# simovert masterdrives

**SIEMENS** 

Resolver-Interface - RIF

07.97 Definizioni

### Contenuto

| 0   | Definizioni                  | 4  |
|-----|------------------------------|----|
|     |                              |    |
| 1   | Descrizione prodotto         | 6  |
| 1.1 | RIF                          | 7  |
| 1.2 | RIF2                         | 8  |
|     |                              |    |
| 2   | Montaggio, Allacciamenti     | 9  |
| 2.1 | RIF                          | 9  |
| 2.2 | RIF2                         | 10 |
|     |                              |    |
| 3   | Messa in servizio            | 12 |
| 3.1 | Ricerca guasti               | 13 |
|     |                              |    |
| 4   | Dati tecnici                 | 14 |
| 4.1 | Disposizione componenti RIF  | 14 |
| 4.2 | Disposizione componenti RIF2 | 15 |

Definizioni 07.97

### 0 Definizioni

#### PERSONALE QUALIFICATO

nel senso delle istruzioni di servizio o delle avvertenze sul prodotto stesso sono persone, che abbiano confidenza con installazione, montaggio, messa in servizio ed impiego del prodotto e dispongano dei requisiti corrispondenti alle loro mansioni, come per es.:

- 1. Formazione o istruzione oppure autorizzazione all'inserzione o disinserzione, messa a terra e conoscenza di circuiti ed apparecchi secondo gli standard della tecnica della sicurezza.
- 2. Formazione o istruzione secondo lo standard della tecnica della sicurezza nell'uso e manutenzione di equipaggiamenti di sicurezza adeguati.
- 3. Scuola di pronto soccorso

#### PERICOLO

nel senso di queste istruzioni di servizio e delle avvertenze sui prodotti stessi significa, che si avrà morte, gravi ferite o ingenti danni a cose, se non vengono seguite le corrispondenti misure di prevenzione.

#### AVVERTENZA

nel senso di queste istruzioni di servizio e delle avvertenze sui prodotti stessi significa, che si può avere morte, gravi ferite o ingenti danni a cose, se non vengono seguite le corrispondenti misure di prevenzione.

#### ATTENZIONE

nel senso di queste istruzioni di servizio e delle avvertenze sui prodotti stessi significa, che si possono avere leggere ferite o danni a cose, se non vengono seguite le corrispondenti misure di prevenzione.

#### AVVISO

nel senso di queste istruzioni di servizio è un'informazione importante sul prodotto o su una parte relativa delle istruzioni, su cui occorre prestare particolare attenzione.

### **AVVISO**

Queste istruzioni di servizio, per la vastezza degli argomenti trattati, non comprendono dettagliatamente tutte le informazioni su tutti i tipi di prodotti e non possono prendere in considerazione ogni caso pensabile di installazione, di servizio o di manutenzione.

Se si desiderano ulteriori informazioni o se dovessero sorgere particolari problemi, che non siano stati trattati esaurientemente nelle istruzioni di servizio, si possono ricevere le necessarie informazioni richiedendole alla locale filiale Siemens.

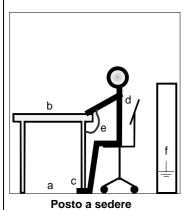
Inoltre si avverte che il contenuto di queste istruzioni di servizio non è parte di precedente trattativa o contestuale, di accordo o di diritto acquisito o che lo possa modificare. Tutti gli obblighi della Siemens derivano dal relativo contratto d'acquisto, che disciplina la sola e piena garanzia valida. Queste condizioni non vengono né ampliate né ridotte da queste istruzioni di servizio.

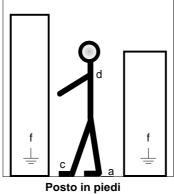
07.97 Definizioni

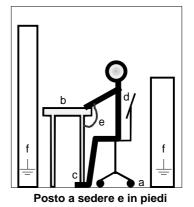


### **ATTENZIONE**

### Componenti che temono le cariche elettrostatiche (EGB)


Il convertitore contiene componenti che temono le cariche elettrostatiche. Questi componenti possono essere danneggiati molto facilmente se maneggiati in modo non appropriato. Se si deve tuttavia lavorare con cartelle elettroniche, si osservino le seguenti avvertenze:


- ♦ le cartelle elettroniche dovrebbero venire toccate solo se é indispensabile intraprendere i lavori previsti
- ♦ tuttavia se si dovessero toccare le cartelle, il proprio corpo deve venire immediatamente scaricato
- ♦ le cartelle non devono venire in contatto con meteriali altamente isolanti, per esempio fogli di plastica, superfici isolanti, parti di vestiti di stoffa sintetica
- ♦ le cartelle devono appoggiare solo su superfici conduttrici
- per compiere saldature sulle cartelle, la punta del saldatore deve essere collegata a terra
- ♦ le cartelle e i componenti devono essere conservate e spedite solo in imballaggio conduttore (per esempio contenitori di metallo o materiale metallizzato).
- se gli imballaggi non sono conduttori, le cartelle devono comunque venire avvolte in fogli di conduttori prima dell'imballaggio, per esempio si può usare gomma piuma metallizzata o fogli di alluminio ad uso domestico.


Le misure di protezione EGB necessarie sono, ancora una volta, chiarite nella figura seguente:

a = pavimento coduttore d = mantella EGB b = tavolo EGB e = bracciale EGB

c = scarpe EGB f = collegamento armadi a terra









### **AVVERTENZA**

Nel funzionamento degli apparecchi elettrici ci sono particolari parti degli stessi inevitabilmente sotto tensione pericolosa.

Dall'inosservanza delle avvertenze possono sorgere gravi ferite corporali o danni a cose.

Solo il personale specificatamente qualificato deve lavorare su questo apparecchio.

Questo personale deve avere conoscenza di base di tutte le avvertenze e misure di manutenzione secondo queste istruzioni di servizio.

Il funzionamento sicuro e ineccepibile di questo apparecchio presuppone un trasporto appropriato, un adeguato stoccaggio, monitoraggio e intallazione, come pure un accurato service e manutenzione.

Descrizione prodotto 06.99

## 1 Descrizione prodotto

La cartella "Resolver-Interface" (RIF) è un ampliamento funzionale per il rilevamento di velocità per mezzo del resolver. Sulla cartella RIF viene prodotta la tensione di eccitazione per il resolver. Sulla RIF i segnali di posizione del resolver vengono tradotti in segnali di traccia digitali di un generatore incrementale.

La cartella RIF esiste in due varianti:

RIF 6 SE 7087-0XX84-3DD0 Montaggio su profilo a cappello

RIF2 6 SE 7087-0XX84-0BB0 Montaggio nel box dell'elettronica

06.99 Descrizione prodotto

#### 1.1 **RIF**

| Ingressi ed uscite della cartella RIF                  |       |                                                                                                                                                                          |  |
|--------------------------------------------------------|-------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Morsettiera                                            |       | Descrizione                                                                                                                                                              |  |
| Allacciamento resolver                                 | -X401 | resolver (eccitazione e segnali di posizione)                                                                                                                            |  |
| Uscita della simulazione -X403 generatore incrementale |       | <ul> <li>alla cartella di regolazione (CU2/CUVC) o</li> <li>alla "cartella sincronizzazione e tachimetrica" (TSY) o</li> <li>alla cartella tecnologica (T300)</li> </ul> |  |
| Alimentazione esterna -X404 24 V, 200 mA               |       |                                                                                                                                                                          |  |
| AVVISO                                                 |       |                                                                                                                                                                          |  |

Un'alimentazione esterna è necessaria solo per il caso, che i segnali del generatore incrementale vengano suddivisi su più ingressi in parallelo.

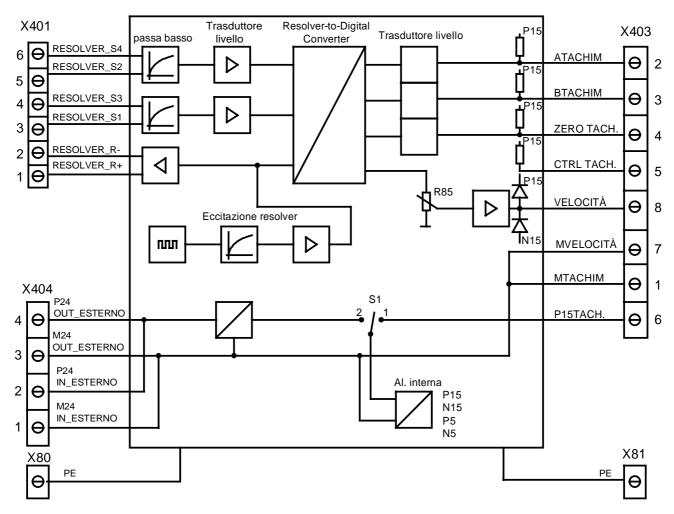



Fig. 1.1 Schema a blocchi RIF

Descrizione prodotto 06.99

### 1.2 RIF2

| Ingressi ed uscite della cartella RIF2                 |       |                                                                                                         |  |
|--------------------------------------------------------|-------|---------------------------------------------------------------------------------------------------------|--|
| Morsettiera                                            |       | Descrizione                                                                                             |  |
| Allacciamento resolver                                 | -X401 | resolver (eccitazione e segnali di posizione) DSUB-9                                                    |  |
| Allacciamento resolver -X402                           |       | resolver (eccitazione e segnali di posizione) DSUB-26 high density                                      |  |
| Uscita della simulazione -X403 generatore incrementale |       | <ul> <li>alla cartella di regolazione (CU2/CUVC) o</li> <li>alla cartella tecnologica (T300)</li> </ul> |  |

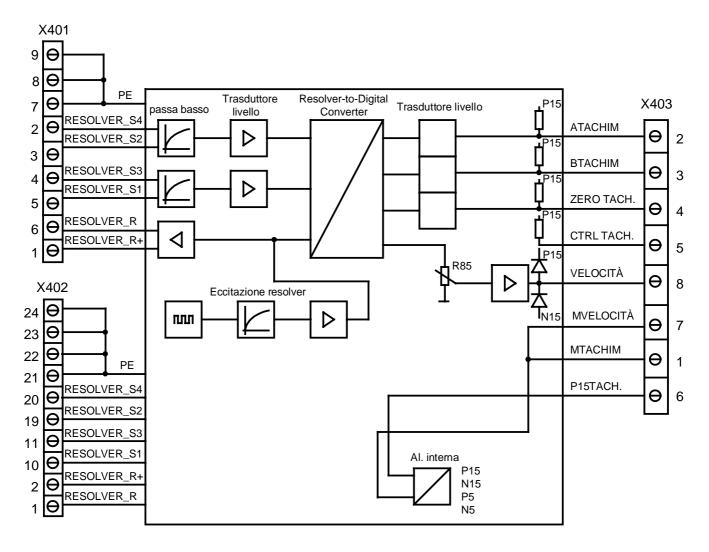



Fig. 1.2 Schema a blocchi RIF2

06.99 Montaggio, Allacciamenti

### 2 Montaggio, Allacciamenti

### 2.1 RIF

La cartella viene fissata a scatto su una guida con profilo a cappello precedentemente montata. Il cablaggio dei componenti deve essere eseguito lato impianto.

### **AVVISI**

La cartella non offre alcuna protezione contro il contatto diretto. Si deve garantire protezione contro il contatto diretto con il montaggio in una custodia o in un sistema sovraordinato (per es. in un armadio).

Per impedire disturbi EMC, si devono usare cavi schermati, e la cartella deve essere messa a terra a X80 o X81.

Il funzionamento a regola d'arte della cartella non può venire garantito, se la lunghezza cavi ammissibile viene superata.

I vavi di potenza e di comando devono essere posati separatamente.

| Morsetto Nome segnale |                 | Funzione                                           | Sezione c       | Sezione conduttore |  |
|-----------------------|-----------------|----------------------------------------------------|-----------------|--------------------|--|
|                       |                 |                                                    | mm <sup>2</sup> | AWG*)              |  |
| X401:                 |                 | Resolver                                           |                 |                    |  |
| 1                     | RESOLVER_R+     | Eccitazione resolver                               | da 0,5 a 1,5    | da 20 a 14         |  |
| 2                     | RESOLVER_R-     | Potenziale comune eccitazione resolver             | da 0,5 a 1,5    | da 20 a 14         |  |
| 3                     | RESOLVER_S1     | COSENO-Uscita resolver                             | da 0,5 a 1,5    | da 20 a 14         |  |
| 4                     | RESOLVER_S3     | Potenziale comune COSENO-Uscita resolver           | da 0,5 a 1,5    | da 20 a 14         |  |
| 5                     | RESOLVER_S2     | SENO - Uscita resolver                             | da 0,5 a 1,5    | da 20 a 14         |  |
| 6                     | RESOLVER_S4     | Potenziale comune SENO - Uscita resolver           | da 0,5 a 1,5    | da 20 a 14         |  |
| X403:                 |                 | CU2/CUVC, TSY o T300                               |                 |                    |  |
| 1                     | MTACHIMETRICA   | Segnale di riferimento                             | da 0,5 a 1,5    | da 20 a 14         |  |
| 2                     | ATACHIMETRICA   | Traccia impulsi A                                  | da 0,5 a 1,5    | da 20 a 14         |  |
| 3                     | BTACHIMETRICA   | Traccia impulsi B                                  | da 0,5 a 1,5    | da 20 a 14         |  |
| 4                     | ZEROTACHIMETR.  | Traccia posizione                                  | da 0,5 a 1,5    | da 20 a 14         |  |
| 5                     | CTRLTACHIMETR.  | Segnale controllo tachimetrica                     | da 0,5 a 1,5    | da 20 a 14         |  |
| 6                     | P15TACHIMETRICA | Alimentazione 15-V                                 | da 0,5 a 1,5    | da 20 a 14         |  |
| 7                     | VELOCITA'       | Valore ist di velocità analogico                   | da 0,5 a 1,5    | da 20 a 14         |  |
| 8                     | MVELOCITA'      | Potenziale comune valore ist di velocità analogico | da 0,5 a 1,5    | da 20 a 14         |  |
| X404:                 |                 | Alimentazione 24 V esterna                         |                 |                    |  |
| 1                     | M24ESTERN_IN    | Potenziale comune                                  | da 0,5 a 1,5    | da 20 a 14         |  |
| 2                     | P24ESTERN_IN    | Tensione alimentazione                             | da 0,5 a 1,5    | da 20 a 14         |  |
| 3                     | M24ESTERN_OUT   | Potenziale comune del cursore                      | da 0,5 a 1,5    | da 20 a 14         |  |
| 4                     | P24ESTERN_OUT   | Tensione alimentazione del cursore                 | da 0,5 a 1,5    | da 20 a 14         |  |

Tabella 2.1 Morsetti allacciamento RIF

<sup>\*)</sup> American Wire Gauge (Misura filo americana)

Montaggio, Allacciamenti 06.99

### 2.2 RIF2

Per poter montare la cartella RIF2 nel box dell'elettronica, deve esservi montato il LBA (Local Bus Adapter). La cartella viene poi inserita nel posto di montaggio 3. Il cablaggio dei componenti deve essere eseguito da parte dell'impianto.

### Montaggio dell'ampliamento di bus LBA:

- Estrarre la cartella CU (posto di montaggio a sinistra nel box dell'elettronica) dopo aver sciolto il cavo di collegamento alla PMU e le due viti di fissaggio alle maniglie
- Infilare l'ampliamento bus LBA nel box dell'elettronica (vedi posizione in figura) ed innestare a scatto
- Inserire la cartella CU di nuovo nel posto di montaggio di sinistra, avvitare le viti di fissaggio alle maniglie, connettere il cavo di collegamento alla PMU

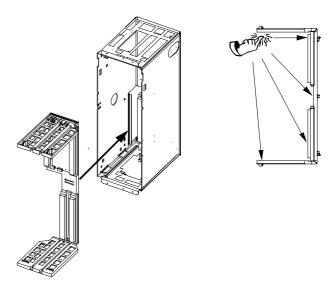



Fig. 2.1 Montaggio del Local Bus Adapter

### **AVVISI**

Nel caso il resolver venga allacciato tramite X401, si deve prestare attenzione a che il corpo del connettore esternamente non sia conduttore elettrico (p.e. metallizzato).

Per impedire disturbi EMC, si devono usare cavi schermati e la cartella è da avvitare nel box dell'elettronica alle maniglie.

La perfetta funzione della cartella non può essere garantita, se si supera la lunghezza dei cavi ammissibile.

I cavi di potenza e di comando devono essere posati separatamente.

| Morsetto | Nome segnale | Funzione                                    | Sezione conduttore |            |
|----------|--------------|---------------------------------------------|--------------------|------------|
|          |              |                                             | mm <sup>2</sup>    | AWG*)      |
| X401:    |              | Resolver(DSUB-9)                            |                    |            |
| 1        | RESOLVER_R+  | Eccitazione resolver                        | da 0,5 a 1,5       | da 20 a 14 |
| 2        | RESOLVER_S4  | Potenziale comune eccitazione resolver SENO | da 0,5 a 1,5       | da 20 a 14 |
| 3        | RESOLVER_S2  | SENO - Uscita resolver                      | da 0,5 a 1,5       | da 20 a 14 |
| 4        | RESOLVER_S3  | Potenziale comune COSENO-Uscita resolver    | da 0,5 a 1,5       | da 20 a 14 |
| 5        | RESOLVER_S1  | COSENO - Uscita resolver                    | da 0,5 a 1,5       | da 20 a 14 |
| 6        | RESOLVER_R-  | Potenziale comune eccitazione resolver      | 0,5 bis 1,5        | 20 bis 14  |
| 7        | PE           | Allacciamento per schermo interno           |                    |            |
| 8        | PE           | Allacciamento per schermo interno           |                    |            |
| 9        | PE           | Allacciamento per schermo interno           |                    |            |

06.99 Montaggio, Allacciamenti

| Morsetto | Nome segnale    | Funzione S                                      |                 | Sezione conduttore |  |
|----------|-----------------|-------------------------------------------------|-----------------|--------------------|--|
|          |                 |                                                 | mm <sup>2</sup> | AWG*)              |  |
| X402     |                 | Resolver (DSUB-26 High Density)                 |                 |                    |  |
| 1        | RESOLVER_R-     | Potenziale comune eccitazione resolver SENO     | da 0,5 a 1,5    | da 20 a 14         |  |
| 2        | RESOLVER_R+     | Eccitazione resolver                            | da 0,5 a 1,5    | da 20 a 14         |  |
| 10       | RESOLVER_S1     | COSENO - Uscita resolver                        | da 0,5 a 1,5    | da 20 a 14         |  |
| 11       | RESOLVER_S3     | Potenziale comune COSENO-Uscita resolver        | da 0,5 a 1,5    | da 20 a 14         |  |
| 19       | RESOLVER_S2     | SENO - Uscita resolver                          | da 0,5 a 1,5    | da 20 a 14         |  |
| 20       | RESOLVER_S4     | SENO - Uscita resolver                          | da 0,5 a 1,5    | da 20 a 14         |  |
| 21       | PE              | Allacciamento per schermo interno               |                 |                    |  |
| 22       | PE              | Allacciamento per schermo interno               |                 |                    |  |
| 23       | PE              | Allacciamento per schermo interno               |                 |                    |  |
| 24       | PE              | Allacciamento per schermo interno               |                 |                    |  |
| X403:    |                 | CU2/CUVC o T300                                 |                 |                    |  |
| 1        | MTACHIMETRICA   | Segnale di riferimento                          | da 0,5 a 1,5    | da 20 a 14         |  |
| 2        | ATACHIMETRICA   | Traccia impulsi A                               | da 0,5 a 1,5    | da 20 a 14         |  |
| 3        | BTACHIMETRICA   | Traccia impulsi B                               | da 0,5 a 1,5    | da 20 a 14         |  |
| 4        | ZEROTACHIM.     | Traccia di posizione                            | da 0,5 a 1,5    | da 20 a 14         |  |
| 5        | CTRLTACHIM      | Segnale controllo tachimetrica                  | da 0,5 a 1,5    | da 20 a 14         |  |
| 6        | P15TACHIMETRICA | Alimentazione 15-V                              | da 0,5 a 1,5    | da 20 a 14         |  |
| 7        | VELOCITA'       | Valore ist di velocità analogico                | da 0,5 a 1,5    | da 20 a 14         |  |
| 8        | MVELOCITA'      | Potenziale comune valore ist velocità analogico | da 0,5 a 1,5    | da 20 a 14         |  |

Tabella 2.2 Morsetti allacciamento RIF2

<sup>\*)</sup> American Wire Gauge (misura filo americana)

Messa in servizio 06.99

### 3 Messa in servizio

- ♦ Controllo delle combinazioni di schede esistenti (in funzione della progettazione):
  - CU1 e TSY (solo con RIF)
  - CU2/CUVC (RIF o RIF2)
  - T300 (RIF o RIF2)

#### Passi della messa in servizio

- Fissare la fonte dell'alimentazione di tensione:
  - Per l'impostazione di S1 vedi Tabella 3.1 (solo RIF)
- Determinare il tipo di resolver (tensione di eccitazione, frequenza di eccitazione, rapporto di trasformazione)
- Impostare con S2 la tensione di eccitazione in modo che i segnali di posizione del resolver non superino 2,2 V<sub>eff</sub>:
  - U<sub>ecc(max)</sub> <= ü<sub>res</sub> ⋅ 2,2 V
  - Per l'impostazione di S2 vedi Tabella 3.2
  - Impostare la frequenza di eccitazione con S3 (vedi Tabella 3.3)
- X401: RIF: allacciare il resolver, RIF2: allacciare il resolver con DSUB-9
- X402: Alternativa per RIF2: allacciare il resolver con DSUB-26
- X403: allacciare CU2/CUVC opp. TSY(solo RIF) opp. T300
- X404: nel caso allacciare alimentazione tensione esterna (solo RIF).
- Controllare schermatura sui due lati e messa a terra della scheda.
- Parametrizzazione della scheda di regolazione:
  - CU2: tarare il parametro P208 a "tachim.digitale" (P208 = 1).

Introdurre il numero tratti nel parametro P209 (Tabella 3.4)

CUVC: tarare il parametro P130 a "datore impulsi" (P130 = 11).

Introdurre il numero tratti nel parametro P151 (Tabella 3.4)

06.99 Messa in servizio

| S1 (solo RIF) | Determinazione dell'alimentazione di tensione della scheda RIF   |  |
|---------------|------------------------------------------------------------------|--|
| Posizione 1   | Alimentazione attraverso X403 con CU2/CUVC/TSY/T300              |  |
| Posizione 2   | Alimentazione attraverso X404 con fonte di tensione 24-V esterna |  |

Tabella 3.1

| S2                         | Impostazione della tensione di eccitazione                                                        |
|----------------------------|---------------------------------------------------------------------------------------------------|
|                            | (Le tensioni valgono per f = 10 kHz, per 5 kHz aumentano ca. del 13 % e per 2,5 kHz ca. del 17 %) |
| S2.1 chiuso<br>S2.2 chiuso | Tensione di eccitazione = 4,1 V                                                                   |
| S2.1 aperto<br>S2.2 chiuso | Tensione di eccitazione = 4,7 V                                                                   |
| S2.1 chiuso<br>S2.1 aperto | Tensione di eccitazione = 5,5 V                                                                   |
| S2.1 aperto<br>S2.2 aperto | Tensione di eccitazione = 6,8 V                                                                   |

Tabella 3.2

| <b>S</b> 3                                | Impostazione della frequenza di eccitazione |
|-------------------------------------------|---------------------------------------------|
| S3.1 chiuso<br>S3.2 aperto<br>S3.3 aperto | Frequenza di eccitazione = 10 KHz           |
| S3.1 aperto<br>S3.2 chiuso<br>S3.3 aperto | Frequenza di eccitazione = 5 KHz            |
| S3.1 aperto<br>S3.2 aperto<br>S3.3 chiuso | Frequenza di eccitazione = 2,5 KHz          |

Tabella 3.3

| Numero paiapoli del resolver | Numero tratti del generatore incrementale simulato (P209 / P151) |
|------------------------------|------------------------------------------------------------------|
| 1                            | 1024                                                             |
| 2                            | 2048                                                             |
| 3                            | 3072                                                             |
| 4                            | 4096                                                             |

Tabella 3.4

### 3.1 Ricerca guasti

Se il valore di velocità misurato si abbassa di molto, si può correggere con l'aiuto di R85 lo sfasamento dei segnali di resolver.

Dati tecnici 06.99

### 4 Dati tecnici

| Scheda                                              | RIF (Resolver-Interface)                                                                                                           | RIF2 (Resolver-Interface)             |  |
|-----------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|--|
| Numero di ordinazione                               | 6SE7090-0XX84-3DD0                                                                                                                 | 6SE7090-0XX84-0BB0                    |  |
| Tensioni nominali d'ingresso                        | 15 V ± 15 % , 170 mA con CU2/CUVC/TSY (solo RIF) / T300 o (solo con RIF) 24 V ± 20 %, 200 mA con alimentazione di tensione esterna |                                       |  |
| Uscita: eccitazione resolver                        | da 4,1 V a 6,8 V, max. 50 mA (valori efficaci)                                                                                     |                                       |  |
| Ingressi: segnali posizione resolver                | max. 2,2 V <sub>eff</sub> o. 6,2 V V <sub>pp</sub> , ca. 0,5 mA                                                                    |                                       |  |
| Uscite: segnali traccia (A, B,ecc.)                 | Logica HTL (da 0 V a 30 V), max. 15 mA                                                                                             |                                       |  |
| Uscita: segnale velocità analogico                  | ± 10 V, max. 5 mA (Ampiezza ag                                                                                                     | giustabile con R31)                   |  |
| Dimensioni: [mm] Larghezza<br>Altezza<br>Profondità | 160<br>97 montaggio su profilo<br>80                                                                                               | 233,4<br>18 montaggio in E-Box<br>100 |  |

### 4.1 Disposizione componenti RIF

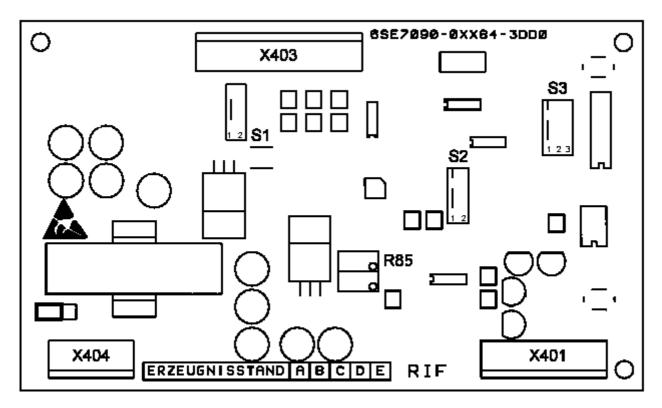



Fig. 4.1 Disposizione componenti RIF

06.99 Dati tecnici

### 4.2 Disposizione componenti RIF2

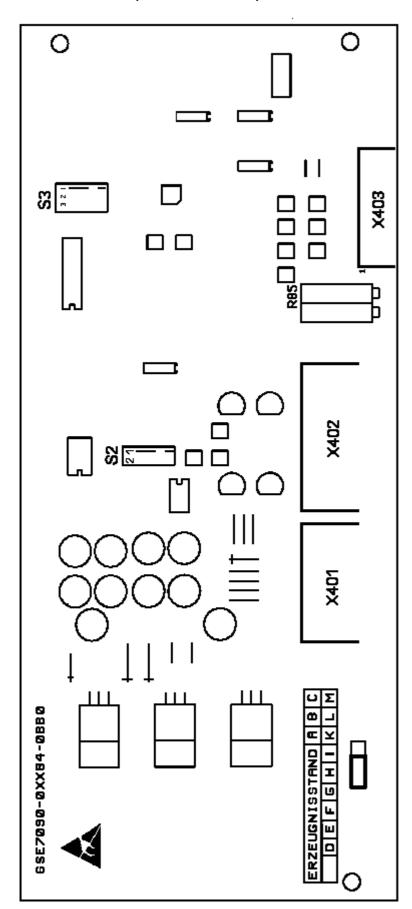



Fig. 4.2 Disposizione componenti RIF2

Finora sono apparse le seguenti edizioni:

| Edizione | Numero interno          |  |  |
|----------|-------------------------|--|--|
| AA       | 477 433 4000 72 J AA-72 |  |  |
| AB       | 477 433 4000 72 J AB-72 |  |  |
| AC       | A5E00388652             |  |  |

### L'edizione AC comprende i seguenti capitoli:

| Capitolo |                           | Variazioni           | Pagine | Data edizione |
|----------|---------------------------|----------------------|--------|---------------|
| 0        | Definizioni               | prima edizione       | 2      | 07.1997       |
| 1        | Descrizione prodottto     | edizione revisionata | 3      | 06.1999       |
| 2        | Montaggio / Allacciamento | edizione revisionata | 3      | 06.1999       |
| 3        | Messa in servizio         | edizione revisionata | 2      | 06.1999       |
| 4        | Dati tecnici              | edizione revisionata | 2      | 06.1999       |

Con riserva di variazioni di funzioni, dati tecnici, norme, disegni e parametri.

E'vietata la trasmissione o la copiatura di questi documenti, la diffusione o l'utilizzazione del loro contenuto, se non espressamente autorizzato. Per trasgressioni si richiederanno risarcimenti. Tutti i diritti sono riservati, specialmente nel caso di brevetti e marchi registrati.

Abbiamo verificato la concordanza del contenuto della pubblicazione con il software ed hardware descritti. Tuttavia non si possono escludere scostamenti così da non essere in grado di fornire alcuna garanzia sulla completa rispondenza. I dati di questa documentazione vengono comunque regolarmente controllati e le necessarie correzioni sono contenute nelle edizioni successive. Per ogni consiglio di miglioramento siamo grati.

SIMOVERT® è un marchio di prodotto della Siemens

### Siemens AG

Automation and Drives
Motion Control Systems
Postfach 3180, D – 91050 Erlangen
Germany

www.siemens.com/motioncontrol

© Siemens AG 2004 Con riserva di modifiche Nr. d'ordinazione: 6SE7087-2CX84-3DD0

Stampato nella Repubblica Federale Tedesca