

3902 it - 2009.01 / d

POWERDRIVE

Variatore di velocità

Manuale di installazione

LEROY-SOMER	MANUALE DI INSTALLAZIONE	3902 it - 2009.01 / d
	POWERDRIVE Variatore di velocità	

NOTA

LEROY-SOMER si riserva il diritto di modificare le caratteristiche dei suoi prodotti in qualsiasi momento per aggiornarli con gli ultimi ritrovati della tecnologia. Le informazioni contenute in questo documento sono quindi soggette a modifiche senza preavviso.

Per la sicurezza dell'utente, questo variatore di velocità deve essere collegato ad una regolamentare messa a terra morsetto.

Se un avviamento intempestivo dell'installazione rappresenta un rischio per le persone o le macchine azionate, è indispensabile rispettare gli schemi di collegamento della potenza forniti in questo manuale.

Il variatore di velocità è dotato di dispositivi di sicurezza che, in caso di guasti, possono provocare l'arresto dell'apparecchio stesso e anche del motore. L'arresto del motore può essere provocato anche da un blocco meccanico. Infine, l'arresto può essere anche causato da variazioni di tensione o interruzioni dell'alimentazione. La scomparsa delle cause d'arresto rischia di provocare un riavviamento intempestivo che rappresenta un pericolo per alcune macchine o impianti, in particolare per quelle che devono conformarsi all'allegato 1 del decreto 92.767 del 29.07.92 relativo alla sicurezza. In tali casi è, quindi, importante che l'utente si premunisca contro le possibilità di riavviamento in caso di arresto non programmato del motore.

Il variatore di velocità è concepito per alimentare un motore e la macchina azionata oltre la loro velocità nominale. Se il motore o la macchina non sono meccanicamente concepiti per tali velocità, l'utente può essere esposto a gravi rischi dovuti all'usura meccanica. Prima di programmare una velocità elevata, è importante che l'utente si accerti che il sistema sia in grado di sopportarla.

Il presente variatore di velocità è un componente destinato ad essere incorporato in un'installazione o in una macchina elettrica e, in nessun caso, può essere considerato come un dispositivo di sicurezza. Spetta quindi al costruttore della macchina, al progettista dell'impianto o all'utente adottare le misure necessarie al rispetto delle norme in vigore e prevedere i dispositivi atti ad assicurare la sicurezza delle persone e delle cose.

In caso di mancato rispetto di queste disposizioni, LEI	ROY-SOMER declina ogni responsabilità di o	qualunque natura.
---	--	-------------------

Questo manuale contiene informazioni generali e illustra le caratteristiche e le procedure di installazione del POWERDRIVE. Per la messa in servizio, consultare il manuale 3871.

POWERDRIVE Variatore di velocità

ISTRUZIONI DI SICUREZZA E D'USO RELATIVE AI VARIATORI DI VELOCITÀ (Conformi alla direttiva bassa tensione 73/23/CEE modificata 93/68/CEE)

• Questo simbolo, nel manuale, segnala avvertenze che riguardano le conseguenze dovute a un uso improprio del variatore, i rischi elettrici che possono provocare danni materiali o lesioni personali nonché i rischi d'incendio.

1 - Generalità

Durante il loro funzionamento e secondo il grado di protezione, i variatori di velocità presentano parti scoperte in tensione - magari in movimento o rotanti - e superfici calde. La rimozione immotivata delle protezioni, uno scorretto utilizzo, un'installazione difettosa o una manovra inadeguata possono comportare gravi rischi per le persone e le cose. Per ulteriori informazioni, consultare la documentazione. Tutte le operazioni di trasporto, installazione, messa in servizio e manutenzione devono essere realizzate da personale qualificato e abilitato (vedere IEC 364 o CENELEC HD 384 o DIN VDE 0100, nonché le normative nazionali in materia di installazione e antinfortunistica). Ai sensi delle presenti istruzioni di sicurezza fondamentali, come personale qualificato si intendono persone competenti in materia d'installazione, montaggio, messa in servizio e gestione del prodotto in possesso delle qualifiche corrispondenti alla loro attività.

2 - Uso

I variatori di velocità sono componenti destinati ad essere incorporati in installazioni o macchine elettriche. In caso d'integrazione in una macchina, ne è vietata la messa in servizio fino a che non sia stata verificata la conformità della macchina con le disposizioni della Direttiva 89/392/CEE (direttiva macchine). Rispettare la norma EN 60204 la quale stabilisce che gli azionatori elettrici (di cui fanno parte i variatori di velocità) non possono essere considerati dispositivi d'interruzione e, ancor meno, di sezionamento. La loro messa in servizio è possibile solo nel rispetto delle disposizioni della Direttiva sulla compatibilità elettromagnetica (89/336/CEE, modificata 92/31/CEE).

I variatori di velocità soddisfano le esigenze fondamentali della Direttiva Bassa Tensione 73/23/CEE, modificata 93/68/CEE. Sono applicabili le norme armonizzate della serie DIN VDE 0160 insieme alla norma VDE 0660, parte 500 e EN 60146/VDE 0558. È indispensabile attenersi alle caratteristiche tecniche e alle indicazioni relative alle condizioni di collegamento in base alla targa d'identificazione e alla documentazione fornita.

3 - Trasporto e stoccaggio

È indispensabile attenersi alle indicazioni relative al trasporto, allo stoccaggio e alla corretta manipolazione, oltre che alle condizioni climatiche specificate nel manuale tecnico.

4 - Installazione

Per l'installazione e il raffreddamento degli apparecchi, è necessario attenersi a quanto prescritto nella documentazione fornita con il prodotto.

I variatori di velocità devono essere protetti da eccessive sollecitazioni. In particolare, durante il trasporto e la movimentazione, non devono verificarsi deformazioni di pezzi e/o modifiche delle distanze d'isolamento dei componenti. Evitare di toccare i componenti elettronici e i pezzi di contatto.

I variatori di velocità includono pezzi sensibili alle sollecitazioni elettrostatiche e facilmente danneggiabili a seguito di una manipolazione impropria. I componenti elettrici non devono essere danneggiati o distrutti meccanicamente. In caso contrario, esiste il rischio di lesioni.

5 - Collegamento elettrico

Quando si lavora con il variatore di velocità in tensione, occorre rispettare le prescrizioni nazionali per la prevenzione d'incidenti.

L'installazione elettrica deve essere realizzata conformemente alle prescrizioni applicabili (per esempio sezioni di conduttori, protezione con interruttori a fusibili, collegamento del conduttore di protezione). Per informazioni più dettagliate, consultare la documentazione.

Le indicazioni relative alla compatibilità elettromagnetica dell'installazione, come schermatura, messa a terra, presenza di filtri e posa adeguata di cavi e conduttori, sono riportate nella documentazione fornita con i variatori di velocità. Tali indicazioni devono sempre essere rispettate, anche quando sul variatore è presente il marchio CE. Il rispetto dei valori limite, imposti dalla legislazione sulla EMC, è competenza del costruttore dell'installazione o della macchina.

6 - Funzionamento

Le installazioni in cui sono incorporati variatori di velocità devono essere dotate dei dispositivi di protezione e di sorveglianza supplementari previsti dalle prescrizioni di sicurezza in vigore, come la legge sul materiale tecnico, le normative sulla prevenzione degli inAltauni, ecc...

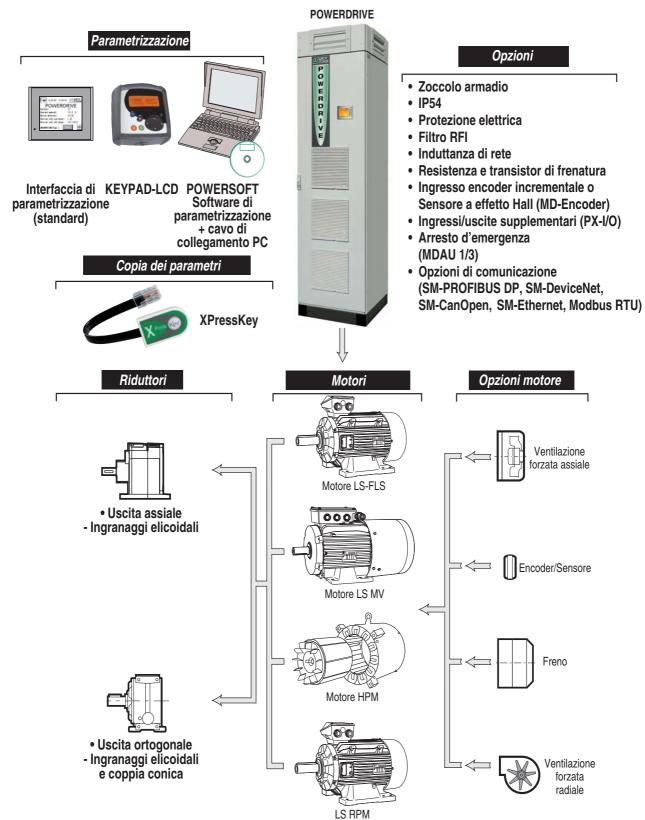
Le modifiche ai variatori di velocità sono ammesse solo se realizzate per mezzo del software di controllo.

Dopo la messa fuori tensione del variatore di velocità, non toccare subito le parti attive dell'apparecchio e i collegamenti di potenza sotto tensione poiché i condensatori potrebbero essere ancora carichi. Seguire invece scrupolosamente le avvertenze affisse sui variatori di velocità.

Durante il funzionamento, tutti i coperchi e le protezioni devono essere chiusi.

7 - Manutenzione ordinaria e straordinaria

Attenersi alla documentazione del costruttore.


Questo manuale deve essere trasmesso all'utente finale.

Variatore di velocità

PREMESSA

Il presente manuale descrive l'installazione dei variatori di velocità **POWERDRIVE**. Descrive in dettaglio anche tutte le opzioni ed estensioni previste per adattare il prodotto alle esigenze dell'utente.

POWERDRIVE Variatore di velocità

SOMMARIO

1		ORMAZIONI GENERALI	
		- Generalità	
		- Denominazione del prodotto	
		- Caratteristiche ambientali	
	1.4	- Caratteristiche elettriche	
		1.4.1 - Caratteristiche generali	
		1.4.2 - Caratteristiche elettriche a 40°C	
		1.4.3 - Declassamento in funzione della temperatura e della frequenza di taglio	9
2	- INS	STALLAZIONE MECCANICA	10
	2.1	- Verifiche al ricevimento	10
	2.2	- Manutenzione	10
	2.3	- Smontaggio e rimontaggio del tetto IP21	11
		- Montaggio e smontaggio del tetto IP54	
		- Precauzioni d'installazione	
	2.6	- Ingombro e peso	14
		- Perdite, portata di ventilazione e livelli di rumore	
2	00		16
3		PLLEGAMENTI	
	3.1	- Localizzazione delle morsettiere	
		3.1.1 - Localizzazione della morsettiera di controllo, delle schede fusibili e dell'alimentazione esterna	
	3.2	- Collegamento della potenza	
		3.2.1 - Ingresso di sicurezza	
		3.2.2 - Alimentazione su rete trifase AC, secondo norma di sicurezza EN954-1 - CATEGORIA 1	
		3.2.3 - Alimentazione su rete trifase AC, secondo norma di sicurezza EN954-1 - CATEGORIA 2 o 3	
	0.0	3.2.4 - Cavi e fusibili	
	3.3	- Collegamenti di controllo	
		3.3.1 - Caratteristiche delle morsettiere di controllo	
		3.3.3 - Configurazione rapida della morsettiera di controllo in funzione della scelta del riferimento	
,	٥F	NEDALITÁ EMO ADMONIQUE INTEDEEDENZE DI DETE	20
4		NERALITÁ EMC - ARMONICHE - INTERFERENZE DI RETE	
	4.1	- Armoniche bassa frequenza	
		4.1.1 - Generalità	
		4.1.3 - Riduzione del livello di armoniche reiniettate sulla rete	
	4.2	- Interferenze radiofrequenza: Immunità	
		4.2.1 - Generalità	
		4.2.2 - Norme	
		4.2.3 - Raccomandazioni	
	4.3	- Interferenze radiofrequenza: Emissione	31
		4.3.1 - Generalità	
		4.3.2 - Norme	
	4.4	4.3.3 - Raccomandazioni	
	4.4	- Influenza della rete di alimentazione	
		4.4.1 - Picchi di tensione transitori	
		4.4.3 - Impedenza della rete	
		4.4.4 - Collegamenti di massa	
	4.5	- Precauzioni elementari d'installazione	
		4.5.1 - Cablaggio interno all'armadio	32
		4.5.2 - Cablaggio esterno all'armadio	32
		4.5.3 - Importanza dei collegamenti a massa	
	46	- Compatibilità elettromagnetica (FMC)	33

POWERDRIVE Variatore di velocità

SOMMARIO

5	- OP	ZIONI	34
	5.1 -	· Filtri RFI	. 34
		5.1.1 - Generalità	34
		5.1.2 - Peso e ingombro	34
	5.2 -	· Induttanza di rete	. 35
		5.2.1 - Generalità	35
		5.2.2 - Peso e ingombro	35
		5.2.3 - Collegamento	35
	5.3 -	· Transistor e resistenze di frenatura	. 36
		5.3.1 - Transistor di frenatura	36
		5.3.2 - Transistor di frenatura	
	5.4 -	· Protezioni elettriche	. 36
	5.5 -	· Opzioni integrabili	. 37
		5.5.1 - Localizzazione delle opzioni	37
		5.5.2 - POWERSOFT	37
		5.5.3 - KEYPAD-LCD	
		5.5.4 - XPressKey	
		5.5.5 - MD-Encoder	
		5.5.6 - PX-I/O	
		5.5.7 - Moduli bus di campo	
		5.5.8 - Modulo Modbus RTU	41
6	- MA	NUTENZIONE	42
	6.1 -	- Manutenzione ordinaria	. 42
	6.2 -	· Stoccaggio	. 42
		· Misurazione di tensione, corrente e potenza	
	0.0	6.3.1 - Test di potenza automatico	
		6.3.2 - Misura della tensione all'uscita del variatore	
		6.3.3 - Misurazione della corrente motore	
		6.3.4 - Misurazione della potenza d'ingresso e d'uscita del variatore	42
	6.4 -	Lista delle parti di ricambio	. 43
		6.4.1 - Fusibili interni (AP6)	43
		6.4.2 - Fusibili barre di ingresso rete	
		6.4.3 - Fusibili barre di uscita motore	
		6.4.4 - Fusibili di ripresa di tensione bus CC (AP5)	
		6.4.5 - Fusibili di protezione dell'alimentazione ausiliaria	
		6.4.6 - Posizione dei fusibili	_
	6.5 -	Restituzione di prodotti	. 43

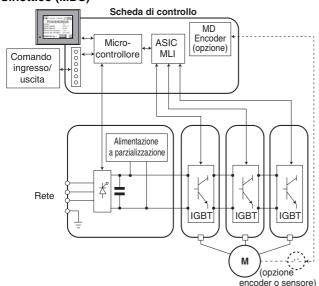
Variatore di velocità

INFORMAZIONI GENERALI

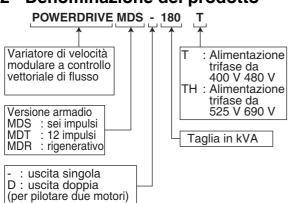
1 - INFORMAZIONI GENERALI

1.1 - Generalità

Il **POWERDRIVE** è un variatore elettronico modulare industrializzato in un armadio elettrico con grado di protezione IP21 o IP54, destinato all'alimentazione di motori trifase, asincroni o sincroni.


Nella versione di base, il **POWERDRIVE** è un variatore di velocità a controllo vettoriale di flusso senza ritorno velocità (anello aperto) con prestazioni elevate e adatto, quindi, alla grande maggioranza delle applicazioni.

Con l'opzione ritorno velocità (anello chiuso), il POWERDRIVE controlla i motori dotati di un encoder incrementale con o senza canali di commutazione o di un sensore a effetto Hall, permettendo così di gestire la coppia e la velocità in tutto il campo di velocità (compresa la velocità nulla) e con migliori prestazioni dinamiche.


Le prestazioni del **POWERDRIVE** (MDS) sono compatibili con un uso nei 4 quadranti del piano coppia/velocità (con modulo di frenatura installato). Il **POWERDRIVE** rigenerativo (MDR) permette di restituire l'energia senza resistenza di frenatura

La protezione IP54 (opzione) consente, negli ambienti difficili, un'installazione direttamente accanto alla macchina.

Sinottico (MDS)

1.2 - Denominazione del prodotto

Targa di identificazione

FDC	INGRESSO - INPUT								
SOMER			V (V)	Hz (Hz)	I(A)				
30/	30/VIER			50/60	295				
MOTORI LEROY-	MOTORI LEROY-SOMER			Alim ausiliaria 800 VA					
16015 ANGOULE	ME FRANCE	400V/50Hz 480/60Hz							
	TIPO : F	POW	/ERDRIV	E MDS -	180T				
CE	S/N:		099999	99999					

La targa di identificazione si trova all'interno, nella parte alta della porta destra dell'armadio (una seconda targa si trova all'esterno dell'armadio, sul lato destro superiore).

1.3 - Caratteristiche ambientali

Caratteristiche	Livello
Protezione	IP21 (IP54 opzionale)
Temperatura di stoccaggio e di trasporto	-25°C a +60°C 12 mesi al massimo, dopo i quali il variatore (potenza e elettronica) deve essere messo in tensione per 24 ore ogni 6 mesi
Temperatura di funzionamento	da -10°C a +40°C, fino a +50°C con declassamento (vedere § 1.4.3)
Classificazione delle condizioni ambientali	Secondo CEI EN 60721-3-3: classificazione biologica in base alla classe 3B1 classificazione sostanze chimicamente attive secondo la classe 3C2 classificazione sostanze meccanicamente attive in base a 3S2
Umidità relativa	A norma CEI 60068-2-56.< 90% senza condensa
Altitudine	≤ 1000 m senza declassamento > 1000 m con declassamento della temperatura di funzionamento di 0,6°C ogni 100m. Es: per un'altitudine di 1300 m, le caratteristiche elettriche da prendere in considerazione sono per una temperatura ambiente di [40°- (3 x 0,6°)] = 38,2°C.
Vibrazioni	 A norma CEI 60068-2-6 Prodotto non imballato: 2m/s² (9-200Hz), 0,6mm (2-9Hz) Prodotto imballato: 10m/s² (9-200Hz), 3mm (2-9Hz)
Urti	Prodotto imballato: a norma CEI 60068-2-29.
Pressione atmosferica	da 700 a 1060 hPa
Ciclo di temperatura	A norma CEI 60068-2-14 da - 10°C a +40°C, 5 cicli

Variatore di velocità

INFORMAZIONI GENERALI

1.4 - Caratteristiche elettriche

• Tutte le operazioni di installazione, messa in servizio e manutenzione devono essere effettuate da personale qualificato e abilitato.

1.4.1 - Caratteristiche generali

Caratteristiche	Livello				
Tensione di alimentazione della potenza	Rete trifase: da 400 V -10% a 480 V +10% (taglie "T") o da 525 V -10% a 690 V +10% (taglie "TH")				
Squilibrio di tensione tra fasi	2 %				
Tensione e potenza di alimentazione ausiliaria e ventilazione forzata (morsettiera/e Px4)	Rete monofase : 400 V/50 Hz (± 10%) oppure 460-480 V/60 Hz (±10%) •da 60T a 150T : P = 350 VA •da 180T a 270T: P = 800 VA •da 340T a 470T: P = 1200 VA •600T e 750T : P = 2400 VA •900T e 1100T : P = 3600 VA				
Frequenza ingresso	2 % attorno alla frequenza nominale (50 o 60 Hz)				
Numero massimo di accensioni all'ora (potenza)	20				
Campo di frequenza in uscita	da 0 a 999Hz				

• Per un funzionamento in regime di neutro IT, seguire le istruzioni descritte al pragrafo 4.4.3.

1.4.2 - Caratteristiche elettriche a 40°C

ATTENZIONE:

Con la regolazione di fabbrica, il variatore funziona con una frequenza di taglio di 3 kHz per una temperatura ambiente di 40°C.

 I_{sp} : Corrente di uscita permanente.

P_{mot}: Potenza motore.

I_{max} (60s): Corrente di uscita massima *.

I_{max} (2s): Corrente di uscita di picco per 2s dopo l'avvio.

Sovraccarico alto: Per macchine con coppia costante a sovraccarico alto, ad esempio: presse, frantumatori, estrusori, trasportatori, vagli, sollevamento o applicazioni che richiedono di accelerare rapidamente una grande inerzia.

Sovraccarico basso: Per le macchine con coppia centrifuga o coppia costante a sovraccarico ridotto, ad esempio: pompe, ventilatori, compressori.

(*) Corrente disponibile per 60 secondi ogni 600 secondi con temperatura massima del variatore.

Rete trifase da 400V -10 % a 480V +10 %

Toglio	•	Sovrace	carico alto		Sovraccarico basso					
Taglia POWERDRIVE	Pmot Isp		Imax (60s)	Imax (60s) Imax (2s)		Isp	Imax (60s)	Imax (2s)		
TOWEIIDIIIVE	(kW)	(A)	(A)	(A)	(kW)	(A)	(A)	(A)		
60T	45	90	120	140	55	110	120	140		
75T	55	110	165	175	75	145	165	175		
100T	75	145	200	220	90	175	200	220		
120T	90	175	240	270	110	215	240	270		
150T	110	220	308	375	132	260	308	375		
180T	132	260	360	425	160	305	360	425		
220T	160	305	450	460	200	380	450	460		
270T	200	380	530	600	250	470	530	600		
340T	250	470	660	770	315	580	660	770		
400T	315	570	760	900	355	630	760	900		
470T	355	680	940	1060	450	800	940	1060		
600T	450	820	1140	1210	550	990	1140	1210		
750T	550	990	1400	1525	675	1220	1400	1525		
900T	675	1220	1725	1890	750	1430	1725	1890		
1100T	750	1430	2050	2165	900	1700	2050	2165		

Nota: Con l'opzione IP54, i valori della precedente tabella sono validi per una frequenza di taglio di 2kHz.

Variatore di velocità

INFORMAZIONI GENERALI

Rete trifase da 525 V -10% a 690 V +10 %

Taglia		Sovrac	carico 1	forte		Sovraccarico debole				
POWERDRIVE	P _{mot} a 575 V (kW)	P _{mot} a 690 V (kW)	I _{sp} (A)	I _{max} (60 s) (A)	I _{max} (2 s) (A)	P _{mot} a 575 V (kW)	P _{mot} a 690 V (kW)	I _{sp} (A)	I _{max} (60 s) (A)	I _{max} (2 s) (A)
270TH	160	200	225	308	350	200	250	280	308	350
340TH	200	250	280	378	432	250	315	340	378	432
400TH	250	315	340	465	520	315	400	415	465	520
500TH	315	400	415	545	600	400	450	500	545	600
600TH	400	450	500	638	684	450	550	580	638	684
750TH	450	550	580	800	880	550	700	730	800	880
900TH	550	700	730	1000	1152	700	850	900	1000	1152
1200TH	700	850	900	1230	1350	850	1100	1120	1230	1350
1500TH	850	1100	1120	1485	1690	1100	1300	1350	1485	1690

Nota: Con l'opzione IP54, i valori indicati nella tabella qui sopra sono validi per una regolazione della frequenza di taglio a 2kHz.

1.4.3 - Declassamento in funzione della temperatura e della frequenza di taglio

Taglia						I _{sp}	(A)				
POWERDRIVE	Temperatura			accarico					ccarico		
OWENDINVE		2kHz	3kHz	4kHz	5kHz	6kHz	2kHz	3kHz	4kHz	5kHz	6kHz
60T	40°C	90	90	82	76	72	110	110	100	92	85
001	50°C	85	75				105	90			
75T	40°C	110	110	100	94	90	145	145	132	120	112
751	50°C	102	100				135	120			
100T	40°C	145	145	132	122	115	180	175	165	150	138
1001	50°C	135	125				165	165			
120T	40°C	175	175	160	148	138	215	215	200	180	165
1201	50°C	165	155				205	195			
150T	40°C	220	220	195	175	165	260	260	240	215	195
1301	50°C	205	210				245	230			
180T	40°C	260	260	245	230	220	305	305	305	290	265
1001	50°C	240	250				295	305			
220T	40°C	305	305	290	265	250	380	380	330	315	290
2201	50°C	290	260				355	315			
270T	40°C	380	380	350	320	305	470	470	430	390	355
2/01	50°C	360	320				440	400			
340T	40°C	470	470	430	400	375	580	580	510	460	425
3401	50°C	440	400				515	475			
400T	40°C	570	570	520	480	455	650	630	600	550	500
7001	50°C	535	470				590	540			
470T	40°C	680	680	620	590	550	800	800	750	680	625
	50°C	640	600				770	720			
600T	40°C	820	820	760	710	670	990	990	920	830	760
	50°C	770	745				930	900			
750T	40°C	990	990	920	850	800	1220	1220	1120	1020	930
7501	50°C	930	900				1150	1100			
900T	40°C	1220	1220	1120	1050	950	1430	1430	1300	1210	1100
9001	50°C	1150	1100				1360	1310			
1100T	40°C	1430	1430	1310	1220	1100	1700	1700	1580	1430	1320
11001	50°C	1360	1310				1620	1550			
270TH	40°C	225	225	190	170	150	280	280	250	220	190
2/01П	50°C		200					225			
340TH	40°C	280	280	250	220	190	340	340	310	280	255
34011	50°C		255					310			
400TU	40°C	340	340	310	280	255	415	415	415	370	330
400TH	50°C		310					415			
FOOTU	40°C	415	415	415	370	330	500	500	425	370	330
500TH	50°C		415					450			
600TH	40°C	500	500	425	370	330	580	580	520	465	430
600TH	50°C		450					525			
750TH	40°C	580	580	520	465	430	730	730	730	675	595
/501П	50°C		525					730			
900TH	40°C	730	730	730	675	595	900	900	780	675	595
90011	50°C		730					815			
1200TH	40°C	900	900	780	675	595	1120	1120	1120	1000	880
120011	50°C		815					1120			
1500TH	40°C	1120	1120	1120	1000	880	1350	1350	1160	1000	880
ISOUTH	50°C		1120					1220			

Nota: Con l'opzione IP54, considerare i valori della colonna 3 kHz per una regolazione della frequenza di taglio a 2 kHz.

2 - INSTALLAZIONE MECCANICA

• È responsabilità del proprietario o dell'utente verificare che installazione, gestione, manutenzione ordinaria del POWERDRIVE e delle sue opzioni siano effettuate nel rispetto della legislazione relativa alla sicurezza delle persone e delle cose e delle norme vigenti nel paese d'installazione. Il variatore non deve essere installato in zone a rischio salvo che in appositi armadi. In tal caso, l'installazione deve essere certificata.

• Negli ambienti soggetti a formazione di condensa, installare un sistema di riscaldamento da attivare quando il variatore non è utilizzato e da spegnere quando il variatore è in funzione. È preferibile il comando automatico del sistema di riscaldamento.

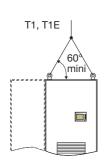
2.1 - Verifiche al ricevimento

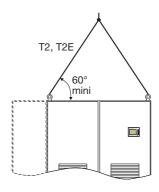
· Assicurarsi che l'armadio sia stato trasportato verticalmente. In caso contrario, rischia di essere danneggiato.

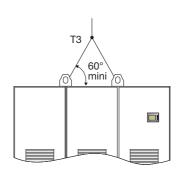
Prima di procedere all'installazione del **POWERDRIVE**, verificare che:

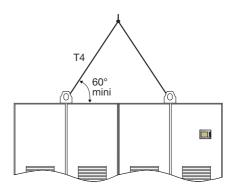
- il variatore non abbia subito danni durante il trasporto;
- le indicazioni sulla targa di identificazione siano compatibili con la rete d'alimentazione.

2.2 - Manutenzione

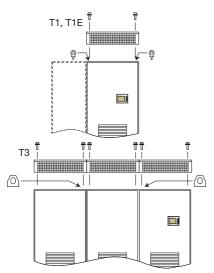



- Il centro di gravità può essere situato in alto o scentrato. Fare attenzione al rischio di oscillazione dell'armadio.
- Verificare che gli apparecchi di movimentazione siano adatti alla massa da trasportare.
- Gli accessori per il sollevamento forniti sono da utilizzare esclusivamente per la movimentazione dell'armadio.


Se si eseguono ulteriori movimentazioni, è necessario verificare lo stato di conservazione di questi accessori.


La manutenzione deve essere effettuata senza tetto IP21 o IP54.

I **POWERDRIVE** di tipo IP21 sono consegnati con il tetto già montato. Prima della manutenzione dell'armadio, seguire la procedura descritta nella sezione § 2.3. Per la movimentazione seguire le istruzioni riportate di seguito, poi procedere al rimontaggio del tetto. I **POWERDRIVE** di tipo IP54 sono forniti con le barre o i golfari già montati. Per la manutenzione dell'armadio, seguire le istruzioni fornite di seguito. Dopo la manutenzione, procedere al montaggio del tetto come descritto nella sezione § 2.4.

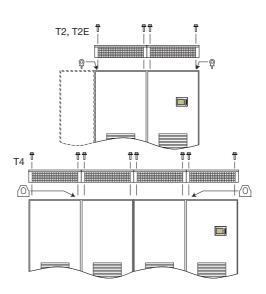

Variatore di velocità

INSTALLAZIONE MECCANICA

2.3 - Smontaggio e rimontaggio del tetto IP21

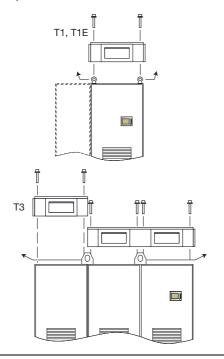
Smontaggio

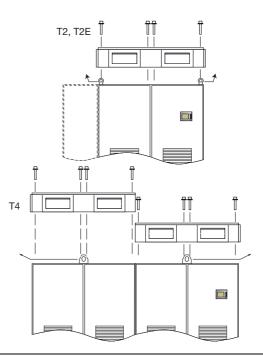
- 1 Smontare le viti M12.
- 2 Smontare il tetto.
- 3 Avvitare i 4 golfari o le due barre di sollevamento con le viti M12 nei punti indicati (coppia di serraggio = 20 N.m)


2.4 - Montaggio e smontaggio del tetto **IP54**

• Montaggio:

- 1 Smontare i 4 golfari o le 2 barre di sollevamento.
- 2 Disporre il cassone del tetto secondo lo schema seguente. Le facce laterali senza feritoie devono essere montate l'una di fronte all'altra, di modo che il retro del variatore sia senza feritoie.
- 3 Avvitare nel cassone del tetto le viti M12 fornite in dotazione.
- 4 Regolare il cassone del tetto per ottimizzarne la tenuta.
- 5 Serrare in modo definitivo le viti di fissaggio (coppia di serraggio: 20 N.m).




Seguire la procedura inversa.

• Eventuale smontaggio:

Seguire la procedura inversa.

LEROY-SOMER	MANUALE DI INSTALLAZIONE	3902 it - 2009.01 / d
	POWERDRIVE	
	Variatore di velocità	
	INSTALLAZIONE MECCANICA	

2.5 - Precauzioni d'installazione

- I variatori devono essere installati al riparo da polveri conduttrici, gas corrosivi, acqua e ogni fonte di condensa. Impedire l'accesso alle persone non abilitate.
- Dopo il collegamento dell'alimentazione, riposizionare i passacavi in fondo all'armadio per evitare l'introduzione di corpi estranei.

Verificare che non ci sia ricircolo di aria calda a livello degli ingressi dell'aria lasciando una zona libera sufficientemente ampia sopra il **POWERDRIVE** oppure prevedendo un sistema di evacuazione dell'aria calda, all'occorrenza tramite l'installazione di una cappa aspirante.

LEROY-SOMER	MANUALE DI INSTALLAZIONE	3902 it - 2009.01 / d
	POWERDRIVE	
	Variatore di velocità	
	INSTALLAZIONE MECCANICA	

Note

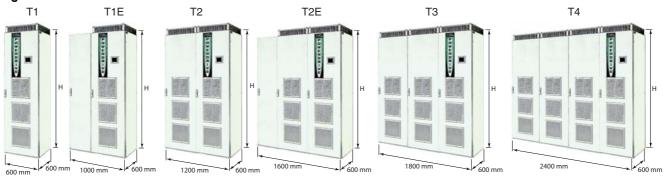
Variatore di velocità

INSTALLAZIONE MECCANICA

2.6 - Ingombro e peso

La soluzione in armadio POWERDRIVE si ottiene mediante assemblaggio di moduli d'armadio da 600x600x2000 (mm) e, eventualmente, di un modulo da 400x600x2000 (mm). Di conseguenza, altezza e profondità sono costanti mentre la larghezza varia in funzione della taglia e delle opzioni installate.

L'opzione Arresto d'emergenza (categoria 1 o categoria 2-3) può essere integrata al POWERDRIVE senza modificarne l'ingombro.


La tabella che segue indica gli ingombri del prodotto di base.

Protezione elettrica (2)	Filtro RFI	Transistor di frenatura	Induttanza di rete	da 60T a 150T	da 180T a 400T	470T	da 600T a 900T	1100T (1)
				T1	T1	T1	T2	-
	Х			T1	T1	T1E	T2E	-
	Х	Х		T1	T1	T1E	T2E	-
	Х	Х	Х	T1	T1E	T1E	T2E	T4
	Х		х	T1	T1E	T1E	T2E	T4
		Х		T1	T1	T1	T2	-
		Х	Х	T1	T1E	T1E	T2E	T4
			Х	T1	T1	T1	T2	T3
Х	Х	Х	Х	T1	T1E	T1E	T2E	T4
Х	Х			T1	T1E	T1E	T2E	-
Х	Х	Х		T1	T1E	T1E	T2E	-
Х	Х		Х	T1	T1E	T1E	T2E	T4
Х		Х		T1	T1E	T1E	T2E	-
Х		Х	Х	T1	T1E	T1E	T2E	T4
Х			х	T1	T1E	T1E	T2E	T4
Х				T1	T1E	T1E	T2E	-
Х			Х	T1	T1E	T1E	T2E	T4
Х				T1	T1E	T1E	T2E	

Protezione elettrica (2)	Filtro RFI	Transistor di frenatura	da 270TH a 500TH (1)	da 600TH a 900TH (1)	1200TH e 1500TH (1)
			T1	T2	Т3
		Х	T1E	T2E	T4
	х		T1E	T2E	T4
	x	Х	T1E	T2E	T4
Х			T1E	T2E	T4
Х		Х	T1E	T2E	T4
Х	Х		T1E	T2E	T4
x	x	X	T1E	T2E	T4

- x : opzione presente nell'armadio.
- (1) L'induttanza di rete è integrata di serie.
- (2) Per le protezioni elettriche, fare riferimento alla sezione § 5.4.

• Ingombri

POWERDRIVE	Dimensione H (mm)						
1 OWENDINVE	Senza base	Con base 100mm					
IP21	2160	2260					
Con opzione IP54	2260	2360					

Variatore di velocità

INSTALLAZIONE MECCANICA

• pesi

Toglio		Peso (kg)			
Taglia POWERDRIVE	Senza opzioni	Con o	pzioni		
1 OWENDING	T1	T1	T1E		
60T	195				
75T	195				
100T	195	max 420			
120T	245				
150T	245				
180T	295				
220T	295				
270T	330	max 440			
340T	355	max 11 0	max 560		
400T	355				
470T	355				
270TH e 340TH	355				
400TH e 500TH	400		max 620		

Toglio	Peso (kg)							
Taglia POWERDRIVE	Senza opzioni	Con opzioni						
1 OWENDINVE	T2	T2	T2E					
600T	710	max 860	max 990					
750T	710	max 000	max 550					
900T	740	max 880	max 1040					
600TH	720		max 780					
750TH e 900TH	810		max 1050					

Taglia		Peso (kg)							
POWERDRIVE	Senza	Con o	pzioni						
TOWEINDINVE	Т3	T3	T4						
1100T	1350		max 1720						
1200TH e 1500TH	1250		max 1520						

2.7 - Perdite, portata di ventilazione e livelli di rumore

• Perdite in funzione della frequenza di taglio

Perdite		POWERDRIVE													
(kW)	60T	75T	100T	120T	150T	180T	220T	270T	340T	400T	470T	600T	750T	900T	1100T
a 2 kHz	1,45	1,75	2,11	2,70	3,30	4,08	4,76	5,83	7,40	8,58	10,78	14,90	16,10	21,41	24,70
a 3 kHz	1,53	1,83	2,24	2,89	3,53	4,36	5,10	6,25	7,90	9,10	11,17	15,60	16,90	21,14	26
a 4 kHz	1,62	1,95	2,39	3,10	3,79	4,68	5,47	6,75	8,50	9,80	11,78	16,40	17,80	22,29	27,2

Perdite		POWERDRIVE												
(kW)	270TH	340TH	400TH	500TH	600TH	750TH	900TH	1200TH	1500TH					
a 2 kHz	5,55	9,2	8,7	10,54	15,88	16,12	20,87	26,4	31,82					
a 3 kHz	5,98	9,71	9,35	11,33	16,79	17,31	22,33	28,33	34,17					
a 4 kHz	6,23	9,7	9,35	11,24	16,6	19,69	22,54	32,08	34,2					

Nota: Le perdite delle induttanze esterne sono comprese nei valori indicati sopra.

• Portata della ventilazione forzata

Ventilazione	ione POWERDRIVE														
forzata	60T	75T	100T	120T	150T	180T	220T	270T	340T	400T	470T	600T	750T	900T	1100T
Portata (m ³ /h)	450	450	450	450	450	900	900	900	1700	1700	1700	3400	3400	3400	5100

Ventilazione		POWERDRIVE										
forzata	270TH	270TH 340TH 400TH 500TH 600TH 750TH 900TH 1200TH 1500°										
Portata (m ³ /h)	1700	1700	1700	1700	3400	3400	3400	5100	5100			

• Rumori

Ventilazione							PO	NERDF	IVE										
forzata	60T	75T	100T	120T	150T	180T	220T	270T	340T	400T	470T	600T	750T	900T	1100T				
Livello (dBA)	73	73	73	76	76	76	76	76	77	77	77	80	80	80	82				

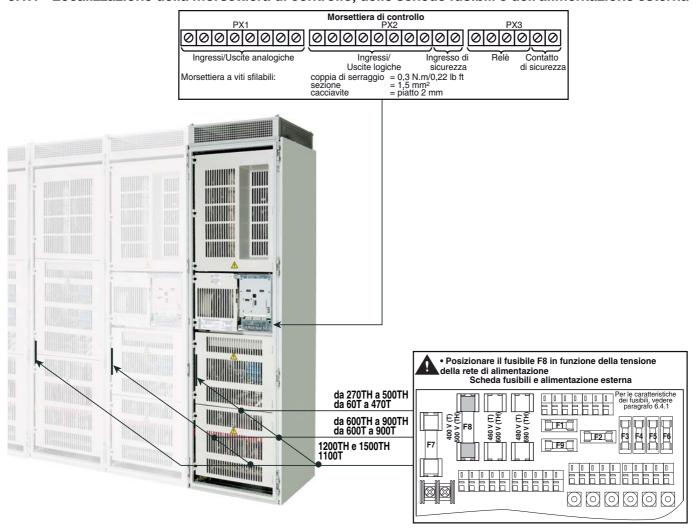
Ventilazione		POWERDRIVE										
forzata	270TH	70TH 340TH 400TH 500TH 600TH 750TH 900TH 1200TH 1500TH										
Livello (dBA)	77	77	77	77	80	80	80	82	82			

Variatore di velocità

COLLEGAMENTI

3 - COLLEGAMENTI

• Tutti gli interventi di collegamento devono essere effettuati secondo le leggi in vigore nel paese d'installazione. Ciò comprende la messa a terra o alla massa per garantire che nessuna parte direttamente accessibile del variatore possa trovarsi al potenziale di rete o a qualsiasi altra tensione potenzialmente pericolosa.


• Le tensioni presenti sui cavi o sui collegamenti di rete, motore, resistenza di frenatura o filtro possono dare origine a scosse elettriche mortali. Evitare il contatto con questi elementi in ogni caso.

- Per poter togliere la tensione in modo sicuro, il variatore deve essere alimentato interponendo un dispositivo d'interruzione.
- L'alimentazione del variatore deve essere protetta contro i sovraccarichi e i cortocircuiti.
- La funzione di arresto del variatore non protegge dalle tensioni elevate presenti sulle morsettiere.
- Prima di intervenire, assicurarsi che la tensione del bus continuo sia inferiore a 40 V (il LED di indicazione di accensione della scheda di controllo deve essere spento, vedere paragrafo 5.5.1).
- spento, vedere paragrafo 5.5.1).

 Verificare la compatibilità, per tensione e corrente, tra variatore, motore e rete.
- Dopó il funzionamento, il radiatore del variatore può essere molto caldo (70°C). Evitarne il contatto.

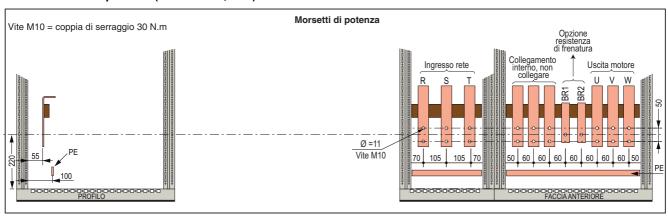
3.1 - Localizzazione delle morsettiere

3.1.1 - Localizzazione della morsettiera di controllo, delle schede fusibili e dell'alimentazione esterna

Variatore di velocità

COLLEGAMENTI

3.1.2 - Localizzazione dei morsetti di potenza

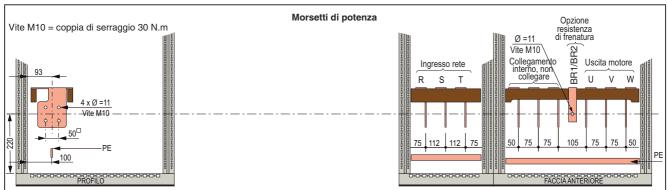

La tabella seguente indica la configurazione dei morsetti di potenza, in base alla taglia e alle dimensioni del variatore.

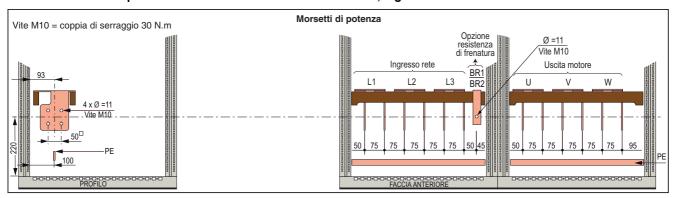
Taulia	Ingombro								
Taglia POWERDRIVE	Variatore senza opzione			Variatore con opzioni					
TOWENDINE	T1	T2	Т3	T1	T1E	T2	T2E	Т3	T4
da 60T a 150T	§ 3.1.2.1			§ 3.1.2.1					
da 180T a 270T	§ 3.1.2.1			§ 3.1.2.1	§ 3.1.2.2				
da 340T a 470T da 270TH a 500TH	§ 3.1.2.3			§ 3.1.2.3	§ 3.1.2.4				
da 600T a 900T da 600TH a 900TH		§ 3.1.2.5				§ 3.1.2.5	§ 3.1.2.6		
1100T 1200TH e 1500TH			§ 3.1.2.7					§ 3.1.2.7	§ 3.1.2.8

3.1.2.1 - Morsetti di potenza (60T - 270T, T1)

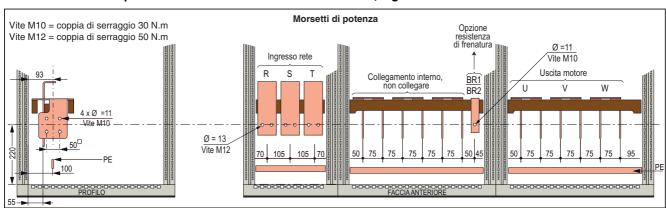
3.1.2.2 - Morsetti di potenza (180T - 270T, T1E)

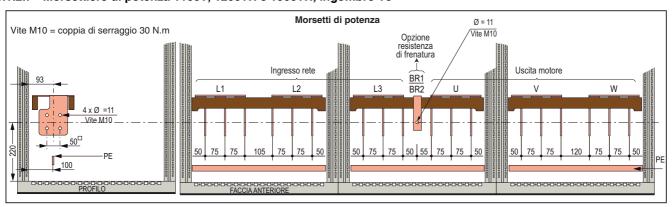
3.1.2.3 - Morsettiere di potenza da 340T a 470T e da 270TH a 500TH, ingombro T1




Variatore di velocità

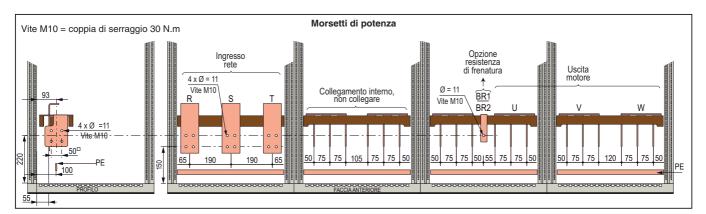
COLLEGAMENTI


3.1.2.4 - Morsettiere di potenza da 340T a 470T e da 270TH a 500TH, ingombro T1E


3.1.2.5 - Morsettiere di potenza da 600T a 900T e da 600TH a 900TH, ingombro T2

3.1.2.6 - Morsettiere di potenza da 600T a 900T e da 600TH a 900TH, ingombro T2E

3.1.2.7 - Morsettiere di potenza 1100T, 1200TH e 1500TH, ingombro T3



Variatore di velocità

COLLEGAMENTI

3.1.2.8 - Morsettiere di potenza 1100T, 1200TH e 1500TH, ingombro T4

3.2 - Collegamento della potenza

3.2.1 - Ingresso di sicurezza

Questo ingresso, quando è aperto, comporta il blocco del variatore. Indipendente dal microprocessore, agisce su diversi livelli del comando del ponte di uscita. La sua concezione è tale che, anche in caso di guasto di uno o più componenti del circuito, l'assenza di coppia sull'albero motore è garantita con un livello d'integrità molto alto.

Questo ingresso permette di realizzare una funzione di sicurezza di categoria 1 o 3 della norma EN954-1, secondo lo schema d'applicazione.

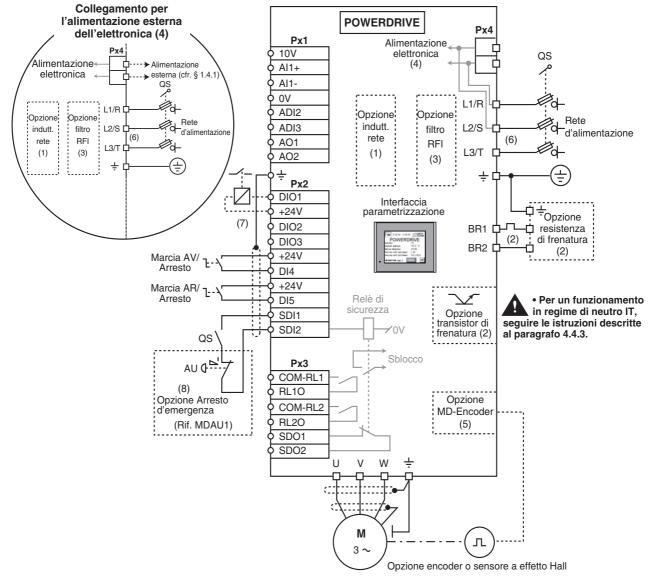
La concezione della funzione "arresto a ruota libera", che utilizza l'ingresso SDI2, è stata omologata dal CETIM (PV n. 781422/5D2/472). Questa funzionalità integrata permette al variatore di sostituirsi a un contattore per effettuare l'arresto del motore a ruota libera. L'uso di questo ingresso di sicurezza, in ridondanza con un secondo ingresso digitale del variatore, permette di realizzare uno schema in grado di tollerare un semplice guasto. Il variatore realizzerà l'arresto del motore a ruota libera utilizzando due diverse vie di comando. Per la corretta configurazione, è opportuno rispettare gli schemi di collegamento della potenza (e del controllo) descritti nei paragrafi successivi.

Per sbloccare il variatore e per garantire la funzione di sicurezza, l'ingresso di sicurezza SDI2 deve essere collegato alla sorgente +24V SDI1. Questa sorgente +24V deve essere riservata esclusivamente alla funzione ingresso di sicurezza.

• o L'ingresso di sicurezza è un elemento di sicurezza che deve essere incorporato nel sistema completo dedicato alla sicurezza della macchina. Come per qualunque installazione, la macchina completa dovrà essere oggetto di un'analisi di rischio da parte del responsabile dell'installazione che determinerà la categoria di sicurezza a cui l'installazione dovrà conformarsi.

• L'ingresso di sicurezza, quando è aperto, blocca il variatore e non permette la funzione di frenatura dinamica. Se è necessaria una funzione di frenatura prima del blocco in sicurezza del variatore, dovrà essere installato un relè di sicurezza temporizzato per comandare automaticamente il blocco al termine della frenatura.

Se la frenatura deve essere una funzione di sicurezza della macchina, dovrà essere effettuata con una soluzione elettromeccanica, dato che la funzione di frenatura dinamica mediante il variatore non è considerata di sicurezza.


- L'ingresso di sicurezza non fornisce la funzione d'isolamento elettrico. Prima di qualunque intervento, l'interruzione dell'alimentazione dovrà quindi essere realizzata mediante un organo di sezionamento omologato (sezionatore, interruttore...).
- Quando il variatore è pilotato tramite il bus di campo o la console, l'ingresso di sicurezza SDI viene configurato automaticamente come ingresso di sblocco. La funzione di sicurezza della norma EN954-1 non è quindi più valida per le categorie 2 e 3, ma viene tuttavia garantita per la categoria 1.

Variatore di velocità

COLLEGAMENTI

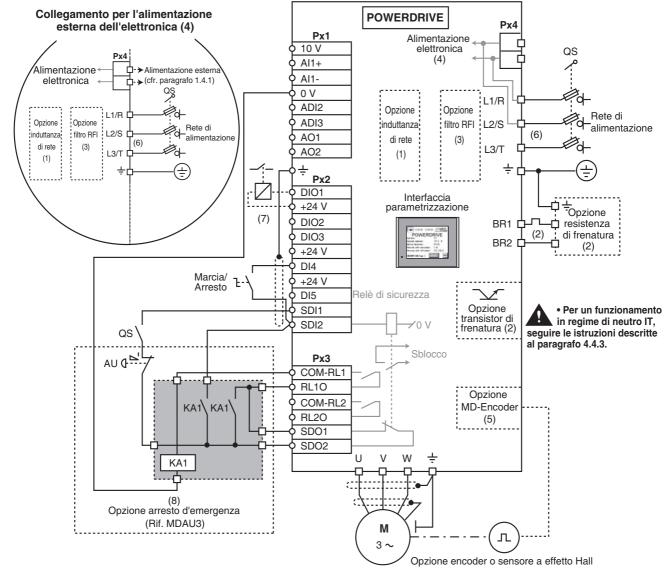
3.2.2 - Alimentazione su rete trifase AC, secondo norma di sicurezza EN954-1 - CATEGORIA 1 Uso dell'ingresso di sicurezza SDI2 per effettuare un arresto sicuro

- QS: Sezionatore a fusibili: necessità di aprire QS prima di ogni intervento sui componenti elettrici del variatore o del motore.
- AU: Pulsante d'arresto d'emergenza.
- Opzione induttanza di rete (v. § 5.2).
- (1) Opzione induttanza di rete (v. § 5.2). (2) Opzione transistor e resistenza di frenatura (v. § 5.3). Prevedere un relè termico per la protezione della resistenza che provochi l'arresto e la messa fuori tensione del variatore.
- (3) Opzione filtro RFI. Per assicurare la conformità alla norma generica EN 61000-6-4 e alla norma variatore EN 61800-3 primo
- ambiente, è necessario aggiungere l'opzione filtro RFI (v. § 4.6 e § 5.1).

 (4) L'alimentazione dell'elettronica è collegata all'interno. In caso di alimentazione esterna, scollegare il cablaggio interno e collegare l'alimentazione esterna sulla morsettiera Px4 (più morsettiere Px4 per le taglie da 600T a 1100T e le taglie TH, vedere paragrafo 3.1.1)
- Opzione MD-Encoder. Consente di gestire il ritorno encoder o un sensore a effetto Hall (v. § 5.5.5).
- (6) I collegamenti della rete del variatore devono essere effettuati su L1, L2, L3 o R, S, T, a seconda delle opzioni (v. § 3.1.2). (7) Se si utilizza DIO1 per un comando di relè, lo stato del relè è opposto a quello dell'uscita (in base alla regolazione di fabbrica, l'uscita è attiva e quindi il relè è inattivo). (8) L'opzione MDAU1 comprende un "arresto di emergenza" cablato nel circuito dell'ingresso di sicurezza (v. § 5.3.3).

L'uso dell'ingresso di sicurezza permette di realizzare un arresto a ruota libera senza utilizzare contattore di linea. Il variatore dispone di dispositivi interni sufficientemente sicuri per realizzare un arresto utilizzando direttamente l'ingresso di sicurezza (categoria 1 di EN954-1).

ATTENZIONE:


Qualunque sia la configurazione degli ingressi SDI (00.24 = 08.10 = SBLOCCO o SICUREZZA) e l'origine dei comandi, la conformità alla norma EN954-1 categoria 1 è sempre assicurata.

Variatore di velocità

COLLEGAMENTI

3.2.3 - Alimentazione su rete trifase AC, secondo norma di sicurezza EN954-1 - CATEGORIA 2 o 3 Uso dell'ingresso di sicurezza SDI2 in ridondanza con l'ingresso logico DI4

- QS: Sezionatore a fusibili: necessità di aprire QS prima di ogni intervento sui componenti elettrici del variatore o del motore.
- AU: Pulsante d'arresto d'emergenza.
- KA1: Relè di sicurezza del telecomando.
- (1) Opzione induttanza di rete (v. § 5.2).
 (2) Opzione transistor e resistenza di frenatura (v. § 5.3). Prevedere un relè termico per la protezione della resistenza che provochi l'arresto e la messa fuori tensione del variatore.
 (3) Opzione filtro RFI. Per assicurare la conformità alla norma generica EN 61000-6-4 e alla norma variatore EN 61800-3 primo

- ambiente, è necessario aggiungere l'opzione filtro RFI (v. § 4.6 e § 5.1).

 (4) L'alimentazione dell'elettronica è collegata all'interno. In caso di alimentazione esterna, scollegare il cablaggio interno e collegare l'alimentazione esterna sulla morsettiera Px4 (più morsettiere Px4 per le taglie da 600T a 1100T e le taglie TH, vedere
- (8) L'opzione MDAU3 e quindi il relè è inattivo).
- è integrato (v. § 5.3.3).
- L'uso dell'ingresso di sicurezza permette di realizzare un arresto a ruota libera senza utilizzare contattore di linea. Il variatore dispone di dispositivi interni sufficientemente sicuri per realizzare un arresto utilizzando direttamente l'ingresso di sicurezza (categoria 2 o 3 di EN954-1).

La duplicazione dell'ordine d'arresto su un ingresso logico permette di realizzare una ridondanza interna al variatore che garantisce l'arresto a ruota libera (applicazione dei principi della categoria 3 secondo EN954 per la parte relativa al variatore).

La gestione particolare dell'ingresso di sicurezza non è compatibile con un pilotaggio degli ordini di Marcia/Arresto dall'interfaccia di parametrizzazione del POWERDRIVE o dal bus di campo. Quando è richiesto il controllo dalla console o dal bus di campo, l'ingresso SDI2 deve essere considerato come un semplice ingresso di blocco. In tal caso, lo schema di potenza deve rispettare le abituali regole di sicurezza.

Variatore di velocità

COLLEGAMENTI

3.2.4 - Cavi e fusibili

• È compito dell'utente effettuare il collegamento e la protezione del POWERDRIVE secondo la legislazione e le norme in vigore nel paese d'installazione. Questo è particolarmente importante per quanto riguarda la sezione dei cavi, il tipo e la taglia dei fusibili, il collegamento della terra o della massa, l'interruzione della tensione, l'eliminazione dei guasti, l'isolamento e la protezione contro le sovracorrenti.

• Questa tabella è fornita a titolo indicativo e, in nessun caso, può sostituirsi alle norme in vigore.

POWER	DDIVE	Rete d'alimentazione								Motore (1)		
POWER	DHIVE	400V - 50Hz			460/480V - 60Hz				Motore (1)			
			Fus	ibili	0	_		Fusibili		Cariana assi		0
Tag	lie	Corrente (A)	Tipo Gg	Tipo aR	Sezione cavi (mm²) (2)	Corrente (A)	Tipo Gg	Tipo aR	Classe J (UL)	Sezione cavi (mm²) (2)	Isp (A)	Sezione cavi (mm²) (2)
60T	Alta	85	100	200	3x35 + 16	76	100	150	125	3x35 + 16	90	3x35 + 16
001	Bassa	105	125	200	3x50 + 25	95	125	200	150	3x35 + 16	110	3x50 + 25
75T	Alta	105	125	200	3x50 + 25	95	125	200	150	3x35 + 16	110	3x50 + 25
751	Bassa	140	160	250	3x70 + 35	125	160	250	200	3x70 + 35	145	3x70 + 35
100T	Alta	140	160	250	3x70 + 35	125	160	250	200	3x70 + 30	145	3x70 + 35
1001	Bassa	170	200	350	3x95 + 50	150	200	350	225	3x70 + 35	175	3x95 + 50
120T	Alta	170	200	350	3x95 + 50	150	200	350	225	3x70 + 35	175	3x95 + 50
1201	Bassa	198	250	400	3x120 + 70	175	200	350	250	3x95 + 50	215	3x120 + 70
150T	Alta	205	250	400	3x120 + 70	175	200	350	250	3x95 + 50	220	3x120 + 70
1501	Bassa	245	315	500	3x150 + 70	215	250	450	300	3x120 + 70	260	3x150 + 70
180T	Alta	245	315	500	3x150 + 70	215	250	450	300	3x120 + 70	260	3x150 + 70
1001	Bassa	295	315	630	3x240 +120	255	315	500	400	3x185 + 90	315	3x240 +120
220T	Alta	290	315	630	3x240 +120	255	315	500	400	3x185 + 90	310	3x240 +120
2201	Bassa	370	400	800	2x(3x95 + 50)	320	400	630	500	3x240 + 120	380	2x(3x95+50)
270T	Alta	375	400	800	2x(3x95 + 50)	325	400	630	500	3x240 + 120	380	2x(3x95+50)
2/01	Bassa	460	500	1000	2x(3x150 + 95)	405	500	800	600	2x(3x120 + 70)	470	2x(3x150+95)
340T	Alta	465	500	1000	2x(3x150 + 95)	410	500	800	600	2x(3x120 + 70)	470	2x(3x150+95)
3401	Bassa	580	630	1250	2x(3x185 + 95)	495	630	800		2x(3x150 + 95)	570	2x(3x185+95)
400T	Alta	585	630	1250	2x(3x185 + 95)	500	630	1000		2x(3x150 + 95)	570	2x(3x185+95)
4001	Bassa	650	800	1250	2x(3x240 + 120)	560	630	1000		2x(3x185 + 95)	650	2x(3x240+120)
470T	Alta	655	800	1250	2x(3x240 + 120)	560	630	1000		2x(3x185 + 95)	650	2x(3x240 + 120)
4/01	Bassa	815	1000	1400	3x(3x185 + 95)	700	800	1250		2x(3x240 + 120)	800	3x(3x185 + 95)
600T	Alta	825	1000	1400	3x(3x185 + 95)	710	800	1250		2x(3x240 + 120)	820	3x(3x185 + 95)
6001	Bassa	998	1250	1600	4x(3x150 + 95)	856	1000	1400		3x(3x185 + 95)	990	4x(3x150 + 95)
750 T	Alta	1010	1250	1600	4x(3x150 + 95)	865	1000	1400		4x(3x150 + 95)	990	4x(3x150 + 95)
750T	Bassa	1225	1600	1800	3x(3x240 + 120)	1050	1250	1600		4x(3x150 + 95)	1220	3x(3x240 + 120)
000-	Alta	1250	1600	1800	3x(3x240 + 120)	1060	1250	1600		3x(3x240 + 120)	1220	3x(3x240 + 120)
900T	Bassa	1360	1800	2000	4x(3x240 + 120)	1170	1600	1800		3x(3x240 + 120)	1430	4x(3x240 + 120)
4400	Alta	1380	1800	2000	4x(3x240 + 120)	1180	1600	1800		4x(3x240 + 120)	1430	4x(3x240 + 120)
1100T	Bassa	1635	2000	2200	4x(3x240 + 120)	1400	1800	2000		4x(3x240 + 120)	1700	4x(3x240 + 120)

Variatore di velocità

COLLEGAMENTI

DOWED	יייייייייייייייייייייייייייייייייייייי			Rete di alii	mentazione				Motore (1)		
POWERDRIVE		525 V				690 V				Wiotore (1)	
		Intensità	F	usibili	Sezione cavi	Intensità	Fusibili		Sezione cavi		Sezione cavi
Tag	lie	(A)	Tipo Gg	Tipo aR (CEI e UL)	(mm ²) (2)	(A)	Tipo Gg	Tipo aR (CEI e UL)	(mm²) (2)	I _{sp} (A)	(mm ²) (2)
270TH	Alta	205	250	450	3x120 + 70	215	250	450	3x120 + 70	225	3x120 + 70
270111	Bassa	250	315	500	3x120 + 70	265	315	500	3x120 + 70	280	3x150 + 70
340TH	Alta	250	315	500	3x120 + 70	265	315	500	3x120 + 70	280	3x150 + 70
340111	Bassa	305	400	630	3x150 + 70	320	400	630	3x150 + 70	340	3x240 +120
400TH	Alta	305	400	630	3x150 + 70	320	400	630	3x150 + 70	340	3x240 +120
400111	Bassa	370	400	800	3x240 +120	390	400	800	3x240 +120	415	2x(3x120+70)
500TH	Alta	370	400	800	3x240 +120	390	400	800	3x240 +120	415	2x(3x120+70)
300111	Bassa	445	500	900	3x240 +120	470	500	900	3x240 +120	500	2x(3x150+95)
600TH	Alta	445	500	900	3x240 +120	470	500	900	3x240 +120	500	2x(3x150+95)
000111	Bassa	520	630	1100	2x(3x150+95)	545	630	1100	2x(3x150+95)	580	2x(3x185+95)
750TH	Alta	520	630	1100	2x(3x150+95)	545	630	1100	2x(3x150+95)	580	2x(3x185+95)
750111	Bassa	650	800	1400	2x(3x240 + 120)	685	800	1400	2x(3x240 + 120)	730	2x(3x240+120)
900TH	Alta	650	800	1400	2x(3x240 + 120)	685	800	1400	2x(3x240 + 120)	730	2x(3x240 + 120)
900111	Bassa	805	1000	1600	3x(3x185 + 95)	845	1000	1600	3x(3x185 + 95)	900	3x(3x185 + 95)
1200TH	Alta	805	1000	1600	3x(3x185 + 95)	845	1000	1600	3x(3x185 + 95)	900	3x(3x185 + 95)
120011	Bassa	1000	1250	1600	3x(3x185 + 95)	1050	1250	1600	3x(3x185 + 95)	1120	3x(3x240 + 120)
1500TH	Alta	1000	1250	1600	3x(3x185 + 95)	1050	1250	1600	3x(3x185 + 95)	1120	3x(3x240 + 120)
130011	Bassa	1205	1600	1800	3x(3x240 + 120)	1265	1600	1800	3x(3x240 + 120)	1350	4x(3x240 + 120)

(1) Il valore della corrente nominale e le sezioni dei cavi del motore sono forniti a titolo indicativo. La corrente nominale del motore, ammissibile dal variatore, varia in funzione della frequenza di taglio e della temperatura.

(2) Le sezioni consigliate sono calcolate per un cavo di rame unifilare di una lunghezza massima di 10 m; per distanze superiori, tenere conto delle cadute in linea dovute alla lunghezza.

- I_{sp}: Corrente di uscita permanente Il valore della corrente di rete è un valore tipico che dipende dall'impedenza della sorgente. Più è alta l'impedenza, più la corrente
- Le sezioni dei cavi sono definite secondo il modello seguente:

Es: per un 1100T, le sezioni dei cavi sono 4 x (3 x 240 + 120), vale a dire 4 cavi ciascuno con 3 conduttori di fase con sezione 240 + 1 conduttore di terra con sezione 120.

Variatore di velocità

COLLEGAMENTI

3.3 - Collegamenti di controllo

• Gli ingressi del POWERDRIVE sono configurati in logica positiva. Associare un variatore con un automatismo con diversa logica di comando può causare il riavviamento intempestivo del motore.

- Nel variatore, i circuiti di controllo sono isolati dai circuiti di potenza con un isolamento semplice (CEI 664-1). L'installatore deve verificare che i circuiti esterni di controllo siano isolati in modo da evitare qualunque contatto con le persone.
- Se i circuiti di controllo devono essere collegati a dei circuiti conformi alle esigenze di sicurezza SELV, per mantenere la classificazione SELV, occorre inserire un isolamento supplementare.

3.3.1 - Caratteristiche delle morsettiere di controllo

3.3.1.1 - Caratteristiche delle morsettiere Ingressi/ Uscite

1	10V	Sorgente analogica interna +10V		
Precisione			± 2 %	
Corrente di uscita massima			20 mA	

Corrente di discita massima			ZUIIIA			
2	Al1+	Ingresso ana	logico differenziale 1 (+)			
3	Al1-	Ingresso ana	alogico differenziale 1 (-)			
Regola	azione fab	brica	Ingresso analogico ± 10 V			
Caratteristiche			Tensione bipolare (modo differenziale e modo comune) o corrente unipolare (solo modo comune, collegare il morsetto 3 allo 0V)			
Risolu	zione		13 bits + segno			
Campi	onamento		2 ms			
Ingres	so in tensi	one				
Campo tension	o di variaz ne	ione della	±10V ± 2 %			
Tensio	ne massir	na	27V			
Imped	enza d'ing	resso	95 kΩ			
Ingres	so in corre	nte				
Campo corren	o di variaz te	ione della	da 0 a 20 mA ± 5 %			
Tensio	ne massir	na	27V / 0V			
Corrente massima			50 mA			
Imped	enza d'ing	resso	100 Ω			

4	0V	0V comune circuito logico				
Lo 0V dell'elettronica è collegato alla massa metallica del						
variato	ore.					

5 ADI2	Ingresso and	alogico o logico 2		
Regolazione fabl	brica	Ingresso analogico 4-20mA		
Caratteristiche		Tensione bipolare (modo comune) o corrente unipolare		
Risoluzione		9 bits + signe		
Campionamento		2 ms		
Ingresso in tension	one			
Campo di variazi tensione	one della	±10V ± 2 %		
Tensione massin	na	27V		
Impedenza ingre	sso	95 kΩ		
Ingresso in corre				
Campo di variazi	one della	0 a 20 mA ± 5 %		
Tensione massin	na	27V / 0V		
Corrente massim	na	50 mA		
Impedenza ingre	SSO	100 Ω		
Ingresso logico (se connesso			
Soglie		0 : < 5V		
		1:>10V		
Variazione tension	one	0 a +24V		
Tensione massin	na	27V / 0V		
Carico		50 kΩ		
Soglia d'ingresso)	7,5V		

6	ADI3	Ingresso and sondamotore	alogico o logico o e (CTP)		
Regol	azione fab	brica	Ingresso analogico 0-10V		
Caratt	teristiche		Tensione analogica (modo comune)		
Risolu	ızione		10 bits		
Camp	ionamento	1	2 ms		
	so in tensi				
	o di variaz		±10V ± 2 %		
Tension	one massir	na	27V		
	lenza ingre		50 kΩ		
Ingres	so in corre	ente			
Soglie	•		0 : < 5V 1 : > 10V		
Variaz	zione tensi	one	0 a +24V		
Tension	one massir	na	27V / 0V		
Carico)		95 kΩ		
Soglia	ι d'ingresso)	7,5V		
Ingres	so logico (se connesso	a +24V)		
Tension	one interna	ı	5V		
Soglia sblocco messe in guasto			≥ 3,3 kΩ		
Soglia in gua		ione messe	< 1,8 kΩ		

7	AO1	Uscita analo	ogica 1		
8	AO2	Uscita analogica 2			
Regol	azione fab	brica	Uscita analogica 1 4-20 mA Uscita analogica 2 ±10V		
Caratteristiche			Tensione analogica bipolare (modo comune) o corrente unipolare		
Risoluzione			AO1: 15 bit + segno AO2: 11 bit + segno		
Camp	ionamento	ı	2 ms		
Ingres	sso in tensi	one			
Camp tensio	o di variaz one	ione della	±10V		
Resis	tenza di ca	rico	2 kΩ minimo		
Prote	zione		Cortocircuito (40mA maxi)		
Uscita	a in corrent	e			
Campo di variazione della			0 a 20 mA		
correr	nte				
Tensi	one massir	na	+10V		
Resis	tenza di ca	rico	500 Ω massimo		

POWERDRIVE Variatore di velocità

COLLEGAMENTI

3.3.1.2 - Caratteristiche delle morsettiere Ingressi/Uscite logiche (PX2)

1	DIO1	Ingresso o us	scita logica 1		
3	DIO2	Ingresso o us	scita logica 2		
4	DIO3	Ingresso o us	scita logica 3		
			Uscita logica DIO1		
Regol	azione fab	brica	Ingresso logico DIO2		
			Ingresso logico DIO3		
Caratt	eristiche		Ingressi logici (logica positiva o negativa) Uscite logiche (logica positiva)		
Soglie			Inattiva (0) < 4V = uscita riferita allo 0V Attiva (1) > 13,5V = uscita flottante		
Variaz	zione tensio	one	da 0 a +24V		
	ionamento rnamento	/	2 ms		
	e logique				
	rione di ten ma assolut		da 0V a +35V		
Carico			15 kΩ		
	Uscita logica (tipo collettore aperto)				
Corre	nte di sovra	accarico	50 mA		

2 5 7	+24V	Sorgente interna +24V				
Corre	nte di uscit	а	100 mA in totale			
Precis	sione		da 0 a - 15 %			
Protezione			Limitazione di corrente e messa in guasto			

6	DI4	Ingresso logi	co 4		
8	DI5	Ingresso logi	co 5		
Caratteristiche			Ingresso logico (logica positiva o negativa)		
Soglie			0 : < 4V 1 : > 13,5V		
Variaz	zione tensio	one	da 0 a +24V		
	ionamento rnamento	/	2 ms		
Variazione di tensione massima assoluta			da 0V a +35V		
Carico)		15 kΩ		
Soglia	d'ingresso)	7,5V		

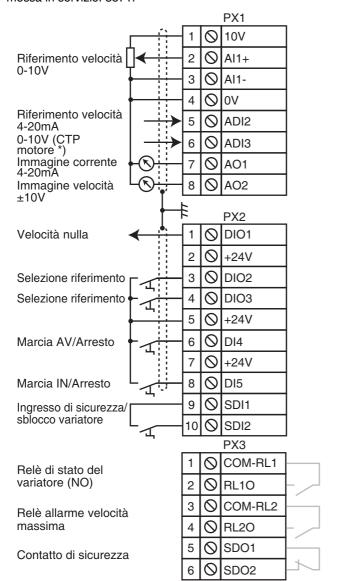
9	SDI1	+24V dedica	to all'ingresso di sicurezza		
10	SDI2	Ingresso di s	icurezza/sblocco variatore		
Regolazione fabbrica			Ingresso di sicurezza		
Caratteristiche			Ingresso logico (logica positiva)		
0!:-			0 : < 5V		
Soglie			1 : > 18V		
Variazione tensione		one	da 9V a 33V		
Impedenza			820 Ω		

3.3.1.3 - Caratteristiche delle morsettiere Uscite Relè (PX3)

1	COM-RL1	Uscita relè NO				
2	RL10	Oscila fele IVO				
Carat	teristiche	Relè di uscita 250 Vca				
Carico massimo			2A, carico resistivo			
			1A, carico induttivo			

3	COM-RL2	Uscita relè NO					
4	RL2O	USCIIA TETE INO					
Carat	teristiche	Relè di uscita 250 Vca					
Carico massimo			• 2A, carico resistivo				
Canco massimo			1A, carico induttivo				

5	SDO1	Contatto di sicurezza				
6	SDO2	Contatto di Siculezza				
Caratt	teristiche	250 Vca				
Carico massimo			• 2A, carico resistivo			
Carico massimo			1A, carico induttivo			

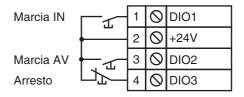


Variatore di velocità

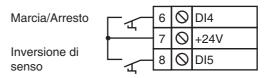
COLLEGAMENTI

3.3.2 - Configurazione di fabbrica delle morsettiere di controllo (v. Manuale di messa in servizio 3871)

Nota: Per informazioni sulla configurazione delle morsettiere di controllo, consultare la sezione §2.3.4 del Manuale di messa in servizio. 3871.



Nota: L'ingresso SDI2 deve essere chiuso prima dell'ordine di marcia.


Questa configurazione è ottenuta effettuando un ritorno alla regolazione di fabbrica (00.45 = 50Hz FORTE (1) o 50Hz DEBOLE (3)). Questa modifica è possibile solamente con il variatore bloccato (SDI2 aperto).

- Se comando " 3-fili " (marcia/arresto a impulsi): 00.22 = M/A Impuls (1)

Questo modo non è impostabile a partire dal menu utente (se necessario, fare riferimento al parametro 06.04 del menu 6, v. Manuale di messa in servizio 3871).

- Se inversione del senso di rotazione: 00.22 = M/A + Invers (2)

• Lista dei parametri da regolare:

00.28 = (*)

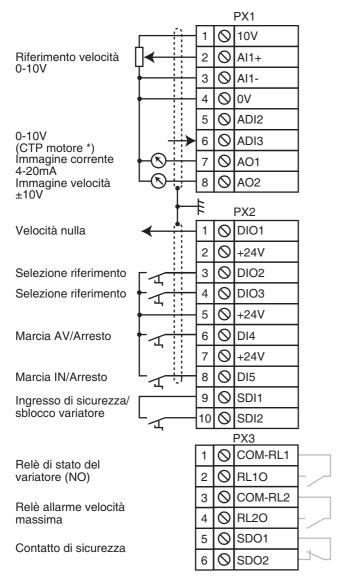
00.35 = 06.34

00.36 = 06.33.

 $00.47 = \text{valore del riferimento preregolato 2 in min}^{-1}$.

(*) Per il collegamento della sonda termica del motore su ADI3, regolare 00.28 = CTP, altrimenti mantenere il valore di fabbrica di 00.28 (0-10V).

DIO2	DIO3	Selezione
0	0	Riferimento analogico in tensione (0-10 V)
0	1	Riferimento analogico in corrente (4-20 mA)
1	0	Riferimento preregolato 2
1	1	Timerimento preregolato 2


Variatore di velocità

COLLEGAMENTI

3.3.3 - Configurazione rapida della morsettiera di controllo in funzione della scelta del riferimento

Nota: Per informazioni sulla configurazione rapida della morsettiera di controllo, consultare la sezione §2.3.4 del Manuale di messa in servizio. 3871.

3.3.3.1 - Collegamento e parametrizzazione per la selezione di un riferimento (0-10V) o di 3 riferimenti preregolati

Nota: L'ingresso SDI2 deve essere chiuso prima dell'ordine di marcia.

- La parametrizzazione deve essere effettuata a variatore bloccato (SDI2 aperto).
- Il parametro 00.22 permette di modificare il tipo di ordine di marcia (comando " 3 fili " o inversione del senso di rotazione: v. § 3.3.2).

• Lista dei parametri da regolare a partire dalla configurazione di fabbrica

- Impostare:

00.05 = Ingresso analogico 1 (1).

00.28 = (*)

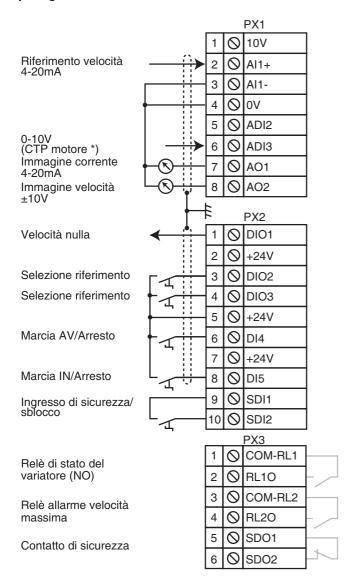
00.34 = 01.46 (DIO3 è configurato come ingresso digitale che permette la selezione del riferimento).

00.47 = valore riferimento preregolato 2 in min⁻¹.

00.48 = valore riferimento preregolato 3 in min⁻¹.

00.49 = valore riferimento preregolato 4 in min⁻¹.

(*) Per il collegamento della sonda termica del motore su ADI3, regolare 00.28 = CTP, altrimenti mantenere il valore di fabbrica di 00.28 (0-10V).


DIO2	DIO3	Selezione
0	0	Riferimento analogico 0-10V
1	0	Riferimento preregolato 2
0	1	Riferimento preregolato 3
1	1	Riferimento preregolato 4

Variatore di velocità

COLLEGAMENTI

3.3.3.2 - Collegamento e parametrizzazione per la selezione di un riferimento (4-20mA) o di 3 riferimenti preregolati

Nota: L'ingresso SDI2 deve essere chiuso prima dell'ordine di marcia.

- La parametrizzazione deve essere effettuata a variatore bloccato (SDI2 aperto).
- Il parametro 00.22 permette di modificare il tipo di ordine di marcia (comando " 3 fili " o inversione del senso di rotazione: v. § 3.3.2).

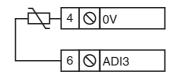
• Lista dei parametri da regolare a partire dalla configurazione di fabbrica

- Impostare:

00.05 = Ingresso analogico (2).

00.25 = 4-20mA sd (4) (Al1 è configurata come ingresso analogico in corrente, campo 4-20mA senza rilevamento di perdita di segnale).

00.28 = (*)

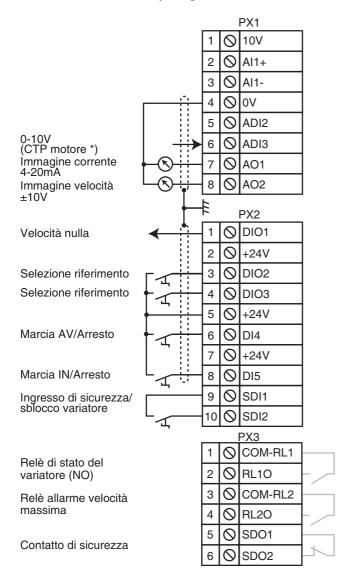

00.34 = 01.46 (DIO3 è configurato come ingresso logico che permette la selezione del riferimento).

00.47 = valore riferimento preregolato 2 in min⁻¹.

00.48 = valore riferimento preregolato 3 in min⁻¹.

00.49 = valore riferimento preregolato 4 in min⁻¹.

(*) Per il collegamento della sonda termica del motore su ADI3, regolare 00.28 = CTP, altrimenti mantenere il valore di fabbrica di 00.28 (0-10V).


DIO2	DIO3	Selezione			
0	0	Riferimento analogico 4-20mA			
1	0	Riferimento preregolato 2			
0	1	Riferimento preregolato 3			
1	1	Riferimento preregolato 4			

Variatore di velocità

COLLEGAMENTI

3.3.3.3 - Collegamento e parametrizzazione per la selezione di 4 riferimenti preregolati

Nota: L'ingresso SDI2 deve essere chiuso prima dell'ordine di marcia.

- La parametrizzazione deve essere effettuata a variatore bloccato (SDI2 aperto).
- Il parametro 00.22 permette di modificare il tipo di ordine di marcia (comando " 3 fili " o inversione del senso di rotazione: v. § 3.3.2).

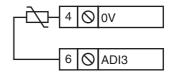
• Lista dei parametri da regolare a partire dalla configurazione di fabbrica

- Impostare:

00.05 = Rif preregl. (4).

00.28 = (*).

00.34 = 01.46 (DIO3 è configurato come ingresso logico che permette la selezione del riferimento).


00.46 = valore riferimento preregolato 1 in min⁻¹.

00.47 = valore riferimento preregolato 2 in min⁻¹.

00.48 = valore riferimento preregolato 3 in min⁻¹.

00.49 = valore riferimento preregolato 4 in min⁻¹.

(*) Per il collegamento della sonda termica del motore su ADI3, regolare 00.28 = CTP, altrimenti mantenere il valore di fabbrica di 00.28 (0-10V).

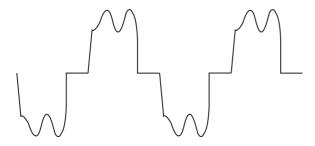
DIO2	DIO3	Selezione
0	0	Riferimento preregolato 1
1	0	Riferimento preregolato 2
0	1	Riferimento preregolato 3
1	1	Riferimento preregolato 4

Variatore di velocità

GENERALITÁ EMC - ARMONICHE - INTERFERENZE DI RETE

4 - GENERALITÁ EMC - ARMONICHE - INTERFERENZE DI RETE

Le caratteristiche intrinseche dei componenti di potenza utilizzati per i variatori di frequenza causano la comparsa di 2 diversi tipi di fenomeni:


- reiniezione, sulla rete d'alimentazione, di armoniche bassa frequenza;
- emissione di segnali radiofreguenza (RFI).

Questi fenomeni sono indipendenti. Le conseguenze sull'ambiente elettrico sono diverse.

4.1 - Armoniche bassa frequenza

4.1.1 - Generalità

Il raddrizzatore, in ingresso al variatore di frequenza, genera una corrente di linea alternata ma non sinusoidale

I linea rete assorbita da un raddrizzatore trifase.

Questa corrente è deformata con componenti armoniche di ordine $6n \pm 1$.

Le loro ampiezze sono legate all'impedenza della rete a monte del ponte raddrizzatore e alla struttura del bus continuo a valle del ponte raddrizzatore.

Più la rete e il bus continuo sono induttivi, più queste armoniche sono ridotte.

Queste sono significative solo per potenze installate in variatori di frequenza di qualche centinaio di kVA e nel caso in cui queste stesse potenze siano superiori a un quarto della potenza totale installata in un sito.

Sono praticamente senza conseguenze a livello del consumatore di energia elettrica. I riscaldamenti associati a queste armoniche nei trasformatori e nei motori collegati direttamente alla rete sono trascurabili.

Solo raramente queste armoniche a bassa frequenza disturbano apparecchiature particolarmente sensibili.

4.1.2 - Norme

Le armoniche di corrente introducono sulla rete delle armoniche di tensione la cui ampiezza dipende dall'impedenza della rete.

Il distributore di energia (EDF in Francia), interessato da questi fenomeni nel caso di **installazioni di elevata potenza**, ha le proprie **raccomandazioni** sul livello di ogni armonica di tensione:

- 0,6 % sugli ordini pari;
- 1 % sugli ordini dispari;
- 1,6 % sul tasso globale.

Ciò si applica al punto di collegamento lato distributore di energia e non a livello del generatore di armoniche.

4.1.3 - Riduzione del livello di armoniche reiniettate sulla rete

Il basso rapporto di potenza tra il variatore e la rete su cui è installato comporta un livello di armoniche di tensione generalmente accettabile.

Tuttavia, per i rari casi in cui le caratteristiche della rete e la potenza totale impegnata dai variatori non permettessero di rispettare i livelli di armoniche che potrebbe imporre il distributore di energia, LEROY-SOMER rimane a disposizione dell'installatore per comunicargli gli elementi necessari al calcolo di un'induttanza di rete o di un filtro sinusoidale addizionale.

4.2 - Interferenze radiofrequenza: Immunità

4.2.1 - Generalità

Il livello d'immunità di un apparecchio è definito dalla sua capacità di funzionare in un ambiente inquinato da elementi esterni o dai propri collegamenti elettrici.

4.2.2 - Norme

Per essere dichiarato conforme alle norme riguardanti i variatori di velocità (EN 61800-3), ogni apparecchio deve superare una serie di test normalizzati (Norme Europee) e rispettare un standard minimo.

4.2.3 - Raccomandazioni

Un impianto, composto esclusivamente da apparecchi conformi alle norme relative all'immunità, sarà meno esposto a rischi di disturbo.

Variatore di velocità

GENERALITÁ EMC - ARMONICHE - INTERFERENZE DI RETE

4.3 - Interferenze radiofrequenza: Emissione

4.3.1 - Generalità

I variatori di frequenza utilizzano degli interruttori (transistor, semi-conduttori) rapidi che commutano tensioni elevate a frequenze elevate (più kHz). Ciò consente di ottenere un migliore rendimento e un basso livello di rumore del motore. Tali frequenze di commutazione elevate generano dei segnali a radio-frequenza che possono disturbare il funzionamento di altri apparecchi o le misure effettuate dai sensori:

- a causa delle correnti di fuga ad alta frequenza che circolano verso terra attraverso la capacità di fuga del cavo variatore/motore e quelle del motore che circolano attraverso le strutture metalliche di supporto;
- per conduzione o reiniezione dei segnali R.F. sul cavo d'alimentazione: **emissioni indotte**;
- per irraggiamento diretto vicino al cavo di potenza d'alimentazione o al cavo variatore/motore: **emissioni irraggiate**.

Questi fenomeni interessano direttamente l'utente. La gamma di frequenza interessata (radio-frequenza) non disturba il distributore di energia.

4.3.2 - Norme

Il livello massimo di emissioni è stabilito dalle norme sui variatori di velocità (EN 61800-3).

4.3.3 - Raccomandazioni

- L'esperienza dimostra che, per evitare i fenomeni di disturbo, non è indispensabile rispettare il livello stabilito dalle norme.
- Il rispetto delle precauzioni elementari (v. § 4.5) permette, di solito, il buon funzionamento dell'impianto.

4.4 - Influenza della rete di alimentazione

La rete d'alimentazione può essere soggetta a disturbi (cadute di tensione, tensione squilibrata, fluttuazione, sovratensioni...) che possono avere un reale impatto negativo sulle prestazioni e l'affidabilità di tutte le apparecchiature con elettronica di potenza, tra cui i variatori.

I variatori LEROY-SOMER sono concepiti per funzionare con una rete d'alimentazione tipica dei siti industriali in tutto il mondo. Comunque, per ogni installazione, è importante conoscere le caratteristiche della rete d'alimentazione per poter intervenire con misure correttive in caso di condizioni anormali.

4.4.1 - Picchi di tensione transitori

Le cause dei picchi di tensione su un impianto elettrico sono diverse:

- Collegamento/scollegamento di una batteria di condensatori di rifasamento.
- Cortocircuito in una apparecchiatura di grande potenza all'apertura di un sezionatore e/o intervento di fusibili.
- Apparecchiature a tiristori (forni, variatori CC o AC, ecc.) di grande potenza (>1MW).
- Motori di grande potenza in avviamento.
- Alimentazione mediante contatto strisciante.
- ecc.

Il **POWERDRIVE** integra dei limitatori di sovratensione ad alta energia che proteggono il variatore e permettono un funzionamento affidabile in ambito industriale. In caso di presenza regolare di picchi di tensione transitori, si consiglia l'installazione di induttanze di rete.

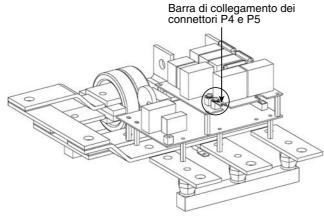
4.4.2 - Alimentazione squilibrata

Così come si può osservare su un motore elettrico, lo squilibrio della corrente di linea di un variatore che funziona su una rete non equilibrata può essere uguale a diverse volte il valore dello squilibrio in tensione misurato sull'alimentazione. Un elevato squilibrio di rete (> 2%), associato a una bassa impedenza di rete, può provocare notevoli sollecitazioni sui componenti dello stadio di ingresso di un variatore.

L'installazione di induttanze di rete a monte di un **POWERDRIVE** alimentato da una rete squilibrata consente di ridurre il tasso di squilibrio di corrente (le induttanze sono installate di serie per la taglia 1100T e tutte le taglie TH).

Variatore di velocità

GENERALITÁ EMC - ARMONICHE - INTERFERENZE DI RETE


4.4.3 - Impedenza della rete

I **POWERDRIVE** è concepito per funzionare su reti elettriche industriali con un trasformatore dimensionato per una potenza di cortocircuito compresa tra 20 e 100 volte la potenza nominale del variatore (1% < impedenza di linea < 5%). Questo punto è da verificare per il funzionamento con generatore o trasformatore.

Esempio: Per un variatore con una corrente nominale di ingresso di 100 A e un trasformatore con una capacità di corrente di cortocircuito di 5000 A, l'impedenza di linea sarà del 2% (100 A/5000 A).

Tuttavia, quando il **POWERDRIVE** è installato vicino al trasformatore di alimentazione MT/BT o quando è utilizzata una batteria di condensatori di rifasamento, l'impedenza vista dal **POWERDRIVE** è molto bassa. In tal caso, si consiglia di installare un'induttanza di rete a monte del variatore.

Per le installazioni che presentano un regime di neutro IT e un rapporto inferiore a venti tra la corrente di cortocircuito al punto di collegamento del variatore e la sua corrente nominale, è consigliabile aprire la barra di collegamento dei connettori P4 e P5 sulla scheda PEF 720 NI 000.

(La posizione della scheda è indicata nella sezione § 6.4.6).

4.4.4 - Collegamenti di massa

L'equipotenzialità della terra di alcuni siti industriali non è sempre rispettata. Questa mancata equipotenzialità comporta la presenza di correnti di fuga che circolano attraverso i cavi di terra (verde-giallo), i telai delle macchine, le tubazioni... ma anche attraverso le apparecchiature elettriche.

In casi estremi, queste correnti possono provocare dei malfunzionamenti dei variatori (messe in guasto intempestive). Per minimizzare l'impatto di queste correnti, è indispensabile rispettare le raccomandazioni del paragrafo 4.5.

4.5 - Precauzioni elementari d'installazione

Si tratta di misure da adottare durante il cablaggio dell'armadio e degli elementi esterni. In ogni paragrafo, le misure sono classificate in ordine decrescente d'importanza rispetto al buon funzionamento dell'impianto.

4.5.1 - Cablaggio interno all'armadio

- Non far passare i cavi di controllo e quelli di potenza nelle stesse canaline.
- Per i cavi di controllo, utilizzare cavi intrecciati e schermati.

4.5.2 - Cablaggio esterno all'armadio

- Collegare direttamente il morsetto di terra del motore a quello del variatore.

È richiesto un cavo di tipo simmetrico schermato: tre conduttori di fase, conduttore PE coassiale o simmetrico e schermatura.

È inoltre obbligatorio un conduttore di protezione PE separato, se la conduttività della schermatura del cavo è inferiore al 50% della conduttività del conduttore di fase.

- La schermatura deve essere collegata alle due estremità: lato variatore e lato motore su 360°.
- Nel secondo ambiente industriale, il cavo schermato di alimentazione del motore può essere sostituito da un cavo a 3 conduttori + terra sistemato in un condotto metallico chiuso su 360° (canalina metallica, ad esempio). Questo condotto metallico deve essere collegato meccanicamente all'armadio elettrico e alla struttura di supporto del motore. Se il condotto è composto da diversi elementi, questi devono essere collegati tra di loro da trecce in modo da garantire la continuità di massa. I cavi devono essere fissati sul fondo del condotto.
- Non è necessario che i cavi d'alimentazione tra la rete e il variatore siano schermati.
- Isolare i cavi di potenza dai cavi di controllo. I cavi di potenza devono intersecare gli altri cavi con un angolo di 90°.
- Isolare gli elementi sensibili (sonde, sensori...) dalle strutture metalliche comuni con quelle di supporto del motore.

4.5.3 - Importanza dei collegamenti a massa

L'immunità e il livello di emissione radio-frequenza sono direttamente collegati alla qualità dei collegamenti a massa. Le masse metalliche devono essere collegate meccanicamente tra di loro con la più grande superficie possibile di contatto elettrico. In nessun caso i collegamenti di terra, previsti per garantire la protezione delle persone collegando le masse metalliche a terra con un cavo, possono sostituirsi ai collegamenti di massa.

Variatore di velocità

GENERALITÁ EMC - ARMONICHE - INTERFERENZE DI RETE

4.6 - Compatibilità elettromagnetica (EMC)

ATTENZIONE:

La conformità del variatore è garantita solo quando vengono rispettate tutte le istruzioni d'installazione meccanica ed elettrica riportate in questo manuale.

	Immunità							
Norma	Descrizione	Applicazione	Conformità					
IEC 61000-4-2	Scariche elettrostatiche	Rivestimento prodotto	Livello 3 (industriale)					
EN 61000-4-2	Coarione cicurociatione	Tilveetimente predette	Livelie & (madeliale)					
IEC 61000-4-3	Norme di immunità alle radio-	Rivestimento prodotto	Livello 3 (industriale)					
EN 61000-4-3	frequenze irraggiate	Tilveetimente predette	,					
IEC 61000-4-4	Transitori rapidi a impulso	Cavo di controllo	Livello 4 (industriale pesante)					
EN 61000-4-4	Transitori rapiai a impaiso	Cavo di potenza	Livello 3 (industriale)					
IEC 61000-4-5	Impulsi di tensione	Cavo di potenza	Livello 4					
EN 61000-4-5	impulsi di terisione	Cave ai poteriza	LIVEIIO 4					
IEC 61000-4-6	Norme generali di immunità	Cavi di controllo e di	Livello 3 (industriale)					
EN 61000-4-6	alle radiofrequenze condotte	potenza	Livelle o (madstriale)					
EN 50082-2	Normo gonorioho di immunità							
IEC 61000-6-2	Norme generiche di immunità per gli ambienti industriali	-	Conforme					
EN 61000-6-2	per gir ambiena mademan							
EN 61800-3								
IEC 61800-3	Norme variatori di velocità	Conforme a	al primo e al secondo ambiente					
EN 61000-3								
		Emissione						
Norma	Descrizione	Applicazione	Condizioni di conformità in funzione della frequenza di taglio - Frequenza di taglio < 4 kHz - Lunghezza dei cavi < 100 m					
		Secondo ambiente	Conforme					
EN 61800-3	Norme variatori di velocità	Primo ambiente con distribuzione limitata	Opzione filtro RFI					
EN 50081-2 EN 61000-6-4	Norme generiche d'emissione	Ambiente industriale	Opzione filtro RFI					

• Secondo la norma IEC 61800-3, primo ambiente, il POWERDRIVE è un apparecchio rientrante nella classe di distribuzione limitata. In un ambiente residenziale, questo apparecchio può provocare interferenze radioelettriche. In tal caso, può essere richiesto all'utente di adottare le opportune contromisure.

Variatore di velocità

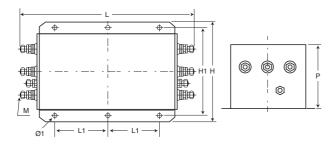
OPZIONI

5 - OPZIONI

5.1 - Filtri RFI

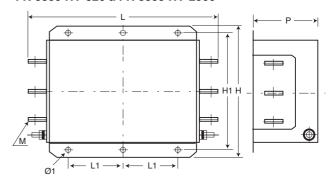
5.1.1 - Generalità

L'uso di filtri RFI contribuisce a ridurre il livello di emissione dei segnali radiofrequenza. Essi permettono la messa in conformità dei componenti **POWERDRIVE** alle direttive EN 61000-6-4 sulle emissioni radiofrequenza condotte e irraggiate. Secondo il variatore utilizzato, installare il filtro RFI, consigliato nella tabella seguente, tra la rete e l'ingresso del variatore.


Taglia POWERDRIVE	Riferimento	I _{nominale} a 40°C	Corrente di fuga 500Vac/ 50Hz	Perdite
		(A)	(mA)	(W)
da 60T a 100T	FN 3359 HV-180	190	<6	38
120T e 150T	FN 3359 HV-250	260	<6	57
270TH	FN 3359 HV-320	350	<6	19
180T e 220T 340TH	FN 3359 HV-400	438	<6	29
da 270T a 400T 400TH a 600TH	FN 3359 HV-600	657	<6	44
470T e 600T 750TH e 900TH	FN 3359 HV-1000	1095	<6	60
750T 1200TH e 1500TH	FN 3359 HV-1600	1600	<6	131
900T e 1100T	FN 3359 HV-2500	2500	<6	300

ATTENZIONE:

La concezione specifica di questi filtri rende possibile il loro utilizzo nel quadro di installazioni con regime di neutro IT. L'installatore dovrà tuttavia assicurarsi che i sistemi di controllo dell'isolamento di queste installazioni siano adatti alla sorveglianza di apparecchiature elettriche dotate di variatori elettronici di velocità.


5.1.2 - Peso e ingombro

• FN 3359 HV-180 e FN 3359 HV-250

Tipo	Dimensioni (mm)						Peso	
Tipo	L	L1	Н	H1	Р	Ø1	M	(kg)
FN 3359 HV-180	360	120	210	185	120	12	M10	6,5
FN 3359 HV-250	360	120	230	205	125	12	M10	7

• FN 3359 HV-320 a FN 3359 HV-2500

Tipo		Dimensioni (mm)						Peso
Tipo	L	L1	Н	H1	Р	Ø1	M	(kg)
FN 3359 HV-320	386	120	260	235	115	12	M12	10,5
FN 3359 HV-400	386	120	260	235	115	12	M12	10,5
FN 3359 HV-600	386	120	260	235	135	12	M12	11
FN 3359 HV-1000	456	145	280	255	170	12	M12	18
FN 3359 HV-1600	586	170	300	275	160	12	M12	27
FN 3359 HV-2500	796	250	370	330	200	14	M16	55

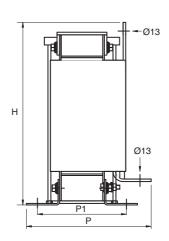
Variatore di velocità

OPZIONI

5.2 - Induttanza di rete

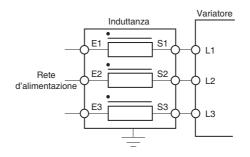
5.2.1 - Generalità

Le induttanze di rete permettono di ridurre il rischio di danneggiamento dei variatori in seguito a uno squilibrio tra fasi o a forti disturbi sulla rete.


Taglia		Induttanza				
POWERDRIVE	Riferimento	I _{nominale} (A)	Induttanza (mH)	Perdite (W)	Peso (kg)	
60T	105 ST 0,23 /RWK 212 75 KL	105	0,23	170	15	
75T	150 ST 0,155	150	0,155	190	15	
100T	185 ST 0,13	185	0,13	200	20	
120T	220 ST 0,11	220	0,11	230	22,5	
150T	245 ST 0,095	245	0,095	245	25	
180T	292 ST 0,08	292	0,08	280	30	
220T	360 ST 0,065	360	0,065	310	35	
270T	460 ST 0,05	460	0,05	350	55	
340T	580 ST 0,04	580	0,04	490	55	
400T	640 ST 0,035	640	0,035	515	55	
470T	800 ST 0,023	800	0,023	700	70	
600T	2x580 ST 0,04	1000	0,020	980	110	
750T e 900T	2x640 ST 0,035	1230	0,0175	1030	110	

Per il 1100T e tutte le taglie TH, le induttanze sono installate di serie.

5.2.2 - Peso e ingombro


• Induttanze per 105 ST 0,23 - 800 ST 0,023 (Protezione IP00)

Induttanze	Dimensioni (mm)		Fissaggio (mm)			Collegamento	Peso	
maditanze	Н	L	Р	L1	P1	F	(mm)	(Kg)
05 ST 0,23/RWK 212 75 KL	285	260	210	100	125	Ø11x22	sezione 30x5	15
150 ST 0,155	285	260	210	100	125	Ø11x22	sezione 30x5	15
185 ST 0,13	285	260	220	100	150	Ø11x22	sezione 30x5	20
220 ST 0,11	285	260	225	100	150	Ø11x22	sezione 30x5	22,5
245 ST 0,095	285	260	240	100	175	Ø11x22	sezione 30x5	25
292 ST 0,08	265	260	260	100	200	Ø11x22	sezione 30x5	30
360 ST 0,065	265	260	270	100	200	Ø11x22	sezione 30x5	35
460 ST 0,05	440	300	250	250	150	Ø11x22	sezione 50x5	55
580 ST 0,04	440	300	250	250	175	Ø11x22	sezione 50x5	55
640 ST 0,035	440	300	250	250	175	Ø11x22	sezione 50x5	55
800 ST 0,023	440	300	250	250	175	Ø11x22	sezione 50x5	70

5.2.3 - Collegamento

Variatore di velocità

OPZIONI

5.3 - Transistor e resistenze di frenatura

5.3.1 - Transistor di frenatura

I transistor sono montati all'interno del **POWERDRIVE**. Sono composti da un transistor IGBT e da un circuito di controllo.

	Taglie POWERDRIVE		
	60T a 150T	180T a 1100T	
Riferimento transistor di frenatura	MD TF 200	MD TF 400	
Corrente di picco (A)	200	400	
Corrente permanente (A)	70	250	
Valore minimo della resistenza associata (Ω)	3,5	1,8	

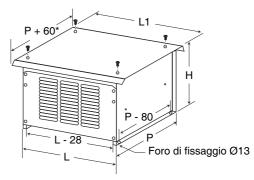
Per le taglie 690 V (TH), consultare LEROY-SOMER.

5.3.2 - Transistor di frenatura

L'uso della resistenza di frenatura è facoltativo.

Consente di dissipare la potenza attiva restituita dal motore sul bus in corrente continua del variatore nel caso di una macchina trainante.

• La resistenza di frenatura deve essere installata in modo da non danneggiare, con la sua emissione di calore, i componenti attigui.


- Particolare attenzione va posta durante qualsiasi intervento vicino alla resistenza, a causa delle presenza di tensione elevata e dell'elevata temperatura (temperatura della resistenza superiore a 70°C).
- Per evitare i rischi d'incendio che possono essere provocati da un malfunzionamento del transistor di frenatura o da un cortocircuito, la resistenza di frenatura deve essere cablata in serie con un relè termico, dimensionato sulla corrente efficace della resistenza. Lo scatto del relè deve provocare l'arresto e la messa fuori tensione del variatore.
- La resistenza di frenatura deve essere montata all'esterno dell'armadio, il più vicino possibile. Verificare che sia contenuta in una scatola metallica ventilata, in modo da evitare ogni contatto diretto con la resistenza.

· Caratteristiche elettriche

Typo resistanza RF	Valore ohmica (Ω)	Potenza termica (kW)	Potenza di picco (kW)	Corrente efficace (A)*
RF-MD-27500-10	10	27,5	51,8	52
RF-MD-37500-5	5	37,5	103,7	87
RF-MD-55000-5	5	55	103,7	105
RF-MD-75000-4	3,5	75	148,1	146
RF-MD-110000-3	2,35	110	220,6	216

^{*} Corrente di regolazione del relè termico cablata in serie alla resistenza.

• Ingombri

Protezione IP13

* diventa P + 80 a partire da RF-MD-37500-5

Tipo		Dimensioni (mm)				
Про	L	L1	Р	Н	(kg)	
RF-MD-27500-10	860	890	480	690	66	
RF-MD-37500-5	960	1140	380	1150	77	
RF-MD-55000-5	960	1140	540	1150	105	
RF-MD-75000-4	1080	1260	680	1150	145	
RF-MD-110000-3	960	1140	740	1520	200	

5.4 - Protezioni elettriche

- Per le protezioni elettriche, le diverse opzioni integrabili sono:
- sezionatore:

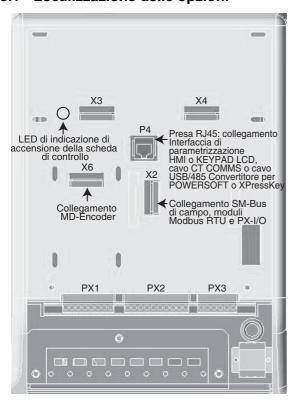
Sezionatore a fusibili;

- interruttore;
- contattore:
- arresto di emergenza categoria da 1 a 3;
- relè termico.

Per la scelta e le dimensioni delle protezioni elettriche, contattare il proprio rappresentante abituale LEROY-SOMER

• Arresto di emergenza categoria da 1 a 3: MD-AU 1/3

La protezione MD-AU 1 categoria 1 comprende un arresto di emergenza cablato nel circuito dell'ingresso di sicurezza e montato sulla porta anteriore (versione IP21 o IP54).


La protezione MD-AU 3 è un telecomando di categoria 2 o 3 con ingresso di sicurezza. Questa opzione include un relè di sicurezza e un arresto di emergenza cablato e montato sulla porta anteriore (versione IP21 o IP54).

Variatore di velocità

OPZIONI

5.5 - Opzioni integrabili 5.5.1 - Localizzazione delle opzioni

5.5.2 - POWERSOFT

Questo software è scaricabile da Internet al seguente indirizzo:

http://www.leroy-somer.com, voce "Downloads"

POWERSOFT permette la parametrizzazione o la supervisione del POWERDRIVE a partire da un PC in modo molto intuitivo, proponendo diverse funzionalità:

- messa in servizio rapida
- database dei motori LEROY-SOMER
- salvataggio di file
- aiuto in linea
- confronto di 2 file o di un file con la regolazione di fabbrica
- stampa di un file completo o delle differenze rispetto alla regolazione di fabbrica
- supervisione
- diagnostica
- rappresentazione dei parametri in tabella o in forma grafica.

Per il collegamento del PC a POWERDRIVE, utilizzare un cavo CT Comms (Porta RS232 PC) o un convertitore USB/485 (Porta USB PC).

5.5.3 - KEYPAD-LCD

5.5.3.1 - Generalità

Questa console permette una parametrizzazione intuitiva del POWERDRIVE e l'accesso a tutti i parametri. Il suo display LCD, composto da una riga di 12 caratteri e da 2 righe di 16 caratteri, propone testi visualizzabili in 5 lingue. (Francese, Inglese, Tedesco, Italiano e Spagnolo). La console KEYPAD-LCD dispone di 2 principali funzionalità:

- un modo lettura che permette la supervisione e la diagnostica del POWERDRIVE;
- un accesso a tutti i parametri del POWERDRIVE per ottimizzare delle regolazioni o configurare applicazioni particolari.

5.5.3.2 - Modo lettura

Alla messa in tensione, la KEYPAD-LCD è in modo lettura. Agendo sui tasti è possibile scorrere tutti i parametri necessari alla supervisione e alla diagnostica:

- corrente motore:
- frequenza motore;
- tensione motore;
- livelli ingressi/uscite analogici;
- stati ingressi/uscite digitali;
- stati funzioni logiche;
- contatore orario;
- ultime messe in guasto.

5.5.4 - XPressKey

5.5.4.1 - Generalità

L'opzione XPressKey permette di salvare una copia di tutti i parametri del **POWERDRIVE** per poterli duplicare, molto semplicemente, in un altro variatore.

Bloccare il variatore prima di procedere al salvataggio o all'impostazione dei parametri di un variatore.

5.5.4.2 - Salvataggio dei parametri nella XpressKey

- Verificare per mezzo dell'interfaccia di parametrizzazione che il variatore sia bloccato (morsetto SDI aperto). Impostare 00.44 = Var verso Chiave.
- Sostituire quindi nella presa RJ45 il connettore del cavo dell'interfaccia di parametrizzazione con il connettore della chiave XPressKey.
- La pressione del pulsante della chiave comporta la memorizzazione nella chiave di duplicazione dei parametri contenuti nel variatore. Il LED verde della chiave resta illuminato durante tutta la durata del trasferimento, poi si spegne per indicare che l'operazione si è conclusa con successo.
- Una volta ricollegata l'interfaccia di parametrizzazione, il parametro 00.44 ritorna a "no"

Nota: Se il trasferimento risulta impossibile, il LED della chiave XPressKey lampeggia rapidamente.

ATTENZIONE:

Premere il pulsante della chiave entro 10 secondi dopo avere selezionato "Var verso Chiave" in 00.44, altrimenti l'azione è annullata.

5.5.4.3 - Parametrizzazione di un variatore di identica taglia con XPressKey

La funzione "Chiave verso Var" si attiva con il pulsante situato sulla chiave di duplicazione, una volta che questa è collegata alla presa RJ45. Premendo il pulsante una prima volta si effettua il passaggio a "Chiave verso Var" del parametro 00.44. Il LED della XPressKey lampeggia lentamente. Una seconda pressione del pulsante conferma il trasferimento dei dati. Il LED verde della chiave resta illuminato durante tutta la durata del trasferimento, poi si spegne per indicare che

l'operazione si è conclusa. Nota: Se il trasferimento risulta impossibile, il LED della chiave XPressKey lampeggia rapidamente.

ATTENZIONE:

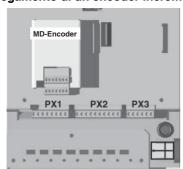
- Premere per la seconda volta il pulsante entro
- 10 secondi, altrimenti l'azione è annullata.
- Se le taglie dei variatori sorgente e destinazione sono diverse:
- software variatore destinazione < V3.00: il trasferimento non è autorizzato
- software variatore destinazione ≥V3.00: è possibile effettuare il trasferimento, tranne i menu 5 e 21

Connettore a 12 pin

POWERDRIVE

Variatore di velocità

OPZIONI


5.5.5 - MD-Encoder


L'opzione MD-Encoder permette di gestire il ritorno velocità del motore, ovvero gli encoder incrementali con o senza canali di commutazione e i sensori a effetto Hall.

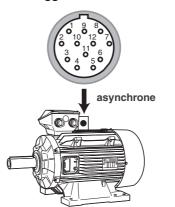
Collegare la schermatura del cavo sul piano di massa del variatore tramite una fascetta metallica mettendo a nudo il cavo a 360° .

• Prima di installare o disinstallare l'opzione MD-Encoder è necessario togliere l'alimentazione dal variatore e assicurarsi che la tensione del bus continuo sia inferiore a 40 V (il LED di indicazione di accensione della scheda di controllo deve essere spento).

5.5.5.1 - Collegamento di un encoder incrementale

Nota:

- Il modulo MD-Encoder può gestire la sonda termica CTP del motore tramite i morsetti T1 e T2. In questo caso è necessario effettuare la parametrizzazione, vedere il menu 7 del manuale di messa in servizio rif. 3871.
- I morsetti 0 e 0\ sono inutilizzati.


ATTENZIONE:

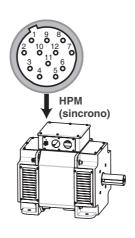
Per le versioni di software < 3.00, l'utente deve collegare la sonda CTP del motore sulla morsettiera di controllo del variatore tra ADI3 e 0V.

5.5.5.2 - Collegamento di un encoder incrementale

-	0V dell'alimentazione encoder
+	Alimentazione encoder secondo posizione del selettore (cursore) 5V o 15V
Α	
A۱	Collegamento dei canali encoder
В	Collegamento del canali encodel
B\	
0	Non utilizzati
0\	Non dunzzau

• Cablaggio connettore di un motore LEROY-SOMER

lato encoder (maschio)			
Rifer.	Denominazione		
1	0V		
2	+5V o +15V		
3	Α		
4	В		
5	0		
6	A\		
7	B\		
8	0/		
9	-		
10	-		
11	Schermatura		
12	-		


5.5.5.3 - Collegamento di un sensore a effetto Hall

-	0V dell'alimentazione encoder
+	Alimentazione encoder secondo posizione del selettore (cursore) 5V o 15V
U	Collegamento canale U del sensore
U\	Collegamento canale U\ del sensore
V	Collegamento canale V del sensore
V۱	Collegamento canale V\ del sensore
W	Collegamento canale W del sensore
W۱	Collegamento canale W\ del sensore

ATTENZIONE:

Verificare la posizione dello switch: 15V per l'alimentazione dei sensori a effetto Hall.

Cablaggio connettore motore LEROY-SOMER

Connettore a 12 pin lato sensore a effetto hall (maschio			
Rifer.	Denominazione		
1	U		
2	U\		
3	V		
4	V\		
5	W		
6	W\		
7	-		
8	-		
9	+15V		
10	0V		
11	Sonda termica		
12	motore		
	Schermatura (*)		

(*) da collegare al guscio del connettore

LS RPM

Mo lato s	Morsettiera a 11 pin lato sensore a effetto hall			
1	U			
2	W\			
3	V			
4	U\			
5	W			
6	V\			
7	0V			
8	+15V			
9	Schermatura *			
10	Sonda termica			
11	motore			

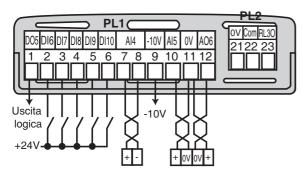
*) schermatura del cavo da collegare sul morsetto 9 della morsettiera

Variatore di velocità

OPZIONI

5.5.6 - PX-I/O

• Generalità


Il modulo PX-I/O consente di aumentare il numero di ingressi e di uscite del variatore. Questa opzione è completamente configurabile.

Funzioni supplementari:

- 2 ingressi analogici (di cui un ingresso analogico differenziale)
- 1 uscita analogica
- 5 ingressi logici
- 1 relè assegnabile
- 1 orologio interno
- modalità di salvataggio anno, mese, giorno, ore, minuti, secondi

Le morsettiere PL1 (morsetti da 1 a 12) e PL2 (morsetti da 21 a 23) sono estraibili.

Collegamento

Nota: La sorgente di tensione a +24 V può provenire dalla sorgente interna a 24 V del morsetto 2, 5 o 7 del **POWERDRIVE**.

• Morsettiera PL1

1 Uscita logica (DO5)			
2 Ingresso logico (DI6)	Ingresso logico (DI6)		
Ingresso logico (DI7)			
4 Ingresso logico (DI8)			
5 Ingresso logico (DI9)			
6 Ingresso logico (DI10))		
Logica di comando	Positiva, conforme alla norma CEI EN 61131, tranne che per D05. Il relè legato all'uscita deve essere collegato a 0V.		
Isolamento	Non isolata dall'elettronica di controllo		
Ingresso			
Campo di tensione	da 0 a 24 V		
Tensione massima assoluta	da 0 a 35 V		
Campionamento/ Aggiornamento	5 ms		
Impedenza	15 kΩ a vuoto/6 kΩ sotto carico		
Soglie	0: < 5 V 1: > 10 V		
Uscita			
Corrente di uscita massima	15 mA		
Corrente di sovraccarico	50 mA		

7 Ingresso analogico di	ifforonziala + (AIA+)			
7 Ingresso analogico differenziale + (Al4+) 8 Ingresso analogico differenziale - (Al4-)				
ingresso analogico di				
	Ingressi differenziali bipolari in tensione (funzionamento in			
Caratteristiche	modo comune: collegare i			
	morsetti 8 e 11)			
Risoluzione	12 bit			
Campionamento	5 ms			
Campo di tensione scala	± 10 V ± 2%			
Tanajana magajima in mada	20 V ± 1%			
Tensione massima assoluta	33 V			
Impedenza di ingresso	57 kΩ, \pm 1%			
9 Sorgente analogica ir	nterna - 10 V			
Tolleranza in tensione	± 1%			
Corrente di uscita massima	5 mA			
Protezione	Soglia a - 15 V			
10 Ingresso analogico (Al5)				
Caratteristiche	Tensione analogica bipolare			
Risoluzione	10 bit			
Campionamento	5 ms			
Tensione nominale a fondo scala	± 10 V			
Tensione massima assoluta	33 V			
Impedenza di ingresso	20 kΩ			
11 0 V comune circuito I	ogico			
12 Uscita analogica (AO				
Caratteristiche	Tensione analogica da 0 a 10 V o corrente 4-20 mA			
Campionamento	5 ms			
Risoluzione	13 bit			
Uscita in tensione				
Campo di tensione	da 0 a 10 V			
Resistenza di carico	2 kΩ			
Protezione	Cortocircuito (40 mA max)			
Uscita in corrente				
Campo di corrente	da 4 a 20 mA			
Tensione massima	10 V			
Resistenza di carico	500Ω			

Morsettiera PL2

21 0 V comune circ	0 V comune circuito logico				
22 Comune	Comune				
23 RL3O					
Tensione di contatto	250 Vca				
Corrente massima di	2 A carico resistivo				
contatto	1 A carico induttivo				

• Prevedere un fusibile o una protezione dalla sovracorrente nel circuito del relè.

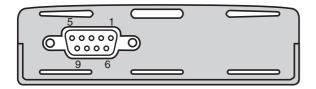
Variatore di velocità

OPZIONI

5.5.7 - Moduli bus di campo

• Prima di installare o disinstallare l'opzione Bus di campo è necessario isolare l'alimentazione del variatore e assicurarsi che la tensione del bus continuo sia inferiore a 40 V (il LED di indicazione di accensione della scheda di controllo deve essere spento).

5.5.7.1 - Modulo SM-Profibus DP


Generalità

Il modulo SM-PROFIBUS DP permette di comunicare con una rete PROFIBUS-DP.

Integra un micro-processore da 16 bit e la sua velocità di trasmissione può arrivare a 12 Mbit/s.

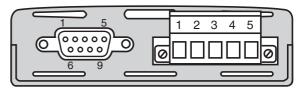
Il POWERDRIVE alimenta il modulo all'interno.

Collegamento

Morsetti SUB-D	Funzioni	Descrizione		
1	Scherm.	Collegamento per la schermatura del cavo		
3	RxD/TxD-P	Linea dei dati positivi (B)		
4	CNTR-P	Linea RTS		
5	0V ISO	0V isolato, utilizzato solo per le resistenze di terminazione		
6	+5V ISO	Alimentazione 5V isolato, utilizzato solo per le resistenze di terminazione		
8	RxD/TxD-N	Linea dei dati negativi (A)		

Si raccomanda di usare dei connettori certificati Profibus. Questi connettori possono ospitare 2 cavi Profibus e hanno una morsettiera a 4 viti, una per ogni collegamento dei dati. Hanno anche un supporto di collegamento della schermatura che garantisce la continuità della schermatura per una buona immunità alle interferenze della rete Profibus.

5.5.7.2 - Modulo SM-DeviceNet


Generalità

Il modulo SM-DeviceNet permette di comunicare con una rete DeviceNet.

Integra un microprocessore da 16 bit e la sua velocità di trasmissione può arrivare a 500 Kbit/s.

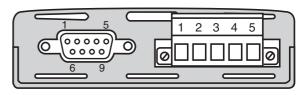
Il modulo deve essere alimentato dall'alimentazione della rete DeviceNet.

Collegamento

Morsett. 5 morsetti	SUB-D 9 pin	Funzioni	Descrizione	
1	6	0V	0V dell'alimentazione esterna	
2	2	CAN-L	Linea dei dati negativi	
3	3,5	Scherm.	_ Collegamento della	
3	3,3	schermatura del cavo		
4	7	CAN-H Linea dei dati positivi		
5	9	+24V	Alimentazione esterna	

ATTENZIONE:

Per il collegamento alla rete Devicenet, è consigliabile utilizzare la morsettiera a viti piuttosto che il connettore SUB-D, dato che i connettori SUB-D non sono riconosciuti per la conformità DeviceNet.


5.5.7.3 - Modulo SM-CANopen

Generalità

Il modulo SM-CANopen permette di comunicare con una rete CANopen. Integra un micro-processore da 16 bit e la sua velocità di trasmissione può arrivare a 1 Mbit/s.

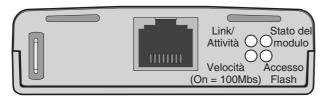
Il POWERDRIVE alimenta il modulo all'interno.

Collegamento

Morsett. 5 morsetti	SUB-D 9 pin	Funzioni	Descrizione
1	6	0V	0V dell'alimentazione esterna
2	2	CAN-L	Linea dei dati negativi
3	3.5	Scherm.	Collegamento della
3	3,3	Scrienn.	schermatura del cavo
4	7	CAN-H Linea dei dati positivi	
5	9	+24V	Alimentazione esterna

Variatore di velocità

OPZIONI

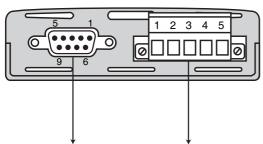

5.5.7.4 - Modulo SM-Ethernet

Generalità

Il modulo SM-Ethernet permette di comunicare con una rete Ethernet, solo in modalità MODBUS TCP.

Il **POWERDRIVE** alimenta il modulo all'interno (corrente assorbita di 280mA).

Collegamento



RJ45	Disabilitazione crossover interno (#mm.43 = 0)	Abilitazione crossover interno (#mm.43 = 1)
1	Trasmissione +Ve	Ricezione +Ve
2	Trasmissione -Ve	Ricezione -Ve
3	Ricezione +Ve	Trasmissione +Ve
4	-	-
5	-	-
6	Ricezione -Ve	Trasmissione -Ve
7	-	-
8	-	1

5.5.8 - Modulo Modbus RTU

• Prima di installare o disinstallare l'opzione Modbus RTU è necessario isolare l'alimentazione del variatore e assicurarsi che la tensione del bus continuo sia inferiore a 40 V (il LED di indicazione di accensione della scheda di controllo deve essere spento).

Il **POWERDRIVE** integra di serie una porta di collegamento seriale RS485 a 2 fili non isolata, accessibile con un connettore RJ45. Quando l'utente desidera tenere l'interfaccia di parametrizzazione sempre collegata, è necessario aggiungere l'opzione Modbus RTU con porta di collegamento seriale a 2 o 4 fili isolata.

	· · · · · · · · · · · · · · · · · · ·			
Sub I	Sub D a 9 pin (femmina)			
Pin	Descrizione			
1	0V			
2	TX\			
3	RX∖			
4	non collegato			
5	non collegato			
6	TX			
7	RX			
8	non collegato			
9	non collegato			
Sche	rmatura: 0V			

Morsettiera a vite a 5 pin			
Pin	Descrizione		
1	0V		
2	RX∖		
3	RX		
4	TX\		
5	TX		

Variatore di velocità

MANUTENZIONE

6 - MANUTENZIONE

• Tutte le operazioni di installazione, messa in servizio e manutenzione devono essere effettuate da personale qualificato e abilitato.

- Quando una messa in guasto rilevata dal variatore provoca la sua messa fuori tensione, sui morsetti di uscita e nel variatore sono presenti tensioni residue mortali.
- Non procedere ad alcun intervento senza aver prima isolato e bloccato l'alimentazione del variatore e aver atteso almeno dieci minuti per la scarica dei condensatori.
- Prima di intervenire assicurarsi che la tensione del bus continuo sia inferiore a 40 V (il LED di indicazione di accensione della scheda di controllo deve essere spento, vedere §5.5.1).
- Durante le operazioni di manutenzione con il variatore in tensione, l'operatore deve restare su una superficie isolante non collegata a terra.
- Per lavorare sul motore o sui cavi d'alimentazione, verificare che l'alimentazione del relativo variatore sia aperta e lucchettata.
- Durante le prove, tutte le protezioni devono essere lasciate in posizione inserita.
- Dopo il collegamento dell'alimentazione, riposizionare i passacavi in fondo all'armadio per evitare l'introduzione di corpi estranei.

Le operazioni di manutenzione e di riparazione dei guasti che l'utente deve effettuare sui variatori **POWERDRIVE** sono estremamente ridotte. Di seguito, si espongono le operazioni di manutenzione ordinaria nonché semplici metodi atti a verificare il buon funzionamento del variatore.

6.1 - Manutenzione ordinaria

I circuiti stampati e i loro componenti, di solito, non richiedono alcuna manutenzione. In caso di problemi, si consiglia di contattare il rivenditore o il centro d'assistenza autorizzato più vicino.

ATTENZIONE:

Non smontare i circuiti stampati durante il periodo di garanzia. Questa decadrebbe immediatamente.

Non toccare i circuiti integrati o il microprocessore con le dita o con materiali carichi o in tensione. Per qualsiasi intervento sui circuiti, operatore, banco e saldatore devono essere collegati a terra.

Le operazioni di manutenzione e di riparazione dei guasti che l'utente deve effettuare sui variatori **POWERDRIVE** sono estremamente ridotte. Di seguito, si espongono le operazioni di manutenzione ordinaria nonché semplici metodi atti a verificare il buon funzionamento del variatore.

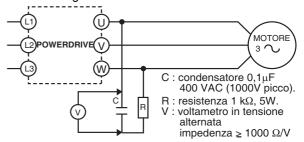
Verificare periodicamente il serraggio dei collegamenti di potenza fuori tensione. I filtri delle porte devono essere controllati e sostituiti periodicamente, in funzione del loro stato.

6.2 - Stoccaggio

Dopo uno stoccaggio superiore ai 12 mesi, è indispensabile mettere in tensione il variatore per 24 ore e, in seguito, ripetere l'operazione ogni 6 mesi.

6.3 - Misurazione di tensione, corrente e potenza

6.3.1 - Test di potenza automatico


Il **POWERDRIVE**, a ogni messa in tensione, permette di effettuare un autotest dei circuiti di potenza.

Per effettuare il test, vedere il parametro 00.43 (17.03) nel manuale di messa in servizio (rif. 3871).

6.3.2 - Misura della tensione all'uscita del variatore

Le armoniche dovute al variatore fanno sì che non sia possibile misurare correttamente la tensione all'ingresso del motore con un normale voltmetro.

Tuttavia, si può ottenere un valore approssimato della tensione efficace dell'onda fondamentale (quella che influisce sulla coppia)utilizzando un voltmetro analogico e il montaggio riportato sulla figura.

6.3.3 - Misurazione della corrente motore

La corrente assorbita dal motore e la corrente d'ingresso del variatore possono essere misurate, in modo approssimato, grazie ad un amperometro analogico.

6.3.4 - Misurazione della potenza d'ingresso e d'uscita del variatore

Le potenze d'ingresso e d'uscita del variatore possono essere misurate utilizzando uno strumento elettrodinamico.

Variatore di velocità

MANUTENZIONE

6.4 - Lista delle parti di ricambio

6.4.1 - Fusibili interni (AP6)

La posizione di questi fusibili è indicata nella sezione § 3.1.

Nome fusibile	Taglia variatore	Tipo fusibile	Misura	Valore	Numero	Codice LS
F1		SA	5 x 20	1,25 A / 250 V	1	PEL001FA004
F2		SA	5 x 20	1,25 A / 250 V	1	PEL001FA004
F3	da 60T a 1100T	SA	5 x 20	1,25 A / 250 V	1	PEL001FA004
F4	da 270TH a 1500TH	SA	5 x 20	1,25 A / 250 V	1	PEL001FA004
F5		SA	5 x 20	1,25 A / 250 V	1	PEL001FA004
F6		SA	5 x 20	1,25 A / 250 V	1	PEL001FA004
F7	da 60T a 1100T	aM/ATQ	10 x 38	4 A / 500 V	1	PEL004FA000
. ,	da 270TH a 1500TH	gG	10 x 38	4 A / 690 V	1	PEL004FU003
F8	da 60T a 1100T	aM/ATQ	10 x 38	4 A / 500 V	1	PEL004FA000
. 0	da 270TH a 1500TH	gG	10 x 38	4 A / 690 V	1	PEL004FU003

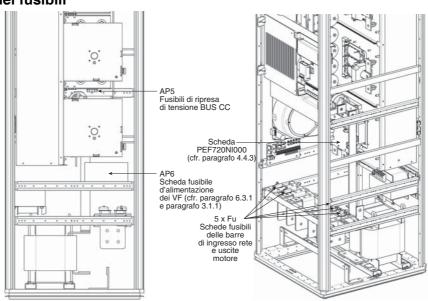
6.4.2 - Fusibili barre di ingresso rete

Taglia variatore	Tipo fusibile	Misura	Valore	Numero	Codice LS
da 60T a 470T	SA	6,3 x 32	8 A / 500 V	2	PEL008FA004
da 600T a 1100T	Temporizzato	6,3 x 32	16 A / 500 V	2	PEL016FA010
da 270TH a 500TH	gRB	10x38	8 A / 700 V	1	PEL008FU001
da 600TH a 1500TH	gRB	10x38	16 A / 700 V	1	PEL016FU009

6.4.3 - Fusibili barre di uscita motore

Taglia variatore	Tipo fusibile	Misura	Valore	Numero	Codice LS
da 60T a 1100T	FA	6,3x32	2 A / 660 V	3	PEL002FU004
da 270TH a 1500TH	gG	10x38	4 A / 690 V	3	PEL004FU003

6.4.4 - Fusibili di ripresa di tensione bus CC (AP5)


Taglia variatore	Tipo fusibile	Misura	Valore	Numero	Codice LS
da 60T a 1100T e da 270TH a 1500TH	FA	6,3x32	2 A / 660 V	2	PEL002FU004

6.4.5 - Fusibili di protezione dell'alimentazione ausiliaria

Taglia variatore	Tipo fusibile *	Misura	Valore	Numero	Codice LS
da 60T a 150T	FA	6,3x32	3,15 A / 500 V	1	PEL003FU001
Ga 601 a 1601	Temporizzato	5x20	1,25 A / 250 V	1	PEL001FA004

^{*} Questi due fusibili si trovano sulla scheda integrata del variatore, sotto la scheda di controllo.

6.4.6 - Posizione dei fusibili

6.5 - Restituzione di prodotti

ATTENZIONE:

I prodotti devono essere restituiti nei loro imballaggi originali o, in mancanza, in un imballaggio simile per evitarne il deterioramento. In caso contrario, la garanzia potrebbe non essere ritenuta valida.

IMP297NO294

MOTEURS LEROY-SOMER 16015 ANGOULÊME CEDEX - FRANCE

338 567 258 RCS ANGOULÊME S.A. au capital de 62 779 000 €

www.leroy-somer.com