

Sistema di lettura banconote NV9 **NV9 Bank note validator system**

Il futuro della Gestione Banconote Smiley® The future of Smiley[®] Bank Note Handling

Manuale Operativo Operations Manual

GA326-3

© Copyright Innovative Technology Limited 2

Gentile cliente,

la ringraziamo per la fiducia accordataci con l'acquisto di un nostro prodotto.

Se Lei avrà la costanza di seguire attentamente le indicazioni contenute nel presente manuale, siamo certi che potrà apprezzarne nel tempo e con soddisfazione la qualità.

La preghiamo di leggere attentamente le indicazioni contenute nel manuale che riguardano l'uso corretto del nostro prodotto, in conformità alle prescrizioni essenziali di sicurezza.

Dear Customer,

Thank you for buying one of our products.

If you carefully follow the indications included in this manual, we are sure you will appreciate our quality over time with full satisfaction.

We kindly ask you to carefully read the instructions of this manual about the correct use of our product in accordance with the basic safety provisions.

Sommario - Index

STORIA DELLE VARIAZIONI DOCUMENTO	4
1: INTRODUZIONE	5
2: OGGETTO DEL DOCUMENTO	6
3: REQUISITI AMBIENTALI E DI ALIMENTAZIONE	7
4: DESCRIZIONE GENERALE	8
5: INTERFACCIA UTENTE CON NV9 5.1: IMPOSTAZIONI DIPSWITCH 5.2: CODICI LED DI STATO	9
6: INTERFACCIA MACCHINA: HARDWARE 6.1: Dettagli Pin Connettore Interfaccia 6.2: Circuiti Hardware Ingresso/Uscita 6.3: Ingresso e Uscite Interfacce Seriali Opzionali Software	11 11
7: INTERFACCIA MACCHINA: PROTOCOLLI	13 13 13 13 14 14 15 17 18 19 20
8: AGGIORNAMENTO VALUTA E FIRMWARE	21 21 21 22
9: INSTALLAZIONE MECCANICA 9.1: Sostituzione o rimozione delle maschere 9.2: Sostituzione o rimozione contenitori denaro	23 23
10: MANUTENZIONE ORDINARIA 10.1: Pulizia FIGURA 12: LETTORE NV9 10.2: SOSTITUZIONE CINGHIE 10.2 RIMOZIONE RESIDUI DAL PERCORSO BANCONOTE / SOSTITUZIONE CINGHIE	24
11: ANALISI RILEVAMENTO GUASTI	27
12: STRUMENTI DI SUPPORTO 12.1: Software PC Programmazione Valute	29

12.2: SUPPORTO SITO WEB INTERNET	
APPENDICE C - STRUMENTI INTERFACCIA DA1 - DA2	
APPENDICE D – REGISTRAZIONE SU SITO WEB I IN I RODUCTION	37 40
2: SCOPE OF DOCUMENT	41
3: ENVIRONMENT AND POWER REQUIREMENTS	42
4: GENERAL DESCRIPTION	43
5: NV9 USER INTERFACE	44
5.1:DIPSWITCH SETTINGS	
5.2: LED STATUS CODES	45
6: INTERFACES: HARDWARE DESCRIPTION	46
6.2: INPUT AND OUTPUT HARDWARE CIRCUITS	
6.3: SOFTWARE OPTIONAL SERIAL INTERFACE INPUT AND OUTPUTS	47
7: MACHINE INTERFACES: PROTOCOLS	48
7.1: PARALLEL INPUT AND OUTPUT:	
7.2:PULSE STREAM OUTPUT	
7.3. DINART OUTFUT - DIN	
7.5 SMILEY® SECURE PROTOCOL - SSP	53
7.6 MULTI-DROP BUS / INTERNAL COMMUNICATIONS PROTOCOL (IF5) – MDB	
7.7 CCTALK PROTOCOL – CCT	55
	56
8.1 ITL BNV Download Manager	
8.2 NV9 – NV9 COPY (CLONING)	56
8.3:NV9 – NV9 COPY PROCESS.	57
9: MECHANICAL INSTALLATION	59
9.1:CHANGING OR REMOVING THE BEZELS	
10 1 CLEANING	60
10.2 Note Path Debris Clearing / Belt Changing	60
10.2 NOTE PATH DEBRIS CLEARING / BELT CHANGING	61
11: FAULT FINDING ANALYSIS	62
12 SUPPORT TOOLS	64
12.1 PC CURRENCY PROGRAMMING SOFTWARE (ITL BNV DOWNLOAD MANAGER)	64
12.2 INTERNET WEBSITE SUPPORT	
	64
	65
	70
APPENDIX C - INTERFACE TOOLS DA1 - DA2	71
APPENDIX D – WEBSITE REGISTRATION	72

Storia delle variazioni documento

Innovative Technology Ltd					
Titolo:	Manuale Te	cnico NV1	0		
N.Disegno:	GA326		Progetto:		
Autore:	T.J. Crowley	/	Data:	29/10/2004	
Formato:	MS Wor	d 2000			
Versione	Data	Mod. da		Commenti	
Versione 1	20/07/2005	TJC		Prima bozza	
Versione 2	08/08/2005	ATG		Seconda bozza	
Versione 3	05/09/2005	RJS		Edizione iniziale	

1: Introduzione

Il presente manuale descrive il funzionamento del Lettore di Banconote NV9 installato con il Firmware Versione 3.15 o superiore.

Attenzione

- Prima dell'utilizzo su questo prodotto deve essere installato un fusibile da 2 Amp.
- Il Lettore NV9 è compatibile pin per pin con NV7/8/10, ma NON è compatibile pin per pin con i prodotti delle serie NV2/3/4/4X o 5

Si raccomanda di prendere attenta visione del presente manuale in quanto contiene molte nuove caratteristiche che consentono nuovi utilizzi e maggior sicurezza nelle applicazioni.

Se non comprendete qualche capitolo del presente manuale, contattate ITL per ricevere assistenza. In questo modo possiamo continuare a migliorare il nostro prodotto. In alternativa potete visitare il nostro sito web su <u>www.innovative-technology.co.uk</u>

Innovative Technology Ltd. Derker Street Oldham England OL1 4EQ Tel: +44 (0) 161 626 9999 Fax: +44 (0) 161 620 2090 E-mail <u>support@innovative-technology.co.uk</u> Web site <u>www.innovative-technology.co.uk</u>

Smiley® e il logo ITL sono marchi internazionali e sono di proprietà di Innovative Technology Limited.

La Innovative Technology detiene una serie di Brevetti e di Brevetti in corso di registrazione sia europei che internazionali a protezione di questo prodotto. Se necessitate di maggiori dettagli, vogliate contattare l'azienda.

La Innovative Technology non è responsabile di alcuna perdita, lesione o danno provocati dall'installazione ed utilizzo di questo prodotto. Ciò non influenza i vostri diritti in base alla normativa locale. In caso di dubbi vogliate contattare la Innovative Technology per i dettagli di eventuali variazioni.

2: Oggetto del documento

Il presente documento è rivolto a coloro che si occupano di:

- Trasferire il progetto dell'NV9 in elementi di attrezzatura.
- Realizzare attrezzature utilizzando NV9.
- Installare attrezzature contenenti NV9.
- Eseguire manutenzione su attrezzature contenenti NV9.

Nonostante siano incluse informazioni che consentono un certo grado di diagnostica dei guasti e di riparazione, si raccomanda che per tutte le riparazioni meccaniche, tranne quelle semplici, l'unità venga inviata ad un centro assistenza qualificato per le riparazioni.

Attenzione:

- Non superare mai i limiti ambientali ed elettrici raccomandati.
- Non cercare di lubrificare I meccanismi in quanto ciò potrebbe influire sul trasporto delle banconote.
- Non levigare la lente in quanto ciò potrebbe alterare le caratteristiche ottiche.
- Se il Lettore NV9 viene smontato, l'unità deve essere ritarata /reinizializzata a seguito del rimontaggio.

La Innovative Technology Ltd persegue una politica di continuo miglioramento dei prodotti. Pertanto i prodotti forniti possono variare dalle specifiche qui descritte.

3: Requisiti Ambientali e di Alimentazione

Ambiente	Minima	Massima
Temperatura	+3°C	+50°C
Umidità	5%	95% senza condensa

Tabella	1 –	Requisi	ti Amb	oientali
---------	-----	---------	--------	----------

Attenzione:

- Se la tensione di entrata scende al di sotto degli 11V, NV9 potrebbe non funzionare correttamente (rifiuto banconote). Il led di stato color giallo e le spie frontali della mascherina lampeggiano per indicare condizioni non corrette.
- Si raccomanda che l'alimentazione elettrica utilizzata sia in grado di fornire almeno 1.5 Amp.

Alimentazione elettrica	Minima	Massima
Limiti Assoluti Tensione alimentazione (V cc)	11V	15V
Tensione alimentazione Versione MDB IF5	18V	42V
Tensione di ondulazione alimentazione		0.25V @100Hz
CORRENTI DI ALIMENTAZIONE:		
Standby		0.35A
In lettura		1A
Picco (motore stacker in stallo)		1.5A

TABELLA 2 – REQUISITI DI ALIMENTAZIONE

4: Descrizione Generale

Lettore NV9 – la futura generazione dei lettori di banconote Smiley®

Il Lettore di banconote NV9 è un lettore di banconote compatto (vedi figura 1), adatto per la maggior parte delle macchine funzionanti con denaro. Accetta fino a 15 diversi tagli di banconote in modalità di controllo seriale, in modalità ad impulsi e in modalità binaria, 4 banconote in modalità parallela ed è in grado di gestire diverse configurazioni di banconote aventi lo stesso valore così come sono presenti nel Regno Unito.

Figura 1 – NV9 con Mascherina verticale ed Universale

Il lettore NV9 lascia la fabbrica dotato di almeno un set di dati relativi alla valuta in modo da essere pronto per una installazione immediata. Se si desidera variare il set di dati valuta, ciò si può fare mediante il sistema di clonazione valute da NV9 a NV9 oppure il software di gestione valute per PC.

Vengono continuamente testate nuove valute e applicazioni; vogliate visitare il sito web <u>www.innovative-</u> <u>technology.co.uk</u> o prendere contatto con la nostra azienda per informazioni riguardanti le valute specifiche se queste non fanno già parte del nostro elenco approvato.

L'NV9 è stato realizzato per una facile installazione nella maggior parte delle macchine. Il nuovo "smile" consente l'inserimento delle banconote con una mano e semplifica il meccanismo di gestione delle stesse.

L'interfacciamento con il Lettore è molto semplice, grazie alla scelta dei seguenti protocolli:

- Uscite collettori aperte parallele
- Uscita corrente impulsi
- Comunicazioni seriali di sicurezza con Protocollo di Sicurezza Smiley® (SSP)
- Binario
- Comunicazioni seriali semplici
- ccTalk
- Protocollo interfaccia MDB
- Interfaccia estesa/seriale USA

5: Interfaccia Utente con NV9

L'interfaccia utente con l'NV9 è indicata di seguito (vedi figura 2). Si tratta di un semplice LED rosso e verde e di una serie di quattro DIP switch. I LED indicano lo stato operativo dell'NV10 mentre i DIP switch impostano la modalità operativa di base dell'apparecchiatura.

Figura 2 – Display utente e DIP switch NV10

5.1: Impostazioni DIPswitch

I quattro DIP switch possono essere impostati in una serie di regolazioni verso l'alto o il basso, a seconda della configurazione richiesta per quel particolare NV9.

Switch 1 – Riserva

Switch 1 Attualmente senza funzione, riservato per un uso futuro

Switch 2 - moltiplicatore di impulse

Questo switch viene utilizzato per modificare il comportamento dell'interfaccia macchina selezionata. I dettagli della funzione di questo switch sono indicati nella descrizione interfacce del presente manuale.

Attualmente l'unica interfaccia che fa uso di questo switch è la modalità a impulsi. In tale modalità lo switch può essere utilizzato per moltiplicare il numero di impulsi dato da un coefficiente di quattro. Quando lo switch è giù il moltiplicatore è 1, quando lo switch è su il moltiplicatore è 4.

Switch 3 e 4 – Selezione protocollo Interfaccia Macchina

Questi switch sono utilizzati per selezionare l'interfaccia macchina da utilizzare. L'NV9 supporta quattro interfacce, come indicato di seguito (vedi tabella 1).

Interfaccia	Switch 3	Switch 4
Parallela	Giù	Giù
Impulsi	Giù	Su
SSP	Su	Giù
Speciale	Su	Su

Tabella 1 - Switch 3 e 4 -	Selezione Interfaccia	Macchina
----------------------------	-----------------------	----------

I dettagli delle interfacce parallela, a impulsi e SSP sono indicati nel capitolo relativo ai protocolli interfacce macchina del presente manuale.

L'interfaccia speciale dipende dal firmware utilizzato nell'NV9, il firmware fornito come standard è l'interfaccia binaria (a livello mondiale) e CCTalk (solo Regno Unito). Ci sono in ogni caso altre opzioni che possono essere scaricate dall'utente:

- Binaria
- ccTalk
- I/O semplice seriale ITL
- MDB

Le informazioni relative a ciascuna delle sopraindicate interfacce sono contenute nel "capitolo protocollo interfacce macchina" del presente manuale.

5.2: Codici LED di stato

I tre LED di stato sono posizionati alla sinistra dei DIPswitch sul lato destro dell'apparecchiatura e vengono impiegati per indicare una serie di segnali di stato.

Lo stato rosso viene utilizzato per indicare problemi di sistema, quello verde per indicare la buona condizione del sistema; sono descritti di seguito in tabella 2.

Stato LED	Descrizione
A battito di cuore (Lento = periodo di 1 secondo)	Nel normale funzionamento RUN, quando l'NV9 è pronto per leggere una banconota, il led di stato verde lampeggia lentamente ("a battito di cuore") per segnalare uno stato "di salute".
Rosso lampeggiante –periodo di un secondo	NV9 è inceppato da qualche parte nel percorso banconote
Rosso lampeggiante rapidamente (rapido = periodo di mezzo secondo)	NV9 non riesce a tarare, il/i sensore/i può essere bloccato/i
Rosso fisso	La memoria è stata corrotta
Lampeggiante alternativamente verde e rosso	Stacker pieno
Lampeggiano le spie gialle e della mascherina	L'alimentazione elettrica non è corretta, verificare le specifiche

Tabella 2 – Codici LED di stato

6: Interfaccia macchina: hardware

Il connettore interfaccia NV9 è posizionato sul lato sinistro dell'apparecchiatura. Dispone di 16 pin (vedi figura 3); due sono utilizzati per l'alimentazione elettrica 0v e +12v, vi poi sono cinque uscite e cinque entrate. I restanti quattro pin sono riservati per un futuro utilizzo. Un esempio di connettore adatto è il Molex Part. N. 39-51-2160.

Figura 3 – Connettore Interfaccia

6.1: Dettagli Pin Connettore Interfaccia

I dettagli relativi ai pin connettore interfaccia sono indicati di seguito (vedi tabella 3): hanno una testata con passo 0,1" e 2 file da 8 pin.

Pin	Nome	Descrizione:
1	Vend 1 (bit binario 1)	Banconota accettata su Canale 1,
		Anche uscita Corrente a Impulsi
		Anche il pin uscita seriale in SSP e altre modalità seriali
2	Vend 2 (bit binario 2)	Banconota accettata su uscita impulsi Canale 2
3	Vend 3 (bit binario 4)	Banconota accettata su uscita impulsi Canale 3
4	Vend 4 (bit binario 8)	Banconota accettata su uscita impulsi Canale 4
5	Inhibizione 1	Si inibisce il canale 1 tenendo questo pin IN ALTO. Per
		abilitare un canale l'inibizione deve essere tenuta IN BASSO.
		Anche il pin ingresso seriale per SSP e altre modalità seriali.
6	Inhibizione 2	Si inibisce il canale 2 tenendo questo pin IN ALTO.
7	Inhibizione 3	Si inibisce il canale 3 tenendo questo pin IN ALTO.
8	Inhibizione 4	Si inibisce il canale 4 tenendo questo pin IN ALTO.
9	Occupato	NV8 è in fase di lettura e impilaggio all'uscita. Attivo basso
		mentre NV8 legge, trasporta o impila una banconota.
10	Escrow	Attivare la funzione Escrow ponendo IN BASSO, far
		riferimento al paragrafo Escrow nelle modalità parallela e
		binaria e all' <u>Appendice B</u> per tutti I particolari.
11	Riserva	Riserva
12	Riserva	Riserva
13	Riserva	Riserva
14	Riserva	Riserva
15	+Vin	alimentazione 12V cc nominali
16	0V	Alimentazione 0v

Tabella 3 – Dettagli connettore a 16 pin

6.2: Circuiti Hardware Ingresso/Uscita

Attenzione: Il segnale basso di uscita viene influenzato dal valore del resistore di salita sull'interfaccia macchina host. Verificare che i vostri livelli di BASSO sul segnale siano consoni alle specifiche della serie 74HC CMOS al fine di un funzionamento affidabile (vedi figura 4).

Figura 4 – Circuito ingressi/uscite

- Tutte le uscite sono transistor a collettore aperto.
- Tutti gli ingressi vengono mantenuti alti su +5V interno via 10KΩ. La struttura degli ingressi è un gate CMOS dotato di una protezione antistatica.

Livelli Logica Interfaccia	Logica Bassa	Logica Alta
Ingressi	0V < Low < 0.5	+3.7V < High <12V
Uscite con salita 2K2Ω	0.6V	Tensione di salita interfaccia host
Diminuzione di corrente max.	50mA per uscita	

Tabella 4- Livelli Logica Interfaccia

6.3: Ingresso e Uscite Interfacce Seriali Opzionali Software

Attenzione: Le interfacce seriali funzionano solamente se il relativo software di interfaccia è installato correttamente.

Nome	Descrizione
SSP TxD	Vend 1
SSP RxD	Inibiz 1

Tabella 5 - Ingresso e Uscite Interfacce Seriali Opzionali Software

7: Interfaccia macchina: Protocolli

Per selezionare l'interfaccia richiesta, I DIPswitch sul lato dell'NV9 devono essere impostati di conseguenza:

7.1: Ingresso/uscita paralleli

Per utilizzare uscite parallele, i DIPswitch 3 e 4 devono essere impostati giù.

Segnali Vendita: (Pin 1 - 4). I quattro canali dispongono di proprie uscite singole. Se una banconota viene riconosciuta, allora la relativa linea del canale viene impostata su basso per 100+3 millisecondi. Gli impulsi oltre tali limiti dovrebbero essere respinti come precauzione per evitare un falso avvio dovuto al rumore.

Uscita occupata: (Pin 9). Si tratta di un segnale di occupato generale. E' attivato su basso mentre l'NV9 è in funzione.

Controllo Escrow (Pin 10)-Modalità parallela: L'NV9 in questa modalità utilizza un programma escrow per singole banconote (vedi allegato <u>Appendice B</u>): : Ciò consente al lettore di trattenere la banconota una volta accettata e quindi impilare la stessa nel contenitore denaro solo quando la macchina host conferma il completamento dell'operazione di vendita. Se la conferma della vendita non viene ricevuta la banconota viene restituita al cliente dopo 30 secondi.

Se la macchina host interrompe la transazione ponendo su alto il corrispondente ingresso di inibizione, la banconota viene restituita immediatamente.

La macchina host può forzare la restituzione della banconota al cliente ponendo su alto la linea di inibizione in qualsiasi momento prima del termine della scadenza di 30 secondi. Ponendo su alto tutte le inibizioni la banconota verrà respinta.

Qualora una banconota venisse forzatamente estratta dalla bocca dell'NV9 nel corso dell'intervallo dei 30 secondi, l'NV9 andrà fuori servizio per 45 secondi.

Operazione di inibizione

Ciascun canale (1 - 4) ha il proprio ingresso di inibizione per consentire alla macchina host di rifiutare specifiche banconote. Per inibire un canale, il relativo ingresso di inibizione deve essere mantenuto alto. Per abilitare un canale le corrispondenti inibizioni devono essere poste in basso in modo da consentire l'accettazione delle banconote.

Se tutte e quattro le inibizioni sono in alto nello stesso momento, in tal caso l'NV9 non leggerà alcuna banconota. In questa modalità, se viene inserita una banconota, il motore andrà in retromarcia impedendo l'inserimento di una banconota e la mascherina non si illuminerà.

Si possono collegare insieme tutte e quattro le inibizioni per creare un'inibizione "globale". In tal modo l'NV9 può essere messo in servizio e fuori servizio dalla macchina host.

7.2: Uscita Corrente Impulsi

Per utilizzare l'uscita corrente impulsi per l'accettazione di un massimo di 16 canali/accettazione banconote, il DIP switch 3 deve essere in basso e il DIP switch 4 in alto.

Segnale di Vendita (Pin 1): Quando una banconota viene riconosciuta, Vend 1 darà impulsi per un numero prestabilito di volte, il numero di impulsi e la relativa tempistica vengono impostati nel programma di gestione valute NV9 (e impostati su valori di default con il set di dati in dotazione).

Il numero di impulsi viene moltiplicato per un coefficiente di quattro per I set dati relativi ai dollari USA, a seconda della posizione dello switch 2. Se lo switch è giù, allora il numero di impulsi è come programmato nell'uscita del set di dati. Se lo switch è su allora l'uscita è pari a quattro volte questo numero di impulsi.

Uscita occupata: (Pin 9). Si tratta di un segnale di occupato generale. E' attivo basso mentre l'NV9 è in funzione.

Controllo Escrow: (pin 10). L'NV9 in questa modalità utilizza una funzione escrow per singole banconote (vedi allegato <u>Appendice B</u>): Ciò consente al lettore di trattenere la banconota una volta accettata e quindi impilare la stessa nel contenitore denaro solo quando la macchina host conferma il completamento dell'operazione di vendita. Se la conferma della vendita non viene ricevuta la banconota viene restituita al cliente dopo 30 secondi.

Se la macchina host interrompe la transazione ponendo su alto il corrispondente ingresso di inibizione, la banconota viene restituita immediatamente.

La macchina host può forzare la restituzione della banconota al cliente ponendo in alto la linea di inibizione in qualsiasi momento prima del termine della scadenza di 30 secondi. Ponendo in alto tutte le inibizioni la banconota verrà respinta.

Qualora una banconota venisse forzatamente estratta dalla bocca dell'NV9 nel corso dell'intervallo dei 30 secondi, l'NV9 andrà fuori servizio per 45 secondi.

Operazione di Inibizione: I canali (1 - 4) hanno il proprio ingresso di inibizione per consentire alla macchina host di rifiutare specifici valori di banconote. Per inibire un canale, il relativo ingresso di inibizione deve essere mantenuto alto. Per abilitare un canale la corrispondente inibizione deve essere posta in basso in modo da consentire l'accettazione delle banconote.

Nota: I canali superiori a quattro non possono essere inibiti singolarmente ma verranno inibiti globalmente se vengono inibite le inibizioni da 1 a 4.

Se tutte e quattro le inibizioni sono in alto nello stesso momento, l'NV9 non leggerà alcuna banconota. Si possono collegare insieme tutte e quattro le inibizioni per creare un'inibizione "globale". In tal modo l'NV9 può essere messo in servizio e fuori servizio dalla macchina host.

7.3: Uscita binaria

Per utilizzare l'uscita binaria I DIP switch 3 e 4 devono entrambi essere su e l'opzione BIN del firmware di interfaccia deve essere caricata nell'NV9.

Qualora la macchina necessitasse di più di 4 banconote da riconoscere, ma la macchina host non beneficiasse dei metodi di comunicazione seriale, l'NV9 potrà essere impostato in modo da fornire un'uscita modello binario sui quattro pin uscite parallele.

Se l'NV9 è impostato in modalità binaria emetterà segnali di vendita come modello binario sulle uscite parallele per 100+3ms. In tal modo possono essere accettate un massimo di 15 diverse banconote e 4 banconote inibite singolarmente.

Segnali vendita (Pin 1 - 4). I quattro canali dispongono di proprie uscite singole. Se una banconota viene riconosciuta, allora la rappresentazione binaria del numero del canale verrà posta in basso per 100 + 3 ms. Gli impulsi oltre tali limiti verranno respinti come precauzione nei confronti di un falso avvio dovuto al rumore.

Uscita occupata: (Pin 9). Si tratta di un segnale di occupato generale. E' attivo basso mentre l'NV9 è in funzione.

Controllo Escrow: (pin 10). L'NV9 in questa modalità utilizza una funzione escrow per singole banconote (vedi <u>Appendice B</u>). Ciò consente al lettore di trattenere la banconota una volta accettata e quindi impilare la stessa nel contenitore denaro solo quando la macchina host conferma il completamento dell'operazione di vendita. Se la conferma della vendita non viene ricevuta la banconota viene restituita al cliente dopo 30 secondi.

Se la macchina host interrompe la transazione ponendo su alto il corrispondente ingresso di inibizione su pin 10, la banconota viene restituita immediatamente.

La macchina host può forzare la restituzione della banconota al cliente ponendo in alto la linea di inibizione in qualsiasi momento prima del termine della scadenza di 30 secondi. Ponendo in alto tutte le inibizioni la banconota verrà respinta.

Qualora una banconota venisse forzatamente estratta dalla bocca dell'NV9 nel corso dell'intervallo dei 30 secondi, l'NV9 andrà fuori servizio per 45 secondi.

Operazione di Inibizione: I canali (1 - 4) hanno il proprio ingresso di inibizione per consentire alla macchina host di rifiutare specifiche banconote. Per inibire un canale, il relativo ingresso di inibizione deve essere mantenuto alto. Per abilitare un canale la corrispondente inibizione deve essere posta in basso in modo da consentire l'accettazione delle banconote.

Nota: I canali superiori a quattro non possono essere inibiti singolarmente, ma verranno inibiti globalmente se vengono inibite le inibizioni da 1 a 4.

Se tutte e quattro le inibizioni sono in alto nello stesso momento, in tal caso l'NV9 non leggerà alcuna banconota. Si possono collegare insieme tutte e 4 le inibizioni per creare un'inibizione "globale". In tal modo l'NV9 può essere messo in servizio e fuori servizio dalla macchina host.

7.4: Ingresso / Uscita Seriale Semplice

Gli utenti dell'NV4 Smiley® già esistente probabilmente usano già il programma di ingresso/uscita seriali. Anche il lettore NV9 supporta detto sistema. In ogni caso tale interfaccia non è raccomandata per i nuovi modelli, l'interfaccia raccomandata è il Protocollo di Sicurezza Smiley® SSP.

Attenzione:

- NV9 <u>non</u> supporta la modalità semplice dei soli dati seriali in uscita come invece l'NV4. Supporta solamente la modalità Ingresso/Uscita dati seriali.
- La macchina host non ritrasmette messaggi al lettore.
- NV9 non opera in vera modalità RS232. (Solo a livello TTL)
- NV9 non viene abilitato in modalità seriale I/O se la linea di inibizione 3 viene tenuta in basso con alimentazione inserita

Per utilizzare la modalità seriale, I DIP switch 3 e 4 devono entrambi essere impostati in alto e l'opzione SIO della modalità seriale semplice del firmware di interfaccia deve essere caricata sull'NV9.

Sono forniti I comandi per il controllo totale del funzionamento del lettore. Si possono impostare le banconote da accettare e respingere e può essere abilitata una modalità escrow singola. In modalità seriale semplice i comandi di byte vengono trasmessi al lettore, quest'ultimo ritrasmette ogni comando valido che riceve.

La modalità seriale I/O supporta due velocità di baud; 300 baud quando l'Inibizione 2 viene posta in alto o lasciata fluttuare con corrente inserita e 9600 baud quando la linea Inibizione 2 viene tenuta bassa con corrente inserita. I dati vengono formattati come segue (vedi figura 5):

1-start bit - 8 bit dati - 2 bit sto - 300 baud

Figura- 5 Tipica Trasmissione Uscita Seriale del valore 20 (decimale). Banconota non Riconosciuta

Il lettore NV9 riceve e trasmette i seguenti codici evento:

Codici ricevimento Riconosciuti su NV9		Codici Trasmessi da NV10	
MESSAGGIO	VALORE DECIMALE	MESSAGGIO	VALORE DECIMALE
Inibiz.C1	131	Accettazione banconota su C1	1
Inibiz.C2	132	Accettazione banconota su C2	2
Inibiz.C3	133	Accettazione banconota su C3	3
Inibiz.C4	134	Accettazione banconota su C4	4
Inibiz.C5	135	Accettazione banconota su C5	5
Inibiz.C6	136	Accettazione banconota su C6	6
Inibiz.C7	137	Accettazione banconota su C7	7
Inibiz.C8	138	Accettazione banconota su C8	8
Inibiz.C9	139	Accettazione banconota su C9	9
Inibiz.C10	140	Accettazione banconota su C10	10
Inibiz.C11	141	Accettazione banconota su C11	11
Inibiz.C12	142	Accettazione banconota su C12	12
Inibiz.C13	143	Accettazione banconota su C13	13
Inibiz.C14	144	Accettazione banconota su C14	14
Inibiz.C15	145	Accettazione banconota su C15	15
Inibiz.C16	146	Accettazione banconota su C16	16
Non inibiz. C1	151	Banconota non riconosciuta	20
Non inibiz. C2	152	Funzionamento meccanismo lento	30
Non inibiz. C3	153	Tentato Strimming	40
Non inibiz. C4	154	Canale 5 Banconota respinta (canale frodi)	50
Non inibiz, C5	155	STACKER pieno o inceppato	60
Non inibiz. C6	156	Interruzione durante Escrow	70
Non inibiz. C7	157	La banconota può essere stata presa per liberare l'inceppamento	80
Non inibiz. C8	158	Lettore occupato	120
Non inibiz. C9	159	Lettore non occupato	121
Non inibiz. C10	160	Errore comando	255
Non inibiz. C11	161		
Non inibiz. C12	162		
Non inibiz. C13	163		
Non inibiz. C14	164		
Non inibiz. C15	165		
Non inibiz. C16	166		
Abilita modalità escrow seriale	170		
Disabilita modalità escrow seriale	171		
Accetta Escrow	172		
Respinge Escrow	173		
Stato	182		
Abilita tutti	184		
Disabilita tutti	185		

Evento	Lettore	Valore Decimale	Host
Banconota inserita nel lettore	Lettore Occupato	120 ->	
Banconota accettata canale 2	Lettore Pronto	121 🗲	
	Accetta su Canale 2	2 →	
Banconota inserita nel lettore	Lettore Occupato	120 🗲	
Banconota non riconosciuta	Lettore Pronto	121 🗲	
	Banconota non riconosciuta	20 →	
Il lettore ha restituito la banconota	Lettore Pronto	121 🗲	
Software Inibiz. Canale 4	Inibiz. C4	← 134	Inibiz. C4
	Channel 4 Inhibited	134 🗲	
Software Enable Channel 4	Uninhibit C4	← 154	Uninhibit C4
	Canale 4 inibito	154 🗲	
Report stato		← 182	Richiesta stato
Messaggio di stato 3 byte	Inibiz.stato canali 1-8	byte 1 >	
	Inibiz.stato canali 9-16	byte 2 ->	
	Escrow On (=1) / Off (=0)	byte 3 ->	
Attiva modalità Escrow		← 170	Abilita
			modalità
			Escrow
	Modalità Escrow abilitata	170 🗲	
Accettaz.banconota in modalità			
Escrow		400 3	
Banconota inserita nel lettore	Lettore Occupato	120 →	
Banconota accettata canale 2	Lettore Pronto	121 →	
	Accetta su Canale 2	2 7	A = = = # =
		€ 172	Accetta
	Accetta Escrow	172 🔺	LSCIOW
	Accetta su Canale 2	2	
		2 7	

Esempi di transazione sono indicati di seguito (vedi tabella 7).

Tabella 7 – Esempi di Protocolli

7.5: Protocollo Sicurezza Smiley®– SSP

Nota: Consultare le specifiche relative al Protocollo Sicurezza Smiley® (SSP) (Disegno ITL GA138) sul sito web per tutti i dettagli riguardanti tale Protocollo

Per l'utilizzo della modalità SSP il DIP switch 3 deve essere impostato in alto e il DIP switch 4 in basso.

SSP è un'interfaccia seriale di sicurezza specificamente concepita per gestire problemi occorsi ai sistemi di gestione denaro nelle macchine da gioco. Problemi quali scambio di dispositivo di accettazione, riprogrammazione dispositivi di accettazione e intercettazione linee vengono tutti gestiti. Questa interfaccia viene raccomandata per tutti i modelli nuovi.

L'interfaccia utilizza un modello master slave, la macchina host funge da master e le periferiche (dispositivo accettazione banconote, dispositivo accettazione monete o hopper monete) fungono da slave.

Il trasferimento dati avviene su un bus multi-drop che utilizza una trasmissione seriale asincrona con orologio con driver semplici a collettore aperto. L'integrità dei trasferimenti dati viene garantita dall'utilizzo di somme di controllo CRCR a 16 bit su tutti i pacchetti.

Ciascun dispositivo SSP di un tipo particolare dispone di un numero seriale unico, tale numero viene utilizzato per convalidare ciascun dispositivo per il trasferimento di crediti prima che le transazioni possano avere luogo.

Attualmente vengono forniti comandi per dispositivi di accettazione monete, dispositivi di accettazione banconote e hopper monete. Vengono supportate tutte le caratteristiche attuali di detti dispositivi.

Caratteristiche:

- Controllo seriale di Lettori e Hopper Banconote/Monete
- sistema a 4 cavi (Tx, Rx, +V, Terra)
- RS232 (similare) driver a collettore aperto
- Alta velocità a 9600 baud
- Verifica errori CRC a 16 bit
- Modalità Trasferimento Dati

Vantaggi:

- Provato sul campo
- Interfacciamento semplice ed economico delle periferiche di transazione.
- Controllo a sicurezza elevata sulle periferiche di uscita.
- Protezione dalle frodi con lettori sostituiti.
- Integrazione diretta nelle macchine host.
- Standard aperto per uso universale.

Per informazioni dettagliate e le specifiche complete dei protocolli, consultare il disegno ITL GA 138 per le specifiche SSP disponibile sul sito web ITL <u>www.innovative-technology.co.uk</u>.

Per facilitare la realizzazione del software SSP, ITL può fornire su richiesta il Codice C di campione, controlli DLL e applicazioni Visual Basic. Contattare <u>support@innovative-technology.co.uk</u>.

7.6: MDB – Bus Multi-Drop / Protocollo Comunicazioni Interne (IF5)

Per utilizzare la modalità MDB occorre installare sul lettore NV10 una scatola di interfaccia IF5 e i DIP switch 3 e 4 devono entrambi essere impostati in alto, con l'opzione MDB del firmware di interfaccia caricata sull'NV10.

Nota:

- Consultare le specifiche del Bus Multi-Drop relativamente alla disponibilità degli attuali circuiti di comando suggeriti.
- NV10 supporta il protocollo MDB, versione 1, livello 1
- Per informazioni dettagliate e le specifiche complete del protocollo fare riferimento a NAMA (<u>www.vending.org</u>)

MDB definisce un'interfaccia bus seriale utilizzata nei distributori automatici elettrici (vedi figura 7). Si tratta di un sistema Master-Slave a 9600 Baud in cui il lettore di banconote MDB NV9 funge da slave a un controllore master. Un master è in grado di comunicare con 32 periferiche o slave. Il master è definito come Controllore Distributore Automatico (VMC).

Figura 7- Circuiti Ingresso/Uscita optoisolati MDB

Al lettore di banconote MDB NV9 viene assegnato un indirizzo unico – 00110XXX binario (30H). Il VMC interroga il bus per rilevare la presenza dei lettori MDB NV9 o per ottenere informazioni relative allo stato attuale dei lettori stessi.

I lettori rispondono quando viene loro richiesta un'attività mediante un riconoscimento, un riconoscimento negativo o una risposta specifica, a seconda dello stato del momento. Sono evitate le rotture dei bus in quanto i lettori rispondono a seguito di interrogazione esclusivamente da parte del VMC.

Occorre impostare l'indicativo internazionale del paese in cui I lettori si troveranno ad operare. Si tratta dell'indicativo telefonico internazionale di quel paese. L'indicativo viene rappresentato con due bytes.

Per gli USA l'indicativo del paese è 00 01

Per la Gran Bretagna l'indicativo è 00 44

Occorre altresì specificare per ciascun lettore il fattore di demoltiplicazione. Tutti i valori di banconote accettati devono essere divisibili in modo eguale per tale numero.

- Questo numero verrebbe impostato a 100 (Hex 64) per l'Euro o la Gran Bretagna.
- Il numero verrebbe impostato a 1000 (Hex 03E8) per la Romania.
- Occorre altresì programmare per ciascun lettore il numero di cifre decimali.
- Il numero verrebbe impostato a 2 per l'Euro o USA
- Il numero verrebbe impostato a 3 per la Romania

Adottando I suddetti numeri:

- £5 verrebbe indicato come 5.00
- £10 verrebbe indicato come 10.00
- \$1 verrebbe indicato come 1.00
- 1K Rumeno verrebbe indicato come 1.000

7.7: Protocollo ccTalk

L'NV9 supporta il protocollo seriale CCTalk per un semplice interfacciamento con le macchine host che supportano detto protocollo.

Per utilizzare la modalità CCTalk (in modalità binaria ecc.) impostare I DIPswitch 3 e 4 sull'utente in posizione Su al fine di selezionare la modalità "Speciale" sui lettori.

L'NV9 deve avere caricato il software CCTalk che utilizza l'opzione "avanzata" sul programma di gestione valute.

I collegamenti relativi ai pin sull'NV9 per il CCTalk sono indicati di seguito (vedi figura 7) con riferimento ai pin di collegamento sul connettore di interfaccia NV9.

Nota: Per informazioni dettagliate e le specifiche complete del protocollo visitare il sito www.cctalk.org

Figura 7- Pin collegamento ccTalk su NV9

La chiave di crittografia di default viene impostata sul codice chiave stampato sull'etichetta dell'NV9. Se la chiave viene cambiata con una nuova chiave memorizzata dalla macchina host, la chiave può essere resettata su default procedendo come di seguito indicato:

- 1. Togliere corrente sull' NV9.
- 2. Impostare tutti e 4 I DIPswitch su ALTO.
- 3. Dare corrente (no comunicazioni ccTalk).
- 4. A questo punto lampeggia il LED rosso.
- 5. Posizionare in basso gli switch 1 e 2

The code is now reset.

7.8: Interfaccia estesa - Seriale USA

L'interfaccia seriale USA è un protocollo per comunicazioni seriali ad interfaccia non isolata.

Vi è una linea DATI singola di uscita dall'NV9. Vi sono tre linee di controllo, due dal controllore "ACCETTA ABILITA" e "INVIA" e una dai lettori "IRQ".

Attenzione:

- Tenere presente che l'NV9 funziona con un'alimentazione elettrica di 12 volt cc.
- La terra dell'NV9 deve essere collegata alla terra del sistema di controllo.
- Per ulteriori dettagli relativi a questo protocollo consultare il manuale Interfaccia Serie 2000 (numero riferimento 20105-002850046-PS)

Dettagli di Collegamento:

Segnale	NV8
12v	15
0v	16
ACCETTA ABILITA	6
INVIA	7
IRQ (INTERROMP)	2
DATI	1
FUORI_SERVIZIO	3

Tabella 8 – Interfaccia estesa seriale USA

8: Aggiornamento valuta e firmware

Nota: I lettori vengono forniti già programmati dalla fabbrica. Saltare questo capitolo a meno che i lettori debbano essere riprogrammati con una nuova banconota o una nuova valuta.

Il Lettore NV9 può venire programmato solamente mediante il programma di gestione scaricamento valute ITL BNV 2.9.7 (o maggiore) o mediante clonazione da un'unità master.

8.1: Gestione Valute

Per utilizzare il software di gestione scaricamento ITL BNV, che viene fornito con una serie di valute. Il sistema vi richiederà di utilizzare un PC Windows 95/98/NT™2000 o XP Professional, Pentium™ (© Microsoft e Intel).

Un elenco delle valute attualmente supportate si trova nel nostro sito web e si possono scaricare nuove versioni da <u>www.innovative-technology.co.uk</u> Ulteriori dettagli disponibili su <u>support@Innovative-technology.co.uk</u>.

Per la registrazione al primo log in, fare riferimento all'Appendice D.

8.2: Copia NV9 – NV9 (Clonazione)

Generalità

Il lettore Banconote NV9 dispone di un sistema per copiare il proprio programma e impostazioni su un altro NV9. Il lettore "Master" trasmette I dati relativi alla valuta ed effettua l'upgrade del firmware dello slave. Per la clonazione si raccomanda di utilizzare il kit clonazione 2 (CK2).

Requisiti

- Il Master deve possedere un firmware 3.15 o superiore
- Kit clonazione 2
- Alimentazione 12V.

Figura 8 – Kit Clonazione 2

Configurazione di avviamento

- Togliere corrente dalle unità slave e master.
- Impostare I DIP switch 3 e 4 su basso per selezionare la modalità di interfaccia SSP su entrambi gli NV10.
- Mediante il kit clonazione CK2 dell'NV9 collegare assieme le due unità come sopra (vedi figura 8).
- Attivare l'alimentazione 12V.
- L'unità Master aggiornerà il firmware slave se la versione del master è superiore a quella dello slave. Se il firmware master è inferiore allo slave, allora la procedura di copiatura viene interrotta.
- Se master e slave hanno lo stesso firmware verrà trasferita solamente la valuta.

8.3: Procedura di copiatura NV9 – NV9.

- Collegare l'NV9 master allo slave mediante l'adattatore per le copie e attivare l'alimentazione 12V.
- L'unità master lampeggerà con I LED ROSSO e VERDE se il connettore viene configurato correttamente.
- ROSSO e VERDE su master lampeggiano insieme tentativo di comunicazione con slave.
- ROSSO e VERDE su master lampeggiano alternativamente comunicazione stabilita, master in attesa del resettaggio slave.
- Se la comunicazione è stata stabilita e lo slave ha effettuato il resettaggio, in tal caso il master leggerà la versione firmware dello slave e deciderà l'azione successiva.
- Se il master non è compatibile con lo slave, i LED ROSSO e VERDE master lampeggeranno alternativamente al ritmo di 1 secondo. Non avverrà alcuna ulteriore azione di copiatura.
- Se la versione firmware slave è superiore al master: i LED ROSSO e VERDE master lampeggeranno alternativamente al ritmo di 1 secondo. Non avverrà alcuna ulteriore azione di copiatura.
- Se la versione firmware slave è la stessa del master, in tal caso il master darà inizio alla copiatura dei dati valuta sullo slave.
- Se la versione firmware slave è inferiore al master, in tal caso il master darà inizio alla copiatura dei dati firmware sullo slave.

Copia Firmware:

Attenzione: Se il LED ROSSO master inizia a lampeggiare lentamente (1 al secondo) allora si è persa la comunicazione e la copiatura dovrebbe essere ricominciata dall'inizio.

- Il LED ROSSO master lampeggia rapidamente durante la copiatura del firmware (di tanto in tanto il LED fa una pausa).
- Se il LED ROSSO master inizia a lampeggiare lentamente (1 al secondo) allora si è persa la comunicazione e la copiatura dovrebbe essere ricominciata dall'inizio.
- Quando la copia firmware è completa, lo slave effettuerà il resettaggio e l'unità Master attenderà di ristabilire le comunicazioni (LED lampeggia come all'accensione di primo livello).
- Quando lo slave è pronto, il master inizia a copiare I dati valuta.

Copia valuta:

Attenzione: Se il LED ROSSO master inizia a lampeggiare lentamente (1 al secondo) allora si è persa la comunicazione e la copiatura dovrebbe essere ricominciata dall'inizio.

- Il LED VERDE Master lampeggia rapidamente durante il processo di copiatura della valuta (di tanto in tanto il LED fa una pausa).
- Al completamento della copia valuta, il Master mostrerà continuativamente i LED ROSSO e VERDE e lo slave procederà al resettaggio.
- La copia NV9 NV9 adesso è completa.

9: Installazione meccanica

I lettori NV9 possono essere forniti con l'una o l'altra delle seguenti maschere di introduzione, (vedi figura 9):

Figure 9 – Maschere di introduzione disponibili per NV9

9.1: Sostituzione o rimozione delle maschere

Attenzione: Accertarsi sempre che entrambi I bracci di fissaggio siano bene in posizione al fine di evitare danni

Premere entrambi I bracci di fissaggio rossi in modo che questi si sgancino dai lati della mascherina. La mascherina può venire quindi sganciata dai 6 punti di fissaggio, (vedi figura 10). Per il riposizionamento premere la mascherina sui sei punti di fissaggio (3 su ciascun lato). I bracci rossi di fissaggio scatteranno nuovamente per tenere in posizione la mascherina.

9.2: Sostituzione o rimozione contenitori denaro

I lettori NV9 possono venire altresì forniti con diverse opzioni di contenitori denaro, (vedi figura 11).

Contenitore Denaro a scorrimento

Figure 11 - Contenitore Denaro a scorrimento Contenitore denaro a inserimento

A inserimento da 300 banconote (particolare n. PA185) solamente per le versioni con mascherina verticale.

- A scorrimento per 300 banconote (particolare n. PA192) per le versioni con mascherina orizzontale e verticale.
- A inserimento da 600 banconote (particolare n. PA193) solamente per le versioni con mascherina verticale.
- A scorrimento per 600 banconote (particolare n. PA194) per le versioni con mascherina orizzontale e verticale.
- Con possibilità di chiusura da 300 banconote solamente per la versione con mascherina orizzontale (particolare n. PA186) (La chiusura non viene fornita –utilizzare con Chiusura a paletto tipo 6086-00KAL06 con camma inclusa)

10: Manutenzione ordinaria

Il lettore NV9 è stato concepito per minimizzare qualsiasi variazione di prestazione nel tempo. Gran parte di quanto sopra viene ottenuto grazie ad un'attenta progettazione hardware e software.

Tuttavia, a seconda dell'ambiente in cui viene installato, a un certo punto l'NV9 può richiedere pulizia, sostituzione cinghie o addirittura una nuova taratura.

ATTENZIONE: NON UTILIZZARE DETERSIVI A BASE DI SOLVENTI COME ALCOOL, BENZINA, ALCOOL DENATURATI CON METANOLO O DETERSIVO CON PCB. CIO' PROVOCHEREBBE DANNI PERMANENTI AL LETTORE, UTILIZZARE SEMPRE UN DETERGENTE NEUTRO.

10.1: Pulizia

Per la pulizia, far scorrere il dispositivo di rilascio rosso all'estremità del lettore NV9 per aprire il percorso banconote. Adesso il percorso banconote e la losanga sono esposti e possono essere puliti. Strofinare con cura le superfici con uno straccio morbido senza sfilacciature imbevuto precedentemente con acqua e soluzione detergente neutra (es. detersivo per lavare i piatti).

Fare particolare attenzione attorno a tutte le lenti dei sensori (vedere figura 12), controllando che siano pulite e asciutte. Attenzione: Per pulire I sensori frontali "nascosti" utilizzare una spazzolina morbida o un batuffolo di cotone.

Se una lente presenta graffi importanti, non cercare di levigarla. Contattare ITL per ulteriori ragguagli, in quanto vi possono essere danni alle proprietà ottiche della lente.

Attenzione

Per la pulizia del Sensore Frontale "nascosto", utilizzare una spazzolina morbida o una batuffolo di cotone.

Figura 12: Lettore NV9

10.2: Sostituzione cinghie

- Con I percorsi banconote NV10 esposti (vedi figura 10) posizionare l'apparecchiatura su una superficie pulita e asciutta.
- Togliere la piastra di copertura inferiore sollevando il fermo di fissaggio e farla scivolare all'indietro con attenzione (vedi figura 11).
- Premere le 2 molle di tensionamento cinghie verso l'interno quindi far scivolare ciascuna cinghia dal corpo dell'apparecchiatura, prima le ruotine più piccole.
- Riposizionare le cinghie installandole sulle gambe del corpo del gruppo di comando, prima le ruotine più piccole.
- Inserire la piastra di copertura inferiore nelle fessure di inserimento (2 su ciascun lato) premendo in avanti e verso il basso; la piastra si inserirà correttamente con un "click".
- Ricollegare insieme il percorso banconote superiore e quello inferiore.

10.2 Rimozione residui dal percorso banconote / Sostituzione cinghie

Per accedere al percorso banconote e alla losanga, far scorrere il dispositivo di rilascio rosso all'estremità del Lettore NV9 e sollevare per aprire. Premere il dispositivo di rilascio losanga e sollevare; ora il percorso banconote e la losanga sono esposti e si può eseguirne la manutenzione (vedere figura 13).

Figura 13 - Accesso Percorso banconote e losanga NV9

Rimozione residui

Esaminare I percorsi banconote, la losanga e lo stacker banconote per vedere se sono presenti sporcizia o residui.

Pulire e strofinare con cura le superfici con uno straccio morbido senza sfilacciature imbevuto precedentemente con acqua e soluzione detergente neutra (es. detersivo per lavare i piatti). Fare particolare attenzione attorno a tutte le lenti dei sensori (vedere figura 12), assicurandosi che siano pulite e asciutte.

Assicurarsi che lo stacker banconote e la piastra a molla del contenitore denaro non siano bloccati.

Sostituzione Cinghie

Con la losanga NV9 esposta (vedere figura 13) scollegare con attenzione il connettore inferiore del "gruppo cavi completo" dalla losanga.

Rimuovere e posizionare la losanga su una superficie asciutta e pulita e togliere le cinghie, facendole scorrere prima sulle ruotine più piccole.

Riposizionare le cinghie eseguendo la procedura al contrario.

Figura 15 - Il lettore non prende le banconote

Figura 16 - Il lettore funziona in modo lento o intermittente

12: Strumenti di supporto

Sono disponibili I seguenti strumenti di supporto da utilizzare con il Lettore Banconote NV9:

- 1. Software per PC Gestione Valute.
- 2. Possibilità di scaricare dal sito web Innovative Technology Ltd: www.innovative-technology.co.uk
- 3. Supporto e-mail support@innovative-technology.co.uk

12.1: Software PC Programmazione Valute

Il software di Gestione Valute NV9 offre le seguenti funzioni:

- Programmazione del lettore NV9 mediante scaricamento di dati valuta già preparati mediante il link di comunicazione seriale che utilizza il kit DA o il kit DA2 attraverso il link USB.
- Verifica della versione firmware e valuta impostata già caricate su un'unità NV9.
- Regolazione in base alle vostre esigenze del canale e della configurazione impulsi su un NV10 preprogrammato.
- Scaricamento di una nuova versione di firmware sull' NV9.
- Utilizzo di funzioni diagnostiche per verificare il funzionamento del lettore (solo versione firmware 3.15 e superiore).

Il software funziona su un Personal Computer IBM compatibile con processore Pentium^M o equivalente e richiede l'installazione di un kit DA1 sulla porta seriale o di un kit DA2 sulla porta USB a seconda del sistema operativo in uso (vedi <u>Appendice C</u>).

12.2: Supporto sito web Internet

Il sito web della Innovative Technology Ltd fornisce i mezzi per scaricare nuove serie di valute aggiornate e nuove versioni di firmware per l' NV9. Visitate il sito <u>www.innovative-technology.co.uk</u> per registrare il vostro nome utente e avere accesso alla password per ulteriori dettagli, aggiornamenti e comunicati tecnici altresì disponibili.

Per la registrazione al primo log in, consultare l' Appendice D.

12.3 : Supporto E -mail

Se i dati di cui avete bisogno non sono disponibili sui supporti Internet, la Innovative Technology supporta un sistema e-mail per fornire assistenza ai clienti in caso di esigenze particolari.

L'indirizzo è il seguente: support@innovative-technology.co.uk

Appendice A – Disegno dimensioni

Appendice B - Controllo ESCROW

L' NV9 dispone di un programma escrow per singole banconote (pin 10). Ciò consente al lettore di trattenere la banconota una volta accettata e quindi impilare la stessa nel contenitore denaro solo quando la macchina host conferma il completamento dell'operazione di vendita. Se la conferma della vendita non viene ricevuta la banconota viene restituita al cliente dopo 30 secondi. (vedi figura 19).

Figura 17 - Diagramma Temporale Escrow per Vendite Parallele

Se la macchina host interrompe la transazione ponendo il corrispondente ingresso di inibizione in alto su pin 10, la banconota viene restituita immediatamente. La sequenza delle operazioni è la seguente:

- 1. Pin 10 tenuto in basso in attesa dell'inserimento banconota.
- 2. Banconota inserita. Il lettore emette un impulso da 100ms sul relativo canale.
- 3. La macchina host dà inizio alla procedura di vendita.
- 4. La macchine host pone il pin 10 in alto per indicare che vuole la banconota. Se ciò non viene fatto entro 30 secondi il lettore restituisce la banconota.
- 5. Il lettore emette un impulso da 100ms sul relativo canale dopo che il pin 10 si è posto in alto per indicare l'accettazione definitiva della banconota. Se il segnale non viene ricevuto entro 30 secondi, significa che il cliente ha forzatamente ripreso la banconota e la vendita verrà interrotta.
- 6. Il processo di vendita è completato.
- 7. La macchina host pone il pin 10 in basso in attesa della vendita successiva.

La macchina host può forzare la restituzione della banconota al cliente ponendo in alto la linea di inibizione in qualsiasi momento prima del termine della scadenza di 30 secondi. Per i canali oltre il 4, ponendo in alto tutte le inibizioni la banconota verrà respinta.

Qualora una banconota venisse forzatamente estratta dalla bocca dell'NV9 nel corso dell'intervallo dei 30 secondi, l'NV9 andrà fuori servizio per 45 secondi.

Note: Controllo Escrow (modalità SSP): La funzione Escrow è altresì possibile mediante l'interfaccia seriale SSP. Le specifiche SSP GA138 disponibili sul sito web www.innovative-technology.co.uk.

Appendice C - Strumenti Interfaccia DA1 - DA2

I kit DA 1/2 sono concepiti per quanto segue:

- Connettere i lettori banconote ITL a un PC per l'upgrade dei dati e del firmware relativo alle banconote.
- Testare i lettori banconote NV9 indipendentemente dalla macchina host per confermare che il lettore funziona, ma è probabile che la macchina host inibisca alcuni canali.

The DA1 and DA2 Kit comprise of the following components:

DA1	DA2
Scheda adattatore DA1 (PA167)	Scheda adattatoreDA2
Cavo Adattatore su Lettore NV9 ©	Cavo USB da tipo A a tipo B
CD-ROM di supporto ITL per DA1	CD-ROM di supporto ITL per DA2
Cavo alimentazione	Cavo da DA2 a NV9
Guida installazione	Cavo alimentazione
	Guida installazione

Collegamento di un DA1 a un lettore e PC

Se si utilizzano i sistemi operativi Windows 95/98/NT[™], Pentium[™] (© Microsoft e Intel) collegare il DA1 al lettore come sotto indicato (vedi figura 1), mediante il connettore da 16 vie a 5 vie. La spina a jack da 3.5 mm e le 2 spine a banana vengono utilizzate per fornire corrente al DA1. Dare +12 volts alla spina rossa a banana e TERRA (0V) alla spina nera.

Inserire il connettore tipo D a 9 vie nella porta seriale del PC e prendere nota del numero della porta in quanto questo sarà necessario successivamente per la configurazione del software. Dopo aver effettuato le connessioni installare il software relativo al lettore in uso.

Figura 1 – Collegamento DA1 a un NV10 e PC per upgrading

Collegamento di un DA2 a un lettore e PC

Se si utilizzano I sistemi operativi Windows Pentium[™] (© Microsoft e Intel) 98, 98SE, 2000, XP Home o XP Professional , collegare il DA2 al lettore come sotto indicato (vedi figura 2), mediante il connettore da NV10 a DA2. La spina a jack da 3.5 mm e le 2 spine a banana vengono utilizzate per fornire corrente al DA2. Dare +12 volts alla spina rossa a banana e TERRA (0V) alla spina nera.

Inserire il connettore USB tipo A nella porta USB del PC. Dopo aver effettuato le connessioni installare il software relativo al lettore in uso.

Figura 2 – Collegamento DA2 a un NV9 e PC per upgrade

Installazione Software

Per installare il software per l'upgrade dei set di dati e del firmware, inserire il CDROM nel drive del PC. Apparirà un menù di installazione, selezionare il prodotto che si desidera scaricare e selezionare il software che si desidera utilizzare. Seguire le istruzioni a video per completare l'installazione. Le istruzioni relative alla configurazione ed utilizzo del software installato si trovano nell'aiuto in linea per quel particolare software.

In caso di ulteriore assistenza contattare support@innovative-technology.co.uk

Appendice D – Registrazione su sito web

Innovative Technology Ltd Microsoft Int	ernet Explorer	
File Modifica Visualizza Preferiti Strume	nti ?	18
or indetro • → • 🗿 🔄 🖄 📿 Cerca	🖻 Preferiti 🎯 Cronologia 🔤 🚭 🖉 🖷 🔛 🚉	
Indirizzo Ahttp://www.innovative-technology.co	s.ukçiukçi	▼ ∂'Vai Collegamenti **
Validating and Automating Tran	sections Worldwide	Support Neva
In order to do Prod	ownload datasets for ucts you must be a re	Innovative Technology
Inserite qui il nome della vostra azienda!	Please fill in the following	information
	Registration Details	pecessario un indirizzo e mail
Company Name:	Region delor i decenio	
Company Name.		Per la registrazione è
Email Address:		necessario un indirizzo e-mail
User Name:		
Job Description:	-Please Select-	Selezionate un'occupazione per
Password:		descrizione della vostra attività.
Re-Type Password	7	
		Dopo che avete completato tutte le
Innovative Technology Lty publishe	s its Technical bulletins via email. If you do not	wish informazioni.)cliccate su "Registra.
Scealiete una	Register Details	Dettagli"! Dopo circa 10 minuti il vostro
password ed inseritela		account sarà pronto per il log in.
1 · ··		Automated Transactions
a) Operazione completata		(B) Internet

Revision History

Innovative Technology Ltd				
NV9 Enginee	ers Manua	l		
GA326		Project:		
T. J. Crowley		Date:	29/10/2004	
MS Word	20	000		
Rel Date	Mod By		Comments	
20/07/2005	TJC		First draft	
08/08/2005	ATG		Second draft	
05/09/2005	RJS		First Release	
	In NV9 Engines GA326 T. J. Crowley MS Word Rel Date 20/07/2005 08/08/2005 05/09/2005	Innovative Rel Date Mod By 20/07/2005 TJC 08/08/2005 ATG 05/09/2005 RJS	Innovative Technolog NV9 Engineers Manual GA326 Project: T. J. Crowley Date: MS Word 2000 Rel Date Mod By 20/07/2005 TJC 08/08/2005 ATG 05/09/2005 RJS	Innovative Technology Ltd NV9 Engineers Manual GA326 Project: T. J. Crowley Date: 29/10/2004 MS Word 2000 Comments 20/07/2005 TJC First draft 08/08/2005 ATG Second draft 05/09/2005 RJS First Release

1 Introduction

This manual describes the operation of the NV9 Bank note Validator as fitted with Firmware Version 3.15 or greater.

Caution

- This Product must be fitted with **a 2 Amp** fuse before use.
- The NV9 Validator is pin for pin compatible with NV7/8/10 but **NOT** pin for pin compatible with the NV2/3/4/4X or 5 series products.

We recommend that you study this manual as there are many new features permitting new uses and more secure applications.

If you do not understand any part of this manual please contact the factory for assistance. In this way we may continue to improve our product. Alternatively visit our web site at <u>www.innovative-technology.co.uk</u>

Innovative Technology Ltd. Derker Street Oldham England OL1 4EQ Tel: +44 (0) 161 626 9999 Fax: +44 (0) 161 620 2090 Email: <u>support@innovative-technology.co.uk</u> Web site www.innovative-technology.co.uk

Smiley® and the ITL Logo are international registered trademarks and they are the property of Innovative Technology Limited.

Innovative Technology has a number of European and International Patents and Patents Pending protecting this product. If you require further details please contact the factory. Innovative Technology is not responsible for any loss, harm, or damage caused by the installation and use of

this product. This does not affect your local statutory rights. If in doubt please contact Innovative Technology for details of any changes

2: Scope of Document

This document is intended for those who will:

- Design the NV9 into items of equipment.
- Build equipment using the NV9.
- Install equipment containing the NV9.
- Maintain equipment containing the NV9.

Although information is included which will allow a degree of fault diagnosis and repair, it is recommended that for all but simple mechanical repairs the unit be returned to an approved service centre for repair.

Caution:

- Never exceed the recommended environmental and electrical limits.
- Do not attempt to lubricate the mechanisms as this may affect the note transport.
- Do not polish the lens as this may alter the optical characteristics.
- If the NV9 Validator is disassembled the unit must be re-calibrated/re initialised, following reassembly.

Innovative Technology Ltd has a policy of continual product improvement. As a result the products supplied may vary from the specification described here.

3: Environment and Power Requirements

Environment	Minimum	Maximum
Temperature	+3°C	+50°C
Humidity	5%	95% Non condensing

 Table 1 - Environmental Requirements

Caution:

- If the input voltage falls below 11V the NV9 may not operate correctly (will reject notes). The amber status LED and front bezel lights will flash to indicate incorrect conditions
- It is recommended that the power supply used can supply at least 1.5Amps.

Electrical Supply	Minimum	Maximum
Supply Voltage (V dc) Absolute Limits	11V	15V
MDB IF5 Version Supply Voltage	18V	42V
Supply Ripple Voltage	0	0.25V @100 Hz
Supply Currents:		
Standby		0.35A
Validating		1A
Peak (Stacker Motor stall)		1.5A

Table 2 - Power Requirements

4: General Description

NV9 Validator - the next generation of Smiley® Bank Note Validators

The NV9 Bank Note System is a compact note-validating machine (see figure 1), suitable for most money machines. It will accept up to 15 different denominations of notes in the serial control mode or 4 different notes in parallel mode, and will cope with different designs of banknote having the same value such as are found in the United Kingdom and Scotland.

Figure 1 – The NV9 with Vertical and Universal Bezels

The NV9 Validator leaves the factory preset to at least one currency so that it is ready for immediate installation. If it is required to change the currency data set this may be done using either the NV9 to NV9 currency cloning system or the PC based Currency Management software.

New currencies and applications are being tested all the time, please refer to our web site or contact the factory for information concerning specific currencies if they are not already included on our approved list.

The NV9 is designed for easy installation in most machines. The stepped "smiling mouth" allows insertion of notes with one hand and simplifies the note handling mechanism.

Interfacing the Validator is very simple, with the choice of the following protocols:

- · Parallel open collector outputs
- · Pulse stream open collector output
- · Binary open collector output
- Smiley® Secure Protocol (SSP) secure serial communications
- Simple serial I/O communications
- MDB interface protocol
- CCTalk
- Extended Interface / USA Serial

5: NV9 User Interface

The user interface with the NV9 is shown below (see figure 2). It is simply a set of four DIPswitches and one red and one green LED, mounted on the top of the NV9. The DIPswitches set the basic operating mode of the unit, while the LED's indicate the operational status of the NV9.

Figure 2 - User Display and DIPswitch Settings

5.1:DIPswitch Settings

The four DIPswitches can be set to a combination of either up for down depending on the configuration required for the particular NV9.

Switch 1 – Spare

Switch 1 currently has no function and is reserved for future use.

Switch 2 - pulse multiplier

This switch is used to modify the behaviour of the selected machine interface. Details of the function of this switch are covered in the interfaces' description in this manual.

Currently the only interface to make use of this switch is the pulse mode. In this mode the switch can be used to multiply the number of pulses given by a factor of four. When the switch is down the multiplier is 1, when the switch is up the multiplier is 4.

Switches 3 and 4 – Machine Interface protocol selection

These switches are used to select the machine interface to be used. The NV9 supports four interfaces, as shown below, (see table 1).

Interface	Switch 3	Switch 4
Parallel	Down	Down
Pulse	Down	Up
SSP	Up	Down
Special	Up	Up

Table 1 - Switch 3 and 4 Machine Interface Selection

The details of the parallel, pulse, and SSP can be found in the machine interface protocols section of this manual.

The special interface depends on the firmware that is used in the NV9, the firmware shipped as standard is the binary interface (World Wide) and CCTalk (UK only). However, there are other options that can be downloaded by the user:

- Binary
- CCTalk
- ITL Simple serial I/O
- MDB

Information on each of these interfaces can be found in the 'machine interfaces protocol section' of this manual.

5.2: LED Status Codes

The three status LED's are located to the right of the DIPswitches on the top of the unit and are used to indicate a variety of status signals.

The red status is used to indicate system problems, while the green status indicates system health; these are described below in table 2.

LED Status	Description
Slow flashing green led Heartbeat (Slow = 1 second period)	In normal RUN operation, when the NV9 is ready to read a note, the green status led will flash slowly ("Heartbeat") to signal a "healthy" status.
Flashing red one second period	NV9 is jammed, somewhere in the note path
Fast flashing red (fast = half second period)	NV9 cannot calibrate, sensor(s) may be blocked
Permanent Red	Memory has been corrupted
Alternately flashing green then red	Stacker is full
Flashing amber and bezel lights	Power supply is incorrect, check specification

Table 2 - LED Status Codes

6: Interfaces: Hardware Description

The NV9 interface connector is located on the left side of the unit; it has 16 pins (see figure 3). Two are used for the 0v and +12v power supply and there are five outputs and five inputs, the remaining four pins are reserved for future use. An example mating connector is Molex type Part No: 39-51-2160

Figure 3 - Interface Connecter

6.1: Interface Connector Pin Details

The connector pin details are described below (see table 3); they use a 0.1" pitch header with 2 rows of 8 pins.

Pin	Name	Description
1	Vend 1 (binary bit 1)	Note accepted on Channel 1
		Also the Pulse Stream output
		Also the serial output pin in SSP Serial Mode
2	Vend 2 (binary bit 2)	Note accepted on Channel 2 pulse output.
3	Vend 3 (binary bit 4)	Note accepted on Channel 3 pulse output
4	Vend 4 (binary bit 8)	Note accepted on Channel 4 pulse output
5	Inhibit 1	Inhibit channel 1 by holding this pin HIGH. To Enable a channel the inhibit must be held LOW. Also the Serial Input pin in RS232 serial mode
6	Inhibit 2	Inhibit channel 2 by holding this pin HIGH
7	Inhibit 3	Inhibit channel 3 by holding this pin HIGH
8	Inhibit 4	Inhibit channel 4 by holding this pin HIGH
9	Busy	NV9 is validating and stacking output. Active low while the NV9 is reading, transporting or stacking a note.
10	Escrow	Operate Escrow function by holding LOW, refer to Escrow section in parallel and binary modes and Escrow <u>Appendix B</u> for full details)
11	Spare	Spare
12	Spare	Spare
13	Spare	Spare
14	Spare	Spare
15	+Vin	Nominal 12V DC supply
16	0V	0v Supply

Table 3 - 16 Pin Connector Details

6.2: Input and Output Hardware Circuits

Caution: The output low signal is affected by the value of the pull up resistor on the host machine interface. Ensure your signal LOW levels comply with the 74HC CMOS series specification for reliable operation, (see figure 4).

Figure 4 - Input and Output Circuit

- All outputs are open collector transistors.
- All Inputs are held high to internal +5v via 10KΩ. The input structure is a CMOS gate with anti-static protection fitted.

Interface Logic levels	Logic Low	Logic High	
Inputs	0V < Low < 0.5	+3.7V < High <12V	
Outputs with $2K2\Omega$ pull up	0.6V	Pull up voltage of host interface	
Maximum Current Sink	50mA per output		

Table 4 - Interface Logic Lev	vels
-------------------------------	------

6.3: Software Optional Serial Interface Input and Outputs

Caution: The serial interfaces will only work if the relevant interface software is correctly installed.

Name	Description
SSP TxD	Vend 1
SSP RxD	Inhibit 1

Table 5 - Software Optional Serial Interface Inputs and Outputs

7: Machine Interfaces: Protocols

To select the required interface, the DIPswitches on top of the NV9 need to be set accordingly:

7.1: Parallel input and output:

To use parallel output for 4 notes / channel acceptance, DIPswitches 3 and 4 must be set down

Vend Signals: (Pins 1 to 4). The four channels have their own individual outputs. If a note is recognised then the relevant channel line is set low for a period of 100 ± 3 ms. Pulses outside these limits should be rejected as a precaution against false triggering due to noise.

Busy Output: (Pin 9). This is a general-purpose busy signal. It is active low while the NV9 is in operation.

Escrow Control): (pin 10). -Parallel mode: The NV9 uses a single note escrow facility in this mode (see <u>Appendix</u> <u>B</u>). This allows the Validator to hold onto the note once accepted, and then only stack the note in the cash box when the host machine confirms that the Vend operation has been completed. If confirmation of the Vend is not received the note will be returned to the customer after 30 seconds.

If the host machine aborts the transaction by setting the corresponding inhibit input high, the note is returned immediately.

The host machine can force the return of the note to the customer by setting the inhibit line high, at any time before the end of the 30 second time-out. Setting all the inhibits high will cause a note reject.

In the event of a note being forcibly removed from the mouth of the NV9 during the 30 second interval, the NV9 will go out of service for 45 seconds.

Inhibit Operation: Channel 1 to 4 have their own inhibit input to allow the host machine to refuse specified notes. To inhibit a channel, the relevant inhibit input must be held high. To enable a channel the corresponding inhibit must be latched low so that notes may be accepted.

If all four inhibits are high simultaneously then the NV9 will not read in any notes. In this mode, if a note is inserted the motor will run in reverse preventing the insertion of a note and the bezel will not illuminate.

All four inhibits may be connected together to create a 'global' inhibit. In this way the NV9 may be brought in and out of operation by the host machine.

7.2:Pulse Stream Output

To use pulse stream output for acceptance of up to 16 channel / note acceptance, DIPswitch 3 must be down and DIPswitch 4 must be up.

Vend Signal: (Pins 1) When a note is recognised vend 1 will pulse a pre set number of times, the number of pulses and the timing is set in the ITL BNV validator manager program (and set to default values with supplied dataset).

The number of pulses is multiplied by a factor of four for USA dollar datasets, depending on the position of switch 2. If the switch is down then the number of pulses is as programmed in the dataset output. If the switch is up then four times this number of pulses is output.

Busy Output: (Pin 9). This is a general-purpose busy signal. It is active low while the NV9 is in operation.

Escrow Control: (Pin 10). The NV9 uses a single note escrow facility in this mode (see <u>Appendix B</u>). This allows the Validator to hold onto the note once accepted, and then only stack the note in the cash box when the host machine confirms that the Vend operation has been completed. If confirmation of the Vend is not received the note will be returned to the customer after 30 seconds.

If the host machine aborts the transaction by setting the corresponding inhibit input high, the note is returned immediately.

The host machine can force the return of the note to the customer by setting the inhibit line high, at any time before the end of the 30 second time-out. Setting all the inhibits high will cause a note reject.

In the event of a note being forcibly removed from the mouth of the NV9 during the 30 second interval, the NV9 will go out of service for 45 seconds.

© Copyright Innovative Technology Limited 2005

Inhibit Operation: Each channel (1 to 4) has its own inhibit input to allow the host machine to refuse specified values of notes. To inhibit a channel, the relevant inhibit input must be held high. To enable a channel the corresponding inhibit must be latched low so that notes may be accepted.

Note: Channels higher than four cannot be individually inhibited, but will be globally inhibited if inhibits 1 to 4 are inhibited.

If all four inhibits are high simultaneously then the NV9 will not read in any notes. All four inhibits may be connected together to create a 'global' inhibit. In this way the NV9 may be brought in and out of operation by the host machine.

7.3: Binary Output - BIN

To use binary output DIPswitches 3 & 4 must both be up and the BIN option of the interface firmware must be loaded into the NV9.

In the event that the machine needs more than 4 notes to be recognised, but the host machine cannot take advantage of the serial communication methods then the NV9 can be set to give a binary pattern output on the four parallel output pins.

If the NV9 is set to binary mode it will issue the vend signals as a binary pattern on the parallel outputs for 100 ± 3 ms. In this way a maximum of 15 different notes can be accepted and 4 notes individually inhibited.

Vend Signals: (Pins 1 to 4). The four channels have their own individual outputs. If a note is recognised the binary representation of the channel number will be pulled low for 100 ± 3 ms. Pulses outside these limits will be rejected as a precaution against false triggering due to noise.

Busy Output: (Pin 9). This is a general-purpose busy signal. It is active low while the NV9 is in operation.

Escrow Control: (pin 10). The NV9 uses a single note escrow facility in this mode (see <u>Appendix B</u>). This allows the Validator to hold onto the note once accepted, and then only stack the note in the cash box when the host machine confirms that the Vend is completed. If confirmation of the Vend is not received then the note will be returned to the customer after 30 seconds.

If the host machine aborts the transaction by setting the corresponding inhibit input high on pin 10, the note is returned immediately.

The host machine can force the return of the note to the customer by setting the inhibit line high, at any time before the end of the 30 second time-out. Setting all the inhibits high will cause a note reject.

In the event of a note being forcibly removed from the mouth of the NV9 during the 30 second interval, the NV9 will go out of service for 45 seconds.

Inhibit Operation: Each channels (1 to 4) have their individual inhibit input to allow the host machine to refuse specified values of notes. To inhibit a channel, the relevant inhibit input must be held high. To enable a channel the corresponding inhibit must be latched low so that notes may be accepted.

Note: Channels higher than four cannot be individually inhibited, but will be globally inhibited if inhibits 1 to 4 are inhibited.

If all four inhibits are high simultaneously then the NV9 will not read in any notes. All four inhibits may be connected together to create a 'global' inhibit. In this way the NV9 may be brought in and out of operation by the host machine.

7.4:Simple Serial Input/Output - SIO

Existing Smiley® NV4 users may already be using the serial input/output facility in conjunction with the parallel inputs. The NV9 Validator also supports this system. However this interface is not recommended for new designs, the Smiley® Secure Protocol SSP interface is recommended.

Caution:

- The NV9 <u>does not</u> support the Simple serial data out only mode as available on NV4. It only supports the serial data Input/Output mode.
- The host machine does not echo messages back to the Validator.
- The NV9 does not operate in true RS232 mode. (Only TTL level)
- The NV9 will not be enabled in serial I/O mode if Inhibit 3 line is held low when the unit is powered up

To use simple serial mode, DIPswitches 3 & 4 must both be up and the Simple Serial mode SIO option of the interface firmware must be loaded into the NV9.

Commands are provided to fully control the operation of the NV9, the notes to be accepted and rejected can be set and a single escrow mode can be enabled. In simple serial mode single byte commands are transmitted to the Validator, the Validator echoes each valid command it receives.

The serial I/O mode will work at 9600 Baud rate if Inhibit 2 line is held low when the NV9 is powered up. The NV9 will not be enabled in serial I/O mode if Inhibit 3 line is held low when the unit is powered up. The data is formatted as follows:

Figure- 5 Typical Serial Output: Transmission of the value 20 (decimal), Note not recognized

NV9 Recognised Receive Codes		NV9 Transmitted codes		
MESSAGE DECIMAL VALUE		MESSAGE	DECIMAL VALUE	
Inhibit C1	131	Note Accept on C1	1	
Inhibit C2	132	Note Accept on C2	2	
Inhibit C3	133	Note Accept on C3	3	
Inhibit C4	134	Note Accept on C4	4	
Inhibit C5	135	Note Accept on C5	5	
Inhibit C6	136	Note Accept on C6	6	
Inhibit C7	137	Note Accept on C7	7	
Inhibit C8	138	Note Accept on C8	8	
Inhibit C9	139	Note Accept on C9	9	
Inhibit C10	140	Note Accept on C10	10	
Inhibit C11	141	Note Accept on C11	11	
Inhibit C12	142	Note Accept on C12	12	
Inhibit C13	143	Note Accept on C13	13	
Inhibit C14	144	Note Accept on C14	14	
Inhibit C15	145	Note Accept on C15	15	
Inhibit C16	146	Note Accept on C16	16	
Un-inhibit C1	151	Note Not Recognised	20	
Un-inhibit C2	152	Mechanism running slow	30	
Un-inhibit C3	153	Strimming attempted	40	
Un-inhibit C4	154	Channel 5 Note Rejected (fraud channel)	50	
Un-inhibit C5	155	STACKER Full or Jammed	60	
Un-inhibit C6	156	Abort During Escrow	70	
Un-inhibit C7	157	Note may have been taken to clear jam	80	
Un-inhibit C8	158	Validator Busy	120	
Un-inhibit C9	159	Validator Not Busy	121	
Un-inhibit C10	160	Command Error	255	
Un-inhibit C11	161			
Un-inhibit C12	162			
Un-inhibit C13	163			
Un-inhibit C14	164			
Un-inhibit C15	165			
Un-inhibit C16	166			
Enable serial escrow mode	170			
Disable serial escrow mode	171			
Accept Escrow	172			
Reject Escrow	173			
Status	182			
Enable all	184			
Disable all	185			

The NV9 will receive and transmit the following event codes:

Table 6 - Receive and Transmit Codes

Example transactions are shown below (see table 7):

Event	Validator	Decimal Value	Host
Note entered into validator	Validator Busy	120 🗲	
Note Accepted Channel 2	Validator Ready	121 🗲	
	Accept on Channel 2	2 →	
Note entered into validators	Validator Busy	120 🗲	
Note not recognised	Validator Ready	121 🗲	
	Note not recognised	20 →	
Validator has returned note	Validator Ready	121 🗲	
Software Inhibit Channel 4	Inhibit C4	← 134	Inhibit C4
	Channel 4 Inhibited	134 🗲	
Software Enable Channel 4	Uninhibit C4	← 154	Uninhibit C4
	Channel 4 Inhibited	154 🗲	
Status Report		← 182	Status Request
3 byte status message	Inhibit status Channels	Byte 1->	
	1-8		
	Inhibit status Channels	Byte 2->	
	9-16		
	Escrow On (=1) / Off	Byte 3-	
	(=0)		
Turn on Escrow Mode		← 170	Enable Escrow
			Mode
	Escrow Mode Enabled	170 >	
Note accept in Escrow			
Mode			
Note entered into validator	Validator Busy	120 🗲	
Note Accepted Channel 2	Validator Ready	121 🗲	
	Accept on Channel 2	2 →	
		← 172	Accept Note in
		(=0.5	Escrow
	Accept Escrow	172 →	
	Accept on Channel 2	2 →	

Table 7 - Example Protocols

7.5 Smiley® Secure Protocol - SSP

Note: Please refer to the Smiley® Secure Protocol (SSP) Specification ITL Drawing GA 138 on the web site for full details of the SSP protocol.

To use SSP mode DIPswitch 3 must be set up and DIPswitch 4 must be set down.

SSP is a secure serial interface specifically designed to address the problems experienced by cash handling systems in gaming machines. Problems such as acceptor swapping, reprogramming acceptors and line tapping are all addressed. This interface is recommended for all new designs.

The interface uses a master slave model, the host machine is the master and the peripherals (note acceptor, coin acceptor or coin hopper) are the slaves.

Data transfer is over a multi-drop bus using clock asynchronous serial transmission with simple open collector drivers. The integrity of data transfers is ensured through the use of 16 bit CRC checksums on all packets.

Each SSP device of a particular type has a unique serial number; this number is used to validate each device in the direction of credit transfer before transactions can take place.

Commands are currently provided for coin acceptors, note acceptors and coin hoppers. All current features of these devices are supported.

Features:

- Serial control of Note / Coin Validators and Hoppers
- 4 wire (Tx, Rx, +V, Gnd) system
- RS232 (TTL) open collector driver
- High Speed 9600 Baud Rate
- 16 bit CRC error checking
- Data Transfer Mode

Benefits:

- Proven in the field
- Simple and low cost interfacing of transaction peripherals.
- High security control of payout peripherals.
- Defence against surrogate validator fraud.
- Straightforward integration into host machines.
- Remote programming of transaction peripherals
- Open standard for universal use.

For detailed information and full protocol specification please refer to SSP Specification ITL Drawing GA 138, this is available from the ITL website <u>www.innovative-technology.co.uk</u>. To help in the software implementation of the SSP, ITL can provide sample C Code, DLL controls and Visual Basic applications on request. Please contact <u>support@innovative-technology.co.uk</u>.

7.6 Multi-Drop Bus / Internal Communications Protocol (IF5) – MDB

To use the MDB mode an IF5 interface box must be fitted to the NV9 Validator and DIPswitches 3 & 4 must both be set up, with the MDB option of the interface firmware loaded into the NV9.

Note:

- Please refer to the Multi-Drop Bus specification for the suggested current drive circuits available.
- The NV9 supports the MDB protocol version 1, level 1
- For detailed information and full protocol specification please refer to <u>www.nama.org</u>

MDB defines a serial bus interface used in electrically controlled vending machines (see figure 6). This is a 9600 Baud Master-Slave system where the NV9 banknote validator is a slave to a master controller. A master has the capability of communicating with 32 peripherals or slaves. The master is defined as the Vending Machine Controller (VMC).

Figure 6 – MDB Opto Isolated Input / Output circuits

The NV9 banknote Validators have a unique address – 00110XXX binary (30H). The VMC polls the bus to detect presence of the NV9 Validators or get information on the current status of the Validators.

The Validators will respond when asked for activity with an acknowledgment, a negative acknowledgment or a specific reply, depending on its current status. Bus crashes are avoided as the Validators respond to being polled only by the VMC.

The international country code must be set for the country in which the Validators will be operating. This is the international telephone code for that country. The code is represented as two bytes

For the USA the country code is 00 01

For Great Britain the code is 00 44

The scaling factor must also be specified for each Validator. All accepted note values must be evenly divisible by this number.

- This number would be set to 100 (Hex 64) for the Euro or Great Britain.
- The number would be set to 1000 (Hex 03E8) for Romania.
- The number of decimal places must also be programmed for each Validator
- The number would be set to 2 for Euro or USA
- The number would be set to 3 for Romania

Adopting the numbers above:

- £5 would be displayed as 5.00
- £10 would be displayed as 10.00

- \$1 would be displayed as 1.00
- 1K Romania would be displayed as 1.000

7.7 CCTalk Protocol – CCT

The NV9 supports the CCTalk serial protocol for easy interfacing with host machines that support this protocol.

To use CCTalk mode (as in Binary mode etc) set DIPswitches 3 and 4 in the Up position to select 'Special' mode on the validator.

The NV9 must have the CCTalk software loaded using the "advanced" option on the Currency manager program.

Pin out connections on NV9 for CCTalk are shown below (see figure 7) looking at the connection pins on the NV9 interface connector.

Notes:

For detailed information and full protocol specification please refer to <u>www.cctalk.org</u>

Figure 7 - CCTalk Connection Pins on the NV9

The default encryption key will be set to the key code printed on the label on the NV9. If the key is changed to a new stored key by the host machine, the key can be reset to the default by the following the steps below.

- 1. Power off NV9.
- 2. Set all 4 DIPswitches to the Up position.
- 3. Apply power (no CCTalk comms).
- 4. Red LED will now be flashing.
- 5. Set DIPswitches 1 and 2 down.

The code is now reset.

7.8 Extended Interface / USA Serial – NIS

The USA Serial interface is a non-isolated interface serial communications protocol.

There is a single output DATA line from the NV9. There are three control lines, two from the controller "ACCEPT ENABLE" and "SEND" and one from the Validators IRQ (INTERRUPT) (see table 8).

Caution:

- Please note that the NV9 is required to operate on a +12volt DC power supply.
- The NV9 ground must be connected to the ground of the control system.
- For further details on this protocol please refer to the Series 2000 Interface manual (reference number 20105-002850046-PS).

Connection Details:

Signal	NV9
12v	15
0v	16
ACCEPT ENABLE	6
SEND	7
IRQ (INTERRUPT)	2
DATA	1
OUT_OF_SERVICE	3

Table 8 - Extended Interface USA Serial

8 Updating Currency and Firmware

Note: Validators are supplied already programmed from the factory. Please skip this section unless the validators need to be re-programmed with a new note or currency.

The NV9 Validator can only be re-programmed using the ITL BNV download manager 2.9.7 or greater or by cloning from a master unit.

8.1 ITL BNV Download Manager

To use the ITL BNV download manager software, which is supplied with a range of currencies. The system will require you to be running a PC Windows 95/98/NT[™]2000 or XP Professional, Pentium[™] (© Microsoft and Intel).

A list of currently supported currencies is maintained on our web site, and new releases can be downloaded from www.innovative-technology.co.uk. Further details are available from support@lnnovative-technology.co.uk.

How to register for the first time log in, please refer to Appendix D.

8.2 NV9 – NV9 Copy (Cloning)

Overview

This facility exists for a NV9 Bank Note Validator to copy its program and settings to another NV9. The 'Master' Validator will transmit the currency data and upgrade the slave's firmware. For cloning it is recommended to use the cloning kit 2 (CK2).

Requirements

- Master to have firmware 3.15 or greater
- Cloning kit 2
- 12V power supply.

Figure 8 – Cloning Kit 2

Start-up configuration

- Remove power from slave and master units.
- Set DIPswitches 3 up and 4 down to select SSP interface mode on both NV9's.
- Using the NV9 cloning kit (CK2) connect the two units together as above.
- Turn on the 12V supply.
- The Master unit will update the slave firmware if the version of the Master is greater than the slave. If the master firmware is less than the slave, then the copy process is aborted.
- If the firmware on the master and slave are the same only the currency will be transferred.

8.3:NV9 – NV9 copy process.

- Connect the NV9 to the master slave using CK2 and 12V power supply
- The Master unit will flash the RED and GREEN LED's if the connector is configured correctly.
- RED and GREEN LED's on the master flash together attempting to communicate with Slave.
- RED and GREEN LED's on master flash alternately communication established, master waiting for Slave to reset.
- If communication has been established and the Slave has reset then the Master will read the Slave firmware version and decide on next action.
- If the Slave firmware version is not compatible with master: Master RED and GREEN LED's will flash alternately at 1-second rate. No further copy action will take place.
- If slave firmware version is greater than master: Master RED and GREEN LED's will flash alternately at 1 second rate. No further copy action will take place.
- If Slave firmware version is same as Master then Master will start to copy currency data to Slave.
- If Slave firmware version is less than master then master will start to copy firmware data to Slave.

Firmware copy:

Caution: If master RED LED changes to slow blink (1 per second) then communication has been lost and copying should be restarted from beginning.

- Master RED LED will blink rapidly during firmware copy (the LED will pause from time to time).
- When the firmware copy is complete, the Slave will reset and Master unit will wait to re-establish communications. (LED flashes as at first stage power-up).
- When slave is ready, master will initiate currency data copy.

Currency copy:

Caution: If master RED LED changed to slow blink (1 per second) then communication has been lost and copying should be restarted from beginning.

- Master GREEN LED will blink rapidly during the currency copy process and the LED will pause from time to time.
- When currency copy is complete, Master will show GREEN and RED LED's continuously and slave will reset.
- NV9 NV9 copy is now complete.

9: Mechanical Installation

The NV9 validators can be supplied with either of the following bezels, (see figure 9):

Horizontal Bezel PA189

Vertical Up Bezel PA256

Vertical Up Snout Bezel PA190

Vertical Down Snout Bezel PA191

Figure 9 - NV9 Bezels

9.1: Changing or removing the bezels

Caution: Always make sure that both the locking arms have fully located in to prevent damage.

Push both of the red locking arms so that they disengage from the bezel sides. The bezel may then be unhooked from the 6 locating points, (see figure 10). To refit push the bezel onto the six locating points (3 each side). The red locking arms will spring back to secure the bezel

Figure 10 - Bezel and Validator Removal

9.2: Changing or removing cash boxes

The NV9 validators can also be supplied with the various cash box options, (see figure 11).

Figure 11 - Clip On and Slide in Cash Boxes

- 300 Note Clip (part no PA185) on for the vertical bezel options only.
- 300 Note Slide in (part no PA192) for both the horizontal and vertical bezel options.
- 600 Note Clip on (part no PA193) for the vertical bezel options only.
- 600 Note Slide in (part no PA194) both the horizontal and vertical bezel options.
- 300 Note Lockable for the horizontal bezel option only (part no PA186). (Lock is not supplied use with Baton Lock type 6086-00KAL06 with supplied cam)

10 Routine Maintenance

The NV9 Validator has been designed to minimise any performance variation over time. Much of this is achieved by careful hardware and software design.

However, depending upon the environment the NV9 may at some time require cleaning, belt changing or note path clearing.

10.1 Cleaning

CAUTION: <u>DO NOT</u> USE SOLVENT BASED CLEANERS SUCH AS ALCOHOL, PETROL, METHYLATED SPIRITS, WHITE SPIRIT or PCB CLEANER. THIS WILL RESULT IN PERMANENT DAMAGE TO THE VALIDATOR, ALWAYS USE A MILD DETERGENT.

To clean, slide the red release catch on the end of the NV9 Validator to open the note path. The note path and lozenge are now exposed for cleaning.

Carefully wipe the surfaces with a soft lint free cloth that has been dampened with a water and mild detergent solution (i.e. household washing up liquid). Take particular care around all the sensor lenses (see figure 12), ensuring they are clean and dry.

Caution: When cleaning the "recessed" Front Sensors, use a small soft brush or cotton wool bud.

If a lens has become badly scratched do not attempt to polish it. Contact ITL for further advise, as there may be damage to the optical properties of the lens.

10.2 Note Path Debris Clearing / Belt Changing

To access the note path and lozenge, slide the red release catch on the end of the NV9 Validator and lift to open. Push the lozenge release catch and lift; the note path and lozenge are now exposed for maintenance (see figure 13).

Figure 13 - NV9 Note Path and Lozenge Access

Debris Clearing

Examine the note paths, lozenge and note stacker for any dirt or debris.

Carefully clear and wipe the surfaces of the note paths and lozenge with a soft lint free cloth that has been dampened with a water and mild detergent solution (i.e. household washing up liquid.). Take particular care around all the sensor lenses (see figure 12), ensuring they are clean and dry.

Check that the note stacker and cash box spring plate are not jammed.

Belt Changing

With the NV9 lozenge exposed (see figure 13) carefully unplug the bottom connector of the "top to bottom cable assembly" from the lozenge.

Remove and place the lozenge on a clean dry surface and remove the belts, sliding them off the smallest wheels first. Replace the belts using the reverse procedure from the above.

Finish Finish Figure 15 - Notes pass validators with no vend signal

Figure16 - Unit rejects genuine notes

Check Interface

Figure 18 - Validator runs slowly or intermittently

12 Support Tools

The following support tools are available for use with the NV9 Bank Note Validator:

- 1. ITL BNV download manager Software.
- 2. Downloads from the Innovative Technology Ltd website: www.innovative-technology.co.uk
- 3. E-mail Support support@innovative-technology.co.uk.

12.1 PC Currency Programming Software (ITL BNV Download Manager)

The ITL BNV download manager software offers the following functions:

- Program the Validator by downloading pre-prepared currency data via the serial communications link using the DA1 kit or DA2 kit using the USB link.
- Check the firmware version and currency set already loaded on an NV9 unit.
- Adjust the channel and pulse configuration on a pre-programmed NV9 to your own requirements.
- Download a new version of firmware onto the NV9.
- Use diagnostic functions to check Validators operation (firmware version 3.15 and greater only).

The software will run on an IBM compatible Personal Computer with PentiumTM processor or equivalent and requires a DA1 kit fitted to the serial port or DA2 kit fitted to the USB port depending on the operating system that you are using (see <u>Appendix C</u>).

12.2 Internet Website support

The Innovative Technology Ltd website provides the means to download new and updated currency sets and new versions of firmware for the NV9. Visit <u>www.innovative-technology.co.uk</u> to register your user name and to access the password for further details, updates and technical bulletins, which are also made available.

How to register for the first time log in, please refer to Appendix D.

12.3 E-mail Support

If the data you require is not available over the Internet Innovative Technology supports an e-mail system to help customers with unusual requirements. The address is support@innovative-technology.co.uk

21 물 Email : saleseinnovative-technology.co.uk SSUE BOX BOX CASH CASH GA328 2 LTD 9999 2090 CL IP-ON CL IP-ON ITACT ADDRESS : IOVATIVE TECHNOLOGY L KER STREET, OLDHAM LAND 01161 626 999 : +44(0)161 620 209 DRG No. CUT **HSIN** ⊐ - 600 CASH BOX AWAY TO SHOW CASH BOX 300 600 FLAT ŋ ш Ś 137 177 1 CONTACT INNOVATI DERKER S ENGLAND TEL : +4 NV9 OUTLINE DRAWING VERTICAL UPSTACKER -MATERIAL œ \triangleleft m NTS SCALE a C DATE 27-6-05 DATE 28-6-05 Δ m Щ Ð Q CABLI \triangleleft I MKS 0 ЪD S Ĺ 177. ц CHECKED FITLE: RAWN 137. z ALL DIMENSIONS SHOWN ARE NOMINAL SIZES. E Ε IN DOUBT - ASK III z (A à. п REFERENCE ONLY: DESTROY AFTER USE. ALWAYS REFER TO LATEST ISSUE. 0 , M ψ 3rd ANGLE PROJECTION. S <u>L</u> 0.001 (NON-CONDENSING) \ominus M4 SCREW CLEARANCE NOTE ENTERANCE T 100MHz INVOVATIVE TECHNOLOGY LIMITED TELEPHONE. 0161 626 9999 FAX. 0161 620 2090 350mA 1000mA 1500mA DERKER ST OLDHAM ENGLAND. 0.1 4ED × 160mm LONG 1.701 12.0 DO NOT SCALE NV9 11-15v RIPPLE 0.25v AT STAND BY 35 VALIDATING 100 PEAK 150 ® +3°C TO 50°C AT 5% TO 95% RH I 26 D 50.2 BEZEL 4 C.A.D. GENERATED - MOD'S TO BE DONE VIA MAGNETIC MEDIA 00 Β 82mm MKS 84. 88 MOD : 1700g Ì 01 28-6-05 DATE ЧП POWER ۵ WEIGHT NOTES 0'211 1.8 PROD-REL No. SUPPLY AND CONSUMPTION 0 DOM UNLADEN ACCEPTS 520.0 GA328 No I SSUE : aN DRG COPYRIGHT CONTRINED IN THIS DRAWING IS THE PROPERTY OF INNOVATIVE TECHNOLOGY LTD (

Appendix A - Drawings

Appendix B - ESCROW Control

The NV9 has a single note escrow facility (pin 10). This allows the Validator to hold onto the note once accepted, and then only stack the note in the cash box when the host machine confirms that the Vend operation has been completed. If no confirmation of the Vend is received then the note will be returned to the customer after 30 seconds, (see figure 19).

Figure 19 - Escrow Timing Diagram for Parallel Vends

If the host machine itself aborts the transaction by setting the corresponding inhibit input high on pin 10, the note is returned immediately. The sequence of operations is as follows:

- 1. Pin 10 held low awaiting note insertion.
- 2. Note inserted. Validator issues a 100ms pulse on the appropriate channel.
- 3. The host machine initiates vend process.
- 4. The host machine sets pin 10 high to indicate that it wants the note. If this is not done within 30 seconds the Validator will return the note.
- 5. The Validator issues a 100ms pulse on the appropriate channel after pin 10 going high to indicate final acceptance of the note. If the signal has not been received within 30 seconds it indicates the customer has forcibly retrieved the note and the vend will be aborted.
- 6. The vend process is completed.
- 7. The host machine sets pin 10 low in expectation of the next vend.

The host machine can force the return of the note to the customer by setting the inhibit line high, at any time before the end of the 30 second time-out. For channels above 4, setting all the inhibits high will cause a note reject.

In the event of a note being forcibly removed from the mouth of the NV9 during the 30 second interval, the NV9 will go out of service for 45 seconds.

Note: Escrow Control (SSP mode): Escrow is also possible using the SSP serial Interface. Please refer to SSP Specification GA138 available on the website www.innovative-technology.co.uk.

Appendix C - interface Tools DA1 - DA2

The DA1/2 Kits are designed for the following:

- Connecting of ITL note validators to a PC to upgrade note data and firmware.
- Testing of NV9 note validators independently of the host machine to confirm the validator is working but the host machine may be inhibiting some of the channels.

The DA1 and DA2 Kit comprise of the following components:

DA1	DA2
DA1 adapter board (PA167)	DA2 adapter board
NV9 Adapter to Validator cable (C	USB type-A to Type-B cable
ITL Support CD-ROM for DA1	ITL Support CD-ROM for DA2
Power Cable	DA2 to NV9 cable
Installation Guide	Power Cable
	Installation Guide

Connecting a DA1 to a validator and PC

If you are using Windows 95/98/NT/XP[™], Pentium[™] (© Microsoft and Intel) operating systems connect the DA1 to the validator as shown below (see figure 1), using the 16-way to 5-way connector. The 3.5mm jack plug and 2 banana plugs are used to supply power to the DA1. Connect +12 volts to the red banana plug and GND (0V) to the black plug.

Plug the 9-way D-type connector into the serial port of the PC and note of the number of the port, as this will be needed later for configuring the software. Once the connections have been made install the appropriate software for the validator you are using.

Figure 1 - Connecting DA1 to a NV9 and PC for upgrading

Connecting a DA2 to a validator and PC

If you are using Windows Pentium[™] (© Microsoft and Intel) 98, 98SE, 2000, XP Home or XP Professional operating systems, connect the DA2 to the validator as shown below (see figure 2), using NV9 TO DA2 connector. The 3.5mm jack plug and 2 banana plugs are used to supply power to the DA2. Connect +12 volts to the red banana plug and GND (0V) to the black plug.

Plug the USB type Connector into the USB port of the PC. Once the connections have been made install the appropriate software for the validator you are using.

Figure 2 - Connecting DA2 to a NV9 and PC for upgrading

Software Installation

To install the software to upgrade datasets and firmware, insert the CDROM into the PC drive. An installation menu will appear, select the product that you wish to download, and select the software you wish to use. Follow the onscreen instruction to complete the installation. Instructions for configuring and using the software you have installed can by found in the online help for that software.

Please contact support@innovative-technology.co.uk, if you require further assistance.

Appendix D – Website Registration

