulo di controllo contenente: un PLC, un inverter, un analizzatore di rete con modulo di interfaccia.

Specifiche tecniche:

- Pompa azionata da motore 3-phase, 0,37 kW, con corpo in ghisa e impeller in ottone, flusso massimo 40 l/min.
- 3 elettrovalvole a 2 vie NC, controllo diretto, corpo in ottone
- Trasduttore di flusso, da 1 a 40 l/min.
- Trasduttore pressione, da 0 a 10 bar, segnale di uscita 0-10 V
- Pressostato, da 1 a 12 bar
- PLC, 12 ingressi digitali, 4 ingressi analogici, 6 uscite a relè
- Inverter, 0,4 kW, controllo PID in modalità standard, 7 velocità preconfigurabili dall'utente
- Analizzatore di rete multifunzione, tensioni e correnti di linea, Potenza totale attiva e reattiva, fattori di potenza, energie attiva e reattiva, ecc.

DELORENZO

Engineering Training Solutions

Efficienza Energetica

DL 2130B

KEPPE MOTOR – MOTORE UNIVERSALE CA/CC AD ALTA EFFICIENZA

Sistema per lo studio di una nuova tecnologia dei motori elettrici basata sui principi dell'energia essenziale del Prof. Keppe, descritti nel suo libro "The New Physics Derived From A Disinverted Metaphysics".

Il sistema permette di realizzare prove di potenza e di efficienza, confrontando i risultati con quelli dei motori tradizionali.

La teoria

Il Prof. Keppe, in opposizione all'insegnamento corrente della fisica che ci insegna che l'energia deriva dalla materia, sostiene che la materia è un sottoprodotto della "energia essenziale dell'universo".

Un trasduttore naturale di tale energia in una delle sue forme secondarie è il magnetismo. Quindi, i dipoli magnetici possono essere visti come minuscoli vortici dai quali l'energia essenziale fluisce in un moto a doppia spirale e si trasforma in forze magnetiche bipolari di attrazione e repulsione. Come conseguenza naturale di tali leggi della fisica, la materia è formata/saldata nello spazio e nel tempo secondo questi semplici modelli risonanti bipolari.

Efficienza Energetica

Il principio del motore

Questo nuovo principio ha dato origine al Motore Keppe, un motore risonante magnetico controllato da una corrente pulsante in CC. Il Motore Keppe include uno o più dischi rotore a magnete permanente per catturare il magnetismo dall'ambiente e bobine cave a forma di cono che simulano in larga scala i minuscoli vortici naturali dei dipoli magnetici.

Il Motore Keppe ha un sistema di commutazione che risponde naturalmente all'alimentazione in ingresso fino a raggiungere la risonanza. Una conseguenza naturale dello stato di risonanza tra le forze magnetiche del rotore e le bobine dello statore è che l'efficienza del motore viene massimizzata.

Il sistema didattico

Il DL 2130B è stato progettato per studiare l'efficienza del motore Keppe quando viene usato per far girare un ventilatore in CA di tipo convenzionale.

Il sistema è composto da:

- Un ventilatore con un Motore Keppe a 127 Vca (D=85 mm); velocità massima di funzionamento pari a 1300 min⁻¹, pale con diametro di 50 cm., consumo 40 W.
- Un ventilatore con un motore monofase in ca di tipo convenzionale a 127 Vca con la stessa pala da 50 cm. di diametro, consumo di 140W alla massima velocità di funzionamento di 1300 min⁻¹.
- Un pannello con un inverter da 400 W, 12 Vcc/115 Vca, diversi strumenti analogici, un misuratore di potenza in ca digitale e il circuito di controllo del motore Keppe.
- Un trasformatore per una batteria da 12V.
- Un motore Keppe con 8W di uscita.
- Un misuratore di velocità.

DL SOLAR-KIT

KIT DI INSTALLAZIONE ENERGIA SOLARE FOTOVOLTAICA

Kit di energia solare fotovoltaica per la produzione di energia elettrica.

Composto da:

- Un modulo fotovoltaico inclinabile, 85 W, 12V, completo di cella per la misura dell'irradiazione solare e sensore di misura della temperatura del pannello.
- Una struttura di supporto per il pannello.
- Un modulo di regolazione elettronica con schermo LCD, uscita 12 V, 30 A.
- Un modulo convertitore da CC a CA con uscita a tensione di rete.
- Un interruttore di controllo della batteria, 0-600 V, 32A con batteria solare.
- Due lampade a tensione di rete, dicroiche 35W e LED 3W, con interruttori indipendenti.
- Due lampade da 12V, dicroiche da 20 W e LED 3W, con interruttori indipendenti.
- Cavi, connettori e accessori.
- Un telaio per sostenere i componenti elettrici del sistema: lampade, interruttori, protezioni, ecc.

Il trainer è completo di cavi di collegamento e manuale d'installazione.

Energie Rinnovabili

DL DAQ-RE

SISTEMA DI ACQUISIZIONE DATI PER LE ENERGIE RINNOVABILI

Composto da:

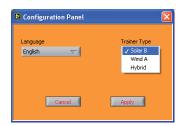
- Interfaccia per acquisizione dati
- Software per elaborazione dati

DL 1893 – Unità di acquisizione dati

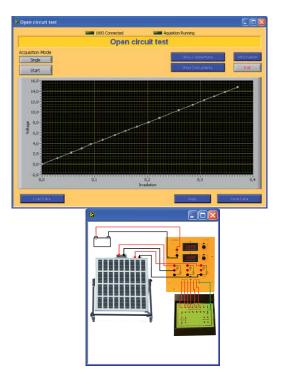
- Alimentazione da USB, < 100mA
- 2 uscite a relè
- 2 uscite analogiche, convertitore seriale D/A da 8 bit

Uscita: -10/+10 V

• 8 ingressi analogici, convertitore A/D da 12


bit

Input: -10/+10 V


Velocità max. di conversione: 10 kHz

DL RE-SW - Software per I trainer di energia rinnovabile

- Acquisizione dati relative a V, I, irradiazione dal pannello solare e V, I, velocità del vento dall'aerogeneratore
- Ambiente LabView per acquisizione semiautomatica: controllo dell'acquisizione, salvataggio ed elaborazione dati con modelli matematici, grafici 2D (I-V, P-Irr, P - velocità del vento), esportazione dati.

Prevenzione della Corrosione

DL MK1BANCO DI LAVORO PER LA PROTEZIONE CATODICA

La Protezione Catodica è una tecnica di controllo della corrosione di una superficie metallica facendola funzionare come il catodo di una cella elettrochimica.

Questo si ottiene mettendo in contatto con il metallo da proteggere un altro metallo più facile alla corrosione che funge da anodo della cella elettrochimica. I sistemi di Protezione Catodica vengono usati, nella maggior parte dei casi, per proteggere tubazioni o serbatoi in acciaio per trasporto di acqua o carburanti, piloni di pontili in acciaio, navi, piattaforme offshore e pozzi onshore.

Prevenzione della Corrosione

1. SOMMARIO

Questo documento descrive un trainer per lo studio della Protezione Catodica.

Viene fornita una lista di esperimenti che servono ad introdurre lo studente all'analisi del controllo della corrosione dei metalli in contatto con l'elettrolita.

Il manuale è composto da una parte teorica e da una descrizione degli esperimenti pratici.

Il trainer fornisce i necessari strumenti per studiare sistemi isolati o sistemi nei quali sono combinati metalli di diversa natura. Particolare attenzione è rivolta alla presenza o assenza di isolanti sulle superfici dei campioni per dimostrare il diverso comportamento del materiale stesso, con o senza protezione.

Il trainer include anche i dispositivi necessari per evidenziare il concetto di potenziale a corrosione libera, misurata con elettrodi di riferimento, e a costruire le curve di polarizzazione.

Le tecniche di protezione sono rappresentate da sistemi di anodi "sacrificali" di metalli diversi o da sistemi di corrente impressa per la protezione catodica con la possibilità di verificare l'uso di alimentatori a tensione, corrente e potenziale costanti.

Il trainer è completo di strumentazione di adeguata sensibilità e precisione.

Infine, un'interfaccia multicanale permette di collegare il trainer ad un computer per registrare e salvare i risultati degli esperimenti.

Prevenzione della Corrosione

2. LISTA DEGLI ESPERIMENTI

1) Uso del voltmetro

Lo strumento più importante nel campo della protezione catodica è il voltmetro. Il tipo digitale è il più comune; a causa della grande impedenza, permette la misura delle tensioni (i potenziali) dovute a fonti con elevata impedenza interna.

Le misurazioni servono ad introdurre alle misure elettriche e alla legge di Ohm che regola il passaggio della corrente nella prima e nella seconda specie di conduttori (metalli e elettroliti).

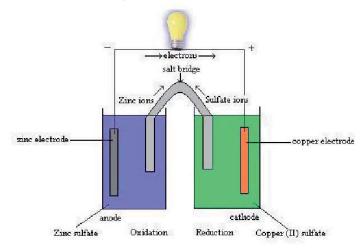
2) Misura della differenza di potenziale di un campione immerso in un elettrolita

Questo esperimento introduce l'argomento della protezione catodica.

L'obiettivo è quello di modificare il potenziale (rispetto alla cella di riferimento) della struttura da proteggere, rallentando la tendenza naturale del metallo a passare in soluzione.

Questo esperimento sottolinea l'approccio elettrochimico ai fenomeni di corrosione.

3) La cella di riferimento


Questo esperimento mette in relazione l'uso dei tre tipi di celle di riferimento più comuni: la cella di riferimento al Cu/CuSO4, la cella di riferimento Ag/AgCl e la cella di riferimento di zinco.

Prevenzione della Corrosione

4) La cella di Daniel

Nella cella di Daniel, elettrodi di rame e zinco sono immersi in una soluzione di solfato di rame e di solfato di zinco, rispettivamente. All'anodo, lo zinco viene ossidato dalla seguente reazione:

$$Zn(s)$$
 $Zn2+(aq) + 2e-$

Al catodo, il rame viene ridotto dalla seguente reazione:

$$Cu2+(aq) + 2e- Cu(s)$$

Nella cella di Daniel che, grazie alla sua semplicità, viene spesso usata per le dimostrazioni, gli elettroni che sono "tirati" dallo zinco viaggiano sul filo e forniscono una corrente elettrica che illumina la lampadina. In tale cella, gli ioni di solfato svolgono un ruolo importante. Avendo una carica negativa, questi anioni si accumulano attorno all'anodo per mantenere una carica neutra.

Viceversa, in corrispondenza del catodo si accumulano i cationi di rame per mantenere questa carica neutra. Questi due processi fanno sì che il rame solido si accumuli sul catodo e che l'elettrodo di zinco si "sciolga" nella soluzione.

5) I conduttori della prima e seconda specie

Utilizzando un semplice circuito è possibile mostrare l'equivalenza tra gli elettroliti e i comuni conduttori per quanto riguarda il passaggio della corrente elettrica.

6) Introduzione ai criteri di Protezione Catodica

Utilizzando la cella elettrolitica del banco è possibile riprodurre l'applicazione dei criteri NACE che confermano lo stato della protezione catodica di una struttura.

Prevenzione della Corrosione

7) Introduzione agli Anodi Sacrificali in Zn, Mg e Al

Utilizzando la cella elettrolitica del trainer è possibile riprodurre l'applicazione dell'anodo sacrificale a una struttura in acciaio e vedere allo stesso tempo il confronto tra due campioni, uno in regime di protezione catodica, l'altro in regime di libera corrosione.

8) Introduzione ai sistemi di protezione catodica a corrente impressa

Utilizzando la cella elettrolitica del trainer è possibile riprodurre l'applicazione della corrente impressa ad una struttura in acciaio e visualizzare contemporaneamente il confronto tra due campioni, uno in regime di protezione catodica, ottenuta mediante anodi sacrificali, l'altro condotto con il sistema di corrente impressa.

9) L'anodo a corrente impressa a perdere (Fe)

Utilizzando la cella elettrolitica del trainer è possibile riprodurre l'applicazione della corrente impressa ad una struttura in acciaio e vedere nel tempo l'effetto del consumo dell'anodo a causa del suo passaggio in soluzione.

10) L'anodo a corrente impressa di tipo inerte (Ti-Pt e MMO)

Non tutti i materiali anodici passano in soluzione; due esempi possono essere visti utilizzando l'anodo di titanio platinato e l'anodo di titanio rivestito di ossido di metallo.

11) Concetto di resistenza, circuito per conduttori della prima e della seconda specie

Utilizzando la cella elettrolitica del trainer è possibile produrre il passaggio di corrente nel bagno e in questo modo dimostrare la validità della legge di Ohm nel campo della protezione catodica.

La legge di Ohm si applica ai circuiti elettrici; afferma che la corrente attraverso un conduttore tra due punti è direttamente proporzionale alla differenza di potenziale (caduta di tensione o tensione attraverso i due punti) e inversamente proporzionale alla resistenza tra loro.

L'equazione matematica che descrive questa relazione è la seguente: I = V / R, dove I è la corrente in ampere, V è la differenza di potenziale in volt ed R è un parametro di circuito chiamato resistenza (misurata in Ohm, anche pari a volt per ampere). La differenza di potenziale è anche nota come la caduta di tensione ed è talvolta indicata con U, E o fem (forza elettromotrice), invece di V.

Prevenzione della Corrosione

12) Introduzione al concetto di resistenza specifica su tre differenti conduttori della prima specie (Fe, Cu, FE-NI)

Per guidare lo studente al concetto di resistività, un esperimento può essere eseguito utilizzando tre campioni geometricamente identici di materiale diverso, al fine di identificare il concetto di resistenza specifica che "in fieri" è la resistività o, come inverso, la conducibilità.

13) Introduzione al concetto di interferenza dovuta alla presenza di campi elettrici esterni su strutture interrate o sommerse (correnti vaganti)

L'esperimento riproduce l'effetto di un campo elettrico esterno su una struttura sommersa che forma zone separate anodiche e catodiche sulla superficie del campione. È l'introduzione al concetto di interferenza dovuta alla presenza di un campo elettrico esterno e interferente su strutture interrate o sommerse (correnti vaganti).

14) Influenza della presenza di aria sulla resistività

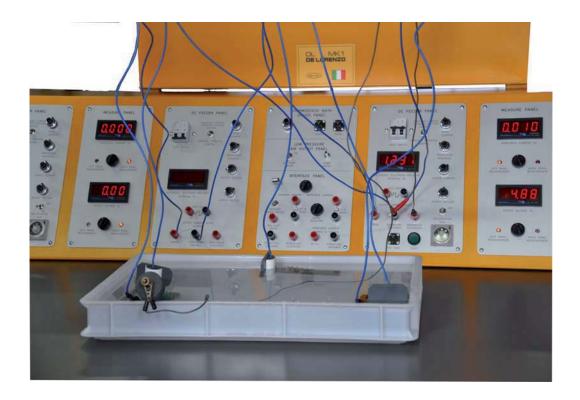
Questo esperimento dimostra e spiega la variazione della resistività con l'aumento della presenza di aria disciolta nell'elettrolita.

15) Introduzione alla densità di corrente e tracciamento delle curve di Tafel

Il concetto di densità di corrente è, come la differenza di potenziale, il concetto principale nella disciplina della protezione catodica e questo esperimento permette di comprendere che con questo concetto è possibile prevedere la quantità di corrente necessaria per ottenere il regime di protezione catodica sulla superficie di una nota struttura immersa nell' elettrolita. Utilizzando l'interfaccia multi-canale è possibile registrare la variazione dei valori di corrente nel tempo, quindi costruire le curve di polarizzazione in un diagramma.

16) Effetto della temperatura sulla densità di corrente (cella termostatica)

Questo esperimento dimostra e spiega la variazione di densità di corrente in funzione della temperatura e introduce il concetto di attività chimica.


17) Influenza della presenza di aria sulla densità di corrente

Questo esperimento dimostra e spiega la variazione di densità di corrente in funzione dell'aumento di ossigeno disciolto.

18) Rivestimento e densità di corrente

L'uso di campioni rivestiti permette di dimostrare l'effetto dei rivestimenti sulle strutture sommerse o interrate e dà la grandezza dell'effetto spiegando che la sinergia tra la protezione catodica e il rivestimento delle superfici da proteggere riduce la densità di corrente con tutti i vantaggi rilevanti.

Prevenzione della Corrosione

3. LISTA DEI MATERIALI

- Banco con ruote (dimensioni: 1300 x 2000 x800 mm.), con pannello elettrico, armadietti con chiave e superficie del tavolo impermeabile.
- Voltmetro digitale (portatile)
- Interfaccia per PC per la misura e la registrazione di 5 diversi canali
- Voltmetro digitale in consolle
- Amperometro digitale in consolle (quantità 2)
- Cella di riferimento portatile Cu/CuS04 (quantità 2)
- Cella di riferimento portatile Ag/AgCI (quantità 2)
- Cella di riferimento Zn (quantità 2)
- Elettrodo di rame 30 x 140 mm, spessore 2mm (quantità 10)
- Elettrodo in acciaio (quantità 10)
- Bacinella trasparente per realizzare il bagno elettrolitico di prova (quantità 4)
- Semplice circuito con resistenza a cursore e lampada per l'inserimento nel circuito elettrico della cella elettrolitica
- Elettrodo di zinco 8 mm, lunghezza 140 mm (quantità 20)
- Elettrodo di magnesio 25 mm, lunghezza 140 mm (quantità 20)
- Elettrodo di alluminio 25 mm, lunghezza 140 mm (quantità 20)
- Alimentatore in CC (quantità 4)
- Anodo Ti-Pt (50 x 140 mm.) (quantità 4)

Prevenzione della Corrosione

- Anodo tubolare MMO (25.4 x 140 mm) (quantità 4)
- Barra Cu da1mm lunghezza 1m
- Barra Fe da1mm lunghezza 1m
- Barra Fe-Ni da1mm lunghezza 1m
- Cella fluida di resistività
- Resistenza impermeabile con sistema termostatico
- Pompa ad aria con relativo spruzzatore
- Elettrodo in acciaio completamente rivestito di materiale epossidico (quantità 10)
- Elettrodo in acciaio parzialmente rivestito di materiale epossidico (quantità 10)
- Vari reagenti in contenitori di plastica, 0.25 kg/cadauno (quantità 10)
- Set di fusibili di riserva
- Set di cavi di collegamento
- Set di guanti e occhiali di sicurezza
- Manuale degli esperimenti su carta e CD