XEV22D

DRIVER PER VALVOLE ELETTRONICHE DI ESPANSIONE DI TIPO MOTORIZZATO

--- MANUALE PER RELEASE 0.8 ---

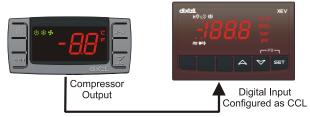
1.	AVVERTENZE GENERALI	•
2.	DESCRIZIONE GENERALE	
3.	COLLEGAMENTI	•
4.	CONNESSIONE VALVOLA E CONFIGURAZIONE	•
5.	LIMITI DI FUNZIONAMENTO	,
6.	PANNELLO FRONTALE	2
7.	INTERFACCIA UTENTE	2
8.	LISTA PARAMETRI	
9.	INGRESSI DIGITALI	:
10.	APERTURA FORZATA	3
11.	CONNESSIONI	:
12.	LINEA SERIALE RS485	3
13.	UTILIZZO DELLA CHIAVETTA DI PROGRAMMAZIONE (HOT-KEY)	:
14.	DISPLAY MESSAGES	2
15.	DATI TECNICI	
16.	VALORI STANDARD	

1. AVVERTENZE GENERALI

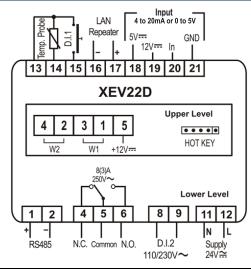
A LEGGERE PRIMA DI PROCEDERE NELL'UTILIZZO DEL MANUALE.

- Il presente manuale costituisce parte integrante del prodotto e deve essere conservato presso l'apparecchio per una facile e rapida consultazione.
- Il regolatore non deve essere usato con funzioni diverse da quelle di seguito descritte, in particolare non può essere usato come dispositivo di sicurezza.
- Prima di procedere verificare i limiti di applicazione.
- Dixell Srl si riserva la facoltà di variare la composizione dei propri prodotti, senza darne comunicazione al cliente, garantendo in ogni caso l'identica e immutata funzionalità degli stessi.

PRECAUZIONI DI SICUREZZA


- Prima di connettere lo strumento verificare che la tensione di alimentazione sia quella richiesta.
- Non esporre l'unità all'acqua o all'umidità: impiegare il regolatore solo nei limiti di funzionamento previsti evitando cambi repentini di temperatura uniti ad alta umidità atmosferica per evitare il formarsi di condensa.
- Attenzione: prima di iniziare qualsiasi manutenzione disinserire i collegamenti elettrici dello strumento.
- Lo strumento non deve mai essere aperto.
- In caso di malfunzionamento o guasto, rispedire lo strumento al rivenditore o alla "DIXELL S.r.l." (vedi indirizzo) con una precisa descrizione del guasto.
- Tenere conto della corrente massima applicabile a ciascun relè (vedi Dati Tecnici).
- Piazzare la sonda in modo che non sia raggiungibile dall'utilizzatore finale.
- Fare in modo che i cavi delle sonde, della alimentazione del regolatore della alimentazione dei carichi rimangano separati e sufficientemente distanti fra di loro, senza incrociarsi e senza formare spirali
- Nel caso di applicazioni in ambienti industriali particolarmente critici, può essere utile inoltre adottare filtri di rete (ns. mod. FT1) in parallelo ai carichi induttivi.

2. DESCRIZIONE GENERALE


L'XEV22D è un modulo in grado di pilotare un ampio range di valvole motorizzate. Questo modulo permette di regolare il surriscaldamento (SH) del fluido che attraversa l'unità refrigerante in modo da ottimizzarne le prestazioni ed il funzionamento indipendentemente dalle situazioni di carico e climatiche. I moduli XEV22D sono equipaggiati con due ingressi sonda, uno per trasduttori di pressione di tipo 4+20mA o 0+5V e l'altro per sonde di tipo Pt1000 o NTC. Una connessione LAN dedicate permette di trasmettere il valore di pressione rilevato da un trasduttore, anche agli altri strumenti XEV, soluzione che permette di ridurre i costi di impianti in applicazioni canalizzate. Vi sono inoltre, due ingressi digitali. Uno in alta tensione ed un altro a contatto pulito in modo da permettere una più versatile modalità di connessione. Uno di questi ingressi deve essere utilizzato per abilitare la regolazione del driver. Grazie all'utilissimo display e alla tastiera locale è possibile visualizzare tutte le grandezze misurate e cambiare i parametri dello strumento per ottenere il massimo dalla regolazione. A completamento della dotazione lo strumento è dotato di una seriale RS485 che ne permette il collegamento ai sistemi di monitoraggio e supervisione Dixell.

3. COLLEGAMENT

La regolazione del surriscaldamento viene effettuata solo se è attiva una richiesta di freddo. Lo schema seguente illustra come XEV riceve la richiesta di freddo (tramite ingresso digitale):

Vedere lo schema seguente per effettuare gli opportuni collegamenti. Con "Primo livello" sono indicate le connessione al piano di base del contenitore 4 DIN e, naturalmente, con "Secondo Livello" le connessioni del piano superiore che sono esclusivamente per le fasi del motore stepper e per la HOTKEY.

4. CONNESSIONE VALVOLA E CONFIGURAZIONE

ATTENZIONE

- Per evitare ogni sorta di problemi, prima di collegare la valvola è utilie configurare correttamente il driver aggiustando opportunamente i parametri descritti in seguito. Selezionare il tipo di valvola (parametro tEU) e controllare nella lista della valvole preconfigurate se è presente quella che intendete utilizzare.
- La massima distanza tra un controllore XM ed una qualsiasi valvola non deve essere superiore ai 10 metri. Vanno inoltre utilizzati cavi schermati di sezione maggiore od uquale a 0.325 mm² (AWG22).

tEP	Modello	LSt (steps*10)	uSt (steps*10)	CPP (mA*10)	CHd (mA*10)	Sr (step/s)
0	Settaggio manuale	Par	Par	Par	Par	Par
1	Alco EX4-EX5-EX6	5	75	50	10	500
2	Alco EX7	10	160	75	25	500
3	Alco EX8 500	10	260	80	50	500
4	Danfoss ETS-25/50	7	262	10	10	300
5	Danfoss ETS-100	10	353	10	10	300
6	Danfoss ETS-250/400	11	381	10	10	300
7	Sporlan SEI 0.5-11	0	159	16	5	200
8	Sporlan SER 1.5-20	0	159	12	5	200
9	Sporlan SEI 30	0	319	16	5	200
10	Sporlan SER(I) G,J,K	0	250	12	5	200
11	Sporlan SEI 50	0	638	16	5	200
12	Sporlan SEH(I) 100	0	638	16	5	200
13	Sporlan SEH(I) 175	0	638	16	5	200

Per quanto riguarda le connessioni, ponete attenzione alle seguenti tabelle per una rapida guida di riferimento sul collegamento della valvola. Ad ogni modo, l'unico vero riferimento valido è il manuale tecnico del costruttore:

VALVOLE CON 4 FILI (BIPOLARI)

Numero nello schema	ALCO EX	SPORLAN SEI-SEH	DANFOSS ETS
4	BLU	BIANCO	NERO
2	MARRON	NERO	BIANCO
3	NERO	ROSSO	ROSSO
1	BIANCO	VERDE	VERDE

VALVOLE CON 5-6 FILI (UNIPOLARI)

Nume	ro nello schema	SPORLAN	SAGINOMIYA
	4	ARANCIO	ARANCIO
	2	ROSSO	ROSSO
	3	GIALLO	GIALLO
	1	NERO	NERO
5	- Comune	GRIGIO	GRIGIO

NOTA: DOPO AVER EFFETTUATO TUTTI I COLLEGAMENTI E LA CONFIGURAZIONE, EFFETTUARE UN RESET DELLO STRUMENTO IN MODO DA ESSERE CERTI DEL CORRETTO POSIZIONAMENTO DELLA VALVOLA.

5. LIMITI DI FUNZIONAMENTO

L'XEV22D è in grado di pilotare una vasta gamma di valvole motorizzate, nella tabella seguente sono indicate I massimi valor di corrente che il nostro attuatore può fornire alla valvola senza danneggiarsi. Il trasformatore Dixell da utilizzare per alimentare il modulo è il TF20D.

NOTA: la potenza assorbita dalla valvola può essere completamente slegata dalla potenza frigorifera che la valvola può gestire. Prima di utilizzare il driver, leggere attentamente il manuale tecnico della valvola fornito dal costruttore e verificare che la massima potenza assorbita sia minore della massima fornibile dal driver.

6. PANNELLO FRONTALE

	Visualizza e modifica il Set-Point.	In
SET	programmazione permette	di
SEI	selezionare il parametro e	di
	confermnarne il valore.	

(UP) In programmazione permette di scorrere il codice dei parametri o di incrementarne il loro valore.

(**DOWN**) In programmazione scorre i codici dei parametri o ne decrementa il loro valore.

COMBINAZIONE TASTI

Per bloccare o sbloccare la tastiera

Per entrare in programmazione parametri

6.1 XEV22D LEDS

Nel display vi sono dei punti luminosi il cui significato è descritto nella seguente tabella:

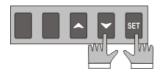
LED	MODO	FUNZIONE
L಄	ON	Allarme di bassa pressione (LoP)
нØ	ON	Allarme di massima pressione operativa (MoP)
×	OFF	Valvola completamente chiusa
₩	LAMPEGGIO	Valvola in movimento
×	ON	Valvola completamente aperta
=	LAMPEGGIO	Comunicazione seriale presente
4	OFF	Comunicazione seriale assente
(D)	ON	Allarme di surriscaldamento

7. INTERFACCIA UTENTE

7.1 PER VEDERE I PARAMETRI DI SOLA LETTURA

- Premere e rilasciare il tasto
- 2) Viene visualizzata l'etichetta del primo parametro di sola lettura, premere SET per visualizzarlo;
- 3) Scorrere gli altri parametri di sola lettura con i tasti ▲ o ▼
- 4) Per uscire, premere e rilasciare i tasti +SET o attendere il tempo di time-out (circa 3 minuti).

7.2 VISUALIZZAZIONE SET-POINT


- Premere e rilasciare il tasto SET.
- 2) Per ritornare alla visualizzazione normale, aspettare 5 sec o premere nuovamente il tasto **SET**.

7.3 MODIFICA DEL SET-POINT

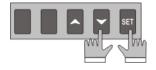
Per cambiare il valore del Set-Point procedere come seque:

- Premere il tasto SET fino a quando il Set viene visualizzato e il punto luminoso sopra il valore lampeggia;
- Usare ▲ o ▼ per cambiare il valore.
- 3) Premere **SET** per memorizzare il nuovo valore.

7.4 PER ENTRARE NEL LIVELLO "PR1"

Per entrare nel livello "Pr1":

- Premere i tasti SET+ ▼ per circa 3 secondi.
- Lo strumento visualizzerà il primo parametro disponibile nel livello Pr1.


7.5 PER ENTRARE NEL LIVELLO "PR2"

Per entrare nel livello "Pr2":

- . Entrare in "Pr1"
- 2. Selezionare il parametro "Pr2" e premere **SET**
- L'etichetta "PAS" comparirà sul display, a seguire verrà visualizzato "0 - - " con 0 lampeggiante.
- Inserire la password "321" attraverso i tasti
 ♠ e ▼, premere SET per confermare.

7.6 MODIFICARE IL VALORE DI UN PARAMETRO

Per cambiare il valore di un parametro operare come segue:

- Entrare in programmazione parametri.
- Cercare il parametro desiderato.

- Premere il tasto SET per visualizzare il valore del parametro
- 4. Usare ▲ o ➤ per cambiare il valore.
- Premere nuovamente SET per memorizzare il nuovo valore e passare al parametro successivo.

Uscire: Premere SET+ ▲ o aspettare 30s senza premere nessun tasto.

NOTA: il valore modificato viene memorizzato anche se si esce dalla programmazione per time-out.

8. LISTA PARAMETRI

NOTA: Tutti i parametri di pressione sono legati al parametro PrM!! Se PrM=rEL tutti i parametri di pressione sono da intendersi relativi, se PrM=AbS tutti i parametri di pressione sono da intendersi assoluti.

REGOLAZIONE

FtY	Tipo di gas: (R22; 134; 404; 407; 410; 507; CO2) tipo di gas utilizzato nell'impianto. Parametro fondamentale per il corretto funzionamento del sistema.
PEo	Percentuale di apertura in caso di errore sonda: (0÷100%) se si verifica un errore sonda, l'apertura della valvola sarà pari a questo valore per il tempo PEd.
PEd	Tempo di errore sonda prima del blocco: (0÷239 sec; On=illimitato) se la durata dell'errore sonda è maggiore del tempo PEd la valvola chiude completamente. Al termine del tempo PEd viene visualizzato il messaggio Pf. Se PEd=On la valvola rimane alla percentuale PEo fino a quando l'errore sonda rientra.
tEU	Tipo di valvola motorizzata: (uP; bP) permette di selezionare il tipo di valvola utilizzato. uP= per valvole unipolare con 5-6 fili; bP= per valvole bipolari con 4 fili; !!!!! ATTENZIONE !!!!! cambiando questo parametro la valvola deve essere reinizializzata. SCOLLEGARE LA VALVOLA PRIMA DI CAMBIARE QUESTO PARAMETRO PER PREVENIRE EVENTUALI DANNEGGIAMENTI.
tEP	Selezione valvole predefinite: (0÷10) se tEP=0 l'utente deve modificare tutti I parametric di configurazione per poter utilizzare la valvola. Se tEP è differente da 0 l'XEV effettua una configurazione veloce dei seguenti parametri: I St. uSt. Sr. CPP.

tEP	Modello	LSt (steps*10)	uSt (steps*10)	CPP (mA*10)	CHd (mA*10)	Sr (step/s)
0	Settaggi manuali	Par	Par	Par	Par	Par
1	Alco EX4-EX5-EX6	5	75	50	10	500
2	Alco EX7	10	160	75	25	500
3	Alco EX8 500	10	260	80	50	500
4	Danfoss ETS-25/50	7	262	10	10	300
5	Danfoss ETS-100	10	353	10	10	300
6	Danfoss ETS-250/400	11	381	10	10	300
7	Sporlan SEI 0.5-11	0	159	16	5	200
8	Sporlan SER 1.5-20	0	159	12	5	200
9	Sporlan SEI 30	0	319	16	5	200
10	Sporlan SER(I) G,J,K	0	250	12	5	200

CHd. Per selezionare il numero corretto fare riferimento alla tabella seguente:

Se tEP è diverso da 0 la precedente configurazione di LSt,uSt,Sr,CPP e CHd viene sovrascritta.

SUVIASUI	itta.
LSt	Minimo numero di passi: (0÷USt) permette di selezionare il minimo numero di passi della valvola ai quali la valvola è da considerarsi completamente chiusa. E' necessario leggere il manuale del costruttore della valvola per impostare correttamente questo parametro. E' il minimo numero di passi per rimanere nel range di funzionamento consigliato dal costruttore; !!!!! ATTENZIONE !!!!! cambiando questo parametro la valvola deve essere reinzializzata. Il dispositivo esegue questa procedura automaticamente e riprende il suo normale funzionamento all'uscita dalla programmazione.

USt Massimo numero di passi: (LSt÷800*10) permette di selezionare il Massimo numero di passi effettuabili dalla valvola. A questo numero di passi la valvola dovrebbe essere completamente aperta. E' necessario leggere il manuale del costruttore della valvola per impostare correttamente questo parametro. E' il massimo numero di passi per restare nel range di funzionamento consigliato dal costruttore; !!!!! ATTENZIONE !!!!! cambiando questo parametro la valvola deve essere reinizializzata. Il dispositivo esegue questa procedura automaticamente e riprende il suo normale funzionamento all'uscita dalla programmazione.

Est Extra in fase di chiusura: (0+255(*10)) setta il numero di extra step che il controllore

invia alla valvola (quando all'avvio risulta chiusa) per forzarne la chiusura.

Sr Step rate: (10÷600 step/sec) è la massima velocità di movimento del motore senza la perdita dei passi e quindi senza perdita di precisione. E' necessario restare al di sotto della massima velocità disponibile per la valvola.

CPP Corrente per fase (solo per valvole bipolari): (0÷100*10mA) è la massima corrente per fase utilizzata dalla valvola. È valida solo per valvole bipolari.

CHd Corrente di mantenimento (solo per valvole bipolari): (0÷100*10mA) è la corrente che circola nelle fasi quando la valvola è ferma per almeno 4 minuti. È valida solo per

valvole bipolari.
 Apertura nella fase di Start: (0÷100%) Percentuale di apertura imposta durante la fase di post defrost e all'attivazione della funzione di start. La durata di questa fase è data dal parametro SFd.

SFd Durata procedura di Start: (0.0÷42min00sec, ris. 10sec) Imposta la durata della fase di start. Durante questa fase gli allarmi vengono ignorati.

Sti Intervallo di pausa regolazione: (0.0÷24ore00min. ris 10min) se la valvola continua a

Intervallo di pausa regolazione: (0.0+24ore00min, ris 10min) se la valvola continua a regolare per tutto il tempo **Sti** senza pause, la valvola si porta in pausa chiudendosi per il tempo **Std** in modo da prevenire la formazione di chiaccio duro.

Std Durata pausa regolazione: (0÷60min) definisce la durata della pausa di regolazione dopo il tempo Sti. Durante questa pausa viene visualizzato il messaggio StP.

MnF Percentuale di massima apertura della valvola: (0÷100%) durante la regolazione il

parametro imposta la massima percentuale di apertura che la valvola può assumere.

FoP
Percentuale di aperture forzata valvola: (0÷100; nu) se FoP=nu la valvola lavora secondo il normale algoritmo di regolazione. Se FoP è diverso da nu la valvola rimane al valore indicato da FoP.

inC

FrC

disabilitata

PARAMETRI REGOLATORE PI (personale qualificato) RS=0 inC=0 100 Banda proporzionale: (0.1 ÷ 50.0 / 1÷90°F) PI banda proporzionale regolatore PI. E consigliato un valore superiore Setpoint Setpoint+Pb SH RS=-Pb/2 Opening % inC=0 rS Offset di banda: (-12.0 ÷ 100 12.0°C / -21÷21°F) Offset di banda per regolatore PI. Permette di muovere la banda proporzionale del regolatore. Con rS=0 la banda Set÷Set+Pb; Setpoint

PARAMETRI SONDE				
tPP	Tipo di trasduttore di pressione: (420; 5V; LAn) imposta il tipo di trasduttore di pressione utilizzato: 420= trasduttore di pressione 4+20mA; 5V= trasduttore raziometrico 0+5V, LAn= il valore di pressione viene ricevuto da un altro modulo XEV.			
LPP	Abilita l'invio del valore di pressione in LAN: (n÷Y) se LPP=Y il valore di pressione letto dal trasduttore collegato allo strumento viene inviato in LAN. Solo un dispositivo in LAN può avere LPP=Y.			
PA4	Valore sonda a 4mA o a 0V: (-1.0÷P20 bar; -14÷P20 psi) valore di pressione misurato dalla sonda a 4mA o a 0V (dipende dal parametro PrM).			
P20	Valore sonda a 20mA o a 5V: (PA4÷50.0 bar; PA4÷725 psi) valore di pressione misurato dalla sonda a 20mA o a 5V (dipende dal parametro PrM).			
oPr	Calibrazione sonda pressione: (-12.0÷12.0 bar; -174÷174 psi)			
ttE	Tipo di sonda di temperatura: (PtM; NtC) permette di impostare il tipo di sonda di pressione collegata allo strumento: PtM = Pt1000, ntC = NTC probe.			
otE	Calibrazione sonda di temperatura: (-12.0÷12.0 °C; -21÷21 °F).			

Tempo di integrazione: (0 ÷ 255s) Tempo di integrazione del regolatore PI

INGRESSI DIGITALI					
i1P	Polarità ingresso digitale 1 (contatto pulito): (CL; oP) CL= attivo chiuso; oP= attivo aperto.				
i1F	Funzione ingresso digitale 1 (contatto pulito): (CCL; rL) CCL= richiesta freddo; rL= attivazione relay.				
d1d	Ritardo attivazione ingresso digitale 1 (contatto pulito): (0+255 min) questo ritardo di attivazione viene utilizzato solo se l'ingresso digitale è configurato come rL.				
i2P	Polarità ingresso digitale 2 (tensione alimentazione): (CL; oP) CL= attivo chiuso; oP= attivo aperto.				
i2F	Funzione ingresso digitale 2 (tensione di alimentazione): (CCL; rL) CCL= richiesta freddo; rL= attivazione relay.				
d2d	Ritardo attivazione ingresso digitale 2 (tensione di alimentazione): (0+255 min) questo ritardo di attivazione viene utilizzato solo se l'ingresso digitale è configurato come rL.				

	come re.
ALLARMI	
dAo	Ritardo segnalazione allarmi: (0.0÷42min00sec, ris. 10sec) intervallo di tempo fra l'attivazione dell'ingresso digitale configurato come CCL e la segnalazione degli allarmi. L'allarme LSH viene segnalato anche durante questo ritardo.
tdA	Modalità di attivazione del relay: (ALL; SH; PrE; DI) ALL= tutti gli allarmi; SH= allarme surriscaldamento; PrE= allarme di pressione; DI= attivazione con l'ingresso digitale configurato come rL.
LPL	Limite inferiore di pressione per la regolazione del surriscaldamento: (PA4÷P20 bar / psi / kPa*10) quando la pressione di aspirazione scende al di sotto di questo valore la regolazione viene realizzata utilizzando il valore LPL come valore fisso di pressione. (valore dipendente dal parametro PrM).
МоР	Soglia di massima pressione operativa : (PA4÷P20 bar / psi / kPa*10) se la pressione di aspirazione supera questo valore lo strumento segnala la situazione tramite il LED H [®] e l'allarme MoP (valore dipendente dal parametro PrM).
LoP	Soglia di bassa pressione: (PA4÷P20 bar / psi / kPa*10) se la pressione di aspirazione scende al di sotto di questo valore viene attivato il LED [©] (valore dipendente dal parametro PrM).
PHy	Isteresi allarme di pressione : (0.1÷5.0 bar; 1÷72 psi; 1÷50 kPa*10) isteresi di disattivazione allarmi di pressione.
dML	delta MoP-LoP : (0÷100%) quando si verifica un allarme MoP la valvola chiude della percentuale dML ad ogni secondo fino a quando l'allarme è attivo. Quando si verifica un allarme LoP la valvola apre della percentuale dML ad ogni secondo fino a quando l'allarme LoP è attivo.
MSH	Allarme di massimo surriscaldamento : (LSH÷80.0°C; LSH÷176°F) quando il surriscaldamento misurato supera questo valore per un tempo superiore a SHd viene segnalato un allarme.
LSH	Allarme minimo surriscaldamento: (0.0÷MSH °C; 32÷MSH °F) quando il surriscaldamento scende sotto questo valore per il tempo SHd viene segnalato l'allarme e la valvola chiude completamente.
SHY	Isteresi allarme surriscaldamento : (0.0÷25.5°C; 1÷77°F) isteresi per la disattivazione dell'allarme di surriscaldamento.
SHd	Ritardo allarme surriscaldamento: (0÷255s) l'allarme di surriscaldamento viene segnalato solo quando si ha il superamento dei limiti impostati per tutto il tempo SHd.

Costante Fast-recovery: (0÷100s) permette di velocizzare la chiusura della valvola

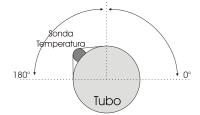
quando il surriscaldamento scende sotto il set-point. Se FrC=0 la funzione è

DISPLAY	
Lod	Visualizzazione di default: (SH; Per; P1; P2) SH= superheat; PEr = percentuale di apertura valvola; P1= valore della temperatura misurata; P2= valore rilevato dalla sonda di pressione.
CF	Unità di misura della temperatura: (°C; °F) °C= gradi Celsius; °F= gradi Fahrenheit; ATTENZIONE: cambiando unità di misura i parametri devono essere correttamente modificati.
PMU	Unità di misura della pressione: (bAr; psi; kPa*10) bAr= bar; PSI= psi; ATTENZIONE: cambiando unità di misura i parametri devono essere correttamente modificati.
PrM	Modo di visualizzazione della pressione: (rEL; AbS) rEL= pressione relativa; AbS= pressione assoluta; tutti i parametri di pressione dipendono da questo parametro.
CLt	Tempo statistica chiamata freddo: (0÷48ore) intervallo di tempo utilizzato per il calcolo della percentuale di tempo in cui la richiesta freddo rimane attiva.
CLP	Percentuale richiesta freddo (sola lettura): visualizza la percentuale di tempo CLt in cui la richiesta freddo era attiva.
tP1	Temperatura sonda P1 (sola lettura): visualizza la temperatura rilevata dalla sonda P1.
PPr	Pressione rilevata (sola lettura): visualizza il valore di pressione rilevato da P2.
tP2	Valore di temperatura rilevato tramite P2 (sola lettura): visualizza il valore di temperatura rilevato dalla conversione del valore di pressione ottenuto da P2.
oPP	Percentuale di aperture valvola (sola lettura): visualizza l'attuale percentuale di aperture della valvola.
d1S	Stato ingresso digitale 1(sola lettura): visualizza lo stato dell'ingresso digitale 1.
d2S	Stato ingresso digitale 2 (sola lettura): visualizza lo stato dell'ingresso digitale 2.
Adr	Indirizzo seriale RS485: (1÷247) indirizzo del driver quando collegato all'interno di un sistema ModBUS compatibile.
Mod	Modbus: (StD; AdU) StD= permette di utilizzare XEV in modo autonomo, in questo caso viene utilizzato il protocollo standard di comunicazione ModBUS-RTU; AdU= (Solo per sistemi XWEB) in questo caso XEV e il controllore termostatico vengono considerati un unico strumento e quindi hanno lo stesso indirizzo seriale (richiede una libreria personalizzata).
Ptb	Codice mappa: (sola lettura) definisce la mappa parametri.
rEL	Release Firmware: (sola lettura) identifica la release firmware.
Pr2	Menu di secondo livello.

9. INGRESSI DIGITALI

Sono presenti due ingressi digitali, uno di questi è a contatto pulito e l'altro a tensione di alimentazione, entrambi sono configurabili come richiesta freddo (CCL) o come rL. In questo modo, la richiesta freddo può essere fornita da strumenti con carichi diretti o con carichi privi di voltaggio. Uno di questi ingressi digitali deve essere configurato come richiesta freddo.

10. APERTURA FORZATA


Se necessario cambiando il parametro FoP è possibile forzare il valore di lavoro della valvola. Per esempio, impostando FoP=50 la valvola sarà aperta del 50%. Per disabilitare questa funzione è necessario impostare il parametro FoP=nu (valore di default). La valvola si porta all'apertura indicata da FoP solo quando l'ingresso digitale di abilitazione è attivo.

11. CONNESSIONI

Lo strumento è dotato di morsettiera a vite per il collegamento di cavi con sezione massima di 2.5 mm². Utilizzare cavi resistenti al calore. Prima di connettere i cavi assicurarsi che la tensione di alimentazione sia conforme a quella dello strumento. Separare i cavi di collegamento degli ingressi sonda da quelli di alimentazione, dalle uscite e dai collegamenti di potenza.

SONDE

Si consiglia di posizionare la sonda di temperatura secondo lo schema a fianco, tra 0 e 180 gradi rispetto alla sezione orizontale del tubo. Per la sonda di pressione non vi sono particolari indicazioni di posizionamento.

12. LINEA SERIALE RS485

Tutti i modelli possono essere collegati ad unità di monitoraggio e supervisione dixell. Se Mod=Std viene utilizzato un protocollo di comunicazione standard ModBUS-RTU, se Mod=AdU è necessaria un apriticolare libreria per XWEB. Quest'ultima configurazione rende possible l'utilizzo dello stesso indirizzo seriale per il termostato che fornisce la richiesta di freddo e per l'XEV. In questo modo, è possible ridurre il numero di indirizzi utilizzati.

13. UTILIZZO DELLA CHIAVETTA DI PROGRAMMAZIONE (HOT-KEY)

PROGRAMMAZIONE DELLA CHIAVETTA

- 1. Programmare lo strumento con i valori desiderati.
- Inserire la chiavetta a strumento acceso, quindi premere il tasto . Si avvia l'operazione di programmazione della chiavetta. Il display visualizza "uPL" lampeggiante
- 3. Alla fine lo strumento visualizza per 10 sec:
 - "End": la programmazione è andata a buon fine.
 - "Err": la programmazione non è andata a buon fine. Premendo il tasto $\, \blacktriangle \,$ si riavvia la programmazione.

PROGRAMMAZIONE DELLO STRUMENTO CON LA CHIAVETTA

Per programmare lo strumento con una chiavetta **precedentemente programmata** agire come segue:

- Spegnere lo strumento o metterlo in stand-by da tastiera.
- 2. Inserire la chiavetta programmata.
- Accendere lo strumento: inizia lo scarico (DOWNLOAD) automatico dei dati dalla chiavetta allo strumento. Il display visualizza "doL" lampeggiante

4. Alla fine lo strumento visualizza per 10 sec:

"End" se la programmazione è andata a buon fine e la regolazione riparte.

"Err" se la programmazione non è andata a buon fine. A questo punto ripetere l'operazione o togliere la chiavetta per partire con la normale regolazione.

14	4.	DI:	SPL	ΑY	MES	SA	GES
----	----	-----	-----	----	-----	----	-----

Mess.	Causa	Uscita
"nA"	Nessun ingresso digitale configurato come CCL è attivo	Valvola chiusa
"Pf"	Errore sonda per tutto il tempo PEd	Valvola chiusa dopo PEd
"P1"	Sonda di temperatura in errore	Secondo PEo e PEd
"P2"	Sonda di pressione in errore	Secondo PEo e PEd
"HSH"	Allarme di alto surriscaldamento	Secondo il PI
"LSH"	Allarme di basso surriscaldameto	Valvola chiusa
"LPL"	Vedere il parametro LPL	Secondo LPL
"MoP"	Massima pressione operativa	Secondo dML
"LoP"	Minima pressione operativa	Secondo dML
"StF"	Funzione di Start attiva	Secondo ESF
"StP"	Regolazione fermata tramite Sti e Std	Valvola chiusa
"EE"	Anomalia memoria	

14.1 ALARM RECOVERY

Gli allarmi sonda "P1", "P2" iniziano pochi secondi dopo il verificarsi dell'errore; rientrano automaticamente pochi secondi dopo che le sonde tornano a funzionare. Controllare le connessioni prima di sostituire le sonde. HSH, LSH, MoP e LoP rientrano automaticamente appena i valori rientrano alla normalità.Lo strumento è dotato di un meccanismo interno di controllo dell'integrità della memoria. L'allarme "EE" lampeggia quando il controllo di integrità fallisce. In questo caso contattare il service Dixell.

15. DATI TECNICI

Contenitore: ABS autoestinguente.

Formato: 4 moduli DIN 70x135 mm; prof. 60mm. Montaggio: montaggio su barra DIN omega (3).

Grado protezione: IP20.

Connessioni: morsettiera a vite per conduttori ≤2.5mm². Alimentazione: secondo modello: 24Vac/dc ±10%.

Potenza assorbita: 20VA max.

Visualizzazione: tre cifre con icone, LED rossi, altezza 14.2 mm.

Ingressi: 1 sonda Pt1000 o NTC;

1 trasduttore di pressione 4÷20mA o 0÷5V.

Ingressi digitali: 1 contatto pulito;

1 a tensione di alimentazione. **Uscita per valvola:** bipolare o unipolare.

Mantenimento dati: su memoria non volatile (EEPROM).

Tipo di azione: 1B.

Grado di inquinamento: normale

Classe software: A.

Temperatura di funzionamento: $0\div55^{\circ}$ C (32+131°F). Temperatura di immagazzinamento: -25 $\div60^{\circ}$ C (-13 \div 140°F).

Umidità relativa: 20÷85% (senza condensa). Risoluzione: 0.1°C oppure 1°F.

Precisione a 25°C: ±0.7 °C ±1 digit.

Etichetta	Descrizione	Range	Default	Livell
FtY	Tipo di gas	R22; 134; 404; 407; 410; 507; CO2	404	Pr2
PEo	Percentuale di apertura in caso di errore sonda	0 ÷ 100 %	50	Pr2
PEd	Tempo di errore sonda prima del blocco	0 ÷ 239 sec; on	On	Pr2
tEU	Tipo valvola motorizzata	uP; bP	bP	Pr2
tEP	Selezione preconfigurazione valvola	0 ÷ 10	1	Pr2
LSt	Minimo numero di passi	0; Ust	See tEP	Pr2
USt	Massimo numero di passi	LSt; 800*10	See tEP	Pr2
ESt	Extra steps in fase di chiusura	0 ÷ 255*10	0	Pr2
Sr	Step rate	10 ÷ 600 step/sec	See tEP	Pr2
СРР	Corrente per fase (solo per valvole bipolari)	nte per fase (solo per valvole bipolari) 0 ÷ 100 *10mA See t		Pr2
CHd	Corrente di mantenimento (solo per valvole bipolari) 0 ÷ 100 *10mA See		See tEP	Pr2
oPE	Apertura fase di start e post-defrost	0 ÷ 100 %	85	Pr2
SFd	Durata fase di start e post-defrost	post-defrost 0.0 ÷ 42min00sec, 1.		Pr2
Sti	Intervallo di pausa regolazione	0.0 ÷ 24ore00min, ris. 10min	0	Pr2
Std	Durata pausa regolazione	0 ÷ 60 min	0	Pr2
MnF	Percentuale di massima apertura della valvola	0 ÷ 100 %	100	Pr2
FoP	Percentuale apertura forzata	0 ÷ 100%; nu	nu	Pr2
ARAMETRI	PI (personale specializzato)			
Pb	banda proporzionale	[0.1 ÷ 50.0 °C] [1 ÷ 90 °F]	10.0	Pr2
rS	Offset banda	[-12.0 ÷ 12.0 °C] [-21 ÷ 21 °F]	0.0	Pr2
inC	tempo integrale	0 ÷ 255 sec	120	Pr2

PARAMETRI SONDE						
tPP tipo di trasduttore di pressione	420; 5V; LAn	420	Pr2			
LPP Abilitazione invio pressione in LAN	n; Y	n	Pr2			
PA4 Valore di pressione a 4mA o a 0V	[-1.0 ÷ P20 bar] [-1.0 ÷ -14 psi]	-0.5	Pr2			
P20 Valore di pressione a 20mA o a 5V	[PA4 ÷ 50.0 bar] [PA4 ÷ 725 psi]	11.0	Pr2			
oPr Calibrazione sonda pressione	[-12.0 ÷ 12.0 bar] [-174 ÷ 174 psi]	0	Pr2			
ttE Tipo sonda di temperatura	PtM; ntC	PtM	Pr2			
otE Calibrazione sonda di temperatura	[-12.0 ÷ 12.0 °C] [-21 ÷ 21 °F]	0	Pr2			
INGRESSI DIGITALI	[21 - 21 - 1]					
i1P Polarità ingresso digitale 1 (contatto pulito)	CL; oP	CL	Pr2			
i1F Funzione ingresso digitale 1 (contatto pulito)	CCL; rL	CCL	Pr2			
d1d Ritardo attivazione ingresso digitale 1 (contatto pulito)	0 ÷ 255 min	0	Pr2			
i2P Polarità ingresso digitale 2 (tensione alimentazione)	CL; OP	CL	Pr2			
i2F Funzione ingresso digitale 1 (tensione di alimentazione)	CCL; rL	CCL	Pr2			
Ritardo attivazione ingresso digitale 2	0 ÷ 255min	0	Pr2			
(tensione di alimentazione): ALLARMI						
dAo Ritardo segnalazione allarmi	0.0 ÷ 42min00sec,	10.0	Pr2			
tdA Tipo di allarme segnalato dal relay	ris. 10sec ALL; SH; PrE; DI	ALL	Pr2			
Limite inferiore di pressione per la	PA4 ÷ P20 bar / psi	-0.5	Pr2			
regolazione del surriscaldamento MoP Soglia di massima pressione	PA4 ÷ P20 bar / psi	11.0	Pr2			
LoP Soglia di minima pressione	PA4 ÷ P20 bar / psi	-0.5	Pr2			
PHy Isteresi allarme di pressione	[0.1 ÷ 5.0 bar]	0.1	Pr2			
dML delta MOP-LOP	[1 ÷ 72 psi] 0 ÷ 100%	30	Pr2			
MSH Allarme di massimo surriscaldamento	[LSH ÷ 32.0 °C]	80.0	Pr1			
LSH Allarme di minimo surrescaldamento	[LSH ÷ 176 °F] [0.0 ÷ MSH °C]	2.5	Pr1			
SHy Isteresi surriscaldamento	[32 ÷ MSH °F] [0.1 ÷ 25.5 °C]	0.1	Pr2			
SHd Ritardo attivazione allarme surriscaldamento	[1 ÷ 77°F] 0 ÷ 255 sec	120	Pr1			
FrC Costante Fast-Recovery	0 ÷ 100 sec	50	Pr2			
DISPLAY						
Lod Visualizzazione di default	SH; PEr; P1; P2	SH	Pr1			
CF Unità di misura temperatura	°C; °F	°C	Pr2			
PMu Unità di misura pressione	bAr; psi	bAr	Pr2			
rES Modo visualizzazione pressione	dE; in	dE	Pr2			
PrM Visualizzazione di default	rEL; AbS	rEL	Pr2			
CLP Percentuale richiesta freddo	Sola lettura		Pr2			
tP1 Temperatura sonda P1	Sola lettura		Pr1			
PPr Pressione rilevata	Sola lettura		Pr1			
tP2 Valore di temperatura rilevato tramite P2	Sola lettura		Pr1			
oPP Percentuale di aperture valvola	Sola lettura		Pr1			
d1S Stato ingresso digitale 1	Sola lettura		Pr1			
d2S Stato ingresso digitale 2	Sola lettura		Pr1			
Adr Indirizzo seriale	1 ÷ 247	1	Pr2			
Mod Modbus	Std; AdU	StD	Pr2			
Ptb Mappa parametri			Pr2			
rEL Release software			Pr2			
Pr2 Menu di secondo livello			Pr1			

Dixell[®]

Dixell S.r.I. - Z.I. Via dell'Industria, 27 - 32010 Pieve d'Alpago (BL) ITALY Tel. +39.0437.9833 r.a. - Fax +39.0437.989313 - EmersonClimate.com/Dixell - dixell@emerson.com